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Abstract 

 

HER2-positive breast cancers represent approximately 20-25% of all breast cancers and are 

characterized by an overexpression of the growth factor receptor HER2. Trastuzumab, a 

monoclonal antibody, is a molecularly targeted therapeutic used in the treatment of this subtype of 

breast cancer. However, 30% of eligible patients have intrinsic resistance to trastuzumab and 

approximately 60% of patients who initially responded to this therapeutic, develop resistance within 

one year. Calcium transporters and modulators are known to be involved in breast cancer and in 

chemoresistance. However, their role has not been evaluated in HER2-positive trastuzumab 

resistant breast cancer cells. The aim of this project was to identify possible calcium related proteins 

associated with trastuzumab resistance. 

 

In the first part of this thesis, the expression of Ca2+ transporters and modulators and their role in 

trastuzumab activity was assessed in the HER2-positive breast cancer cell line SKBR3. Ca2+ 

signaling profiling was also assessed using fluorescence imaging plate reader (FLIPR) assays. 

Inhibition of the expression of the Ca2+ channels TPC2, TRPV1 and the Ca2+ channel modulator 

STIM1 using siRNA decreased SKBR3 cellular proliferation. Silencing of STIM1, the Ca2+ pump 

SPCA1 and the Ca2+ permeable ion channel TRPM7 increased the anti-proliferative effects of 

trastuzumab in SKBR3 cells. 

 

In the second part of this thesis, trastuzumab resistant and age-matched control cell lines were 

established from parental SKBR3 cells through seven months of continuous culturing in the 

presence of trastuzumab. Two trastuzumab treated colonies were selected for their resistance to 

trastuzumab (RT1 and RT2). Two other colonies were selected from age-matched controls because 

of their development of de novo resistance to trastuzumab (RV1 and RV2). Two age-matched cell 

lines that retained their sensitivity to trastuzumab were selected as controls (SV1 and SV2). Levels 

of mRNA expression of 45 Ca2+ channels, pumps and channel modulators were evaluated using 

quantitative RT-PCR. An siRNA screen of selected targets to identify targets that when silenced 

could restore trastuzumab sensitivity was also performed. Additionally Ca2+ signaling profiling and 

the quantitation of HER2, EGFR and IGF1R protein expression were conducted. All trastuzumab 

resistant cell lines maintained their overexpression of the HER2 receptor. Significantly increased 

mRNA levels of the voltage-gated calcium Ca2+ channel CaV3.2 was observed in both de novo 

resistant cell lines RV1 and RV2 compared to control cell lines SV1 and SV2. Acquired resistant 
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cell lines RT1 and RT2 showed altered sensitivity to the purinergic receptor activator ATP, 

indicating a possible remodeling of Ca2+ signaling in these trastuzumab resistant cell lines.  

 

In the third part of this thesis, specific experiments were conducted to further evaluate two selected 

targets, the Ca2+ permeable ion channels CaV3.2 and TRPM7 channel. Pharmacological inhibition 

and silencing of CaV3.2 channel did not reverse trastuzumab resistance. However, CaV3.2 mRNA 

levels were higher in the basal HER2-positive trastuzumab resistant HCC1569 breast cancer cell 

line compared to the luminal HER2-positive trastuzumab sensitive SKBR3 cell line. Partial siRNA-

mediated silencing of TRPM7 or pharmacological inhibition of TRPM7 channel activity did not 

reverse trastuzumab resistance in the trastuzumab resistant cell line RV1. However, the TRPM7 

kinase inhibitor NH125 was able to promote trastuzumab activity in the trastuzumab resistant cell 

line RV1. Further studies are required to definitively associate TRPM7 kinase with trastuzumab 

resistance, given the reported sensitivity of other atypical α-kinases to NH125. 

 

In the last part of this thesis publically available data was mined to identify other potential calcium 

related proteins associated with trastuzumab resistance. These data sets included cDNA microarray 

analysis of trastuzumab resistant and sensitive SKBR3 cell lines and trastuzumab resistant breast 

cancer clinical samples and proteomic analysis of trastuzumab resistant and sensitive SKBR3 cell 

lines. These analyses indicated that the Ca2+ ATPase pump SERCA3 and galectin-3 may be 

associated with trastuzumab resistance.  

 

Results presented in this thesis suggest that the acquisition of trastuzumab resistance may be 

associated with the expression and/or activity of specific Ca2+ channels and pumps, including 

SERCA3, CaV3.2 channel and TRPM7 and the Ca2+-related protein galectin-3. Further studies of 

these proteins may help identify new approaches to reverse trastuzumab resistance and/or identify 

new biomarkers for predicting trastuzumab sensitivity in HER2-positive breast cancers.  
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1 Introduction 

 

1.1 Calcium Homeostasis 
Calcium is abundant in nature and is an essential element of the body; it has great versatility and is 

involved in almost every cellular process (1, 2). The concentration of this ion is tightly regulated 

within the cell via processes that are often classed as “on” or “off” mechanisms. Multiple 

mechanisms can increase or decrease cytosolic Ca2+ to maintain correct homeostasis (3) (Fig. 1.1). 
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Figure	
  1.1	
  Calcium	
  homeostasis	
  	
  
 

Stimulation of the cell generates Ca2+ mobilizing signals that act as ON mechanisms to trigger an 

increase in the intracellular concentration of free Ca2+ leading to a cellular response. The response 

is terminated by OFF mechanisms that restore Ca2+ to its resting level.  (Taken from Berridge MJ, 

Lipp P and Bootman MD, 2000 (3)) 
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At rest the calcium concentration in the cytosol is maintained at low levels (~ 100 nM range) 

mainly due to the work of active calcium transporters located on the endoplasmic reticulum (ER) 

and the plasma membrane, which allow the translocation of Ca2+ ions (4). The extracellular 

concentration of free Ca2+ is much higher and is in the range of 1-2 mM. Lipid bilayers are 

impermeable to calcium ions, thus their transit across membranes occurs mainly via channels and 

pumps (1). Stimulation of the cell can cause an influx of Ca2+ into the cytoplasm through channels 

on the plasma membrane or the activation of Ca2+ channels on the ER resulting in Ca2+ release from 

internal stores. These events can increase free Ca2+ in some cases to the µM range triggering a 

variety of cellular responses (3). 

 

1.1.1 Calcium processes 

 Ca2+ controls numerous cellular processes such as fertilization, proliferation, development, learning 

and memory, contraction, secretion and cell death (3). This is due to the great versatility in the 

nature of Ca2+ increases in terms of speed, amplitude and spatio-temporal patterning (3, 5). Ca2+ 

signals can be highly localized to small regions surrounding the mouth of a channel (6), or can be 

manifested as Ca2+ release waves that spread through the entire cell or even across populations of 

cells (3). Deregulation of Ca2+ signaling may lead to altered cellular mechanisms, which may cause 

or promote cardiovascular disease, neuropathies, inflammation, endocrinological disorders, 

osteopathy and cancer (7).  

 

Sections 1.1.1.1 – 1.1.1.4 will focus on the role of calcium in vital processes in cancers in particular 

proliferation, cell death, migration and metastasis. 

 

1.1.1.1 Cell proliferation 

The cell cycle is a series of events that allow cells to divide and duplicate. In eukaryotic cells, this 

includes four phases: two growth phases (G1 and G2) interspaced by the DNA synthesis phase (S) 

and the cell division phase (M); cells that are not undergoing cell division leave the normal cycle 

and remain in a quiescence state (G0) (8). The progression of the cell cycle is monitored by key 

points, which verify the status of the cell, in order to avoid aberrant cell proliferation (8). 

 

Ca2+ signals are involved at various stages of the cell cycle and manipulation of Ca2+ signaling 

could affect cellular proliferation and gene transcription (9). Ca2+ transients have been detected 

during early G1 and G1-S transition and at other stages during the mitotic process (10).  
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Calmodulin (CaM), a Ca2+-binding protein that works as a major intracellular receptor for Ca2+, and 

Ca2+-CaM-dependent protein kinases (CaMKs), appear to be involved in cell cycle progression (10, 

11). Indeed, it has been shown that CaM levels change during the cell cycle, mostly during the G1-

S transition and progression into G1 and M phases (12, 13) (Fig. 1.2). CaM has been linked in 

numerous studies to cell proliferation (13) and transformation (10), while CaMKs are required 

during G1, G2, M phases and during the metaphase to anaphase transition (10, 11, 14) (Fig. 1.2). 

 

Calcineurin is a Ca2+-dependent serine-threonine phosphatase regulated by the Ca2+/calmodulin 

complex and, as for CaMKs (10), it has been shown to promote accumulation of cyclin D1 in the 

G1 phase (15) (Fig. 1.2). Cyclins act as growth factor sensors in mammalian cells and are often 

implicated in oncogenesis (16).  
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Figure 1.2 Regulation of cell cycle by Ca2+ effectors 

 

During G1 phase, calcineurin and CamKs produce accumulation of cyclin D1. In late G1 or S 

phase, inhibition of calcineurin and CaMK leads to p21 and p27 accumulation, respectively, leading 

to cell cycle block (10). CaMKs are the targets of Ca2+/CaM-dependent pathways at the G2/M and 

anaphase to metaphase transitions. Inhibition or loss of CaMKs function leads to a G2 arrest. 

(Adapted from Kahl et al., 2003 (10)) 
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It is also well established in T-cells that Ca2+ signals induce cell cycle re-entry of quiescent T-cells 

following antigen stimulation. Indeed, T-cell stimulation leads to release of Ca2+ from intracellular 

stores through the activation of intracellular channels such as inositol triphosphate (IP3) receptor 

Ca2+ channels (IP3R) and ryanodine receptors (RyRs) (17). Store depletion then activates Ca2+-

release activated Ca2+ (CRAC) channels on the plasma membrane in order to produce a sustained 

Ca2+ influx essential for the activity of the nuclear factor of activated T-cells (NFAT) protein, 

which is a key transcriptional regulator (17). NFAT is activated through dephosphorylation by 

calcineurin, a Ca2+-calmodulin dependent phosphatase. In order to avoid NFAT rapid 

phosphorylation, a sustained Ca2+ signal is required through Ca2+ influx (17).  

