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Abstract 8 

The development of concrete corrosion in new sewer pipes undergoes an initiation process 9 

before reaching an active corrosion stage. This initiation period is assumed to last several 10 

months to years but the key factors affecting the process, and its duration, are not well 11 

understood. This study is therefore focused on this initial stage of the corrosion process and 12 

the effect of key environmental factors. Such knowledge is important for the effective 13 

management of corrosion in new sewers, as every year of life extension of such systems has a 14 

very high financial benefit. This long-term (4.5 year) study has been conducted in purpose-15 

built corrosion chambers that closely simulated the sewer environment, but with control of 16 

three key environmental factors being hydrogen sulfide (H2S) gas phase concentration, 17 

relative humidity and air temperature. Fresh concrete coupons, cut from an industry-standard 18 

sewer pipe, were exposed to the corrosive conditions in the chambers, both in the gas phase 19 

and partially submerged in wastewater. A total of 36 exposure conditions were investigated to 20 

determine the controlling factors by regular retrieval of concrete coupons for detailed analysis 21 

of surface pH, sulfur compounds (elemental sulfur and sulfate) and concrete mass loss. 22 
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Corrosion initiation times were thus determined for different exposure conditions. It was 23 

found that the corrosion initiation time of both gas-phase and partially-submerged coupons 24 

was positively correlated with the gas phase H2S concentration, but only at levels of 10 ppm 25 

or below, indicating that sulfide oxidation rate rather than the H2S concentration was the 26 

limiting factor during the initiation stage. Relative humidity also played a role for the 27 

corrosion initiation of the gas-phase coupons. However, the partially-submerged coupons 28 

were not affected by humidity as these coupons were in direct contact with the sewage and 29 

hence did have sufficient moisture to enable the microbial processes to proceed. The 30 

corrosion initiation time was also shortened by higher gas temperature due to its positive 31 

impact on reaction kinetics. These findings provide real opportunities for pro-active sewer 32 

asset management with the aim to delay the on-set of the corrosion processes, and hence 33 

extend the service life of sewers, through improved prediction and optimization capacity. 34 

 35 

Key words 36 

Sewer; corrosion; hydrogen sulfide; humidity; temperature; initiation time 37 

Nomenclature 38 

ANOVA Analysis of variance 39 
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SOB  Sulfide-oxidizing bacteria 44 

RH  Relative humidity 45 

RTD  Resistance temperature detector 46 

47 
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1 Introduction 48 

Existing sewers are valuable infrastructure and assets that have been established by 49 

continuous public investment over the period of more than the past century. These sewers 50 

have an estimated asset value of one trillion dollars in the USA (Brongers et al., 2002) and 51 

$100 billion in Australia. However, concrete corrosion is a costly deteriorating process 52 

affecting sewer systems worldwide. Corrosion causes loss of concrete mass and structural 53 

capacity, cracking of the sewer pipes and ultimately structural collapse. The rehabilitation 54 

and replacement of damaged sewers involves very high costs. The sewer assets are being lost 55 

at an estimated annual economic cost of around $14 billion in USA alone (Brongers et al., 56 

2002) due to corrosion. This cost is expected to increase as the aging infrastructure continues 57 

to fail (Sydney et al., 1996; US EPA, 1991). 58 

Population growth and urbanization have led to continuous expansion of existing sewers and 59 

replacement of outdated sewers. Fresh concrete sewer pipes and structures are installed 60 

worldwide due to many advantages including low costs and flexibility. However, knowledge 61 

about the development of corrosion on new concrete surfaces under sewer conditions is 62 

limited. Gravity sewers offer favorable conditions for microbially induced corrosion, such as 63 

available water (due to elevated relative humidity (RH)), high concentrations of carbon 64 

dioxide, and high concentrations of H2S (Wei et al., 2014). However, the fresh concrete 65 

surface after construction is not suitable for microbial growth because of the high alkalinity. 66 

Therefore, an initiation period is required to make the surface amenable for sulfide oxidizing 67 

microorganisms.  68 

The development of corrosion on concrete sewers can be divided into three stages, as shown 69 

in Figure 1. During stage 1, the concrete surface is changed to a more favorable environment 70 

for microorganisms due to carbonation and H2S acidification (Islander et al., 1991; Joseph et 71 
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al., 2012). On the new concrete surface, owing to the presence of catalytic oxides, hydrogen 72 

sulfide is chemically oxidized to sulfur in the form of very small crystals (Bagreev and 73 

