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Abstract 

Recent environmental change associated with human activities has given rise to ecological 

communities that have no historical counterpart. In particular, introductions of non-native plant 

species have in many cases altered the structure and functioning of resident plant communities 

through changes in species composition and the surrounding environment within which species 

interact. As a result, new combinations of species are forming “novel” communities across an 

increasingly large portion of the earth’s land surface. Because novel plant communities differ in 

configuration from original native-dominated communities, they present unique challenges to 

management, restoration, and conservation efforts. Thus, there is a growing need to understand how 

novel communities function differently from the original communities they replace. 

 

In this thesis, I investigate a variety of interactions in original and novel plant communities. Using a 

diverse annual plant system that persists within a fragmented agricultural landscape in Western 

Australia, I focus on the role of local-scale species interactions, an important biotic component of 

plant community assembly. I explore the complexities of local-scale interactions between native 

and non-native invasive species in light of coexistence theory, community assembly, and 

conservation of native floral diversity.  

 

This thesis comprises seven chapters. The first chapter serves as a general introduction which places 

the thesis within the larger context of multispecies coexistence in novel plant communities. The 

second chapter serves as a description of the York gum (Eucalyptus loxophleba subsp. loxophleba) 

– jam (Acacia acuminata) woodland annual flora, the study system for the data chapters (3 – 6) 

which are based on laboratory and field experiments. Chapters 3 and 4 are experimental evaluations 

of frequency-dependent and density-dependent performance of native and invasive species that co-

occur in York gum-jam annual plant communities. Chapter 5 reports on a field experiment, which 

investigates the performance of common native and non-native invasive annuals experiencing inter- 

and intraspecific competition in natural York gum-jam annual assemblages. Chapter 5 also assesses 

changes in community-level functioning due to compositional differences by evaluating diversity 

effects in novel and original annual communities. The final data chapter, Chapter 6, experimentally 

investigates how local-scale environmental gradients and a non-native invasive annual grass 

impacts annual plant community structure in the field. Finally, I conclude with a discussion of my 

results in Chapter 7, which unites the previous chapters, addresses limitations of the thesis, and 

presents suggestions for future research. 
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Overall, my results suggest that the local-scale impacts of non-native invasive species on native 

species may be more variable than those often reported in the literature on plant invasions (i.e. 

competitive exclusion). Consistent with previous studies, I did indeed observe negative interactions 

among invasive non-native and native annual plant species in field and laboratory settings. 

Specifically, I found that some species of invasive annual grass have the potential to negatively 

impact native populations over very short timescales through direct competition as well as 

interference from litter. These negative interactions, however, were not representative of 

interactions in novel communities as a whole. Notably, I found interactions between native annual 

forbs and an invasive non-native annual grass that ranged from neutral to positive. The direction 

and magnitude of invader impacts were highly dependent on species identity and the composition of 

the community, but were generally consistent across community densities and natural 

environmental gradients.  

 

Species interactions play a potentially complex role in the assembly of annual plant communities 

post-invasion. My results lend empirical support to the notion that species in these novel 

communities should be considered according to their impacts rather than their origins. These studies 

serve as some of the first investigations into the processes that stabilize interactions among native 

and invasive non-native species and contribute to novel community formation and maintenance. 

When considered alongside large-scale patterns from observational studies, my findings 

demonstrate that interactions that occur over small spatial and temporal scales have the potential to 

influence large-scale plant community dynamics. In total, this thesis represents a valuable 

contribution to the community ecology and biological invasions literature, and has the potential to 

inform future restoration and conservation efforts in this threatened woodland ecosystem and 

beyond. 

 

. 
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Chapter 1: General introduction 

 

This thesis is composed of seven chapters, four of which are based on data collected in experiments 

and are intended for publication (Chapters 3 – 6). This chapter serves as a general introduction 

which places the thesis within the broader context of multispecies coexistence in novel plant 

communities. The second chapter is dedicated to a description of the York gum-jam woodland 

annual flora of southwest Western Australia, the study system for the experiment-based chapters. 

Elements of the first two introductory chapters appear throughout the subsequent four chapters to 

provide context for the specific questions that directed each experiment. Finally, Chapter 7 of this 

thesis contains a general discussion of my findings, drawing on all previous chapters. 

 

Emergence of novel ecological communities 

 

Human-induced environmental change is now recognized as an inevitable component of most 

natural ecosystems (Millennium Ecosystem Assessment 2005). The spatial extent of anthropogenic 

modification to the global land surface is vast, affecting most of the terrestrial biosphere (Ellis & 

Ramankutty 2008). In addition, the rate at which natural ecosystems are experiencing change is 

unprecedentedly rapid (M.E.A. 2005). Land-use transformation is among the most severe drivers of 

environmental change (Foley et al. 2005), along with species introductions (Vitousek et al. 1997), 

invasions (Mack et al. 2000), and extinctions (Pimm & Raven 2000). Although these phenomena 

may modify ecosystems on different spatial and temporal scales, rarely do they occur in isolation. 

Rather, a suite of factors may synergistically incur greater total change to a system than change 

inflicted by individual component drivers (Brook et al. 2008). Determining the effects of these 

synergies on ecosystem function is challenging, as impacts of climate change are likely to modify or 

exacerbate their effects (Chapin et al. 2008).  

 

As a result of synergistic environmental change associated with human activities, an increasing 

number of ecosystems are emerging that have no historical counterpart (Lindenmayer et al. 2008). 

These environmental changes alter abiotic and biotic ecosystem properties, in turn modifying 

determinants of ecological community structure. Global and regional-scale modifications include 

climate change-induced range or phenological shifts for certain species (Parmesan 2006; Cleland et 

al. 2007), or introductions of species into non-native ranges (Vitousek et al. 1997), resulting in 

ecosystems composed of both native and non-native members. Moreover, changes in land-use may 

result in species interacting under novel abiotic conditions, in addition to the effects of clearing, 

fragmentation, or abandonment of previously exploited lands (Foley et al. 2005). These wide-
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ranging factors affect diversity patterns at regional and site scales, as well as community 

composition on local and even microsite scales. In addition to changing the identities of constituent 

species and their surrounding environment, drivers of environmental change may further alter 

community composition by shifting the nature of interactions among trophic levels (Tylianakis et al. 

2008). In sum, new combinations of species interacting within altered landscapes forming “no-

analog”, “emerging”, or “novel” communities are developing across an increasingly large portion of 

the earth’s land surface (Milton 2003; Hobbs et al. 2006). Because these novel communities differ 

from the “original” communities they replace in terms of composition and functioning, they present 

unprecedented challenges to land management, ecosystem restoration, and conservation efforts 

(Lindenmayer et al. 2008; Hobbs et al. 2009). 

 

The main focus of this thesis is the biotic component of novel plant community formation and 

maintenance. Using an annual plant system found in fragmented and degraded landscapes in 

southwest Western Australia, I study the dynamics within novel communities that differ in 

composition to original communities because of invasion by non-native species and modifications 

to the soil environment. While invasion is often associated with reduced native species richness and 

diversity, there are several other potential outcomes of interactions between native and non-native 

species. I explore the complexities of these interaction outcomes in light of modern coexistence 

theory, ecosystem function, and conservation of floral diversity. 

 

Community assembly: the role of species interactions 

 

In its most basic sense, a community can be viewed simply as a collection of species that co-occur 

within a given environment (Morin 2011). Observations that properties of communities (e.g. species 

richness, diversity) often vary in predictable ways have served as the basis for studying community 

formation and maintenance within trophic levels. However, determining the most relevant processes 

has been a long-standing challenge for ecologists (Elton 1927; Hutchinson 1959; Diamond 1975). 

Many theories have been generated about mechanisms responsible for coexistence within 

communities of similar individuals, the resolution of which has often inspired intensive debate 

(Lewin 1983; Grace 1991; Hubbell 2001).  

 

From these debates, it has become clear that the relative contribution of any process to community 

structure depends on the spatial and temporal scale of the entity in question. Historical processes 

drive large-scale patterns of diversity through macroevolutionary dynamics, and global geographic 

and environmental variability provide barriers to range expansions, determining the composition of 
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regional species pools (Wiens & Donoghue 2004). Environmental filtering then restricts groups of 

species to particular habitats within landscapes based on dispersal and physiological constraints to 

survival and reproduction (Keddy 1992; Myers & Harms 2011). Within neighbourhoods, biotic 

interactions impose further limits on which species can coexist locally (Chesson 2000). 

Environmental and biotic filtering represent deterministic assembly processes. Conversely, 

historically contingent processes may dominate, such that the order of species’ arrivals in a habitat 

will determine the colonization abilities of subsequent species (i.e. priority effects; Belyea & 

Lancaster 1999). In addition, “neutral” models of community assembly posit that species effects on 

one another are equivalent, with coexistence driven by random demographic variance (Hubbell 

2001). Ultimately, ecologists recognize that there are multiple models that can explain observed 

patterns among a variety of communities. These models interact and form feedbacks within a 

complex hierarchy of spatio-temporal scales (Whittaker et al. 2001). The most realistic goal is thus 

to quantify the relative contributions of these processes to observed patterns of species coexistence 

across systems. 

 

Although community composition is bounded by the regional species pool, interactions among 

individuals undoubtedly play a role in determining which species coexist in a given locality. 

Patterns of plant community diversity may be attributable in some part to net results of interactions 

among individuals (Brooker & Callaghan 1998). Negative interactions, particularly competition, are 

the most well-studied class of interaction among plants (Goldberg & Barton 1992), although the 

importance of positive interactions has been recently recognized and incorporated into models of 

coexistence (Bruno et al. 2003).  

 

The current paradigm concerning the role of species interactions in structuring communities is one 

based on the concept of the ecological niche. Niche theory was developed from the observation that 

species fundamentally differ both in their requirements (Grinnell 1917) and effects on their 

surroundings (Elton 1927). Chase and Leibold (2003) define a species’ ecological niche as the set of 

environmental conditions that allow a species to maintain zero net local population growth, and the 

per capita impact of that species on those environmental conditions. A species’ niche may be 

determined by several factors, including minimum resource requirements, regeneration strategy, 

and temporal partitioning of activity (Grubb 1977; Tilman 1981; Levine & Rees 2004). The 

theoretical implications of niches on community structure have been explored for some time, 

beginning with the basic (yet oversimplified) proposition that species with similar niches will fail to 

stably coexist due to competitive exclusion (Hardin 1960). This was followed by the notion that 
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competition would lead to ecological divergence within communities due to limiting similarity 

among species (MacArthur & Levins 1967).  

 

In modern coexistence theory outlined by Chesson (2000), niche differences generally serve to 

“stabilize” communities by causing increased negative intraspecific effects relative to negative 

interspecific effects, i.e., causing species to limit themselves more than they limit others (Adler et 

al. 2007). The hallmark of stabilizing niche differences is negative frequency-dependent population 

growth, such that species experience higher relative growth rates when rare than when common 

(Chesson 2000). Some niche differences can stabilize communities independently of environmental 

fluctuations, such as resource partitioning or differences in density-dependent predation among 

species (Chesson 2000). Other stabilizing niche differences require environmental fluctuations to 

operate. The two main fluctuation-dependent mechanisms that stabilize communities as outlined by 

Chesson (2000) include relative nonlinearity of competition, and the spatial and temporal storage 

effect. The former implies that species’ different nonlinear responses to variation in resources may 

themselves drive resource fluctuation cycles that permit multispecies coexistence. The storage 

effect model, by contrast, posits that when species require different conditions for growth and 

reproduction, they will differentially partition their activities in time and space. This can promote 

coexistence provided the impact of competition is limited when environmental conditions are 

unfavourable and provided species differ in the strength of covariance between environment and 

intensity of competition (Chesson 2000b). 

 

Observed patterns of species interactions, however, highlight that some differences among species 

will lead to competitive exclusion rather than stable coexistence. When species differ sufficiently in 

their fitness, these “relative fitness differences” will confer a competitive advantage to the species 

possessing the greatest fitness relative to all co-occurring species, and other species will be 

eventually excluded (Chesson 2000). Overall, coexistence in diverse communities may thus be 

viewed as the result of stabilizing niche differences offset by relative fitness differences among 

species, where stronger stabilizing mechanisms will require larger differences in relative fitness 

among species in order for competitive exclusion to occur (Adler et al. 2007).  

 

Quantifying relevance of small-scale interactions to community structure  

 

Over the past 15 years, new techniques for measuring patterns within and among communities have 

fuelled renewed interest in community assembly. Comparisons of observed distributions of species 

occurrences, functional traits, and community-level phylogenies to distributions predicted by null 
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models of community assembly have yielded support for non-random processes such as 

environmental and biotic filtering (Webb et al. 2002; Cavender-Bares et al. 2009; Cornwell & 

Ackerly 2009). These methods have been especially useful in systems or across scales that are 

intractable to direct manipulation.  

 

Experimentation is also a valuable tool for teasing apart the complex set of processes involved in 

community assembly (HilleRisLambers et al. 2012). Experiments can isolate the mechanisms 

thought to promote or prevent coexistence, and can also examine the context-dependence of 

interactions, both increasingly important goals of community ecology (Agrawal et al. 2007). With 

regards to modern coexistence theory, examples of empirical evaluations are still relatively rare 

despite the widespread citation of this theoretical framework (Siepielski & McPeek 2010). In a 

Californian annual plant system, Levine & HilleRisLambers (2009) found positive low-density 

population growth rates and demonstrated the operation of niches using field-parameterized null 

models of population growth. Facelli et al. (2005) demonstrated that various temperature and water 

regimes could result in different arid shrubland communities in South Australia due to differences 

in species germination responses, implicating the temporal storage effect, and Sears & Chesson 

(2007) found experimental evidence for the spatial storage effect in two Arizona desert annuals. 

Recently, Kraft et al. (2015) found that individual functional traits were well correlated with relative 

fitness differences among species in a California annual grassland, whereas only combinations of 

multiple functional traits could describe stabilizing niche differences. These studies demonstrate 

that experimentation is a challenging though promising avenue for validation of coexistence 

mechanisms in natural communities, though clearly more evaluations are needed in a diversity of 

systems. 

 

Chapters 3 and 4 of this thesis are experimental evaluations of frequency-dependent and density-

dependent (i.e. density of individuals occupying a discrete spatial area) performance of native and 

non-native species that co-occur in invaded York gum-jam annual communities. Chapter 5 of this 

thesis consists of a field experiment which measures the performance of species experiencing inter- 

and intraspecific competition in natural assemblages. It also assesses community-level functioning 

by evaluating diversity effects (i.e. selection, complementarity, and dominance) based on relative 

yields of species in novel mixtures (Loreau & Hector 2001; Fox 2005). In the final data chapter, 

Chapter 6, I experimentally investigate how local-scale environmental gradients and non-native 

annual grasses simultaneously impact community structure in the field. In combination, all of these 

studies provide community-level assessments of the diversity of interactions that contribute to the 

formation of complex ecological communities as a result of land-use change. In addition, these 



6 

 

studies serve as some of the first investigations into the coexistence processes that stabilize 

interactions among native and non-native species and lead to invaded yet diverse novel plant 

communities.  
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Chapter 2: Description of the York gum-jam annual plant communities  

of southwest Western Australia 

 

The Southwest Australian Floristic Region is a global hotspot of biodiversity, containing an array of 

diverse plant community types (Myers et al. 2000). Climate in southwest Western Australia is 

typical of Mediterranean-type ecosystems, with cool winters and warm summers characterized by 

prolonged drought. Topography and soils of this region reflect long-term geological stability, where 

weathering of parent material has resulted predominantly in a low-relief landscape occasionally 

punctuated by granite outcrops (Beard 1981). Historically, a diversity of temperate eucalypt 

woodlands types were found extensively throughout the region. These woodlands span a mean 

annual precipitation gradient of 200 – 800 mm, forming a broad geographic transition between arid 

vegetation types of interior (eastern) areas and high rainfall forests in the southwest (Yates et al. 

2000; Fig 2.1A).  

 

Woodlands dominated by Eucalyptus loxophleba subsp. loxophleba (York gum) form one such 

association, and are often referred to broadly as York gum-jam (Acacia acuminata) woodlands (Fig 

2.1B). York gum-jam woodlands are found on sandy loam soils that have historically low 

phosphorus content (Beard 1981; Lambers et al. 2008). Tree canopy cover is generally low, and 

understories usually support a mosaic of shrubs, perennial tussock grasses, and annual and perennial 

forbs. Understory annual herbaceous species (primarily Asteraceae) contribute substantially to the 

species richness of these woodlands, and are abundant during the winter and spring from 

approximately June to October.  

 

Systematic land clearing associated with agricultural development during the 20
th

 century has 

degraded floristic communities in this region through habitat loss and fragmentation, removing 93% 

of its native vegetation (Beard 1990; Fig 2.1A). Woodlands have been disproportionately affected 

in this process, with an estimated 97% of York gum-jam woodlands cleared during this period 

(Yates et al. 2000). Such levels of land clearing have resulted in widespread habitat loss for native 

woodland flora. As of 2000, 92% of the plant taxa listed as threatened in Western Australia 

occurred within the region where temperate eucalypt woodlands once dominated (Yates et al. 

2000). Currently, the Western Australia Department of Parks and Wildlife, DPAW (formerly 

Department of Environment and Conservation, DEC) recognizes eucalypt woodland remnants in the 

wheatbelt as a threatened Priority Ecological Community “made up of large, and/or widespread 

occurrences, that may or may not be represented in the reserve system, but are under threat of 

modification across much of their range” (DEC 2010; DPAW 2014). 
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York gum-jam woodland remnants vary in size and condition, and are relegated to isolated nature 

reserves and private properties throughout the agricultural matrix (Fig 2.2). Many remnants have 

sustained extensive damage due to exogenous disturbances resulting from land use change. Habitat 

fragmentation has altered abiotic ecosystem processes primarily through changes in water and 

nutrient fluxes (Hobbs 1993). Increased runoff due to widespread removal of native vegetation has 

resulted in rapid groundwater recharge compared to background rates, causing naturally saline 

water tables to rise and damage woodland vegetation where surface salinization or inundation 

occurs (George et al. 1997; Yates et al. 2000). Nutrient enrichment has been demonstrated along the 

edges of many York gum-jam woodland remnants as a result of fertilizer drift, runoff, and leaching 

from adjacent agricultural fields (Hobbs & Atkins 1988; Prober & Wiehl 2011; Dwyer et al. 2014). 

Livestock grazing has homogenized understory vegetation in many areas by facilitating 

establishment of non-native species, altering soil resource availability via nutrient deposition, and 

changing soil structural properties (Scougall et al. 1993; Yates et al. 2000b; Prober et al. 2011). 

Historical fire frequency in York gum-jam woodlands is largely unknown. However, studies have 

shown that fire may affect remnant native eucalypt woodland species through changes in seedling 

recruitment (Yates et al. 1994) or facilitation of invasive species (Hobbs & Huenneke 1992).  

 

Invasive non-native annual grasses and forbs have become a prominent component of most York 

gum-jam woodland remnants, especially in patches directly adjacent to croplands (Hobbs & Atkins 

1988; Abensperg-Traun et al. 1998; Prober & Smith 2009; Fig 2.3). Fragmentation, along with 

nutrient enrichment and ungulate grazing, has facilitated the spread of non-native annuals into 

reserves by increasing propagule pressure along reserve edges (Hobbs & Atkins 1988; Scougall et 

al. 1993). Non-native annual grasses are particularly problematic, and pose a threat through direct 

effects on ecosystem properties (e.g. increased intensity and frequency of fire, changes in nutrient 

cycling), and indirectly through detrimental impacts on native species (reviewed in D’Antonio & 

Vitousek 1992). Despite the widespread occurrences of non-native species in disturbed and 

undisturbed York gum-jam woodland remnants, some invaded herbaceous communities appear to 

be more intact and seem not to be on a trajectory towards competitive exclusion (Fig 2.3; Prober & 

Wiehl 2011). In this thesis, I refer to non-native species simply as “non-native”, and denote their 

invasive status where appropriate.  

 

Recently, Dwyer et al. (2014; 2015) and Lai et al. (2015) investigated patterns of regional and local 

community richness and composition in relatively intact annual communities versus communities 

bordering croplands in York gum-jam woodland reserves. These studies confirmed observations 
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that intact communities support a greater diversity of species than those adjacent to reserve edges, 

and that non-native species are more commonly found near reserve edges. They also found that 

intact communities responded to favourable growing seasons by substantially increasing richness 

and community variation (α diversity), whereas edge communities were more compositionally 

entrenched from year to year. Variation in species composition was only somewhat explained by 

local-scale environmental factors (e.g. canopy cover, presence of grass litter, soil pH, soil P), 

supporting previous findings that elevated soil nutrients only moderately explain variation in 

species composition in long-ungrazed annual communities (Prober & Wiehl 2011). These results 

underscore the need to further investigate local-scale factors affecting community composition 

through targeted experimentation. 

 

The diverse herbaceous understory communities of York gum-jam woodlands are an ideal system 

for ecological experiments testing coexistence mechanisms in novel plant communities. Generally, 

annual herbaceous plants are conducive to experimental manipulations, as they are small in stature, 

easily handled, have short life spans, respond to competition over short time frames, and compete 

for limited resources over small spatial scales. Furthermore, it is easy to assess a variety of fitness 

measures across all life stages of individuals. In addition, these communities support mixtures of 

native and non-native species, forming a compositional gradient from non-native-dominated to 

native-dominated assemblages, and abiotic gradients from intact to physically and chemically 

disturbed. The close proximity of novel communities to original reference communities is 

especially useful for studies on the contribution of species interactions to local community 

assembly.  

 

Focal species chosen for the experiments in this thesis reflect both their natural high relative 

abundances and their co-occurrence over small (neighbourhood) scales. My goal was to choose 

species combinations which were realistic (if not simplified) representations of natural 

communities. This served to strengthen the generalizability of my findings, with the advantage of 

the species being readily available for study and manipulation in the field among multiple reserves 

and years. 
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Table 1.1 List of common focal York gum-jam annual species used in experiments in the thesis. 

Grass growth forms designated according to Prober & Wiehl (2011) and herb growth forms 

designated according to: Descriptions by the Western Australian Herbarium, Department of Parks 

and Wildlife. Text used with permission (https://florabase.dpaw.wa.gov.au/help/copyright). 

Accessed on Monday, 18 May 2015. 

 

Name (Family) Origin Growth form 

Aira cupaniana (Poaceae) Non-native Diminutive grass 

Avena barbata (Poaceae) Non-native Robust grass 

Bromus madritensis (Poaceae) Non-native Robust grass 

Gonocarpus nodulosus (Haloragaceae) Native Slender herb 

Hypochaeris glabra (Asteraceae) Non-native Rosetted herb 

Pentameris airoides (Poaceae) Non-native Diminutive grass 

Rhodanthe manglesii (Asteraceae) Native Erect slender herb 

Trachymene cyanopetala (Araliaceae) Native Decumbent to semi-

prostrate or erect 

Trachymene ornata (Araliaceae) Native Slender herb 

Trachymene pilosa (Araliaceae) Native Erect or ascending herb 

Waitzia acuminata (Asteraceae) Native Erect or ascending herb 

 

Waitzia nitida (Asteraceae) Native Erect herb 
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Fig 2.1 A) Map of SW Western Australia with the extent of vegetation clearing shown 

in white (reproduced from Prober & Smith (2009)). B) Distribution of York gum across 

SW Western Australia (from the Western Australian Herbarium). Image used with the 

permission of the Western Australian Herbarium, Department of Parks and Wildlife 

https://florabase.dpaw.wa.gov.au/help/copyright.  
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Fig 2.2 Kunjin and Bendering Reserves are remnants of the original 

vegetation that once covered southwest Western Australia prior to 

land clearing. My field studies were conducted in York gum-jam 

woodland patches within these reserves. Map data: Google. 
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Fig 2.3 Many annual communities in York gum-jam woodlands have undergone 

abiotic disturbance and invasion by aggressive annual grasses and broadleaf weeds 

(top) that result in local-scale native diversity declines, while other invaded 

communities still support diverse mixtures of both native and non-native annuals 

(bottom). Photos: author’s own. 
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Chapter 3: Diverse outcomes of species interactions in an invaded annual plant community 

 

Introduction  

 

Substantial theoretical advancements in plant community ecology have been made over the past 15 

years by conceptually formalizing the underpinnings of multispecies coexistence (Chesson 2000; 

Adler et al. 2007). Fundamentally, modern coexistence theory suggests that intra and interspecific 

variation in species interactions determine whether species may coexist over local scales (Chesson 

2000).  The details of species interactions post dispersal, germination, and establishment can, under 

this view of coexistence, still have diverse outcomes, ranging from negative, e.g. interference 

(Goldberg et al. 2001), resource exploitation (Dyer & Rice 1999), apparent competition 

(Dangremond et al. 2010), allelopathy (Hierro & Callaway 2003), to positive, e.g. 

microenvironmental amelioration (Soliveres et al. 2011), indirect facilitation (Levine 1999), and 

refuge from herbivores (Callaway et al. 2005).  Though these types of interactions within and 

among species are commonly invoked as important determinants of local plant community structure 

in theoretical and empirical studies (Mouquet et al. 2003; Grace 2012; Spasojevic & Suding 2012), 

empirical evaluation of their realized importance to coexistence has not kept pace (Siepielski & 

McPeek 2010).  

 

One aspect of modern coexistence theory that has substantial empirical and theoretical support is 

the concept of negative frequency-dependence (Harpole & Suding 2007; Levine & 

HilleRisLambers 2009). Specifically, theory predicts that species will exhibit weaker performance 

with increasing relative abundance in communities where stabilizing processes promote 

multispecies coexistence, i.e. negative effects of conspecific neighbours exceed negative effects of 

heterospecific neighbours (Chesson 2000). This can be achieved through a number of mechanisms 

that concentrate negative impacts among intraspecific competitors relative to interspecific 

competitors, such as resource competition, predation, and pathogen attack (Chesson & Kuang 

2008). These phenomena can be purely spatial, as in the case of fitness-density covariance (Chesson 

2000b) and aggregation models of coexistence (Bolker & Pacala 1997), or can be spatial and 

temporal in nature, as in the case of the storage effect (Chesson 2000b; Adler et al. 2006). In the 

absence of stabilizing processes, species are insensitive to conspecific effects relative to 

heterospecific effects and thus outcomes of interactions are determined by innate relative fitness 

differences among species, and the most competitively superior species will eventually dominate 

the community (Chesson 2000; Adler et al. 2007).  
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Quantifying all of the mechanisms important for coexistence in plant communities is inherently 

difficult, as important processes likely vary among species and operate on different spatiotemporal 

scales among communities (Chesson 2000; Levine & HilleRisLambers 2009). In general, a positive 

low-density growth rate (i.e. ability to increase in abundance in a community from rarity), 

combined with an intensification of negative intraspecific effects (such as competition) as species 

become common, is a requirement for multispecies coexistence (Adler et al. 2007). In the context of 

invasions, provided an introduced non-native species can increase from rarity in a recipient 

community post-dispersal or establishment (i.e. while interspecific effects exceed intraspecific 

effects), it will successfully invade (MacDougall et al. 2009). The net result of these relationships, 

negative frequency-dependence, is straightforward to measure experimentally. A simple approach is 

to directly compare intra-and interspecific impacts on co-occurring species (Adler et al. 2007). To 

this end, replacement series experiments can be used to measure species performance in 

monoculture to performance in mixtures of equal densities, where a portion of conspecific 

individuals are substituted with heterospecific individuals. Resulting changes in performance reflect 

the degree to which intraspecific effects (usually in the form of exploitation or interference 

competition, though density-dependent predation and parasitism have also been demonstrated) 

contribute to self-limitation, an essential component of coexistence (Chesson 2000). For example, 

by manipulating spatial aggregation of individuals, Stoll and Prati (2001) demonstrated that weaker 

competitors tended to increase in fitness in conspecific neighbourhoods while fitness of superior 

competitors decreased, suggesting that differences in species responses to competition could 

potentially promote coexistence. It should be noted that comparing intra- versus interspecific 

impacts in this way is analogous but not equivalent to measuring frequency-dependence. Measuring 

the impacts of intraspecific effects of a species in monoculture is essentially a measure of that 

species’ performance in a community where its relative frequency is at its maximum, 1.0. Measures 

of intraspecific effects inherently require species’ frequencies to be some smaller proportion of the 

community than 1.0; thus, comparing the impacts of inter- versus intraspecific competition can 

represent a coarse way of detecting frequency-dependent competition, where performance is 

compared at two frequency levels (1.0 and <1.0), rather than across a gradient of frequencies.  

