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Abstract 

 

Putative tumor suppressor genes located on 9p21 locus including Ink4a and Ink4b have been found 

to be deleted in many human cancers. Ink4a gene is one of key cell cycle inhibitors and has been 

intensively studied, however, little is known about Ink4b and no study compares the importance of 

Ink4a and Ink4b in suppressing tumor development.  Although it has been established that there are 

some synergetic effects between deficiency of tumor suppressors and oncogene activation in 

triggering tumorigenesis, our previous study showed that Ink4a deficiency had no effect on tumor 

latency of Ras transgenic mice. In this thesis study, we showed that Ink4b deficiency accelerated 

bladder tumor development in Ras transgenic mice, which is in contrast with Ink4a deficiency. 

Elevated level of MAPK activation and CDKs were related with the cooperative effects. We further 

investigated the effects of overexpression of Ink4a and Ink4b in vitro and found that Ink4b 

suppressed cell growth more significantly than Ink4a by arresting more cells in G1 phase.  

Nevertheless, Ink4a knockout mice showed much higher susceptibility to bladder specific 

carcinogen BBN than wild type, Ink4b knockout and heterozygous Ink4a and Ink4b knockout 

counterparts. All Ink4a knockout mice developed invasive bladder tumors and loss of E-Cadherin 

was involved in this process. This is the first study that compares the importance of Ink4a and 

Ink4b. Ink4b is more important than Ink4a in terms of suppressing cell growth and low-grade 

bladder tumor development, while Ink4a is more potent than Ink4b in suppressing high-grade 

invasive bladder tumor development.   
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Chapter 1: Introduction  

 

1.1 9p21 loss in human tumors 

The loss of 9p21 locus has been reported to happen in many human tumors (table 1), and it includes 

both LOH (loss of heterozygous) and homozygous deletion (Cairns, Polascik et al. 1995). In 

bladder cancer, the percentage of 9p21 homozygous deletion is pretty high. Apart from the tumors 

listed in table 1, 9p21 loss also exist in 57 % of melanoma cases (Holland, Beaton et al. 1994).  

Allelic loss of 9p21 happens in about 50% of hepatocellular carcinoma (Wang, Huang et al. 2000, 

Wang, Zhao et al. 2001). This phenomenon reveals that there must be some important genes located 

at this locus, and they are probably potential tumor suppressors.                  

                          

1.2 Negative cell cycle regulators Ink4a and Ink4b 

1.2.1 Gene structure of Ink4a and Ink4b 

Ink4a and Ink4b are closely linked genes at the chromosome 9p21 locus in human, and are 

homologous to a region on mouse chromosome 4 (Kamb 1995). These two genes belongs to INK4 

(inhibitor of cyclin-dependent kinase 4 ) family (Harper and Elledge 1996). The protein product of 

Ink4b is p15, while the Ink4a gene encodes two proteins p16
Ink4a

 and p14
Arf 

(p19 in mouse) by 

alternative splicing (Fig.1). The sequences between p16 and ARF have low similarity although they 

share the exons of Ink4a gene. The reason is the two variants use different reading frames. 

However, p15 and p16 share 83% identity (Sharpless 2005).  

 

1.2.2 The tumor suppressor role of p16
INK4a

  

p16
Ink4a

 activates retinoblastoma tumor suppressor pRb, which controls cell growth by 

transcriptional repression of genes required for transition from G1 phase to S phase of cell cycle. 

The activation is mediated by Cyclin-dependent kinases CDK4 and CDK6. They play an important 

role in phosphorylation of Rb (Fig.2) (Serrano, Lee et al. 1996). Loss of p16
Ink4a

 function causes 
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pRb hyper-phosphorylation through CDK4/6 activation and eventually leads to uncontrolled 

transition to S phase.    

 

1.2.3 The tumor suppressive role of p19
Arf  

With regard to p19
Arf

, its tumor suppressor function is evident by its ability to induce cell cycle 

arrest and prevent oncogenic transformation (Chin, Pomerantz et al. 1997, Pomerantz, Schreiber-

Agus et al. 1998). p19
Arf

 activities requires p53 (Kamijo, Zindy et al. 1997). The biochemical basis 

of p53-dependent p19
Arf

 function is that p19
Arf

 interacts with MDM2 and prevents MDM2 mediated 

p53 degradation   (Kamijo, Zindy et al. 1997). In p53-deficient cells, p19
Arf 

are upregulated and it is 

downregulated by p53, which suggest that there is a feedback loop between p53 and p19
Arf

 (Stott, 

Bates et al. 1998).  

 

1.2.4 The tumor suppressive role of p15
Ink4b

 

Compared with abundant evidence for tumor suppressive role of p16, there is limited data showing 

the role of p15
Ink4b

 in tumor suppression. Both Ink4a and Ink4b loci or Ink4a alone are homozygous 

deleted in most tumors (Ruas and Peters 1998). Specific deletion of Ink4b occurs in only a few 

cases. However, inactivation of p15 by hypermethylation seems to be frequent in leukemias and 

lymphomas. This inactivation is p16 independent (Malumbres, Perez de Castro et al. 1997). As a 

cell cycle inhibitor, p15 is able to produce cell cycle arrest and suppress Ras-activated 

transformation in mouse embryo fibroblast (Malumbres, Perez De Castro et al. 2000). In this case, 

the roles of p15
Ink4b

 in specific tissue deserve further investigation.  

 

To address whether Ink4a and Ink4b loss are correlated with tumor development, I used bladder 

cancer as the cancer model in this thesis project.  

 

1.3 Bladder cancer 
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1.3.1 Urothelium 

All bladder tumors are originated from urothelium, which is a specialized epithelium. It covers the 

inner surface of bladder, renal pelvis, ureter and prostatic urethra. These urothelia have different 

embryonic origin and cellular differentiation although they have the same morphology (Wu, Kong 

et al. 2009). Urothelium serves as a barrier between urine and blood and it also has secretory 

activity (Negrete, Lavelle et al. 1996, Lewis 2000). Under normal condition, urothelium renew very 

slowly in order to keep stability. The tritium-thymidine labeling index is less than 0.01% (Walker 

1960, Hicks 1975).  

 

Urothelium cells present different phenotypes between different layers (Fig 1). The least 

differentiated basal cells with smallest size reside in the basal layer, where urothelial stem cells are 

supposed to be (Kurzrock, Lieu et al. 2008). The intermediate cells, differentiated from the basal 

cells, reside just on top of basal cells (Negrete, Lavelle et al. 1996). The superficial urothelium cells, 

also named umbrella cells face to bladder lumen. They are quite distinguishable as they are large, 

polyhedral, and bi-nucleated, which is probably  formed by cell-cell fusion of intermediate cells 

(Koss 1969). Unlike other cells, they form the apical surface of the urothelium (Hicks 1965). The 

umbrella cells are terminally differentiated and unable to undergo cell division (Cheng, Huang et al. 

2002).  

 

1.3.2 Bladder cancer and subtypes 

Urothelial tumor is one of the most common cancers in the Unites States and around the globe. The 

number of new cases annually is 336,000 and this number is estimated to be 800,000 within next 5 

years due to the aging and accumulated exposure to carcinogens (Parkin, Bray et al. 2001). 

Etiological factors associated with the development of bladder cancer include cigarette smoking, 

occupational exposure to specific chemicals, treatment with cytostatic drug, arsenic and 

Schistosoma infection (Johansson and Cohen 1997).  
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These carcinomas are mainly composed of two variants with different phenotypes and molecular 

genetic markers (Koss 1992). The low-grade non-invasive papillary tumor progressed from 

urothelial hyperplasia accounts for about 80 % of urothelial carcinomas.  About 70% of these 

tumors will recur, but only 15% have the potential to progress into muscle invasive stage  

(Miyamoto, Miller et al. 2010). The 5-year survival rate is about 90%. High grade invasive tumor is 

the second main variant which accounts for about 20% of the urothelial carcinomas. These tumors 

occur as invasive tumors or arise from flat, high-grade carcinoma in situ (CIS) (Steinberg, Trump et 

al. 1992, Liebert and Seigne 1996). The 5-year survival rate for highly invasive bladder cancer is 

about 6%. Over 50% of these invasive tumors develop to metastasis.  

 

1.3.3 Genetic factors underlie bladder tumorigenesis 

Accumulated evidence suggests that there are two different pathways underlying non-invasive and 

invasive bladder tumorigenesis (Fig.4)(Wu 2005). In low grade papillary bladder tumor, about 46% 

of urothelial tumors have H-ras mutation and about 70% harbor mutation of fibroblast growth factor 

receptor 3 (FGFR3) (Cappellen, De Oliveira et al. 1999, Zhu, Xing et al. 2004). Deletions of the 

arms of chromosomes including 8p, 11p, 13q and 14q are involved in the progression to invasive 

stage (Knowles, Shaw et al. 1993, Cordon-Cardo, Cote et al. 2000). Chromosome 9p and 9q loss 

are present in both low grade non-invasive and invasive bladder tumor at early stage (Spruck, 

Ohneseit et al. 1994).  In invasive bladder tumor and its precursor flat CIS, over 50% have p53 

mutation. Retinoblastoma gene (RB1) dysfunction, including lack of RB expression and hyper-

phosphorylated RB overexpression, is also prevalent in human invasive bladder tumor (Cairns, 

Proctor et al. 1991, Chatterjee, George et al. 2004). Increased N-cadherin, which promotes cell 

invasion, and Reduced E-cadherin expression caused by promoter hyper-methylation happen 

mainly in invasive tumor (Ramos, Palacios et al. 2000, Ribeiro-Filho, Franks et al. 2002). Matrix 

metalloproteinases (MMPs), which degrade extracellular matrix and base membranes, are 

frequently up-regulated in invasive tumor particularly (Kanayama 2001). Vascular endothelial 
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growth factor (VEGF) which is an angiogenesis inducer, and cyclooxygenase 2 (COX2) which 

catalyzes the synthesis of prostaglandins are both over-expressed in bladder cancer, especially in 

invasive cancer (Campbell, Volpert et al. 1998, Komhoff, Guan et al. 2000) .   