Bandosz, 2004; Bagreev and Bandosz, 2005). Overall, an important step is the dissociation of 74 

hydrogen sulfide to HS- in the adsorbed film of water on the concrete surface. This 75 

dissociation is enhanced by the alkaline surface pH, which is an important factor for the 76 

uptake of gaseous hydrogen sulfide during this first stage (Nielsen et al., 2006b). Additionally, 77 

the chemical sulfide oxidation rate in the sewer is seen to double for a temperature increase of 78 

9 °C by the same study. Therefore, relative humidity, H2S concentration and temperature all 79 

play a certain role in stage 1 of the corrosion development. 80 

(Figure 1) 81 

During stages 2 and 3, biological sulfide oxidation by netruophilic and acidiophilic sulfide 82 

oxidising-bacteria will contribute to the sulfide oxidation to produce sulfuric acid (Cayford et 83 

al., 2012; Okabe et al., 2007). This reacts with the cement material leading to the formation 84 

of two important corrosion products: gypsum (CaSO4 ·2H2O) in the matrix of the corrosion 85 

layer and ettringite ((CaO)3·Al 2O3·(CaSO4)3·32H2O) near the corrosion front where there is 86 

higher pH (Jiang et al., 2014b; O'Connell et al., 2010). Recent studies show that the 87 

biological sulfide oxidation rates correlate with H2S concentration, relative humidity and 88 

temperature (Jiang et al., 2014a; Nielsen et al., 2006a; Nielsen et al., 2005). 89 

The total time span starting from fresh concrete surface to observed mass loss of concrete is 90 

defined as the initiation time, i.e. tin. It is clear that the length of initiation time depends on 91 

many different factors due to the many processes and reactions involved. For a specific sewer 92 

environment, it is beneficial to estimate tin for the purpose of evaluating or optimizing current 93 

corrosion prevention strategies. Although the well-known Pomeroy model can be used to 94 

calculate the deterioration rate of concrete sewer pipes (Pomeroy, 1990), no model exists for 95 
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the estimation of tin which is mainly due to the limited understanding of the controlling 96 

factors for the corrosion initiation. Therefore, a full understanding of the relationship between 97 

tin and sewer environmental factors including H2S concentration, relative humidity and 98 

temperature is critical for the overall prediction of sewer corrosion. 99 

This study aims to enhance understanding of the correlation between the initial development 100 

of sewer corrosion and the sewer environmental factors including H2S concentration, relative 101 

humidity and temperature. In particular, to determine the controlling factors important for the 102 

corrosion initiation time tin. Fresh concrete coupons, either located in the gas-phase or 103 

partially submerged in domestic wastewater, were exposed to thirty-six independent 104 

conditions in well-controlled laboratory chambers that simulated conditions typically found 105 

in various sewers, with six levels of H2S concentration, two levels of relative humidity (RH) 106 

and three levels of temperature. During the extended exposure experiment (over 4.5 years), 107 

the change of surface properties, the formation of corrosion products and the mass losses due 108 

to corrosion were measured regularly. The observed results were then statistically analyzed to 109 

identify the controlling factors for the corrosion initiation time.   110 

2 Material and Methods 111 

2.1  Concrete coupons 112 

The fresh concrete coupons were prepared from a new sewer pipe (1.2 m diameter × 2.4 m 113 

length and 0.07 m thickness) obtained from a sewer pipe manufacturer (HUMES, Sydney, 114 

Australia). The HUMES concrete composition includes 10-20% Portland cement, about 60% 115 

aggregates containing crystalline silica (quartz) sand, crushed stone and gravel, water at <20% 116 

and other supplementary cementitious materials. Coupon dimensions were approximately 100 117 

mm (length) × 70 mm (width) × 70 mm (thickness). After cutting, the coupons were washed 118 
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in fresh water to remove any surface contamination. Washed coupons were then dried in an 119 

oven (Thermotec 2000, Contherm) at 60 °C for 3 days to achieve similar and stable initial 120 

water content.  121 

(Figure 2) 122 

One of the original surfaces of the coupons, i.e. the internal surface of the pipe, was 123 

designated as the surface to be exposed to H2S. After cutting, the coupons were mounted in 124 

stainless steel frames using epoxy (FGI R180 epoxy & H180 hardener) with the steel frame 125 

providing a reference point for determining the change in thickness due to corrosion (Jiang et 126 

al., 2014b). As described in section 2.2, the frame-enclosed coupons were used in the gas-127 

phase exposure. In addition, the same number of concrete coupons without enclosures were 128 

partially submerged in real sewage in the corrosion chambers (Figure 3). 129 

2.2  Corrosion chamber and exposure condition 130 

Thirty-six identical corrosion chambers were constructed to achieve a controlled environment 131 

simulating that of real sewers (Table 1). The controlled factors include combinations of three 132 

gas-phase temperatures (17 °C, 25 °C and 30 °C), two levels of RH (100% and 90%) and six 133 