 

The significance of calcineurin/NFAT activity is not only confined to T-lymphocytes, but is also an 

important mechanism in neurons (18) cardiomyopathies (19) and several cancers including 

leukemia, pancreatic, prostate and breast cancer. In cancer, NFAT increases cellular proliferation, 

promotes angiogenesis, stimulates invasion/motility and appears to reduce cell death via apoptosis 

(20). 

 

1.1.1.2 Cell Death 

Cell death can be classified according to its morphological appearance as apoptosis, necrosis, 

autophagy or anoikis. Ca2+ appears to be involved in all of these processes (21, 22) (Fig. 1.3).  
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Figure 1.3 Calcium involvement in various type of cell death 

 

Calcium is involved in morphologically different types of cell deaths, such as autophagy, apoptosis, 

necrosis and anoikis. (Taken from Zhivotovsky et al., 2011 (21)) 
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The apoptotic process may be induced by extracellular stress signals, such as lethal ligands binding 

specific transmembrane receptors, but also by intracellular stress conditions such as DNA damage, 

oxidative stress, cytosolic Ca2+ overload, mild excitotoxicity and accumulation of unfolded proteins 

in the ER (23).  

 

It has also been shown that increases in [Ca2+]i, due to Ca2+ release from the ER and Ca2+ influx 

from plasma membrane, promote apoptosis (24). However, it appears that more complex signals are 

involved in the changes in Ca2+ homeostasis that occur during apoptotic progression and that 

additional organelles are involved (25). Indeed, during intracellular stress conditions not only the 

ER and the mitochondria but also their cross-talk plays an important role in apoptosis (25). Overall, 

Ca2+ appears to be a leading actor in the complex mechanisms associated with apoptosis (26).   

 

Proteins of the B-cell lymphoma 2 (Bcl-2) family are known to regulate cell death (22); they are 

both pro-apoptotic (Bcl-2–associated X protein (Bax), Bcl-2 homologous antagonist/killer (Bak) 

and Bcl-2-associated death promoter (Bad)) and anti-apoptotic (Bcl-2 and B-cell lymphoma-extra 

large (Bcl-XL)) proteins (22). Bcl-2 overexpression in cells results in a phenotype associated with 

resistance to pro-apoptotic drugs (27).  

 

Bcl-2 protein expression also modifies Ca2+ homeostasis (28, 29), however this regulation has not 

been fully clarified. Bax and Bak are pro-apoptotic proteins located on both the mitochondria and 

the ER and the lack of expression of these two proteins confers significant resistance to various pro-

apoptotic stimuli (30) underling the importance of Bcl-2 family members in the apoptotic process. 

 

The main role of mitochondria in apoptosis is the release into the cytoplasm of caspase cofactors 

that are important key factors in this type of cell death (23). This process is mediated by the 

oligomerization of Bax and Bak proteins on the mitochondrial outer membrane (31). The release of 

pro-apoptotic proteins from the mitochondria is, however, inhibited by Bcl-2 expression (27). 

 

Ca2+ is also involved in apoptosis through the activity of key Ca2+ binding proteins. For example, 

calpain, a Ca2+-dependent protease, during the execution of apoptosis is able to cleave anti-

apoptotic proteins such as members of Bcl-2 family proteins (32, 33) and caspase-12, which 

prevents activation of procaspase (34), in order to favor the progression of apoptosis. 
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As mentioned above, Ca2+ is not only involved in apoptosis, but its activity is relevant also in other 

types of cell death such as necrosis, autophagy and anoikis (21). In contrast to apoptosis, necrosis 

has been considered an uncontrolled type of cell death (35). However, specific mechanisms have 

been shown to occur during necrotic death, leading some investigators to now define necrosis as a 

different type of controlled cell death (23, 35). The critical point during necrotic death is the loss of 

function of the mitochondria due, in many cases, to a large accumulation of Ca2+, adenosine 

triphosphate (ATP) loss and production of reactive oxygen intermediates (REIs) (36). These events 

further increase Ca2+ overload (37). 

 

Autophagy can be considered a survival mechanism as it allows the cell to better cope with stress 

through the degradation and recycling of cellular components to produce nutrients. However, 

autophagy is also an alternative cell death mechanism (23). Indeed, autophagy has been shown to 

cause death in different cancer cells, especially in the absence of pro-apoptotic elements such as 

Bax and Bak or caspase (38, 39). Ca2+ appears to be involved in this type of cell death due to [Ca2+]i 

increases and activation of CaMK (25). Localized Ca2+ signaling has also been reported as an 

important sensor for autophagy (40). 

 

Anoikis is a type of cell death, which depends on integrins that mediate attachment to other cells. 

Anoikis is usually deregulated in epithelial cancer cells sustaining invasiveness and metastasis (23). 

One of the features of this type of cell death is an overexpression of Bcl-2 family members; 

alteration in Ca2+ signals has been reported to be involved in anoikis (21). Indeed, Ca2+ and reactive 

oxygen species (41, 42) as well as Ca2+-activated chloride channels are shown to be involved in 

anoikis (43). 

 

1.1.1.3 Metastasis 

In general, cell migration is a non-pathological process during cell development, wound healing and 

immune response; however, malfunction of this process may promote processes important in 

disease such as metastasis (44). 

 

Metastasis, in cancer, is the mechanism by which malignant cells migrate through the circulation 

from the primary location of the tumor to establish tumor growth in a secondary distant organ (45). 

Metastasis is the main cause of mortality in cancer and a key hallmark of aggressive tumors (46).  

The Ca2+ signal has been recently identified as a crucial regulator of this process (45, 47). 
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A tumor becomes invasive through degradation of the extracellular matrix (ECM), which is part of 

the connecting tissue and provide structural support and anchorage to cells (48). The ECM is a store 

for growth factors (44), chemokines and cytokines (49). The matrix metalloproteinases (MMPs), a 

family of proteases capable of the cleavage of cell surface receptors and degradation of many kinds 

of ECM components, release apoptotic ligands and modulate chemokines/cytokines activity (44). 

Expression of MMPs is usually correlated to connective tissue remodeling and migration (44).  

 

An important element in cell migration is the activity of the focal adhesion kinase (FAK), a non-

receptor tyrosine kinase, capable of coordinating signals between integrins and growth factor 

receptors (45). This kinase is a target for several extracellular stimuli including those mediated by 

an increase in [Ca2+]i such as CAMKs pathways (50, 51).  

 

Local increases in Ca2+ correlate with the activity of FAK inducing disruption of focal adhesions 

(52). Calpain activity is also involved in the regulation of adhesion in normal and pathological 

condition (53). S100 proteins are a family of Ca2+ binding proteins, which are implicated in several 

intracellular and extracellular functions including metastasis and epithelial-mesenchymal transition 

(EMT) (54, 55); the latter is a morphological transformation event that is a feature of cell 

development and cell migration characterized by a loss of cell adhesion (56).  

 

In conclusion, intracellular and extracellular Ca2+ signals play a pivotal role, not only in normal cell 

development, but also in tumor progression and metastasis. 

 

1.1.2 Calcium transporters 

In order to maintain Ca2+ homeostasis, the cell uses a complex network of signals mediated by 

several Ca2+ transporters on the plasma membrane and intracellular organelles (Fig. 1.4). 

 

As the plasma membrane lipid bilayer is impermeable to Ca2+ ions, specific proteins are expressed 

on the cell surface to enable the transport of Ca2+ into and out of the cytoplasm. Extracellular Ca2+ 

can be transported across the plasma membrane through three main transporting mechanisms: 

channels, ATPase pumps and exchangers (Fig. 1.4). These mechanisms have different 

characteristics in terms of affinity for Ca2+, rate of Ca2+ transport and activation (57).  
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Figure 1.4 Ca2+ homeostasis in eukaryotic cell 

 

In order to maintain low levels of intracellular Ca2+ in the cytosol and trigger specific Ca2+ signals, 

several Ca2+ transporters are involved in regulating Ca2+ homeostasis in the cell. Specific Ca2+ 

transporters control the transit of Ca2+ ions into organelles and across plasma membrane. Ca2+ 

signaling can also be indirectly regulated by G protein coupled receptors (GPCRs) and tyrosine 

kinase receptors (RTKs). (Adapted from Zhou Y, Xue S and Yang JJ, 2013 (58)) 
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1.1.2.1 Ca2+ channels 

Ca2+ can enter cells through different types of channels, which can be divided into four major 

categories: voltage-operated Ca2+ (VOCs) channels, receptor-operated Ca2+ channels (ROCs), store-

operated Ca2+ channels (SOCs) and transient receptor potential (TRP) channels (59) (Fig. 1.4). 

 

Voltage-gated Ca2+ channels (CaVs) are found in excitable cells (neurons, skeletal muscle, heart), 

but can also be expressed in non-excitable cells (1). These channels are activated upon membrane 

depolarization; they are highly selective for Ca2+ ions and characterized by rapid and large Ca2+ 

entry (1). Six classes of CaVs have been identified (L-, N-, P-, T-, R- and Q-type). They are made 

up of different subunits encoded by at least 26 different genes of the CACN superfamily. These 

channels are all tightly regulated: L-type Ca2+ channels are modulated by phosphorylation, while 

others are regulated by G proteins (60). 

 

Among the ROC channels there are: N-methyl-D-aspartate (NMDA) receptors, nicotinic, 

acetylcholine, purinergic and glutamate receptors. They are encoded by several different genes: 

NMDA receptors are encoded by GRIN genes, nicotinic receptor by CHRN genes, purinergic 

receptors by P2RY and P2RX genes and glutamate receptors by GRM genes (61). These channels 

are activated by specific ligands to modulate the Ca2+ influx (60). 