 

 

These genetic alterations do not happen alone, there must be synergisms. In this thesis, I focus on 

oncogenic Ras and two genes Ink4a and Ink4b at 9p21 locus.   

 

1.4 Ras and its oncogenic effects 

1.4.1 Ras 

Ras was first identified in T24 and EJ human bladder cancer cell lines in the early 1980s and it was 

the first named human oncogene (Parada, Tabin et al. 1982, Reddy, Reynolds et al. 1982). There are 

three Ras genes in humans, which encode four different Ras proteins with high homology including 

H-ras, N-ras, K-ras4a and K-ras4b. Ras is a GTPase and activated by binding with GTP while 

inactivated by binding with GDP. The transition between active and inactive status is regulated by 

guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). GEFs 

promote Ras activation by stimulating GDP for GTP exchange and GAPs inactivate Ras by 

promoting Ras mediated GTP hydrolysis.  

 

Residue mutations Q61, G12 and G13 impair GTP hydrolysis and result in persistent GTP-binding 

state of Ras. As a result, Ras-dependent downstream effectors are constantly activated (Scheffzek, 

Ahmadian et al. 1997, Scheidig, Burmester et al. 1999). The activated Ras harbors transforming 

properties by gain-of-function mutation, which leads to successive accumulation of genetic 

alterations and then confer cancer cells the capability to evade homeostatic barriers. These 

capabilities including self-sufficiency in growth signals, insensitivity to growth inhibitors, 

angiogenesis, metastasis, and escape from programmed cell death (Hanahan and Weinberg 2000).  
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The oncogenic outputs of mutation in different Ras isoforms are tissue dependent. K-ras mutations 

are mostly detected in biliary cancer, lung cancer and pancreatic carcinomas. H-ras mutations are 

more linked with endometrial cancer, tumors of skin, and salivary gland. N-Ras mutations are 

common in hematopoietic cancers (Bos 1989, Karnoub and Weinberg 2008). In bladder cancer, the 

most frequently mutated ras is H-ras (Knowles and Williamson 1993).  

 

1.4.2 Oncogenic Ras promotes proliferation 

Studies revealed that overexpression of constitutively active H-ras was sufficient for driving the G0 

phase-arrested cells into the cell cycle without growth factor (Feramisco, Gross et al. 1984, Stacey 

and Kung 1984). Active Ras upregulates the transcription of growth factors such as hepairin-

binding epidermal growth factor-like growth factor (HBEGF) and transforming growth factor- 

(TGF) (Mccarthy, Samuels et al. 1995) . To tip the proliferation balance, oncogenic Ras can 

inhibit TGF signal and thus interfere with anti-proliferative signals (Filmus, Zhao et al. 1992). The 

proliferative signals resulting from oncogenic Ras culminate with upregulation of several 

transcription factors that are required for cell cycle entry and progression, including FOS, serum 

response factor (SRF), the leucine zipper protein JUN, the ETS domain-containing transcription 

factor ELK1, activating transcription factor (ATF2) and nuclear factor-B. These transcription 

factors in turn trigger the expression of G1 cyclin, cyclin D1 (Filmus, Robles et al. 1994, Winston, 

Coats et al. 1996). To stimulate the transcription of cyclin D1, oncogenic Ras also regulates its 

stability via PI3K-dependent inhibition of glycogen synthase kinase 3 (GSK3). GSK3 is 

responsible for the phosphorylation and consequent ubiquitylation and proteasomal degradation of 

cyclin D1 (Diehl, Cheng et al. 1998). Cyclin D1 is a crucial determinant of oncogenic effects of Ras 

mutation as revealed by Cyclin D1 knockout mice studies (Robles, Rodriguez-Puebla et al. 1998).  

 

Excessive proliferation leads to DNA replicative stress, which ultimately results in DNA damage 

and the activation of DNA damage response (Bartkova, Horejsi et al. 2005, Gorgoulis, Vassiliou et 
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al. 2005). In a normal cell that has functional DNA damage checkpoint, DNA damage response 

induced by oncogenic Ras leads to senescence (Di Micco, Fumagalli et al. 2006). However, this 

response creates selective pressure in favor of cells that are key check-point deficiency, which 

contribute to tumorigenic process (Halazonetis, Gorgoulis et al. 2008).  

 

1.4.3 Oncogenic Ras inhibits apoptosis 

Apoptosis is a defense mechanism against malignancy. It can be initiated intrinsically through 

mitochondria-mediated pathway when activated by DNA damage or nutrient deprivation. It can also 

be initiated extrinsically through extracellular cues such as growth factor withdrawal and matrix 

detachment. Pro-apoptotic and anti-apoptotic proteins of the Bcl-2 family act on mitochondria- 

mediated pathway while FLIP acts on extrinsic pathway.  Inhibitors of apoptosis (IAPs) act on both 

pathways (Cox and Der 2003).   

 

The PI3K pathways activated by oncogenic Ras leads to downregulation of pro-apoptotic protein 

BCL-2-homologous antagonist/killer 1 (BAK1), and enhanced IAP level (Rosen, Rak et al. 1998, 

Mayo and Baldwin 2000). In addition, RAF pathway activated by oncogenic Ras upregulates the 

anti-apoptotic proteins BCL-2 (Kinoshita, Yokota et al. 1995, Fang, Yu et al. 1999). Both pathways 

have been demonstrated to mediate the phosphorylation of BCL-2-associated agonist of cell death 

(BAD), which eventually inactivate BCL-2 (Fang, Yu et al. 1999). Recent studies also showed that 

oncogenic Ras can induce epigenetic silencing of pro-apoptotic CD95 (Gazin, Wajapeyee et al. 

2007). However, the precise role of Ras in tumorigenesis need to be further elucidated.  

 

1.5 Transgenic mouse study on active Ras 

Dr. Wu’s lab has been studying the in vivo role of Ras activation in bladder urothelium for over ten 

years.  Mutant H-Ras (G12V), which is constitutively active, is expressed under the control of a 

mouse uroplakin II promoter, which makes the expression of Ras urothelial specific (Zhang, Pak et 
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al. 2001). The latency of tumor development is dose-dependent. Hyper-activation of Ras (Ras 

homozygous transgenic) leads to about 50% urothelium transformation in 3 months. Low-level 

expression of activated H-ras (Ras heterozygous transgenic) leads to simple hyperplasia. After 10-

month latency, about 60% of Ras heterozygous transgenic mice develop low-grade papillary tumor 

(Mo, Zheng et al. 2007). Such a long latency suggests that tumor suppressors impede the tumor 

development.  

 

It has been reported that oncogenic Ras activity induces up-regulation of negative cell cycle 

regulators p15
Ink4b

 and p16
Ink4a 

in cultured cells (Malumbres, Perez De Castro et al. 2000). In mouse 

urothelial tumor induced by transgenic active Ras, there is no change for ARF while both p15
Ink4b

 

and p16
Ink4a 

are up-regulated (Mo, Zheng et al. 2007).  The induction of tumor suppressor p15
Ink4b

 

and p16
Ink4a

 may represent host defense mechanism for controlling cell proliferation. It would be 

interesting to find out whether it is p15
Ink4b

 or p16
Ink4a

 that suppresses tumor development induced 

by Ras activation. Dr. Wu's group found that mice with transgenic Ras and Ink4a deficiency did not 

show accelerated bladder tumor development (Mo, Zheng et al. 2007). However, another transgenic 

animal study revealed that Ink4a deficiency cooperated with Ras activation in the pathogenesis of 

melanoma (Chin, Pomerantz et al. 1997). Thus, the synergism of genes in tumorigenesis may be 

tissue specific.  

 

Whether p15
Ink4b 

induction
 
suppresses

 
bladder

 
tumor development is unknown. In this project, we 

aim to find out whether Ink4b deficiency in combination with oncogenic Ras can trigger bladder 

tumorigenesis. I will show that mice with transgenic Ras and Ink4b deficiency develop low grade 

bladder tumor in a significant contrast with Ras transgenic and Ink4a knockout mice.  Cell cycle 

regulators including CDK2, CDK4, CDK6 and Cyclin D1 are up-regulated. MAPK is also strongly 

activated in urothelium of Ras transgenic and Ink4b knockout mice.  
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What we find in vivo suggests that Ink4b is more important than Ink4a in suppressing urothelial 

tumorigenesis. Up to date, no studies yet have compared Ink4a and Ink4b and their difference in 

function is not clear. We aim to find how Ink4b is different from Ink4a in vitro. I will show that p14 

overexpression does not inhibit cell growth while both p15 and p16 overexpression suppress cell 

growth in human bladder cancer cell line UM-UC-3 cells, which do not express p15, p16 and p14. 

In addition, both p15 and p16 overexpression cause cell cycle arrest in G1 phase, however the 

amount of suppression is greater with p15 overexpression.  

 

1.6 BBN as an urothelial specific carcinogen 

BBN (N-butyl-N-(4-hydroxybutyl) nitrosamine) is extensively used to create experimental models 

for chemical urothelial carcinogenesis in mouse and rat (Cohen 1998, Yamamoto, Nakata et al. 

1999). Bladder tumors induced by BBN in rat are non –invasive papillary tumors (Fukushima, 

Hirose et al. 1976). In contrast, mouse bladder tumors induced by BBN are invasive tumors 

(Tamano, Hagiwara et al. 1991). BBN targets bladder with remarkable specificity. The reason 

underlying this specificity is that bladder urothelium is the major targeted tissue for BBN induced 

mutagenesis (He, Kosinska et al. 2012). BBN is primarily metabolized in the liver and its genotoxic 

effects are mediated by its metabolite N-butyl-N-(3-carboxypropyl) nitrosamine (BCPN) (Bonfanti, 

Magagnotti et al. 1988). BCPN is a direct bladder carcinogen. It reaches the bladder through urine 

and initiates the carcinogenic process (Cohen, Ohnishi et al. 2007).    