H2S levels (0 ppm, 5 ppm, 10 ppm, 15 ppm, 25 ppm and 50 ppm). The RH is sensitive to 134 

temperature and the low RH (90%) fluctuated between 85% and 95%. Temperature and H2S 135 

variations are within 1 °C and 2 ppm, respectively. 136 

(Table 1) 137 

The chambers were constructed of glass panels of 4 mm thickness. The dimensions of the 138 

chambers were 550 mm (L) × 450 mm (D) × 250 mm (H) (Figure 3). Each chamber 139 

contained 2.5 L of domestic sewage that was collected from a local sewer pumping station 140 

and replaced every two weeks. Seven coupons enclosed in frames were exposed to the gas 141 
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phase within the chambers with the exposed surface facing downwards approximately 110 142 

mm above the sewage surface (Figure 3). This coupon arrangement simulated the sewer pipe 143 

crown, a location which is reported to be highly susceptible to sulfide induced corrosion 144 

(Mori et al., 1992; Vollertsen et al., 2008). Another six unmounted coupons were placed at 145 

the bottom of the chambers. These were thus partially submerged (approx. 20-30 mm) in the 146 

wastewater simulating the concrete sewer pipe near the water level, which is also a region of 147 

high corrosion activity.  148 

(Figure 3)  149 

To achieve the specified H2S gaseous concentrations in the corrosion chamber, Na2S solution 150 

was injected into a container partially filled with acid (13% HCl), using a corrosion-resistant 151 

solenoid pump (Bio-chem Fluidics, model: 120SP2440-4TV) with a dispense volume of 40 152 

µL. The H2S concentrations were monitored using a H2S gas detector (OdaLog Type 2) with 153 

a range between 0 and 200 ppm (App-Tek International Pty Ltd, Brendale, Australia). A PLC 154 

was employed to monitor the H2S concentration and to trigger the dosing pump for Na2S 155 

addition to maintain the specified H2S concentrations (Figure 3).  156 

The corrosion chambers were installed in three cabinets, i.e. A, B and C (12 chambers each 157 

cabinet), with different sewage temperatures controlled by re-circulating temperature 158 

controlled water through glass tubes immersed in the sewage. The relative humidity was thus 159 

controlled at approximately 100% or 90% for different chambers (Table 1). Humidity was 160 

monitored using two resistance temperature detector (RTD) probes, of which one acts as wet 161 

and another acts as dry bulb inside the chamber. Another of these probes was employed to 162 

monitor the sewage temperature.  163 

2.3  Corrosion sampling and chemical analysis 164 
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The corrosion chambers were operated for 54 months since December 2009. The 165 

environmental factors were checked regularly to ensure the chambers being operated under 166 

proper conditions. Periodically, at intervals between 6-10 months, one set of coupons (one 167 

gas-phase coupon and one partially-submerged coupon) were retrieved from each corrosion 168 

chamber for detailed analysis. A standard step-by-step procedure of various analysis was 169 

employed to measure surface pH, followed by sampling for sulfur species (primarily 170 

elemental sulfur and sulfate, as other sulfur compounds were found to be at nonsignificant 171 

levels), and then photogrammetry analysis (thickness change). 172 

A flat surface pH electrode (Extech PH150-C concrete pH kit, Extech Instruments, USA) was 173 

used to measure the coupon surface pH. Steady pH readings were obtained after sufficient 174 

contact between the pH probe and the coupon surface measuring spots that were wetted with 175 

about 1 mL of milliQ water. Four measurements were made on randomly selected spots on 176 

the coupon surface to determine an average value. 177 

After measuring the surface pH, the exposed surface of concrete coupons was washed using a 178 

high pressure washer (Karcher K 5.20 M). Four liter of water was used for each coupon. The 179 

wash-off water was homogenized using a magnetic mixer for 2 hours before subsamples 180 

taken into sulfide anti-oxidant buffer solution. A Dionex ICS-2000 IC with an AD25 181 

absorbance (230 nm) and a DS6 heated conductivity detector (35 ºC) was used to measure the 182 

soluble sulfur species.  183 

Five photos for each coupon were taken at different orientations to measure the coupon 184 

thickness after washing using photogrammetry. A 3D image of the exposed surface for each 185 

coupon was generated to calculate the surface height of the coupon relative to the stainless 186 

steel frame as the reference plane.  The decrease in thickness after certain exposure time was 187 

then calculated by subtracting the average thickness after washing from the average thickness 188 
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before exposure. This technique not only enables an accurate change in coupon thickness to 189 

