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Abstract: 49 
 50 

Atmospheric concentrations of α- and γ-hexachlorocyclohexanes were measured once a week in Dalian throughout 51 

2008, using a high-volume air sampler, to estimate diurnal, monthly and seasonal variations. Multiple regression 52 

analysis was used to estimate the impact of selected meteorological conditions on atmospheric concentrations of 53 

hexachlorocyclohexanes and to identify the potential source regions. Overall, α- and γ-hexachlorocyclohexanes were 54 

mainly associated with the gas phase, with an annual mean gas-phase concentration of 36±30 and 10±9.8 pg m-3 55 

respectively. On the other hand, mean particle (PM10) associated concentrations throughout the year were 1.9±2.4 56 

and 0.46±0.43 pg m-3 respectively. Gas-phase concentration of α- and γ-hexachlorocyclohexanes peaked in the 57 

autumn season whereas highest concentrations in the particle phase were measured in spring. Ratio of α-/γ-isomer 58 

ranged from 3.7 to 7.4 in the gas phase which was close to the ratio in technical hexachlorocyclohexanes (5~7). In 59 

the particle-associated phase this ratio ranged from 1.2 to 3.8, with the exception of daytime samples in spring (up to 60 

16) and summer seasons (up to 14) and this exception could be due to the isomerization from γ- to α- in ambient air, 61 

at least partly resulted from the impact of sunlight. Regression analysis showed that, at the sampling site, 62 

concentrations of α- and γ-hexachlorocyclohexanes in the gas phase were both elevated with increasing temperature 63 

and wind speed, whereas in the particle-associated phase their concentrations tended to remain stable. 64 

 65 

 66 
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1. Introduction 84 

 85 

Hexachlorocyclohexanes (HCHs) were used extensively between the 1960s and the 1980s and cumulative 86 

consumption of technical HCHs has been estimated as 6 million tons globally (Willett, Ulrich, & Hites, 1998). In 87 

China, HCHs were widely used for agricultural purposes and vector control and the amount of technical HCHs used 88 

in China and South Asia during the late 1970s was estimated at about 60,000 tons per year (Willett et al., 1998). 89 

During and after application, large amounts of HCHs can be released and condensed into environmental reservoirs 90 

such as soil, vegetation and cryosphere. Subsequently, the stored HCHs can re-volatilize from these secondary 91 

sources into environmental compartments and can result in exposure of humans and the whole ecosystem. 92 

Temperature is invoked as the major controller for semi-volatile organic compounds (SVOCs) such as HCHs to 93 

condense into/(re-)volatilize from environmental reservoirs, effectively accounting for their cycling nature between 94 

air and earth’s surfaces (Halsall et al., 1999). Several studies have interpreted this phenomenon using the 95 

Clausius-Clapeyron equation, in which chemical concentrations in air, expressed as partial pressure, are plotted 96 

against ambient temperature (Hoff, Mulr, & Grift, 1992; Hornbuckle & Eisenreich, 1996; Venier & Hites, 2010). 97 

Besides, wind speed and direction are also considered as the major factors, which can be integrated into a multiple 98 

regression model including also reciprocal temperature, to interpret the impact of these meteorological parameters 99 

on the concentrations of SVOCs in ambient air. For example, Hillery et al. used this equation to relate atmospheric 100 

PCB concentrations to meteorological conditions, thereby to study the temporal and spatial trends of gas-phase PCB 101 

concentrations near the Great Lakes (Hillery, Basu, Sweet, & Hites, 1997). 102 
 103 

Dalian is a seaside city where the distribution of atmospheric pollutants could be influenced by diel cycle of sea-land 104 

breeze. However, to our best knowledge, limited reports are available for diurnal and seasonal variations of 105 

organochlorine pesticides (OCPs) including HCHs (Li et al., 2012; Li et al., 2011) and for their source analysis 106 

within this city. This study aims to obtain diurnal and seasonal data for atmospheric HCHs in Dalian air and to 107 

analysis their sources by a multiple regression model both in the gas and particle-associated phase. 108 

 109 

2. Materials and methods 110 

 111 

2.1 Sample collection 112 

The sampling site is located in Dalian (121°31’E, 38°52’N), in the southern tip of Liaodong peninsular in northeast 113 