 

SOCs are activated in response to depletion of intracellular Ca2+ stores (59). The CRAC channel is 

the most studied in this category and the components of this channel have recently been identified 

(62). The main role of SOC channels is to assure supply of Ca2+ ions to the ER, indeed, CRAC 

channels are activated by decreases in Ca2+ levels in the ER (5).  

 

CRAC channels are made up of four-transmembrane domain plasma membrane proteins (Orai1, -2 

or -3), which constitute the channel-forming subunits of the channel (63, 64). Stromal interacting 

molecules (STIM1 or -2) are single transmembrane-spanning domain proteins located in the ER that 

function as Ca2+ sensors (65). Changes in Ca2+ levels in the ER are associated with a change in 

STIM protein conformation and self-aggregation adjacent to Orai subunits in the plasma membrane 

(66). Through their cytoplasmic C-terminus STIM proteins interact with specific domains on the N 

and C termini of Orai subunits and cause channel opening (67, 68). The close localization of STIM 

and Orai proteins causes an accumulation of Ca2+ ions in a narrow region that permit specific Ca2+ 

responses (5). 
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STIM and Orai activities have been linked to immunodeficiency (69, 70). Orai1 has also been 

linked to breast cancer invasion and metastasis (71). Alteration of Orai-mediated Ca2+ influx has 

also been linked to breast cancers with a poor prognosis (72). 

 

TRP channels are a large family of proteins which all share similarities to Drosophila trp channels. 

They have six putative transmembrane domains (73) and are divided into seven classes (TRPC, 

TRPV, TRPM, TRPA, TRPN, TRPP, TRPML) amongst which TRPC (canonical), TRPV 

(vanilloid) and TRPM (melastatin) channels have been the most investigated (73). They are usually 

weakly voltage-sensitive and have a diverse selectivity of cations conductance (74). TRP channels 

are modulated by different stimuli such as: GPCRs, ligand activation, temperature, IP3R coupling 

and phosphorylation (75). Although, TRP channels may participate in store-operated Ca2+ entry, it 

is now incorrect to define them as SOCs channels as their main activation has been established as 

being not due to Ca2+ store depletion (75). TRP channels are particular important in the 

proliferation of some cell types and some have been shown to be involved in tumorigenesis in 

different cancer types (4). 

 

Several TRP channels may also mediate release Ca2+ from intracellular stores (76), however, the 

major intracellular Ca2+ channels involved in Ca2+ store release are the IP3R and the ryanodine 

receptor. These store release channels share structural similarities. Their Ca2+ conductance is 10 

times greater than voltage-gate Ca2+ channels (1). They are mainly located in the ER membrane and 

they are co-expressed in several cell types (77, 78).  

 

Three IP3R subtypes are known (IP3R1, IPR3R2 and IP3R3) (79), and they can be co-expressed in 

the same type of cell (1). They are activated by IP3 (80), but also by cytosolic Ca2+ (81). IP3 is 

considered to tune the sensitivity of the channel to cytosolic Ca2+, while luminal Ca2+ appears to 

regulate the affinity of the IP3R to IP3 (79). Three isoforms of the ryanodine receptor (RyR1-3) are 

known; RyR1 and RyR2 are expressed in several tissues, RyR1 is mainly expressed in skeletal 

muscle, while RyR2 is mostly present in cardiac muscle and in Purkinje cells; RyR3 is expressed in 

several organs (77). Ca2+, Mg2+ and ATP and other second messengers can modulate Ca2+ release 

via RyRs (77). 

The two-pore channels (TPC) are recently discovered voltage-gate ion channels made up of 12 

putative transmembrane segments (82) and they are activated by nicotinic acid adenine dinucleotide 

phosphate (NAADP) (82). There are three TPC isoforms (TPC1-TPC3) encoded by TPCN genes 

and they function as a dual sensor for luminal pH and Ca2+ (83). They show different localization 
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within the endolysosomal system: TPC1 is mainly located on the endosomal membranes and TPC2 

is mostly expressed on the lysosomes and late endosomes, while TPC3 may be present primarily on 

recycling endosomes (82). Recently, a controversy on the TPC channels has arisen, claiming that 

TPC channels are Na2+ selective rather than Ca2+ selective (84) as previously stated (83). 

 

Finally the mitochondrial calcium uniporter (MCU) is a highly selective inwardly rectifying Ca2+ 

channel that allows Ca2+ influx into the mitochondria driven by the negative charge of the 

membrane potential produce by the respiratory chain (85-87). MCU is encoded by the CCDC109A 

gene (87) and recently an accessory protein has been discovered, the MCUb encoded by the 

CCDC109B gene, which appears to produce a dominant-negative effect on MCU that drastically 

reduces Ca2+ influx into the mitochondria (88). MCU has recently been investigated in breast cancer 

cells and the silencing of MCU in MDA-MB-231 breast cancer cells potentiates ionomycin-induced 

cell death (89).  

 

1.1.2.2 Ca2+ pumps 

Another large class of Ca2+ transporters is the Ca2+ ATPases also referred to as Ca2+ pumps. Free 

Ca2+ levels in the cytosol need to be maintained at low levels, thus, Ca2+ is extruded from the cell or 

sequestered into the ER through an active transport mechanism that involves ATP cleavage (90). 

Ca2+ ATPase pumps are divided into three major classes: sarcoendoplasmic reticulum Ca2+ 

ATPases (SERCAs), plasma membrane Ca2+ ATPases (PMCAs) and secretory pathway Ca2+-

ATPases (SPCAs) (Fig. 1.4). The SERCA pumps are found mostly in the ER, but also in the 

nuclear envelop and on the Golgi apparatus; PMCA pumps are found on the plasma membrane and 

finally the SPCA pumps are usually present in the Golgi (90).  

 

Ca2+ pumps are considered a large superfamily as they share similar basic properties and conserved 

regions and these pumps have high affinity for Ca2+ ions (91). Upon binding of Ca2+ on their 

cytosolic side, pumps undergo several conformational changes, which permit ATP to phosphorylate 

their catalytic residue and change their affinity for Ca2+ allowing the release of Ca2+ across the 

membrane (91). 

 

SERCA pumps remove two Ca2+ ions from the cytoplasm through the hydrolysis of ATP (91). 

Three genes (ATP2A1, ATP2A2, ATP2A3) encode for SERCA proteins, which can undergo tissue 

type-dependent alternative splicing (91). Specific inhibitors of these pumps are: thapsigargin (TG) 

which has an irreversible action and cyclopiazonic acid (CPA), a reversible inhibitor that has a 
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lower affinity than TG (91). Malfunction of SERCA pumps have been associated with heart failure 

and cancer development (91). In several different cancers, such as colon, lung, gastric, prostate, 

pancreatic cancer and leukemia, mutations or altered expression of SERCA pumps have been linked 

directly or indirectly with the disease (91). 

 

PMCA pumps have high affinity for Ca2+ and they transport one ion out of the cell for each ATP 

hydrolyzed (92). Four genes encode (ATP2B1, ATP2B2, ATP2B3, ATP2B4) for the different PMCA 

pumps and several alternative splicing variants have been identified for each gene (92). The 

expression of PMCA isoforms is tissue-specific (93): while PMCA1 and 4 are expressed in most 

tissues, the expression of PMCA2 and 3 is mostly limited to the brain and striated muscle (90). 

However, PMCA2 is also found in specialized cells such as the mammary gland during lactation 

(94). PMCA pumps not only hold the housekeeping role of maintaining basal Ca2+ levels (95), but 

they are also important in several specific functions. Indeed, their activity is associated with hearing 

(96), cardiac function (97) and male fertility disorders (95) and processes important in 

tumorigenesis (4). Expression of specific PMCA isoforms is increased in breast cancer cells (98, 

99) and during differentiation of colon cancer cells (100). 

 

SPCA pumps are usually located in the Golgi membranes and are the most recently identified and 

characterized human p-type Ca2+-ATPase. The main distinct characteristic of SPCA pumps is their 

ability of transport also Mn2+ (101), which may be important for the activity of several enzymes 

present in the Golgi (91). 

 

SPCA pumps have two isoforms, SPCA1 and SPCA2, encoded by the ATP2C1 and ATP2C2 genes, 

respectively. Alternative splicing isoforms are known for SPCA1, while SPCA2 alternative splicing 

has not been reported (91). SPCA pumps have a higher affinity for Ca2+ compared to SERCA and 

PMCA pumps. SPCA is inhibited by La3+, a general Ca2+ transport blocker, and orthovanadate, an 

ATPase inhibitor, but not by concentrations of TG or CPA that inhibit SERCA (91). 

 

SPCA1 mutations have been associated with Hailey-Hailey’s disease, which is an autosomal 

dominant benign skin disorder (102). SPCA pumps have also been associated with ischemia (103), 

speech and language impairment (104), colon cancer (105) and breast cancer (106, 107).  

In breast cancer, it has been shown that inhibition of SPCA1 expression produces an alteration in 

cell morphology in matrigel (a gelatinous mixture that resembles the complex extracellular 

environment) and reduces cell proliferation (106). SPCA1 silencing in basal-like MDA-MB-231 
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breast cancer cells alters the processing of insulin-like growth factor receptor (IGF1R) possibly 

through the regulation of calcium sensitive pro-protein convertases that reside in the Golgi lumen 

(106). IGF1R is associated with cancer initiation, proliferation, and resistance and also can be a 

predictor of poor survival (108-110). SPCA2 has also been associated with some breast cancers, 

and silencing of SPCA2 reduces the proliferation of breast cancer cell lines that overexpress this 

protein (107). 

 

1.1.3 Ca2+ exchangers 

On the plasma membrane other Ca2+ transporters are present to maintain Ca2+ homeostasis that 

function as Ca2+ exchangers. Na+/Ca2+ exchangers (NCXs) are important for Ca2+ extrusion 

working with a 3:1 stoichiometry. Another exchanger is the Na+/Ca2+/K+ exchanger (NCKX), 

which works with a 4:1:1 stoichiometry (111). Three members of the NCX and five members of the 

NCKX family are known and they belong to a larger superfamily of Ca2+/cation antiporters (111).  