be determined irrespective of the surface roughness but also provides a detailed record of the 190 

spatial distribution of the losses that occurred.  191 

2.4 Data analysis 192 

As discussed, the concrete corrosion develops in three stages where in the third stage sulfuric 193 

acid production occurs (Figure 1). Thus, we may define the corrosion initiation time, tin, as 194 

the time taken before detection of significant levels of sulfate on the concrete surface. Taking 195 

into consideration the location of coupons and their actual sulfide oxidation rates, we 196 

determined the critical levels of sulfate arbitrarily as 1 gS/m2 and 10 gS/m2 for the gas-phase 197 

and partially-submerged concrete coupons respectively. Corrosion initiation time for all 198 

coupons were then calculated as the time to reach the critical levels assuming a linear 199 

increase of sulfate production with time. The estimated tin was subsequently analyzed to 200 

identify the controlling environmental factors of the corrosion initiation processes. 201 

First, regression tree models (R ver 3.1.1, http://www.R-project.org/) were used to determine 202 

which of the three environmental factors were important (exploratory analysis). Tree models 203 

were used as they can give a clear picture of the structure in the data and they automatically 204 

accommodate complex interactions between explanatory variables. Recursive partitioning, 205 

that successively splits the data by the explanatory variables (i.e. H2S concentration, relative 206 

humidity and gas temperature), was used to distinguish groupings in the corrosion initiation 207 

time. To further investigate the importance of each environmental factor for the corrosion 208 

initiation, statistic models with all three factors were analyzed using analysis of variance 209 

(ANOVA) in R. These maximal models were then simplified by backward selection to get 210 

minimal adequate models (MAM). 211 

3 Results and Discussion 212 
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3.1  Surface pH 213 

For fresh coupons exposed to 0 ppm H2S for 54 months there was little change in the surface 214 

pH from an initial level of 10.6 (Figure 4). The only factor driving pH down on gas-phase 215 

coupons exposed to 0 ppm of H2S would be from CO2, however, this could not cause further 216 

decrease of the surface pH as the coupon surfaces had already reached an equilibrium with 217 

regard to carbonation. Extended exposure in the H2S free air at different temperatures and 218 

humidity levels did not lower the pH significantly.  Surface pH of partially-submerged 219 

coupons exposed to 0 ppm of H2S decreased slightly, within 1 unit, after 54 months of 220 

exposure (Figure 4). This slight change could be attributed to the neutralization from CO2 in 221 

the gas, and other organic acids present in the wastewater.  222 

(Figure 4)  223 

Reduction of surface pH on other gas-phase coupons exposed to various H2S concentrations 224 

(5-50 ppm) was more significant due to the acidification by H2S itself or its oxidation product, 225 

i.e. sulfuric acid (Figure. SI-2). A trend of gradual decrease in surface pH with the time of 226 

exposure is evident for gas-phase coupons exposed to H2S. In general, higher H2S 227 

concentrations coincided with lower surface pH. The pH drop in the 100% RH chambers was 228 

slightly more than that in 90% RH chambers. Likely, high humidity levels facilitated sulfide 229 

oxidation, as pore water is essential for chemical reactions to occur in concrete and for the 230 

development of the sulfide oxidizing microbial activities. In contrast to RH, there is no 231 

discernable effects of temperature on the coupon surface pH drop. 232 

For partially-submerged coupons the surface pH had lowered to about 4 for 5 ppm H2S, with 233 

some variations, after 54 months of exposure. The pH for coupons exposed to 10, 15, and 25 234 

ppm H2S was between 2 and 4 in the majority of the coupons. The partially submerged 235 

coupons exposed to 50 ppm H2S, had their surface pH reduced to around 2 for both the 100% 236 
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and 90% RH after 34 months of exposure. No discernable effects of RH and temperature 237 

were observed on the coupon surface pH over time. Partially-submerged coupons were in 238 

close proximity to water, and were consequently less sensitive to RH levels. 239 

In comparison to gas-phase coupons, it is evident that the decrease of surface pH is more 240 

prominent on partially-submerged coupons for all H2S gas levels. This is partially due to the 241 

different factors contributing to the overall pH reduction. At the initial stages, the surface pH 242 

was lowered by H2S and CO2, which was facilitated by high moisture levels. This 243 

acidification, as evident by high sulfide oxidation activities, started earlier on the partially 244 

submerged coupons (Fig. SI-1 & SI-2). 245 

Over time, the dominating trend was of acidification of the coupon surface. However, it was 246 

noticed in a few cases after becoming acidic, the surface pH then increased somewhat. A 247 