China, adjacent to the Yellow Sea and Bohai Sea (the supplementary information (SI) Figure S1). The city locates in 114 

the temperate zone featured by a typical maritime continental monsoon climate. A sampling platform (altitude 12 m 115 
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above the ground) is mounted on the Technology Building of Dalian Maritime University and is ~10 km to the city 116 

center and ~1 km to the Yellow Sea and lacks of major proximate OCP sources. Detailed sampling method has been 117 

published elsewhere (Li et al., 2012). Briefly, a high-volume air sampler operating at a flow rate at about 1.0 m3 118 

min-1 was used to collect gas-phase and particle (PM10)-associated-phase samples simultaneously once a week 119 

throughout the year of 2008. This sampling platform is also equipped with a mini weather station (Watchdog 120 

900ET) for monitoring and recording meteorological parameters continuously, including wind speed and direction, 121 

ambient temperature, relative humidity and solar radiance at the height analogues to that the air sampler was 122 

mounted. Data were recorded automatically every 6 seconds into a data-logger and output as hourly mean values. 123 

 124 
2.2 Sample analysis 125 

Sample extraction, cleanup and analysis were published in detail elsewhere (Li et al., 2012). Briefly, samples were 126 

extracted by n-hexane and cleaned up by a silica gel/neutral alumina column. Sample analysis was performed with a 127 

Shimadzu 2010 gas chromatograph (GC) equipped with a micro electron capture detector (m-ECD). 128 

 129 

2.3 Quality control and quality assurance (QC/QA) 130 

Detailed QC/QA procedure was reported elsewhere (Li et al., 2012). In brief, limits of detection (LOD) for α- and 131 

γ-HCH in the gas phase are 0.071 and 0.37 pg m-3 respectively and in the particle phase, LOD for α- and γ-HCH 132 

were 0.033 and 0.052 pg m-3, respectively. 133 

 134 

2.4 Multiple regressions 135 

Measured concentrations (pg m-3) of α- and γ-HCH were converted to partial pressures (atm) using the ideal gas law. 136 

Air temperature (T in K) and wind speed (WS in mph) were regressed into the logarithms of the atmospheric partial 137 

pressures (Hillery et al., 1997): 138 

 139 

ln P=b0+b1 (1/T)+b2 WS+b3 sinWD+b4 cosWD,                                              (1) 140 

 141 

where b0 is an intercept and b1 and b2 describes the dependence of the partial pressure on reciprocal T and WS 142 

respectively; b3 and b4 are coefficients of the sine WD (wind direction in degree) and the cosine WD terms.  143 

Two different methods, enter and stepwise method, which are fitted using IBM SPSS statistics 19, are used to run 144 

the multiple regression model separately. 145 

  146 

3. Results and discussion 147 

3.1 Ambient concentrations of HCHs in Dalian atmosphere 148 
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α-HCH. As expected, α-HCH distributed mainly in the gas phase (ratio of Cgas/Cparticle shown in SI Table S3), where 149 

a mean concentration of 34±27 and 32±29 pg m-3 was measured during daytime and nighttime respectively 150 

throughout the year (SI Table S1). In contrast, in the particle-associated phase, one order of magnitude lower 151 

concentration was observed as 1.6±1.8 and 1.6±2.1 pg m-3 during daytime and the nighttime, respectively (SI Table 152 

S2). As seen in Figure 1, in the gas phase, in terms of median concentration value in each month, the highest during 153 

daytime and nighttime was both observed in September at 72 pg m-3 respectively. Whereas for particle-associated 154 

α-HCH, this value during daytime and nighttime was both measured in April, at 2.8 and 3.5 pg m-3 respectively 155 

(Figure 2). Seasonally, concentration of gaseous and particle-associated α-HCH peaked in autumn and spring season 156 

respectively both for daytime and nighttime (SI Table S1&S2). 157 

 158 

γ-HCH. Similarly, dominant annual mean concentration was measured in the gas phase (SI Table S3), at 10±10 and 159 

11±9.6 pg m-3 during the daytime and the nighttime respectively, compared to the one in the particle-associated 160 

phase at 0.46±0.38 (daytime) and 0.58±0.56 pg m-3 (nighttime) (SI Table S1&S2). As shown in Figure 1, median 161 

value of γ-HCH concentration in the gas phase was highest in October (daytime, at 18 pg m-3) and September 162 