 

p53 and H-ras mutations have been detected in murine bladder tumors induced by BBN, which 

resemble what happen in human bladder cancer (Masui, Dong et al. 1996). Loss of chromosome 4 

is also detected, which is similar to 9p21 loss in human bladder cancer (Ogawa, Uzvolgyi et al. 

1998). These human relevant evidences suggest that this model is useful for studying the 

pathogenesis of human bladder cancer, particularly invasive bladder cancer.  
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Transgenic rats with human oncogene H-ras are more susceptible to BBN-induced carcinogenesis, 

and H-ras overexpression is correlated with malignant progression (Ota, Asamoto et al. 2000). p53 

heterozygous knockout mice also show high susceptibility, which may be caused by increased cell 

proliferation rate (Ozaki, Sukata et al. 1998). This study further addresses the importance of p53 in 

suppressing tumor development. So far, there is no study on how Ink4a and Ink4b, which are 

located at 9p21, are involved in pathogenesis of BBN-induced bladder tumor.  In this thesis project, 

I aim to find out whether Ink4b is also more important than Ink4a in BBN induced carcinogenesis. I 

will show mice with Ink4a deficiency are more susceptible to BBN treatment while Ink4b 

deficiency is not important. 
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Table 1-1: Allelic status in primary human tumors (Cairns, Polascik et al. 1995). SCLC stands 

for small cell lung cancer. NSCLC stands for non-small cell lung cancer.  
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Table 1-1 
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Figure 1-1: The Ink4a/Ink4b locus (Gillespie, Markerink-van Ittersum et al. 2006). The exons are 

represented as boxes. The sequences encoding p15 are marked with light blue color, and sequences 

for p16 is marked with green color while those encoding p14
Arf

 are showed with yellow color.  
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Figure 1-1 
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Figure 1-2: The regulation of G1/S transition by pRB (Chin, Merlino et al. 1998). In G1, hypo-

phosphorylated pRB binds to transcription factor E2F and therefore represses the transcription of 

E2F responsive genes. Upon receiving growth signaling, CDK4/Cyclin D complex phosphorylates 

and releases pRB from E2F. E2F responsive genes are activated subsequently and cells enter into S 

phase. The activity of CDK4 is negatively regulated by p16
INK4a

.   
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Figure 1-2 
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Figure 1-3: Representation of urothelium cell types modified from Gillespie et al., 2006 

(Gillespie, Markerink-van Ittersum et al. 2006). The orange cells with red nuclear at the bottom are 

basal cells. The white cells with purple nuclear stand for intermediate cells. Blue cells with pink 

nuclear present as umbrella cells.  
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Figure 1-3 
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Figure 1-4: Genetic alterations underlie two pathways of urothelial tumorigenesis (Wu 2005). 

About 70-80% of bladder cancer is low-grade non-invasive papillary tumor which develops from 

hyperplasia. The genetic alterations underlie this pathway include 9p/9q loss, HRAS and FGFR3 

mutation. About 70% of low-grade tumor recurs after surgical removal. 15% of the recurred low-

grade tumor progresses to invasive tumor with p53 mutation, RB down-regulation and loss of 8p, 

11p, 13q and 14q. The other pathway which accounts for 20-30% of bladder cancer is high-grade 

invasive tumor arising from CIS/dysplasia which harbors p53 mutation and RB down-regulation. 

The genetic alterations underlie invasive tumor include N-cadherin, E-cadherin, MMPs, VEGF, 

TSP1 and COX2. Over 50% of invasive tumor becomes metastasis.  
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Figure 1-4 
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Chapter 2 Methods 

 

2.1 Methods for in vivo study 

2.1.1 Transgenic and knockout mice  

Transgenic mice expressing constitutively active Ha-Ras in urothelium cells under the control of 

UPII promoter were generated previously (Zhang, Pak et al. 2001). P15 knockout mice were 

donated by Angel Pellicer (Department of Pathology, New York University Langone Medical 

Center). The heterozygous p15 knock out mice were inbred to obtain homozygous mice. Ras 

transgenic and Ink4b knockout mice were crossed and then inbred to produce compound mice. 

Ink4a knockout mice, which have deletion of both p16Ink4a and p19Arf, were obtained from Dr. 

Ron DePinho (Harvard Medical School, Boston, Massachusetts, USA) (Serrano, Lee et al. 1996). 

To obtain Ras transgenic and Ink4a homozygous knockout mice, Ras heterozygous transgenic mice 

were crossed to Ink4a homozygous knockout mice. The Ras heterozygous transgenic and Ink4a 

heterozygous knockout mice from the offspring were backcrossed to Ink4a homozygous knockout 

mice.  

 

For BBN treatment, mice were housed in a special room used for carcinogen and toxicity treatment. 

They were fed with 0.05% BBN (TCI America) in drinking water, which was refreshed twice a 

week.  

 

All these mouse strains were maintained in pathogen-free facility. Mice are housed in 12-h 

light/dark cycle with free access to food and drink at constant 22 ℃. All animal studies were 

conducted in accordance with government guidelines and under an active protocol approved by the 

Institutional Animal Care and Use Committee (IACUC). 

 

2.1.2 Genotyping 
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2.1.2.1 Genomic DNA extraction 

About 1 cm tail per mouse was cut and digested overnight with 500 μl extraction buffer (50 Mm 

Tris-Hcl pH7.4, 100 mM EDTA, 100 mM NaCl) supplemented with 12.5μl 20% SDS (sodium 

dodecyl sulfate) and 10 μl protease K at 50 ℃. Then 135μl 5M NaCl was added to the mixture and 

the tube was centrifuged at 14,000 rpm for 20 min after shaking vigorously. The supernatant was 

then transferred to a new tube and added with 1 ml 100% ethanol. The DNA will precipitate after 

centrifuging at 14,000 rpm for 10 min. The pellet was washed with 1 ml 70% ethanol and air dried 

before dissolved in 200 μl distilled water. 60 μl sodium acetic acid and 520 μl 100% ethanol were 

added to the solution and the mixture was centrifuged at 14,000 rpm for 10 min. The pellet was 

washed with 1 ml 70% ethanol and air dried before dissolved in 50 μl (for southern blot)/150 μl (for 

PCR) water.  

 

2.1.2.2 PCR for Ink4a and Ink4b genotyping 

Ink4a wt F and Ink4a wt R primers were used for wild type Ink4a allele, yielding a 278 bp product. 

Ink4a ko F and Ink4a ko R primers were used for knockout Ink4a allele, yielding a 313 bp product. 

The PCR procedures for both Ink4a wild type allele and knockout allele were as follow: 94 ℃ 3 

min; 94 ℃ 30 sec, 60 ℃ 30 sec, 72 ℃ 30 sec, 40 cycles; 72 ℃ 5 min; 4 ℃, hold. The primer pairs 

(Ink4b wt F and Ink4b wt R) for wild type Ink4b allele are from second exon, yielding a 273 bp 

product. The PCR procedures were as follow: 94 ℃ 3 min; 94 ℃ 30 sec, 54 ℃ 30 sec, 72 ℃ 30 

sec, 40 cycles; 72 ℃ 5 min; 4 ℃, hold. The primer pairs (Ink4b ko F and Ink4b ko R) for Ink4b 

knockout allele are from first intron and neo gene, yielding a 500 bp product. The PCR procedures 

were as follow: 94 ℃ 3 min; 94 ℃ 30 sec, 57 ℃ 30 sec, 72 ℃ 30 sec, 40 cycles; 72 ℃ 5 min; 4 ℃, 

hold. All primer sequences are listed in table 2.  

 

2.1.2.3 Southern Blotting for Ras genotyping 
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10 μg gDNA per mouse was digested with NcoI overnight at 37 ℃. Then the DNA will be applied 

to eletrophorysis on 0.8% agarose gel at low voltage (3 V/cm). Then the gel was soaked in 0.25 M 

HCl for 20 min with gentle agitation followed by rinsing with deionized water for 5 min. After that, 

the gel was soaked twice in base solution composed of 1.5 M NaCl and 0.5 M NaOH for 20 min 

with shaking. Then the gel went through wet-transfer overnight.  The next day, Nylon membrane 

was rinsed twice in 2×SSC with agitation for 5 min, and crosslinked in Stratalinker. Then the 

membrane was incubated in hybridization buffer at 60 ℃ in hybridization oven for 1 h. The probe 

was 3’ end of UPII promoter, which could identify both endogenous (1.4 kb) and transgenic (1.7 

kb) UPII promoter (Zhang, Pak et al. 2001). The hybridization and detection steps were done 

following manufacture’s instruction (Amersham Gene Images AlkPhos Direct Labelling and 

Detection System, GE Healthcare).  

 

2.1.3 Histopathology and Immunohistochemistry 

Mouse bladders were histopathologically analyzed. Bladders were fixed in 10% formalin overnight 

and then embedded in paraffin, cut to 4 μm sections, and stained with H&E for histopathological 

examination. Briefly, deparaffinized sections were stained with hematoxylin for 2-5 min and then 

washed with running water for 10 min, followed by staining with eosin for 30 sec- 1min. The 

sections were then dehydrated and mounted with mounting medium. For immunohistochemistry, 

sections were deparaffinized, soaked in antigen unmasking solution (Vector laboratories) and 

microwaved at the 9
th

 power level (Sensor Microwave Oven, GE) for 20 min, followed by washing 

with PBS for 3 times. Slides were then soaked in 3% H2O2 for 10 min and washed with H2O for 3 

times. After blocking with 3% BSA for 30 min, the sections were incubated with primary antibodies 

diluted in 3% BSA overnight at 4°C. The next day, the sections were washed with PBS for 3 times, 

and then incubated with HRP conjugated secondary antibody for 1 h at room temperature. After 

washing with PBS (Phosphate buffered saline) for 3 times, the sections were developed with DAB 

Peroxidase (HRP) Substrate Kit, 3,3’-diaminobenzidine for 5-10 min at room temperature 
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according to manufacturer’s instruction (Vector Laboratories). The reaction was stopped by soaking 

slides in running water for 10 min. The slides were then dehydrated and mounted with mounting 

medium.  The primary antibodies used in immunohistochemistry were as follow: anti-Cyclin D1, 

anti-phospho-MAPK (Cell Signaling Technology), anti-E-cadherin (Santa Cruz Biotechnology), 

anti-Zeb1, anti-Zeb2, anti-Twist, anti-cytokeratin 5 (Abcam). 

