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Abstract

Material Science, the science of studying materials and their properties, involves

many aspects such as performing experiments to calculate certain physical prop-

erties. Scientists are always looking to utilise the collected experimental data in

order to make predictions for new points, where the studied property is unknown.

Using a computer model to make these predictions, whether it is via a machine

learning or mathematical approach, is the desirable option, since doing actual ex-

periments have proven to be very costly and time consuming. We are therefore

looking at utilising the vast quantity of pre-collected data in the literature in or-

der to build models for making future predictions. We already know that the

Gaussian process regression interpolation technique gives accurate predictions for

some physical properties. However, it is also the slowest of the machine learning

algorithms and not suitable for on-line applications. For on-line learning, making

quick and accurate predictions is essential. In this research we propose a novel

strategy, including batch query processing and co-clustering, to achieve a scalable

and efficient Gaussian process regression. This new approach, called the scalable

Gaussian process (SGP), allows the use of large databases and makes it suitable

for on-line applications. The proposed strategy is applied to a real application

involving the prediction of materials properties. Results demonstrate the high ac-

curacy and efficiency of our approach. We test and compare SGP with five different

machine learning models on materials properties databases and make recommen-

dations accordingly, also demonstrating that prior knowledge of the problem is

essential when choosing a machine learning model.

As one could expect, databases consisting of experimental data are noisy since

they rely on human measurements, and also because they are an amalgamation of

various independent sources (research papers). Therefore, some conflicting infor-

mation can be found between the various sources. In our research we also introduce

a novel truth discovery approach to reduce the amount of noise and filter the in-

correct conflicting information hidden in scientific databases. Our method ranks

the multiple data sources by considering the relationships between them, i.e., the

amount of conflicting information and the amount of agreement, and as well elim-

inates the conflicting information. Our previously introduced technique, SGP, is
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then applied to the clean dataset to make predictions. We compare the prediction

accuracy before and after pruning the databases. With our new approach, we

are able to highly improve the accuracy of SGP predictions and provide a more

reliable database. Our results also prove the extreme robustness of SGP, as we

demonstrate that a relatively high amount of noise is handled very well by this

technique.
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1. Introduction

1.1 Motivation

A knowledge of the physical properties of materials is a very important considera-

tion in materials and process design. Slag properties, such as electrical conductiv-

ity, thermal conductivity, density, etc. play a key role in the metal industry [13] in

order to design new materials or improve the current processes. Those properties

may be hard to measure or estimate from numerical models, not to mention very

costly and time consuming. When this is the case, and in order to make substan-

tial savings on research costs, engineers rely on machine learning methods. The

idea is to utilise existing measured data to predict properties of new systems, by

interpolating and extrapolating properties of known systems.

One of the preoccupations of this research is to have a reliable and accurate ma-

chine learning interpolation technique that is fast enough for on-line applications.

Our work is motivated by an application on the prediction of materials properties,

more specifically, by the optimisation of these predictions, which require a large

number of single predictions to be performed sequentially. Each prediction request

from users is considered as a query in our work, which is represented as a single

vector of real numbers, corresponding to the values of composition for each input

component. The result of a query is a predicted value for the studied property.

Future work include integration into the FactSage software and the FactOptimal

module. FactSage is a software system that was created for treating thermody-

namic properties and calculations in chemical metallurgy [4]. It is used today

all over the world by more than 400 universities and companies in the domain of

material chemistry. It contains various modules allowing users to perform a wide

variety of thermochemical calculations [3]. One of the modules, called FactOp-

timal [22, 24, 23], allows one to find the best set of conditions respecting given

constraints. The program uses the NOMAD derivative-free solver [37] to find the

best parameters to optimise the chosen properties. For example, given a chemi-

1
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cal system (ex. a1C + a2Mn + a3Si + a4Cr), one may wish to find the values of

chemical compositions (ai) that would give an equilibrium temperature of around

275◦C. To do so, NOMAD tries different combinations of compositions (ai), ob-

taining the corresponding value of temperature from FactSage until, hopefully, an

optimal solution is found. While performing this optimisation, certain constraints

on composition or various properties can be set. The idea to introduce materials

properties of a given chemical system as possible constraints or as values to be

optimized requires the use of a machine learning tool to predict these properties.

Because a large number of predictions are performed during a FactOptimal run,

the computational time to make these predictions is of great importance. Further-

more, we wish the chosen model to be usable for on-line learning, as it may be

the case that new experimental data is fed dynamically into the learning database.

There exists a variety of machine learning techniques for predicting a function

f(x) given x. Polynomial interpolation was one of the first to be developed [41],

and is still a very popular method in fields such as digital photography and image

re-sampling as well as for scientific data. Gaussian processes (GP) were introduced

in the 1940’s [49], but it is only in 1978 that they were employed to define prior dis-

tributions over functions [47]. More recently, with the introduction and increasing

popularity of neural networks with back propagation, Gaussian processes started

to be used for supervised machine learning [54] and for regression problems [77]. In

the last few years, various attempts have been made to improve known approaches,

in particular by the group of Robert B. Gramacy at the University of Chicago,

with the introduction of treed Gaussian processes [31] and dynamic trees [69].

In 1996, Radford Neal showed that a Bayesian neural network with a Gaussian

prior on individual weights with an infinite number of hidden nodes converges to

a GP [45]. The “No Free Lunch theorem” was introduced in 1997 by Wolpert and

Macready [78], stating that for every optimization problem, there is no perfect

algorithm. For a given problem for which an approach works well, there exists

another problem for which the same method fails miserably. One of the aims of

this research is to compare different machine learning techniques for predicting

properties of different types of material science data.

GP is a well-known and highly reliable regression model in Machine Learning.

2
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Its non-parametric nature makes it flexible and particularly adaptable to various

types of data. It has been widely used in scientific data analysis, such as prediction

of materials properties, microstructure evolution simulation, prediction in thermo-

mechanically processed metals, robot control, etc. It has proven to give very good

results for predicting materials properties [1] and is one of the recommended meth-

ods. Though GP has proven to be superior to other existing regression models in

terms of reliability, it suffers from high computational cost caused by matrix in-

version operations in both the learning and regression steps. In some cases, the

learning step is only required to be preformed once, as the learned hyperparameters

of the model can be repeatedly used for subsequent queries. However, applications

such as material property predictions are generally for more than one query. Scien-

tists may upload a large number of chemical compounds with different constraints

in order to make predictions. The low efficient regression step in the conventional

GP is not capable of dealing with the streaming queries on a large scale. Not only

for optimisation, but for a growing number of real-time applications such as robot

dynamic control, on-line learning is required. It is extremely time consuming when

applying conventional GPs, which makes real-time responses impractical and un-

suitable.

In this research, we propose a novel approach to perform the conventional GP

efficiently with a three-step strategy. With this so-called scalable Gaussian process

(SGP), the size of the training data used for learning and regression is significantly

reduced, resulting in a promising efficiency improvement. Meanwhile, the intrinsic

information embedded in the training data is kept in the reduced data set, which

guarantees a high accuracy of the regression. Our focus is on material science

data of molten oxides systems. Real material science applications are studied and

we have access to three databases: Martensite start temperature (Ms), electrical

conductivity (EC) and molar volume (MV). These datasets are described in de-

tails in Section 3.1. Comprehensive experiments on two of these datasets show the

outstanding performance of the proposed method compared with the conventional

GP. Furthermore, collaborative work testing our SGP using data obtained from

gas sensor detection is briefly presented, showing the versatility of our method.

We also perform a comparative study of the predicting power of our new SGP

3



CHAPTER 1. INTRODUCTION

with five of the most popular and emerging machine learning techniques. We wish

to demonstrate how a thorough knowledge of the problem as well as machine-

human interactions can improve the quality of the predictions. Stry et al. com-

pared the quadratic and linear interpolation applied to the numerical simulation

of crystal growth [68]. They found that a custom quadratic approach developed

by them gave more accurate results with smaller computational time. Ghosh and

Rudy found an improvement of the relative error of reconstructed versus measured

epicardial potentials of Electrocardiographic Imaging when using a quadratic in-

terpolation instead of linear one [27]. Skinner and Broughton published their work

on Neural Networks applied to material science, and compared different methods

for finding the weights of feed-forward neural networks [60]. In the present work

we have added comparisons with more recent techniques: linear and quadratic

interpolation, neural network, GPs, and dynamic trees. We also include a com-

parison with our new strategy, the SGP.

In the field of material science, the databases used to train the models and

make predictions on materials properties consist of experimental points collected

from the literature. If the databases do not already exist, the work simply in-

volves a bibliographical research, making it far less costly than performing actual

experiments. Once a database of experimental points is assembled, one can use

a machine learning model to fit the data and predict the desired properties in

unknown areas, or simply consult existing data in a desired region.

One issue with databases consisting of experimental points is the human er-

ror involved in collecting the measurements. Furthermore, since these databases

are assembled from different sources, some conflicting information between sources

(authors) can alter the prediction accuracy of the chosen machine learning tech-

nique. In this work, on top of introducing our new SGP, we are looking at a way to

improve the reliability of databases consisting of experimental points by analysing

the conflicting information and attributing a quality measure to each source: the

various papers from which the points have been extracted, or authors. We devel-

oped a new truth discovery approach to calculate and compare the reliability of

sources by using the amount of conflicting information for each source in combi-

nation with the amount of non-conflicting similarities with other sources. A level

4
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of reliability can then be attributed and the sources can be ranked, making it pos-

sible to choose between two conflicting data points. With this novel approach for

analysing the data, a given database can be screened and improved by removing

data points believed to be in error.

In order to test our technique, we use one of the databases made available to

us, consisting of data points on electrical conductivity (EC). We performed predic-

tions using the previously mentioned Scalable Gaussian process regression (SGP).

First, we evaluate the strength of SGP by testing how much conflicting infor-

mation (noise) can be introduced and supported by this interpolation technique.

Then we apply our new truth discovery approach to see how the predictions can

be improved. We compare the prediction accuracy before pruning the database

using our sources ranking truth discovery technique and after the database has

been purged. On top of improving the predictions of machine learning techniques,

the filtered database becomes more reliable when consulting existing information.