(nighttime, also at 18 pg m-3), respectively. In the particle-associated phase, on the other hand, this value was 163 

observed highest in January for the daytime (at 0.59 pg m-3) and March for the nighttime (at 1.0 pg m-3) (Figure 2). 164 

Seasonal variation of concentration of γ-HCH was similar to that of α-HCH, as presented in SI Table S1&S2. 165 

 166 

3.2 Isomer ratio (Cα-HCH/Cγ-HCH) and its indications 167 

The ratio of Cα-HCH/Cγ-HCH is typically used as an indicator to trace origin and pathway of HCHs in the air (Iwata, 168 

Tanabe, Sakai, & Tatsukawa, 1993). As seen in SI Table S1&S2, this ratio for gaseous HCHs in each season ranged 169 

from 3.7 to 7.4, which was close to the ratio in technical HCHs (5~7), whereas in the particle-associated phase, this 170 

ratio was measured as 1.2 to 3.8, with the exception of daytime samples in spring (at 16) and summer seasons (at 171 

14). A possible reason for this higher ratio could be the significant isomerization of γ-isomer into α-isomer, which 172 

has been experimentally demonstrated in the presence of ferrous salts and sunlight (Malaiyandi & Shah, 1984). That 173 

is, during the daytime, γ-isomer sorbed on the surface of particles may be isomerized intensively into the α-isomer, 174 

resulted at least partly from the impact of sunlight. 175 

 176 

3.3 Impact of meteorological conditions on atmospheric concentrations of HCHs 177 

 178 

Gas phase. Under the enter method, as shown in Table 1, during daytime, integrated impact of temperature, wind 179 

velocity and wind direction on atmospheric concentrations of α- and γ-HCH was found at significant level (R2=0.41 180 
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and 0.45 for α- and γ-HCH respectively, p<0.05), whereas during nighttime it was only the case for γ-HCH 181 

(R2=0.24, p<0.05). Atmospheric concentration of α- and γ-HCH at the sampling site both elevated with increased 182 

temperature and wind speed (b1<0 and b2>0). The correlation between concentration and temperature was 183 

statistically significant at p<0.05 during daytime for α-HCH and both during daytime and nighttime for γ-HCH. For 184 

the correlation between concentration and wind speed, statistical significance (p<0.05) was observed only for 185 

α-HCH during daytime. The insignificant impact from wind direction for both isomers indicated that spatial 186 

variations of potential sources for atmospheric HCHs at the sampling site were probably not significant, i.e. 187 

re-emission from terrestrial and ocean surface does not cause significant variations of concentrations of HCHs in 188 

ambient air at the sampling site. 189 

 190 

As seen in Table 1, for both α- and γ-HCH, the impact from temperature on concentrations was more significant (｜191 

b1｜>>｜b2｜) compared to wind speed (although for α-HCH neither reached a significant level at 0.05 during 192 

nighttime). Both of b3 and b4 were lower than 0 (and were marginally insignificant) for α-HCH, indicating that 193 

atmospheric concentration at the sampling site may be influenced by α-HCH transported by southwesterly wind. The 194 

area southwest of the sampling site is the Shandong Peninsular, which is the top province in China in terms of 195 

agricultural activities. Therefore, it is possible that gaseous α-HCH in the atmosphere at the sampling site was 196 

(partly) from re-volatilization from the Shandong Peninsular and surrounding sea water reservoirs (presumably the 197 

historic residues) (the geographic information can be referred in the SI Figure S1). The results of the back trajectory 198 

analysis of the air masses during this sampling period also supported this interpretation (Li et al., 2012; Li et al., 199 

2011). For both of α- and γ-HCH, ｜b1｜was higher during daytime as compared with nighttime, indicating that 200 

the emission from terrestrial surfaces/reservoirs during the daytime exerted stronger impacts on their atmospheric 201 

concentrations, i.e. the influence of proximate sources was stronger on the concentrations at daytime than that on 202 

nighttime. Besides, ｜b1｜for γ-HCH was greater than that for α-HCH during both of the daytime and nighttime, 203 

indicating that the influence of proximate sources was stronger on the atmospheric concentrations of γ-HCH 204 

compared to that of α-HCH. Multicollinearity diagnostics of independent variables within equation (1) under the 205 

enter method were also carried out by evaluating eigenvalue, condition index, variance proportions and variance 206 

inflation factor (VIF). As shown in the SI Table S4, eigenvalue of dimension 5 was ≤0.001 and condition index was 207 

over 70 for each group and a high (1.0) variance proportion was detected for inverse T against dimension 5, 208 

indicating a possibility of multicollinearity inherent in the regression model between cosWD and inverse T, although 209 

this was not supported by the low VIF (≈1) (Jeeshim, 2003). 210 

 211 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

  