possible explanation for this is by oxidation of Ca(HS)2, to form Ca(OH)2, i.e. alkalinity, and 248 

elemental sulfur. Another possibility is that during chamber maintenance and coupon 249 

retrieval, the H2S exposure was temporarily interrupted and alkalinity permeating from the 250 

concrete causes this slight rise in surface pH.  251 

3.2  Sulfate and elemental sulfur 252 

Levels of elemental sulfur and sulfate on coupon surfaces clearly increased with the exposure 253 

time and gaseous H2S levels (Fig. SI-1 & SI-2). Both elemental sulfur and sulfate detected on 254 

gas-phase coupons were limited, i.e. less than 40 gS/m2. The difference of elemental sulfur 255 

production on gas-phase coupons between the two RH conditions and three temperatures was 256 

not clear. Although high levels of elemental sulfur, up to 40 gS/m2 were detected, this was 257 

about 10 times lower than the sulfate detected on the partially-submerged coupons (Fig. SI-2). 258 

It is evident that the surface sulfate increases with increased gaseous H2S levels and with 259 

increased time of exposure. In the latest sampling events there were significantly higher 260 
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sulfate levels, implying very active sulfide oxidation, likely this resulting from the biological 261 

processes being more active. No discernible differences were found for sulfate concentrations 262 

between the two RH levels. For the partially submerged coupons at least, these would have 263 

an increased moisture content as water would be drawn up from the submerged surface to the 264 

corrosion layer, and thus overriding the effect of RH differences. 265 

The first peak shown in the profiles of elemental sulfur without sulfate being present suggests 266 

that the neutrophilic sulfide oxidizing microbes produce mainly elemental sulfur at the 267 

corresponding intermediate pH levels. With the following decrease of surface pH, the 268 

accumulated elemental sulfur was further oxidized to sulfate, probably by another group of 269 

sulfide oxidizing microbes. At low pH, some elemental sulfur was detected on the coupon 270 

surface (Figure SI-1). Likely this is due to elemental sulfur being a temporary intermediate of 271 

sulfide oxidation, which is then finally oxidized to sulfate. The formation of elemental sulfur 272 

is attributed to both chemical and biological sulfide oxidation (Okabe et al., 2007). It has also 273 

been observed that S0 can be temporarily stored in the corroding concrete layer when high 274 

gaseous H2S levels occur (Jensen et al., 2009; Sun et al., 2014). 275 

As the concrete mass loss occurs by reactions with sulfuric acid, the percentage of sulfate 276 

indicates the progress of the development of corrosion. Figure 5 shows evidently increasing 277 

trend of sulfate percentage with exposure time, which is in accordance with the succession of 278 

sulfide oxidizing microorganisms (Figure. 1). Partially-submerged coupons achieved 100% 279 

of sulfide oxidation to sulfate for both 100% and 90% RH levels after 24 months of exposure. 280 

However, the sulfate percentage on gas-phase coupons increased steadily with exposure time, 281 

with higher levels attained for coupons exposed to 100% RH in comparison to 90% RH. 282 

(Figure 5)  283 
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It was seen that the sulfate produced on gas-phase coupons at 90% RH was still lower than 284 

the elemental sulfur, with the percentage as sulfate was most often less than 50% (Figure 5). 285 

It is reported that for H2S gas concentrations of between 5 and 50 ppm there is a surface pH 286 

threshold of 8.3-9.4, that influences the extent of H2S oxidation.  Due to oxygen limitations in 287 

the liquid film on the coupon surface, partial oxidation only occurs above the pH threshold, 288 

and sulfate formation is only favored when the surface pH is below this threshold (Joseph et 289 

al., 2012). For each of the H2S levels above 5 ppm (10, 15, 25, and 50 ppm), the gas-phase 290 

coupon surface pH has decreased to levels lower than the threshold (8.3-9.4) after nearly 3 291 

years of exposure. The attenuating surface pH on those coupons would have led to the 292 

complete oxidation of H2S to form sulfate. Collectively, these observations confirmed that 293 

gas-phase coupons are still in the early stage of corrosion: where a significant part of 294 

acidification would mainly occur by H2S.  295 

Both gypsum (CaSO4) and ettringite (Ca6Al 2(SO4)3(OH)12·26H2O) can be formed in the 296 

corrosion layer due to the production of sulfuric acid. Measured molar ratios between calcium 297 

and sulfur (Ca:S) on the coupons were around 1.4 (0.8 – 2.5), which indicates the corrosion 298 

products contain both gypsum and ettringite that have Ca:S molar ratios of 1 and 2 299 

respectively. The high surface pH of the gas-phase coupons also favors the conversion of 300 

gypsum into ettringite (Jiang et al., 2014b). 301 

3.3  Corrosion losses 302 

The thickness of gas-phase concrete coupons only started to decrease due to corrosion loss 303 

after 34 months of exposure (Figure 6), reaching a maximum at the end of the exposure 304 

period of 2-3 mm for high H2S levels (25 and 50 ppm). These gas-phase coupons had a low 305 

corrosion rate in this initial period. It is not evident that concrete coupons exposed to 100% 306 