Faced with conflicting data in an existing database, it can be confusing for a hu-

man being to decide which source is more reliable than an other. The process

can involve time in research and reading and rely on a subjective evaluation. Our

approach can therefore automatise this process and improve the quality of existing

databases consisting of experimental points.

1.2 Challenges

Because of matrix inversions involved in GP, the computational time is typically

n3, making it very tedious for large datasets. For example, the training phase of

a GP for a training set of around 1000 points would take around 1 hour, running

on an average desktop computer. This is totally impractical for on-line learning

applications, and very challenging when dealing with even larger databases. The

solution is therefore to reduce the size of the learning database as much as possible.

The main challenge lies in the fact that we want to keep the prediction accuracy

by preserving intrinsic information, while compressing and reducing the size of the

learning database as much as possible to make the predictions fast enough for on-

line learning. Furthermore, special considerations need to be taken into account

5
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because of the nature of the data, as chemical interaction between the components

can have an effect on the properties [14].

In the second phase of our work, involving truth discovery, the main challenge

resides in making automated decisions as to which source is more reliable than

another. Domain experts can manually go trough small databases and evaluate

which author, in their opinion, is more reliable than another. But when it comes to

a large database, where there can be many conflicting sources, this is impractical.

Since it is hard to evaluate manually, it is also difficult to know if our automated

technique is making accurate choices when it comes to eliminating data. We

certainly do not want to remove important information from the database to filter.

1.3 Contributions

In this research, we propose a novel approach to perform the conventional GP

efficiently: the SGP. With our scalable Gaussian process, the size of the training

data used for learning and regression is significantly reduced, resulting in a promis-

ing efficiency improvement. Meanwhile, the intrinsic information embedded in the

training data is kept in the reduced data set, preserving high accuracy of the regres-

sion. We also provide an in-depth comparison of commonly used machine learning

algorithm, including our new SGP, providing an analysis and recommendations

depending on the nature of the data. Finally, we propose a new truth discov-

ery method to improve scientific databases consisting of points collected from the

literature. To be more specific, we make the following contributions:

• We propose a three steps method, SGP, making real-time prediction using

GP possible. The first step consists of a fast batch query processing algorithm

to handle large numbers of queries by grouping them by similar characteris-

tics. In the second step, we analyse the structure of the training data and

condense it by removing redundant information and preserving embedded

intrinsic information. Finally in the third step, a query-aware training data

selection strategy is designed to further enhance the efficiency of the model

by taking into account the relationship between the query and the training

data.

6
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• We conduct extensive performance studies of SGP on real-life materials

datasets, which are large scale from the perspective of machine learning.

• We compare and analyse six machine learning algorithms (linear and quadratic

interpolation, neural network, dynamic trees, GP and SGP) on three physical

properties databases.

• We propose a new truth discovery approach for scientific databases, utilising

the amount of agreements and conflicting information in order to filter the

data and remove possible experimental errors.

In the following chapters, we first provide a comprehensive literature review,

followed by a description of the databases that were employed for this research.

Then, we briefly describe each interpolation technique that was employed in com-

paring our methods. Then, we present our new scalable Gaussian process, includ-

ing performance results in terms of computational time and accuracy compared

to the traditional GP. Then, we present results in comparison with other models

and make recommendations on the use of each method depending on the type of

problem. Finally, we present our new truth discovery technique, followed by the

conclusion.

7



2. Literature Review

In this section, we introduce the related work in prediction of materials properties,

Gaussian process regression for machine learning using a large amount of data,

clustering of high-dimensional data and truth discovery.

Predicting the martensite start temperature (Ms) has been reported by several

authors. While some had good predictions using a neural network model [76, 65],

others preferred a thermodynamic framework [67] or a purely empirical approach

[38, 48]. These methods have been thoroughly investigated by Soumail et al. in

2006 [64]. Their conclusion was that although the thermodynamic approach pro-

vides satisfying results, there is a strict limitation in the query points, based on the

fundamental assumptions upon which the model was based. They found that the

neural network approach performs as well as other methods, however some wild

predictions were obtained and they recommended the use of a Bayesian framework.

Very accurate predictions were obtained for the prediction of austenite formation

(martensite is formed in carbon steels when cooling austenite) using a Bayesian

Gaussian process model [2]. However, developing a strategy to make on-line learn-

ing possible is highly desirable, as explained in section 1.1. Previous work of Marek

Sloński [61] compared feed-forward layered neural network with Gaussian process,

testing them on two datasets: high-performance concrete mix proportion and con-

crete fatigue failure. Their experiments showed the superiority of the Gaussian

process in terms of accuracy and computational time. Based on these results, we

believed that the GP will perform well with our physical properties datasets and

this is why we chose to develop a strategy to adapt this particular model for on-line

learning.

An empirical model [43] and a combined model with quantum chemical molecu-

lar dynamics and kinetic Monte Carlo method [70] were applied to predict electrical

conductivity. Both models are developed specifically for electrical conductivity and

would require extensive work to be adapted to predict other physical properties.

8
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All the published work we found on prediction of Ms and electrical conductivity

discussed their results in terms of prediction accuracy and no reports were given

on the computational time.

The problem of high-dimensionality and large amount of data for Gaussian pro-

cesses has been studied by E. Snelson et al. [62] and R. Urtasun [72]. They both

proposed partitioning the data, which is the approach we adopt in this present

study. More recently, a stochastic variational inference approach has been intro-

duced by J. Hensman et al.[33]. A filtering approach based on approximation of

eigenvectors, was also developed by J.Q. Shi et al. [58]. Although proven to be

efficient, we believe that such approach would include irrelevant data and might

miss important information for making accurate predictions as it relies on an ini-

tial subset of randomly chosen values. A. Banerjee et al. [5] recently introduced

an approach using linear projection of the data points onto a lower-dimensional

subspace.

In the area of clustering of high-dimensional and large amount of data, Mc-

Callum et al. [40] introduced the idea of using canopies as a cheap approximate

distance measure as a first data divider for high-dimensional datasets. Huang et

al. [34] introduced an effective co-clustering approach, this method was used for

multimedia similarity search and was not fully compatible with databases contain-

ing chemical compositions but we are taking inspiration from both ideas.

The topic of truth discovery is not new and has been extensively studied, espe-

cially in the domain of social networks and the world wide web, where many con-

flicting information can be found, and where the duplication of wrong information

also becomes a problem. In their paper, Yin et al. [79] discuss the trustworthiness

of websites by evaluating the amount of true information contained on the given

website. The same authors propose a semi-supervised method for homogeneous

network, again applied on web sources [80]. Kleinberg [36] also proposes a test al-

gorithm to evaluate the quality of web pages according to their relationships with

other pages. In our work we take inspiration from this approach by considering

the amount of similar information linking our various sources together and how

much they agree with each other, even though our sources are completely inde-
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pendent. Dong et al. [19] discuss truth discovery when accessing various sources of

information, when the update history is known. They are evaluating the quality

of sources over time and conducting a probability analysis. In another paper [20]

they discuss the selection of sources when there is an overwhelming abundance of

possible sources. A maximum likelihood approach is used by Wang et al. [74] to

filter noisy social sensing data. Zhao et al. developed a probabilistic model for

data steams, in order to evaluate sources quality in real time [81], applying their

approach to weather forecast data.

None of the previous approaches have been applied on sets of experimental

data points. In the field of data mining, Sheng et al. [57] address the problem of

noisy labeling of data by carefully selecting a set of points where labelling will be

repeated. Dekel et al. [17] are also proposing a way to prune low quality labels in

a crowd.
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3. Preliminaries

In this chapter we first present the databases that were made available to us,

followed by a brief description of each interpolation technique applied in this work.

3.1 Datasets

For this work, we have access to five multidimensional databases in the field of

material engineering on the following physical properties: martensite start temper-

ature (Ms), electrical conductivity (EC) and molar volume (MV). The databases

all consist of experimental points collected from the literature. For both the MV

and EC databases, the materials are insulating oxides, therefore EC refers to the

ionic conductivity. MV data is considered smooth, while EC nonsmooth and Ms

noisy (several local minima in a small domain). Some physical properties can be

measured with reasonable accuracy, therefore there is very little discrepancy be-

tween the different data sources. Moreover, certain properties have a quasi linear

dependence with the constituents chemical compositions, while others may have a

more complex dependence on compositions and can vary exponentially according

to the temperature (singularity and local extrema). Measuring the molar volume

on liquid oxides at high temperature can lead to a relatively large level of un-

certainty and discordance between existing data sources. Despite this fact, we

consider the molar volume as smooth as most of the dataset has little discrep-

ancy. Furthermore, the theory tells us that it should vary almost linearly and the

experimental datasets are in good agreement at equal composition and tempera-

ture. Electrical conductivity is also measured at high temperature, leading to a

lower level of confidence. This combined with the fact the data is very scattered,

and that it has a complex dependence on compositions, and obeys Arrhenius laws

(see Section 5.2), we consider EC as being nonsmooth. MV and EC are proper-

ties dependent on the same variables describing Gibbs free energy under a certain

atmospheric pressure. On the other hand, Ms is influenced by kinetic factors such

as the cooling rate. These factors are not considered in our dataset and for this
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is a reason why Ms is considered noisy. Also because of its dependence not only

on compositions but also on the different phases within a given steel. Here we are

omitting to include certain influential parameters such as the fine austenite grain

size [21] and are considering uniquely the initial composition.

3.1.1 Molar volume

The database employed for molar volume predictions has 2,700 data points (n=2,700),

with various compositions in mole percent on 10 dimensions (D=10), temperature

in Kelvin and an associated molar volume value in cubic centimetres per mole.

The experimental points were assembled from a total of 80 sources. See Table 3.1

for an example of data points taken from the molar volume database.

SiO2 Al2O3 MgO CaO Na2O K2O LiO2 MnO PbO T(K) MV

53 0 0 5.1 41.9 0 0 0 0 1573 26.61

56 0 0 0 0 0 0 0 44 1323 25.55

78.56 0 0 0 14.3 0 7.14 0 0 1773 26.5

47.6 5.61 21.29 25.5 0 0 0 0 0 1773 22.93

Example query point:

55 0.1 0 1 43.9 0 0 0 0 1773 N/A

Table 3.1: Sample data points for the molar volume database. Input compositions

are in mole percent and the molar volume in cm3/mol.