 

Past experiments designed to quantify the effects of stabilizing processes in plant communities have 

been criticized for their failure to examine results across a range of plant densities (Inouye 2001; 

Damgaard 2008). These criticisms stem from the potential for nonlinear responses to community 

density, which may skew links drawn between species performances in experimental and natural 

communities (Damgaard 2008; but see Levine et al. 2008). As with species composition, density-

contingent outcomes of competitive interactions may be critical for coexistence. The importance 
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and outcome of these interactions may change among species combinations, locations, and life 

stages of constituent species. It has been shown that the direction and magnitude of interspecific 

versus intraspecific competition among annuals may vary with total density depending on the life 

history stage examined (Leger & Espeland 2010). Goldberg et al. (2001), for example, 

demonstrated that community-level density is highly important for mediating both the intensity and 

type of interspecific interactions in a group of annual plants. In particular, competitive effects were 

most intense at the emergence stage and were characterized primarily by interference rather than 

exploitation (Goldberg et al. 2001). In addition, increasing total plant density has been shown to 

influence productivity of species mixtures by intensifying negative competitive effects in 

experimental assemblages of annual plants grown at different relative abundances (Polley et al. 

2003) and spatial aggregations (Monzeglio & Stoll 2005).  

 

While manipulative experiments sacrifice a certain element of realism, they are extremely useful for 

pinpointing the influence of specific processes in shaping communities relative to other assembly 

processes (Mason et al. 2011). This approach is particularly valuable for understanding how 

competitive dynamics vary with fundamental community properties such as evenness and the 

density of individuals (Polley et al. 2003). Finding a range of species densities while simultaneously 

holding community composition constant can be difficult in natural communities, making 

experiments useful for exploring these types of questions. 

 

Using four annual plant species found in a fragmented woodland ecosystem in Western Australia, I 

assembled experimental communities to explore interactions under a variety of competitive 

conditions. Observational patterns from these communities suggest that certain local competitive 

processes may be important in determining community structure (Dwyer et al. 2015), particularly in 

communities assembling post-invasion. Targeted experimentation is needed, however, to clarify 

these processes. Here, I provide these empirical data while elucidating multispecies interactions and 

their relevance to coexistence in general. I designed this study to answer the following basic 

questions:  

 

1) How do native and non-native species differ in their responses to intraspecific and interspecific 

competition?  

2) Do native and non-native focal species vary in their density-dependence?  

3) To what degree might the native and non-native species’ responses to competitor identity and 

density reflect their distributions and performance in natural communities? 
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I then discuss the answers to these questions in the broader context of multispecies coexistence. 

 

Methods 

 

Assembly of experimental communities 

 

Experimental communities were made up of annual species commonly found in the understory of 

York gum (Eucalyptus loxophleba) – jam (Acacia acuminata) woodlands in southwestern Australia. 

This winter annual community type was formerly widespread, but extensive land clearing for the 

region’s agricultural industry has resulted in fragmentation and degradation of remaining 

communities, particularly due to invasion by non-native annual grasses and broadleaf weeds 

(Prober & Wiehl 2011, Prober et al. 2011, Dwyer et al. 2014). Four commonly co-occurring York 

gum-jam woodland annuals were planted in monocultures, two-species, or three-species mixtures at 

different densities to assess competitive outcomes among growth forms and origins along a gradient 

of crowding. Species were chosen because they are some of the most common (if not the most 

common) native or non-native representatives of their growth form in York gum-jam understory 

annual communities, and because they are all found co-occurring and interacting at neighbourhood 

scales in natural communities (Dwyer et al unpublished data, pers. obs). The three-species mixture 

consisted of native slender erect herb Waitzia nitida (Asteraceae), non-native rosetted herb 

Hypochaeris glabra (Asteraceae), and robust non-native grass Bromus madritensis (Poaceae), and 

the two-species mixtures consisted of each constituent species pair. I included an additional two-

species pair, W. nitida and diminutive non-native grass Pentameris airoides (Poaceae), to enable 

comparisons of competitive effects of the two grasses P. airoides and B. madritensis.  

 

All communities were planted from seed at three density levels: low (21 individuals per pot: 1 plant 

per 3.85cm
2
), medium (51 individuals per pot: 1 plant per 1.54cm

2
), or high (81 individuals per pot: 

1 plant per 0.97cm
2
). The high density treatment was chosen based on a previous competition 

experiment composed of ecologically similar York gum-jam woodland annuals, in which 81 plants 

per pot created an environment of intense competition among individuals (D. Manietta, unpublished 

data). The low density treatment was chosen based on naturally occurring densities recorded in the 

field at peak biomass in 2011 in quadrats where focal species co-occurred (Dwyer et al. 2015), and 

scaled down to reflect the surface area of pots used in this experiment (78.5 cm
2
). Equal proportions 

of each species were planted in every mixture (ratios of 1:1:1 or 1:1) to examine competitive 

outcomes influenced by density as opposed to relative frequency. Each species mixture (n=9) and 

density (n=3) combination was replicated three times, for a total of 81 experimental communities. 
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Seeds were collected from mature plants in several York gum-jam woodland remnants in October 

2011 and then underwent a four week dry-after-ripening period at 40°C in a drying oven to alleviate 

seed dormancy and promote germination (important for a number of native Australian forb species; 

Hoyle et al. 2008). All seeds were then stored in darkness at room temperature until planting. Seed 

viabilities were assessed according to procedures in the AOSA/SCST Tetrazolium (TZ) handbook 

(Miller 2010), and were used to estimate the number of seeds needed of each species to reach target 

densities in each treatment. All pots were rinsed with 70% ethanol solution prior to use. Soil was 

obtained from The University of Queensland glasshouse facilities and prepared in order to closely 

resemble the texture and nutrient content of soil found beneath intact York gum-jam annual 

assemblages (< 5.0 mg/kg plant-available P; Dwyer et al. 2015). Soil was mixed as a combination 

of one part low-phosphorus native potting mix and three parts coarse sand and was passed through a 

2-mm sieve to remove any large pieces of woody organic matter, as they are not a common feature 

of soils beneath herbaceous annual communities in this system (pers. obs.). Seeds of component 

species were mixed evenly and scattered on the soil surface before the first watering treatment. 

Each pot was hand-watered every four days (30 mL) during the first six weeks of seedling 

establishment, after which each pot was watered every seven days (35 mL). Throughout the 

establishment phase, communities were weeded regularly to maintain prescribed plant densities. 

 

Experimental communities were grown in two temperature-controlled growth chambers 

(ThermoFisher Scientific, Adaptis 1000) equipped with fluorescent tubes (c. 650 µmol m
-2

s
-1

) at 

The University of Queensland. Pots were randomized between both chambers every week to 

account for any potential growth chamber or shelf differences. Temperature loggers (Thermodata 

Inc.) were used to monitor chamber temperatures at regular intervals (data not shown). Photoperiod 

was set to a 12 hour cycle, and temperatures ranged from 17.0°C (day) to 7.0°C (night) based on 

mean winter temperatures typical of the central wheatbelt region in July (BOM 2014) when annual 

plants typically establish (pers. obs.). 

 

Several indices of plant performance were collected at the species level at four-day intervals during 

emergence (six weeks) and weekly thereafter. Abundance, reproductive potential (proportion of 

plants flowering and flower count as opposed to seed production, as natural pollination mechanisms 

are absent in growth chambers), and mortality were recorded for each species in each community. 

After about four months (120 days), peak aboveground biomass had been reached and was 

harvested and separated by constituent species for each community, and oven-dried for three days at 

60°C before weighing. 
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Statistical analysis 

 

Data analysis was conducted in R (v 3.1.2, R Development Core Team 2014) using packages lme4 

(Bates 2014), nlme (Pinheiro 2014), and coxme (Therneau 2012). Species combination and 

density effects on plant performance were explored for each species. Density was treated in models 

as categorical (low, medium, high) when modelling species survival in monoculture over time and 

number of flowers per individual, and as a continuous variable when comparing mean biomass per 

individual or polyculture survival. This accounted for instances where target density was not 

reached (although equal proportions of each species were still maintained) and therefore 

comparisons of performance according to density categories among species would not have been 

valid. Monoculture survival was analysed using Cox proportional hazards mixed effects models 

with pot specified as a random effect to account for multiple observations (individuals) within each 

pot. Individuals were right-censored when they remained alive until harvesting. To enable 

comparisons of monoculture survival among species, survival analyses were followed by a mixed 

effects logistic regression of the proportion of surviving individuals at 15 weeks in monoculture at 

medium density, with pot specified as a random effect. Survival at 15 weeks in polyculture, as well 

as number of plants with reproductive potential (having buds or flowers at 14 weeks) were analysed 

using generalized linear mixed effects models with binomial errors and logit link function, and pot 

specified as a random effect to account for overdispersion (Elston et al. 2001). Number of flowers 

per individual for H. glabra and W. nitida were analysed using generalized linear mixed effects 

models with Poisson errors and a log link function, with plant nested within pot as a random effect 

to account for over-dispersion. Biomass data were ln-transformed to improve normality of residuals 

and analysed using linear mixed effects models with pot specified as a random effect to account for 

multiple observations per species within each community. For all polyculture survival and biomass 

models, two-way interactions among fixed effects were explored and were followed by additive 

models if no significant interactions were found.  

 

Results 

 

Survival responses to intraspecific competition  

 

Plant survival (from emergence to harvest at 120 days) showed varying degrees of density 

dependence among species (Table 3.1, Fig 3.1). W. nitida survival declined throughout the 

experiment (Fig 3.1A), though differences in survival among density levels were not significant. At 
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medium densities, H. glabra individuals showed a significantly positive association with death 

hazard (i.e. greater probability of mortality) compared to individuals grown at low densities (hazard 

ratio: 1.78, p=0.053) such that by the time 50% of H. glabra individuals died at low density, 70% 

had died at medium density (Fig 3.1B). B. madritensis had low mortality throughout the experiment 

at all conspecific density levels (Fig 3.1C). By contrast, P. airoides conspecific density was 

negatively, though weakly, associated with mortality (hazard ratio: 0.17, p=0.085; Fig 3.1D). 

 

Analyses of survival in monoculture to 15 weeks at medium density confirmed differences in 

species responses to intraspecific competition. W. nitida survival was negatively impacted 

(estimate: -0.65, SE: 0.29, p=0.02), as was the survival of H. glabra (estimate: -0.96, SE: 0.22, 

p<0.0001). By contrast, proportion of B. madritensis surviving was much greater than for the other 

three focal species (estimate: 3.64, SE: 0.52, p<0.0001), while P. airoides was not significantly 

affected (estimate: -0.49, SE: 0.26, p=0.06). 

 

Survival and reproductive responses to interspecific competition  

 

Density-dependence and competitor identity influenced focal species survival to the end of the 

experiment in polyculture to varying degrees (Table 3.2, Fig 3.2; Appendices 3.1 – 3.4). W. nitida 

survival was negatively density dependent (p<0.0001) in polyculture, and was also depressed 

relative to monoculture except when grown with P. airoides (Fig 3.2A; p<0.0001). Non-native forb 

H. glabra survival was particularly sensitive to increasing plant density when grown with both W. 

nitida and B. madritensis simultaneously (W. nitida + B. madritensis * Density: p<0.0001; Fig 

3.2B). By contrast, B. madritensis survival was relatively unaffected by competition (Fig 3.2C) 

compared to other species in this experiment, though greater replication may have increased my 

ability to detect effects that were weak but significant. B. madritensis was largely unaffected by 

either density (p=0.11) or the species composition of its competitive neighbourhood (Table 3.2). 

However, B. madritensis mortality did increase when grown with W. nitida at high densities (Fig 

3.2C), though not significantly (p=0.52). Conversely, non-native grass P. airoides survival 

decreased when grown densely with W. nitida (W. nitida * Density: p=0.0007; Fig 3.2D). 

 

Reproductive potential, measured as the proportion of initial individuals budding or flowering near 

the end of the experiment, did not mirror species survival responses to competitor identity and 

density (Table 3.3; Appendices 3.9 – 3.12). No W. nitida individuals invested in reproduction in the 

presence of B. madritensis. A reduced proportion of W. nitida individuals invested in reproduction 

when grown with H. glabra (p=0.0008). By contrast, a greater proportion of W. nitida individuals 
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survived to invest in reproduction when grown with P. airoides (p<0.0001) than in monoculture. 

However, per capita flower count of W. nitida individuals was neither affected by community 

density nor competitor identity compared to low density monocultures (Table 3.4). H. glabra 

displayed significantly reduced reproductive investment when grown in the presence of B. 

madritensis (Table 3.3), but increased when grown with only W. nitida (p=0.009) compared to 

monoculture. Further analysis of flower count revealed that per capita flower production of H. 

glabra declined in high density communities (p=0.01), as well as communities containing both B. 

madritensis and W. nitida (p=0.01) compared to low density monocultures (Table 3.4). Density 

modified the reproductive response of P. airoides, where a smaller proportion of individuals 

invested in reproduction when grown with W. nitida, but only at high densities (p=0.006). The 

proportion of B. madritensis individuals surviving to invest in reproduction was negatively density 

dependent overall (p<0.0001), and unlike the other focal species was greater in all polycultures than 

in monoculture (Table 3.3). 

 

Biomass responses to intraspecific competition 

 

Species biomass responses in monoculture did not always reflect their survival responses (Fig 3.3). 

W. nitida individual biomass was insensitive to conspecific density (estimate: 0.01, SE: 0.01, 

p=0.53), and a similar trend was observed of P. airoides (estimate: -0.01, SE: 0.008, p=0.14). 

However, H. glabra’s mean biomass per individual decreased with increasing competition intensity 

(estimate: -0.01, SE: 0.004, p=0.02), as did B. madritensis (estimate: -0.02, SE: 0.003, p<0.001). 

 

Biomass responses to interspecific competition 

 

Biomass responses to interspecific competition also varied among species (Table 3.4, Fig 3.3; 

Appendices 3.5 – 3.8). Biomass of surviving W. nitida individuals was not influenced by initial 

planting density (p=0.89). However, W. nitida experienced greatly reduced biomass in both 

community types that contained non-native grass B. madritensis (B. madritensis: p=0.008, B. 

madritensis + H. glabra: p=0.0003; Fig 3.3A) relative to its biomass in monoculture or with H. 

glabra or P. airoides alone. I note that biomass values for W. nitida growing in mixtures containing 

B. madritensis are only available at low densities, as no W. nitida individuals survived in these 

mixtures at greater planting densities. Similarly, H. glabra had lower per plant biomass in both 

mixtures containing B. madritensis (B. madritensis: p=0.0003, W. nitida + B. madritensis: 

p=0.0007; Fig 3.3B), although its biomass when grown with W. nitida alone was similar to when 

grown with conspecifics (Table 3.4). Unlike W. nitida, H. glabra was negatively impacted as 
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planting density increased (p=0.0006) across all species combinations. B. madritensis per plant 

biomass decreased in all communities with increasing density (p<0.0001; Fig 3.3C), and 

heterospecific competition resulted in greater biomass per individual compared to conspecific 

competition (H. glabra: p<0.0001, H. glabra + W. nitida: p<0.0001, W. nitida: p<0.0001; Fig 

3.3C). For P. airoides, neither planting density nor growing with W. nitida significantly influenced 

biomass of surviving individuals relative to monoculture (Density: p=0.69, W. nitida: p=0.12), 

although the inability to detect relationships among these variables may have been due to low 

replication (Fig 3.3D). 

 

Discussion 

 

Several important factors emerged from this experiment that affected the relative strength of intra- 

vs interspecific competition among native and non-native annuals from York gum-jam woodland 

understories. The identity of competing species proved to be more informative than origin or stem 

density in explaining outcomes of intra- and interspecific competition. Changes in the relative 

strength of intra- versus interspecific competition more commonly occurred when the identity of 

competitors was switched than when stem density increased. Overall, the direction and type of 

response to competition varied dramatically among species, which I relate to natural co-occurrence 

patterns as discussed below. 

 

Responses to intraspecific competition 

 

Though this experiment took place in a lab setting, all species involved commonly co-occur at the 

scale of interaction neighbourhoods in natural York gum-jam systems (Dwyer et al. unpublished 

data), suggesting that natural communities may result in part from the combined impacts of the 

distinct ecological processes observed in this experiment. Species showed different degrees of 

conspecific density dependence, from negative to positive and complete density-independence 

depending on the species and the component of fitness measured. I identified a spectrum of 

responses to high conspecific density, from limited self-thinning but reduced individual biomass (B. 

madritensis) to substantial self-thinning but consistent individual biomass (W. nitida) and responses 

intermediate to these (H. glabra and P. airoides).  

 

I suspect that growth form was largely responsible for survival trends. Non-native annual grasses 

demonstrated little to no evidence for self-thinning, either displaying density independence (B. 

madritensis) or positive density dependence (P. airoides). By contrast, W. nitida exhibited strong 
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contest competition (Crawley 1990), resulting in taller though no more massive survivors under 

intense intraspecific competition (pers. obs.) and potentially compensatory growth, suggesting that 

competition for light may be key in regulating competitive outcomes for forbs in this system. This 

finding is consistent with field studies of these same species (Dwyer et al. 2015). 

 

The fact that B. madritensis survival was uniformly high as well as insensitive to conspecific 

density in this experiment is not surprising given how successful this species is in most of its 

introduced range (IUCN/SSC Invasive Species Specialist Group, 2005). The lack of self-limitation 

on survival at any density may be advantageous to B. madritensis when introduced into new 

communities. B. madritensis naturally forms dense swards (Salo 2004), which may confer an 

advantage over native forbs such as W. nitida, mediated by competition for light (Dwyer et al. 

2015). B. madritensis was not, however, immune to intraspecific competition. Rather, the effects of 

intraspecific competition took a different form compared to the forbs in this study. Specifically, B. 

madritensis invested less in reproduction and individuals were smaller on average in high density 

treatments. These findings are consistent with other studies of this species (Wu & Jain 1979) and its 

congeners (Lowe et al. 2003; Vasquez et al. 2008). Whether such decreases in biomass and 

reproductive output are sufficient to offset high survival rates is undoubtedly circumstance-specific. 

Given B. madritensis’ extreme success as an invader, it seems unlikely that such limitation is 

common, at least outside of its native range.  

 

In contrast to B. madritensis, the diminutive non-native grass P. airoides did not have strong 

responses in biomass or reproductive output across a conspecific density gradient.  Interestingly, the 

only significant impact of intraspecific competition was positive, with more plants surviving to later 

dates in the higher and medium density than low density treatments. Although survivorship 

decreased across all density levels throughout the experiment, the fact that density reduced rather 

than exacerbated mortality is suggestive of intraspecific facilitation. Intraspecific positive 

interactions have been demonstrated in both annual (e.g. Leger & Espeland 2010) and perennial 

species (e.g. Fajardo & McIntire 2011) and often result from the amelioration of environmental 

stress outweighing the competitive effects of conspecific aggregation. Environmental stress 

gradients were not imposed in this study, but it is possible that soils beneath denser P. airoides 

communities may have been more mesic due to reduced evaporation at the soil surface (Callaway 

2007). Although intraspecific competition does not seem to contribute to limit P. airoides 

productivity or reproduction, other factors might control its abundance in the field.  
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Overall, both forbs, whether native or non-native, were more heavily impacted by intraspecific 

competition than either of the non-native annual grasses, which was particularly evident in their 

higher density-dependent mortality. This potential for self-limitation is reflected in observed 

patterns of co-occurrence over local scales in the field based on natural species abundances 

(Chapter 5 of this thesis; Lai et al. 2015). W. nitida is a widespread species positively associated 

with native annual plant species richness in York gum-jam woodlands (Lai et al. 2015) and its 

congener W. acuminata tends to perform better in mixed assemblages than in monoculture in the 

field (Chapter 5 of this thesis). While I do not have field survival data for W. nitida at the spatial 

scale of the pots used in this growth chamber experiment, at a 30 x 30 cm quadrat scale in a natural 

community, mortality rates of W. acuminata at peak biomass ranged from 30-40% in monoculture 

at densities lower than this growth chamber experiment (Ch 4 of this thesis). In 2012, W. acuminata 

mortality at peak biomass in the field averaged approximately 30% in monocultures of similar 

density to the low density treatment in this experiment (Wainwright, unpublished data). Studies of 

annual plant recruitment dynamics in other semi-arid systems have reported lower seedling 

mortality rates than these (e.g. Espigares & Peco 1995; Rebollo et al. 2001; but see Pec & Carlton 

2014). I suspect the high rates of seedling mortality observed for the forbs in this experiment were 

due to medium and high densities being denser than natural communities. Still, mortality rates as 

high as those observed in this experiment are consistent with other natural semi-arid annual plant 

communities, especially when environmental stress is high (Espigares & Peco 1995). Like many 

annuals native to semi-arid systems, the abundance of W. nitida is potentially co-regulated by biotic 

interactions and dormancy mechanisms buffering the effects of interannual climate variation 

(Chesson 2000; Erickson et al. unpublished data). H. glabra, while also fairly ubiquitous in York 

gum-jam woodlands, is unlike many other non-native annuals in this system in that it is not 

associated with soil eutrophication, nor is it associated with reduced species richness (Lai et al. 

2015). Because it is non-dormant and does not form a seed bank (Erickson et al. unpublished data), 

I suspect that density-dependent processes such as herbivory (pers. obs.) are involved in regulating 

its abundance in the field. 

 

Responses to interspecific competition 

 

As in the case of intraspecific competition, responses to interspecific competition varied by species 

and could not be generalized across the performance variables measured. Among the three focal 

species for which all combinations were tested (B. madritensis, H. glabra, and W. nitida), I noticed 

a general competitive hierarchy. Native forb W. nitida had only neutral or positive effects on 

heterospecifics, invasive forb H. glabra suppressed W. nitida only, and non-native grass B. 
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madritensis suppressed both H. glabra and W. nitida. My results suggest that per capita competitive 

effects of the robust non-native grass were stronger than the other species in this experiment, even 

at low density.  

 

Survival of H. glabra, however, was greater in the presence of B. madritensis when W. nitida was 

added, suggestive of an indirect facilitation via reduction in competition from B. madritensis, 

though only at low density. This may be offset, however, by a reduction in reproductive output per 

surviving individual. W. nitida individuals had significantly reduced investment in reproduction 

when the neighbourhood contained H. glabra as opposed to conspecifics at the population level, 

though per capita flower count was unaffected. By contrast, no individuals invested in reproduction 

when grown in the presence of B. madritensis. It is possible that W. nitida may be able to locally 

persist in the presence of B. madritensis or H. glabra provided that their maximum field densities 

remain lower than those investigated in this experiment. Natural densities, however, are often as 

high as or higher than those used in this study, especially in areas that have undergone physical 

disturbance or eutrophication (Dwyer et al. 2015). Thus, stable coexistence of these species is 

unlikely in natural assemblages. 

 

Interestingly, for a given density of conspecifics, W. nitida survival was greater with P. airoides 

present, suggesting a role of P. airoides may not only be to provide release from intraspecific 

competition, but to facilitate at least this native species. Recently, more emphasis has been placed 

on the role that positive interactions play in structuring plant communities (Brooker et al. 2008). 

The potential role of P. airoides as a facilitator has not been previously documented to my 

knowledge, and is investigated further in Chapter 4 of this thesis. A competition study on 

functionally similar species Aira caryophyllea and Aira praecox noted that these small annual 

grasses had negligible effects on their neighbours, whether they were conspecific or heterospecific 

(Pemadasa & Lovell 1974). In addition, field surveys spanning the York gum-jam woodland range 

indicate that P. airoides and Aira cupaniana, another functionally similar non-native grass, are 

positively associated with native species richness both at regional and local scales (Lai et al. 2015). 

Further study on interactions between P. airoides or Aira species in combination with other native 

species besides W. nitida are needed, however, to draw any general conclusions on its effects on 

whole community dynamics.  

 

The ability to maintain high survivorship regardless of the competitive environment may underscore 

B. madritensis’s global status as a problematic invader (IUCN/SSC 2005). Like many non-native 

annual grasses in semi-arid ecosystems, B. madritensis may not only grow and establish more 
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rapidly than natives (DeFalco et al. 2003), but can also exert negative competitive effects on native 

species through interference and resource depletion (Brooks 2000). Furthermore, in natural systems 

B. madritensis has the potential to promote positive feedbacks to abundance through alteration of 

disturbance regimes (Brooks 1999; Brooks 2000 et al. 2000; D’Antonio & Vitousek 1992). While 

the average size of B. madritensis individuals was reduced by interspecific crowding, individuals 

were still larger on average and more likely to invest in reproduction when grown in mixed stands 

than in monoculture. Overall, this suggests that B. madritensis was more negatively impacted by 

conspecific than heterospecific competition, though the absolute effects of either form of 

competition were small relative to those observed for other species in this study. Overall, B. 

madritensis displayed a general competitive superiority in all mixed stands in this study, indicative 

of a fitness advantage that could contribute to its observed dominance over native annuals in the 

field. In natural communities, however, this advantage might not necessarily lead to competitive 

exclusion in areas that have not simultaneously experienced disturbance (Hobbs & Huenneke 1992; 

D’Antonio & Chambers 2006; Theohardes & Dukes 2007).  

 

Conclusion 

 

Here, I have documented a range of dynamics that can simultaneously contribute to community 

structure. There are clearly myriad potential outcomes of interactions among different species over 

small scales, depending both on species-specific attributes and (to a lesser extent among these focal 

species) the density of the community.  

 

Rather than focusing on the outcomes of one type of interaction using species pairs, here I have 

observed a diverse suite of interaction outcomes in monocultures, pairs, and three-species mixtures. 

My results suggest that indirect interactions and positive interactions may be more prevalent than 

their current documentation in the literature suggests. Further, this study provides insight into the 

diverse processes relevant to the assembly of novel communities comprising native and non-native 

species. Future research should be directed towards clarifying the importance of these interactions 

relative to other processes in promoting or preventing multispecies coexistence in a variety of 

recently invaded plant communities.  
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Fig 3.1 Survival curves for A) W. nitida, B) H. glabra, C) B. madritensis, and D) P. airoides 

monocultures from emergence to harvest at 120 days. Lines represent three levels of conspecific 

density (light gray = low density, gray = medium density, black = high density). 
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Fig 3.2 Proportion of initial community surviving to end of experiment by planting density, for A) 

W. nitida, B) H. glabra, C) B. madritensis, and D) P. airoides. Dashed and dotted lines within each 

plot correspond to different competitor combinations (described in panel C), while solid black lines 

represent each species in monoculture. 
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Fig 3.3 Mean biomass per individual by planting density for A) W. nitida, B) H. glabra, C) B. 

madritensis, and D) P. airoides. Dashed and dotted lines within each plot correspond to different 

competitor combinations, while solid black lines represent each species in monoculture following 

the same description as legend in Fig 3.2. 
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Table 3.1 Coefficients and (SEs) of proportional hazard rates from mixed effects Cox proportional 

hazards models of species survival in monoculture by density. Reference level is low density, and 

asterisks denote levels of significance (*: p≤0.05, **: p<0.01, ***: p<0.001). 