Given the insignificances and possible multicollinearity issue observed above for the enter method, a stepwise 212 

method was then applied for modelling gaseous HCHs and the result showed that the variable temperature can be 213 

included for α- and γ-HCH during daytime and γ-HCH during night (P<0.002) and sinWD can be included for 214 

α-HCH during night (P=0.026) (SI Table S6), i.e. variations of concentrations of α- and γ-HCH during daytime and 215 

γ-HCH during night were mainly controlled by temperature (invoking re-volatilization from terrestrial and ocean 216 

surface). For α-HCH at night time, although the above result indicated that the concentration could be controlled by 217 

contaminants delivered by wind from north, B value of variable sinWD was nevertheless two orders of magnitudes 218 

lower than the one of constant, which implied that the impact from north wind was limited. 219 

 220 

Particle-associated phase. As seen in Table 2, under the enter method, integrated impact of temperature, wind speed 221 

and wind direction on atmospheric concentrations of α- and γ-HCH was found at insignificant level (p>0.05), which 222 

implied that this model may be inadequate to explain/predict the variations of concentrations of particle-associated 223 

HCHs. Similarly to gaseous HCHs, possible multicollinearity was also observed for particle-associated HCHs under 224 

the enter method (SI Table S5). Thus the stepwise method was applied and modelling result showed that none of the 225 

parameters can be included, i.e. these parameters (temperature, wind speed and direction) exerted limited impact on 226 

the variation of concentrations of particle-associated HCHs. As seen in Figure 2, concentrations of 227 

particle-associated HCHs during daytime and night time were close to each other and no obvious monthly 228 

variations/differences can be observed (ANOVA P lies between 0.26 and 0.59). In addition, partial regression of 229 

concentrations of particle-associated HCHs (shown as ln P) against meteorological parameters, as seen in Figure 230 

3&4, showed scattered relationship, indicating their concentrations tended to remain stable rather than varying with 231 

these parameters. This result was opposite to that of another pesticide, endosulfan, analyzed from the same sample 232 

set, where an obvious monthly trend was observed, which was partly attributed to the changes of temperature and air 233 

mass origins between months (Li et al., 2012). 234 

 235 
4. Conclusions 236 

 237 

HCHs distribute mainly in the gas phase in Dalian air and mean concentration of α-HCH is generally higher than 238 

that of γ-HCH. Concentration of gaseous and particle-associated HCHs peaks in autumn and spring respectively. 239 

The main controlling factor for gaseous HCH concentrations is ambient temperature and concentration of 240 

particle-associated HCHs tends to remain stable, i.e. temperature, wind speed and direction exert limited impact. 241 

Spatial variations of potential sources for atmospheric HCHs at the sampling site are probably not significant, i.e. 242 

re-emission from terrestrial and ocean surface does not cause significant variations of concentrations of HCHs in 243 
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ambient air at the sampling site. Emission characteristics from terrestrial and ocean surface should be further studied 244 

to illustrate spatial variations of potential sources for atmospheric HCHs. 245 

 246 
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Table 1. Multiple regression (enter method) results for gaseous HCHs 

ln P=b0+b1 (1/T)+b2 WS+b3 sin WD+b4 cos WD 

                 α-HCH                  γ-HCH 

  UC SE Sig.  UC SE Sig. 

Day (n=50) b0  -19 4.2 1.0E-5  -15 3.6 1.2E-4 

b1  -4,400 1,200 0.011  -5,800 1,000 1.4E-6 

b2   0.13 0.06 0.042  0.083 0.062 0.14 

 b3  -0.42 0.21 0.051  0.083 0.18 0.65 

 b4  -0.40 0.21 0.052  0.064 0.18 0.76 

Night (n=49) b0  -27 5.3 5.9E-6  -22 4.4 1.4E-5 

b1  -1,800 1,500 0.23  -3,800 1,200 3.9E-3 

b2  0.064 0.093 0.94  0.012 0.073 0.89 

 b3  -0.48 0.24 0.051  -0.25 0.19 0.22 

 b4  -0.043 0.25 0.87  -0.052 0.21 0.82 

T is temperature in K; WS is wind speed in mph; WD is wind direction in degree. UC is unstandardized coefficient; SE is std. error. 