3.1.2 Electrical conductivity

For EC, we have access to three databases. The first dataset consists of ap-

proximately 15,700 entries over 29 dimensions (D=29), taken from a total of 121

sources. This is considered to be very large as far as experimental points databases

are concerned. As per the MV database, each row has a set of chemical compo-

sitions in mol % with an associated logarithmic value of electrical conductivity in

Siemens/meter. We have collected this data from the literature, from a total of

121 sources. In addition to the set of chemical compositions, the temperature in

Celsius is also provided for each data point. The range of chemical compositions

varies between 0 and 100 mol % while the temperature varies between approxi-
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mately 90 and 3,000 K. In our calculations, we rescaled the temperature by a factor

of 200 to make the data more uniform and thus obtaining better predictions. This

database is used for testing our introduced SGP technique, see Chapter 4.

In addition to the full EC database, we are using two reduced datasets (EC

Red 1 and EC Red 2). The first one consists of approximately 9,300 data points

with compositions in mole percent over 10 dimensions including temperature (T)

in Kelvin (D=10) and an associated EC value in Siemens per meter, taken from

97 sources. The second one consists of 5373 data points from 67 different sources

over 9 dimensions including temperature. Besides the temperature, the inputs for

the first reduced database are chemical compositions from 9 oxide components in

mole percent: SiO2, CaO, K2O, Li2O, PbO, Na2O, MnO, Al2O3, MgO. For the

second reduced database, the components are: SiO2, Al2O3, MgO, CaO, MnO,

PbO, FeO, Fe2O3. See Table 3.2 for an example of data points taken from the

second reduced database.

SiO2 Al2O3 MgO CaO MnO PbO FeO Fe2O3 T(K) EC Source

33.56 0 0 41.96 0 0 24.13 0.35 1573 48.00 1

33.3 0 0 0 0 66.7 0 0 1223 38.50 4

0 25.67 0 40.56 0 0 30.82 2.96 1673 94.00 6

50.00 0 0 25.00 25.00 0 0 0 1873 67.10 7

49.53 16.71 33.76 0 0 0 0 0 1923 18.79 31

25.31 0 18.33 9.01 0 0 46.37 0.99 1593 403.90 46

Example query point:

54.24 5.32 40.43 0 0 0 0 0 1673 Predicted N/A

Table 3.2: Sample data points for the electrical conductivity database. The input

compositions are in mole percent and the electrical conductivity in Siemens per

meter.

3.1.3 Martensite start temperature

Martensite is a crystalline structure formed in the process of cooling carbon steels

at high rates (quenching). Controlling the amount of martensite in a given steel is

critical as it has an important effect on the physical and mechanical properties of

the steel. One of the variables engineers have to take into account is the Marten-

site Start (Ms) Temperature, which can be predicted by giving the amount of each

13



CHAPTER 3. PRELIMINARIES

chemical component contained in a query steel. The Martensite start temperature

(Ms) database consists of approximately 1,100 data points collected from the lit-

erature with composition values in weight percent on 14 dimensions (D=14) on 15

columns, where the first 14 columns represent the values in weight percent of 14

chemical components and the last one is the associated Ms temperature value in

Kelvin. It covers a wide variety of compositions of steels; the main element, Fe,

is not used in the regressions. See Table 3.3 for a full list of components and the

composition ranges.

3.1.4 Composition ranges

Table 3.3 gives the range of compositions of each database. The Ms database is

available for download on the Thomas Sourmail website [63, 65].

3.2 Theoretical Methods

In this chapter we very briefly introduce each interpolation technique. For more

details, refer to the cited authors.

3.2.1 Gaussian Process Regression

In this section we give a brief description of the Gaussian process regression ap-

proach for machine learning. A Gaussian process (GP) is a generalized Gaussian

probability distribution [49]. A Gaussian process regression computes the posterior

distribution based on training data, or prior distribution. It has the advantage of

being a non-parametric approach and adaptable to various situations, especially

for high dimensional space problems [49]. However, when computing Gaussian

process regression, one has to deal with matrices inversions, which leads to a typi-

cal computational complexity of n3 where n is the number of training data points.

Consequently, this model may be very slow and not suitable for on-line applica-

tions. The Gaussian process regression technique applied in this work is based on

the earlier work of Gibbs and MacKay [28].

Let f = (f1, f2, ..., fn) be observed responses for one of the blackbox outputs
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Ms (Wt.%) MV (Mol.%) EC (Mol.%) EC Red 1 (Mol.%) EC Red 2 (Mol.%)

Element Min Max Min Max Min Max Min Max Min Max

C 0 2.25

Mn 0 10.24

Si 0 3.8

Cr 0 18

Ni 0 31.54

Mo 0 8

V 0 4.55

Co 0 16.08

Al 0 3.01

W 0 18.6

Cu 0 3.04

Nb 0 1.98

Ti 0 2.52

B 0 0.006

N 0 2.65

Fe 65.09 99.83

SiO2 0 90 0 100 0 100 0 100

Al2O3 0 90 0 100 0 100 0 50.5295

MgO 0 85.51 0 64.08 0 64.08 0 61.8928

CaO 0 87.91 0 74.79 0 74.79 0 69.45

Na2O 0 60.1 0 62.9277

K2O 0 50 0 45.8 0 45.8

Li2O 0 65 0 59.4 0 59.4

MnO 0 77.17782 0 77.21 0 77.21 0 77.2107

PbO 0 95 0 100 0 100 0 100

CdO 0 50

Na2O 0 67.92777 0 62.928

SrO 0 60

BaO 0 80

TiO2 0 60

NiO 0 35

FeO 0 100 0 98.0146

Fe2O3 0 100 0 54.6376

B2O3 0 100

V2O5 0 100

Cr2O3 0 4.559734

P2O5 0 50

ZnO 0 50

BeO 0 30

Sb2O3 0 100

Rb2O 0 9.09

ZrO2 0 9.09

Cs2O 0 4.23

Bi2O3 0 4.23

GeO2 0 4.23

T(K) 713 3273 364.65 3223.15 398 3223 973 2753

Table 3.3: Ranges of the databases.
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at inputs X = (x1, x2, ..., xn) which can be considered as a set of training points in

a n dimensional space Rn. The objective is to learn a function Γ(X) transforming

the input vector into a target function f(X) = Γ(X) + NG(µ, σ) where NG is a

Gaussian noise for which the mean, µ, is assumed to be zero everywhere and the

variance is σ2
n. In this case the covariance function K relates one function value to

another one. In this work we consider the Gaussian kernel to define the covariance

matrix as in previous work of Gibbs and MacKay[28]:

K(X,X ′) = σ2
f exp

{
−1

2

n∑
j=1

(xi − x′j)2

wj

}
+ σ2

nδ(X,X
′) (3.1)

Where δ is the Kronecker delta function, σ2
f denotes the overall variance of

the process and w represents the width of the Gaussian kernel, it governs the rate

of decay of the special correlation in each input direction, in other words δ is a

characteristic euclidean distance above which two points will be uncorrelated. The

joint distribution of the observed and predicted function for a special point (i.e.

composition in our work) is given by

f(X∗) = KT
∗ (K + σ2

nIw)−1f (3.2)

with KT
∗ = K(X,X∗). σ2

n and Iw are a set of free parameters for a flexible cus-

tomization of the GP to take into account the specificity of the problem. These two

adjustable parameters are called hyperparameters. They are usually automatically

optimized using Quasi-Newton methods [56] by maximizing the log marginal like-

lihood of the model given the data. The choice of the covariance functions and the

two hyperparameters is the first step of the GP process often denoted by “model

selection”.

After the model selection, the second step of a GP consists of performing

a model regression performed upon the input functions (training), typically the

available or part of the available experimental data. The variance of the predicted

function resulting from the regression step is then given by

Vf (X∗) = K∗∗ −KT
∗ (K + σ2

nIw)−1KT
∗ (3.3)

with K∗∗ = K(X∗, X∗). From the above equations, one can see that a GP

requires operations using a covariance matrix K, represented by covariance func-

tions on all possible combinations of training data point pairs. All training data
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points also have to be processed in order to perform the regression and compute

KT
∗ . From this we can conclude that the computational cost of a GP is heavily

dependent on size of the training data and will grow exponentially. For this reason,

GPs are not practical for real-time applications.

The standard GP model has two main components: the optimisation of the

hyperparameters to be used in the covariance matrix and the actual regression

with the query points. Both require matrices inversions, and the computational

cost is therefore heavily linked to the size of the training database. Typically,

the computational complexity of performing the necessary matrices inversions is

proportional to n3 where n is the number of training data points.

3.2.2 Linear interpolation

Linear interpolation is no doubt one of the simplest method one can employ to fit

experimental data. One assigns parameters b ∈ R and c ∈ R such that f(x) can

be predicted using a linear model of the form

bx+ c. (3.4)

For multidimensional problems, normalized areas bound by known data are used

in order to interpolate unknown data points [73]. This method has the advantage

of being easy to understand, fast and straightforward to implement, but it is an

approach specific to a given problem since it is parametric. Because of this ap-

proach, while doing on-line learning, parameters have to be recalculated each time

new data is added to the learning set. While this is adding to the computational

complexity, the most important limitation of the linear interpolation model is that

it is a simplistic approach that may be inappropriate for complex problems. Lin-

ear interpolation has been used successfully on many varied problems, including

pricing and stock market [35, 16], medical science [15] and digital imaging [39].

3.2.3 Quadratic Interpolation

Both linear and quadratic interpolation techniques belong to the polynomial inter-

polation family. Linear interpolation is limited to a model of the first order while
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quadratic interpolation is of the second order. Similarly to the linear interpolation

approach, the objective is to find parameters a, b and c such that f(x) can be

predicted using a quadratic function of the form

1

2
axT + bx+ c (3.5)

The data is represented by a quadratic. As with linear interpolation, this is a

parametric approach, with the same disadvantages. However, it is also a simple

method to implement and predictions do not require a lot of computational time.