Focal species: B. madritensis H. glabra P. airoides W. nitida 

Fixed effects:     

Med density 0.13(1.24) 0.58(0.3)* 0.87(0.98) 0.28(0.44) 

High density 

 

0.46(1.21) 0.39(0.29) -1.80(1.04) 0.62(0.43) 

Random 

effects 

(variance 

estimates): 

    

Among pot 1.45 0.07 1.20 0.20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

Table 3.2 Model coefficients and (SEs) from mixed effects models of focal species survival at 15 

weeks in polyculture by initial planting density. A dash corresponds to instances when the focal 

species combination did not occur, “NS” corresponds to cases where no interaction terms were 

significant and thus an additive model was used, and “NA” corresponds to cases where interactions 

could not be estimated from the data. Asterisks denote level of significance (*: p≤0.05, **: p<0.01, 

***: p<0.001). 

Focal species: 

 

Fixed effects: 

B. madritensis  H. glabra P. airoides W. nitida  

Intercept  

(Conspecifics): 

5.39 (1.18)*** -0.29 (0.41) -0.47 (0.41) 1.11 (0.54)* 

Total plant density -0.03 (0.02) -0.01 (0.01) 0.01 (0.01) -0.06 

(0.01)*** 

Growing with:     

B. madritensis - -0.71 (0.87) - -4.272 

(1.28)*** 

B. madritensis + H. glabra - - - -3.21 (-

0.99)** 

H. glabra 1.14 (1.14) - - -2.28 

(0.73)** 

P. airoides - - - 2.39 

(0.58)*** 

W. nitida -0.63 (0.96) 0.90 (0.70) 1.07 (0.66) - 

W. nitida + B. madritensis - 3.01(0.95)*

* 

- - 

W. nitida + H. glabra -1.03 (0.97) - - - 

B. madritensis * Density NS -0.03 (0.02) - NA 

B. madritensis + H. glabra * 

Density 

NS - - NA 

H. glabra * Density NS - - NA 

P. airoides * Density NS - - NA 

W. nitida * Density NS -0.01 (0.01) -0.03 

(0.01)*** 

NA 

W. nitida + B. madritensis * 

Density 

NS -0.09 

(0.02)*** 

- NA 

W. nitida + H. glabra * Density NS - - NA 

Random effects (variance 

estimates): 

    

Among pot 2.52 0.15 0.14 0.88 
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Table 3.3 Model coefficients and (SEs) from mixed effects models of focal species reproductive 

investment (proportion of initial plants budding or flowering) at 14 weeks in polyculture by initial 

planting density. A dash corresponds to instances when the focal species combination did not occur, 

“NS” corresponds to cases where no interaction terms were significant and thus an additive model 

was used, and “NA” corresponds to cases where interactions could not be estimated from the data. 

Asterisks denote level of significance (*: p≤0.05, **:p<0.01, ***: p<0.001). 

Focal species: 

 

Fixed effects: 

B. madritensis  H. glabra P. airoides W. nitida  

Intercept (Conspecifics) -2.93 

(0.82)*** 

-0.35 (0.31) -0.40 (0.44) -0.38 (0.28) 

Total plant density -0.05 

(0.01)*** 

-0.02 (0.005)*** -0.004 

(0.008) 

-0.03 

(0.006)*** 

Growing with:     

B. madritensis - -2.81 (0.63)*** - NA (0) 

B. madritensis + H. glabra - - - NA (0) 

H. glabra 3.01 (0.87)*** - - -1.87 

(0.56)*** 

P. airoides - - - 1.13 

(0.28)*** 

W. nitida 1.65 (0.93). 0.67 (0.26)** 0.73 (0.79) - 

W. nitida + B. madritensis - -1.67 (0.47)*** - - 

W. nitida + H. glabra 2.54 (0.88)** - - - 

B. madritensis * Density NS NS - NS 

B. madritensis + H. glabra 

* Density 

NS NS - NS 

H. glabra * Density NS NS - NS 

P. airoides * Density NS NS - NS 

W. nitida * Density NS NS 0.04 (0.02)** NS 

W. nitida + B. madritensis 

* Density 

NS NS - NS 

W. nitida + H. glabra * 

Density 

NS NS - NS 

Random effects  (variance 

estimates): 

    

Among pot 1.04 0.10 0.26 0.06 
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Table 3.4 Model coefficients and (SEs) from mixed effects models of flower count of native W. 

nitida and non-native H. glabra at 14 weeks in polyculture by initial planting density. A dash 

corresponds to instances when the focal species combination did not occur and “NA” corresponds 

to cases where interactions could not be estimated from the data. Asterisks denote level of 

significance (*: p≤0.05, **:p<0.01, ***: p<0.001). 

Focal species: 

 

Fixed effects 

H. glabra W.  nitida 

Intercept (conspecifics, low 

density) 

1.44 (0.21) *** 1.26 (0.18) *** 

Medium density 0.30 (0.24) 0.08 (0.23) 

High density -0.62 (0.26) * -0.03 (0.22) 

Growing with:   

B. madritensis 
-0.52 (0.53) NA(0 individuals flowered) 

H. glabra 
- -0.37 (0.46) 

P. airoides 
- -0.37 (0.46) 

W. nitida 
0.35 (0.20) - 

B. madritensis + W. nitida -1.05 (0.43) * - 

Random effects  (variance 

estimates): 

  

Among pot 0.12 0.05 

Within pot 0.15 0.27 
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Table 3.5 Model coefficients and (SEs) from mixed effects models of focal species ln-transformed 

mean biomass per individual in a given community across densities. No significant interaction 

terms were found for any species. Dashes denote to instances where the focal species combination 

did not occur. Asterisks denote level of significance (*: p≤0.05, **: p<0.01, ***: p<0.001). 

Focal species: 

 

Fixed effects: 

B. madritensis  H. glabra  P. airoides 

 

W. nitida  

Intercept (conspecifics) -2.10 (0.09)*** -1.20 (0.32)** -3.31 

(0.44)*** 

-1.81 (0.22)*** 

Total plant density -0.01 (0)*** -0.02 

(0.01)*** 

0 (0.01) 0 (0) 

Growing with:     

B. madritensis - -1.50 

(0.35)*** 

- -1.43 (0.47)** 

B. madritensis + H. 

glabra 

- - - -2.12 (0.47)*** 

H. glabra 0.49 (0.08)*** - - -0.41 (0.30) 

P. airoides - - - -0.40 (0.22) 

W. nitida 0.54 (0.08)*** 0.28 (0.28) -0.71 (0.42) - 

W. nitida + B. 

madritensis 

- -1.24 

(0.32)*** 

- - 

W. nitida + H. glabra 0.73 (0.08)*** - - - 

Random effects  

(variance estimates): 

    

Among pot 0.03 0.30 0.64 0.02 

Within pot 0.004 0.04 0.09 0.17 
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Chapter 4: Interactions between a common native forb and non-native annual grasses  

 

Introduction 

 

It is commonly assumed that invasion by non-native species negatively impacts native resident 

species; however, many invaded communities worldwide retain high native species diversity, even 

at local scales (Levine 2000). Following biological invasions, mixtures of native and non-native 

species may form stable “novel” communities, reflecting new species combinations and/or modified 

environmental conditions (Hobbs et al. 2009). It is the capacity for non-native species to negatively 

impact native species and communities that generally receive the most research attention (Levine et 

al. 2003; Vila & Weiner 2004). The outcomes of these interactions can be variable, however, and do 

not necessarily reduce native species diversity. In reality, non-native species exert a spectrum of 

effects on resident species (Shackelford et al. 2013), and interact with and impact one another as 

well as the native community. The complex suite of interactions that occur within novel 

communities provide an excellent opportunity to gain a greater understanding of species 

coexistence, community diversity, ecological resilience and invasion success. To understand why 

some novel communities become near monocultures of non-native species and others remain 

diverse, we first must understand how native and non-native species interact over small scales in 

novel communities (Hobbs et al. 2006). 

 

Invasions by non-native species have long interested ecologists investigating the role of interactions 

in community formation (Elton 1958; Richardson & Pysek 2008). Generally, the most highly-cited 

literature on plant invasions is contains accounts of non-native species incurring substantial damage 

to the ecological integrity of vulnerable ecosystems (Mack et al. 2000; D’Antonio & Vitousek 

1992; Vitousek et al. 1997) including threats to native biodiversity (Wilcove et al. 1998). The 

invasion literature is dominated by descriptions of non-native species displacing native species, 

often invoking competitive exclusion (Levine et al. 2003; Vila & Weiner 2004 and references 

therein). In many systems and for many species pairs, non-natives do out-compete natives by 

reducing native species’ fitness via resource competition or suppression (Dyer & Rice 1999; Brown 

& Rice 2000; Bakkar & Wilson 2001; Kueffer et al. 2007). These negative impacts are, however, 

often exacerbated by some form of exogenous disturbance or abiotic change that precedes, 

accompanies, or results directly from the invasion (Hobbs & Huenneke 1992; Davis et al. 2000; 

Seabloom et al. 2003; MacDougall & Turkington 2005) rather than due to intrinsic properties of the 

invader (Daehler 2003). Though native population declines may occur due to competition with 

invasive species, examples of extinctions resulting from competition with invasive species are at 
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present exceedingly rare in plants, especially in non-island systems (Sax & Gaines 2003; Vellend et 

al. 2013), though longer-term extinction trajectories are a possibility (Gilbert & Levine 2003). As a 

result, ecologists have recently suggested that species functional attributes and impacts are perhaps 

more useful foci for management and conservation than species origins (Brown & Sax 2004; Davis 

et al. 2011; Drenovsky et al. 2012; Thompson 2014; Lai et al. 2015). 

 

In contrast to early ecological theory that predicted negative impacts of invading non-native species 

(Elton 1958; MacArthur 1984), several observational studies of invaded communities show positive 

correlations between native and non-native species richness at a variety of spatial scales (Stohlgren 

et al. 1999; Levine 2000; Sax 2002; Cleland et al. 2004; Harrison et al. 2006), giving rise to the 

“invasion paradox” (Fridley et al. 2007). Several factors have been implicated in relation to these 

positive relationships, including abiotic conditions and disturbance histories (Levine & D’Antonio 

1999), high propagule supply (Levine 2000; D’Antonio et al. 2001), and environmental 

heterogeneity (Davies et al. 2005; Melbourne et al. 2007). Intrinsic biological processes may also 

contribute to positive native - non-native richness relationships. These processes include relative 

fitness and niche differences among invasive and native species that permit coexistence post 

invasion (MacDougall et al. 2009).  

 

Given the overwhelming historical focus on the negative impacts of non-native species on native 

communities and species, it is perhaps not surprising that evidence for neutral or even positive 

impacts of non-native species, such as facilitation, has only recently started to emerge (Rodriguez 

2006). Facilitation among plant species occurs when one or more direct (or indirect) interactions 

(reviewed in Callaway 2007) confer greater fitness to one or more species in the presence of a 

“benefactor” species than when the benefactor species is absent. Facilitation among native and non-

native species has recently been highlighted (Rodriguez 2006; White et al. 2006; Shlaepfer et al. 

2011) and may in fact contribute to positive relationships between native and non-native species 

richness (Stachowicz 2001; Bruno et al. 2003). Direct facilitation is thought to play a more 

prominent role in stressful than benign environments, primarily through habitat amelioration 

(Callaway et al. 2002; Cavieres et al. 2006) and is predicted to become more important as human-

induced environmental change progresses (He 2013). Facilitation has been observed among non-

native plant species, e.g. “invasional meltdown” (Simberloff & Von Holle 1999; Jordan et al. 2008), 

and there are accounts of non-native species facilitated by natives (Maron & Jeffries 1999; Lenz & 

Facelli 2003; Belnap & Sherrod 2009). There are far fewer published examples of non-native 

species facilitating native species, especially in terrestrial plant systems. However, there is no 

obvious reason that positive interactions between native and non-native species should not occur 
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under certain circumstances. Published examples include a few cases in which non-native species 

facilitate native recruitment (Kanowski et al. 2008; Elgar et al. 2014) and productivity (Pec & 

Carlton 2014), or promote native fitness through environmental engineering, such as by increasing 

soil nutrient levels (Quinos et al. 1998; Knight et al. 2007) and alleviating moisture stress after 

natural disturbance (Titus & Tsuyuzaki 2002). To fully understand the variable outcomes of 

biological invasions, there is a need to study the full range of interactions between native and non-

native species, including those that are positive in nature. 

 

Here, I experimentally tested for facilitative interactions between a native annual forb (Waitzia 

acuminata, Asteraceae) and two species of non-native annual grass (Aira cupaniana and 

Pentameris airoides, Poaceae) which commonly co-occur in semi-arid woodland fragments of 

southwest Western Australia. Preliminary observations from both field and laboratory studies 

suggest that W. acuminata survival and/or biomass is greater when growing alongside either of 

these non-native grass species than when grown alone (Chapters 3 and 5 of this thesis). Using a 

combination of field and laboratory experiments and assessment of several performance measures, I 

test for facilitation by the non-native grass species and the differences among all species in their 

responses to intra- versus interspecific competition. I also estimate the magnitude of any frequency-

dependence of these interactions. Both experiments are guided by the following two questions:   

 

1. Do the common non-native grasses A. cupaniana and P.  airoides facilitate the native forb 

W. acuminata? 

2. How do patterns of intra- versus interspecific competition relate to the potential long-term 

coexistence of these focal species in natural communities? 

 

I then discuss the results in the context of coexistence among these species in natural communities. 

 

Methods 

 

Study system 

 

Our three focal species are common in annual understory communities of formerly extensive York 

gum (Eucalyptus loxophleba subsp. loxophleba) – jam (Acacia acuminata) woodlands, a 

fragmented semi-arid woodland type that persists in the agricultural wheatbelt region of southwest 

Western Australia. The canopy of York gum-jam woodlands is sparse, and understory vegetation 

typically comprises dense annual and perennial forb assemblages and scattered shrubs and tussock 
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grasses. The annual component germinates and grows mainly from June to October during the 

winter-spring rainy season, and senesces by the onset of the summer dry season. 

 

W. acuminata is an erect herb, occurring in all Australian states with the exception of Tasmania 

(Australia’s Virtual Herbarium/AVH). Both of the non-native annual grasses are commonly referred 

to as “feather grasses” due to their slender, diminutive stature. A. cupaniana is native to the 

Mediterranean region, though its distribution is now global, and P. airoides is native to South 

Africa but with a widespread Australian distribution (AVH). Both grasses were presumably 

introduced to the region during periods of agricultural development in the late 19
th

 and early 20
th

 

century (Burvill 1979). Such early introductions are supported by herbarium records dating back to 

1893 and 1922 for P. airoides and A. cupaniana, respectively (Avon Wheatbelt Bioregion, AVH). 

Both species are now ubiquitous within woodland fragments across the south-western agricultural 

region, and W. acuminata co-occurs with both grass species over regional and local (sub-meter) 

spatial scales in York gum-jam woodland remnants (Fig 4.1; Dwyer et al. 2014; 2015).  

 

York gum-jam annual local-scale communities range in composition from completely non-native-

dominated to predominantly native (Dwyer et al. 2014). Communities dominated by non-native 

species tend to occur in heavily grazed areas (Prober et al. 2011) and in the absence of grazing 

along woodland edges adjacent to roads and agricultural fields where robust non-native annual 

grasses (e.g. Avena barbata) and broadleaf weeds (e.g. Arctotheca calendula) exploit disturbed 

conditions (Hobbs & Atkins 1988; Prober & Wiehl 2011), often to the detriment of native species 

including W. acuminata (Dwyer et al. 2014). However, in typical woodland interior communities 

where abiotic conditions are more intact, a different suite of non-native annuals not associated with 

disturbance tends to compose the non-native portion of the annual community. Occurrences of A. 

cupaniana and P. airoides are strongly negatively associated with that of robust annual grasses and 

broadleaf weeds, and positively associated with native species richness (Lai et al. 2015). 

 

Field experimental design 

 

The field component of this study took place at Bendering Nature Reserve in southwestern 

Australia (32 °23’ 7.88” S, 118 °23’5.66”E) during the winter-spring growing season (July – 

November) of 2013, in an intact York gum-jam woodland area in the reserve interior. W. acuminata 

and A. cupaniana were both locally abundant and present at varying relative frequencies in natural 

mixtures. In early August, 10 30 x 30 cm quadrats were located in areas containing two-species 

mixtures of W. acuminata and A. cupaniana. All non-focal species were weeded out of the quadrats, 
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though mixtures were chosen such that non-focals were present at very low abundances and 

minimal weeding was required. Quadrats containing monocultures of W. acuminata were also 

located (n=12) at the same woodland site to enable investigation of facilitation and comparisons of 

the strength of intra vs interspecific competition for W. acuminata. I treated W. acuminata as the 

focal species in this field study and allowed its density to vary while keeping the density of A. 

cupaniana relatively constant at between 120 – 180 individuals per quadrat. Initial W. acuminata 

densities in 2-species mixtures and monocultures were binned into two density levels (low = 10±5 

and high=20±5 individuals, Table 4.1).  

 

To assess whether quadrat-scale environmental heterogeneity was responsible for differential 

performance of W. acuminata individuals, I recorded E. loxophleba litter percent cover, A. 

acuminata litter percent cover, herbaceous litter percent cover, percent soil moisture halfway 

through the growing season (late September) and percent overhead tree canopy cover for each 

quadrat. In addition, I collected dry soil from each quadrat at the end of the growing season which 

was stored in darkness at room temperature in sealed beakers until chemical analysed for nitrate, 

ammonium, phosphorus, and potassium content.  To measure whether N-cycling rates were 

different between W. acuminata monocultures and plots containing A. cupaniana, I deployed three 

anion-exchange membrane strips in each quadrat for six weeks to estimate nitrate adsorption rates, 

which were determined according to methods described in Jasrotia & McSwiney (2008) and Vogt 

(2013b). Abundances of W. acuminata and A. cupaniana were recorded regularly in each quadrat 

over the course of the growing season.  To assess aboveground biomass of W. acuminata, all focal 

individuals were harvested in December 2013 once both species had gone to seed, oven dried at 

60˚C for one week and then weighed. 

 

Growth chamber experimental design 

 

The growth chamber component of this study tested for facilitation of W. acuminata by A. 

cupaniana and P. airoides, and to measure the relative strength of intra vs interspecific competition 

for all three focal species. W. acuminata was grown with either A. cupaniana or P. airoides in two-

species combinations at three relative frequencies (proportion of individuals in a mixture) as 

described in Table 4.2. Monocultures of each species were also planted at each density to directly 

compare species’ performance measures (survival, productivity, and reproductive investment) with 

and without interspecific competition at a given intraspecific density.  
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All of the two-species (W. acuminata + grass) communities were planted from seed at a target 

density of 60 total plants per pot (78.5 cm
2
 surface area), with the number of each species varying 

according to the frequency treatment. This density was chosen based on densities commonly 

observed in the field. Species’ relative frequencies (W. acuminata:grass ratio) varied from 1:5, 1:1 

to 5:1.  

 

Seeds were collected from mature plants in York gum-jam woodland remnants in October 2011 at 

Bendering Reserve (W. acuminata and A. cupaniana) and Kunjin Reserve (32 °21’19.31”S, 117 

°45’42.32”E); W. acuminata and P. airoides) and then after-ripened for four weeks at 40°C in a 

drying oven to alleviate dormancy (important for a number of native Australian forb species; Hoyle 

et al. 2008). All seeds were then stored in darkness at room temperature until planting. All pots 

were rinsed with 70% ethanol solution prior to use. Soil was obtained from The University of 

Queensland glasshouse facilities and prepared in order to closely resemble the texture and nutrient 

content of soil found in intact York gum-jam annual assemblages (< 5.0 mg/kg plant-available P; 

Dwyer et al. 2015). Soil was mixed as a combination of one part low-P native potting mix and three 

parts coarse sand. Seeds of component species were mixed evenly and scattered on the soil surface 

before the first watering treatment. Each pot was hand-watered every four to five days (30 mL) 

during the first six weeks of seedling establishment, after which each pot was watered every seven 

days (35 mL). Throughout the establishment phase, communities were weeded regularly to maintain 

prescribed plant densities. 

 

Experimental communities were grown in two temperature-controlled growth chambers 

(ThermoFisher Scientific, Adaptis 1000) equipped with fluorescent tubes (c. 650 µmol m
-2

s
-1

) at 

The University of Queensland. Pots were randomized between both chambers every week to 

account for any potential growth chamber or shelf differences. Photoperiod was set to a 12 hour 

cycle, and temperatures ranged from 17.0°C (day) and 7.0°C (night), based on mean winter 

temperatures typical of the central wheatbelt region in July (BOM 2014) when annual plants 

typically establish (pers. obs.). 

 

Once the prescribed densities had been reached and no further seeds germinated, the abundance of 

each species was monitored regularly until the harvest date. When plants reached peak biomass at 

four months since planting, all pots were harvested for aboveground and belowground biomass. 

Aboveground biomass and number of flowers (for W. acuminata) was recorded at the individual 

level (averaged within a pot), while the number of individuals flowering was recorded at the species 

level in each pot.  
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Statistical analysis 

 

Data analyses was conducted in R (v 3.1.2, R Development Core Team 2014) using packages lme4 

(Bates et al. 2014), nlme (Pinheiro et al. 2014), and multcomp (Horthorn et al. 2008), described in 

detail below. 

 

W. acuminata survival, productivity, and reproductive investment in the field 

 

To explore whether abiotic differences among plots may have potentially influenced changes in W. 

acuminata performance measures, several key environmental variables were ln- or square-root-

transformed as appropriate to improve the normality of their distribution and were compared 

between monoculture and mixture plots using t-tests with Bonferroni corrections for multiple 

comparisons: ln(nitrate), ln(ammonium), ln(phosphorus), ln(potassium), nitrate adsorption rate, 

percent soil moisture, and ln(percent tree canopy cover), sqrt(E. loxophleba litter percent cover), A. 

acuminata litter percent cover, ln(Herbaceous litter percent cover)).  

 

W. acuminata performance measures (survival, biomass per individual and flower count per 

individual) from the field experiment were analysed using mixed effects models with community 

type (mixture with A. cupaniana or monoculture) and W. acuminata abundance (continuous) and 

their interaction specified as fixed effects. In all models, the community type x W. acuminata 

abundance interaction term was not significant, and so additive models were used instead.  

 

W. acuminata survival in the field was modelled as a binary response (1 = alive at harvest, 0 = dead 

at or before harvest) as a function of treatment (mixture with A. cupaniana or monoculture) using a 

mixed-effects logistic regression with binomial errors and logit link function. Plot was included as a 

random effect. W. acuminata biomass responses were ln-transformed and modelled using linear 

mixed effects models with plot specified as a random effect to account for multiple observations per 

plot. W. acuminata flower counts per plant were modelled using a generalized linear mixed effects 

model with Poisson errors and log link function. Plot was included as a random effect, and plant 

(within plot) was also included to account for overdispersion (Elston et al. 2001).  

 

W. acuminata survival, productivity, and reproductive investment in growth chambers 
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To investigate potential facilitation of W. acuminata by A. cupaniana or P. airoides in growth 

chambers, I compared W. acuminata performance measures (survival, individual plant biomass, 

proportion of surviving individuals flowering, and the number of flowers per flowering individual) 

with and without the grass species present while holding W. acuminata density constant. To avoid 

confounding the effects of grass presence versus its relative abundance, these response variables 

were modelled within each W. acuminata abundance category separately (10, 30, or 50 W. 

acuminata individuals) as grass abundances varied with W. acuminata abundance to maintain 

overall community densities. Responses were analysed using mixed effects models where fixed 

effects included identity of competing individuals (W. acuminata if monoculture, and A. cupaniana 

or P. airoides if 2-species mixture). Community (pot) was specified as a random effect to account 

for multiple observations used per pot. This analysis allowed investigation of general differences in 

W. acuminata performance measures due to addition of grass across a range of conspecific 

abundances. Post-hoc tests of differences among all 3 species combinations (W. acuminata, W. 

acuminata + A. cupaniana, and W. acuminata + P. airoides) were then conducted on all responses. 

 

The various responses in the growth chamber experiment were modelled using the same 

transformations and error structures as described for the field experiment (e.g. binomial errors for 

survival etc.). Flowering of surviving plants was treated as a binary response and modelled as for 

binary survival responses. 

 

Species responses to intra vs interspecific competition 

 

To determine the relative impacts of intra vs interspecific interactions on focal species performance, 

I analysed survival, mean biomass per plant (as grass biomass was measured at the species level per 

pot), proportion flowering, and number of flowers produced (W. acuminata only) across a range of 

species’ relative frequencies in a community. P. airoides monocultures only reached 50 instead of 

the targeted 60 individuals, so relative frequency = 1.0 for this species reflects a density of 50 rather 

than 60 individuals. For both grass species, the competitive neighbourhood always consisted of W. 

acuminata. However, for W. acuminata the competitive neighbourhood consisted of one of either 

grass species. Because both community types containing W. acuminata as a focal species shared the 

same data where W. acuminata relative frequency was equal to 1.0, separate models were run for W. 

acuminata with either grass competitor.  

 

Response variables were modelled as a function of species’ relative frequencies (continuous). 

Survival, flowering probability and flower number were all modelled using the same error 
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structures as described above. Mean biomass per plant was square-root transformed instead of ln-

transformed because the latter over-corrected the skew in this response variable.  Again, pot was 

specified as a random effect where required to account for multiple observations per pot and for 

overdispersion (Poisson model).  

 

To enable direct comparisons of W. acuminata performance measures in neighbourhoods of P. 

airoides versus A. cupaniana, I also modelled these responses without the shared data (i.e. 

excluding pots with W. acuminata relative frequencies of 1.0; Appendix 4.2). For these models the 

fixed effects were competitor identity (P. airoides or A. cupaniana), relative frequency of W. 

acuminata, and their interaction. 

 

Results 

 

W. acuminata survival, productivity, and reproductive investment in the field 

 

No significant differences were detected in environmental variables between mixture and 

monoculture plots (Appendix 4.1). Overall, A. cupaniana had a facilitative or neutral effect on W. 

acuminata in the field depending on the performance measure considered. Survival of W. 

acuminata from seedling to adult was significantly greater for W. acuminata individuals growing in 

the presence of A. cupaniana than those found in monoculture across all conspecific densities 

(p=0.01; Table 4.3; Fig 4.3A; Appendix 4.3). All surviving W. acuminata plants flowered. The 

aboveground biomass and the number of flowers produced per surviving individual declined 

significantly with increasing conspecific density (biomass: p=0.02, number of flowers: p=0.005; 

Table 4.3; Fig 4.3B and 4.3C; Appendices 4.4 & 4.5).  

 

W. acuminata survival, productivity, and reproductive investment in growth chambers 

 

In general, W. acuminata was neutrally or positively affected by A. cupaniana in the growth 

chamber, while the effects of P. airoides were neutral or negative.  

 

W. acuminata survival was reduced at low conspecific abundance (10 individuals) only when in 

mixture with P. airoides (p=0.007, Table 4.4, Fig 4.4A; Appendices 4.6 – 4.8). By contrast, W. 

acuminata biomass per individual was not affected by grass presence compared to conspecifics 

alone at any abundance (Fig 4.4B; Appendices 4.9 – 4.11), though post-hoc pairwise comparisons 

revealed that at high conspecific abundance, W. acuminata individuals were significantly larger 
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when growing with A. cupaniana than in monoculture (estimate: 0.64 (0.27), adjusted p=0.04). The 

proportion of W. acuminata survivors flowering was significantly lower with P. airoides present 

when its abundance was high (Table 4.4, Fig 4.4C, p=0.02; Appendix 4.14) but was otherwise 

unaffected (Appendices 4.12 & 4.13). Of the individuals that did flower, the number of flowers 

produced was significantly lower when growing with P. airoides, but only when W. acuminata was 

at low abundance (Table 4.4, Fig 4.4D, p=0.02; Appendices 4.15 – 4.17). 