α-HCH: Integrated correlation coefficient R2=0.41 and Sig. (F-test)=0.04 during daytime. Integrated correlation coefficient R2=0.13 and Sig. (F-test)=0.18 at night; 

γ-HCH: Integrated correlation coefficient R2=0.45 and Sig. (F-test)=2.38E-5 during daytime. Integrated correlation coefficient R2=0.24 and Sig. (F-test)=0.02 at night.  
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Table 2. Multiple regression (enter method) results for particle-associated HCHs 

                                       ln P=b0+b1 (1/T)+b2 WS+b3 sin WD+b4 cos WD 

   α-HCH     γ-HCH  

  UC SE Sig.   UC SE Sig. 

Day (n=45) b0  -44 5.8 2.7E-9   -42 3.9 3.0E-13 

 b1  2,000 1,600 0.23   1,200 1,100 0.29 

 b2  -7.0E-3 0.093 0.94   -0.033 0.064 0.63 

 b3  0.11 0.29 0.71   -0.27 0.19 0.19 

 b4  -0.093 0.29 0.75   -0.19 0.20 0.35 

Night (n=43) b0  -39 7.0 2.0E-6   -39 4.5 2.3E-10 

 b1  640 2,000 0.75   260 1,200 0.84 

 b2  -0.034 0.11 0.81   -0.082 0.072 0.25 

 b3  0.33 0.33 0.32   -0.39 0.21 0.071 

 b4  -0.27 0.36 0.46   -0.22 0.22 0.33 

α-HCH: Integrated correlation coefficient R2=0.06 and Sig. (F-test)=0.68 during daytime. Integrated correlation coefficient R2=0.05 and Sig. (F-test)=0.79 at night; 

γ-HCH: Integrated correlation coefficient R2=0.08 and Sig. (F-test)=0.51 during daytime. Integrated correlation coefficient R2=0.16 and Sig. (F-test)=0.17 at night. 
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Figure 1. Monthly variations in α-HCH (left panel) and γ-HCH (right panel) concentrations in gas phase 

 

 

 

 

 

 

 

 

 

 

Figure 2. Monthly variations in α-HCH (left panel) and γ-HCH (right panel) concentrations in particle-associated phase 
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Figure 3. Partial regression of α-HCH (day on the left and night on the right) in particle-associated phase against meteorological 
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Figure 4. Partial regression of γ-HCH (day on the left and night on the right) in particle-associated phase against meteorological parameters 
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• Diurnal and seasonal variations of HCHs in Dalian air are first time reported 

• Gaseous and particle-associated HCHs peaked in autumn and spring respectively 

• Multiple regression analysis was used to assess impact of meteorological parameters 

• Concentration of particle-associated HCHs tended to remain stable  
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Table S1. Atmospheric concentrations of gaseous α- and γ-HCH (pg m-3) and Cα-HCH/Cγ-HCH at the sampling site 
 

 n 
 α-HCH   γ-HCH  Cα-HCH/Cγ-HCH 

 
Mean S.D Min Max  Mean S.D Min Max  Mean S.D Min Max 

Spring (Mar-May) Day 13  30 14 9.6 50  9.3 12 1.5 45  5.7 3.6 0.95 12 

 
Night 13 

 
38 23 11 75  10 11 0.8 40  7.4 6.1 1.2 19 

Summer (Jun-Aug) Day 13 
 

36 33 3.8 110  11 7.0 1.6 24  3.7 3.0 0.41 11 

 
Night 13 

 
42 41 1.1 130  13 9.9 0.66 35  4.4 4.6 0.20 18 

Autumn (Sep-Nov) Day 13 
 

49 31 0.071 97  14 13 0.37 51  5.3 3.5 0.19 11 

 
Night 11 

 
52 42 0.36 130  14 10 1.8 31  4.3 4.2 NA 14 

Winter (Dec-Feb) Day 11 
 

19 20 2.9 75  6.2 5.3 0.99 15  3.8 2.8 NA 8.3 

 
Night 12 

 
22 16 2.5 54  7.3 7.0 0.60 22  6.9 11 0.66 42 

Annual (Jan-Dec) Day 50 
 

34 27 0.074 110  10 10 0.37 51  4.7 3.3 NA 12 

  Night 49  
32 29 0.36 133  11 9.6 0.60 40  5.7 7.0 NA 42 

NB: Mean is arithmetic mean value; S.D is standard deviation; Min is minimum value; Max is maximum value; NA means that the value is not available 
 