It has been successfully used in image reconstruction and sampling [18] as well as

in astronomy [55].

3.2.4 Neural Network

The Neural Network approach has been extensively employed in recent years in ap-

plications such as pattern recognition [53] and material science [59]. Inspired by the

nervous system, neural networks are composed of highly interconnected elements,

working together to make predictions. It is a very good approach when working

with nonlinear functions [66] as it can detect complex relationships between inde-

pendent variables. However, disadvantages include a large computational time, its

empirical nature and a tendency to overfit [71]. As with polynomial interpolation,

model parameters have to be carefully chosen and are specific to a problem. For

this work we used the Tiberius data mining software [42] version 7.0.7.

3.2.5 Dynamic Trees

The idea with dynamic regression trees or dynaTree, as implemented in the R

software package dynaTree [29], is to partition the space with several tree models

where each tree corresponds to one partitioning scheme and each leaf of each tree

corresponds to a region. Once these trees are determined, predictions are achieved

by averaging model values over all trees. The main advantage of such an approach

is the use of simple models within each partition [69]. It is a non-parametric ap-

proach, and particle learning algorithms make on-line learning possible. Because

of the partitioning approach, it may be well suited and modelled for real-world

applications where variables can be of totally different nature. However, one of
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the disadvantages of such an approach is that the generated trees may be very

large and complex. Also, as with any partitioning approach, there is always the

risk of too much data approximation. In this work we use two versions of dynamic

trees: the constant model (dynaTree CST) and the linear model (dynaTree LIN).

The difference lies in space partitioning. Both make use of a full binary tree, the

constant model with a fixed number of leaf data points, three, and 2 + D for the

linear model, D being the dimension of the covariate space.
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4. Scalable Gaussian Process Regression

A scalable GP is highly desirable because of the following two issues. Firstly, when

given a fixed training data set, the optimisation step only needs to be performed

once, since the hyperparameters can be saved and reused. However, to achieve

accurate predictions for different kinds of query points, the training set has to

contain as much information as possible, which results in a very large scale train-

ing data set. For this reason, the existing methods generally suffer from loading

the training set with large amounts of data points. Secondly, in many real-time

applications, such as robot control, on-line learning and regression are required.

Since the computational cost of GP is highly associated with the training data

size, in the present study, we aim to design a scalable GP algorithm by reducing

the training data size while maintaining the intrinsic information embedded in it.

The proposed algorithm has three stages: 1 - Batch query processing, 2 - Training

data condensation and 3 - Query-aware training data selection. In the following

sections we refer to our strategy as the Scalable GP (SGP).

4.1 Batch query processing

While typical materials optimisation calculations are performed sequentially as

they are dependent on the previous result, we will be considering large amounts

of input queries in our application. In order to reduce the computational cost

on on-line regression for streaming queries, we conduct batch query processing

by considering the similarities between query points. According to their different

characteristics, the query points are clustered into groups, each of which will be

represented by a summarized representative point. The representatives will be

passed to the regression model and be used for the training data selection. We

apply an agglomerative clustering approach to first group points in pairs of closest

points using the Euclidean distance. It then groups pairs together and so on until

a target number of points per group is obtained. The function used to measure

the Euclidean distance between two points and two groups of points is as follows:
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√√√√ n∑
i=1

(qi − pi)2 (4.1)

Where p and q are two points in an Euclidean space of dimension n. This

method for clustering data in high-dimensional space has proven to be a simple

but efficient one [75].

When comparing two groups of points, the geometrical mean on each dimension

is used to calculate the Euclidean distance. Given a data set {−→x1,−→x2, ...−→xn}, the

definition of geometrical mean on dimension d is as follows:

(
n∏

i=1

xdi

) 1
n

(4.2)

The geometrical mean of a set is based on the product of the values instead of

a sum. This type of mean is particularly useful when attempting to minimise the

impact of data with different ranges, which could occur with data for prediction

of material, where different scales might be found in the set of points.

4.2 Training data condensation

The second step consists of a pre-filtering of the entire training data. This is done

to condense redundant observations, and therefore acts as a first dimensionality

reduction step. Inspired by the co-reduction approach introduced by Huang et al.

[34], we reorganise the rows by similarity and then combine them together using a

reduction function Θ. Our reduction function Θ consists of computing the mean

values on each dimension of the two merged rows. A reduction on the number of

columns will be achieved in the final selection of data (section 4.3). Here a simple

Euclidean distance function between the points is not enough, because we want to

avoid a situation where two points would be far on one dimension and identical

in every other dimensions. We want the clustered points to be close to each other

on every dimension, due to the nature of the data. With chemical compositions,

it can be the case that one of the components makes a very big difference on the

value of the physical property, as there could be possible interactions with the

other components present. For this same reason, we could not fully apply the
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co-reduction technique and introduce a column reduction function. For example,

let us consider the following three points in a 4 dimensional space:


C Si N Mo

A 20 3 0 1

B 15 3 4 1

C 26 5 0 4


Using equation 4.1, the Euclidean distance between A and B gives a value of

approximately 6.4, while the Euclidean distance between A and C gives a value

of 7. According to our previous reasoning, we wish to favour the clustering of A

and C because they have actual data in the same dimensions, thus reducing the

risk of component interaction affecting the physical property. Therefore, we use

the following rule to compare two points p and q:

∀i ∈ N :

(
|qi − pi|∑N

j=1 qj
< ε

)
∧

(
|qi − pi|∑N

j=1 pj
< ε

)
∧ ((pi = 0)↔ (qi = 0))

Where N is the total number of columns (dimensions) and ε is an arbitrary

condensation constraint, we tested with values of 0.5, 1, and 5%. If the above

predicate is true, then the two rows can be merged together applying Θ. The

algorithm is executed recursively until no more merges are possible.

4.3 Query-aware training data selection

Before calculating the actual predictions, we perform the final selection of the

training points by considering the relation between the representative query points

generated from the first stage and the condensed training set created in the second

stage. This is done by first calculating the geometrical mean (i.e., Equation 4.2)

on each dimension of the batch query. Once the geometrical mean (g) is found, we

compare this value to each point (p) in the condensed training set obtained, using

a modified Euclidean distance formula:√√√√ n∑
i=1

(
gi∑n
j=1 gj

− pi∑n
j=1 pj

)2

(4.3)

In other words, we calculate the Euclidean distance on normalised values. It is

because we want to measure the distance using proportions of chemical composi-
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tions instead of the actual values. We keep an arbitrary number of results in the

final training set, the ones with the closest distance to the geometrical mean (Fig.

4.3). A number of K similar points from the training data set will be selected

for each batch query to be considered as its local or specific training data. The

parameter K for each batch query is determined by the acceptable predicted error

bound. That means the value of K is decided depending on the accuracy of the

prediction. As you can see on Fig. 4.3, some points can be present in more than

one training set, this will ensure consistency for each batch query.

Figure 4.1: Final selection of the training points: K-NN of the geometrical mean

Besides considering the error bound, an optional step is designed to involve

the K ′ nearest-neighbours (K ′-NN) from the training data for each target batch

query point, using a normal Euclidean distance (Equation 4.1). For data where

the training set is very large, this method can be very effective as there is a higher

chance of having close data to the query points in the training set. If the set

of training points is smaller, we have found that this extra step is not necessary.

However, if there is a concern about the data being concentrated in certain areas

as illustrated in Figure 4.2, it may be necessary to include this step to ensure that

relevant points are included in the training set.

If the target error bound can not be reached using the selected number of

training data, the number of training points is increased and the regression is

calculated again until the target error bound is reached. The reduced number of

training points allows us to do a further clustering of the data, eliminating the di-

mensions where there is no composition available, therefore reducing the number

of columns in the training matrix.
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Figure 4.2: Final selection of the training points for each batch of predictions

(query batch): the closest points to the geometrical mean are chosen first (left)

then the training set is expanded to include the closest points to each point (right).

4.4 Performance study

4.4.1 Application on Prediction of Ms

To evaluate the performance of the proposed Scalable GP, we conduct a series of

experiments on Ms temperature predictions. The database used in this study is

described in details in Section 3.1.3.

We randomly take 80% of the available points for training and the remaining

20% for testing the predictions. Thus, the numbers of training points and testing

points are 870 and 220 respectively. This procedure is repeated 10 times to get

the final prediction performance.
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Figure 4.3: Predicted vs Measured Ms Temperature (K)
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AE (%) RMS (K)

Total

training

time (sec)

Average

prediction

time per

testing

point (sec)

Average

time cost

per testing

point (sec)

GP 3.08 21.6 969.40 5.52 9.92

Scalable GP 5.02 42.6 26.5 0.13 0.25

Table 4.1: Conventional GP vs Scalable GP for predicting Ms

Batch

Size of

the

training

matrix

Training time

for each batch

query (sec)

Average

prediction

time per

testing point

(sec)

1 95×13 4.35 0.14

2 93×12 5.29 0.17

3 96×13 3.06 0.10

4 95×11 2.48 0.08

5 108×14 4.99 0.14

6 165×12 7.09 0.14

Table 4.2: Batch query performances for prediction of Ms

Conventional GP: To illustrate the superiority of the proposed Scalable GP, we

first test the conventional GP by using the training and testing data described in

Section 5.1. The prediction values obtained in our experiment are as consistent as

those of Bailer-Jones, Bhadeshia and MacKay [2] (Fig. 4.3(a)). Two performance

indicators average error (AE) and root mean square (RMS) are used to evaluate

the accuracy of the testing method, which are defined as follows:

AE =
1

Nt

×
Nt∑
i=1

|pi − ai|
ai

(4.4)

RMS =

√∑Nt

i=1 |pi − ai|2
Nt

(4.5)

Where Nt is the number of testing points, p is the predicted value and a is the

actual value.
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As reported in Table 4.1, the AE and RMS produced by the conventional GP

are 3.08% and 21.6 degrees respectively. The average prediction time in the regres-

sion step for each testing point is 5.52 seconds, on an Intel i7 3.4GHz with 16 GB

of RAM and the time cost to calculate the hyperparameters in the training step

is 969.40 seconds. As we mentioned earlier, on-line training is required in many

real-time applications. Taking into account both the training and prediction time

costs, GP averagely spends 9.92 seconds on each testing point to make a predic-

tion. The time cost at this scale is certainly impractical.