 

NCX1 is present in the heart, brain, kidney and in other tissues at lower levels; NCX2 is mainly 

expressed in the brain, while NCX3 expression is limited to skeletal muscle and at lower levels in 

some brain regions. NCX exchangers can be regulated by Ca2+, Na2+, phosphatidylinositol 4,5-

bisphosphate (PIP2) and pH, and these transporters are associated with cardiovascular disease (111). 

 

NCKX exchangers are present in the retinal epithelium and most of the isoforms are also present in 

the brain, with isoform-specific expression in particular regions. So far this type of exchanger has 

not been linked with cancer. Second messengers and protein-protein interaction may regulate this 

family of exchangers, however, further studies are needed (111). 
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1.2 Breast	
  Cancer	
  

Breast cancer is a malignant neoplasm of the breast tissue and it is the most commonly diagnosed 

cancer and leading cause of cancer death in women worldwide (112-114) (Fig. 1.5). 
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 Figure 1.5 Incidence and mortality rates in cancer in women 

 

Most frequent cancers in women worldwide GLOBOCAN 2012. (Taken from IARC website (114)) 
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Breast cancer can be caused by a combination of genetic and environmental factors, in particular, 

genetic modifications, dietary, behavioral habits and environmental exposure. Gender, ageing, 

BRCA mutations, a family history of breast cancer, race and ethnicity are all risk factors for breast 

cancer (115). Obesity, alcohol consumption, hormone therapy and smoking have also been shown 

to increase the risk of breast cancer, while physical activity may reduce this risk (115, 116). The 

size, the stage of the tumor and the receptor status determine the type of treatment, which may 

include surgery, hormonal therapy, chemotherapy, radiation and/or immunotherapy (117).  

 

Different types of breast tumors can be more sensitive to estrogen and progesterone hormones, 

while others can be driven by growth factors (118, 119). These characteristics are part of the 

biological heterogeneity of breast tumors and greatly influence the treatment outcome (119). Thus, 

pathological markers such as the estrogen receptor, progesterone receptor and the human epidermal 

growth factor receptor 2 (HER2) and expression of other prognostic factors such as the marker of 

proliferation Ki67 are taken into consideration in order to select an appropriate targeted therapy 

(120). 

 

Based on their global gene expression, breast tumors have been classified into six hierarchal 

clusters using cDNA microarray: luminal A, luminal B, HER2-positive, basal-like and normal 

breast-like, and claudin-low (119). Different types of breast cancers have shown differences in 

incidence, prognosis and response to treatment (119). The luminal A type has a better disease-free 

prognosis, while the basal-like and HER2-positive have the worst outcome (121).  

 

1.2.1 HER2-positive breast cancer subtype 

HER2-positive breast tumors represent approximately 20-25% of all breast cancers (122-124) and 

they are among the most aggressive types of breast cancer. This type of tumor is associated with an 

overexpression of the HER2 receptor, which is used as a diagnostic marker. HER2 status is 

associated with disease relapse and low overall patient survival (125, 126). Incidence of positive 

lymph nodes has been correlated with HER2 overexpression and this type of tumor is often 

associated with metastasis (125). 

 

The HER family includes other growth factor receptors such as HER1 (EGFR), HER3 and HER4 

receptors encoded by the ERBB1-4 genes (127). These receptors are located on the plasma 

membrane where they can form homodimers or heterodimers. The dimerization of these proteins 

arises from the binding of a ligand that causes a conformational change and induces the formation 
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of dimers (127, 128). Heterodimerization can occur among the HER family members but also with 

other proteins such as IGF1R (129). 

 

HER receptor family signaling is performed primarily by phosphatidylinositol 3-kinase (PI3K) and 

mitogen-activated protein kinases (MAPK) pathways (128). HER2-positive breast cancers are 

associated with an up-regulation of PI3K and nuclear factor kappa-light-chain-enhancer of activated 

B cells (NF-κB) signaling, which protect cells against death stimuli (130, 131). Since HER2-

positive breast cancers are associated with a more malignant phenotype, targeting members of the 

HER family, IGF1R and their downstream signaling is a potential therapeutic strategy in this type 

of breast tumors. 

 

1.2.2 Trastuzumab 

Most of the drugs that have been developed for HER2-positive tumors have as their target the 

HER2 receptor. Trastuzumab (Herceptin®) is a recombinant humanized monoclonal antibody 

directed against an extracellular region of the HER2 protein (132). It was the first agent approved 

for the specific treatment of HER2-positive tumors as adjuvant therapy in early-stage or metastatic 

breast cancer (133, 134). In HER2-positive metastatic breast cancer, trastuzumab is usually given as 

part of a treatment program that includes chemotherapy drugs such as paclitaxel (134-136).  

 

At least 5 different mechanisms of action have been suggested for trastuzumab, these are: a) 

activation of antibody-dependent cellular cytotoxicity (ADCC), b) inhibition of signal transduction 

and cell cycle arrest, c) inhibition of proteolytic cleavage, d) inhibition of tumor angiogenesis and e) 

inhibition of DNA damage repair (128) (Fig. 1.6).  
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Figure 1.6 Mechanism of action for trastuzumab on HER2-positive breast cancer 

 

Normal HER2 signaling includes the phosphorylation of PI3K and MAPK pathways producing cell 

survival and proliferation, cell cycle progression, gene transcription and cytoskeletal organization. 

Trastuzumab produces ADCC, inhibition of signal transduction and cell cycle arrest, inhibition of 

proteolytic cleavage, angiogenesis and inhibition of DNA damage repair. (Taken from Spector NL 

and Blackwell KL, 2009 (128)) 
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Trastuzumab inhibits the activation/phosphorylation of the HER2 receptor with a consequential 

inhibition of PI3K and MAPK pathways with an overall decrease in cell proliferation and 

promotion of apoptosis (128). Moreover, trastuzumab may down-regulate signaling via cyclin D 

and increase the half-life of p27 promoting cell-cycle arrest in G1 phase (128). 

 

Other anti-HER2 agents have been more recently developed such as pertuzumab and lapatinib. In 

some cases these are used in combination with trastuzumab therapy in order to achieve clinical 

benefits through total HER2 blockade (128). Recently, a new therapeutic trastuzumab emtansine 

showed a significant increases in progression-free survival in phase III trial (137) and it is now 

approved by the United States Food and Drug Administration (FDA) (138). This therapeutic agent 

is an antibody-drug conjugate composed by trastuzumab and a cytotoxic agent, which is delivered 

into the cells (139). 

 

Despite the improved prognosis of HER2-positive breast cancers due to the development of 

trastuzumab, treatment is sometimes compromised due to trastuzumab resistance (140). 
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1.3 Drug	
  Resistance	
  In	
  Cancer	
  

Drug resistance is the reduction of efficacy of a drug for a certain treatment. The resistance can be a 

de novo resistance where the patient does not respond to the treatment from the beginning, or 

acquired, where resistance develops with prolonged exposure to the drug (141). Drug resistance can 

lead to therapy failure and consequent disease progression. Among the multiple factors that can 

determine the response to anticancer treatment, drug resistance is considered to be the major factor 

that limits the positive outcome of anticancer therapy (141, 142). 

 

1.3.1 Mechanisms of resistance 

Several different mechanisms result in resistance against anticancer drugs. These may be due to 

patient and genetic characteristics as well as epigenetic and environmental factors (141). 

Characteristics that may influence the response to a particular treatment in different patients may 

include poor absorption, rapid metabolism or excretion of the drug and these factors can results in a 

drug concentration that is not sufficient to reach therapeutic levels (141, 143). Poor tolerance may 

be another issue, particularly in elderly patients; this can lead to a requirement for dosage reduction, 

which may result in an ineffective therapeutic outcome. Another cause of ineffective therapy may 

be the inability to deliver the drug to the tumor site due to a large tumors size or low tissue 

penetration (141, 143). 

 

Other important mechanisms of resistance can be due to molecular alterations within the tumor in 

order to trigger a survival mechanism to elude the effect of a single drug. These methods include 

decreased expression of cell surface receptors for the drug and mutation of the drug target (141, 

143). Resistance to multiple drugs is common in cancer and may be due to an increased efflux or 

decreased entry of drugs or an alteration of membrane lipids which results in an overall decreased 

accumulation of drugs into the cells (141, 143) (Fig. 1.7). A study has shown that SPCA1, which is 

localized on the Golgi membrane, is important for the processing of proteins within the Golgi and 

alteration to its activity may involve modification in the trafficking of proteins directed to the 

plasma membrane (144), thus it may have a role in anticancer resistance. 
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Figure 1.7 Different mechanism of anticancer drug resistance reported in cancer cells 

 

Many mechanisms of resistance to anticancer drugs have been shown in cancer cells. The 

acquisition of resistance can be caused by lowered accumulation of the drug within the cells due to 

enhanced efflux, alteration in membrane lipids or decreased uptake produced by a loss of surface 

receptor or transporter for a drug. Other mechanisms can be cause resistance, such as modification 

of the specific target of the drug, altered cell cycle checkpoints, increased DNA repairs, 

compartmentalization or increased metabolism of the drug. (Taken from Gottesman MM, 

2002(143)) 
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Alteration of specific pathways can occur to favor cell proliferation and progression of the tumor. In 

some cases, such as the establishment of resistance, cancer cells may activate alternative pathways 

to overcome the death response given by an anticancer drug to promote cell survival (145). 

 

1.3.2 Mechanism of trastuzumab resistance 

Clinical studies show that trastuzumab is active against HER2-positive breast cancer and is well 

tolerated. Its response rate as a monotherapy is in the range of 12 to 34% for a median treatment 

duration of 9 months (146). The response rate significantly increases up to 82% when trastuzumab 

is given in association with other anticancer drugs and/or chemotherapy (147). However, most 

patients, who initially responded to the treatment, acquire resistance within 1 year (146). 