 

2.1.4 Double Immunofluorescence staining 

The procedures on the first day were the same as immunohistochemistry. The two primary 

antibodies (rabbit anti-E-cadherin and goat anti-cytokeratin 14 (Santa Cruz)) were mixed together. 

The next day, the sections were washed with PBS for three times and then incubated with a mixture 

of Alexa Fluor 488 anti-rabbit IgG and Alexa Fluor 594 anti-goat IgG for 1 h at room temperature. 

After washing with PBS, the sections were counterstained with DAPI for 10 min, followed by being 

mounted with aqueous mounting medium (DAKO). Pictures were taken under Immunofluorescence 

microscopy (Nikon).  

 

2.1.5 Western Blotting analysis  

Total proteins were prepared in a lysis buffer containing 20 mM Tris-HCl buffer (pH 7.5), 10% 

SDS, 5 mM beta-mercaptoethanol, 50 mM NaCl and cocktail of protease inhibitors. After 

determination of protein concentration, 50 mg of proteins per lane were resolved by SDS-PAGE  

(sodium dodecyl sulfate polyacrylamide gel electrophoresis) and electrophoretically transferred 

onto polyvinylidene fluoride membrane. After incubated with primary antibodies at 4°C overnight, 

the membrane was washed 3 times with TBST and then incubated with secondary antibodies for 1 h 

at room temperature. After another round of washing with TBST, the membrane was developed 

using enhanced chemiluminescent method (Amersham Biosciences). The primary antibodies 

adopted in western immunoblotting were as follow: anti-CDK2, anti-CDK4, anti-CDK6, anti-

Cyclin D1, anti-MAPK, anti-phospho-MAPK, anti-p16, anti-p14, anti-p19 (Cell Signaling 
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Technology); anti-p15 (Abcam), Antibody against mouse β-actin (Sigma) was used as an internal 

loading control.  

 

2.1.6 Cell cycle analysis 

The bladders from 8 month old mice were taken out and turned inside out. Then the whole bladders 

were incubated with 1 mg/ml dispase at 4°C overnight. The next day, the urothelial cells were 

gently scraped off and washed with PBS.  The cells were digested with 0.25% Trypsin-EDTA 

(ethylenediaminetetraacetic acid) solution at 37°C for 30 min. The digestion was stopped by adding 

fetal bovine serum to a final concentration of 20%. The cells were collected by centrifugation at 800 

g for 5 min and washed twice with PBS. After filtered through 100 μm pore-size filter, the cells 

were fixed with pre-cooled 70% ethanol at 4°C overnight. On third day, the cells were washed with 

PBS for 3 times, and then stained with 40 μg/ml propidium iodide (Roche) containing 100 μg/ml 

RNase (Thermo Scientific). These cells were then sorted with Facscan (Beckman). The data were 

analyzed using ModiFit 3.2 (Verity Software House).  

 

 

2.2 Methods for in vitro study 

2.2.1 Cell culture  

RT4 and T24 cells  were cultured in Myco5A medium containing 10% fetal bovine serum (FBS). 

RT112 and 5637 cells were cultured in RPMI1640 medium supplemented with 10% FBS. UM-UC-

3, J82, and HT1376 were cultured in DMEM (dulbecco's Modified Eagle's medium, high glucose) 

medium with 10% FBS. T24T and Urosta cells were cultured in DMEM/F12 (1:1) medium with 

10% FBS.  

 

2.2.2 RT-PCR 
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Total RNA was isolated from cultured cells using RNeasy Micro Kit according to manufacturer’s 

instruction (Qiagen). 2 μg total RNA per each sample was used as template for cDNA synthesis 

using High Capacity cDNA Reverse Transcription Kit following manufacturer’s protocol (Applied 

Biosystem). 0.5 μl cDNA was used as template for RT-PCR procedures. The primer pairs and 

sequences are listed in table 3. PCR procedures are as follow: 94°C 3min; 94°C 30 s, 60°C 30 s, 

72°C 30 s, 30 cycles; 72°C, 5 min; 4°C hold.   

 

2.2.3 Plasimid construction 

Human p15, p16 and p14 ORF clones were purchased (OriGene). Each ORF was inserted into 

pTRE-Tight vector at EcoR1 and EcoRV restriction enzyme sites. The sequences were confirmed 

by sequencing service (Genewiz).  

 

2.2.4 Transfection  

UM-UC-3 cells were seeded to 30–40% confluence in 6-well plates 24 h prior to transfection. The 

vacant vector was used as control. 4 μg plasimid and 10 μl Lipofectamine 2000 were diluted with 

100 μl Opti-MEM respectively and incubated for 5 min. The diluted lipofectamine 2000 was added 

to the diluted plasimid and the mixture was incubated for 20 min at room temperature to allow the 

formation of DNA-lipofectamine complex, which was added to the well after the growth medium 

without antibiotics was refreshed. The medium containing the complex was removed and replaced 

the transfection medium with fresh growth medium 6 h later. To make a stable transfected cell line, 

the cells were then cultured in the medium containing 800 μg/ml G418 (Life Technology) 48 h after 

transfection. A single cell which survived the antibiotic selection was picked and propagated under 

G418 selection for one month. The stably transfected cells were maintained in complete growth 

medium containing 200 μg/ml G418.  

 

2.2.5 Inducible stable transfected cells  
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Firstly, UM-UC-3 cells were transfected with pTet-On Advanced and stable transfected cell line 

was made by selecting with 800 μg/ml G418 for one month.  The induction capability was tested by 

transfecting this cell line with pTRE-Tight-BI-ZsGreen1. The cells were then incubated with 0.1, 

0.5 and 1 μg/ml doxycycline for 48 h respectively. The expression of ZsGreen was checked under 

fluorescence microscope.  Secondly, the stable pTet-On Advanced transfected UM-UC-3 cells were 

co-transfected with pTRE-Tight-p15 and puromycin linear DNA, or pTRE-Tight-p16 and 

puromycin linear DNA (20:1) respectively. 24 h after transfection, cells were split into two wells. 

Cells in one well were incubated with 1 μg/ml doxycycline for 48 h.  P15 and p16 expression were 

confirmed by western blotting. Cells in the other well were applied to 2 μg/ml puromycin selection. 

Three days later, the cells were trypsinized  and seeded into 96-well plates. Only one cell was 

seeded in each well. Specific primers for RT-PCR were used to identify which clone expressed the 

inducible p15 and p16 respectively. The positive clones were further confirmed by western blotting. 

The double stable transfected cell lines were maintained in complete growth medium containing 

200 μg/ml G418 and 0.5 μg/ml puromycin.  

 

 

2.2.6 Cell proliferation assay 

1×10
4
 cells in 100 μl growth medium were seeded in each well of 96-well plates.  10 μl WST-1 

(water soluble tetrazolium salt) reagent (Roche) was added to each well and incubated at 37 °C for 

1 h. The OD value was measured at 450 nm. The measurement was taken at 24 h, 48 h, 72 h and 96 

h respectively. For the starting point, the measurement was taken 2 h after cells seeded.  There were 

5 repeats at each time point for each sample.  

 

2.2.7 Cell cycle analysis  

Cells were incubated with 1μg/ml doxycycline for 72 h prior to harvest. After washing with PBS, 

the cells were fixed with pre-cold absolute ethanol overnight. Then the cells were washed with PBS 
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and incubated with 40 μg/ml propidium iodide and 0.1 mg/ml DNAse-free RNase A for 15 min at 

37. Finally, the stained cells were subjected to FACS (fluorescence-activated cell sorting) analysis 

using a FACScan (Beckman). 10,000 cells per each sample were analyzed. The data were analyzed 

by ModFit LT 3.2 software. 
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Table 2-1: primers and sequences  

Ink4a wt F GTG ATCCCTCTACTTTTTCTTCTGACTT 

Ink4a wt R CGGAACGCAAATATCGCAC 

Ink4a ko F GTG ATCCCTCTACTTTTTCTTCTGACTT 

Ink4a ko R GAGACTAGTGAGACGTGCTACTTCCA 

Ink4b wt F GTCATGATGATGGGCAGCG 

Ink4b wt R CCGGAATTCGCGTGCAGATACCTCGC 

Ink4b ko F ATCCGAGTGCCTACACCTCCA 

Ink4b ko R GCTCCCGATTCGCAGCGAT 

h-p14 F GGTTTTCGTGGTTCACATCCC 

h-p14 R CCCATCATCATGACCTGGTCTT 

h-p16 F CATGGAGCCTTCGGCTGACT 

h-p16 R CCATCATCATGACCTGGATCG 

h-p15 F GAATGCGCGAGGAGAACAAG 

h-p15 R CCATCATCATGACCTGGATCG 
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Chapter 3:  Ink4b deficiency cooperates with oncogenic Ras to trigger low grade bladder 

tumor development 

 

Introduction 

Activated oncogene Ras has been found to cooperate with Ink4a deficiency to accelerate the 

melanoma development (Chin, Pomerantz et al. 1997). However, this cooperative event does not 

exist in bladder urothelial tumorigenesis. From the previous microarray data, we know that both 

Ink4a and Ink4b are up-regulated in urothelium of active Ras transgenic mice. Thus, it would be 

interesting to find out whether Ink4b deficiency synergies with activated Ras to trigger 

tumorigenesis in bladder.   