 
 
Table S2. Atmospheric concentrations of particle-associated α- and γ-HCH (pg m-3) and Cα-HCH/Cγ-HCH at the sampling site 
 

 n 
 α-HCH   γ-HCH  Cα-HCH/Cγ-HCH 

 Mean S.D Min Max  Mean S.D Min Max  Mean S.D Min Max 

Spring (Mar-May) Day 12  3.0  2.3  0.43  8.4   0.51  0.35  0.15  1.2   16  3.6 2.0  19 

 
Night 9 

 
3.3  2.8  0.22  7.6   1.1  0.89  0.23  2.5  3.4  3.1  0.96  12  

Summer (Jun-Aug) Day 13 
 

0.81  0.75  0.091  2.7   0.42  0.50  0.07 1 2.0   14  2.8  0.091  9.8 

 
Night 13 

 
1.3  2.2 0.054  8.4   0.51  0.39  0.10  1.4  3.8  4.6  0.12  13 

Autumn (Sep-Nov) Day 9 
 

0.97  1.9  0.043  6.1   0.45  0.38  0.052  1.1  1.2 1.7  0.56  5.6  

 
Night 9 

 
0.93  1.4  0.032  4.1   0.24  0.16  0.051  0.58   3.2  3.9  0.58  11  

Winter (Dec-Feb) Day 11 
 

1.5 1.4  0.30  4.9   0.48  0.32  0.11  0.95   3.8  4.1  0.50  14  

 
Night 12 

 
1.3 1.2 0.23  4.8   0.54  0.39  0.13  1.6   2.8 2.2  0.39  6.8  

Annual (Jan-Dec) Day 45 
 

1.6 1.8  0.041  8.4   0.46  0.38  0.051  2.0   9.2 4.2  0.092  19  

  Night 43  
1.6  2.1  0.032  8.4   0.58  0.56  0.054  2.5   3.3 3.5  0.12  13  
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Table S3. Cgas/Cparticle for α- and γ-HCH at the sampling site 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
n 

 α-HCH   γ-HCH   

 Mean S.D Min Max  Mean S.D Min Max  

Spring (Mar-May) Day 12  21 25 3.2 84  30 47 2.7 180  

 
Night 9 

 
46 64 2.9 160  38 41 2.8 130  

Summer (Jun-Aug) Day 13 
 

120  200  NA 740  130 270 NA 1,000  

 
Night 13 

 
140 150  2.1 420  220  560 2.8  2,100  

Autumn (Sep-Nov) Day 9 
 

290 360  0.21  1,100   170 330 1.1 1,000   

 
Night 9 

 
120 160 0.64  400   48 41 NA 100   

Winter (Dec-Feb) Day 11 
 

31 69 NA 250  13  12  NA 42   

 
Night 12 

 
36 54  3.7 200   17  19 0.83  58   

Annual (Jan-Dec) Day 45 
 

100  210  NA 1,100   79  210  NA 1,000  

  Night 43  
85 120  0.64  420  88 310  NA 2,100  
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Table S4. Multicollinearity diagnostics of multiple regressions (enter method) (gas phase) 
 

 
 

Dimension Eigenvalue Condition index Variance proportions VIF 

Inverse T WS sinWD cosWD 

Daytime 

α-HCH 

1 2.982 1.000 0.00 0.02 0.00 0.01  
2 1.103 1.644 0.00 0.00 0.53 0.29 1.064 
3 0.791 1.942 0.00 0.00 0.41 0.69 1.017 
4 0.123 4.924 0.00 0.98 0.01 0.00 1.086 
5 0.001 73.379 1.00 0.00 0.05 0.01 1.031 

γ-HCH 

1 2.982 1.000 0.00 0.02 0.00 0.01  
2 1.103 1.644 0.00 0.00 0.53 0.29 1.064 
3 0.791 1.942 0.00 0.00 0.41 0.69 1.017 
4 0.123 4.924 0.00 0.98 0.01 0.00 1.086 
5 0.001 73.379 1.00 0.00 0.05 0.01 1.031 