Approximately 25-30% of patients do not respond to trastuzumab at the commencement of therapy 

(148). An in vitro example of this type of de novo resistance is the JIMT-1 cell line, which was 

established from a patient who did not respond to the initial trastuzumab treatment despite HER2 

overexpression (149). 

 

Several potential mechanisms of resistance have been proposed for trastuzumab, which include: 

altered receptor-antibody interaction, up-regulation of HER2 downstream signaling, altered IGF1R 

and vascular endothelial growth factor (VEGF) signaling, extracellular HER2 cleavage and 

polymorphism and/or post-translational modification (glycosylation) of the Fc receptor (150, 151). 

Mutations in the region encoding the extracellular domain may be present on the ERBB2 gene 

altering the interaction of trastuzumab with the receptor (146). The disruption of the interaction 

between trastuzumab and HER2 in resistant cells could also arise from the overexpression of the 

glycoprotein mucin-4 (MUC4), which is able to bind HER2 preventing its interaction with 

trastuzumab. Indeed, overexpression of MUC4 is associated with cancer progression, inhibition of 

apoptosis and HER2 activation (129).  

 

Altered signaling by members of the HER family has been described in trastuzumab resistance. 

Ligands for EGFR, HER3 and HER4, when these receptors are overexpressed, cause 

heterodimerization of HER2 with these proteins favoring proliferation and inhibition of apoptosis 

(152). In these cases, trastuzumab is unable to block ligand-mediated activation of EGFR/HER2 

and HER2/HER3 dimers (153).  

 

Interestingly, increased IGF1R signaling may be a characteristic of some trastuzumab resistant cell 

lines. The overexpression of this receptor is generally associated with proliferation, metastasis and 
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inhibition of apoptosis (146, 151, 154). Moreover, a particular interaction and cross-talk between 

IGF1R and HER2 appears to only occur in trastuzumab resistant cells (155). 

 

In sensitive cells, trastuzumab can inhibit the PI3K/Akt pathway leading to the inhibition of the cell 

cycle and promotion of apoptosis. However, in trastuzumab resistant cells, higher levels of 

phosphorylated Akt have been found to promote cell survival (156). A possible explanation could 

be related to defective or decreased expression of phosphatase and tensin homolog (PTEN), a 

phosphatase that acts as an antagonist of PI3K in the synthesis of phosphatidylinositol (3,4,5)-

triphosphate (PIP3) (157). However, alternative pathways, such as increased IGF1R signaling, are 

also considered as possible causes of PI3K/Akt pathway activation and subsequent trastuzumab 

resistance (158). 

 

Trastuzumab decreases cyclin E/cyclin-dependent kinase 2 (cdk2)-mediated phosphorylation of p27 

and increases p27-cdk2 complexes resulting in G1 arrest. Trastuzumab resistant cells have lower 

levels of p27 compared to sensitive cells, which contributes to cell survival (146).  

 

HER2 is a 128 kDa protein, which can be cleaved by MMPs into a 110 kDa extracellular domain 

released into the serum, and a 95 kDa truncated fragment on the plasma membrane with increased 

kinase activity. Trastuzumab may interact with the circulating 110 kDa fragments reducing its 

therapeutic effect, and hence increased MMP-mediated cleavage of HER2 has been suggested as a 

potential resistance mechanism (129). 

 

In conclusion, several mechanisms of trastuzumab resistance have been proposed and the next 

section discusses how Ca2+ signaling could contribute to trastuzumab resistance or how modulation 

of Ca2+ signaling could potentially offer a mechanism to avoid or overcome trastuzumab resistance 

is discussed. 
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1.4 Calcium	
  signaling	
  in	
  cancer	
  

Ca2+ signaling is a vital element in several cell processes and an alteration in Ca2+ homeostasis may 

lead to cell malfunction and disease (7). Changes in Ca2+ signaling have been linked to cellular 

mechanisms important in cancer progression (4, 45, 47, 99, 159). In particular, altered expression 

and/or activity of some Ca2+ transporters have been associated with different types of tumors (4, 45, 

47, 99, 159). Moreover, Ca2+ signaling is involved in several types of drug resistance in cancer (45, 

47, 99). 

1.4.1 Ca2+ signaling and drug resistance in cancer 

Tumor cells in order to escape drug-mediated death may activate alternative survival pathways, 

which may be induced by the reprogramming of particular receptor activities and/or expression. 

This may lead to the development of resistance for a particular anticancer drug. Ca2+ homeostasis 

may therefore be altered in resistant tumors and promote survival (160).  

 

SOC channels have a role in resistance to apoptosis (161). In human prostate cancer, the down-

regulation of Orai1 reduces Ca2+ influx and consequently protects cells from apoptosis induced by 

thapsigargin, tumor necrosis factor α (TNFα) and cisplatin and rescue via Orai1 transfection can 

restore a normal response to apoptotic stimuli (161). Similarly, leukemia cells that are resistant to 

the drug tipifarnib show a down-regulation of Orai3, which may attenuate Ca2+ influx and also 

drug-mediated induction of apoptosis (162). 

 

Other Ca2+ transporters such as TRPV6 and TRPV2 are overexpressed in advanced and castration-

resistant prostate cancer cells, respectively (163, 164). Indeed, TRPV6 expression enhances 

proliferation and survival via Ca2+ entry perhaps through Ca2+-dependent NFAT activation. Small 

interfering RNA (siRNA)–mediated silencing of the channel increases apoptosis (163). In 

castration-resistant prostate cancer cells TRPV2 expression enhances cell migration and the 

expression of invasion markers and thus progression to a more aggressive tumor stage (164). Down-

regulation of the calcium sensing receptor correlates with cytotoxic drug resistance in colon cancer 

and also with increased survivin and tymidylate synthetase expression, which are linked to 

inhibition of apoptosis and cell proliferation, respectively (165). 

 

IP3R expression also appears to be involved in drug resistance, however, its activity may be 

isoform subtype and/or cancer specific. For example, IP3R1 is down-regulated in cisplatin resistant 

bladder cancer cells and increasing its expression reverses resistance and sensitizes cells to 
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cisplatin-mediated apoptosis (166), whereas IP3R1 is up-regulated in cisplatin resistant lung cancer 

cells (167).  

 

Ca2+-activated-K+ channels are correlated with anticancer drug resistance in different tumors. Up-

regulation of this channel correlates with malignancy in gliomas (168), while in epidermoid cancer 

cells, Ca2+-activated-K+ channels are expressed only in cispatin resistant cells (169). A single-

nucleotide polymorphism of this channel is found in selenium resistant prostate cancer cells (170). 

Ca2+ binding proteins, such as calbindin 2, annexins, S100s, sorcin and calpain, are also involved in 

resistance in different types of cancer. Decreased levels of calbindin 2 correlate with 5-Fluoroacil 

resistance in colorectal cancer cells (171). Annexins are overexpressed in adriamycin resistant 

leukemia cells (172). S100 family proteins are down-regulated in several resistant cell lines such as, 

bladder, colon and ovarian cancer cells (55, 166). Sorcin expression is increased in drug resistant 

gastric (173) and lung cancer (174) cells, while its decrease in colorectal cells correlates with 

resistance (175).  

 

Other proteins involved in Ca2+ signaling are also linked to drug-resistance in cancer. As described 

earlier, expression of Bcl-2 contributes to resistance in leukemia cells (176). The overexpression of 

the Ca2+-dependent enzyme transglutaminase-2 (TG2) also appears to be responsible for TNF-

related apoptosis-inducing ligand (TRAIL) resistance in lung cancer cells (177). 

 

1.4.2 Ca2+ signaling and drug resistance in breast cancer 

In addition to its association with drug-resistance in several types of cancers, Ca2+ is also involved 

in drug-resistance in breast cancer. For example, in two different types of breast cancer cell lines, 

luminal A and HER2-positive, a subpopulation of cells resistant to paclitaxel do not express the 

calcium-sensing receptor and this promotes malignancy (178). Moreover, CaM and CaMKs are 

involved in doxorubicin resistance in luminal A and basal breast cancer cell lines (179). Indeed, 

EBB (O-(4-Ethoxyl-Butyl)-Berbamine), a CaM antagonist induces marked G2/M arrest and 

apoptosis in doxorubicin resistant breast cancer cells (179). Doxorubicin can induce the CaMK 

pathway leading to anti-apoptotic signaling due to the activation of ERK and Akt pathways in 

breast cancer cells, and CaMK is overexpressed in different drug resistant breast cancer cells (180). 

As shown for other types of drug resistance in cancer, S100 proteins are also involved in drug 

resistance in luminal breast cancer cell lines (181). 
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Interestingly, expression of the PMCA2 pump correlates with poor outcome and its overexpression 

protects cells from ionomycin-mediated cell death (182). Moreover, tissue microarray analysis 

shows a correlation between PMCA2 levels and higher tumor grades and HER2-positive status 

(182). PMCA2 appears to also interact with calcineurin to confer resistance to apoptosis in some 

breast cancer cells (183).  

 

The Ca2+-sensitive enzymes transglutaminase-2 and calpain can activate NF-κB contributing to 

cancer progression and also drug resistance in the basal breast cancer cell line MDA-MB-231 (184). 

Similarly, in HER2-positive breast cancer cell lines, BT474 and SKBR3, resistance to lapatinib 

appears to be due to the phosphorylation of RelA, a Ca2+ dependent subunit of the NF-κB complex 

(185). 

 

Ca2+ signaling has been investigated in several models of drug resistance in breast cancer cell lines, 

resulting in the identification of potential targets to overcome resistance to drug treatments. Its role 

in trastuzumab resistant HER2-positive breast cancer cell lines has not yet been clarified, however, 

as discussed below some indirect evidences points to its potential involvement.  
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1.5 Trastuzumab resistance and Ca2+ signaling 
To date, no studies have been conducted to evaluate a possible direct link between calcium 

transporters and trastuzumab resistance. Indirect evidence that calcium transporters are potentially 

involved in trastuzumab resistance is discussed below. 