Scalable GP: Our proposed Scalable GP offers a significant efficiency improve-

ment. Compared with GP, the training time is heavily reduced from 969.4 seconds

to 26.5 seconds and the average prediction time in the regression step is reduced

from 5.52 seconds to 0.13 seconds. It makes the real-time prediction realistic where

the total cost including both training and prediction for an individual query point

is 0.25 seconds.

As described in section 4.1, batch query processing is performed in the Scalable

GP to achieve efficient query predictions. Here we choose one round of testing as an

example to describe the batch query details. As illustrated in Table 4.2, a total of

6 batch queries are created in this testing round. We choose to set a condensation

constraint of ε = 5% which allows us to condense the training data from 870 points

to 416 points in the second stage. The final selection of training points for each

batch query is then performed using this condensed dataset, as explained in section

4.3. When trying to further condense the data, we observe that using an ε > 5%

leads to too much compression of the data, producing values in every dimensions

for too many data points. In addition to a loss of information, this means that

further vertical condensation is virtually impossible and therefore there is no fur-

ther gain on the computational cost. In this example we set a target error of 10%

or less, increasing the number of training points and using a lower condensation

(ε) if not reached. The time cost to optimise the hyperparameters in the training

step for each batch is reported in Table 4.2. We can observe that reducing the

size of the training matrix is of critical importance to improve the speed of the GP.
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It is always a trade off between efficiency and accuracy. To achieve scalable

and efficient predictions, the accuracy of the Scalable GP is sacrificed, where the

AE and RMS are 5.02% and 42.6 degrees respectively (Table 4.1). However, from

a chemistry point of view, an average error of 10-20% or less is considered accept-

able for predicting Ms. Thus the Scalable GP delivers a fairly acceptable accuracy

(Fig. 4.3(b)) with significant efficiency improvement. Using our Scalable GP, 95%

of predictions had an error of 20% or less.

Other comparisons: Besides the conventional GP, we also compare our method

with Neural Network and SVM, which are widely used in scientific data prediction.

However the Neural Network method takes more than 5 hours on training step for

870 training points and SVM delivers fairly poor predictions with low efficiency.

The performances of both methods are not comparable with the Scalable GP in

terms of either efficiency or accuracy. In 2011, S loński also showed the compu-

tational cost superiority of the GP compared to Bayesian and standard Neural

Network [61].

4.4.2 Application on Prediction of EC

The efficiency and the accuracy of the Scalable GP have been demonstrated in Ms

temperature prediction. To further test the scalability of the proposed method, we

conduct the second series of experiments on electrical conductivity predictions by

involving a much larger scientific dataset. For this study we are using the larger

EC database as described in Section 3.1.2. In this group of experiments, the con-

ventional GP is not able to deal with the large scale training dataset due to the

extremely expensive computational cost. In the following performance study, we

will focus on the scalability our approach and discuss the effect of the batch query

processing in the proposed Scalable GP.

Conventional GP: The experiments are conducted on a regular desktop com-

puter, therefore attempting a standard GP using a training dataset with the size
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of 2000×29 has proven to be very tedious and extremely slow. Thus we only ran-

domly sample 2000 entries from the original dataset to build up the training data

to test GP. With this setting, it costs 9.28 hours for training and 5.67 minutes per

prediction in the regression step. Clearly, the conventional GP is not capable to

handle real-time applications.

Scalable GP: With the training data condensation described in Section 4.2, the

proposed Scalable GP can easily handle the large scale training data by capturing

the intrinsic information embedded in and removing the redundant entries. We

randomly select 80% entries (i.e., 12,560 entries) from the entire database to build

up the initial training data set and use the remaining 20% entries as the testing

points pool. Following the training data condensation described in Section 4.2, we

condense the size of the training data from 12,560 points to 8,654 points by setting

ε = 0.5%, which performs the best compared with ε = 1% and 5%. We incremen-

tally select 100, 500, 1000, 1500, 2000 and 3000 number of entries from the testing

points pool as testing data to show the scalability, efficiency and accuracy of the

Scalable GP and also the effect of batch query processing on the performance.

As reported in Table 4.3, the performance of the batch query processing is quite

stable. With the size increment of the testing data from 100 to 3,000 points, the

number of batch queries generated is increased from 25 to 750. The average time

to create a batch query was 0.06 seconds. With different numbers of batch queries,

the average training time cost, prediction (regression) time cost, and the total time

cost for each testing point is very stable. With the error bound of 15%, we can

always achieve the real-time prediction response averagely within 0.9 seconds.
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Number

of testing

points

Number

of

batches

Average

training

time per

testing

point

Average

predic-

tion time

per

testing

point

Average

total

time per

testing

point

AE

(%)

100 25 0.688 0.044 0.732 14.5

500 124 0.885 0.045 0.928 14.9

1000 250 0.966 0.042 1.008 14.8

1500 375 0.741 0.043 0.784 14.2

2000 500 1.01 0.042 1.06 14.8

3000 750 0.715 0.042 0.758 14.7

Table 4.3: Scalable GP for predicting Electrical Conductivity (target error of 15%)

4.4.3 Application on gas sensor data

The SGP approach has also proven to be efficient on another type of data: gas

sensor data, or electronic nose. This type of data has high uncertainty due to noise

and drift. This problem is divided in two parts. First, a classification model needs

to be used to detect which gas is present. Then, another model makes predictions

on gas concentration. Our SGP has been tested in step two, using sensor data

for six gases over 128 dimensions (sensor values). Interestingly enough, because of

the classification step, the traditional GP gives very bad prediction of gas concen-

trations (over 10,000% average error). This can be explained by the fact that GP

attempts to fit a Gaussian curve to the whole set of data. However, in a classifica-

tion problem, the data distribution is not Gaussian. A function in two dimensions

would look more like a stepped line; a smooth interpolation between the steps is

bound to give bad results. See Figure 4.4 for an graph illustrating the concentra-

tion in function of one dimension of the sensor data. However, using our SGP,

this problem is eliminated, since our approach only considers the problem in small

areas. In a collaborative paper in progress, SGP has been compared to four other

machine learning techniques (SVM, dynaTree, linear regression and Tree Bagger).

Results are illustrated in Figures 4.5 and 4.6. Note that results that were too high
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are not illustrated in these graphs. Each coloured line represents a category of

data (10,30,etc.), in other words, one class from the first classification step. As

one can see, SGP gives excellent predictions compared to the other techniques for

this type of data, with an overall average error of 14.27%. Furthermore, there were

practically no outliers.
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Figure 4.4: Concentration in function of the sensor value, here only one dimension

(out of 128) is displayed for the horizontal axis.
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Figure 4.5: Average error on nose sensor data predictions.
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Figure 4.6: Percentage of outliers on nose sensor data predictions.

4.5 Online application

The SGP has been implemented into an web application [6] and is freely available

for testing at the following URL:

http://www.crct.polymtl.ca/SGP/run gp.php
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5. Evaluation of Interpolation Techniques

We believe that different machine learning interpolation techniques could be better

adapted to each set of data [78], and one of our goals is to compare the techniques,

test them on the available datasets and make recommendations accordingly. With

machine learning models, one would expect that the larger the training set, the

more accurate the predictions. Therefore, our analysis includes verifying this the-

ory and comparing the power of the chosen algorithms by testing different sizes of

training sets proportionally with the testing sets.

In this chapter we present the prediction accuracy obtained when training the

chosen models, followed by a general discussion. The chosen models are described

in Section 3.2, in addition to our SGP approach, as described in Chapter 4. The

computational time is discussed in Section 5.4. For each type of dataset treated in

this work, we measure the quality of the techniques in terms of root mean square

of the relative error (RMSE), given by the following equation:

RMSE =

√∑X
x=1(Q

x
o −Qx

p)2

X
(5.1)

where Qx
o is the observed value and Qx

p is the predicted value for a query point x

and X is the total number of query points. We also employ two other predictive

accuracy measures: the Nash-Sutcliffe model efficiency coefficient (NS) [44] and the

proposed Order efficiency coefficient. The NS coefficient is calculated as follows:

NS = 1−
∑X

x=1(Q
x
o −Qx

p)2∑X
x=1(Q

x
o −Qo)2

(5.2)

It gives an indication of how good the predictions are compared to the mean of

the observed values. The Order coefficient is determined by taking all possible

combinations on pairs of predictions compared to the actual values. For each pair

(i, j), if (Qi
o < Qj

o) and (Qi
p < Qj

p), or (Qi
o > Qj

o) and (Qi
p > Qj

p) then it is

considered a good prediction, and a counter O is incremented by one. The Order

coefficient is then calculated as follows:

Order =
O

X(X − 1)/2
(5.3)
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where X is the total number of predictions. The Order coefficient gives an indi-

cation of how accurate the model is at comparing two points. The NS coefficient

ranges from −∞ to 1, and the Order coefficient from 0 to 1. In both cases, the

closer to 1, the more accurate the predictions. If NS ' 0, it is an indication

that the predictions are as accurate as the mean of the observed data (Qo), while

NS < 0 indicates that the observed mean is a better predictor than the model.

For all three databases, we employ data collected from the literature of tables

consisting of chemical composition for martensite start temperature, including the

temperature for electrical conductivity and molar volume, for a n ∈ [10; 15]. See

Table 5.1 for a simple example training set and query point on molar volume data.

Each set of compositions (row) has an associated property that we are predicting.

For each data set and technique, we randomly select the training data points from

the database and use the remaining data for evaluating the predictions. In the

following subsections we present results using from 50% to 90% of training data.