 

Species responses to intra vs interspecific neighbourhoods 

 

Survival was not related to relative frequency for any species (Table 4.5; Fig 4.5A; Appendix 4.18), 

but frequency-dependence was evident in other performance measures to varying degrees.  

 

W. acuminata individual aboveground biomass (averaged per pot) declined as its relative frequency 

increased in communities where A. cupaniana composed the competitive neighbourhood 

(p<0.0001; Table 4.5; Fig 4.5B; Appendix 4.19). By contrast, P. airoides exerted stronger 

interspecific competition on W. acuminata plant biomass (p=0.02, Appendix 4.2). Neither grass 

species’ mean biomass per plant was significantly related to relative frequency (Table 4.5; Fig 4.5B; 

Appendix 4.19).  

 

The proportion of A. cupaniana individuals that flowered was unaffected by its relative frequency 

in mixture. A positive relationship was found, however, between the proportion of P. airoides 

individuals flowering and its relative frequency in mixture (p=0.02; Table 4.5; Fig 4.5C; Appendix 

4.20). The proportion of surviving W. acuminata that flowered declined significantly as it increased 

in frequency, but only in communities containing A. cupaniana (Table 4.5, Fig 4.5C, p=0.03; 

Appendix 4.20). A similar relationship was found for W. acuminata flower counts per plant, which 

declined with increasing relative frequency in communities containing A. cupaniana (p=0.002; 

Table 4.5, Fig 4.5D; Appendix 4.21).  

 

Discussion 

 

This study reveals that two functionally similar non-native grass species interact in a variety of 

ways, from positive to negative, with a native forb. Interactions with A. cupaniana were neutral or 

positive and interactions with P. airoides were suppressive or neutral, implying that invaders with 

similar growth forms do not necessarily have similar impacts on resident species. Both grasses 

responded neutrally or positively to conspecific abundance, which may promote their invasiveness. 
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Overall, the prevalence and contingencies of positive interactions between native and non-native 

species merit further attention when assessing invasion impacts on native communities. 

 

Positive and neutral interactions in the field 

 

In the field, I found that W. acuminata survival was significantly greater in plots containing the non-

native annual grass A. cupaniana. W. acuminata biomass and flower production were impacted less 

by the presence A. cupaniana than by conspecifics, suggesting that the effects of intraspecific 

competition are much stronger than interspecific interactions for W. acuminata productivity and 

reproductive investment when growing in mixture with A. cupaniana. This trend was robust across 

a range of W. acuminata abundances, indicating that the positive effect of A. cupaniana was not 

contingent on conspecific competition intensity.  The generality of this interaction should be 

investigated further by determining whether A. cupaniana similarly affects other co-occurring 

native and non-native species, or if its effects are unique to W. acuminata. Additionally, the 

consequences of this facilitation should be evaluated relative to co-occurring species at the 

population and community level.  

 

Positive interactions between non-native A. cupaniana and native W. acuminata could arise through 

a number of processes, such as plant-soil feedbacks. Preliminary observations suggest that W. 

acuminata does not regularly form mycorrhizal mutualisms (A. Nance, pers. comm.), though 

facultative mycorrhizal associations or benefits from other microorganisms in soils beneath A. 

cupaniana could potentially facilitate W. acuminata through indirect positive plant-soil feedbacks 

(reviewed in Callaway 2007). In addition, nutrient cycling rates may also differ in soils beneath 

patches of annual grasses from soils characteristic of native communities where annual grasses have 

not occurred historically (Hobbie 1992; Prober et al. 2005). For example, Pec (2014) found that the 

survival of a native annual forb in a California coastal sage scrub community was potentially 

facilitated by the senescence of co-occurring non-native annual grasses. W. acuminata has a more 

delayed phenology than A. cupaniana, so it is possible that some senescence of A. cupaniana 

individuals may have been beneficial to W. acuminata during its active growth phase by providing a 

nutrient pulse. Additionally, A. cupaniana litter is less persistent than that of other common non-

native annual grasses and native herbaceous species in this system (pers. obs.) and may be less 

recalcitrant, potentially serving as a nutrient source for W. acuminata individuals the following year 

(Facelli & Pickett 1991), though I measured differences in levels of key nutrients between mixtures 

and monocultures in the field at the end of the growing season only (Appendix 4.1). 
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Within the experimental site, naturally-occurring mixtures of A. cupaniana and W. acuminata were 

located in more open patches with lower overhead tree canopy cover than W. acuminata 

monocultures. Environmental variables associated with overhead tree canopy cover effects on 

understory plant communities (i.e. coverage of sclerophyllous litter, soil moisture, and nutrient 

levels) did not differ between W. acuminata monocultures and mixtures with A. cupaniana, 

suggesting the relationship may be correlated with unmeasured variables. Environmental and biotic 

covariates of A. cupaniana presence occurring at finer sub-plot or larger site-level scales study 

merit further investigation, as they may have impacted W. acuminata survival. 

 

Diverse impacts of non-native grasses in growth chamber 

 

In growth chambers, A. cupaniana had a neutral or positive effect on W. acuminata performance 

measures across a range of relative abundances. Surviving W. acuminata individuals were 

significantly larger when A. cupaniana was present at high conspecific density than without, 

indicative of growth facilitation at high density. These results support the overall trend of neutral or 

positive interactions between these two species in the field, although A. cupaniana impacted 

different performance measures in the growth chamber than in the field (production as opposed to 

survival), potentially because environmental conditions were less stressful in growth chambers. The 

fact that this interaction was found in a laboratory setting indicates that this neutral to positive 

relationship may occur independently of microenvironmental variation or other factors associated 

with A. cupaniana in the field. 

 

W. acuminata survival decreased in communities containing P. airoides compared to monocultures, 

particularly when it was much less abundant than P. airoides. The same pattern held true for W. 

acuminata biomass and reproductive investment. These results are in opposition to the facilitative 

effect P. airoides demonstrated on survival of W. nitida (Ch 3 of this thesis), a congener of W. 

acuminata. The difference in the effects of P. airoides on Waitzia survival may have been due to 

the fact that in the previous experiment, at low W. nitida abundance (~10 individuals per pot of the 

same dimensions as in this study) where the facilitation effect occurred, P. airoides was present at 

equally low abundance. It is therefore possible that if fewer P. airoides individuals had been in 

mixture with W. acuminata, a facilitative effect may have occurred. Additionally, though W. 

acuminata is functionally very similar to W. nitida, W. acuminata may have been more susceptible 

to interspecific competition from P. airoides.  

 

Species responses to intra vs interspecific competition 



47 

 

 

The only occurrence of negative frequency-dependence in mixture was for W. acuminata biomass 

and reproductive investment, which both declined with increasing frequency in mixtures with A. 

cupaniana. These results indicate that intra- rather than interspecific interactions determine W. 

acuminata productivity in this mixture, corroborating observations of these species in the field. 

Conversely, interspecific competition was more evident in mixtures with P. airoides. In fact, the 

results for biomass indicate that the strength of inter- and intraspecific competition were similar in 

these mixtures. This suggests that W. acuminata may not increase from rarity in a neighbourhood of 

P. airoides as rapidly as in a neighbourhood of A. cupaniana. In natural communities, however, 

microenvironmental heterogeneity may buffer W. acuminata from intense competition with P. 

aidoides in certain microsites (Melbourne et al. 2007). 

 

Both grasses showed neutral or positive relationships between performance measures and their 

relative frequency in mixture. Combined with insensitivity to interspecific competition, neutral or 

positive density dependence may underlie the success of these species as invaders in this system. 

High propagule pressure may further contribute to their successful invasion (Holle & Simberloff 

2005) through production of large quantities of readily germinable seed compared to native species 

in this system (Erickson et al. unpublished data; Lai et al. 2015). Neither P. airoides nor A. 

cupaniana are associated with disturbed conditions, unlike many other non-native annual grasses in 

this system (Lai et al. 2015). Despite being relatively abundant, both species are positively 

associated with native species richness and are not associated with elevated soil P (indicative of 

anthropogenic eutrophication in this system (Lai et al. 2015; Dwyer et al. 2015)), suggesting that 

factors other than P-enrichment may contribute to their persistence and ubiquitous distribution in 

predominantly native species-rich communities.  

 

Conclusions 

 

This study presents evidence of a native species benefiting from interactions with a non-native 

“benefactor” species. Positive interactions of this nature are seldom documented, despite their 

potential prevalence in invaded plant communities. The results of this study imply that under certain 

conditions, these interactions may promote stable coexistence between native and non-native 

species in plant communities.  

 

Caution should be exercised, however, when attempting to relate local-scale positive and neutral 

pairwise interactions to effects on whole communities. The long-term trajectory of positive 
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interactions and their implications for community structure are likely complex and depend on 

factors occurring over larger spatial and temporal scales than were measured in this study. In 

particular, it has been suggested that invasive plants may promote extinction in native plant 

communities not by competitive exclusion, but by reducing the size of native refugia and disrupting 

native metapopulation connectivity, processes which may occur over long timescales and be 

masked by current trends of native persistence (Gilbert & Levine 2013). Small-scale microsite 

conditions may also differentially favour certain species and alter the strength of interactions 

between native and non-native species. While two-species mixtures certainly occur naturally in this 

plant community, they do not always interact in isolation. Although the facilitative effect was strong 

across the beneficiary species’ abundances in this study, temporal environmental heterogeneity 

could alter these dynamics. Intra- and interannual variation in rainfall can affect the type and 

strength of interactions in herbaceous plant communities through changes in species relative and 

absolute abundances (Pitt & Heady 1978; Hobbs & Mooney 1991) and phenologies (Quevedo-

Robledo et al. 2010). Additionally, the frequency and magnitude of species interactions, as well as 

the performance measures affected, may change with environmental stress in complex ways 

(Tielborger & Kadmon 2000). The strength of positive interactions is generally predicted to be 

greatest under stressful environmental conditions (Brooker & Callaghan 1998; Callaway 2002; He 

2013). If interactions between these native and non-native species are mediated by environmental 

stress, their outcome may ultimately depend on whether the stress is resource-based (i.e. water 

stress) or non-resource based (i.e. temperature stress; Maestre et al. 2009). Clearly, further 

experimentation is required to assess the prevalence and contingencies of positive interactions as a 

mechanism promoting the coexistence of native and non-native species in invaded communities.  

 

These findings underscore the need for approaches to understanding invaded plant communities that 

are more inclusive of variable species interactions and the ways they may respond to further 

environmental change. Recently, non-native dominance has been highlighted as a better option than 

species richness for assessing the extent and condition of invaded plant communities (Seabloom et 

al. 2013). Our results suggest that even the relative abundances of non-native species may not 

accurately predict their impact on native species or the function of communities post-invasion. The 

impacts of invasion cannot be easily predicted or generalized, even when comparing the impacts of 

very similar non-native species.  
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Fig 4.1 A natural mixture of native forb W. acuminata and senescent non-native annual grass A. 

cupaniana at Bendering Reserve. Photo: author’s own. 

 

 

Fig 4.2 Diagram of growth chamber experimental design, where each circle represents a treatment 

combing the relative frequency and identity of each component species (coloured dots) in mixture 

and monoculture. Each dot corresponds to 10 individuals of the designated species.  
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Fig 4.3 W. acuminata proportion of individuals surviving (A), aboveground biomass per individual 

(B), and flower count per plant (C) at Bendering Reserve by conspecific abundance (x-axis), 

growing in the presence of A. cupaniana (grey) or among conspecifics only (black). 
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Fig 4.4 W. acuminata (A) proportion of individuals surviving, (B) aboveground biomass per plant, 

(C) proportion of surviving individuals flowering, and (D) flower count per flowering individual by 

W. acuminata abundance category (10, 30, or 50 individuals) in monoculture (black), in mixture 

with A. cupaniana (gray), and in mixture with P. airoides (light gray): Letters denote significant 

differences among all species combinations within a given abundance category (x-axis). 
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Fig 4.5 Species performance measures of (A) proportion of individuals surviving, (B) mean 

biomass per individual, (C) proportion of survivors flowering, and (D) flower count for flowering 

W. acuminata individuals. Species responses are plotted by their relative frequencies in a 

community of 60 individuals, where W. acuminata (with A. cupaniana) = black dashed/open point, 

W. acuminata (with P. airoides) = black solid, A. cupaniana (with. W. acuminata) = gray, and P. 

airoides (with W. acuminata) = light gray. Both lines for W. acuminata share the same data points 

at relative frequency= 1.0. 
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Table 4.1 Treatment description for field experiment. The first column specifies whether the 

community (quadrat) was a 2-species mixture or a monoculture, the second and third column 

specifies species’ abundances in each quadrat categorized by either high or low W. acuminata 

density, and the fourth column lists the number of replicates for each community type x W. 

acuminata abundance combination. 

 

Community type Number of each species n 

W. acuminata  A. cupaniana  

W. acuminata + 

A. cupaniana 

Low (10±5) 120-180 5 

High (20±5) 120-180 5 

W. acuminata 

monoculture 

Low (10±5) - 4 

High (20±5) - 4 

 

 

 

Table 4.2 Treatment description for growth chamber experiment. The first column specifies 

whether the community (pot) was a 2-species mixture or a monoculture, followed by columns 

specifying species’ relative frequencies by the ratio of abundances in each community and the 

number of replicates (n) for each community type x relative frequency combination. 

 

Community type 
Abundance of each species 

n 
W. acuminata A. cupaniana P. airoides 

W. acuminata +  

A. cupaniana   

10 

30 

50 

50 

30 

10 

- 

- 

- 

5 

6 

4 

W. acuminata + 

P. airoides 

10 

30 

50 

- 

- 

- 

50 

30 

10 

3 

3 

1 

W. acuminata 

monoculture 

60 

50 

30 

10 

- 

- 

- 

- 

- 

- 

- 

- 

4 

3 

5 

4 

A. cupaniana   

monoculture 

- 

- 

- 

- 

60 

50 

30 

10 

- 

- 

- 

- 

3 

3 

3 

4 

P. airoides 

monoculture 

- 

- 

- 

- 

- 

- 

- 

- 

60 

50 

30 

10 

NA 

3 

4 

7 
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Table 4.3 Coefficients and (SEs) from mixed-effects models of W. acuminata performance 

(proportion of individuals surviving, aboveground individual biomass, and flower count per 

surviving individual) in the field when growing with or without A. cupaniana. Dashes indicate no 

random effects included in model. Asterisks denote level of significance (*: p≤0.05, **: p<0.01, 

***: p<0.001). 

 

 

 

 

Fixed effects: 

Response of W. acuminata 

Proportion 

individuals 

surviving 

ln(Individual 

biomass (g)) 

ln(Flower count per 

surviving individual) 

Intercept (Monoculture) 0.38 (0.52) -0.07 (0.34) 3.41 (0.27)*** 

A. cupaniana present 0.88 (0.34)* -0.38 (0.25) -0.17 (0.20) 

Conspecific density 0.02 (0.03) -0.06 (0.02)* -0.05 (0.02)** 

Random effects 

(variance estimates): 

   

Among plot 0.05 0.20 0.11 

Within plot NA 0.75 0.41 
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Table 4.4 Coefficients and (SEs) from mixed effects models of W. acuminata performance 

(proportion of individuals surviving, biomass per individual, proportion flowering, and flower count 

per flowering individual) in growth chamber experiment when growing with or without A. 

cupaniana or P. airoides. Models are presented for low, medium, or high W. acuminata abundance 

(10, 30, and 50 W. acuminata individuals respectively). Dashes indicate non-significant interaction 

terms (additive model). Asterisks denote level of significance (*: p≤0.05, **: p<0.01, ***: 

p<0.001). 

 

 

 

 

Fixed effects 

Response of W. acuminata 

Proportion 

individuals 

surviving 

Ln(Individual 

biomass (g)) 

Proportion 

individuals 

flowering 

Flower count 

per flowering 

individual 

10 W. acuminata     

Intercept (monoculture) 2.54 (0.94)** -2.35 (0.19) *** 0.38 (0.36) 1.55 (0.21)*** 

A. cupaniana present 

 

-1.27 (1.07) 0.07 (0.26) 0.35 (0.50) -0.18 (0.28) 

P.airoides present -3.34 

(1.23)** 

-0.76 (0.48) -0.38 (0.79) -1.51 (0.64)* 

 

Random effects 

(variance estimates):  

    

Among pot 1.18 <0.0001 <0.0001 <0.0001 

Within pot NA 1.17 NA 0.61 

30 W. acuminata     

Intercept (monoculture) 

 

0.79 (0.27)** -3.06 (0.14)*** 0.36 (0.29) 1.25 (0.22)*** 

A. cupaniana present 

 

-0.20 (0.36) 0.05 (0.18) -0.49 (0.37) -0.01 (0.29) 

P. airoides present -0.69 (0.43) -0.04 (0.22)  -0.65 (0.46) -0.16 (0.38) 

Random effects 

(variances estimates): 

    

Among pot 0.19 <0.0001 0.12 0.12 

Within pot NA 1.42 NA 0.61 

50 W. acuminata     

Intercept (monoculture) 

 

0.31 (0.76) -3.98 (0.20)*** -0.29 (0.27) 0.81 (0.20)*** 

A. cupaniana present 

 

0.62 (1.03) 0.65 (0.27) 0.12 (0.36) 0.23 (0.26) 

P.airoides present -0.56 (1.52) 0.89 (0.43) -2.04 

(0.84)* 

-0.95 (0.75) 

Random effects 

(variances estimates): 

    

Among pot 1.65 0.06 0.08 0.23 

Within pot NA 1.80 NA 0.05 

 

 

 



56 

 

Table 4.5 Coefficients and (SEs) from mixed effects models of focal species performance 

(proportion surviving, mean individual biomass, proportion flowering, and number of flowers for 

flowering W. acuminata) in the growth chamber experiment by relative frequency (ranging from 

0.18 in 2-species mixture to 1.0 in monoculture). Asterisks denote level of significance (*: p≤0.05, 

**: p<0.01, ***: p<0.001). 

 

 

 

 

Response variable: 

Fixed effects Random effects  

(variance estimates): 

Intercept Relative 

frequency 

Among 

pot 

Within 

pot 

W. acuminata (with A. 

cupaniana): 

    

Proportion surviving 

 

1.29 (0.60)* -0.92 (0.86) 1.04 - 

ln(biomass per individual) 0.40 (0.02)*** -0.16  

(0.03)*** 

0.001 0.0002 

Proportion flowering 0.66(039) -1.10 (0.52)* 0.18 - 

ln(Flower count) 1.67 (0.21)*** -0.93 (0.30) ** 0.05 0.71 

W. acuminata (with P. 

airoides): 

    

Proportion surviving 

 

-0.57(0.43) 0.79(0.53) 0.12 - 

ln(biomass per individual) 

 

0.26 (0.05)*** 0.02 (0.07) 0.005 0.0009 

Proportion flowering 1.02 (1.03) -3.4 (1.93) 0.46 - 

Ln(Flower count) 0.98 (0.45)* -0.34 (0.55) 0.08 0.65 

A. cupaniana (with 

W.acuminata): 

    

Proportion surviving 

 

1.84(1.08) 1.48(1.56) 2.88  - 

Sqrt(mean biomass per 

individual) 

 

0.17(0.02)*** -0.04(0.02) 0.0009 0.0001 

Proportion flowering 0.24(0.43) -0.04(0.59) 0.27 - 

P. airoides (with W. 

acuminata): 

     

Proportion surviving 

 

1.40(2.65) 1.37 (2.65) 7.12 - 

Sqrt(mean biomass per 

individual) 

 

0.11 (0.05)* 0.10 (0.63) 0.0025 0.0004 

Proportion flowering -2.87 (1.10)** 2.98 (1.30)* 0.39 - 
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Chapter 5: The contribution of interactions to community structure in novel and original 

annual plant assemblages  

 

Introduction  

 

Human-aided introductions of non-native species are an increasingly common component of 

environmental change in many ecosystems (Vitousek et al. 1997; Mack et al. 2000). In some cases, 

these introductions have been followed by rapid spread and establishment of non-native species in 

recipient communities. As a consequence of these invasions, many plant communities are forming 

that are composed of mixtures of both native and non-native species, and have no historical 

counterpart (Hobbs et al. 2006). Describing the ecological significance of these novel communities 

is an important task in modern ecology (Sax et al. 2007). In particular, where intervention 

techniques are infeasible or where invasions do not clearly warrant intervention, it is critical to 

quantify whether and how these invaded communities function differently from the original 

communities they are replacing (Hobbs et al. 2009). 

 

The literature on plant invasions is replete with accounts of non-native species displacing natives at 

local scales, often invoking competitive exclusion as the mechanism (e.g. Brown & Rice 2000; 

Bakkar & Wilson 2001). However, a reduction in native diversity or abundance due to competition 

from non-natives is only one potential outcome of invasion (MacDougall et al. 2009). Neutral or 

even positive effects of invaders on resident communities may be more common than previously 

appreciated (Rodriguez 2006; Ricciardi & Cohen 2007; Davis et al. 2011). Depending on the 

relative niche and fitness differences among native residents and non-native invaders, non-native 

species can invade and coexist with native residents, with no associated negative effect on native 

species richness (Levine & D’Antonio 1999; MacDougal et al. 2009). This concept is supported by 

the observation that, contrary to predictions made by early invasion theories, areas of high native 

species richness often also contain the highest non-native species richness (Stohlgren et al. 1999) 

due to ecological factors that spatially covary with diversity (Levine & D’Antonio 1999), high 

propagule pressure (Levine 2000), environmental heterogeneity (Davies et al. 2005), and in some 

cases positive interactions (Bruno et al. 2003). 

 

Over small scales, coexistence among native and non-native species may be determined by the net 

results of interactions among individuals. Specifically, the extent to which species limit themselves, 

relative to how they limit co-occurring species, may determine whether species are likely to coexist 

locally (Chesson 2000). Intraspecific limitation can be achieved through a variety of processes such 
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as species-specific climatic optima, resource competition, predation, and pathogen attack (Chesson 

2000; Chesson & Kuang 2008). These processes are collectively termed “stabilizing mechanisms” 

because species limit themselves when abundant, but can increase from rarity (Chesson 2000). 

Where stabilizing mechanisms are absent or small, fitness inequalities among species become the 

main predictor of local coexistence (Chesson 2000). Where species’ fitness inequalities are 

sufficiently large to overcome stabilization, the best competitor will eventually dominate the 

community (Chesson 2000; Adler et al. 2007). One approach for quantifying the net results of these 

interactions is by directly comparing the relative impacts of intra-and interspecific competition on 

the performance of co-occurring species (Adler et al. 2007). Quantifying these relative differences 

can expose the processes which promote or prevent coexistence among native and non-native 

species. 

 

In addition to determining local coexistence, biotic interactions among co-occurring species can 

influence the overall productivity of communities. Productivity, e.g. biomass production over a 

discrete time interval, is often measured as a proxy for plant community functioning (Tilman 2001; 

Knapp et al. 2014). Differences in total productivity among communities may reflect underlying 

differences in diversity, including species or functional group composition (Hooper & Dukes 2004). 

A recent meta-analysis of empirical studies (Cardinale et al. 2011) showed that mixtures tend to 

yield greater biomass than predicted based on biomass of component species in monoculture. This 

over-yielding is attributed to the net result of processes operating in mixture that do not operate in 

species’ monocultures, termed “diversity effects”, which include over-yielding driven by particular 

species (selection effects (Loreau & Hector 2001), dominance effects or trait-depdendent 

complementarity (Fox 2005)), and the residual driven by all species simultaneously 

(complementarity effect (Loreau & Hector 2001)). Selection effects are indicative of particular 

species driving community over-yielding (Loreau & Hector 2001), while dominance effects provide 

information about the extent to which these species-specific responses occur at the expense of other 

co-occurring species (dominance) or not (trait-dependent complementarity; Fox 2005). By contrast, 

complementarity among species has been suggested as an indicator of niche partitioning among 

species which confers species an advantage when faced with interspecific competition in mixtures 

as opposed to intraspecific competition in monocultures (Loreau & Hector 2001). While selection, 

dominance, and complementarity are not in themselves coexistence mechanisms (see exchange 

between Carroll et al. (2011) and Loreau et al. (2012)), they indicate differences in functioning 

among communities (Hooper & Dukes 2004; Cardinale et al. 2007). Much of this evidence comes 

from micro- and mesocosm experiments, but investigation of diversity effects in naturally-

assembled communities has been minimal to date, despite the obvious potential to reveal important 
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insights. For example, investigation of diversity effects is likely to reveal whether invaded 

communities function differently from original communities due to changes in species composition. 

 

We conducted a field experiment to examine the role that intra- and interspecific interactions play 

in the local coexistence and productivity of species in extensively invaded annual plant 

communities where non-native species do not appear to be reducing native species richness. In 

addition to measuring the importance of interactions to species-level productivity, we explored 

differences in community-level productivity between novel communities (i.e. native and non-native 

species) and original reference communities (i.e. purely native species). Novel and original 

communities were considered over a variety of spatial scales in order to holistically evaluate the 

processes underlying their formation. This study was guided by the following questions: 

 

1. Does the relative importance of intra- and inter-specific competition among common species 

shift according to origin (i.e. non-native vs. native)? 

2. What is the relative importance of local competitive dynamics, local environmental 

gradients (P and water availability) and interannual climate variation in determining 

individual plant productivity?  

3. Does the relative importance of diversity effects (e.g. complementarity, selection, and 

dominance effects) differ between novel and original communities?  

 

Methods 

 

Study system 

 

Experimental studies were undertaken during the 2012 and 2013 winter-spring growing seasons at 

Bendering Nature Reserve (32 °23’ 7.88” S,  118 °23’5.66”E) and Kunjin Reserve (32 °21’19.31”S, 

117 °45’42.32”E) in Western Australia. The reserves are surrounded by agricultural fields and 

paddocks and had not been grazed for at least 40 years prior to the study (Prober & Wiehl 2011). 

Neither reserve has been burned during the past 40 years, and their earlier fire histories are 

unknown.  

 

My study system is the diverse annual understory communities of formerly common York gum 

(Eucalyptus loxophleba subsp. loxophleba) and jam (Acacia acuminata) woodlands, often referred 

to as York gum-jam woodlands. The canopy of York gum-jam woodlands is generally sparse, and 

understories typically support relatively dense assemblages of annual and perennial forbs. 
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Understory annuals contribute substantially to the floral species richness of these woodlands, and 

are abundant during the winter-spring rainy season which lasts from June to October. 

 

Disturbance associated with land clearing and agricultural intensification continues to degrade 

remaining patches of York gum-jam woodlands, particularly due to invasion of non-native annual 

grasses, legumes and forbs (Hobbs & Atkins 1988; Yates et al. 2000; Dwyer et al. 2015). Currently, 

York gum-jam annual communities range in composition from completely non-native-dominated to 

predominantly native (Dwyer et al. 2015), presenting an ideal system for studying interactions in 

novel species mixtures given their close proximity to native-dominated reference mixtures.  