 

1.5.1 IGF1R 

IGF1R is part of the tyrosine kinases receptor family; it is a transmembrane receptor, which can be 

activated by insulin-like growth factors IGF1 and IGF2 (186) and it is reported to be expressed in 

normal and malignant tissue (187). The receptor has an important role in growth and its activity is 

implicated with cancer development, progression and resistance to cytotoxicity treatments (188). 

Thus, IGF1R appears to be an attractive target to regulate breast cancer therapy. 

 

IGF1R can be present as a homodimer or heterodimer by association with other receptors such as 

tyrosine kinase receptors of the HER family (155, 187). MAPK and PI3K/Akt pathways can be 

activated upon IGF1R ligand stimulation, this induces an increased expression of several factors 

that promote survival and proliferation such as cyclins, survivin, p27, Bcl-2, Bax and others (189). 

 

Increased IGF1R signaling is associated with trastuzumab resistance (108-110). Heterodimerization 

has been observed in trastuzumab resistant breast cancer cells derived from the SKBR3 cell line but 

not in the parental cell line (189). Heterotrimerization of HER2, IGF1R and HER3 has also been 

suggested as a mechanism of trastuzumab resistance (158). This study described that the three 

receptors interact directly, activating unique downstream signaling pathways in a trastuzumab 

resistant cell line. Moreover, silencing one of the receptors does not influence the association of the 

remaining two, which are able to maintain activation of multiple signaling pathways (158).  

Trastuzumab resistant BT474 and SKBR3 cells have increased IGF1R expression in vitro and 

inhibition of IGFR1 activity significantly increases the response to trastuzumab (190). However, 

clinical studies using immunohistochemical analysis conducted on breast cancer samples from 

patients with metastatic HER2-positive tumors receiving trastuzumab therapy concluded that 

IGF1R may not be relevant as a trastuzumab response predictor (191). 

 

Trastuzumab has been reported to regulate the IGF binding proteins, IGFBP-2 and IGFBP-3, which 

form complexes with IGFs in order to regulate their interaction with the receptor. Interestingly, 

IGFBP-3, which promotes anti-proliferative and pro-apoptotic effects is down-regulated in 
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trastuzumab resistant cell lines, while IGFBP-2, which appears to have the opposite effect, is up-

regulated (192). 

 

It has been shown that the Golgi calcium pump SPCA1 is a key regulator of IGF1R processing in 

basal-like MDA-MB-231 breast cancer cells. Silencing of SPCA1 produces an alteration of the 

IGF1R processing, with a pronounced reduction in the active form and accumulation of pro-IGF1R 

in the trans-Golgi network (106). Mitochondria stress-activated calcineurin also appears to be 

critical for increased IGF1R expression and activity leading to resistance to apoptosis and tumor 

proliferation (193). 

 

Hence, changes in calcium signaling may result in changes in IGF1R expression and activity. The 

consequence of these could be changes in trastuzumab resistance associated with IGF1R in breast 

cancer cells. 

 

1.5.2 NF-κB 

A Ca2+ dependent pathway that may be important in trastuzumab resistance is NF-κB, which is a 

protein complex that regulates DNA transcription (194). It controls the expression of many genes 

linked to proliferation and survival and thus it has an important role in the development and 

progression of cancer (195). 

 

The NF-κB complex is made up of two subunits, which belong to two different classes of proteins: 

Rel proteins (RelA or p65, RelB and c-Rel) and p50, p52 subunit. These proteins may form homo- 

or heterodimers (194, 195) (Fig. 1.8). The complex is kept active by specific IκB inhibitor proteins. 

Upon activation of the complex, IκB kinase (IKK) phosphorylates IκB protein, which releases the 

activated RelA-p50 complex (194) (Fig. 1.8). However, other non-canonical pathways, which 

activate different NF-κB complex, may also occur (195).  
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Figure 1.8 Ca2+ signaling and NF-κB pathway 

 

Upon activation of the inhibitor of κB kinase (IKK), the NF-κB complex is phosphorylated and the 

p65-p50 subunits can translocate into the nucleus to promote DNA transcription. Ca2+ can modulate 

NF-κB activity through the activation of Ca2+ binding proteins such as calmodulin and calcineurin, 

or by activation of the Akt pathway. (Taken from Lilienbaum et al., 2003 (196)) 
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NF-κB can be activated by several stimuli, such as TNFα, epidermal growth factor (EGF), 

interleukins, bacteria, viruses and stress. NF-κB can also be activated by overexpression of the 

HER2 receptor, which has been demonstrated to activate IKK (197). NF-κB activity is linked with 

Ca2+, indeed, the RelA subunit has Ca2+ dependent activity and it mediates resistance to lapatinib in 

HER2-positive breast cancer cells (185). 

 

Orai1 expression can induce NF-κB activation and translocation into the nucleus in lung cancer 

cells (198), while TRPM7 has been associated with hypoxia-inducible factor-1 α (HIF-1α) activity 

through NF-κB modulation (199). HIF-1α, plays a central role in tumor progression by regulating 

genes involved in cancer cell survival, proliferation and metastasis (199). 

 

An association between TG2 overexpression and constitutive activation of NF-κB in various types 

of cancer cells has been also reported (200). Transglutaminases are activated by an increase in 

cytosolic Ca2+ and various tumor promoters (195) and altered expression of TG2 is also linked to 

drug resistance in cancer (177). 

 

In conclusion, NF-κB activity has been linked with Ca2+ and HER2 expression, however the role of 

NF-κB in trastuzumab resistant breast cancer cells has not yet been investigated in the context of 

calcium signaling.  

 

1.5.3 Calpain 

Calpains are Ca2+ binding proteins involved in the proteolysis of several specific substrates and 

their activity is linked to cancer and several other diseases (201). In cancer calpains are involved in 

cell migration and survival through the proteolysis of focal adhesion proteins and IκB, respectively 

(201). They are also linked to apoptosis due to their effects on Bcl-2 family proteins, caspases and 

pro-apoptotic factors (201). The two most extensively studied subunits of this family are calpain-1 

and calpain-2. Calpain-1 activation depends on physiological Ca2+ levels, while caplain-2 can be 

activated by ERK/MAPK pathways signaling (202).  

 

HER2 overexpression activates Akt and ERK/MAPK pathways both of which are involved in 

calpain activation. The ERK/MAPK pathway activates calpain-2, while Akt induces the activation 

of NF-κB mediated by calpain activity (203). Recently, the role of calpain in trastuzumab resistant 

breast cancer was investigated and a correlation between calpain-1 expression and relapse-free 

survival in breast cancer patients treated with trastuzumab was demonstrated (202). Calpain-1 
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regulates the cleavage and activity of HER2 and the activity of the Akt1 pathway, and the 

deregulation of calpain-1 and its activation promotes trastuzumab resistance (204). Trastuzumab 

sensitive cells have higher calpain-1 activity than resistant cells; however, this resistance is 

associated with a requirement for calpain-1 activity for survival (204). It has also been reported that 

activation of calpain leads to degradation of PMCA1, which mediates apoptosis in breast cancer 

cells, possibly due to a disruption of Ca2+ homeostasis (205).  

 

Calpain can be activated in adult skeletal muscle fiber by increased Ca2+ influx through the TRPC 

ion channel family. In particular, it has been shown that TRPC1 channels produce transient 

increases in Ca2+ influx leading to calpains activation in myoblasts (206). Calpain critically 

regulates cell migration in cervical cancer and it has been shown that the silencing of the Orai1 

calcium influx activator STIM1 inhibits EGF-induced calpain activation in this cancer cell type 

(207). 

 

Overall, calpain appears to be involved in trastuzumab resistance and its activity in cancer is 

affected by different Ca2+ transporters. It would be interesting to evaluate if the involvement of 

calpain in trastuzumab resistance is related to alteration of specific Ca2+ transporters. 
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1.6 Research hypothesis and aims 
 

1.6.1 Hypothesis 1 

Silencing of specific calcium channels, channel regulators and pumps can increase the effects of 

trastuzumab in HER2-positive trastuzumab sensitive SKBR3 breast cancer cells.  

 

1.6.1.1 Aims  

a. To assess mRNA levels of specific calcium channels, channel regulators and pumps in 

SKBR3 cells. 

b. To characterize Ca2+ signaling in SKBR3 cells. 

c. To silence specific calcium channels, channel regulators and pumps in SKBR3 cells. 

d. To assess the proliferation of SKBR3 cells treated with trastuzumab after silencing of 

specific calcium channels, channel regulators and pumps. 

 

1.6.2 Hypothesis 2 

The acquisition of trastuzumab resistance is associated with alterations in the expression of specific 

calcium channels, channel regulators and pumps. 

 

1.6.2.1 Aims 

a. To develop trastuzumab resistant cell lines using SKBR3 breast cancer cells. 

b. To compare calcium signaling in SKBR3 trastuzumab sensitive and SKBR3 resistant cells. 

c. To compare levels of specific calcium channels, channel regulators and pumps in SKBR3 

trastuzumab sensitive and SKBR3 resistant breast cancer cells. 

 

1.6.3 Hypothesis 3 

Alterations of specific calcium channels, channel regulators and pumps are a characterizing feature 

of the development of trastuzumab resistance in SKBR3 breast cancer cells and their inhibition 

reverses resistance to trastuzumab. 

 

1.6.3.1 Aims 
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a. To assess the mRNA levels of specific calcium channels, channel regulators and pumps, 

identified as of interest in Aim 1.d and Aim 2.c, in normal breast cells, basal-like and 

luminal breast cancer cell lines. 

b. To assess the ability of siRNA-mediated silencing of specific calcium channels, channel 

regulators and pumps identified as of interest in Aim 1.d and Aim 2.c to reverse trastuzumab 

resistance in trastuzumab resistant SKBR3 cells. 

c. To assess the ability of pharmacological inhibitors of specific calcium channels, channel 

regulators and pumps identified as of interest in Aim 1.d and Aim 2.c to reverse trastuzumab 

resistance in trastuzumab resistant SKBR3 cells. 