Training:

SiO2 Al2O3 MgO CaO Na2O K2O LiO2 MnO PbO T(K) MV

53 0 0 5.1 41.9 0 0 0 0 1573 26.61

56 0 0 0 0 0 0 0 44 1323 25.55

78.56 0 0 0 14.3 0 7.14 0 0 1773 26.5

47.6 5.61 21.29 25.5 0 0 0 0 0 1773 22.93

Prediction:

60.56 5.08 28.57 0 3.53 2.3 0 0 0 1053 p

Table 5.1: Example of training and prediction query (p) for Molar Volume (MV)

data. The input compositions are in mole percent and the molar volume in

cm3/mol.

For each technique, outliers (wild predictions) are excluded from the average

RMSE, as we believe that including a few very large numbers would not give an

accurate representation and thus the comparison would be distorted. Predictions

with an error greater than 200% are considered as outliers. In Section 5.5 we dis-

cuss in more detail the percentages of outliers obtained for each tested technique.
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5.1 Molar volume data

For this evaluation, we used the MV database as described in Section 3.1.1. The

performance of each technique is illustrated in Fig. 5.1 and Table 5.2. All six

techniques performed relatively well, maintaining an average RMSE below 10%.

However, the GP was the clear winner with an average RMSE below 5% for every

test. The linear, quadratic and dynaTree LIN models give very similar results,

with an average RMSE of 7 to 9%. As expected, there is a general tendency for

an improved accuracy as the proportion of training points increases. The more

training data is available, better are the chance of covering the entire space. The

dynaTree CST technique gives very good results for 4 datasets out of 5. This

behaviour is confirmed by the NS and Order coefficients.
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Figure 5.1: Comparison of the RMSE for Molar Volume predictions.

Technique NS Order RMSE

Linear 0.9301 0.9104 8.4144

Quad 0.9501 0.9291 7.4706

dynaTree CST 0.9512 0.9129 6.0979

dynaTree LIN 0.9376 0.9217 8.3299

GP 0.9784 0.9509 4.5036

SGP 0.9783 0.9584 3.2712

NN 0.9166 0.9119 8.6115

Table 5.2: NS, Order and RMSE for Molar volume (50% training points).
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5.2 Electrical conductivity data

We test the linear, Quad, dynaTree CST and dynaTree LIN techniques with ac-

tual electrical conductivity values cond as well as ln(cond) and ln(T × cond). The

database used is described in Section 3.1.2 and referred to as EC Red 1 in Table 3.3.

As mentioned earlier, electrical conductivity here refers to the ionic conductivity.

Table 5.3 shows that using log(T × cond) gives the best predictions, therefore

we compare the RMSE making predictions on this value. This can be explained

because in general, the electrical conductivity (κ) temperature dependence obeys

Arrhenius laws, that is: ln(κ) = α+β/T where β is the activation energy and α is

a value of electrical conductivity at a reference temperature. However, for silicate

systems, there is a deviation from this law [52]. Consequently, we decided to test

all three cases mentioned above to evaluate how the prior knowledge of the prob-

lem influences predictions quality. In this case there is a clear improvement on the

NS coefficient (27%) while the Order coefficient had only a slight increase (2%).

Figure 5.2 shows that the GP technique gave the lowest average RMSE for all the

testing sets. The NN and linear interpolation techniques performed quite poorly,

especially with only 50% of training data, giving respectively average RMSE of

47% and 28%, both with an NS coefficient of 0.79 compared to 0.98 for GP.
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Figure 5.2: Comparison of the RMSE for Electrical Conductivity predictions.
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cond ln(cond) ln(T×cond)

Technique NS Order NS Order NS Order RMSE

Linear 0.5960 0.8419 0.7661 0.8509 0.7853 0.8604 27.8245

Quad 0.7610 0.8675 0.8981 0.8961 0.9117 0.8990 22.6727

dynaTree CST 0.7265 0.8599 0.8847 0.8399 0.8818 0.8442 21.0682

dynaTree LIN 0.6585 0.8397 0.8771 0.8741 0.8909 0.8800 22.4429

GP N/A N/A N/A N/A 0.9610 0.9193 8.9757

SGP N/A N/A N/A N/A 0.9872 0.9446 9.4010

NN N/A N/A N/A N/A 0.7897 0.8630 47.4660

Table 5.3: NS, Order and RMSE for Electrical Conductivity (50% training points).

N/A signifies that no data was available for this particular type

5.3 Martensite start temperature data

The database used for this section is described in details in Section 3.1.3. Once

again, as illustrated by Figure 5.3 and Table 5.4, GP gave the best predictions,

maintaining an average RMSE of 5.85%. Linear interpolation performed remark-

ably well overall with an average RMSE of 13.6%. Quadratic regression and dy-

naTree LIN gave good results with a large training set, however performed very

poorly with a smaller training set. There is an obvious peak in error for the

NN method when 70% training data is used. As explained at the beginning of

Chapter 5, outliers have been excluded from the results, considering an arbitrary

cut-off value of 200% (i.e. predictions with more than 200% error are not com-

piled). However, for this particular series of tests, it happens that a considerable

amount of results were just under that cut-off value, thus influencing the average

RMSE by a large number and causing the unusual peak. For the previous two

problems, properties are measured within one chemical phase, therefore, measured

values depend only on chemical composition and temperature. However, the value

of Ms is dependant on multiple chemical phases, and is influenced by operating

factors such as the cooling rate, hence the noisy nature of the data. For this

specific problem, we also added an additional measure: the RMSE on the train-

ing data at 50% training, in order to show the quality of the regression methods

on noisy data. The results are presented in Table 5.5. GP presents the smallest

training error with 3.56% while the worse performer is dynaTree LIN with 23.81%.

36



CHAPTER 5. EVALUATION OF INTERPOLATION TECHNIQUES

0

5

10

15

20

25

30

35

40

50 60 70 80 90

% of training data

Linear

Quad

dynaTree CST

dynaTree  LIN

GP

NN

SGP

Figure 5.3: Comparison of the RMSE for Martensite start temperature predictions.

Technique NS Order RMSE

Linear 0.8505 0.9000 13.2032

Quad 0.4988 0.8896 35.4405

dynaTree CST 0.7997 0.8517 13.7197

dynaTree LIN 0.5570 0.7917 26.9888

GP 0.8987 0.9120 8.1254

SGP 0.7949 0.8738 11.8719

NN 0.7533 0.8933 14.0708

Table 5.4: NS, Order and RMSE for Martensite start temperature (50% training

points).

Technique Training RMSE

Linear 14.3434

Quad 12.9457

dynaTree CST 14.4358

dynaTree LIN 26.3521

GP 3.5598

SGP 6.8557

NN 10.0290

Table 5.5: Training RMSE for Martensite start temperature (50% training points).
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5.4 Computational time

We had an average time of 18.8 seconds per prediction point when running a GP

regression, on a desktop computer Intel i7 3.4GHz with 16 GB of RAM. The NN

was the second slowest with an average of 7.7 seconds per prediction while dy-

naTree LIN came in third with 4.2 seconds per prediction. The SGP technique

produced an average time per prediction of 0.94 seconds. The other three tech-

niques performed under 0.1 seconds, as shown in Table 5.6. The times include

both training and prediction.

Technique Time (s)

Linear 4E-6

Quad 3.5E-5

dynaTree CST 0.088

dynaTree LIN 4.22

GP 18.85

SGP 0.94

NN 7.73

Table 5.6: Overall average time per prediction in seconds.

5.5 Discussion

The main preoccupation of an engineer when attempting to model new data is the

reliability of the prediction. In terms of predicting accuracy, for all three types

of data the GP and SGP (Figure 5.4) are the clear winners in our evaluations.

Overall, the GP has a offers slightly better prediction accuracy, but this technique

is by far the slowest to run and can be impractical with very large datasets. If time

is not a factor, GP seems to be the best choice. However, for on-line applications

or any application where computational time is an important factor to consider,

one may wish to consider using SGP, which offers a slight setback in accuracy but

improves greatly the computational time.
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Smooth data Within the three faster techniques, dynaTree CST gave the best

performance. Nevertheless, since all models gave acceptable results, one may con-

sider using strictly linear interpolation, as the excess (or deviation from linearity)

has proven to be very low and the computational time exceptionally fast.

Nonsmooth data The quadratic interpolation model represents the best choice

for this type of data within the faster techniques. With the Electrical Conductivity

example, we show that using ln(T × cond) leads to better predictions. Therefore,

this clearly demonstrates that a thorough knowledge of the problem is an impor-

tant factor influencing the quality of predictive models.

Noisy data For this type of data, prediction accuracy clearly improves as the

training set gets larger. As we can see in Figure 5.3, with a large training set

(90%), all techniques give acceptable results. Consequently, if the training set is

complete enough, the polynomial interpolation models seem to be an interesting

choice because of their low computational cost. Some authors have suggested that

Ms can be a linear function [25, 26]. However, if this was the case, the linear re-

gression model would give the best predictions. Since the Gaussian approaches are

clear winners over the linear approach, it seems apparent that Ms is a much more

complex function. Here, using parameters other than the chemical composition as

part of the model could improve significantly the predictions accuracy.

There is a clear magnitude difference in the general average relative error ob-

tained by all techniques on all three sets of data. For molar volume, the average

error was under 10%, while for electrical conductivity and Martensite start tem-

perature, the average was more around 15 to 20%. This can be explained by the

fact that the molar volume is easier to measure than the other two properties, thus

minimizing the intrinsic error.

One can argue that the real power of machine learning techniques lies in pre-

dictions made with a minimum set of training data. In the real world, it is often

the case that engineers have limited experimental points and still wish to make
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predictions based on this data set. In this light, if we compare the results with only

50% of training points (Table 5.7), one should avoid neural network for nonsmooth

data, and quadratic interpolation for noisy data. With an average RMSE of over

35% on prediction of Ms, Quad clearly overestimates the non-linearity of the func-

tion, while it is not the case for the two other types of data. Once again, the most

reliable technique is the Gaussian process regression for two of the three cases.

SGP and dynaTree CST are good alternatives to GP to reduce the computational

time. The training RMSE at 50% training points (Table 5.5) is representative of

the results obtained on testing points with the exception of Quad, which has a

training error of 12.95% and a prediction error of 35.44%. However, as mentioned

at the beginning of the present Chapter, outliers were excluded from the average

RMSE, and the same treatment has been done whilst calculating the training er-

ror. While most technique produced practically no outliers on training data, 3.3%

of outliers were excluded for the Quad technique. The neural network models well

the training data despite giving somewhat erratic results on testing points.