RH induced more corrosion losses than those under 90% RH, although higher sulfate was 307 
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detected for high RH coupons (Fig. SI-2). It is highly possible that higher levels of moisture 308 

promote more active biological and or chemical sulfide oxidation, to produce higher 309 

concentrations of sulfuric acid or elemental sulfur. However, the noticeable low levels of 310 

sulfate detected on gas-phase coupons, in comparison to that on the partially-submerged 311 

coupons, indicates that the corrosion is limited by the sulfide-oxidizing rate rather than H2S 312 

concentration.  313 

(Figure 6) 314 

In contrast, the corrosion loss of the partially-submerged concrete coupons had reached more 315 

than 4 mm for those exposed to 25 and 50 ppm H2S (Figure 6). This corresponds well to the 316 

high measured sulfate levels on these coupons (Fig. SI-2). It is clear that corrosion losses are 317 

directly correlated to H2S concentrations (Figure 6). This suggests that H2S is the decisive 318 

factor for the corrosion rate, as reported before on pre-corroded concrete sewer (Jiang et al., 319 

2014a). This is in contrast to the gas-phase coupons, where it is likely that microbial activity 320 

is the determining factor and hydrogen sulfide was not a limiting factor in this early stage of 321 

corrosion initiation. Partially-submerged coupons are continuously inoculated and wetted 322 

with wastewater in the corrosion chambers. Consequently, sulfide-oxidizing microbes might 323 

be better developed on these coupons in comparison to the gas-phase coupons. 324 

3.4 Corrosion initiation time 325 

Corrosion initiation time, tin, was determined for both gas-phase and partially-submerged 326 

concrete coupons (Figure 7). For the gas-phase coupons tin was more or less similar at 20 327 

months for the different H2S concentrations, except that of  5 ppm H2S (p=0.0079, Table 2). 328 

The expected trend of decreasing corrosion initiation time with increasing H2S levels was not 329 

evident. Instead, H2S above 5 ppm seems to be a critical point for the tin, implicating a certain 330 

level of H2S is required for significant corrosion development. This supports our findings of 331 
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corrosion losses on gas-phase coupons, which indicates corrosion is limited by the sulfide 332 

oxidation rate, not the H2S concentration (Section 3.3). For these gas-phase coupons it is 333 

evident also that tin decreases with higher temperature and higher humidity (Figure 7). Both 334 

the Tree (Figure SI-3) and the ANOVA analyses (Table 2) were consistent with these 335 

findings, emphasizing the importance of temperature and relative humidity on tin, with 336 

ANOVA p values of 5.95×10-6 and 6.86×10-7 for relative humidity and gas temperature, 337 

respectively. 338 

(Figure 7)  339 

It is noticeable that for partially-submerged coupons the corrosion initiation time decreases 340 

with increased H2S concentration (p=0.0044). This confirms that H2S is a key controlling 341 

factor of the tin over periods of long term exposure in sewer conditions. Temperature was 342 

again shown to be a significant factor affecting the corrosion initiation time, with a p value of 343 

0.0063. As found for the coupon surface sulfur compounds and corrosion losses (Section 3.2 344 

and 3.3), the humidity was not a significant factor for tin (p=0.7459). The data in Fig. 7 also 345 

suggest that corrosion likely starts with the water line and reaches the crown gradually as 346 

reported previously (Vollertsen et al., 2008). A minimum adequate model (MAM) was thus 347 

identified through the backward selection processes which drops one explanatory factor for 348 

the tin each time. The MAM for gas-phase coupons includes all three experimental factors, 349 

while the MAM for partially-submerged coupons only requires H2S concentration and 350 

temperature (Table 2). 351 

(Table 2)  352 

3.5 Practical implications 353 

The observations of this study identified the controlling environmental parameters for the 354 

initiation of corrosion on sewer concrete. The findings are relevant to develop strategies for 355 
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the prevention or reduction of sewer corrosion by prolonging the initiation time. One obvious 356 

solution would be to reduce gaseous H2S concentration, which could be achieved by dosing 357 

sulfide sequestering agents or sewer biofilm controlling agents (Ganigue et al., 2011; Jiang et 358 

al., 2013; Jiang et al., 2015; Jiang and Yuan, 2013; US EPA, 1974). However, it should be 359 

noted that unless gaseous H2S concentrations can be reduced down to below 5 ppm, the 360 

corrosion initiation would still progress at the same pace for sewer crown areas (similar to the 361 

gas-phase coupons in the corrosion chamber). It should also be noted that the corrosion 362 

initiation time was only reduced from around 25 months at 50 ppm to 15 months at 5 ppm 363 