 

3.1 p15
Ink4b

 expression was induced by Ras activation 

Upregulation of tumor suppressors is one of the cellular responses to oncogenic Ras activation. 

P16Ink4a has been reported to be upregulated by oncogenic Ras both in vitro and in vivo. As 

revealed by microarray data, RNA level of Ink4b is upregulated in low grade bladder tumor. To 

further confirm it, we checked the p15 protein expression and we found that p15
Ink4b

 was 

significantly induced in bladder urothelium of acitive Ras transgenic mice compared to wild type 

mice (Figure 3-1).  

 

3.2 Ras heterozygous transgenic and Ink4b homozygous knockout mice were generated 

Since induction of p15
Ink4b 

in response to Ras activation may be a tumor suppression strategy, we 

hypothesized that oncogenic Ras activation needed to cooperate with Ink4b deficiency in order to 

trigger tumor development. To test this hypothesis, we generated heterozygous Ras transgenic and 

homozygous Ink4b knockout mice (Ras
*/wt

 Ink4b
-/-

) by cross breeding and backcross breeding.  In 

the meantime, we got heterozygous Ink4b knockout mice (Ink4b
+/-

), homozygous Ink4b knockout 

mice Ink4b
-/-

, heterozygous Ras transgenic only mice (Ras
*/wt

), and heterozygous Ras transgenic 
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heterozygous Ink4b knockout mice (Ras
*/wt

 Ink4b
+/-

), which were used as controls (Figure 3-2).  

 

3.3 Ink4b deficiency accelerates Ras-triggered bladder tumorigenesis 

As blood in urine is an important symptom of bladder cancer, we did dipstick urinalysis to check 

whether mice might have developed bladder tumor.  The dipstick was used to check 10 parameters 

in the urine including leukocytes, nitrite, urobilinogen, protein, pH, haemoglobin (blood), specific 

gravity, ketone, bilirubin and glucose. From urinalysis of 8-month-old mice of different genotypes, 

we found that there was no difference in all the parameters except blood. No blood was detected in 

control groups while it was detected in the urine of Ras
*/wt

 Ink4b
-/-

 counterparts (Figure 3-3A), 

which suggested that this group of mice probably developed bladder cancer.   

 

Subsequently, each mouse was sacrificed and dissected. The Ras
*/wt

 Ink4b
-/-

 mice had much larger 

bladders, which were about 65 times heavier than control groups although there was no much 

difference in the body weight (Figure 3-3B upper panel and C). All bladders from control groups 

showed almost the same size as that from wild type mice (Figure 3-3B upper panel).  The 

hydronephrosis, which occurred when urinary path was obstructed, happened in Ras
*/wt

 Ink4b
-/-

 

mice (Figure 3-3B lower panel).  

 

Histopathology analysis of 8-month old mice bladder of each group revealed that Ink4b
+/-

 and 

Ink4b
-/- 

mice had normal bladder urothelium phenotype. Constant with what was found in Dr. Mo’s 

paper, the bladder urothelium of transgenic Ras mice developed simple hyperplasia. The bladder 

urothelium of Ras
*/wt

 Ink4b
+/- 

mice, which represented majority of this group, also developed simple 

hyperplasia. Those from Ras
*/wt

 Ink4b
-/-

  mice were cellular (Figure 3-4). All tumors found in this 

study were low grade.  

 

Following up these mice by pathology analysis every two months, we found that Ras
*/wt

 Ink4b
-/-
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mice developed low grade bladder tumor by as early as two months. By 8 months, all these mice 

developed low grade bladder tumors. This was in striking contrast to what happened in the Ras
*/wt

 

Ink4b
+/-

  mice, 10% of which developed bladder tumor in 4 months and the percentage rose to 30% 

by 6 months. For all other control groups, including wild type mice, Ink4b
+/-

 and Ink4b
-/- 

 mice and 

Ras
*/wt

 mice, no tumor was found within 10 months (Figure 3-5). This result revealed that Ink4b 

deficiency accelerated tumor development in heterozygous Ras transgenic mice.   

 

3.4 Cell cycle was disturbed due to up-regulation of CDKs and p-MAPK  

Tumor development results from the break of tight control of cell proliferation. In order to check 

how the proliferation of urothelial cells got out of control, we analyzed the cell cycle distributions 

of each group. Over 90% of the normal urothelial cells (wild type) were in G1 phase, which 

suggested that the proliferation rate of normal urothelial cells was extremely low. Ink4b knockout 

(both heterozygous and homozygous) slightly decreased the proportion of cells in G1 phase and 

increased the proportion of cells in S phase by about 10% (Figure 3-6, Table 3-1). These changes 

suggested that G1/S transition was enhanced. There were no aneuploid cells in wild type mice, 

Ink4b knockout (both heterozygous and homozygous) and Ras
*/wt

 mice, while they were present in 

Ras
*/wt

 Ink4b
+/-

 and Ras
*/wt

 Ink4b
-/-

 mice (Figure 3-6, Table 3-1).  

 

Cyclin-dependent kinase2, 4 and 6 (CDK2, CDK4 and CDK6), which are the positive regulator of 

G1/S transition, were found to be up-regulated in mouse urothelium with transgenic Ras, especially 

in Ras
*/wt

 Ink4b
-/-

 mice (Figure 3-7A). Both western blotting and immunohistochemistry showed 

that MAPK was activated in urothelium with transgenic Ras, and it was more activated in Ras
*/wt

 

Ink4b
-/-

 mouse urothelim (Figure 3-7A and 3-7B).   
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Discussion 

 

The transformation capability of oncogenes has been intensively studied since last century. At least 

two oncogenes are required to work cooperatively in order to transform primary cells (Land, Parada 

et al. 1983). The oncogenic activity of single mutant H-Ras allele is very weak. For instance, 

melanocyte-specific expression of mutant H-Ras resulted in hyperplasia and no melanoma was 

observed in transgenic mice (Powell, Hyman et al. 1995). Another example is urothelial-specific 

expression of H-Ras also resulted in hyperplasia in the time frame when all mice with double alleles 

of mutant H-Ras developed bladder tumors (Mo, Zheng et al. 2007).   

 

The reason why primary cells need long latency to be transformed by single oncogene is the 

induction of tumor suppressor genes (Weinberg 1997). It has been reported that oncogenic Ras 

induces the expression of p16, p19, p21 and p53 in MEFs and immortal rat fibroblast REF52 cells 

(Serrano, Lin et al. 1997, Palmero, Pantoja et al. 1998). Angel Pellicer group later reported that 

oncogenic Ras also induced p15 in mouse embryo fibroblasts (MEFs) and p15 inhibited 

transformation of NIH 3T3 cells by Ras (Malumbres, Perez De Castro et al. 2000). As each cell 

type is different, whether p15 can be induced by oncogenic Ras in bladder urothelium is worthy of 

investigation. We previously discovered that both Ink4a and Ink4b were upregulated in activated H-

Ras-induced urothelial tumors by microarray analysis (Mo, Zheng et al. 2007). In this study, we 

found that p15 protein expression could be significantly induced by oncogenic Ras in bladder 

urothelium (Fig.1). The induction from the protein level is consistent with the induction from RNA 

level.   

 

The logic basis of this study is that transgenic mice with one mutant H-Ras allele might have short 

tumor latency when the induction of one tumor suppressor gene is blocked. Our results indicates 

that Ink4b deficiency significantly shortened the tumor latency of oncogenic Ras (Figure 3-5), 

suggesting that Ink4b cooperates with mutant H-Ras to trigger low-grade bladder tumor. Chin et al 
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reported that melanocyte-specific expression of activated Ras cooperated with Ink4a deficiency to 

trigger melanoma with high penetration after a short latency (Chin, Pomerantz et al. 1997). 

Nevertheless, urothelial-specific expression of constantly active Ras in combination with Ink4a 

deficiency did not lead to the development of bladder cancer after 10-month latency (Mo, Zheng et 

al. 2007). It reveals that the cooperative effects between active Ras and Ink4a deficiency in 

tumorigenesis is tissue specific. Thus, we conclude that Ink4b instead of Ink4a synergizes with 

mutant H-Ras to accelerate tumor development in bladder urothelium.  

 

It has been well established that there are two types of bladder tumors. One is low-grade, non-

invasive papillary bladder tumor and the other one is muscle invasive bladder tumor (Wolff, Liang 

et al. 2005, Wu 2005). About 70-80% of clinical cases on bladder cancer are low-grade, and they 

tend to recur after surgical removal. However, they rarely progress to invasive stage. Unlike other 

human epithelial tumors, the invasive bladder tumors do not progressed from low-grade bladder 

tumors. This pathology analysis in this study reveals that the cooperative effects between oncogenic 

Ras and Ink4b deficiency are responsible for the development of low-grade bladder tumor (Figure 

3-4). This transgenic and knockout mice study contributes to our understanding of the genetic 

defects underlying the pathogenesis of low-grade non-invasive bladder cancer.  

 

The signal pathways of Ras-induced low-grade bladder tumorigenesis have been investigated. 

P42/44 MAPK is the best characterized Ras/Raf-MEK-ERK signal pathway, which is activated in 

both Ras-induced hyperplasia lesions and tumors. Compared with hyperplasia lesions, the two 

kinases are activated more in bladder tumors (Mo, Zheng et al. 2007, Zhou, Huang et al. 2012). The 

activation of p42/44 MAPK pathway is responsible for cell cycle progression and cell proliferation 

by regulating the Cyclin D-CDK4/CDK6 complex and Cyclin A/E-CDK2 complex respectively 

(Blanchard, Mouhamad et al. 2000, Ewen 2000). The administration of MAPK inhibitor UO126 

strongly reduced the tumor size in transgenic Ras and SV40T mice (Mo, Zheng et al. 2007, Zhou, 
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Huang et al. 2012). In this study, p42/44 MAPK was also found to be activated in the urothelium of 

transgenic H-Ras mice, and the level was elevated in the bladder tumors of transgenic H-Ras and 

Ink4b knockout mice (Figure 3-7). Here we make two points: 1) p42/44 MAPK signal pathway is 

crucial for tumor growth although MAPK activation is not the key event that initiated the 

tumorigenesis. MAPK activation is involved in urothelial hyperplasia in Ras transgenic mice. To 

drive tumor development, other kinases like Stat 3 and Akt are required to be activated. 2) It is 

Ink4b deficiency rather than Ink4a deficiency that cooperates with active Ras to drive cell cycle 

progression and proliferation, thus accelerates the tumor development. 