 

A suite of non-native annuals in this system are associated with areas of soil eutrophication adjacent 

to agricultural fields where they exploit elevated resources (particularly phosphorus) and often 

competitively exclude natives (Hobbs & Yates 1988; Standish et al. 2008). However, some non-

native species have invaded these woodlands in the absence of eutrophication and other forms of 

ongoing disturbance (Prober & Wiehl 2011; Dwyer et al. 2015). These non-native annuals were 

presumably introduced to the region during periods of agricultural development in the late 19
th

 and 

early 20
th

 century (Burvill 1979), but are currently not associated with reduced community diversity 

(Lai et al. 2015) and do not appear to be on the trajectory towards community dominance. It is the 

function of these relatively “stable” mixtures of native and non-native annuals that I investigate in 

this study. Here, I focus on non-historical species composition as a key aspect of ecosystem novelty 

without confounding effects of nutrient addition on species performance. However, in general, 

novel plant communities (including many of those found in York gum-jam woodlands) fall along 

gradients of departure from historical abiotic and biotic conditions, which are seldom independent 

from one another (Hobbs et al. 2009). 

 

Individual plant performance at interaction neighbourhood scale 

 

To gauge the relative impacts of inter- versus intraspecific competition on native and non-native 

species, we examined individual plant performance of three focal species at the neighbourhood 

scale: Aira cupaniana (Poaceae, non-native), Trachymene cyanopetala (Araliaceae, native), and 

Waitzia acuminata (Asteraceae, native). These species were chosen due to their widespread 

occurrence throughout the York gum-jam woodland range and the fact that they regularly occur in 

mixture with other species at small spatial scales across a variety of microenvironments. These 

focal species were located growing within mixtures of natives or non-natives and their performance 

was compared to single plants growing without competitors in their interaction neighbourhood. In 
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August 2013, 35 30 x 30 cm quadrats were marked out per focal species in York gum-jam 

woodlands at Kunjin and Bendering Reserves. A. cupaniana quadrats were located at Kunjin 

Reserve only. In each quadrat, we weeded out non-focal species according to competitive 

background treatment type (native or non-native), recorded the identity and abundance of non-

focals, and selected up to three individuals of the focal species which were designated with coloured 

string. We then quantified the interaction neighbourhood of each of these focal plants by placing a 

10 cm diameter metal ring at ground level around each focal individual, and recording the identity 

and abundance of all plants rooted within the ring. 

 

We then collected seeds from each focal plant when ripened as a measure of reproductive output. 

As not all seed heads on any given W. acuminata plant were mature at the time of harvest, we 

estimated total seed production per plant of this species by multiplying the total number of seed 

heads by the number of seeds from one seed head for each plant. Overhead tree canopy cover was 

then recorded for each quadrat to include as an environmental covariate in analyses. 

 

Individual performance at quadrat scale 

 

This field component examined differences in productivity of individuals and entire communities in 

novel and original annual assemblages. The study was conducted at Bendering Reserve in 2012 and 

2013 and spanned a below-average and above-average rainfall year (total annual rainfall 237.8 mm 

in 2012, 444.2 mm in 2013, compared to a 373 mm 104-year average; Station ID 10536, BOM 

2014). I examined the performance of four common annual plant species native to York gum-jam 

woodlands: Gonocarpus nodulosus (Haloragaceae), Rhodanthe manglesii (Asteraceae), 

Trachymene sp. (Araliaceae), and W. acuminata (Asteraceae) and two non-native species 

commonly found in areas of high native diversity rather than in non-native-dominated communities: 

Hypochaeris glabra (Asteraceae) and A. cupaniana (Poaceae). Focal species were all common in 

the interior of Bendering Reserve in areas that had not experienced obvious anthropogenic 

modification. There are three common species of Trachymene at Bendering Reserve (T. 

cyanopetala, T. ornata, and T. pilosa). Though as flowering adults these species are distinguishable, 

they are difficult to tell apart as seedlings. As experimental plots were set up at the seedling stage, it 

was not possible to uniformly select one of these three species. As a result, I used data from plots 

containing only T. pilosa in analyses, as replication was highest among plots containing this 

species. However, analyses performed using all data from plots containing any of the three 

Trachymene species are included as supplementary material to this chapter for comparison 

(Appendices 5.4 & 5.5) and yielded similar results to analyses using only T. pilosa data.  

https://florabase.dpaw.wa.gov.au/browse/profile/22882
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In early winter, communities (n2012=91, n2013=80) were marked out across five experimental blocks. 

All blocks were at least 100 m apart and all were within the interior of the reserve. Communities 

were located using 30 cm x 30 cm quadrats. All quadrats had a 10 cm perimeter buffer, which was 

thinned (as per the treatment quadrat) and weeded regularly to eliminate edge effects within the 

sampling area. To assess differences in species performance in original and novel annual plant 

assemblages in each block, quadrats were placed in areas that naturally contained seedlings of a 

mixture of the four focal native species (original), a mixture of two native and two non-native 

species (novel), or a monoculture of one of the six focal species (Appendix 5.1). Each species 

combination, including monoculture, was present in at least four of the five blocks.   

 

Seedling density was targeted at 80 individuals per plot in monocultures of all species in 2012. 

Given their distinct growth form compared to the other annuals in this study (slender annual grass 

as opposed to annual herb), monoculture densities for A. cupaniana were targeted at 80 10-plant 

“patches” per plot. Stem densities for all species were obtained by thinning individuals when target 

densities were occasionally exceeded and by weeding non-focal species. In 2013, densities of G. 

nodulosus and W. acuminata were markedly lower than in 2012 and lower than the other focal 

species. Thus, calculating diversity effects was not feasible in 2013, as all focal species were not 

present in equivalent relative abundances without extensive thinning of the more abundant species, 

which would have reduced my ability to detect the effects of natural levels of competition. 

 

Abundances were recorded bi-weekly for each species in every quadrat from the beginning of the 

experiment until aboveground biomass harvesting for calculations of species monoculture and 

mixture yields began (September 2012 and October 2013). Because species phenologies varied 

throughout the growing season, a staggered biomass harvest approach was used in both years where 

individual plant aboveground biomass was removed as its seeds matured. Approximately 10-20 

individuals per species per quadrat were removed throughout each species’ maturation period each 

year to eliminate harvesting bias towards early-maturing individuals. Cover analyses of quadrat 

photos indicated that effects of plant removal on shading of remaining plants were negligible (data 

not shown). In addition, plants were only removed after seeds were fully mature and collected (at 

the time of natural dispersal) and vegetative tissues were on the verge of senescence and thus would 

have had negligible impact on subsequent belowground processes, regardless of removal. In some 

instances for H. glabra, R. manglesii, and W. acuminata, fine mesh bags were tied around flower 

heads when seeds were nearly ripe to prevent loss of seeds due to sudden wind dispersal. Biomass 

for each plant was stored in an envelope, dried at 60°C for one week, and then weighed.  
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We collected soil data for each quadrat to determine the relative influence of important abiotic 

gradients on plant performance in mixture and monoculture. I chose to use soil moisture (10 cm 

probe, TDR method) and extractable phosphorus (P, Colwell method) in my analyses, as they are 

two of the most important factors constraining annual performance in this system (Prober & Wiehl 

2011; Dwyer et al. 2015). 

 

Community performance at the quadrat scale 

 

Diversity effects on production in original and novel assemblages in 2012 were calculated by 

comparing deviations in species biomass yields when grown in mixture versus monocultures using 

the quadrats at Bendering Reserve described in the preceding section. I adopted Loreau & Hector’s 

additive partitioning method (2001) based on the Price equation in evolutionary genetics (Price 

1995), as well as Fox’s modification (2005) of the selection effects calculated by this method. The 

additive partitioning method separates the simultaneous contributions of complementarity and 

selection effects to departures in observed yields of species in mixture from that expected based on 

their monoculture yields (weighted by their relative abundances in mixture). Positive 

complementarity occurs when, on average, all species increase yields in mixture, indicative of niche 

partitioning or positive interactions. Positive selection effects occur when species with particular 

traits, e.g. the greatest biomass per individual, are the greatest contributors to over-yielding, 

indicated by positive covariance between species monoculture yields and changes in relative yields 

in mixture. I then calculated dominance effects and trait-dependent complementarity, which are 

surrogates for the selection effect (Fox 2005) that determine whether increases in species’ yields in 

mixture are at the expense of other species (Fox 2005).  Diversity effects were calculated as 

follows: 

 

ΔY = YO - YE = ΣRYOiMi- ΣRYEiMi  

= NΔRYM + Ncov(ΔRY,M) 

= NΔRYM + Ncov(M, RYo – RYo/RYTo) + Ncov(M, RYo/RYTo – RYE) 

 

Where ΔY equals the deviation of expected total yield (YE) from observed total yield of mixture 

(YO; or the total biomass of the mixture), and N equals the number of species in the mixture. Mi is 

the monoculture yield of species i (total biomass of the monoculture), and the expected relative 

yield of species i in mixture (RYEi) simply equals the (unitless) proportion of total individuals in the 

mixture that species i represents. The expected biomass yield of species i in mixture (YEi) is thus 
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RYEiMi., or the proportion of their total monoculture biomass expected in mixture based on their 

relative abundance in mixture. The observed relative yield of species i (RYOi) is the species 

observed biomass in mixture (Yoi) divided by its total monoculture biomass, or Yoi/Mi. Because a 

subset of each species’ biomass was harvested in each plot, total biomass per species per plot was 

estimated by multiplying the mean individual biomass by the total number of individuals of that 

species in a plot. Because H. glabra sometimes occurred at lower densities than the other focal 

species, its expected relative yield was calculated with reference to its own monoculture density. All 

other calculations were as described above. 

 

The complementarity effect of a mixture is calculated as the number of species multiplied by the 

average deviation in all species relative yields (RYO-RYE, or ΔRY) multiplied by the average of all 

species’ monoculture yields (M). The selection effect is calculated as number of species multiplied 

by the covariance between species’ monoculture yields and their deviation in relative yield, or 

N(covΔRY, M). The dominance effect, which accounts for changes in certain species’ relative 

yields that occur at the expense of others, is calculated as Ncov(M, RYo/RYTo – RYE), where 

RYTo equals the sum of observed relative yields for all species in a mixture. By contrast, trait-

dependent complementarity, calculated as Ncov(M, RYo – RYo/RYTo), measures changes in 

certain species relative yields that do not occur at the expense of other species yields. 

 

Statistical analysis 

 

All statistical analyses were conducted using R statistical software (v 3.1.2., R Development Core 

Team 2014). Three quadrats in 2012 (one A. cupaniana monoculture, two novel mixtures), and two 

novel mixtures in 2013 were excluded from analyses due to species misidentification, high 

mortality, or animal damage. 

 

Species’ seed production responses to neighbourhood type (native or non-native), neighbour 

density, and site (Kunjin or Bendering) in interaction neighbourhoods were estimated using 

generalised linear mixed effects models with Poisson errors and log link function (package lme4, 

Bates et al. 2014). To simultaneously assess the influence of a local environmental gradient on 

species fecundity, overhead woody canopy cover was included as a quadrat-scale covariate. Target 

plant nested within quadrat was specified as a random effect to account for over-dispersion (Elston 

et al. 2001) and spatial dependence of observations. Where significant relationships between seed 

set and non-native neighbourhood were found, I investigated whether the identity of the non-native 

species further explained variation in focal species seed set in non-native neighbourhoods, as non-
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native species in this system are diverse in their impacts on resident species (Lai et al. 2015; Ch. 3 

of this thesis). I scored whether each observation had a robust non-native annual (high-biomass 

non-native annuals associated with disturbed conditions, Prober & Wiehl 2011; Lai et al. 2015) 

species present in its neighbourhood as a binary value, and modelled the focal species ln-

transformed seed count in non-native neighbourhoods using a linear mixed model with random 

effect of quadrat.  

 

Individual plant biomass was assessed separately for each species. I used linear mixed effects 

models (package nlme, Pinheiro et al. 2014) to assess differences in ln-transformed biomass values 

in the different community types (novel or original where appropriate, with monoculture as 

reference). W. acuminata, G. nodulosus, and R. manglesii were modelled using data from all 

original mixture plots regardless of the Trachymene species present. To simultaneously assess the 

influence of local abiotic gradients, I also included fixed effects of soil moisture and soil P content. 

Quadrat nested within block was specified as a random effect in all individual plant biomass models 

to account for spatial nesting of observations. To explore whether biomass of each species differed 

between 2012 and 2013, I utilised monoculture data for species whose relative abundances 

remained similar between years to avoid confounding density effects on biomass values. For this 

analysis I used linear mixed effects models with random effects for quadrat. 

 

To assess mixture yield deviations from expected yields and diversity effects, I used one-sample t-

tests to test the null expectation of no deviation and no diversity effects (Ho: μ=0) for each mixture 

type in 2012. Separate models were run for each mixture type, and block was specified as a random 

effect.  

 

We followed these analyses with examinations of species contributions to mixture biomass 

deviations. Specifically, I used mixed effects models for each mixture type in 2012 to test for 

differences among species in their deviations of observed from expected relative yields, where 

block was specified as a random effect. Because species showed unequal variances in their 

deviation values, I used weighted variance functions in each model that allowed variances to differ 

among species (varIdent function within lme models; Pinheiro & Bates 2000). These models were 

followed by simultaneous post-hoc contrasts (package multcomp, Hothorn et al. 2008) testing 

whether each species deviation in was significantly different from zero. 

 

Results 
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Individual fecundity at neighbourhood scale 

 

Of the three focal species in this component of the field experiment, native forb W. acuminata was 

the only species whose seed production was impacted by competition compared to single plants 

(mean(SE) seeds per individual: single plant= 2204.39 (557.71); native neighbourhood= 824.72 

(90.20), p=0.05; non-native neighbourhood= 845.65 (112.26), p=0.02; Table 5.1). Within non-

native neighbourhoods, the effect of presence or absence of robust non-native species was not 

significant. None of the focal species were impacted by neighbour abundance except W. acuminata 

(p=0.002; Table 5.1; Appendices 5.6 – 5.8). 

 

T. cyanopetala seed production was not significantly related to any of the explanatory variables. For 

this species, seed production per individual was similar between single plants and those in either 

non-native or native neighbourhoods (mean (SE) seeds per individual: single plant= 69.07 (9.46), 

native neighbourhood= 48.85 (3.94), non-native neighbourhood= 77.89 (8.32); Table 5.1, Appendix 

5.7).  

 

For A. cupaniana, seed production declined with increasing canopy cover (p=0.01, Table 5.1, 

Appendix 5.6) but this was not impacted further by the composition of its neighbourhood (mean 

(SE) seeds per individual: single plant=92.17(29.46); native neighbourhood= 57.78 (7.98); non-

native neighbourhood= 88.83 (13.38)).  

 

Individual biomass at quadrat scale 

 

Overall, variation in individual plant biomass between years was greater than variation due to 

compositional differences or microenvironmental variation within years (Fig 5.1). 

 

Neither soil moisture nor P at the quadrat level were significant predictors of individual plant 

biomass in either year (Appendices 5.2 and 5.3). Extractable soil P ranged from < 2.00 – 16.00 

mg/kg (mean: 4.22 ± 0.22 mg/kg) in 2012 and from < 2.00 - 13.00 mg/kg (mean: 4.01 ± 0.32 

mg/kg) in 2013, typical of soils in York gum-jam woodland interiors (Dwyer et al. 2014). The fact 

that P was unrelated to productivity likely reflects my intentional focus on relatively undisturbed 

communities, whereas P-enriched soils tend to occur along reserve edges adjacent to fertilized 

cropland (Dwyer et al. 2014; 2015). Soil moisture ranged from 2.00 – 10.76% (mean: 4.06 ± 

0.12%) in 2012 and from 2.67 – 8.67% (mean: 4.9±0.16%) in 2013.  
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H. glabra and T. pilosa were the only species whose mean individual plant biomass was affected by 

the quadrat-level community species composition (Appendices 5.2 and 5.3). In both years, H. 

glabra plants were significantly smaller when found in mixtures compared to monocultures (2012: 

p=0.04; 2013: p=0.04), and in 2012, T. pilosa plants were smaller in mixture than in monoculture 

(p=0.03) 

 

Individual plant biomass of all focal species increased from 2012 to 2013 (Fig 5.1). For species 

whose relative abundances did not shift between years (A. cupaniana, H. glabra, R. manglesii, T. 

pilosa), comparisons of plant biomass in monocultures of equivalent densities between years 

revealed that the increase was statistically significant for A. cupaniana (year estimate (SE): 0.62 

(0.21), p=0.008), H. glabra (year estimate (SE): 0.92(0.22), p<0.001), and T. pilosa (year estimate 

(SE):1.60(0.23),p<0.001). 

 

Community productivity at the quadrat scale 

 

On average, only original communities displayed significant diversity effects, though total 

community biomass did not exceed that which was predicted by component species biomasses in 

monoculture in 2012 (Table 5.2, Fig 5.2). When data were included for communities containing all 

Trachymene species, original community overyielding became significant (Appendix 5.4; p=0.05). 

In original communities, selection (p=0.008) and dominance effects (p=0.02) occurred rather than 

complementarity among species (Table 5.2, Appendix 5.4). Mixed effects models of selection and 

dominance effects revealed that neither were related to soil moisture or P (data not shown). In novel 

communities, neither differences between observed and expected yields nor the contributions of 

diversity effects to these differences were significantly different from zero (Table 5.2).  

 

Given the apparent contribution of selection and dominance effects in original mixtures, I explored 

differences between observed and expected relative yields of component species in both mixture 

types (Fig 5.3, Table 5.3). W. acuminata over-yielded compared to other species in novel 

communities (p=0.02), and marginally significantly in original communities (p=0.055), though in 

analyses using data from all original mixtures this trend was strengthened (p=0.01; Appendix 5.5). 

By contrast, H. glabra under-yielded compared to other species in novel mixtures (Table 5.3, novel: 

p=0.0007). Post-hoc analyses revealed W. acuminata and H. glabra to be the only species with 

changes in relative yield significantly different from zero (W. acuminata novel: adjusted p=0.04, H. 

glabra : adjusted p<0.001).  
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Discussion 

 

With a few exceptions, the effects of intra- versus interspecific competition seem to be fairly 

equivalent among the focal species in this study. The presence of competitors did not affect plant 

reproductive output at the neighbourhood scale except for W. acuminata, whose seed set was 

reduced in both non-native and native neighbourhoods. In terms of plant productivity, the effects of 

shifting between intra- and interspecific competition were negligible for most focal species except 

H. glabra and W. acuminata, which performed better in monoculture and in mixture, respectively. 

Species productivity was not further influenced by microenvironmental conditions at the local scale. 

Diversity effects calculated in 2012 ranged from negative to positive, but positive selection and 

dominance effects were found as opposed to complementarity among species in original 

communities. I describe these results and their implications for community structure in novel and 

original communities in detail below. 

 

Individual fecundity at neighbourhood scale 

 

Overall, I found little evidence of strong competition at the neighbourhood scale on focal species’ 

total seed production, except for native W. acuminata, which was negatively impacted by both 

native and non-native neighbourhoods. I cannot make direct inferences about the relative strength of 

intra- vs interspecific competition for this species at this scale because I cannot disentangle the 

impacts of conspecific abundance from total neighbour abundance. Still, competition from both 

conspecific and heterospecific neighbours in both non-native and native communities clearly 

influences W. acuminata fitness in the field. These results align with previous experiments where 

congener W. nitida fitness was particularly susceptible to both intra- and interspecific competition at 

this scale (Ch 3 of this thesis).  

 

Within non-native neighbourhoods, W. acuminata seed production was further unrelated to whether 

robust non-native annuals were present. This was somewhat surprising, given the observed effects 

of many of these species on W. acuminata survival, biomass, and overall native species richness in 

previous studies (Ch 3 of this thesis; Dwyer et al. 2014; 2015). Furthermore, non-native 

neighbourhoods (exploitative and non-exploitative non-natives, and conspecifics) and native 

competitors (including conspecifics) appeared to suppress W. acuminata individuals to a similar 

degree. Clearly, competitive effects cannot be generalized according to species origins, and for 

some species, the distinction between their performance in non-native and native assemblages may 

be trivial. In addition, these robust non-native annuals tend to competitively exclude native species 
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under artificially P-enriched conditions, but may not be as competitive in the low-P areas which 

were the focus of this study (Dwyer et al. 2015; Lai et al. 2015). 

 

Within Kunjin Reserve, non-native annual grass A. cupaniana produced fewer seeds in shadier 

plots, but this was not affected further by the composition or abundance of potential competitors 

within neighbourhoods. This suggests that for A. cupaniana, microenvironmental variation may 

have a larger impact on fecundity than biotic interactions at this reserve. 

 

Individual performance at quadrat scale 

 

For aboveground biomass at the individual plant level, there was no significant effect of species 

composition or microenvironment for most species. The lack of response to shifting between intra- 

and interspecific competition for most species aligns with studies in other annual plant 

communities, where only highly competitive species are likely to experience substantial negative 

competition in areas of conspecific aggregation (Goldberg & Barton 1992; Wassmuth et al. 2009). 

Some minimal thinning at the beginning of the growing season (of non-focal species and of focal 

species when they exceeded target densities) may have weakened effects of competition. However, 

species continued to self-thin beyond the abundances prescribed by the experiment, suggesting that 

we did not thin them beyond the point where competition would have been observable.  

 

An exception was T. pilosa, individuals of which were significantly smaller in mixture than in 

monoculture in 2012. It is possible that the combined effects of greater water availability and lower 

densities of competitors W. acuminata and G. nodulosus alleviated the environmental stress and 

competitive suppression experienced by T. pilosa in mixture relative to monoculture in the more 

environmentally favourable year. The other notable exception was for H. glabra, individuals of 

which were significantly smaller in size when found in mixed communities compared to 

monocultures in both years. H. glabra is a successful invader with a widespread distribution in 

York gum-jam woodlands (Western Australian Herbarium 2014), though its competitive impacts 

were minimal in this study. This species is also widely distributed in North America, with studies 

also showing low competitive impacts between H. glabra and natives within its North American 

introduced range (Cal-IPC 2005; USDA 2014). In a growth chamber study (Ch 3 of this thesis), H. 

glabra individuals were also found to be smaller in mixture compared to monoculture, but only 

when the mixture contained the highly competitive non-native grass Bromus madritensis. Here, it is 

possible that combined effects of competition from native W. acuminata, G. nodulosus, and A. 

cupaniana resulted in significantly lower biomass per individual for H. glabra in mixture than in 
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monoculture. The fact that H. glabra aboveground biomass was unrelated to microenvironmental 

conditions suggests that both competition and other factors may come into play in determining its 

fitness in natural communities. For example, H. glabra produces large quantities of non-dormant 

seeds with high germination rates compared to the native species in this study (Erickson et al. 

unpublished data), which likely aids in its ability to proliferate and may compensate for the weak 

competitive ability observed in this study.  

 

Interannual rainfall patterns produced a larger response in species’ productivities than local 

microenvironmental conditions within years. The total amount and duration of the winter-spring 

growing season rainfall increased substantially between 2012 and 2013, contributing to an increase 

in the average sizes of individuals to varying degrees among the focal species. In addition, 

differences in climate conditions between years translated not only to biomass increases, but may 

have shifted focal species absolute and relative abundances, as indicated by the results for G. 

nodulosus and W. acuminata. Interannual climate variation in semi-arid ecosystems plays a large 

role in regulating winter annual plant community structure (Pitt & Heady 1978; Venable 2007) that 

must complete seedling through adult life cycle phases within one discrete growing season each 

year. Winter annuals therefore display large degrees of intraspecific demographic and phenotypic 

variation among generations, depending on the timing and availability of resources in a given year 

(Fox et al. 2006; Venable 2007; Angert et al. 2007; Levine et al. 2008). Interannual climate 

variability is implicated in long-term patterns in winter annual plant population dynamics, whereby 

the timing and magnitude of growth differ among species through differential responses to 

favourable conditions (Chesson et al. 2004; Angert et al. 2009). In conjunction with spatial 

heterogeneity of resources, temporal environmental heterogeneity has been found to contribute to 

community structure in winter annual plant communities by mediating which species interact under 

specific conditions (Rees et al. 1996; Chesson et al. 2000; Chesson et al. 2004). In a previous study 

on York gum-jam woodland annuals, Dwyer et al. (2014) found that an increase in the amount of 

growing-season rainfall relative to the previous year led to substantial intraspecific variation in 

abundance (both absolute and relative) and an increase in community-level biomass. While W. 

acuminata individuals experienced the greatest size increase between 2012 and 2013 of all focal 

species, it is not possible to separate the contributions of reduced intraspecific competition (via 

naturally lower abundances) from increased soil moisture availability. For species whose 

abundances remained relatively constant between years (A. cupaniana, H. glabra, Trachymene, R. 

manglesii), all but R. manglesii experienced significant increases in mean plant biomass in 

monocultures of equal densities between years, indicating that increased water availability may 

have differentially driven changes in plant productivity between years. Thus, temporal climate 
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variation may have been an important determinant of species productivities and community 

structure during the two-year span of this experiment, though these dynamics were not the initial 

focus of the study. Future research in this system should be directed towards investigating the 

influence of long-term climate variability on population dynamics and hence community structure. 

 

Community performance at the quadrat scale 

 

In 2012, original communities yielded greater biomass than was predicted by component species 

monoculture yields on average, although there was substantial variation within this trend. This over-

yielding was unrelated to soil moisture or P, two of the most important factors constraining 

productivity in this plant community (Prober & Wiehl 2011; Dwyer et al. 2015), suggesting biotic 

interactions may have been an important underlying cause.  

 

Selection and dominance effects were greater contributors to over-yielding in original communities 

than complementarity among species. Specifically, W. acuminata experienced greater increases in 

relative yield when released from intraspecific competition than any other species. These results 

align with my observations for this species at the neighbourhood scale, suggesting that W. 

acuminata performance (seed production and biomass) may be regulated, at least in part, by 

intraspecific competition. Mean plant biomass was greater in both mixture types than in 

monoculture in 2012, though these increases were not significant when considered across all 

quadrats and blocks (see preceding section). This suggests the responses of certain mixtures may 

have driven the mean tendency to over-yield. The species- and plot-level averaging required by the 

additive partitioning method may have obscured a substantial amount of variance among individual 

biomass values, which could explain the positive selection effects due to W. acuminata at the plot 

level in original mixtures, but a lack of signal at the individual level.  

 

By contrast, H. glabra experienced significantly lower yields in mixture than in monoculture, in 

keeping with results at the individual plant level. Thus, although W. acuminata and H. glabra are 

the two most productive species in the novel communities and exhibited the strongest responses 

when shifting from intra- to interspecific neighbourhoods (i.e. strong positive and negative selection 

effects, respectively), the opposing directionality of their responses resulted in a zero net effect in 

novel communities. These artefacts of the additive partitioning method highlight the need to 

examine community responses into constituent species-specific responses when comparing overall 

functioning in two community types. 
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Conclusion 

  

The performance of most species did not change with the composition of either the immediate or 

local neighbourhood, suggesting that other factors combine with competition to constrain species’ 

abundances. Climate variation among years, for example, produced communities with very different 

relative abundances and sizes, and affected plant productivities more than microenvironmental 

variation within either year. Though I did not directly calculate species niche and relative fitness 

differences, the prevalence of weak or non-existent competitive interactions suggests that small 

differences among the majority of co-occurring species are sufficient to overcome any fitness 

differences and permit coexistence. The main exceptions were non-native and native forbs H. 

glabra and W. acuminata. Though H. glabra appears to benefit from intraspecific congregation 

relative to interspecific, other processes such as herbivory (pers. obs.) might limit its abundance in 

diverse communities where it has established and persisted. By contrast, W. acuminata was 

negatively affected by intraspecific competition at small scales, consistent with findings in other 

experimental studies that spatial aggregation reduces productivity in conspecific neighbourhoods 

for only the most productive species (Monzeglio & Stoll 2005; Vogt et al. 2010).  