 

1.6.1 Hypothesis 4 

Alteration of specific calcium related proteins is a characteristic of trastuzumab resistance in HER2-

positive breast cancer cell lines and in HER2-positive clinical breast cancers.  

 

1.6.1.1 Aims 

a. To assess changes in mRNA levels of calcium related proteins in SKBR3 sensitive and 

resistant cell lines using cDNA microarray data. 

b. To assess changes in protein levels of calcium related proteins in SKBR3 sensitive and 

resistant cell line using SILAC data. 

c. To assess changes in mRNA levels of calcium related proteins in clinical breast cancers 

resistant to trastuzumab using cDNA microarray data. 
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2 Characterization of Ca2+ channels, pumps and channel 

modulator profiles of the HER2-positive SKBR3 cell line  

 

2.1 Introduction 
HER2-positive breast cancer, as discussed in section 1.2.1, represent 20-25% of all breast cancers 

(128). These breast cancers are characterized by an overexpression of HER2 receptors. The HER2 

molecular subtype shows a different gene expression profile compared to other breast cancer 

molecular subtypes (118). Numerous HER2-positive breast cancer cell lines have been established 

(208) (Table 2.1) including luminal, estrogen and progesterone receptor negative cell lines such as 

SKBR3 and AU565, and hormone receptor positive cell lines such as the BT474, MDA-MB-361, 

UACC732, UACC812 and ZR-75-30 cell lines (Table 2.1). There are also some HER2-positive 

breast cancer cell lines that show basal characteristics, such as HCC1419, HCC1569, HCC1954, 

HCC202, JIMT-1, SUM190 and SUM225 (156). These HER2-positive basal-like breast cancer cell 

lines appear to be more likely to be resistant to trastuzumab (208). However, this trastuzumab 

resistance can be lost in vivo. For example, the basal JIMT-1 cell line, which was established from a 

patient who did not respond to trastuzumab at the commencement of therapy (149), shows 

insensitivity to trastuzumab in vitro, but not in vivo, using a xenograft model (209) (Table 2.1). 

 

The SKBR3 cell line is one of the most commonly used HER2-positive breast cancer cell lines. It 

was established from a white Caucasian 43 years old woman at the Memorial Sloan–Kettering 

Cancer Center in 1970. The cell line was derived from a pleural effusion derived from an 

adenocarcinoma (210). 

 

As discussed in section 1.1.1.1 of this thesis, Ca2+ signaling is an important regulator of the cell 

cycle (9, 10), and a remodeling of Ca2+ signaling and the expression of specific Ca2+ channels and 

pumps has been reported in a variety of cancer cell lines, including those of the breast. However, 

very few studies have assessed the expression and role of Ca2+ pumps, channels and modulators in 

HER2-positive breast cancer cell lines or their role in the sensitivity of such cells to trastuzumab. In 

this chapter, I evaluated the mRNA level of Ca2+ channels, pumps and channel modulators in 

SKBR3 cells. I also examined their potential roles in the proliferation of SKBR3 cells in the 

presence and absence of trastuzumab. 
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Table 2.1 List of available HER2-positive breast cancer cell lines 

 

Characteristics of the HER2-positive breast cancer cell lines available with their responsiveness to 

trastuzumab (+ = expressed, - = not expressed, S = sensitive, R = resistant). 
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2.2 Chapter Hypothesis 
Silencing of specific calcium channels, channel regulators and pumps increase the effects of 

trastuzumab in HER2-positive trastuzumab sensitive breast cancer cells (SKBR3).  

 

2.2.1 Aims  

a. To assess mRNA levels of specific calcium channels, channel regulators and pumps in 

SKBR3 cells. 

b. To characterize Ca2+ signaling in SKBR3 cells. 

c. To silence specific calcium channels, channel regulators and pumps in SKBR3 cells. 

d. To assess the proliferation of SKBR3 cells treated with trastuzumab after silencing of 

specific calcium channels, channel regulators and pumps. 
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2.3 Methods 
 

2.3.1 Materials and Cell Culture 

All materials and solutions used in this thesis are cataloged in the Appendix 1 and 4. Trastuzumab 

was purchased from Roche Products, aliquoted and dissolved in sterile water to obtain 10 mg/mL 

stock solution. The solution was kept at 4°C and used within 1 month. 

 

The HER2-positive human breast cancer cell line SKBR3, a gift from a collaborator at the Garven 

Institute, Sydney, was cultured in McCoy’s A5 media (Invitrogen) supplemented with 10% fetal 

bovine serum (FBS) and 5% Penicillin-Streptomycin mixture (Invitrogen) as recommended by 

American Type Culture Collection (ATCC), and maintained at 37°C humidified atmosphere 

containing 95% O2 and 5% of CO2, and passaged twice a week. Cells were passaged as 

recommended by ATCC (210), media was removed and the cell monolayer was washed with 5 mL 

of phosphate buffer saline (PBS) and ethylenediaminetetraacetic acid (EDTA) buffer. Trypsin (1.5 

mL) was then added to detach the cell monolayer from the flask and incubated at 37°C for 3-5 min. 

In order to stop the action of trypsin, 5 mL of fresh culture media was added to the flask, this 

mixture of media and cells was then transferred to a 10 mL tube. The cell suspension was 

centrifuged for 2 min at 400 g at room temperature. The cell pellet was re-suspended in 10 mL of 

fresh media and 5 mL of this cell suspension was then added to a new T75 flask with 5 mL of fresh 

culture media. 

 

SKBR3 cells were periodically tested for mycoplasma using MycoAlert™ Mycoplasma Detection 

Kit (Lonza) and they were genotyped to authenticate the cell line using the STR Promega 

StemElite™ ID Profiling Kit. For the STR protocol, cells were collected and centrifuged in cold 

sterile PBS, cells were then diluted to 1 X 106 cells/mL with cold PBS. Cells (20 µL) were placed 

onto a FTA card, which was dried for 30-60 min before overlaying the spot on the card with 20 µL 

of methanol to fix the sample. The card was allowed to dry for 30 min and analyzed by the 

Queensland Institute of Medical Research (QIMR) as described by Reid and colleague (220).  

 

2.3.2 Quantitation of RNA Expression 

The expression of Ca2+ transporters was examined using quantitative RT-PCR.  The amplification 

was measured using a StepOnePlus quantitative RT-PCR instrument (Applied Biosystem). 
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Quantitative RT-PCR was used to validate siRNA-mediated silencing and also to evaluate the 

relative mRNA level of specific targets.  

 

2.3.2.1 RNA isolation and purification 

RNA was isolated from SKBR3 cells grown in culture using the RNeasy™ Plus Mini kit (Qiagen), 

as per the manufacture’s protocol. Briefly, RLT Plus buffer with 1% β-mercaptoethanol (Sigma 

Aldrich) (350 µL) was added to the wells of a 96-well plate. Cells were detached from the bottom 

of the well by scratching the monolayer with a tip, then the cell lysate was vortexed for 60 s and 

stored at -80°C overnight. Each sample was then added to a genomic DNA eliminator spin column 

and centrifuged for 30 s at 8000g, then the column was discarded and 350 µL of 70% ethanol was 

mixed with the flow-through. The solution was added to an RNeasy spin column and centrifuged at 

8000g for 15 s. The column was first washed with 700 µL RW1 buffer and centrifuged at 8000g for 

15 s and the flow-through discarded. Then the spin column was washed twice with 500 µL of RPE 

buffer and centrifuged each time at 8000g for 15 s first and then for 2 min; flow-through was 

discarded each time. The RNeasy spin column was then placed into a fresh 2 mL tube and 

centrifuged at 8000g for 1 min. Finally, the column was placed into a clean 1.5mL tube and 30 µL 

of RNase/DNase-free water was added to the membrane, incubated for 3 min then centrifuged at 

8000g for 1 min. The column was discarded and flow-through containing RNA was collected. RNA 

was determined by measuring the absorbance at 260 nm using a UV spectrophotomer (Nano Drop 

2000, Thermo Scientific) 

 

2.3.2.2 Reverse transcription and Real Time PCR 

A reverse transcription of RNA to obtain cDNA was performed using the Omniscript RT kit 

(Qiagen). As per manufacture protocol a reaction mix was prepared, which contained 2 µL/sample 

of RT Buffer (10X), 2 µL/sample deoxynucleotide triphosphates (dNTPs), 2 µL/sample random 

primers and 1 µL/sample of RNase inhibitor (Promega, Australia) and Omniscript Reverse 

Transcriptase enzyme. RNase inhibitor was previously diluted 1:4 with 1X RT buffer and the 

random primers were diluted 1:2.52 with RNase/DNase-free water. Samples (12 µL) were added to 

produce a total volume of 20 µL reaction mix. The initial sample concentration was adjusted in 

order to have 4.8 ng/µL of RNA in the final reaction mix. The cDNA produced was then used to 

perform the quantitative RT-PCR assay. The cDNA was diluted with RNase/DNase-free water 1:100 

for 18s RNA quantification (Applied Biosystems) a ribosomal RNA used as control housekeeping 

gene (221, 222).  
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Five µL of cDNA was added to a master mix containing 10 µL /sample of TaqMan Universal 

Master Mix (4324018, Applied Biosystems), 1 µL /sample of the target specific primer-probe assay 

(Applied Biosystems) and 4 µL/sample of RNase/DNase-free water. The assays contained gene-

specific primers and a dye-labeled TaqMan minor groove binder (MGB) probe (223). The primers 

(Applied Biosystem) used are reported in appendix 6. 

 

The thermal cycling conditions comprised of a 95 °C AmpliTaq Gold® enzyme activation, and 40 

cycles of 95 °C for 15 s for denaturation and 60 °C for 1 s for the anneal/extension step. 