(Figure 7), i.e. a 40% reduction of corrosion initiation time for a 90% reduction of H2S 364 

concentration. Also, liquid-phase technologies are not capable of reducing the relative 365 

humidity in a sewer system. In contrast, sewer ventilation and gas treatment could be used to 366 

decrease both H2S and humidity, and consequently these would be more effective strategies 367 

for prolonging the initiation of corrosion.  368 

Another type of technology for preventing corrosion is by pipe relining or coating with 369 

plastic or epoxy resins (Hewayde et al., 2007; Valix et al., 2012). These materials are more or 370 

less inert to sulfuric acid. However, the coating material usually doesn’t have alkaline 371 

buffering capacity as fresh concrete, which means the surface can be easily inhabited by 372 

acidiophilic sulfide-oxidizing bacteria due to the quick drop of surface pH. Consequently, 373 

high concentrations of sulfuric acid will form on the sewer coating surface, which 374 

inevitability will reduce the performance and life time of the coating. Other products might 375 

provide such a sacrificial material like magnesium hydroxide, which will be eventually 376 

exhausted but can slow down the corrosion development. It should be noted that the 377 

corrosion initiation was largely due to the biological activity of sulfide oxidizing bacteria 378 

enhancing sulfuric acid production. Pipe coating or relining materials that provide 379 

antimicrobial properties and inhibit the microbial development on coating surfaces might be 380 
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the most useful strategies to ameliorate the damaging effects (Haile et al., 2010; Hashimoto, 381 

2001). However, all corrosion reduction practice will lead to higher gaseous H2S 382 

concentration, potentially causes more odor problems. 383 

4 Conclusions 384 

The initiation of corrosion on fresh concrete surfaces in sewers was investigated in a 4.5-year 385 

exposure study, which demonstrated that three elements were mainly affecting this process: 386 

• Gas-phase H2S concentration is an essential factor in initiating concrete corrosion 387 

under sewer conditions. However, the corrosion is only limited by the H2S supply at 388 

concentrations at or below 10 ppm. At higher H2S concentrations the sulfide oxidation 389 

rate was the limiting factor during the initiation stage. This is contrary to the long-390 

term sulfide corrosion processes where even higher H2S concentrations were still 391 

increasing the corrosion rates. 392 

• The corrosion initiation was positively correlated with the gas-phase temperature 393 

mainly due to chemical reactions involved. This suggests a more rapid onset and 394 

higher occurrence of sewer corrosion in warmer climates, and may be further 395 

enhanced by ongoing climatic changes and increasing temperatures in urban areas. 396 

• For concrete surfaces exposed to sewer air, humidity plays a significant role to 397 

provide moisture to the concrete surface via vapor condensation. Moisture is 398 

important for both the initiation and active corrosion stages. Ventilation can thus 399 

delay the on-set and possibly mitigate against sewer corrosion through reduced 400 

humidity. 401 
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Table 1. Controlled environmental factors for the 36 corrosion chambers. 1 

 Group [Gas temperature (°C)] 

A [17 °C] B [25 °C] C [30 °C] 

Chamber No. RH (%)  H2S (ppmv) RH (%) H2S (ppmv) RH (%) H2S (ppmv) 

1 90 0 90 0 90 0 

2 100 0 100 0 100 0 

3 90 5 90 5 90 5 

4 100 5 100 5 100 5 

5 90 10 90 10 90 10 

6 100 10 100 10 100 10 

7 90 15 90 15 90 15 

8 100 15 100 15 100 15 

9 90 25 90 25 90 25 

10 100 25 100 25 100 25 

11 90 50 90 50 90 50 

12 100 50 100 50 100 50 

 2 

  3 
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Table 2. Analysis of variance (ANOVA) for the corrosion initiation time (tin) of gas-phase 4 

concrete coupons. 5 

Gas-phase 
concrete 

tin ~ H2S + RH + T (Minimum adequate model) 