Lin. Quad
d.Tree

CST

d.Tree

LIN
GP SGP NN

Molar volume 8.41 7.47 6.10 8.33 4.50 3.27 8.61

Electrical Conductivity 27.82 22.67 21.07 22.44 8.98 9.41 47.47

Ms 13.20 35.44 13.72 26.99 8.13 11.87 14.07

Table 5.7: Relative RMSE in percent at 50% training. On each row, lowest RMSE

is represented in green and highest in red.

Figure 5.5 illustrates the total percentage of excluded data per technique. From

this figure, we can conclude that a smooth data set leads to very few wild predic-

tions, however, for nonsmooth data, human validation is required in order to make

sure that these predictions are not considered. Quadratic interpolation gave very

few outliers for smooth and nonsmooth data, however it ended up having almost

2% of rejected data for a noisy set of data. In general, SGP was the most reliable

technique with less than 0.05% of outliers for each training set, while the neural

network model was unreliable especially for nonsmooth data, giving more than 2%

wild predictions, and performing erratically for noisy data. The remarkably small

number of outliers for SGP is interesting and can be explained by the fact that
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this technique is partitioning the data in very small clusters. Rather than approx-

imating a Gaussian function over the entire training set, it is done in very small

areas, and this reduces the error where in areas where data would be sparse over

the entire space. This is a very important advantage of SGP, and it also explains

while in some cases, especially at 50% training data, SGP had a smaller average

RMSE than a conventional GP.
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Figure 5.4: Average RMSE obtained for each set of data.
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Figure 5.5: Percentage of excluded outliers (RMSE>200%) per set of data.
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6. Truth discovery in Material Science

databases

Refer to Section 3.1 for a complete descriptions of the databases used in our work.

To conduct experiments on truth discovery, we used a reduced database of EC,

refereed to as EC Red 2 in Table 3.3.

Here we consider each scientific paper from where the data points have been

extracted to be independent sources of information. This database can be fed to

a machine learning model in order to make predictions for new chemical compo-

sitions where the electrical conductivity is currently unknown. In Table 3.2, the

last line is an example query that could be desired in the industry.

As an example taken from our dataset, Fig. 6.1 illustrates a series of conflicting

pairs of data points between two sources. Here the values of EC, with input values

extremely close in space and at the same temperature show large variations. Such

differences are unacceptable when consulting in process design [22]. When con-

sulting an existing database, faced to such variations in data, as it would be very

confusing to decide which information is truthful and which should be discarded.

6.1 Author ranking by sources comparison

In an effort to reduce the noise in databases consisting of experimental points, we

introduce a new method of truth discovery using the different sources (research

papers in our case) and the amount of conflicting and similar but non-conflicting

information between them to create a ranking of reliability.

In Fig. 6.2, we represent a sample of 13 of the 67 sources found in our database.

One can see the amount of conflicting information over the amount of similarities.
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Figure 6.1: Example of conflicting information found in our EC database. Each

pair of conflict is shown on the X axis and the Y axis presents the values of EC.
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Figure 6.2: Illustration of conflicting information between some sources of the

EC database. The squares represent the different sources with their arbitrary

numbering, the arrows represent similarities between two sources and the numbers

on each arrow represent the amount of conflicts over the amount of similar data

points. Dotted arrows indicate that there are no conflict, only agreements between

two sources.

In this example, we want to consider source 50 as more reliable than source 23,

because 50 has 3 similar data points agreeing with two other sources, whilst 23

has 18 conflicting data points, including 2 within its own data.
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Of course, what is regarded as similar information and conflicting is entirely

subjective and we had to define our own rules. In this work, we measure the dis-

tance between two data points in space using a custom distance equation, following

this predicate to compare two points p and q:

∀i ∈ N :

(
|qi − pi|∑N

j=1 qj
< ε

)
∧

(
|qi − pi|∑N

j=1 pj
< ε

)
∧ ((pi = 0)↔ (qi = 0))

Where N is the total number of columns (dimensions), excluding the predicted

column (EC) and ε is an arbitrary similarity constraint, we used a value of 5%.

This equation has been introduced Section 4.2, where it has proven to be a more

accurate way of comparing materials properties databases than using a simple eu-

clidean distance. The reason is that we want points to be close in every dimension,

as potential chemical interactions between the components can cause a very big

difference in the predicted value. In other words, very close points in space can

have a very big difference in their value of EC, caused by a small amount of a

certain chemical component.

We define a conflict between two authors as two points that are similar, ie.

relatively close in space (ε < 5%) but having a difference of more than twice the

experimental error in the output used for prediction (EC). To find a reliable value

of experimental error, we computed the average discrepancy within each source.

That is, for each pair of similar points within a given author, we calculate the

average difference in EC. In our case study, we find this average to be of approx-

imately 5%, therefore we considered conflicting information values to be above a

10% difference in EC. By definition, the points that are close in space but where

EC is under 10% difference are considered as agreements.

In our work we consider two types of similarities: direct and indirect. For a

given source, direct similarities (agreements and conflicts) are the ones that can

be found from its own data in relation to other sources. Let us define the list of

sources with direct similarites as Sd. An example is illustrated in Fig. 6.3, showing

direct similarities for source 23 by black arrows going to sources 24, 25 and 27.

Here Sd = 24, 25, 27. On the other hand, indirect similarities are the similarities
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between our list of similar sources, Sd and other sources. The indirect similarities

are illustrated by red arrows on Fig. 6.3. In this example, source 23 has indirect

similarities with sources 24, 25, 27, 29, 43, 11 and 13. We consider that indirect

similarities are an indication of the reliability of the similar sources. For example,

source A could have a lot of conflicting information with source B, but if source B

has also a lot of conflicts with a lot of other sources, this means that it may not be

very reliable and therefore this information should be of less value than if B was

considered very reliable.
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Figure 6.3: Direct similarities of source 23 are shown by black arrows and indirect

similarities by red arrows. Here sources 24, 25 and 27 contribute to the indirect

similarites for source 23.

Using the amount of similarities, conflicts, agreements and the total amount of

data points for each author, we introduce a quality rate Q, giving an estimation of

reliability for each source. For a given source, we calculate Q using the following

equations:

Q =
αQd + βQi + γQc

α + β + γ
(6.1)

Qd =
1− Cd − Ad

P
(6.2)

Qi =
1− Ci − Ai

P
(6.3)
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Qc =
1− Sc − Sa

P
(6.4)

Where Cd is the ratio of direct conflicts, Ad is the ratio of direct agreements,

Ci is the ratio of indirect conflicts, Ai is the ratio of indirect agreements, Sc is

the ratio of authors with conflicting data, Sa is the ratio of sources with agreeing

data and P is the number of data points for the given source. Three parameters

are introduced in the formula: α, β and γ, allowing weights to be attributed to

each type of conflicting information. In this work we have chosen the parameters

α = 2, β = 1 and γ = 0.5. We chose these values because we consider direct

conflicts and similarities to be of the most influential on the reliability of a given

source. A higher value of Q signifies a higher confidence level for a given author.

Here in the case of only one direct conflicting source, for example sources 15 and

31 in Fig. 6.2, the source with the most amount of data will have a higher Q value.

In Fig. 6.2, source 23 has two internal conflicts, meaning that two pairs of data

points are conflicting within its own dataset. This is considered very unreliable

and should have a big effect on Q. We chose to treat these as direct conflicts but

it is not added to the total amount of similarities. This can mean that a given

source could have a negative value of Q. The percentage of direct conflicts Cd is

calculated as follows:

Cd =

∑
direct conflicts∑

direct similarities
(6.5)

Similarly, Ci, Ad and Ai are calculated as follows:

Ci =

∑
indirect conflicts∑

indirect similarities
(6.6)

Ad =

∑
direct agreements∑
direct similarities

(6.7)

Ai =

∑
indirect agreements∑
indirect similarities

(6.8)

Sc and Sa are calculated using the following formulae:

Sc =
number of conflicted sources

number of sources with similarities
(6.9)
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Sa =
number of agreeing sources

number of sources with similarities
(6.10)

Note that the same sources can contribute to both Sc and Sa, as two sources

can have conflicting and agreeing data simultaneously.

Once every source has been evaluated, we consider every pair of conflicting

information and eliminate the data point where its source has a lower value of

Q. This is applied recursively on the entire database until all the conflicted in-

formation has been eliminated. Table 6.1 shows an example of two conflicting

data points and the values of Q for each source. After the process, the remaining

database is pruned and reduced, eliminating noisy information in an attempt to

get better predictions.

SiO2 Al2O3 MgO CaO MnO PbO FeO Fe2O3 T(K) EC Source Q

63.40 0 0 36.60 0 0 0 0 1873 16.10 45 0.004

61.38 0 0 38.62 0 0 0 0 1873 20.50 48 0.120

Table 6.1: Example of conflicting datapoints. Here source 48 would be chosen over

45 and the first data point would be elminated from the database.

In order to test the prediction power of SGP, some artificial noise has been

generated and introduced in the database. Section 6.2 presents the results of

the predictions with various amount of introduced noisy data. In order to keep

it realistic, the noisy data had to be close to the existing data points, but have

possible conflicting values of EC. Therefore, these points have been produced by

taking each existing source and creating a slightly modified version of each data

point (randomly +/-5%) but with a possibly conflicting value of EC (randomly

+/- 50%). We then choose a random subset of all the generated noisy data and we

introduce them in our database prior to testing. It is important to note that from

this method, a random portion of the introduced points will not be conflicting

information.

In Chapters 4 and 5, we evaluated SGP on prediction of electrical conductivity,

using ln(T ∗σ), where T is the temperature and σ is the value of electrical conduc-

tivity in Siemens per meter. We showed that this approach provides a significant
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improvement on predictions. However, for the truth discovery problem, we are

using the non-logarithmic values of electrical conductivity in order to show the

full range of errors.