 

By searching Gene Expression Omnibus (GEO) datasets, we found overexpression of CDK2 and 

CDK4 were involved in tumorigenesis in laryngeal squamous cell carcionoma (LSCC), and the 

CDK2 was indicated to be therapeutic target gene by Drug association analysis database (Lian, 

Fang et al. 2013). In both mouse and human T-cell acute lymphoblastic leukemias (T-ALL) models, 

CDK4/6 activities were required for tumor maintenance, and their pharmacology inhibition 

represents a strategy for anti-cancer therapy (Choi, Li et al. 2012). In our bladder cancer model, 

CDK2/4/6 were also found to be over-expressed (Figure 3-7). Therefore, restoration of Ink4b 

function or inhibition of CDK2/4/6 activities might be a therapy strategy for bladder cancer.  

 

In summary, we discovered the synergy between activated H-Ras and Ink4b deficiecy in bladder 

tumorigenesis for the first time in history. This effect is due to enhanced cell proliferation and cell 

cycle progression as revealed by elevated expression of phosphorylated MAPK and cell cycle 

regulators CDK2/4/6. The fact that Ink4b instead of Ink4a cooperates with active H-Ras to trigger 

bladder tumorigenesis reveals that Ink4b is more potent than Ink4a as a tumor suppressor. The 

mechanisms underlying why Ink4b is more potent need further investigation.  
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Figure 3-1: Induction of p15
Ink4b

 in bladder urothelium of Ras transgenic mice. The wild type 

mice (left three lanes) and Ras heterozygous transgenic mice (right three lanes) were compared by 

western blotting. p15 in heterozygous Ras transgenic mice was significantly induced.  
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Figure 3-1 
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Figure 3-2: Genotyping of mice with Ras transgene and knockout Ink4b. (A) Representative 

Southern blotting showing wild-type mice with endogenous UPII fragment (Lane 3 and 7), 

heterozygous mice with transgenic/endogenous ratio of about 1:2 (lane 4, 5 and 6), and 

homozygous mice with transgenic/endogenous ratio of about 1:1 (lane 1, 2 and 8). (B) Regular PCR 

showing mice with wild type Ink4b (lanes 2 and 6), mice with heterozygous knockout p15 (lanes 1, 

5, 7 and 8), and mice with homozygous knockout Ink4b (lanes 3 and 4).  
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Figure 3-2   
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Figure 3-3: Bladder tumor formation in 8-month old heterozygous Ras transgenic and Ink4b 

knockout mice. (A) Dipstick urinalysis. From the bottom to the top, the parameters were 

leukocytes, nitrite, urobilinogen, protein, pH, haemoglobin (blood), specific gravity, ketone, 

bilirubin and glucose. Blood was detected in the urine from heterozygous Ras transgenic and Ink4b 

knockout mice. (B) Representative bladder phenotypes (upper panel) and corresponding kidney 

phenotypes (lower panel) of wild type mice (wt), Ink4b knockout mice (heterozygous Ink4b
+/-

, 

homozygous Ink4b
-/-

), heterozygous Ras transgenic mice (Ras 
*/wt

), heterozygous Ras transgenic 

and p15 knockout mice (Ras 
*/wt 

Ink4b
+/-

), and heterozygous Ras transgenic and homozygous Ink4b 

knockout mice (Ras 
*/wt 

Ink4b
-/-

). The bladder size and kidneys of wt, p15
+/-

, p15
-/-

, Ras 
*/wt 

and Ras 

*/wt 
Ink4b

+/- 
mice showed no much difference, Bladder size of Ras 

*/wt 
Ink4b

-/- 
mice was much bigger 

and the corresponding kidney showed hydronephrosis.
 
 (C) Body weight and bladder weight of 

different mice groups. There was no difference in the body weight among different genotypes while 

the bladder weight of Ras 
*/wt 

Ink4b
-/- 

mice was about 60 times more than other groups.  
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Figure 3-3 
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Figure 3-4: Histopathology analysis of bladder urothelium of wild type, p15
+/-

, p15
-/-

, Ras 
*/wt

, 

Ras 
*/wt 

p15
+/- 

and
 
Ras 

*/wt 
p15

-/- 
mice

 
by HE staining. The wild type, p15

+/-
 and p15

-/- 
mice showed 

normal morphology. Ras 
*/wt

 and Ras 
*/wt 

p15
+/-

 mice showed hyperplasia. The urothelium cells in 

Ras 
*/wt 

p15
-/- 

mice were much more cellular. All the images were 400 times magnification.  



56 
 

Figure 3-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



57 
 

Figure 3-5:   Cohort of the tumor-free rates among different genotypes.  No tumor was found in 

wild type, p15
+/-

, p15
-/-

 and Ras 
*/wt 

mice within 10 months. Their curves were overlapped as a line. 

The purple curve represents the tumor-free rate of Ras
*/wt 

p15
+/- 

mice while the blue curve represents 

that of Ras
*/wt 

p15
-/- 

mice.  



58 
 

Figure 3-5 
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Figure 3-6: Cell cycle analysis by fluorescein-activated cell sorting (FACS). The urothelium 

cells from each group were applied to FACS analysis. The urotheium cells from Ras
*/wt 

p15
-/- 

mice 

showed marked increase in the proportion of aneuploidy cells. The first red area represents diploid 

G1 phase, the second red area represents diploid G2 phase, and the area with slash blue line 

between thses two red areas represents S phase. The first yellow area represent aneuploid G1 phase, 

the second yellow area stands for aneuploid G2 phase, and the area between these two yellow areas 

stands for aneuploid S phase.  
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Figure 3-6 
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Table 3-1:  Cell cycle distribution of urothelium cells from each group.  
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Table 3-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phase wt Ink4b
+/-

 Ink4b
-/-

 ras
*/wt

 
ras

*/wt
 ras

*/wt
 

Ink4b
+/-

 Ink4b
-/-

 

Diploid 

G1 90.09 78.98 74.91 76.34 81.39 54.95 

S 4.93 16.44 14.91 1.71 7.3 4.62 

G2 4.97 4.58 10.18 21.95 2.57 5.18 

Tetraploid 

G1 

0 0 0 0 

8.74 26.84 

S 0 5.06 

G2 0 3.33 
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Figure 3-7: Increased level of positive cell cycle regulators and phosphor-MAPK in Ras
*/wt   

p15
-/- 

mouse urothelium. (A) The expression of CDK2, CDK4, CDK6, total MAPK and phosphor-

MAPK were detected by western blotting. CDK2, CDK4, CDK6, and phosphor-MAPK were not 

detectable in wild type, p15
+/-

 and p15
-/-

 mice. All proteins were up-regulated in the urothelium of 

Ras
*/wt

p15
-/- 

mouse. (B) Immunohistochemistry of phosphor-MAPK. The urothelium in Ras
*/wt

p15
-/- 

mice showed
 
very strong staining of phosphor-MAPK. The expression pattern was constant with 

western result.  



64 
 

Figure 3-7 
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Chapter 4: Ink4b is more important than Ink4a in suppressing cell growth 

 

Introduction 

Transgenic and knockout mice studies showed that Ink4b deficiency had cooperative effects with 

activated Ras in accelerating bladder tumorigenesis while Ink4a deficiency did not. We 

hypothesized that Ink4b was more important than Ink4a. To test this hypothesis, we checked the 

functions of Ink4a and Ink4b in vitro respectively.   

 

4.1 UM-UC-3 cell line is selected 

The first step was to select a cell line expressing neither Ink4a nor Ink4b. From the literature, we 

know that RT4, RT112 and UM-UC-3 cell lines are negative for Ink4b. By screening 9 urothelial 

cell lines in the lab including RT4, RT112, UM-UC-3, J82, HT-1376, 5637, T24, T24T and Urosta, 

we found that Ink4a was negative in RT4, RT112 and UM-UC-3 from genomic DNA level (Figure 

4-1A), p16Ink4a was negative in RT4, RT112, UM-UC-3, T24 and T24T cell lines from mRNA 

level (Figure 4-1B), and the proteins p14 and p16 were both negative in RT4, RT112, UM-UC-3, 

T24 and T24T cell lines, which was constant with RT-PCR result (Figure 4-1C). T24T cell line was 

derived from T24 cell line (Gildea, Golden et al. 2000). The promoter of Ink4a in T24 was found to 

be hypermethylated, so there was no mRNA transcription and protein translation in both T24 and 

T24T cell lines (Nguyen, Gonzales et al. 2001).  Because of low transfection efficiency of RT4 and 

RT112 cell lines, we chose UM-UC-3 cell line for the following experiments.  

 

4.2  p14 overexpression doesn’t inhibit cell growth 

Next, we tried to make stable transfected cell lines and then test the effect of Ink4a and Ink4b on the 

cell growth. 24 h after transfection, each deducted protein was detectable (Figure 4-2A). However, 

after one-month selection with G418, cells transfected with p14-pCDNA3.1 still express p14 while 

cells transfected with either p15-pCDN3.1 or p16-pCDNA3.1 do not express p15 or p16 (Figure 4-
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2B).  We proposed that UM-UC-3 cells could not survive with p15 and p16 overexpression. Cells 

could survive p14 overexpression suggested that the effect of p14 on cell growth inhibition was not 

as strong as p15 and p16. It was demonstrated by proliferation assay which showed that p14 

overexpression had no effect on cell growth (Figure 4-2C).  