Factors 1Df Sum of Sq RSS F value Pr(>F) 2Significance 

H2S 1 195.5 810.9 8.2612 0.0079 ** 

RH 1 758.0 1373.4 32.0282 5.95E-06 *** 

T 1 1000.1 1615.4 42.2558 6.86E-07 *** 

Partially-
submerged 
concrete  

tin ~ H2S + RH + T 

H2S 1     332.5 1223.1 9.7058 0.0044 ** 

RH 1       3.7 894.3 0.1073 0.7459   

T 1     302.4 1193.1 8.8289 0.0063 ** 

tin ~ H2S + T (Minimum adequate model) 

H2S 1     332.5 1226.8 10.0377 0.0038 ** 

T 1  302.4 1196.8 9.1308 0.0054 ** 

1 Df stands for degree of freedom; RSS, residual sum of square; Pr(>F), the p-value using the 6 

F-test.  7 

2 Significance codes based on the Pr value: 0-0.001: ***; 0.001-0.01: **; 0.01-0.05: *; 0.05-8 

0.1: .; 0.1-1: NA . 9 
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 1 

Figure 1. The development of microbially induced corrosion on new concrete sewer surfaces, 2 

adapted from Islander et al. (1991), with the corrosion initiation time (tin) including stage 1, 2 3 

and a part of stage 3. 4 

 5 

 6 

Figure 2. Photos of (A) a fresh concrete coupon; (B) the coupon mounted on a stainless steel 7 

frame with epoxy. 8 
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 9 

Figure 3. Side view of the corrosion chamber with H2S concentration, relative humidity and 10 

gas temperature controlled by programmable logic controller (PLC).  11 
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 12 

Figure 4. Surface pH of fresh concrete coupons exposed to different H2S concentrations in 13 

corrosion chambers for 54 months. Plots in columns 1 & 2 and columns 3 & 4 are for 14 

coupons located in the gas-phase and those partially-submerged in sewage, respectively. 15 

Filled and empty symbols are for 100% and 90% relative humidity respectively.  16 
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 17 

Figure 5. Percentage of sulfate as the final product of sulfide oxidation on the surface of 18 

fresh concrete coupons exposed to different H2S concentrations in corrosion chambers for 54 19 

months. Plots in columns 1 & 2 and columns 3 & 4 are for coupons located in the gas-phase 20 

and those partially-submerged in sewage, respectively. Filled and empty symbols are for 100% 21 

and 90% relative humidity respectively.  22 
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 23 

Figure 6. Corrosion losses of fresh concrete coupons exposed to different H2S concentrations 24 

in corrosion chambers for 54 months. Plots in columns 1 & 2 and columns 3 & 4 are for 25 

coupons located in the gas-phase and those partially-submerged in sewage respectively. 26 

Filled and empty symbols are for 100% and 90% relative humidity respectively. 27 
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 28 

Figure 7. Box-plots of corrosion initiation time of concrete coupons related to H2S 29 

concentration, relative humidity and gas temperature in the corrosion chambers. Plots in the 30 

upper row are for coupons located in the gas-phase and those in the lower row are for the 31 

partially submerged coupons.  32 
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Highlights 

 

• A long-term study (4.5 years) focusing on the initiation of H2S induced sewer corrosion 

• The sulfide oxidation products gradually transform from elemental sulfur to sulfuric acid 

• Corrosion initiation is controlled by H2S only when the level is at or below 10 ppm 

• Corrosion initiation is highly correlated with the gas temperature 

• Humidity is important for the corrosion initiation on concrete exposed to air 
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Figure SI-1. Elemental sulfur measured on the surface of fresh concrete coupons exposed to 
different H2S levels in the corrosion chambers for 54 months. Plots in columns 1 & 2 and 
columns 3 & 4 are for coupons located in the gas-phase and those partially-submerged in 
sewage, respectively. Filled and empty symbols are for 100% and 90% relative humidity 
respectively.   
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Figure SI-2. Sulfate measured on the surface of fresh concrete coupons exposed to different 
H2S levels in the corrosion chambers for 54 months. Plots in columns 1 & 2 and columns 3 
& 4 are for coupons located in the gas-phase and those partially-submerged in sewage, 
respectively. Filled and empty symbols are for 100% and 90% relative humidity respectively. 
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Figure SI-3. Trees for the corrosion initiation time of concrete coupons located in the gas-
phase and those partially submerged in wastewater (from left to right). The expressions at 
each branch node are the splitting factor and the levels. E.g. H2S<12.5 means the corrosion 
rates can be partitioned into two groups by different H2S levels. The left branch is the data for 
H2S<12.5 ppm and the right is for H2S >=12.5 ppm. The numbers at the end of each branch 
are the mean values for the corrosion initiation time in that group. The analysis shows that 
different experimental factors contribute to the difference in the corrosion initiation time.   

 