Nighttime 

α-HCH 

1 2.881 1.000 0.00 0.03 0.00 0.02  
2 1.120 1.604 0.00 0.01 0.57 0.23 1.073 
3 0.760 1.948 0.00 0.00 0.38 0.74 1.060 
4 0.238 3.477 0.00 0.92 0.04 0.00 1.070 
5 0.000 76.771 1.00 0.04 0.01 0.02 1.053 

γ-HCH 

1 2.881 1.000 0.00 0.03 0.00 0.02  
2 1.120 1.604 0.00 0.01 0.57 0.23 1.073 
3 0.760 1.948 0.00 0.00 0.38 0.74 1.060 
4 0.238 3.477 0.00 0.92 0.04 0.00 1.070 
5 0.000 76.771 1.00 0.04 0.01 0.02 1.053 
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Table S5. Multicollinearity diagnostics of multiple regressions (enter method) (particle-associated phase) 
 

 
 

Dimension Eigenvalue Condition index Variance proportions VIF 

Inverse T WS sinWD cosWD 

Daytime 

α-HCH 

1 2.958 1.000 0.00 0.02 0.00 0.01  
2 1.075 1.659 0.00 0.00 0.55 0.28 1.104 
3 0.834 1.883 0.00 0.00 0.35 0.70 1.022 
4 0.132 4.732 0.00 0.97 0.02 0.00 1.121 
5 0.001 72.238 1.00 0.00 0.08 0.01 1.022 

γ-HCH 

1 2.958 1.000 0.00 0.02 0.00 0.01  
2 1.075 1.659 0.00 0.00 0.55 0.28 1.104 
3 0.834 1.883 0.00 0.00 0.35 0.70 1.022 
4 0.132 4.732 0.00 0.97 0.02 0.00 1.121 
5 0.001 72.238 1.00 0.00 0.08 0.01 1.022 

Nighttime 

α-HCH 

1 2.906 1.000 0.00 0.03 0.00 0.02  
2 1.151 1.589 0.00 0.01 0.51 0.21 1.050 
3 0.682 2.064 0.00 0.00 0.44 0.76 1.057 
4 0.260 3.342 0.00 0.91 0.04 0.00 1.096 
5 0.001 74.645 1.00 0.04 0.01 0.00 1.070 

γ-HCH 

1 2.906 1.000 0.00 0.03 0.00 0.02  
2 1.151 1.589 0.00 0.01 0.51 0.21 1.050 
3 0.682 2.064 0.00 0.00 0.44 0.76 1.057 
4 0.260 3.342 0.00 0.91 0.04 0.00 1.096 
5 0.001 74.645 1.00 0.04 0.01 0.00 1.070 
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Table S6. Parameters of regression model running under stepwise method for gaseous HCHs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Model (Stepwise) 

Dimension 
UC SC 

t Sig. Eigenvalue Condition Index 
Variance Proportions 

VIF 
R2 p B Std. Beta 1 2 

lnP α-HCH 
(Day) 

0.2384 3.760E-4 
(Constant) 
inverseT 

-16.816 
-4897.983 

4.468 
1278.109 

-.488 
-3.763 
-3.832 

4.648E-4 
3.760E-4 

1.999 
.001 

1.000 
58.143 

2.957E-4 
1.00 

2.957E-4 
1.00 

1.000 

lnP γ-HCH 

(Day) 
0.417 5.524E-7 

(Constant) 

inverseT 

-14.986 
-5776.657 

3.486 
997.129 

-.645 
-4.299 
-5.793 

8.576E-5 
5.524E-7 

1.999 
.001 

1.000 
58.143 

2.957E-4 
1.00 

2.957E-4 
1.00 

1.000 

lnP α-HCH 

(Night) 
0.324 0.026 

(Constant) 

sinWD 

-33.804 

-.520 

.162 

.226 
-.324 

-208.411 

-2.297 

8.106E-69 

.026 

1.018 

.982 

1.000 

1.018 

.49 

.51 

.49 

.51 
1.000 

lnP γ-HCH 

(Night) 
0.202 0.002 (Constant) 

inverseT 
-21.001 

-3974.350 
4.165 

1178.531 
-.449 

-5.043 
-3.372 

7.978E-6 
.002 

1.999 
.001 

1.000 
61.414 

2.650E-4 
1.00 

2.650E-4 
1.00 

1.000 
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Figure S1. Map of sampling site 
 
 
 
 
 
 
 