 

The finding of over-yielding in original but not novel mixtures was due to the inclusion of an 

ostensibly weak non-native competitor, H. glabra. This may reflect my intentional focus on novel 

communities in intact woodland areas that have retained high native species richness and are not 

characterized by obvious ongoing anthropogenic change. Had I chosen to examine novel 

communities in degraded woodland areas, for example where eutrophication has occurred, the 

composition and relative abundance of non-native species would have differed (Dwyer et al. 2014; 

2015). Taller non-native annual grasses and forbs are the dominant invaders under these nutrient 

enriched conditions (Prober & Wiehl 2011) and they exclude native resident species mainly via 

strong competition for light (Dwyer et al. 2015). The most common non-natives in my study, by 

contrast, exert weaker effects on natives than those most commonly found in degraded communities 

within the same and similar reserves, and other annual plant systems (Pemadasa & Lovell 1974;Cal-

IPC 2005; Chapter 3 and 4 of this thesis; Lai et al. 2015).  

 

Overall, my results suggest that provided both the relative and cumulative differences between 

native and non-native species are small, some aspects of community function may be retained 

between original and novel plant communities, at least in the absence of extreme anthropogenic 

abiotic changes. The dynamics of invaded communities may be scale and context-dependent, 

however. Species long-term persistence may rely on a host of factors in addition to plant-plant 
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interactions, such as dispersal processes, climatic factors, and interactions with other trophic levels. 

Future research should be directed towards determining the relative importance of these factors 

compared to direct competition in maintaining diverse communities of ecologically similar species. 
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Fig 5.1 Species ln-transformed biomass per individual by community type (monoculture=M, 

original mixture= O, or novel mixture = N) in 2012 and 2013.  
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Fig 5.2 Deviations in observed mixture biomass yield from expected mixture yield based on 

constituent species’ abundance-weighted monoculture yields in original (A) and novel (B) 

communities in 2012. Total= sum of all species biomass deviations from expected values, C= 

deviation due to complementarity effects, S= deviation due to selection effects, T= deviation due to 

trait-dependent complementarity, and D= deviation due to dominance effects. Asterisks denote level 

of significance (Ho: μ=0; *: p≤0.05, **: p<0.01, ***: p<0.001). 
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Fig 5.3 Deviations in observed species yields in mixture from their expected yields based on 

abundance-weighted monoculture yields in 2012 in original (A) and novel (B) communities. 

Asterisks denote level of significance (Ho: μ=0; *: p≤0.05, **: p<0.01, ***: p<0.001). 
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Table 5.1 Coefficients and (SEs) from mixed effects models of focal species seed production in 

interaction neighbourhoods within quadrats in 2013 by neighbourhood identity (relative to single 

individual plants), neighbour abundance, reserve (Kunjin relative to Bendering), and overhead 

woody canopy cover (%). Asterisks denote level of significance (*: p≤0.05, **: p<0.01, ***: 

p<0.001). 

Focal Species: 

 

Fixed effects: 

A.cupaniana  T. cyanopetala W. acuminata 

Intercept (single plant, 

Bendering) 

4.64(0.38)*** 4.10 (0.32)*** 7.20 (0.28)*** 

Neighbour abundance -0.01 (0.02) -0.03 (0.02) -0.08 (0.02)** 

Non-native neighbours -0.16 (0.40) 0.14(0.25) -0.52 (0.24)* 

Native neighbours -0.43 (0.39) -0.28(0.24) -0.49(0.25)* 

Site (Kunjin) NA -0.27(0.21) -0.16(0.16) 

Canopy cover -0.03 (0.01)* 0.005 (0.009) 0.008(0.008) 

Random effects 

(variance estimates): 

   

Among neighbourhood 0.13 0.20 <0.0001 

Within neighbourhood 0.34 0.38 0.93 

 

 

 

 

 

Table 5.2 Means and 95% confidence intervals of observed plot-level biomass deviations from 

expected yields and constituent diversity effects in novel and original species mixtures in 2012. 

Asterisks denote level of significance (Ho: μ=0; *: p≤0.05, **: p<0.01, ***: p<0.001). 

 

 

Response: 

Mixture type 

Novel (n=10) Original (n=7) 

Deviation from 

expected yield 

-0.21 

(-0.50-0.07) 

0.86 

(-0.55 – 2.28) 

Complementarity -0.06 

(-0.14 – 0.02) 

0.51 

(-0.93 – 1.94) 

Selection 0.04 

(-0.08 – 0.16) 

0.47** 

(0.18 – 0.77) 

Dominance 0.08 

(-0.02 – 0.17) 

0.44* 

(0.10 – 0.78) 

Trait-dependent 

complementarity 

-0.03 

(-0.08 – 0.01) 

0.03 

(-0.09 – 0.15) 
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Table 5.3 Coefficients and (SEs) from mixed effects models of species deviations from expected 

relative yields when grown in either community type compared to monoculture in 2012. A dash 

corresponds to instances where a focal species was not present in a community type. Asterisks 

denote level of significance (*: p≤0.05, **: p<0.01, ***: p<0.001). 

 

Species: 

Mixture type 

Novel (n=10) Original (n=7) 

A. cupaniana 0.03 (0.05) - 

G. nodulosus 0.03 (0.06) 0.05 (0.12) 

H. glabra -0.23 (0.06)*** - 

R. manglesii - -0.008 (0.08) 

T. pilosa - 0.08 (0.13) 

W. acuminata 0.12 (0.05)* 0.22 (0.11) 

Random effects 

(variance 

estimates): 

  

Among block 0.003 0.014 

Within block 0.01 0.066 
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Chapter 6: Effects of non-native annual grass litter and local environmental gradients on 

annual plant community structure  

 

 

Introduction 

 

Understanding the mechanisms that promote the persistence of non-native plant species is 

complementary to understanding the factors that enhance invasion resistance. The introduction of 

non-native propagules in conjunction with various forms of exogenous disturbance may trigger 

invasions by creating opportunities for non-native species to establish aided by altered resource 

levels or reduced competition from native species (Hobbs & Huenneke 1992; MacDougall & 

Turkington 2005). However, it is less clear which abiotic and biotic processes permit non-native 

species to persist once these disturbances have ended (D’Antonio & Chambers 2006). Identifying 

these processes and their contingencies may reveal the barriers to recovery of invaded plant 

communities, while also providing insight into general abiotic and biotic conditions for species 

coexistence (Hobbs & Norton 1996; Palmer et al. 1997; D’Antonio & Chambers 2006).  

 

In many plant communities in Mediterranean-type ecosystems, introduced annual grasses and forbs 

persist after disturbance has ceased by inhibiting the establishment of native competitors 

(D’Antonio & Vitousek 1992; Seabloom et al. 2003; Grman & Suding 2010). One mechanism of 

this inhibition is the suppression of native species by accumulation of residual non-native annual 

grass biomass, or litter. Annual grass litter may inhibit other species by imposing direct and indirect 

barriers to growth and activity at various life stages. This inhibition can begin as early as dispersal 

by physically preventing native seed from reaching the soil surface (Fowler 1986). Annual grass 

litter may also alter native species germination patterns and their productivity through modifications 

to the microenvironment, such as changes in nutrient levels, water availability, increasing soil 

temperature, facilitating pathogen attack, and decreasing light penetration to the soil surface 

(reviewed in Facelli & Pickett 1991). Once native germination has occurred, annual litter can 

further prevent or suppress seedling growth (Lenz et al. 2003). Neutral or facilitative interactions 

between non-native grass litter and conspecific seedlings have also been found to promote a 

positive feedback to their abundance that may compound over time and facilitate non-native grass 

dominance in some systems (D’Antonio & Vitousek 1992; Lenz et al. 2003; Coleman & Levine 

2007).  
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Natural environmental features of recipient plant communities may modify the impacts of non-

native species over small spatial scales. In particular, overstory vegetation may contribute 

substantially to variation in understory floristic composition in savannah grasslands (Belsky 1993; 

Scholes & Archer 1997), eucalypt woodlands in southeastern Australia (Prober et al. 2002a), and 

eucalypt woodlands Western Australia (Prober & Wiehl 2011; Dwyer et al. 2015). The effects of 

trees on understory vegetation are twofold, encompassing both aboveground and belowground 

processes. Tree canopies reduce direct solar radiation, which may alleviate water stress in 

understory plant assemblages (Weltzin & Coughenour 1990; Dwyer et al. 2015). Prober & Wiehl 

(2011) found that both tree species and tree proximity were significant sources of variation in soil 

properties such as bulk density, total nitrogen, and pH in semi-arid eucalypt woodlands. Topsoils 

beneath trees are often more fertile than soils found in open patches as a result of nutrient 

deposition and physical disturbance from faunal congregation, as well as nutrient concentration near 

tree root systems, runoff zones, and areas of litter accumulation (Belsky 1994; Facelli & Brock 

2000; Prober et al. 2002a). However, inhibitory effects of trees on understory vegetation have also 

been documented in semi-arid eucalypt woodlands (Lamont 1985) and may be due to allelopathic 

effects of tree leaf litter (May & Ash 1990) or resource drawdown by tree roots (Lamont 1985; 

Belsky 1994).  

 

The extent to which non-native annual grass litter interacts with tree proximity to impact resident 

annual plant community structure and invasion dynamics remains unclear. To explore these 

processes simultaneously, I conducted a field study in a semi-arid eucalypt woodland in southwest 

Western Australia in which I experimentally added non-native annual grass litter at varying 

distances from established trees. I measured the relative influences of non-native grass litter and 

several naturally-occurring abiotic gradients on resident plant community structure. This study was 

guided by the following questions: 

 

1. How does tree proximity affect microenvironmental conditions important for annual plant 

performance and community structure? 

2. What are the effects of litter addition on these microeonvironmental conditions? 

3. How does the presence of non-native annual grass litter, in combination with underlying 

environmental gradients, affect annual plant community structure? 

 

Methods 

 

Study system 
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Our study was undertaken in a woodland remnant in Kunjin Reserve (32 °21’19, 31”S 117 

°45’42.32”) in the central-southern wheatbelt region of Western Australia. Kunjin Reserve 

experiences a typical mediterranean-type climate, with mild wet winters and prolonged summer 

drought. The generally sparse canopy is dominated by York gum (Eucalyptus loxophleba subsp. 

loxophleba) and jam (Acacia acuminata) trees, and understory plant communities are composed of 

relatively dense assemblages of annual and perennial forbs, and occasional shrubs and perennial 

tussock grasses (Dwyer et al. 2015). The annual component is prominent during late winter and 

spring from June to October. Annual grasses are not native to York gum-jam woodlands, and as 

such their litter is not a natural feature in the absence of invasion, and litter from native annuals is 

relatively sparse.   

 

Experimental design 

 

To test effects of non-native annual grass litter on annual plant community structure, I added litter 

to native-dominated areas within Kunjin Reserve at the end of the 2012 growing season, and 

assessed plant community structure during the 2013 growing season. I also assessed how 

community structure varied naturally along canopy cover and soil gradients related to distance from 

E. loxophleba and A. acuminata trees, the two dominant trees in this woodland type. 

 

A total of 6 pairs of transects were established in Kunjin Reserve in November 2012. Each pair 

consisted of one transect running north away from a single tree and the second transect running 

south away from the same tree (A. acuminata: n=2, E. loxophleba n=4). Along each transect five 

pairs of 0.5 x 0.5 m plots were placed every 1 to 3 m to avoid perennial bunchgrasses, which are 

very sparse at Kunjin Reserve relative to annuals but would have dominated study plots in which 

they occurred due to their comparatively large size. The same plot spacing was used for north and 

south transects in each pair. The litter treatment was applied to one plot per pair. Litter plots were 

alternated with each consecutive plot pair to prevent an east-west bias in the findings. Plot pairs 

were separated by 0.5 m to minimise variation in underlying abiotic conditions and plant 

community composition while avoiding edge effects of the litter on control plots. This scale is 

consistent with herbaceous species turnover in these communities (Dwyer et al. 2015).  Trees were 

chosen to have relatively homogenous annual plant composition around them.  

 

All litter treatment plots received stem and leaf litter of non-native annual grass Avena barbata, an 

introduced grass which persists in many York gum-jam woodlands (Prober et al. 2011; Dwyer et al. 
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2015). The litter was collected from a nearby roadside, cleaned of seeds, and oven-dried at 60°C for 

one week before application. The litter was applied to each treatment plot and loosely held in place 

with a thin layer of bird netting, which was left in place for the entire experiment. Control plots also 

received a layer of bird netting to minimize differences between treatment and control plots not due 

to the presence of grass litter. The bird netting was unlikely to affect plant emergence, as I chose a 2 

cm mesh aperture, large enough for all annual seedlings in this system to grow through. The A. 

barbata litter was added in November 2012 after community senescence and natural seed release in 

the experimental plots. I chose to add 65 g of litter to each 0.5 x 0.5 m treatment plots based on the 

mean mass of litter sampled in areas invaded by A. barbata of the same dimensions from Kunjin 

Reserve. I considered this amount dense enough to prevent seeds that subsequently dispersed into 

litter addition plots from reaching the soil surface. Therefore, any annual plants present in litter 

addition plots in 2013 were assumed to have germinated from the seed bank or the soil surface 

when litter was added in November 2012. By contrast, annuals that occurred in control plots in 

2013 could have germinated from the seed bank, or could have dispersed into plots over the 

summer and autumn of 2012-13. Thus, any compositional differences between litter and control 

plots in the 2013 growing season were a combined result of the litter acting as a dispersal barrier as 

well as its effects on plant germination and establishment. A. barbata was present in only three of 

120 plots (distributed among two transects) prior to experimental litter application, and each of the 

three plots contained only one individual of A. barbata. No pre-treatment litter (non-native annual, 

native annual or native sclerophyll) was removed or redistributed from plots prior to the 

experiment.  

 

Data collection 

 

Plant community data from nine plots were discarded due to animal damage, but this damage was 

distributed among treatments and among the six transects. In August 2013, plant community 

structure was evaluated by recording the identity and abundance of all plant species using a 30 x 30 

cm quadrat centred within each 0.5m x 0.5m plot to eliminate edge effects. In early October 2013, 

plots were harvested at peak biomass, dried in drying ovens located in the glasshouse facilities at 

the University of Western Australia, and weighed to assess treatment effects on productivity.  

 

In addition to measures of plant performance across experimental treatments, several abiotic 

variables were measured for each plot both prior to and post-litter application. Soil samples (0-10 

cm depth and excluding litter and debris) were collected from the centre of each plot before litter 

application and again during biomass harvests, and analysed for nutrient content (nitrate, Colwell 
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phosphorus (P), and Colwell Potassium (K)) according to methods described in Prober & Wiehl 

(2011). To measure whether N-cycling rates were different between litter addition and control plots, 

I deployed six ion-exchange membrane (IEM) strips in each plot for seven weeks, corresponding to 

three cation and three anion membrane strips, for estimating ammonium and nitrate adsorption 

rates, which were determined according to methods described in Jasrotia & McSwiney (2008) and 

Vogt (2013a, 2013b). Soil moisture was measured in each plot using a soil moisture probe (0-10 

cm, TDR method) partway through the growing season in September 2013. Canopy cover of E. 

loxophleba and A. acuminata was measured as an average of cover facing north, east, and west of 

each plot using a spherical crown densiometer (Forestry Supplies Inc.). Cover to the south was not 

included in analyses because it does not contribute to shading during the winter growing season in 

these communities.  

 

Data analysis 

 

All analyses were conducted in R (v 3.1.2, R Development Core Team 2014). To account for spatial 

dependence of responses, I included spherical correlation structures (Diggle et al. 2002) in all 

models except those of focal species abundances and verification of pre-treatment litter cover.  

 

To verify that pre-treatment litter amounts (herbaceous, E. loxophleba, and A. acuminata) did not 

inherently differ between control and litter plots, I used linear mixed-effects models (package nlme 

(Pinheiro et al. 2014)) to model cover of each litter type in each plot by treatment assigned to the 

plot, with random effect specified as plot pair nested with transect to account for spatial dependence 

of observations. Cover values were sqrt-transformed (herbaceous litter) or ln-transformed (E. 

loxophleba and A. acuminata) prior to analyses to meet model assumptions of normality. Then I 

examined natural (pre-treatment) variation in important abiotic variables along transects by fitting 

generalized additive mixed models (package gamm4 (Wood 2012)) of canopy cover, soil nitrate, 

soil phosphorus (P), and soil potassium by distance to tree, with a random effect of plot pair nested 

within transect. Because the number of E. loxophleba and A. acuminata transects were unequal, 

differences in relationships of abiotic variables to tree proximity according to tree species could not 

be statistically estimated in one model. Thus, separate models were fit for transects of either tree 

species. A number of these variables were log normally distributed and were therefore ln-

transformed or logit-transformed. To visually estimate the non-linear trends of these abiotic 

variables by tree proximity, smoothed splines of model-predicted values were plotted with one SE 

interval around each spline. To investigate natural directional differences in soil moisture and 

nitrate adsorption rates around trees, I used a mixed effects model of ln-transformed soil moisture 



84 

 

and nitrate adsorption values from control plots only by aspect (north or south), with plot nested 

within block specified as a random effect. In addition, I modelled the relationship between pre-

treatment native sclerophyllous litter and overhead canopy cover using mixed effects models of 

plot-level ln-transformed E. loxophleba and A. acuminata litter percent cover by overhead canopy 

cover, with random effects of plot nested within block to account for spatial dependence and 

overdisperson (Elston et al. 2001).  

 

This was followed by investigation of how litter addition impacted these variables, using mixed 

effects ANOVAs with fixed effects of treatment (litter addition or control) and tree species and 

random effect of transect. These analyses were followed by multiple comparisons of responses 

among tree-treatment combinations (package multcomp (Hothorn et al. 2008)). 

 

Then, I analysed how litter addition and pre-treatment abiotic variation explained aspects of 

community structure and plant performance using mixed effects models, using fixed effects of 

treatment (categorical: litter addition or control) and continuous measures of pre-treatment abiotic 

variables, and a random effect of transect. First I related treatment and abiotic variables to 

community-level measures of species richness and non-native and native plant density. Then, I 

chose four common focal species and assessed the impact of treatment and abiotic variables on their 

abundance and mean biomass per individual: Waitizia acuminata (native, Asteraceae), Millotia 

myosotidifolia (native, Asteraceae), Arctotheca calendula (non-native, Asteraceae), and Vulpia 

myuros (non-native, Poaceae).  

 

We rarefied species richness values to investigate the effect of litter on richness while accounting 

for differences in plant density among plots (Appendix 6.1). Plant density was square-root 

transformed to meet assumptions of normality. Focal species abundances were analysed using 

generalized linear mixed effects models with Poisson errors and a log link function (package lme4 

(Bates et al. 2014)) and plot-level random effect nested within transect to account for spatial 

dependence and overdispersion. Biomass responses of focal species were ln-transformed to improve 

normality of residuals before linear mixed effects models were fitted. 

 

Results 

 

Pre- and post-treatment natural variation 
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Pre-treatment litter cover did not differ between control and treatment plots (herbaceous littercontrol = 

9.3±1.5%), herbaceous litterlitter (11.3±1.4%; p=0.21), E. loxophleba littercontrol (19.7±3.5%), E. 

loxophleba litterlitter (19.3±3.1%; p=0.51), A. acuminata littercontrol(9.0±2.9%), A. acuminata litterlitter 

(11.1± 3.1%; p=0.51). Environmental variables varied along transects depending on the distance 

from tree, aspect, and tree species (Fig 6.1). A. acuminata canopies were smaller than those of E. 

loxophleba canopies, reflected in percent canopy cover values (Fig 6.1A). Nitrate increased with 

distance to A. acuminata trees, but only to the north (Fig 6.1B). By contrast, there were no strong 

trends in nitrate values around E. loxophleba trees (Fig 6.1B). Phosphorus values declined with 

distance to E. loxophleba trees only (Fig 6.1C). No discernible trends were found for potassium 

around either tree species (Fig 6.1D). Soil moisture measured in control plots was significantly 

greater to the south of trees than to the north (south estimate: 0.17, SE: 0.04, p=0.0001), though this 

was not the case for nitrate adsorption rates and aspect (south estimate: 0.36, SE: 0.76, p=0.64). 

Percent cover of native sclerophyllous litter was significantly positively correlated with overhead 

tree canopy cover (E. loxophleba estimate (SE): 0.02 (0.003), p<0.0001; A. acuminata estimate 

(SE): 0.03 (0.004), p<0.0001).  

 

Litter addition did not affect the measured abiotic variables with the exception of soil moisture (Fig 

6.2A), which increased with litter addition (estimate: 0.07, SE: 0.02, p=0.0001). Post-hoc 

comparisons revealed that while this increase in soil moisture in litter addition plots was apparent in 

transects of both tree species, the effects were strongest under E. loxophleba (adjusted p= 0.002) 

potentially due to greater treatment replication than under A. acuminata.  

 

Species richness and plant density 

 

Rarefied species richness was unaffected by the litter treatment (Table 6.1, Fig 6.3A; Appendix 

6.3). However, total plant densities declined with litter addition (p=0.02), as well as canopy cover 

(p=0.004). This trend was driven by native species, which declined in abundance with litter addition 

(p=0.04, Fig 6.3B) and canopy cover (p=0.02), while non-native plant density was unrelated to any 

explanatory variable in this study. 

 

Abundance and biomass of focal native and non-native species 

 

W. acuminata abundance declined with litter addition and canopy cover (p=0.03 and p<0.0001 

respectively, Table 6.2, Appendix 6.2 & 6.4), and phosphorus (p=0.01). M. myositidifolia 

abundance was positively associated with phosphorus (p=0.05, Table 6.2, Appendix 6.4). A. 
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calendula and V. myruos abundance decreased with canopy cover (p=0.04 and p=0.003, 

respectively; Table 6.2, Appendix 6.2 & 6.4). Mean individual biomass was not significantly 

influenced by any of the abiotic variables, with the exception of M. myositidifolia, individuals of 

which were smaller in areas of higher potassium (p=0.01, Table 6.2, Appendix 6.5). 

 

Discussion 

 

In general, plant community structure and productivity of focal species were more strongly 

influenced by soil and canopy cover gradients than the presence of litter. However, native species 

were significantly less abundant where litter was added across all natural gradients. Combined with 

evidence from regional scale studies, these results suggest that one of strongest effects of non-native 

annual grass litter in this system may be the prevention of germination and establishment of native 

annuals. If the impacts of litter were to compound over multiple years, even stronger negative 

impacts on native plant communities may result than were observed in this study.  

 

Natural microenvironmental gradients 

 

Higher soil moisture to the south of trees likely reflected greater shading by trees during the winter 

and spring in this system. Native sclerophyll litter was concentrated at the bases of trees, confirming 

that the effects of tree litter on understory communities may not be as strong in open areas relative 

to shaded areas. Nitrate was higher to the north of trees, especially in open patches adjacent to A. 

acuminata, which was surprising given previous findings in this system of greatest total N near 

trees (Prober and Wiehl 2011). As nitrate adsorption rates were unrelated to aspect, this may have 

been due to inherent soil differences leading to lower N leaching rates to the north of jam trees 

(Austin et al. 2004; Prober et al. 2005).  

 

Litter effects on microenvironmental conditions 

 

The most pronounced effect of A. barbata litter on measured abiotic variables was to elevate soil 

moisture, consistent with findings in other systems (reviewed in Facelli & Pickett 1991). Higher 

soil moisture in litter addition plots was likely due to reduced evaporation from the soil surface 

(Fowler 1986; Facelli et al. 1999). Non-native grass litter also has the potential to modify 

microenvironmental conditions over longer timescales than this study. In temperate eucalypt 

woodlands, these long-term effects may include increased levels of soil organic carbon (Dwyer et 

al. 2015) and increases in internal soil nitrogen cycling rates (Prober et al. 2002b; 2009).  
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Microenvironmental and litter effects on community structure  

 

Overall, canopy cover and soil nutrient gradients were more informative predictors of plant 

community structure than the presence of litter. Canopy cover in particular proved to be among the 

strongest drivers of understory annual community responses. Total and native annual plant 

abundance declined in shadier areas closest to trees, confirming previous observations of negative 

relationships between annual plants and York gum-jam overstories (Prober & Wiehl 2011). While I 

did not isolate the specific mechanisms driving canopy cover effects on understory communities, 

there are factors correlated with overhead canopy cover that may have contributed to this pattern. 

For example, the results show that the canopy effect was likely not due to increased nutrient content 

closer to trees. Rather, I suspect that increased volume of sclerophyllous leaf litter closer to tree 

trunks may have been important for driving abundance declines, as the percent of A. acuminata and 

E. loxophleba leaf litter was positively correlated with overhead canopy cover. Eucalyptus species 

may exert inhibitory effects on understory vegetation in low rainfall systems, including allelopathic 

stem flow or leachates from leaf litter (May & Ash 1990), though we did not test for such 

compounds in soil analyses.  

 

Of the soil nutrients measured, only P had a significant negative relationship with focal species 

abundances. Consistent with previous findings in York gum-jam woodlands (Dwyer et al. 2015), 

native W. acuminata declined in abundance as P increased. While phosphorus can be toxic to 

perennial species in this historically P-limited region (Lambers et al. 2008), it is unknown how it 

affects herbaceous annuals other than through competitive exclusion by exploitative annuals that 

thrive on P-enriched soils (Dwyer et al. 2014), which was not the case in this study. On the other 

hand, native forb M. myosotidifolia was positively associated with P. On the regional scale, 

however, the relationship between M. myosotidifolia and P is not significant (Dwyer et al. 

unpublished data). 

 

Unlike previous studies (Lenz et al. 2003), there was no detectable effect of A. barbata litter on 

species richness. Additionally, though this system is water-limited, the increase in soil moisture in 

the plots may not have been large or sustained for long enough to produce an effect on plant 

biomass. However, there was a significant negative effect of litter on plant density, driven by 

declines in the abundance of native species where litter was present. While this study examined the 

effects of litter deposition over one year, significant population declines of native species may, over 

time, lead to localised extinction. Even though the litter was added after the completion of natural 
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seed dispersal in this plant community, it may have prevented or delayed small, wind-dispersed 

native seeds from subsequently reaching the soil surface (Fowler 1986). This seed barrier effect of 

accumulated litter has been implicated in observational studies in several invaded York gum-jam 

woodland remnants (Dwyer et al. 2015). Non-native grass litter was associated with an increase in 

mean seed mass and a narrowed seed mass distribution, indicative of exclusion of relatively small-

seeded native species (Dwyer et al. 2015). Of seeds that did germinate, the A. barbata litter may 

have additionally acted as a mechanical barrier to emergence of native germinants (Facelli & 

Pickett 1991). The litter may also have promoted seedling herbivory (Facelli 1994) or granivory 

(Brown et al. 1979). 

 

Altered soil microclimate conditions beneath grass litter may have further reduced the abundance of 

native annuals by rendering the soil microenvironment unfavourable for germination. Temperature, 

light availability, and soil humidity cycles play key roles in regulating the germination of annuals in 

this system (Erickson et al. unpublished data) and in other semi-arid plant communities in Australia 

(Bell 1999) and worldwide (Baskin et al. 1993; Levine et al. 2008). In addition, an increase in 

moisture may have corresponded to elevated rates of infection of seedlings by fungal pathogens 

(Goldberg & Werner 1983; Facelli et al. 1999). 