6.2 Results and discussion

First, we test predictions with SGP, using a 10-fold cross-validation technique on

the non-filtered database. In a 10-fold cross-validation, the entire database is split

in 10 equal subsets. Each subset is then used as a testing set where the model

is trained with the remaining 9 subsets. We repeat this procedure 10 times. The

average error in percent and root mean square error are then computed over all

the tests and this is what we are presenting in this section. Table 6.2 shows the

influence of introduced noise on the predictions performed by SGP. Then, we test

the same databases when applying our noise reduction technique introduced in

Section 6.1. The results are presented as a graph of the RMSE in Fig. 6.4 and in

Table 6.2.
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Figure 6.4: Graph showing the influence of the amount of introduced noise on

SGP prediction accuracy.

From these results, one can see that SGP is extremely efficient at excluding a

low to medium amount of noisy information. When applying our noise reduction

technique on the original database, only 7% of data points were removed, and it
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No filtering Filtered database

Database Error (%) RMSE

Filtered

points

(%)

Error(%) RMSE

Original database 14.96 16.13 7 15.11 17.91

15% introduced noise 18.04 21.27 11 18.20 20.76

20% introduced noise 18.65 22.15 12 18.81 21.61

40% introduced noise 28.14 34.19 15 20.86 24.38

75% introduced noise 26.51 31.33 15 21.78 25.96

Table 6.2: Influence of introduced noise on SGP predictions

explains the fact that there is no improvement on the original predictions. In order

to test the robustness of SGP, up to 75% of noisy data points were introduced in

the database. When introducing up to 20% of noisy data, the predictions remain

acceptable with a RMSE of around 20%. This result is an example of the re-

markable robustness of the SGP technique. The biggest effect can be seen around

40% of noise, where the RMSE jumps to 34%. Beyond this amount, as it can

be expected, the predictions are actually getting slightly better. This is because

the noisy data is overtaking the actual real data and the SGP is actually over

fitting. Nevertheless, our noise reduction technique is showing impressive results

by keeping the error below the 22% mark. In Table 6.2, the pruned points column

shows the amount of conflicting information that has been eliminated using our

noise reduction technique. Here we can note that all the introduced noise is not

completely removed during the filtering, and this is perfectly normal as some of the

random noise can actually be non conflicting information. However, by removing

the conflicts, we can improve the predictions by an impressive 10% on the RMSE

for the case of 40% introduced noise, which is where we see the most effect on the

SGP prediction accuracy.

Even if there is no a major improvement in the prediction accuracy under the

bar of 20% introduced semi-noisy data, it is important to note that our filter-

ing technique still managed to remove from 7% to 12% of conflicting information,

meaning that the reliability of the database is improved when consulting existing

data. Since the introduced data is random, it is not unreasonable to assume that
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one quarter to half of this introduced data could be potential agreeing information

and thus should not be removed. Therefore, by identifying and removing 12% of

conflicting information in the case of 20% introduced noise, one can assume that

all or almost all conflicts have been identified and resolved. This is an important

point to consider as other modelling techniques would possibly not handle this

amount of noise as well as SGP. As a matter of a fact, we tested our approach

using a Nearest Neighbour Interpolation model, as implemented in the XonGrid

Excel Add-in [12]. The predictions on the original database using this model were

mediocre, with an average error of around 45%. However, when using the training

database, the average error went down to approximately 20%. We can conclude

that for this type of model, conflicting information in the training database has a

high influence on the quality of the predictions.
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7. Conclusions

7.1 Summary and Conclusions

In Chapter 1, we formally introduce the problem by detailing the motivations be-

hind our work. Because of the cost and time involved in performing experiments,

engineers rely on machine learning models to make predictions on materials prop-

erties. The databases used for training to make these predictions are collected and

assembled from the literature. In conjunction with this data, it may be the case

that live data is fed from the plant into the databases, making on-line learning a

necessity for the chosen model. Furthermore, optimisation of materials properties

requires a large number of predictions to be performed and thus the computational

time is critical. From the literature, we know that a Gaussian regression model

gives good predictions for the properties we are working with, however, this tech-

nique is very costly in terms of computational time. Therefore, we chose to develop

a novel method to make on-line learning with Gaussian process regression, called

scalable Gaussian process (SGP). Since we are dealing with databases consisting of

experimental points, errors can be present and contracting data points included in

these databases. In order to improve the prediction accuracy of machine learning

methods, as well as to make the databases more reliable when consulting exist-

ing data, we also develop a novel truth discovery technique, using the amount of

conflicting and agreeing information between the different sources present in each

database.

Chapter 2 presents a comprehensive literature review in the domains of pre-

diction of materials properties, Gaussian process regression for machine learning

using a large amount of data, clustering of high-dimensional data and truth dis-

covery.

For this research, we have access to five databases for three materials prop-

erties: molar volume, electrical conductivity and Martensite start temperature.
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Three databases on electrical conductivity are employed in our experiments, one

large one and two reduced versions. The databases as well as the detailed compo-

sition ranges are described in Section 3.1.

In Section 3.2, we provide a brief description of the machine learning interpola-

tion techniques we chose to compare with our novel SGP as well as evaluate on our

datasets. These techniques are: Gaussian process regression, linear interpolation,

quadratic interpolation, neural network and dynamic trees.

Our novel method, SGP, is described in details in Chapter 4. We propose a

scalable approach to make predictions of materials properties using a Gaussian

process regression machine learning model. This approach improves the compu-

tational time of a traditional GP, by creating clusters of similar information as

input queries, and then using a subset of the entire training database by choosing

only the information close to a given query cluster. The calculations are therefore

performed by small clusters, or batches, and the reduced training database is also

compressed to remove similar information, improving drastically the overall com-

putational time. As it can be expected, our experiments showed that the size of the

training matrix influences the calculation time exponentially. While it is clear that

a very small training set would lead to poor prediction and that a large set would

necessarily produce more accurate predictions, our results with Ms and Electrical

Conductivity predictions show that there is no general correlation between the

size of the training matrix and the predicted error when using training matrices

between 102.7 and 104.7. We believe that the variation in prediction error is related

to the quality of the data in the training matrix. In other words, closely related

data in the training set will lead to better prediction. Also, our datasets consist of

experimental values, there is a high chance of human error in entire sets of points

that could lead to variations in the results. In summary, our SGP has proven

to be fast while maintaining a good prediction error. Results on prediction of

Martensite Start Temperature as well as Electrical Conductivity demonstrate that

the proposed Scalable GP outperforms the other existing methods significantly in

terms of efficiency and scalability. Experiments on gas sensor data also prove that

our approach can be used successfully not only on material science data, but also

for a wider variety of applications, proving its versatility.
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In Chapter 5, we present a comprehensive comparison of the machine learning

techniques introduced in Chapter 3.2, as well as comparing with our new SGP. This

research shows that a material engineer wishing to make predictions on specific

sets of data must study the nature of the data in order to make an informed deci-

sion. Assisted by computer scientists, one can make the best choice to achieve the

most accurate predictions whilst minimizing the computational time. This chap-

ter demonstrate that knowing the behaviour of electrical conductivity data led

to more accurate results by using a logarithmic value. Overall, within the tested

techniques, the standard Gaussian process regression gives the best prediction ac-

curacy, but is by far the slowest technique. For applications where computational

time is an important factor, such as real-time applications, we recommend using a

modified version of GPs such as the SGP, proposed in the current manuscript. The

constant model of dynaTree could also be a good alternative. This work demon-

strates how computer science can be coupled with material engineering, in order

to improve material and alloy design [32].

Chapter 6 presents a new truth discovery technique to filter scientific databases

consisting of experimental points. When two data points are in conflict, we use

the amount of direct and indirect conflicts and agreements in order to make a

decision as to which point should be eliminated. We test our approach by making

predictions using our introduced SGP, presenting the results in terms of prediction

error before and after pruning the database. The results presented in this chap-

ter prove that the SGP interpolation technique is very robust when the ratio of

noise, or conflicting data is relatively low. However, predictions start to deterio-

rate when more and more noisy data is involved. The proposed approach provides

an improvement of predictions by 10%. The new produced database can also be

considered more reliable when consulting existing information, automatising the

conflict resolution process.

In conclusion, this work is not intended to contribute to any new significant

findings in the area of material science. However, the methods that were developed

support material scientists in their research by providing a low-cost but yet effective

and fast alternative to conducting expensive experiments on materials properties.
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Our SGP technique allows fast and accurate predictions and can be used in the

context of chemical systems optimisations, where on-line learning is essential, while

our truth discovery method helps detecting potential errors in published data

thus improving the prediction accuracy of machine learning models when using

databases consisting of experimental points.

7.2 Future Work

In future work, we will investigate the prediction of other physical properties, and

we are planning to integrate the SGP into FactOptimal [22, 23, 24], the optimi-

sation module of FactSage, which is a software system that is created for treating

thermodynamic properties and calculations in process metallurgy [3]. We propose

to utilize the thermochemistry knowledge and the machine learning approach to

achieve more efficient and accurate predictions, which could be used in practi-

cal chemical industry. We also plan to improve the web application of SGP [6]

by including our truth discovery technique as a preliminary step to to prune the

training database. Another improvement to SGP would include the implementa-

tion of an automatic analysis of the training data in order to pinpoint areas where

data is missing, according to the desired predictions. This test would inform the

user that in order to achieve more accurate predictions on the desired points, more

experimental values should be collected around a specific region and would be very

useful in real life.

Another interesting future development would be to utilise our truth discovery

technique on different types of data. We believe that this approach can be very

versatile and could be used with any database containing redundant or similar

information from different sources. One would need to define a new similarity

measure (i.e. new rules for determining what are considered conflicts or agree-

ments), according to the specific problem, but the main idea and the quality rate

Q, as explained in Section 6.1 would remain the same.
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8. Nomenclature

δ Kronecker delta

µ Mean

κ Electrical Conductivity

σ Variance

D Number of dimensions

GP Gaussian process

Ms Martensite start temperature

MV Molar volume

n Number of training (experimental) points

NG Gaussian Noise

NS Nash-Sutcliffe model efficiency

Q Quality rate

RMSE Root mean square error

T Temperature

w Width of a Gaussian kernel
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