 

4.3 p15 overexpression suppresses cell growth more than p16 

To find out whether p15 suppressed cell growth more than p16, we used Tet-On inducible 

expression system to make stable transfected cell lines. Both p15 and p16 had remarkable 

expression by doxycycline induction for 24 h, and their expression increased as the doxycycline 

incubation time reached extended to 48 h and 72 h (Figure 4-3). The proliferation assay showed that 

the proliferation rate of UM-UC-3 cell line with p15 overexpression was significantly slower than 

that with p16 overexpression (Figure 4-4). It advises that p15 is more important in cell growth 

inhibition.  

 

4.4 p15 overexpression arrests cells in G1more than p16 

To determine the changes of cell cycle progression, we analyzed the cell cycle distribution. Both 

p15 and p16 overexpression increased the proportion of the cells in G1 phase and reduced the 

number of cells in S phase. However, the changes made by p15 overexpression were more 

significant (Figure 4-5). This result explained why cells with p15 overexpression grew slower than 

those with p16 overexpression, and it reveals again that p15 is more important than p16.  
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 Discussion 

 

 

Loss of Ink4a and/or Ink4b has been reported in human bladder tumors and derivative bladder 

cancer cell lines (Orlow, Lacombe et al. 1995, Le Frere-Belda, Cappellen et al. 2001). Ink4a and 

Ink4b are well-known cyclin-dependent kinase inhibitors (Harper and Elledge 1996). The roles of 

Ink4a have been intensively studied both in vitro and in vivo. It has been well-established that 

overexpression of p16 which is encoded by Ink4a results in G1 arrest in both normal and tumor cell 

lines (Koh, Enders et al. 1995, Lukas, Parry et al. 1995).  Compared with abundant reports of in 

vitro work on p16, there is limited information about p15. Angel Pellicer group found that 

retroviral-mediated p15 overexpression alone was sufficient to induce cell cycle arrest and 

senescence in early passage MEFs (Malumbres, Perez De Castro et al. 2000).  

 

In agreement with the published studies, our results indicated that both Ink4a and Ink4b 

overexpression leaded to decreased cell growth rate and cell cycle arrest in UM-UC-3 cells (Figure 

4-4 and 4-5). When comparing p15 with p16, p15 overexpression inhibited cell growth and G1/S 

transition more effectively than p16 overexpression. In fact, it has been reported that p15 can 

suppress cell growth and induce cell senescence much more efficiently than p16, p21 and p27 in 

TIG-3 cells (McConnell, Starborg et al. 1998). Among p16, p21 and p27, p16 is the most effective 

protein. The reason why Ink4 proteins have more pronounced effects than CIP1 proteins p21 and 

p27 could be explained that p16 binds much more CDK4/6 than p21 (Alcorta, Xiong et al. 1996). In 

other words, the activities of CDK4/6 could be mostly inhibited by p16. Thus, we predict that p15 

may be able to bind more CDK4/6 than p16.  

 

Regarding the roles of p14, we did not observe any obvious inhibition effects on cell growth and 

cell cycle arrest (Figure 4-2). The stably transfected cells with constitutive p14 expression could be 

established while that with p15 and p16 expression could not.  This fact is indirect evidence that 

continuous p14 expression is not toxic for UM-UC-3 cell growth. However, there are other studies 
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showing p19 (mouse) can induce cell cycle arrest in mouse cell lines including MEFs and NIH 3T3 

cells (Quelle, Zindy et al. 1995, Kamijo, Zindy et al. 1997). In human breast cancer cells and 

mesothelioma cells, p14 overexpression also induces cell cycle arrest (Yang, You et al. 2000, Deng, 

Kim et al. 2002). Our explanation is urothelial cells are different from other cell types and the 

inhibition effects of p14 are likely to be weak in fast-growing UM-UC-3 cells if it really can inhibit 

cell growth. Our previous microarray data showing p19 level is not affected in both hyperplasia 

lesions and tumors induced by transgenic mutant H-Ras indicates that p19 is not as important as 

p15 and p16 (Mo, Zheng et al. 2007).  

 

In summary, the results from present study show that p15 is more important than p16 and p14 in 

suppressing cell growth and cell cycle progression. These results are supportive to our finding that 

Ink4b instead of Ink4a cooperates with mutant H-Ras to accelerate tumor development. Finding out 

the mechanism why p15 is more effective than p16 will be worthy of exploration.   
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Table 4-1: p15 in human bladder cancer cell lines (Frere-Belda et al, 2001) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 RT4 RT112 UM-

UC-3 
J82 HT1376 T24 

Ink4b homozygous 
deletion 

  +   +   +  -   -    - 

Ink4b mRNA level   0    0     0  0.4   0.7 0.9 
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Figure 4-1:  Ink4a status in human bladder urothelial cell lines. (A) Southern blotting detection 

of Ink4a genomic DNA. Ink4a genomic DNA was not detected in RT4, RT112 and UM-UC-3 cells, 

but it was present in J82, HT1376, 5637, T24, T24T and Urosta cells. Genomic DNA of GAPDH 

was used as loading control. (B) RT-PCR detection of p16 mRNA. P16 mRNA was not detectable 

in RT4, RT112, UM-UC-3, T24 and T24T cell lines, while it was present in J82, HT1376, 5637 and 

Urosta cell lines. β-actin was used as control. (C) Western blotting detection of p14 and p16 protein.  

P16 protein expression pattern was constant with mRNA. however, p14 protein in HT1376 cell line 

was not detected. β-actin was used as control. 
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Figure 4-1  
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Figure 4-2: No effect of p14 overexpression on cell proliferation. (A) P14, p16 and p15 proteins 

were detected by western blotting 24 h after transfection. (B) Detection of p14, p16 and p15 

proteins after 1 month G418 selection. Only p14 was detected. β-actin was used as control. (C) 

Comparison of cell proliferation by WST-1 assy. Cells stably transfected with vacant plasimid 

pCDNA3.1 was used as control. The OD value was measured at 450 nm.    
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Figure 4-2 
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 Figure 4-3:  Establishment of stable inducible p15 and p16 expression cell lines respectively.  

(A)  western blotting of p15 induction by doxycycline for 0 h, 24 h, 48 h and 72 h. (B)  western 

blotting of p16 induction by doxycycline for 0 h,  24 h, 48 h and 72 h. Dox: doxycycline.   
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Figure 4-3   
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Figure 4-4: Comparison of cell proliferation after p15 and p16 induction. Red curve represents 

the growth curve of UM-UC-3 cells with p15 induction, and blue curve represents that with p16 

induction. The cell line which was stably transfected with the same vacant plasimid was used as 

control.  
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Figure 4-4 
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Figure 4-5:  Alterations of cell cycle distribution after p15 and p16 induction respectively. 

Each cell line was treated with 1µg/ml doxycycline for 72 h and then subjected to FACS analysis. 

The proportion of cells in G1 phase was presented as blue area, and that in S phase was presented as 

red area, and that in G2 phase was presented as green area.  
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Figure 4-5 
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Chapter 5: Ink4a deficiency accelerates the development of invasive bladder tumor in mice 

treated with BBN 

 

Introduction 

We found that Ink4b was a stronger tumor suppressor than Ink4a as shown in chapter 3, and we also 

found that Ink4b inhibited cell cycle progression more than Ink4a, Thus we further proposed that 

mice with Ink4b deficiency were more susceptible to bladder specific carcinogen N-butyl-N-(4-

hydroxybutyl) nitrosamine (BBN). To test this proposal, we treated Ink4a knockout mice, Ink4b 

knockout mice with BBN respectively, wild type mice were used as a control.   

 

5.1 All Ink4a knockout mice developed invasive tumor  

In order to clarify whether Ink4b provided more protection to the urothelium than Ink4a against 

carcionogenesis induced by BBN, we examined the susceptibility of Ink4a knockout mice and 

Ink4b knockout mice to BBN-induced bladder carcinogenesis respectively. The incidence of 

invasive tumor in wild type mice, Ink4b
-/-

 mice and Ink4a
+/-

Ink4b
+/-

 mice was the same: 10%. The 

other mice in these groups showed hyperplasia. In striking contrast, the incidence increased to 

100% in Ink4a
-/-

 mice (Table 5-1). To our surprise, these results indicate that loss of both alleles of 

Ink4a causes much higher susceptibility to BBN-induced carcinogenesis.  

 

5.2 All invaded tumor cells are originated from Urothelium  

To confirm whether the phenotype was hyperplasia or Invasive tumor, we further performed 

cytokeratin 5 staining. For the representative hyperplasia induced by BBN, both basal cells and 

intermediate cells were positive for cytokeratin 5 staining, which indicated that the proliferation rate 

of urothelial cells increased dramatically upon BBN treatment (Figure 5-3, upper panel). For the 

invasive tumor, all invasion cells were positive for cytokeratin 5 staining (Figure 5-3, lower panel), 

which suggested that these cells were originated from urothelial cells.  



81 
 

5.3 Loss of E-cadherin is involved in the development of invasive tumor  

To acquire invasive capacity is the pre-requisite of invasive cancer development. It has been 

reported that E-Cadherin, which is important for epithelium integrity, is strongly related with 

invasive capability when its expression is reduced. To find out whether E-Cadherin was involved in 

the development of BBN-induced invasive bladder cancer, we checked whether E-Cadherin was 

differently expressed in bladder urothelium of different mouse groups. In wild type mice, Ink4b
-/-

 

mice and Ink4a
+/-

Ink4b
+/-

 mice with hyperplasia, all the urothelium cells were positive for E-

Cadherin, while urothelium cells in Ink4a
-/-

 mice were negative for E-Cadherin (Figure 5-4). It 

suggests that loss of E-Cadherin is associated with bladder invasive tumor development.  
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Discussion 

 

Ink4a and Ink4b are closely linked genes located at 9p21 locus, which is frequently found to be 

deleted in primary human tumors (Cairns, Polascik et al. 1995). Ink4a gene has been intensively 

studied as a tumor suppressor while Ink4b gene receives much less attention. The studies on 

comparison of the two genes are even less. Testing their susceptibility to carcinogen treatment is a 

good way To compare the roles of these two tumor suppressors. Here in this study we found that 

Ink4a knockout mice were more prone to invasive bladder tumor formation induced by BBN (Table 

5-1), which suggests that Ink4a is more important than Ink4b in suppressing invasive bladder tumor 

development.  