 

The fact that the abundance of non-native annuals was not affected by A. barbata litter likely 

reflects inherent physiological differences between common native and non-native annuals in this 

system. To begin with, many common non-native annuals in York gum-jam annual plant 

communities exhibit more consistent and greater rates of germination than native annuals (Perez-

Fernandez et al. 2000; Wainwright & Cleland 2013; Mayfield et al. unpublished data). Non-native 

species in York gum-jam annual communities typically have larger seeds that may assist 

germination and penetration through dense layers of litter compared to smaller-seeded natives 

(Carson & Peterson 1990; Facelli & Pickett 1991; Dwyer et al. 2015). In other locations, non-native 

annual grass litter has had positive effects on conspecifics by direct feedback mechanisms 

promoting their abundance or through reductions in interspecific competition (Evans & Young 

1970; Lenz et al. 2003; Coleman & Levine 2007). The combination of insensitivity or even positive 

responses to non-native grass litter may thus be a factor promoting non-native annual grass 

persistence in invaded communities (Lenz et al. 2003) including York gum-jam woodlands. 

 

Conclusion 
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Here, I have documented the simultaneous contributions of underlying abiotic gradients and 

experimental non-native annual grass litter addition to the structure of an annual plant community. 

Notably, I have isolated the short-term aboveground effects of litter deposition from belowground 

effects of non-native annual grass presence. I have shown that canopy cover and soil nutrients are 

important drivers of community structure regardless of whether non-native annual grass litter is 

present. In addition, I have demonstrated that aboveground litter addition has the potential to reduce 

native species abundances even over short timeframes, implying that litter presence alone could 

eventually lead to localized extinction of native species.  

 

Of course, the presence of a naturally-occurring layer of non-native annual grass litter in this system 

is inherently tied to altered environmental conditions that promoted the establishment of a dense 

non-native grass canopy. My results thus represent effects on the microenvironment and community 

composition driven solely by litter, without the effects of live grass presence or the environmental 

conditions that may have promoted live grass presence and thus litter deposition. In reality, the 

proximate effects of robust non-native annual grasses (especially A. barbata) on native annuals are 

much more extensive. Live A. barbata individuals are known to be highly competitive for light and 

may also rapidly deplete soil moisture (Dyer & Rice 1999; Lenz & Facelli 2005; Coleman & Levine 

2007; Standish et al. 2008). Further, annual grass invasion is often reinforced by eutrophication or 

ungulate grazing, which may be selectively detrimental to native species (HilleRisLambers et al. 

2010; Prober et al. 2011). An increasing volume of litter may accumulate over time in given 

microsites (Facelli & Pickett 1991; Facelli & Carson 1991), and so my study almost certainly 

underestimated the potential long-term effects on native community structure. Still, over one year, 

the presence of litter significantly impacted the native annual plant community in this study. Thus, 

my results demonstrate that litter may degrade native plant communities in the absence of ongoing 

disturbance. Combined, the direct effects of grass competition and disturbance may interact with 

litter deposition to dramatically change community composition in favour of non-native annual 

grass persistence. 
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Fig 6.1 Smoothed splines (±1 SE) of transformed environmental variables with proximity to tree 

(grey: A. acuminata, black: E. loxophleba) measured in experimental plots in 2012 prior to litter 

addition. Position along the x-axis denotes position along the south (negative) - north (positive) 

transect relative to the tree at the origin. 
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Fig 6.2 Post-treatment abiotic variables measured in control and litter addition plots in the spring of 

2013 (grey: A. acuminata, white: E. loxophleba). Letters denote statistically significant differences 

among tree-treatment combinations. 
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Fig 6.3 (A) Raw species richness and (B) square-root transformed plant densities of native and non-

native annuals in control and litter addition treatment plots. 
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Table 6.1 Coefficients and (SEs) from mixed effects models of plant community responses to litter 

addition and pre-treatment environmental variables, with transect specified as a random effect. 

Asterisks denote level of significance (*: p≤0.05, **: p<0.01, ***: p<0.001). 

 

Fixed 

effects: 

 

 

Response: 

Intercept Litter 

addition 

Canopy 

cover 

Nitrate P K Random 

effects 

(variance 

estimates) 

 

Rarefied 

species 

richness 

2.25 

(0.95)* 

0.04 

(0.12) 

-0.003 

(0.003) 

0.09 

(0.10) 

-0.34 

(0.18) 

0.27 

(0.24) 

Among: 

<0.0001 

Within: 

0.37 

Total plant 

density 

8.33 

(2.45)** 

-0.65 

(0.27)* 

-0.02 

(0.008)*

* 

-0.12 

(0.26) 

-0.20 

(0.47) 

-0.36 

(0.61) 

Among: 

0.66 

Within: 

2.76 

Sqrt(Non-

native plant 

density) 

4.91 

(2.05)* 

-0.25 

(0.22) 

-0.01 

(0.008) 

0.14 

(0.21) 

-0.63 

(0.40) 

-0.18 

(0.50) 

Among: 

0.72 

Within: 

3.10 

Sqrt(Native 

plant 

density) 

5.94 

(2.53)* 

-0.63 

(0.30)* 

Fig 3B 

-0.02 

(0.007)* 

-0.37 

(0.27) 

0.17 

(0.48) 

-0.17 

(0.64) 

Among: 

0.42 

Within: 

2.56 
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Table 6.2 Coefficients and (SEs) from mixed effects models of focal species responses to litter 

addition and pre-treatment abiotic variables. Models of abundance used Poisson errors with log 

link, and plot within transect specified as a random effect. Biomass models were linear models of 

ln-transformed biomass values with transect specified as a random effect. Asterisks denote level of 

significance (*: p≤0.05, **: p<0.01, ***: p<0.001). 

Fixed effects: 

 

 

Response: 

Intercept Litter 

addition 

Canopy 

cover 

Ln 

(Nitrate) 

Ln(P) Ln(K) Random 

effects 

(variance 

estimates) 

A. calendula 

abundance  
 

-4.99 

(4.04) 

0.50 

(0.49) 

-0.02 

(0.009)* 

0.77 

(0.41) 

-0.95 

(0.77) 

0.90 

(1.00) 

Transect: 

0.32  

Plot: 1.43 

M. myosotidif-

olia abundance 

 

-1.09 

(4.95) 

-0.04 

(0.55) 

0.02 

(0.01) 

-0.57 

(0.46) 

1.74 

(0.90)

* 

-0.72 

(1.18) 

Transect: 

6.32  

Plot: 2.40 

V. myuros 

abundance 

-1.71 

(6.38) 

0.30 

(0.79) 

-0.05 

(0.02)** 

0.64 

(0.68) 

-0.10 

(1.17) 

-0.14 

(1.59) 

Transect: 

1.01  

Plot: 7.46 

W. acuminata 

abundance 

0.68 (1.89) -0.47 

(0.22)* 

-0.02 

(0.005)*

** 

0.06 

(0.17) 

-0.84 

(0.33)

* 

0.29 

(0.46) 

Transect: 

0.32  

Plot: 0.23 

A. calendula 

mean biomass/ 

individual (g) 

 

2.55 (4.32) 0.21 

(0.45) 

0.02 

(0.01) 

0.54 

(0.39) 

0.19 

(0.80) 

-1.09 

(1.09) 

Among: 

4e-8 

Within: 

1.99 

M. myosotidif-

olia mean 

biomass 

/individual (g) 

 

1.95  

(2.25) 

0.23 

(0.26) 

0.002 

(0.007) 

0.22 

(0.24) 

0.51 

(0.45) 

-1.54 

(0.57)

* 

Among: 

0.29  

Within: 

0.48 

V. myuros 

mean biomass/ 

individual (g) 

 

-4.88 

(2.13)* 

0.02 

(0.26) 

<0.0001 

(0.006) 

0.25 

(0.24) 

0.35 

(0.42) 

0.22 

(0.24) 

Among: 

0.22  

Within: 

0.81 

W. acuminata 

mean biomass/ 

individual (g) 

-4.94 

(2.39)* 

-0.00007 

(0.25) 

-0.006 

(0.007) 

0.18 

(0.23) 

0.39 

(0.43) 

0.58 

(0.59) 

Among: 

0.53  

Within: 

1.32 
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Chapter 7: General discussion 

 

In this thesis, I explored the role that local-scale biotic interactions play in the formation and 

maintenance of novel plant communities resulting from recent but extensive invasion and land-use 

change. Using a diverse winter annual plant system that persists within a fragmented agricultural 

landscape in southwest Western Australia, I have investigated species interactions in novel 

communities that differ in composition to original communities due to invasion by non-native 

species. Throughout, I have demonstrated that outcomes of interactions within and among 

commonly co-occurring native and invasive non-native species can indeed be negative, aligning 

with trends often reported in the literature on plant invasions. Interactions within and among native 

and non-native species, however, were also neutral or even positive. My findings indicate that these 

communities assemble, in part, as a result of a diverse suite of encounters within and among native 

and non-native species, the contingencies of which I discuss below. 

 

Summary  

 

In Chapter 3, I demonstrated that a broad range of plant-plant interactions simultaneously operate 

among native and non-native species in York gum-jam annual plant communities. This variation in 

interactions was due to focal species’ differential sensitivities to the density and the identity of co-

occurring individuals. In particular, the relative impacts of intra- versus interspecific interactions on 

performance (i.e. survival, biomass, and reproductive investment) shifted with density according to 

species, likely due to differences in species growth habits and growth forms. Specifically, native 

and non-native forbs (W. nitida and H. glabra respectively) responded negatively to strong 

intraspecific competition in terms of survival, yet the non-native grasses (B. madritensis and P. 

airoides) were either insensitive to, or responded positively to, intraspecific density. However, in 

two and three-species mixtures, these non-native grasses had opposite effects on co-occurring 

species. The robust non-native grass B. madritensis consistently excluded interspecific individuals, 

while the diminutive non-native grass P. airoides facilitated the native W. nitida. Thus, species 

identity proved to be a major determinant of interaction outcomes, which ranged from interference 

competition to facilitation. These results suggest that multispecies coexistence in invaded York 

gum-jam annual plant communities hinges in part on competitive differences among native and 

non-native species, and that certain species combinations may not be able to persist, even if highly 

competitive species are only present at low densities.  
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In Chapter 4, I explored the potential for facilitation of native by non-native species. In the field, I 

found that native W. acuminata survival was facilitated by the non-native grass A. cupaniana across 

a range of conspecific abundances. W. acuminata biomass and flower production in the field were 

impacted less by neighbouring A. cupaniana than conspecifics, suggesting intra- rather than 

interspecific competition influences W. acuminata in mixtures with A. cupaniana in the field. In 

growth chambers, A. cupaniana had a neutral effect on W. acuminata performance measures across 

a range of relative abundances and was unaffected by W. acuminata and conspecifics. Together, 

these responses to intra and interspecific competition suggest that coexistence between these two 

species is likely to be stable under certain conditions. The grasses showed neutral or positive 

density-dependence, indicative of strategies that may facilitate their post-establishment spread as 

invaders. In opposition to results obtained in Chapter 3 with congener W. nitida, W. acuminata 

survival decreased in communities containing P. airoides compared to monocultures or mixtures 

with A. cupaniana, indicating that these interactions perhaps cannot be generalized within 

functional groups or genera. Overall, this study confirmed the potential importance of facilitative or 

neutral interactions between native and non-native species in invaded plant communities. 

 

In Chapter 5, I found little evidence of strong competition in a group of commonly co-occurring 

native and non-native annuals in the field.  I also assessed species and community-level responses 

to growing in original communities (entirely native mixtures) and novel communities (mixtures of 

natives and non-natives). On average, single-species responses appeared to drive over-yielding  

trends (via selection and dominance effects) rather than multispecies responses (complementarity) 

in original communities. Over-yielding of W. acuminata only led to significantly positive selection 

effects in original communities because these effects were cancelled out by negative selection 

effects incurred by a productive but weakly competitive species, H. glabra, in novel communities. 

The local-scale microenvironment did not affect species yields as much as biotic composition, site-

scale environmental differences, or interannual climate variation. My results suggest that factors in 

addition to interactions may be important for determining the fitness of many species in this system, 

and thus the stability of original and novel communities. 

 

From a more applied angle, in Chapter 6 I experimentally demonstrated that certain species of non-

native annual grass may be detrimental to York gum-jam woodland annual communities simply 

through deposition of litter, or residual dry biomass. My results showed that even over the relatively 

short timeframe of one year, the litter of the non-native annual grass Avena barbata may cause 

significant population declines in native species. Importantly, non-native species abundances were 

not affected by litter in this study, suggesting that the effect of litter may be selectively damaging to 
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native species, especially if compounded over time. This study isolated the aboveground litter 

effects of invasive non-native annual grass presence from the effects of direct competition from 

living individuals and the disturbed conditions potentially promoting their establishment. Moreover, 

I measured litter impacts on plant community structure in conjunction with several important 

natural local-scale environmental gradients. While native abundances declined, the litter treatments 

did not affect species richness (native or non-native) once inherent differences in plant abundance 

related to tree proximity were accounted for. Additionally, focal species productivity was 

unaffected by litter despite greater soil moisture where litter was present. When combined with 

regional-scale observations of litter effects on seed size distributions, my results show that the 

primary direct effect of A. barbata litter may be to prevent germination and establishment of native 

species. If these impacts were to compound over multiple years, it may result in strong reductions in 

abundance and potentially diversity.  

 

Limitations of this thesis 

 

Throughout my candidature, there were instances of experiments not going exactly to plan due to 

unforeseen circumstances or insufficient time. For example, in Ch 3, additional native focal species 

Goodenia berardiana and Rhodanthe spicata were included in the experimental design to provide a 

more detailed picture of non-native and native species interactions, but were removed due to 

insufficient germination. Similarly, in the growth chamber component of Ch 4, the original 

experimental design called for W. nitida as a focal species in addition to W. acuminata. Due to 

insufficient germination of W. nitida, however, all replicates that included this species were 

removed from analyses, which partly limited my ability to compare these results to those found in 

Ch 3. The different results for the two Waitzia species in these chapters did illustrate how species 

specific these interactions seem to be.  In Ch 5, assessing diversity effects in both years was not 

possible due to changes in the absolute and relative abundances of some focal species between 

years, though it subsequently highlighted interannual variation as an important determinant of 

species performance and became an interesting discussion point. Originally, my thesis was to 

include a study on factors conferring biotic resistance in native communities, but after finding the 

unexpected evidence of facilitation in the experiment described in Ch 3, the follow-up experiment 

in Ch 4 was devised and took priority. 

 

Future research needs 
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While this thesis fills knowledge gaps on how native and non-native species interact in this system, 

it may also serve as a starting point for a wealth of future research questions. 

 

The research conducted in this thesis provides baseline information on some species’ relative 

sensitivities to intra- versus interspecific competition and associated implications for the stability of 

woodland annual plant communities. It is now possible to use coexistence models derived by 

Chesson (2000), parameterized by field data (Levine & HilleRisLambers 2009), for direct 

calculations of the magnitude of niche and fitness differences among commonly co-occurring native 

and non-native species in these communities.  

 

In the same vein, I found differences among species in their responses to interannual climate 

variability and susceptibility to intraspecific competition. These observations suggest that temporal 

storage effects may be important in these plant communities, possibly operating through seed banks 

and seed dormancy mechanisms (Pake & Venable 1996; Facelli et al. 2005). This system is well 

suited to further research on the influence of intra- and interannual environmental heterogeneity on 

population dynamics and diversity maintenance over long time scales. 

 

Plant-pollinator dynamics for several common annual species have recently been described in intact 

and invaded York gum-jam annual communities (X. Loy, Hons. thesis). Interspecific differences in 

pollen-limitation, pollinator assemblages, and flowering phenology may be important insect-

mediated determinants of interspecific interactions in this system (X. Loy, Hons. thesis). Other 

types of inter-trophic interactions almost certainly promote density-dependence and constrain 

species’ relative abundances, such as interactions with soil microbial communities, detritivores, and 

herbivores, but virtually nothing is known about these interactions at this stage. Filling these 

knowledge gaps would undoubtedly strengthen our understanding of important niche dimensions 

promoting coexistence in these diverse plant communities.  

 

Lastly, the conditions required for non-native species to facilitate native species (and the 

generalities of these conditions) merit further investigation. Although plot-level 

microenvironmental variables did not explain the positive relationship between A. cupaniana and 

survival of W. acuminata in the field, other processes or environmental covariates operating at 

different scales may contribute to this positive relationship. A. cupaniana relationships with other 

common native annuals across a range of York gum-jam woodlands should also be explored to fully 

understand the implications of this invasion on community structure and its long-term effects. 

Similarly, as A. cupaniana is a widespread invader in other winter annual plant systems (e.g. 



99 

 

California Floristic Province), it may be worth investigating whether these neutral or facilitative 

interactions occur with resident annual plant species in A. cupaniana’s other invasive ranges, or 

between functionally similar non-native and native species in a variety of communities. 

 

Conclusion 

 

The experiments composing this thesis contribute baseline empirical support for modern 

coexistence theory, which is currently lacking despite the general acceptance of the theory in the 

published literature. Further, my thesis relates the complexities of local-scale interactions to overall 

community functioning. As a whole, this research not only strengthens the validity of modern 

theoretical community ecology through experimentation, but contributes valuable knowledge on the 

ecology of this relatively little-studied yet globally renowned region of floristic diversity.  

 

I have demonstrated in this thesis that while published reports on non-native species impacts are 

often biased towards those with strong negative effects (“transformers” following the nomenclature 

of Richardson et al. (2000), or “exploiters” following nomenclature of Lai et al. (2015)), the 

importance of neutral or positive effects on community structure may often be overlooked. My 

work provides local-scale empirical support for the growing collection of observations that many 

areas of high native diversity retain or experience enhanced diversity post-invasion (Stohlgren et al. 

1999; Levine 2000; Cleland et al. 2004). These findings challenge historical perceptions of non-

native species as predominantly detrimental to resident native communities. Information in this 

thesis may also be useful for guiding management practices or allocation of management resources 

in York gum-jam woodlands in the future. Of course, the utility of these results for management 

may depend on the degree to which the goal of retaining original community function is 

emphasized compared to returning these communities to pre-invasion species composition (Hobbs 

et al. 2006).  

 

To conclude, this thesis provides timely contributions to the fields of plant community ecology and 

biological invasions. A number of important themes emerge from this research. First, interactions 

that occur among individuals over small spatial and temporal scales have the potential to influence 

large-scale community dynamics and ecosystem function. Second, interspecific variation in 

response to competition may, to a degree, underlie overall community structure and coexistence. 

However, community responses should not be considered in isolation of intraspecific variation and 

underlying environmental conditions that determine when the impacts of competition are strongest. 

Last, non-native species fall along a gradient of impact on native species that ranges in direction 

from negative to positive. Defining the complexities of these impacts is critical to understanding 
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conditions of long-term multispecies coexistence, and the realized functioning of increasingly 

prevalent novel plant communities worldwide.  
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Appendices 

Appendix 3.1 Coefficients from mixed effects model of W. nitida survival by density and 

competitor identity. Random effects variance estimates reported in main body of this text. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) 1.110 0.548 2.026 0.043 

Density -0.056 0.012 -4.645 3.40E-06 

Growing with H. glabra -2.283 0.723 -3.157 0.002 

Growing with H. glabra 

and B. madritensis -3.209 0.948 -3.385 0.001 

Growing with P. airoides 2.395 0.601 3.988 6.67E-05 

Growing with B. 

madritensis -4.273 1.166 -3.663 0.0002 

 

 

Appendix 3.2 Coefficients from mixed effects model of H. glabra survival by density and 

competitor identity. Random effects variance estimates reported in main body of this text. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) -0.288 0.411 -0.699 0.484 

Density -0.0078 0.007 -1.037 0.300 

Growing with W. nitida 0.903 0.708 1.275 0.202 

Growing with W. nitida and B. 

madritensis 3.008 0.957 3.143 0.002 

Growing with B. madritensis -0.713 0.865 -0.824 0.410 

Density* Growing with W. nitida -0.006 0.012 -0.521 0.603 

Density* Growing with W. nitida and B. 

madritensis -0.091 0.022 -4.196 

2.72E-

05 

Density* Growing with B. madritensis -0.027 0.016 -1.701 0.089 

 

 

Appendix 3.3 Coefficients from mixed effects model of B. madritensis survival by density and 

competitor identity. Random effects variance estimates reported in main body of this text. 

Fixed effects: Estimate Std. Error z value Pr(>|z|) 

(Intercept) 5.387 1.258 4.283 1.85E-05 

Density -0.028 0.017 -1.646 0.100 

Growing with W. nitida and H. 

glabra -1.034 0.953 -1.085 0.278 

Growing with W. nitida -0.626 0.947 -0.661 0.508 

Growing with H. glabra 1.140 1.092 1.044 0.296 
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Appendix 3.4 Coefficients from mixed effects model of P. airoides survival by density and 

competitor identity. Random effects variance estimates reported in main body of this text. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) -0.471 0.421 -1.118 0.264 

Density 0.011 0.007 1.565 0.118 

Growing with W. nitida 1.074 0.667 1.611 0.107 

Density* Growing with W. nitida -0.038 0.011 -3.392 0.001 

 

 

Appendix 3.5 Coefficients from mixed effects model of W. nitida biomass per individual by 

density and competitor identity. Random effects variance estimates reported in main body of this 

text. 

Fixed effects: Value Std. Error DF t-value p-value 

(Intercept) -1.805 0.218 16.000 -8.297 0.000 

Density 0.001 0.005 16.000 0.144 0.888 

Growing with H. 

glabra -0.410 0.298 16.000 -1.376 0.188 

Growing with H. 

glabra and B. 

madritensis -2.120 0.468 16.000 -4.532 0.000 

Growing with P. 

airoides -0.402 0.223 16.000 -1.802 0.090 

Growing with B. 

madritensis -1.428 0.467 16.000 -3.055 0.008 

 

 

Appendix 3.6 Coefficients from mixed effects model of H. glabra biomass per individual by 

density and competitor identity. Random effects variance estimates reported in main body of this 

text. 

Fixed effects: Value Std. Error DF t-value p-value 

(Intercept) -1.199 0.317 22.000 -3.782 0.001 

Density -0.020 0.005 22.000 -3.988 0.001 

Growing with W. nitida 0.284 0.285 22.000 0.997 0.330 

Growing with W. nitida 

and B. madritensis -1.245 0.316 22.000 -3.945 0.001 

Growing with B. 

madritensis -1.495 0.353 22.000 -4.237 0.000 
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Appendix 3.7 Coefficients from mixed effects model of B. madritensis biomass per individual by 

density and competitor identity. Random effects variance estimates reported in main body of this 

text. 

Fixed effects: Value 

Std. 

Error DF t-value p-value 

(Intercept) -2.097 0.087 31.000 -24.234 0.000 

Density -0.014 0.001 31.000 -11.248 0.000 

Growing with W. nitida and 

H. glabra 0.730 0.082 31.000 8.854 0.000 

Growing with W. nitida 0.536 0.082 31.000 6.528 0.000 

Growing with H. glabra 0.490 0.082 31.000 5.969 0.000 

 

 

Appendix 3.8 Coefficients from mixed effects model of P. airoides biomass per individual by 

density and competitor identity. Random effects variance estimates reported in main body of this 

text. 

Fixed effects: Value Std. Error DF t-value p-value 

(Intercept) -3.308 0.439 14.000 -7.536 0.000 

Density -0.003 0.008 14.000 -0.401 0.694 

Growing with W. 

nitida -0.709 0.425 14.000 -1.669 0.117 

 

 

Appendix 3.9 Coefficients from mixed effects models of the proportion of W. nitida individuals 

investing in reproduction by density and competitor identity. Random effects variance estimates 

reported in main body of this text. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) -0.38164 0.276835 -1.379 0.168023 

Density -0.03028 0.006056 -5.001 5.71E-07 

Growing with H. glabra -1.8698 0.558539 -3.348 0.000815 

Growing with P. airoides 1.130102 0.278153 4.063 4.85E-05 

 

 

Appendix 3.10 Coefficients from mixed effects models of the proportion of H. glabra individuals 

investing in reproduction by density and competitor identity. Random effects variance estimates 

reported in main body of this text. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) -0.351 0.310 -1.130 0.258 

Density -0.021 0.005 -4.178 0.000 
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Growing with W. nitida 0.673 0.257 2.618 0.009 

Growing with W. nitida and B. 

madritensis -1.668 0.473 -3.529 0.000 

Growing with B. madritensis -2.814 0.628 -4.482 0.000 

 

 

Appendix 3.11 Coefficients from mixed effects models of the proportion of B. madritensis 

individuals investing in reproduction by density and competitor identity. Random effects variance 

estimates reported in main body of this text. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) -2.930 0.819 -3.579 0.000 

Density -0.051 0.012 -4.076 0.000 

Growing with H. glabra and W. nitida 2.541 0.877 2.899 0.004 

Growing with W. nitida 1.650 0.928 1.779 0.075 

Growing with H. glabra 3.007 0.867 3.470 0.001 

 

 

Appendix 3.12 Coefficients from mixed effects models of the proportion of P. airoides individuals 

investing in reproduction by density and competitor identity. Random effects variance estimates 

reported in main body of this text. 

Fixed effects: Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.401 0.442 

-

0.908 0.364 

Density -0.004 0.008 

-

0.488 0.626 

Growing with W. nitida 0.728 0.791 0.921 0.357 

Density* Growing with W. nitida -0.042 0.015 

-

2.732 0.006 
 

 

 

Appendix 4.1 T-statistic (t), degrees of freedom (df), p-value with Bonferroni correction for 

multiple comparisons (Adjusted p), sample means, and 95% confidence intervals (CI) from t-tests 

of environmental variables (transformed to improve normality where appropriate) between W. 

acuminata (monoculture) plots and W. acuminata + A. cupaniana (mixture) plots at Bendering 

Reserve in 2013.  

Variable t df Adjusted 

p 

Mean, 

mixture 

plots 

Mean, 

monoculture 

plots 

95% CI 

Soil moisture 

(%) 

-0.13 9.43 1.0 5.60 5.67 -1.25, 

1.12 

ln (nitrate) 0.94 15.61 1.0 0.94 0.51 -0.54, 
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1.40 

ln(ammonium) 0.45 15.98 1.0 0.64 0.52 -0.44, 

0.67 

ln(Colwell 

phosphorus) 

-0.13 15.65 1.0 1.16 1.19 -0.53, 

0.47 

ln(Colwell 

potassium) 

-1.52 15.41 1.0 4.77 5.00 -0.56, 

0.09 

ln(overhead 

tree canopy 

cover (%)) 

-2.50 13.81 0.30 3.05 3.77 -1.35, -

0.10 

A. acuminata 

litter 

1.33 15.61 1.0 40.5 55.63 -8.99, 

39.24 

Sqrt(E. 

loxophleba 

litter) 

0.62 12.71 1.0 0.71 0.45 -0.65, 

1.18 

ln(Herbaceous 

litter) 

0.49 13.47 1.0 2.64 2.47 -0.58, 

0.93 

Nitrate 

adsorption rate 

(μg/cm/day) 

-1.46 4.0 1.0 0.02 1.38 -3.97, 

1.23 

 

 

 

Appendix 4.2 Coefficients and (SEs) from mixed effects models of W. acuminata performance 

(proportion of individuals surviving, biomass per individual, proportion flowering, and flower count 

per flowering individual) in growth chamber experiment by relative frequency when growing in 

neighbourhoods of P. airoides relative to neighbourhoods of A. cupaniana. Asterisks denote level 

of significance (*: p≤0.05, **: p<0.01, ***: p<0.001). 