 

Looking into each gene individually, Ink4a interruption occurs in a wide variety of human tumors 

covering both hematological malignancies and solid tumors such as melanoma (Ruas and Peters 

1998).  Individuals with germ-line mutations of Ink4a are predisposed familial melanoma while that 

with somatic mutations are prone to other cancers. Most mice with Ink4a deficiency developed 

sarcomas and lymphomas which are also human cancers associated with Ink4a deletions, and 

showed susceptibility to carcinogen treatment (Serrano, Lee et al. 1996). However, no bladder 

cancer was observed within the same time frame. In our previous study, we did not find bladder 

tumor in Ink4a deficiency mice either (Mo, Zheng et al. 2007). The specific p16 and p19 knockout 

only mice have been generated to study their roles respectively. P16 knockout mice developed soft 

tissue sarcoma, splenic lymphoma and melanoma 7 months later (Sharpless, Bardeesy et al. 2001). 

Most p19 knockout mice developed sarcomas and T-cell lymphomas in 6 months (Kamijo, Zindy et 

al. 1997, Kamijo, Bodner et al. 1999). According to their tumor spectrums, it is hard to tell their 

exact contributions to tumor suppressor role of Ink4a gene.  
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In contrast to Ink4a knockout mice, only 8.2% Ink4b knockout mice were observed to develop 

tumors, most of which were originated from connective tissue (Latres, Malumbres et al. 2000). The 

same as Ink4a knockout mice, no bladder tumor was observed. Exposure to 9,10-dimethyl-1,2-

benzanthrancene (DMBA) followed by exposure to ultraviolet B rays (UVB) did not lead to any 

tumor development in 12 months, which is quite different from Ink4a knockout mice. These studies 

may serve as indirect evidences that Ink4b alone has limited roles in suppressing tumor 

development induced by carcinogen compared with Ink4a, which support our finding in this study. 

Nevertheless, we can’t rule out Ink4b may have important tumor suppressing role in a specific 

organ when it synergies with certain oncogene.   

 

Previous studies have shown that homozygous deletion of Ink4a is the main mechanism underlying 

the inactivation of this tumor suppressive gene. The deletion occurs in both low grade tumor and 

high grade tumor, and there is no correlation between Ink4a homozygous deletion and the stage of 

tumor.  When taking FGFR3 mutation into consideration, Ink4a homozygous deletion is strongly 

correlated with more aggressive bladder tumor (Rebouissou, Herault et al. 2012). Besides deletion, 

hypermethylation is also an important mechanism to inactivate Ink4a. It has been reported that the 

frequency of promoter hypermethylation of both p14 and p16 increase in muscle invasive bladder 

tumor (Ali Hosseini, Sobti et al. 2010). These evidences reveal that Ink4a inactivation is associated 

with bladder tumor progression in invasive tumorigenesis.  In this study, we found that Ink4a 

deficiency accelerates BBN-induced invasive bladder tumor development. We predict Ink4a 

deletion is involved in the progression of BBN-induced invasive bladder tumor. The incidence of 

invasive tumor in Ink4a
+/-

Ink4b
+/-

 mice indicates that Ink4a gene is haplo-sufficient for BBN-

induced tumor suppression because their phenotype is close to wild type mice.   

 

Ink4a plays its roles through both Rb pathway and p53 pathway via its two proteins p16 and p14 

(p19). P16 inhibits CDK4 and CDK6, thus inhibits the inactivation of Rb, which leads to cell cycle 
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arrest (Serrano, Lee et al. 1996). P14 (p19) inhibits the E3 activity of MDM2, thus prevents the 

degradation of p53, which facilitate p53-mediated cell cycle arrest and apoptosis (Kamijo, Zindy et 

al. 1997). In clinical study, reduced or loss of Rb expression and p53 mutation are found to co-exist 

in 40-50% of muscle invasive bladder cancer. Urothelial specific knockout mouse study reveals that 

Rb deficiency collaborates with p53 deficiency to promote invasive tumor development when 

treated with BBN (He, Mo et al. 2009). The incidence of invasive tumor in these mice is 50%, 

which is very similar to the situation in humans. When Ink4a is absent, the functions of both Rb and 

p53 are attenuated. This may explain why Ink4a knockout mice developed invasive tumor while 

other groups with identical treatment did not.  

 

There is a doubt that Ink4b is functional in Ink4a knockout mouse, and it keeps Rb active. We 

proposed two possibilities. One is that p15 and p16 work together to maintain the activity of Rb. 

Once p16 is not functional, Rb is partially inactivated, which contributes to the promotion of 

invasive tumorigenesis together with deficiency of p53 pathway. Another one is that p15 alone can 

maintain Rb fully functional, and p14 deficiency plays crucial role via p53 pathway in promoting 

invasive tumor development. To find out which possibility is true in future, we need to look into 

p16Ink4a knockout only and p19Arf knockout only mice respectively.  

   

The inconsistency in terms of importance between Ink4a and Ink4b is noticeable. As described in 

chapter 1, the development of low-grade and high-grade bladder tumors follows different signal 

pathways. Low-grade bladder tumors were caused by active oncogenic Ras and Ink4b deficiency. It 

was mutant Ras that initiated the low-grade tumor development. The effect of Ink4b deficiency was 

the promotion of the low-grade tumor development. However, the high-grade tumors were initiated 

by urothelial specific carcinogen BBN. The role of Ink4a deficiency was acceleration of high-grade 

tumor development. In one words, the inconsistency is due to the difference of oncogenic events.  
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In conclusion, Ink4a deficiency accelerates invasive bladder tumor formation in response to 

carcinogen treatment and thus Ink4a gene plays an essential role as an invasive tumor suppressor. In 

terms of ability to suppress invasive tumor development, Ink4a is more important than Ink4b. 

Whether p16 and/or p19 contribute to the suppressor capability needs further investigation.  
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Table 5-1:  The incidence of hyperplasia and invasive tumor of different genotypes.   
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Figure 5-1: Representative appearance of BBN treated urinary bladders, lymph nodes, 

spleens and kidneys. (A) Anatomy of bladders. The surface of bladders with hyperplasia in wild 

type, Ink4b
-/-

, Ink4a
+/-

Ink4b
+/-

 mice was smooth, while that of the bladder with invasive tumor in 

Ink4a
-/- 

mice was rough. (B) Anatomy of lymph nodes, spleens and kidneys in wild type and Ink4a
-/- 

mice.  
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Figure 5-1 
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Figure 5-2: Histopathology analysis by H&E staining. Bladder urothelium in wild type, Ink4b
-/-

, 

Ink4a
+/-

Ink4b
+/-

 mice showed hyperplasia. Bladder urothelium in Ink4a
-/-

 mice showed invasive 

tumor.  
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Figure 5-2 
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Figure 5-3: Confirmation of the phenotype by cytokeratin 5 staining. Both basal and 

intermediate cells were positive for cytokeratin 5 staining in bladder urothelium in wild type, Ink4b
-

/-
, and Ink4a

+/-
Ink4b

+/-
 mice. All epithelium cells invading in muscle and connective tissue were 

cytokeratin 5 positive.  
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Figure 5-3 
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Figure 5-4: Involvement of E-Cadherin in the development of invasive tumor. E-Cadherin 

expression was analyzed by immunofluorescence.  
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Figure 5-4 
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Chapter 6: Conclusions and future directions  

 

Conclusions 

This study reveals for the first time that Ink4b is more important than Ink4a in suppressing 

oncogenic Ras induced low-grade tumor development. Ink4b deficiency significantly shortened the 

tumor latency in transgenic mutant H-Ras mice while Ink4a deficiency did not. The synergistic 

effects between Ink4b and mutant H-Ras was associated with accelerated cell cycle progression and 

proliferation, which was evidenced by elevated level of CDKs and MAPK activation.  

 

We further discovered that p15 overexpression inhibited cell growth and cell cycle progression 

more than p16 overexpression. P14 overexpression had no effect on cell growth. These results 

support the hypothesis that Ink4b is more important than Ink4a.  

 

Finally, Ink4a is more important than Ink4b in suppressing invasive bladder tumor induced by BBN. 

We found out that Ink4a deficiency promotes invasive tumor development in mice treated with 

BBN for the first time.   

 

Taken all the results together, we conclude that Ink4b is more crucial for cell growth and 

proliferation while Ink4a is more important for cell invasion. This study addresses the importance 

of both Ink4a and Ink4b at 9p21 locus (human) in suppressing the development of two types of 

tumors  

 

Future direction 

For the mechanism why Ink4b is more important than Ink4a in cooperating with active H-Ras to 

trigger bladder tumorigenesis, there is still much to be understood. I have shown that p15 

overexpression suppresses cell growth, and more cells are arrested in G1 phase more than p16 
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overexpression. It would be of great interest to find out why inhibition effect of G1/S transition by 

p15 is stronger than p16, whether p15 can bind more CDK4/6 both in vivo and in vitro, and whether 

p15 and p16 have different partners in suppressing tumor development.  

 

Another interesting future direction is to find out whether transgenic active H-Ras mice in both 

Ink4a and Ink4b deficiency background could develop bladder tumor in shorter latency than that in 

Ink4b deficiency background alone. The reason why it would be interesting to find out is that p16 

also suppresses cell growth and arrests cells in G1 phase in our in vitro experiments.  

 

Finally, it would be of great interest to determine the susceptibility of p16 knockout only and p19 

knockout only mice to urothelium specific carcinogen BBN respectively. Then we will be able to 

elucidate which protein contributes to the invasive tumor suppressor role of Ink4a gene.  
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