 

 

 

 

Fixed effects: 

Response of W. acuminata 

Proportion 

individuals 

surviving 

ln(Biomass 

per individual 

(g)) 

Proportion 

of 

individuals 

flowering 

ln(Flower count 

per flowering 

individual) 

Intercept 

(growing with 

A. cupaniana) 

1.14 (0.64) 0.42 (0.03) *** 0.68 (0.44) 1.50 (0.28)*** 

Growing with 

P. airoides 

-1.91 (1.10) -0.19 (0.06)** 

 

0.47 (1.01) -0.81 (0.78) 

Relative 

frequency 

-0.58 (1.12) -0.21 (0.06)**  -1.15 (0.73) -0.60 (0.48) 

Growing with 

P. airoides x 

Relative 

frequency 

1.72 (2.10) 0.30 (0.12)*  -2.35 (1.81) 0.79 (1.49) 

Random effects 

(variance 

estimates): 

    

Among pot 0.86 0.003 0.18 0.09 
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Within pot NA 0.0004 NA 0.61 

 

 

Appendix 4.3 Coefficients from mixed effects models of W. acuminata survival in the field 

growing with and without A. cupaniana along a gradient of conspecific density. Random effects 

variance estimates are reported in the main body of this text. 

Fixed effects: Estimate Std. Error z value Pr(>|z|) 

(Intercept) 0.380 0.519 0.732 0.464 

Density 0.020 0.031 0.626 0.531 

Growing with A. 

cupaniana 0.877 0.341 2.575 0.01 

 

 

Appendix 4.4 Coefficients from mixed effects models of W. acuminata biomass per individual in 

the field growing with and without A. cupaniana along a gradient of conspecific density. Random 

effects variance estimates are reported in the main body of this text. 

Fixed effects: Value 

Std. 

Error DF t-value p-value 

(Intercept) -0.007 0.344 195 -0.020 0.984 

Density -0.057 0.022 15 -2.58 0.021 

Growing with A. 

cupaniana -0.377 0.253 15 -1.492 0.156 

 

 

Appendix 4.5 Coefficients from mixed effects models of W. acuminata flower count per individual 

in the field growing with and without A. cupaniana along a gradient of conspecific density. Random 

effects variance estimates are reported in the main body of this text. 

Fixed effects: Estimate Std. Error z value Pr(>|z|) 

(Intercept) 3.408 0.265 12.853 2.00E-16 

Density -0.048 0.017 -2.829 0.005 

Growing with A. 

cupaniana -0.174 0.195 -0.888 0.374 

 

 

Appendix 4.6 Coefficients from mixed effects models of W. acuminata survival in the growth 

chamber experiment growing with A. cupaniana or P. airoides at low relative frequency. Random 

effects variance estimates are reported in the main body of this text. 

 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 
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(Intercept) 2.538 0.938 2.705 0.007 

With A. cupaniana -1.270 1.075 -1.182 0.237 

With P. airoides -3.342 1.228 -2.721 0.007 

 

 

Appendix 4.7 Coefficients from mixed effects models of W. acuminata survival in the growth 

chamber experiment growing with A. cupaniana or P. airoides at medium relative frequency. 

Random effects variance estimates are reported in the main body of this text. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) 0.786 0.266 2.950 0.003 

With A.cupaniana -0.204 0.358 -0.568 0.570 

With P.airoides -0.694 0.426 -1.630 0.103 

 

 

Appendix 4.8 Coefficients from mixed effects models of W. acuminata survival in the growth 

chamber experiment growing with A. cupaniana or P. airoides at high relative frequency. Random 

effects variance estimates are reported in the main body of this text. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) 0.313 0.760 0.412 0.680 

With A.cupaniana 0.624 1.027 0.607 0.544 

With P. airoides -0.559 1.518 -0.368 0.713 

 

 

Appendix 4.9 Coefficients from mixed effects models of W. acuminata biomass per individual in 

the growth chamber experiment growing with A. cupaniana or P. airoides at low relative frequency. 

Random effects variance estimates are reported in the main body of this text. 

Fixed effects: Value 

Std. 

Error DF t-value p-value 

(Intercept) -2.347 0.190 64.000 -12.325 0.000 

With A.cupaniana 0.073 0.260 8.000 0.279 0.787 

With P.airoides -0.760 0.479 8.000 -1.585 0.152 

 

 

Appendix 4.10 Coefficients from mixed effects models of W. acuminata biomass per individual in 

the growth chamber experiment growing with A. cupaniana or P. airoides at medium relative 

frequency. Random effects variance estimates are reported in the main body of this text. 

Fixed effects: Value 

Std. 

Error DF t-value p-value 
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(Intercept) -3.065 0.136 224.000 -22.480 0.000 

With A.cupaniana 0.050 0.176 11.000 0.284 0.782 

With P.airoides -0.042 0.218 11.000 -0.195 0.849 

 

 

Appendix 4.11 Coefficients from mixed effects models of W. acuminata biomass per individual in 

the growth chamber experiment growing with A. cupaniana or P. airoides at high relative 

frequency. Random effects variance estimates are reported in the main body of this text. 

Fixed effects: Value 

Std. 

Error DF t-value p-value 

(Intercept) -3.981 0.203 224.000 -19.585 0.000 

With A.cupaniana 0.646 0.268 5.000 2.406 0.061 

With P.airoides 0.886 0.427 5.000 2.076 0.093 

 

 

Appendix 4.12 Coefficients from mixed effects models of W. acuminata proportion of individuals 

flowering in the growth chamber experiment growing with A. cupaniana or P. airoides at low 

relative frequency. Random effects variance estimates are reported in the main body of this text. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) 0.380 0.360 1.054 0.292 

With A.cupaniana 0.355 0.503 0.705 0.481 

With P.airoides -0.380 0.793 -0.478 0.632 

 

 

Appendix 4.13 Coefficients from mixed effects models of W. acuminata proportion of individuals 

flowering in the growth chamber experiment growing with A. cupaniana or P. airoides at medium 

relative frequency. Random effects variance estimates are reported in the main body of this text. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) 1.256 0.219 5.746 0.000 

With A.cupaniana -0.009 0.290 -0.032 0.974 

With P.airoides -0.155 0.376 -0.413 0.680 

 

 

Appendix 4.14 Coefficients from mixed effects models of W. acuminata proportion of individuals 

flowering in the growth chamber experiment growing with A. cupaniana or P. airoides at high 

relative frequency. Random effects variance estimates are reported in the main body of this text. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 
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(Intercept) -0.292 0.274 -1.065 0.287 

With A.cupaniana 0.115 0.364 0.317 0.752 

With P.airoides -2.038 0.841 -2.422 0.015 

 

 

Appendix 4.15 Coefficients from mixed effects models of W. acuminata number of flowers per 

individual in the growth chamber experiment growing with A. cupaniana or P. airoides at low 

relative frequency. Random effects variance estimates are reported in the main body of this text. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) 1.547 0.212 7.306 0.000 

With A.cupaniana -0.177 0.282 -0.628 0.530 

With P.airoides -1.510 0.642 -2.352 0.019 

 

 

Appendix 4.16 Coefficients from mixed effects models of W. acuminata number of flowers per 

individual in the growth chamber experiment growing with A. cupaniana or P. airoides at medium 

relative frequency. Random effects variance estimates are reported in the main body of this text. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) 1.256 0.219 5.746 0.000 

With A.cupaniana -0.009 0.290 -0.032 0.974 

With P.airoides -0.155 0.376 -0.413 0.680 

 

 

Appendix 4.17 Coefficients from mixed effects models of W. acuminata number of flowers per 

individual in the growth chamber experiment growing with A. cupaniana or P. airoides at high 

relative frequency. Random effects variance estimates are reported in the main body of this text. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) 0.805 0.202 3.981 0.000 

With A.cupaniana 0.227 0.257 0.882 0.378 

With P.airoides -0.950 0.747 -1.271 0.204 

 

 

Appendix 4.18 Coefficients from mixed effects models of focal species survival by their relative 

frequencies in the growth chamber experiment. Random effects estimates are reported in the main 

body of this text. 

Fixed effects: Estimate Std. z value Pr(>|z|) 
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W. acuminata (+ A. cupaniana) Error 

(Intercept) 1.294 0.604 2.143 0.032 

Relative frequency -0.920 0.864 -1.065 0.287 

W. acuminata (+ P. airoides)     

(Intercept) -0.565 0.429 -1.317 0.188 

Relative frequency 0.789 0.533 1.479 0.139 

A. cupaniana (+ W. acuminata)     

(Intercept) 1.840 1.075 1.712 0.087 

Relative frequency 1.484 1.550 0.957 0.338 

P. airoides (+W. acuminata)     

(Intercept) 1.397 2.652 0.527 0.598 

Relative frequency 1.366 3.312 0.413 0.680 

 

 

Appendix 4.19 Coefficients from mixed effects models of focal species biomass per individual by 

their relative frequencies in the growth chamber experiment. Random effects estimates are reported 

in the main body of this text. 

Fixed effects: 

W. acuminata (+A. 

cupaniana) Value 

Std. 

Error DF t-value p-value 

(Intercept) 0.401 0.020 17.000 20.273 0.000 

Relative frequency -0.162 0.030 17.000 -5.439 0.000 

W. acuminata (+ P. airoides)      

(Intercept) 0.255 0.049 9.000 5.199 0.001 

Relative frequency 0.018 0.069 9.000 0.255 0.804 

A. cupaniana (+ W. 

acuminata)      

(Intercept) 0.171 0.016 16.000 10.668 0.000 

Relative frequency -0.042 0.024 16.000 -1.740 0.101 

P. airoides (+W.acuminata)      

(Intercept) 0.110 0.049 9.000 2.248 0.051 

Relative frequency 0.104 0.064 9.000 1.626 0.138 

 

 

Appendix 4.20 Coefficients from mixed effects models of focal species proportion of surviving 

individuals flowering by their relative frequencies in the growth chamber experiment. Random 

effects estimates are reported in the main body of this text. 

Fixed effects: 

W. acuminata (+A. 

cupaniana) Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) 0.658 0.387 1.700 0.089 

Relative frequency -1.097 0.524 -2.095 0.036 

W. acuminata (+P. airoides)     

(Intercept) 1.022 1.030 0.993 0.321 

Relative frequency -3.418 1.931 -1.770 0.077 
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A. cupaniana (+W. 

acuminata)     

(Intercept) 0.238 0.428 0.556 0.578 

Relative frequency -0.042 0.588 -0.072 0.943 

P. airoides (+W. acuminata)     

(Intercept) -2.872 1.099 -2.613 0.009 

Relative frequency 2.980 1.301 2.290 0.022 

 

 

Appendix 4.21 Coefficients from mixed effects models of W. acuminata flower count per 

individual by relative frequency in the growth chamber experiment growing with either A. 

cupaniana or P. airoides. Random effects estimates are reported in the main body of this text. 

Fixed effects: 

W. acuminata (+A. 

cupaniana) Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) 1.666 0.212 7.865 0.000 

Relative frequency -0.934 0.298 -3.139 0.002 

W. acuminata (+P.airoides)     

(Intercept) 0.979 0.452 2.165 0.030 

Relative frequency -0.345 0.549 -0.628 0.530 

 

 

Appendix 5.1 Description of focal species in each mixture at Bendering Reserve and number of 

replicates of each mixture type in both years. Asterisks denote non-native species. 

Mixture type Component species n2012 n2013 

Monoculture A. cupaniana 

(Poaceae)* 

9 10 

 G. nodulosus 

(Haloragaceae) 

10 10 

 H. glabra 

(Asteraceae)* 

10 10 

 R. manglesii 

(Asteraceae) 

11 10 

 Trachymene sp. 

(Araliaceae) 

12 

(7 T. ornata + 

5 T. pilosa) 

10  

(2 T. cyanopetala + 

5 T. ornata + 3 T. 

pilosa)  

 W. acuminata 

(Asteraceae) 

14 10 

Original 

mixture 

G. nodulosus  

W. acuminata 

R. manglesii  

Trachymene sp. 

11 

(1 T. 

cyanopetata + 

3 T. ornata + 

7 T. pilosa) 

10 

(4 T. cyanopetala + 2 

T. ornata + 4 T. 

pilosa) 

Novel mixture G. nodulosus 

W. acuminata 

10 10 
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A. cupaniana* 

H. glabra * 

 

 

Appendix 5.2 Coefficients from mixed effects models of individual plant biomass by mixture type, 

soil moisture, and soil P in 2012. A dash denotes instances where focal species was not present in a 

given mixture type. Asterisks denote level of significance (*: p≤0.05, **: p<0.01, ***: p<0.001). 

A. cupaniana Value Std.Error DF t-value p-value 

(Intercept) -5.905 0.357 213.000 -16.536 0.000 

Novel mixture 0.194 0.184 12.000 1.051 0.314 

Soil moisture 0.120 0.121 12.000 0.992 0.341 

Colwell P 0.013 0.007 12.000 1.855 0.088 

Random effects 

(variance estimates) 

 

Block: 0.008 

Quadrat: 0.078 

Residual:0.436     

 

H. glabra      

(Intercept) -3.056 0.463 190.000 -6.606 0.000 

Novel mixture -0.529 0.231 13.000 -2.285 0.040 

Soil moisture 0.081 0.148 13.000 0.545 0.595 

Colwell P 0.036 0.035 13.000 1.042 0.316 

Random effects 

(variance estimates) 

 

Block: 9.31e-9 

Quadrat: 0.168 

Residual: 

0.608     

 

G. nodulosus      

(Intercept) -4.965 0.540 259.000 -9.193 0.000 

Novel mixture -0.049 0.227 21.000 -0.214 0.832 

Original mixture -0.461 0.228 21.000 -2.020 0.056 

Soil moisture 0.259 0.164 21.000 1.575 0.130 

Colwell P -0.049 0.081 21.000 -0.603 0.553 

Random effects 

(variance estimates) 

 

Block: 0.012 

Quadrat: 0.213 

Residual: 

0.217     

 

R. manglesii      

(Intercept) -4.181 0.582 218.000 -7.185 0.000 

Original mixture  -0.230 0.152 12.000 -1.513 0.156 

Soil moisture 0.104 0.164 12.000 0.636 0.537 

Colwell P -0.020 0.071 12.000 -0.282 0.783 

Random effects 

(variance estimates) 

 

Block: 

9.5511e-9     
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Quadrat: 0.095 

Residual: 

0.180 

 

T. pilosa      

(Intercept) -4.383 1.470 117.000 -2.982 0.004 

Original mixture  -1.179 0.409 6.000 -2.885 0.028 

Soil moisture 1.073 0.457 6.000 2.349 0.057 

Colwell P -0.422 0.246 6.000 -1.715 0.137 

Random effects 

(variance estimates) 

 

Block: 0.462 

Quadrat:0.194 

Residual: 

0.212     

 

W. acuminata      

(Intercept) -2.586 0.487 363.000 -5.306 0.000 

Novel mixture 0.207 0.206 25.000 1.001 0.327 

Original mixture 0.092 0.204 25.000 0.449 0.657 

Soil moisture -0.013 0.141 25.000 -0.091 0.928 

Colwell P -0.087 0.074 25.000 -1.181 0.249 

Random effects 

(variance estimates) 

 

Block: 0.012 

Quadrat: 0.174 

Residual: 

0.476     

 

 

Appendix 5.3 Coefficients from mixed effects models of individual plant biomass by mixture type, 

soil moisture, and soil P in 2013. A dash denotes instances where focal species was not present in a 

given mixture type. Asterisks denote level of significance (*: p≤0.05, **: p<0.01, ***: p<0.001). 

 

A. cupaniana Value Std.Error DF t-value p-value 

(Intercept) -5.072 0.481 252.000 -10.541 0.000 

Novel mixture -0.523 0.272 10.000 -1.919 0.084 

Soil moisture 0.029 0.097 10.000 0.295 0.774 

Colwell P 0.042 0.064 10.000 0.659 0.525 

Random effects 

(variance estimates) 

 

Block: 0.06 

Quadrat: 0.17 

Residual:0.57 

     

G. nodulosus      

(Intercept) -3.931 0.463 279.000 -8.490 0.000 

(Intercept) -0.392 0.217 15.000 -1.808 0.091 

Novel mixture -0.025 0.258 15.000 -0.095 0.925 

Original mixture 0.087 0.093 15.000 0.929 0.367 
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Soil moisture 0.038 0.036 15.000 1.073 0.300 

Random effects 

(variance estimates) 

 

Block: 3.67e-9 

Quadrat: 0.152 

Residual: 0.476 

     

H. glabra      

(Intercept) -2.064 0.465 152.000 -4.441 0.000 

Novel mixture -0.453 0.197 11.000 -2.297 0.042 

Soil moisture 0.030 0.084 11.000 0.356 0.728 

Colwell P 0.037 0.038 11.000 0.988 0.344 

Random effects 

(variance estimates) 

 

Block: 0.03 

Quadrat: 0.08 

Residual: 0.70 

     

R. manglesii      

(Intercept) -3.438 0.536 219.000 -6.409 0.000 

Original mixture  0.282 0.317 8.000 0.890 0.400 

Soil moisture -0.063 0.086 8.000 -0.731 0.486 

Colwell P -0.045 0.063 8.000 -0.720 0.492 

Random effects 

(variance estimates) 

 

Block: 0.023 

Quadrat: 0.23 

Residual: 0.355 

     

T. pilosa      

(Intercept) -3.301 1.296 95.000 -2.548 0.012 

Original mixture  -0.812 0.702 2.000 -1.157 0.367 

Soil moisture 0.140 0.245 2.000 0.570 0.626 

Colwell P -0.082 0.114 2.000 -0.715 0.549 

Random effects 

(variance estimates) 

 

Block: 4.0e-8 

Quadrat: 0.462 

Residual: 0.336 

     

W. acuminata      

(Intercept) -1.111 0.576 194.000 -1.929 0.055 

Novel mixture 0.052 0.324 15.000 0.159 0.876 

Original mixture 0.141 0.351 15.000 0.402 0.693 

Soil moisture 0.049 0.103 15.000 0.477 0.641 

Colwell P -0.018 0.061 15.000 -0.290 0.776 

Random effects 

(variance estimates) 

 

Block: 1.4e-8 

Quadrat: 0.36 

Residual: 0.581 
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Appendix 5.4 Means and 95% confidence intervals of observed plot-level biomass deviations from 

expected yields and constituent diversity effects in novel and original species mixtures in 2012. 

Asterisks denote level of significance (Ho: μ=0; *: p≤0.05, **: p<0.01, ***: p<0.001). 

 

 

Response: 

Mixture type 

Novel (n=10) Original (n=11) 

Deviation from 

expected yield 

-0.21 

(-0.50-0.07) 

0.83* 

(0.002 – 1.65) 

Complementarity -0.06 

(-0.14 – 0.02) 

0.38 

(-0.45 – 1.21) 

Selection 0.04 

(-0.08 – 0.16) 

0.48*** 

(0.30 – 0.65) 

Dominance 0.08 

(-0.02 – 0.17) 

0.46*** 

(0.25 – 0.67) 

Trait-dependent 

complementarity 

-0.03 

(-0.08 – 0.01) 

0.01 

(-0.10 – 0.13) 

 

 

Appendix 5.5 Coefficients and (SEs) from mixed effects models of species deviations from 

expected relative yields when grown in either community type compared to monoculture in 2012. A 

dash corresponds to instances where a focal species was not present in a community type. Asterisks 

denote level of significance (*: p≤0.05, **: p<0.01, ***: p<0.001). 

 

Species: 

Mixture type 

Novel (n=10) Original (n=11) 

A. cupaniana 0.03 (0.05) - 

G. nodulosus 0.03 (0.06) 0.008 (0.07) 

H. glabra -0.23 (0.06)*** - 

R. manglesii - -0.005 (0.06) 

Trachymene sp. - 0.04 (0.08) 

W. acuminata 0.12 (0.05)* 0.19 (0.07)** 

Random effects 

(variance 

estimates): 

  

Among block 0.003 0.005 

Within block 0.01 0.05 

 

 

Appendix 5.6 Coefficients from mixed effects models of A. cupaniana seed production in 

interaction neighbourhoods within quadrats in 2013 by neighbourhood identity (relative to single 

individual plants), neighbour abundance, and overhead woody canopy cover (%). Random effects 

variance estimates are reported in the main text of the chapter. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 
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(Intercept) 4.639 0.383 12.120 <2e-16 

Non-native 

neighbourhood -0.160 0.398 -0.401 0.688 

Native neighbourhood -0.433 0.393 -1.102 0.271 

Neighbour abundance -0.013 0.020 -0.647 0.518 

Canopy cover (%) -0.031 0.013 -2.475 0.013 

 

 

Appendix 5.7 Coefficients from mixed effects models of T. cyanopetala seed production in 

interaction neighbourhoods within quadrats in 2013 by neighbourhood identity (relative to single 

individual plants), neighbour abundance, reserve (Kunjin relative to Bendering), and overhead 

woody canopy cover (%). Random effects variance estimates are reported in the main text of the 

chapter. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) 4.096 0.316 12.952 <2e-16 

Non-native 

neighbourhood 0.145 0.251 0.577 0.564 

Native neighbourhood -0.279 0.235 -1.186 0.236 

Neighbour abundance -0.027 0.021 -1.295 0.195 

Kunjin Reserve -0.270 0.211 -1.278 0.201 

Canopy cover (%) 0.005 0.008 0.591 0.554 

 

 

Appendix 5.8 Coefficients from mixed effects models of T. cyanopetala seed production in 

interaction neighbourhoods within quadrats in 2013 by neighbourhood identity (relative to single 

individual plants), neighbour abundance, reserve (Kunjin relative to Bendering), and overhead 

woody canopy cover (%). Random effects variance estimates are reported in the main text of the 

chapter. 

Fixed effects: Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) 7.196 0.278 25.850 0.000 

Non-native 

neighbourhood -0.520 0.240 -2.170 0.030 

Native neighbourhood -0.487 0.253 -1.923 0.055 

Neighbour abundance -0.078 0.024 -3.172 0.002 

Kunjin Reserve -0.158 0.162 -0.981 0.327 

Canopy cover (%) 0.008 0.008 1.033 0.302 
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Appendix 6.1 Raw species richness by total plant density in experimental plots (n=110). 
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Appendix 6.2 Abundances of (A) W. acuminata, native, (B) M. myositidifolia, native, (C) A. 

calendula, non-native, and (D) V. myuros, non-native, by percent canopy cover and presence of A. 

barbata litter (grey) compared to control (black). 
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Appendix 6.3 Coefficients from mixed effects models of plant community responses to litter 

addition and pre-treatment environmental variables, with transect specified as a random effect 

(variance estimates reported in main text of chapter).  

 

Rarefied species richness Value Std.Error DF t-value p-value 

(Intercept) 2.249 0.953 99.000 2.361 0.020 

Litter addition 0.039 0.117 99.000 0.329 0.743 

Percent canopy cover -0.003 0.003 99.000 -1.099 0.275 

Ln(nitrate) 0.094 0.103 99.000 0.919 0.360 

Ln(P) -0.339 0.178 99.000 -1.900 0.060 

Ln(K) 0.273 0.243 99.000 1.121 0.265 

Total plant density      

(Intercept) 8.326 2.450 99.000 3.398 0.001 

Litter addition -0.649 0.275 99.000 -2.363 0.020 

Percent canopy cover -0.023 0.008 99.000 -2.940 0.004 

Ln(nitrate) -0.116 0.256 99.000 -0.453 0.652 

Ln(P) -0.198 0.473 99.000 -0.418 0.677 

Ln(K) -0.356 0.612 99.000 -0.581 0.562 

Sqrt(Non-native plant 

density)      

(Intercept) 4.910 2.046 99.000 2.399 0.018 

Litter addition -0.250 0.216 99.000 -1.158 0.250 

Percent canopy cover -0.012 0.008 99.000 -1.569 0.120 

Ln(nitrate) 0.143 0.210 99.000 0.678 0.500 

Ln(P) -0.633 0.400 99.000 -1.581 0.117 

Ln(K) -0.178 0.502 99.000 -0.354 0.725 

Sqrt(Native plant density)      

(Intercept) 5.943 2.525 99.000 2.354 0.021 

Litter addition -0.630 0.297 99.000 -2.122 0.036 

Percent canopy cover -0.017 0.007 99.000 -2.435 0.017 

Ln(nitrate) -0.367 0.265 99.000 -1.385 0.169 

Ln(P) 0.168 0.481 99.000 0.350 0.727 

Ln(K) -0.168 0.637 99.000 -0.264 0.793 

 

 

Appendix 6.4 Coefficients from mixed effects models of focal species’ abundances in responses to 

litter addition and pre-treatment abiotic variables. Random effects variance estimates reported in 

main text of chapter. 

A. calendula Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept) -4.989 4.043 -1.234 0.217 

Litter addition 0.497 0.486 1.023 0.306 

Canopy cover (%) -0.018 0.009 -2.075 0.038 

Ln(nitrate) 0.771 0.406 1.898 0.058 
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Ln(P) -0.945 0.772 -1.224 0.221 

Ln(K) 0.896 0.995 0.901 0.368 

M. myositidifolia     

(Intercept) -1.086 4.950 -0.219 0.826 

Litter addition -0.037 0.546 -0.068 0.946 

Canopy cover (%) 0.024 0.014 1.753 0.080 

Ln(nitrate) -0.567 0.457 -1.240 0.215 

Ln(P) 1.737 0.901 1.927 0.054 

Ln(K) -0.718 1.178 -0.610 0.542 

V. myuros     

(Intercept) -1.705 6.381 -0.267 0.789 

Litter addition 0.300 0.793 0.378 0.705 

Canopy cover (%) -0.047 0.016 -2.985 0.003 

Ln(nitrate) 0.644 0.678 0.949 0.343 

Ln(P) -0.100 1.173 -0.085 0.932 

Ln(K) -0.142 1.586 -0.090 0.929 

W. acuminata     

(Intercept) 0.679 1.894 0.359 0.720 

Litter addition -0.469 0.217 -2.159 0.031 

Canopy cover (%) -0.023 0.005 -4.517 0.000 

Ln(nitrate) 0.060 0.169 0.353 0.724 

Ln(P) -0.844 0.332 -2.540 0.011 

Ln(K) 0.287 0.464 0.619 0.536 

 

 

Appendix 6.5 Coefficients from mixed effects models of focal species’ biomass (mean per 

individual) responses to litter addition and pre-treatment abiotic variables. Random effects variance 

estimates reported in main text of chapter. 

A. calendula Value Std.Error DF t-value p-value 

(Intercept) 2.546 4.320 18.000 0.589 0.563 

Litter addition 0.210 0.446 18.000 0.472 0.643 

Canopy cover (%) 0.018 0.009 18.000 1.963 0.065 

Ln(nitrate) 0.540 0.388 18.000 1.390 0.181 

Ln(P) 0.185 0.796 18.000 0.232 0.819 

Ln(K) -1.094 1.093 18.000 -1.001 0.330 

M. myositidifolia      

(Intercept) 1.954 2.246 29.000 0.870 0.391 

Litter addition 0.231 0.260 29.000 0.889 0.381 

Canopy cover (%) 0.002 0.007 29.000 0.243 0.810 

Ln(nitrate) 0.221 0.242 29.000 0.910 0.370 

Ln(P) 0.513 0.448 29.000 1.144 0.262 

Ln(K) -1.544 0.566 29.000 -2.728 0.011 

V. myuros      

(Intercept) -4.884 2.134 36.000 -2.289 0.028 

Litter addition 0.022 0.265 36.000 0.082 0.935 

Canopy cover (%) 0.000 0.006 36.000 0.016 0.987 
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Ln(nitrate) 0.248 0.235 36.000 1.054 0.299 

Ln(P) 0.354 0.425 36.000 0.835 0.410 

Ln(K) 0.226 0.516 36.000 0.438 0.664 

W. acuminata      

(Intercept) -4.945 2.387 52.000 -2.071 0.043 

Litter addition 0.000 0.247 52.000 0.000 1.000 

Canopy cover (%) -0.006 0.007 52.000 -0.873 0.387 

Ln(nitrate) 0.181 0.233 52.000 0.775 0.442 

Ln(P) 0.392 0.432 52.000 0.909 0.367 

Ln(K) 0.585 0.586 52.000 0.998 0.323 

 

 

 