RNA expression was quantified using the comparative threshold cycle (CT) method by reference 

with the endogenous control 18s rRNA as previously described (222, 224). The delta CT value 

(ΔCT) was calculated as the difference between the CT value of the target and the 18s rRNA as 

shown in the equation below: 

 

ΔCT = (Target gene CT) – (18s rRNA CT) 

 

The average of the ΔCT value for the RNA sample used as control within a specific experiment was 

used to calculate the delta delta CT (ΔΔCT) as shown in the equation below:  

 

ΔΔCT = target ΔCT – average control ΔCT 

 

Finally, the fold change of the target gene expression relative to the RNA sample used as a control 

was given by the formula 2 –ΔΔCT (225). 

 

2.3.3 siRNA-mediated silencing 

Small interfering RNA (siRNA) technology was used to silence specific calcium channels and 

pumps. siRNA is a class of double-stranded molecules (dsRNA), involved in the RNA interference 

(RNAi) pathway, where they interfere with the expression of specific genes (226). The siRNA used 

in these studies are commercially available: siGENOME and ON-TARGETplus (SMARTpool, 

Dharmacon). The SMARTpool siRNA is a mixture of 4 siRNA provided as a single reagent and it 

provides advantages in both potency and specificity. In contrast to siGENOME siRNA, ON-

TARGETplus siRNA has an antisense strand seed region that is modified to destabilize off-target 

activity and enhance target specificity. These siRNA can be easily transfected into mammalian cells 

in vitro for highly specific silencing of target genes (227).  
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The RNAi pathway is initiated by the enzyme Dicer, which cleaves long dsRNA into short 

fragments, that are then unwound into two pieces of single-stranded RNA (ssRNA): the passenger 

strand and the guide strand. The passenger strand is then degraded. The siRNA then specifically 

pairs with the guide strand, in order to degrade any nascent pre-mRNA transcript (226). In these 

studies, the siRNA was introduced into the cytoplasm of cells through a lipid based transfection 

reagent DharmaFECT (Dharmacon). 

 

In order to identify siRNAs capable of inducing a change in proliferation, an optimized 8 day 

protocol was developed to use with the Click-iT® EdU assay (Invitrogen, described in section 2.3.4) 

in SKBR3 cells. The length of the protocol was chosen in order to allow comparison with drug 

treatments (e.g. trastuzumab). Seeding density was optimized in order to achieve 80% confluence at 

the end of the protocol. The optimal seeding density was 2 X 104 cells/well.  

 

Initial experiments were conducted to optimize siRNA transfection using three different 

transfection reagents from Dharmacon (DharmaFECT 1, 2 and 4). Each reagent was tested at 2 

different volumes 0.1 µL/well and 0.05 µL/well in the absence of siRNA treatment to examine the 

effect on cell viability. Moreover, 24h after the addition of the transfection reagent, the media was 

changed to further lower the possible toxicity caused by the transfection reagent as suggested by the 

manufacturer. Using 0.1 µL/well cells showed cell toxicity visible under the microscope 48-72 h 

after the addition of the transfection reagent (Fig. 2.1a). 

 

An MTS proliferation assay (described in section 2.3.5) performed at the end of the 8 days protocol, 

demonstrated that lower volumes of the DharmaFECT transfection agent was associated with less 

effects on SKBR3 cell viability. DharmaFECT 2 and 4 resulted in less cell toxicity compared to 

DharmaFECT 1 even at the higher volume (Fig. 2.1a). 

 

In order to validate which transfection reagent was best suited to the 8 day protocol in SKBR3 cells, 

a quantitative RT-PCR assay was performed on samples obtained from the isolation of RNA from 

SKBR3, 7 days after PMCA1 siRNA treatment. PMCA1 siRNA was selected as PMCA1 is 

expressed in a wide variety of breast cancer cell lines (228).  

 

PMCA1 siRNA stock solution (20 µM) was diluted 1:10 to a 2 µM solution using 1x siRNA buffer 

(Thermo Scientific). The siRNA buffer was previously diluted 1:5 with RNAse-free water. In two 
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microfuge tubes, 5 µL/well of 2 µM PMCA1 siRNA solution was added to 5 µL/well of media with 

no added FBS. In two separate tubes 0.05 µL/well of DharmaFECT 2 or 4 were added to a 9.95 

µL/well of media with no added FBS. The tubes containing PMCA1 siRNA and the tubes 

containing the transfection reagent were incubated for 5 min at room temperature. A 10 µL/well 

volume of the tubes containing DharmaFECT 2 or 4 was then added to the tubes containing 

PMCA1 siRNA, each tube was then incubated for 20 min at room temperature. Finally, 80 µL/well 

of culture media with 10% FBS was added to the mixture and was immediately added to each well. 

 

From the results obtained, DharmaFECT 4 had superior silencing efficiency compared to 

DharmaFECT 2 at 0.05 µL/well (Fig. 2.2b). Thus, DharmaFECT 4 at 0.05 µL/well was selected as 

the optimal transfection reagent for these studies (Fig. 2.1b).  
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Figure 2.1 siRNA optimization for the SKBR3 cell line 

 

A. An MTS assay showed that a lower volume of DharmaFECT was associated with less cellular 

toxicity. The results were normalized to absorbance values from untreated cells. DharmaFECT 2 

and 4 were associated with less toxicity at the high volume (n=3, ± S.D.). B. Quantitative RT-PCR 

for PMCA1 mRNA levels showed that after 7 days, DharmaFECT 4 was associated with better 

silencing of PMCA1 (n=3, ± S.D.). 
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The siRNA screening using this optimized protocol (Fig. 2.2) included 19 Ca2+ pumps, channels 

and channel modulators. These targets were selected due to their representation of diverse classes of 

Ca2+ pumps, channels and modulators and their availability in the Calcium Signaling in Cancer 

Research Laboratory at the time of these studies. A Non-Targeting ON-TARGETplus siRNA 

(siNT) was used as a control in SKBR3 cells to evaluate possible off-target effects. The ON-

TARGETplus siRNA-mediated silencing was validated by measuring the level of mRNA, using 

quantitative RT-PCR. Results were excluded if the silencing of a target showed less than 50% of 

silencing efficacy. 
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Figure 2.2 Schematic overview of optimized protocol 

 

The optimized protocol involved 8 days of culture. No evidence of toxicity due to the transfection 

reagent was observed under these conditions. This protocol enabled the testing of cells treated with 

trastuzumab (48 h). 
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2.3.4 Cell Proliferation assay 

The Click-iT® EdU Alexa Fluor® 555 Imaging Kit (Invitrogen) was used to assess cell proliferation. 

EdU (5-ethynyl-2’-deoxyuridine) is a nucleoside analog to thymidine and is incorporated into DNA 

during active DNA synthesis. Detection is based on a “click” reaction, a copper-catalyzed covalent 

reaction between EdU and the Alexa Fluor® dye (229). 

 

For this assay, 2 X 104 cells/well were seeded into a 96-well plate and cultured as per section 2.3.1. 

After 7 days the Click-iT® EdU assay was performed. Briefly, 50 µL of media was removed from 

each well and replaced with 50 µL of growth media containing 20 µM EdU solution. After 1 h 

incubation at 37°C, the media was removed and 50 µL of 3.7% formaldehyde in PBS was added to 

each well, and incubated at room temperature for 15 min (for cell fixation). The fixative was then 

removed and each well washed twice with 50 µL of 3 % bovine serum albumin (BSA) in PBS. 

After this wash step, the cells were permeabilised with 50 µL of 0.5% Triton® X-100 in PBS for 20 

min at room temperature. 

 

A reaction mix able to detect EdU was then prepared as outlined in table 2.2. After fixation the 

wells were washed three times with 50 µL of 3 % BSA in PBS, then 50 µL of the reaction mix was 

added to each well and incubated at room temperature for 30 min protected from light. 
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Table 2.2 Click-iT® EdU reaction mix composition 

 

 Reaction components Volume per well 

1X Click-iT® reaction buffer 43 µL 

CuSO4 (Component E) 2 µL 

Alexa Fluor® azide 0.12 µL 

Reaction buffer additive 5 µL 

Total volume 50 µL 
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Cells were then washed once with 50 µL of 3% BSA in PBS and once with PBS. Cells were then 

incubated for 1.5 h with 50 µL of 400 nM 4',6-diamidino-2-phenylindole (DAPI) protected from 

light. DAPI binds to DNA (230) and stains each cell nuclei. After incubation with DAPI, wells were 

finally washed with 50 µL PBS twice and then maintained in PBS during the acquisition of images. 

 

Four images per well were acquired and analyzed using a multi-wavelength analysis module (Alexa 

Fluor® azide was detected using a Cy3-4040B (Semrock) filter, DAPI was detected using a DAPI-

1160A (Semrock) filter) with an ImageXpress Micro (Molecular Devices) Imaging system in order 

to determine the percentage of EdU positive cells. The data were exported using a multi-wavelength 

setting and analyzed in Microsoft Excel to determine percentage of Edu positive cells. 

 

This method was used to detect changes in the percentage of cells in the S phase of the cell cycle 

with siRNA treatment and/or by different concentrations of trastuzumab. 

 

2.3.5 Approximation of viable cell number using [3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay 

Approximate viable cell number was assessed using a CellTiter 96® AQueous Non-Radioactive 

Cell Proliferation Assay (Promega), which is a colorimetric method for determining the number of 

viable cells in proliferation or cytotoxicity assay (231). It utilizes a tetrazolium compound [3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, commonly 

referred to as MTS (231). MTS is bioreduced by living cells into a formazan product that is soluble 

in tissue culture medium (231).  

 

Cells were seeded at 2 X 104 cells/well in a 96-well plate and after 24 h trastuzumab was added at 

different concentrations (0.1 µg/mL, 0.3 µg/mL, 1 µg/mL, 3 µg/mL, 10 µg/mL, 30 µg/mL, 100 

µg/mL), media was replaced after 72 h with fresh trastuzumab-containing media. After a further 72 

h, 20 µL of MTS was added to the plate and incubated at 37°C in a humidified atmosphere 

containing 95% O2 and 5% of CO2. After 2 h the absorbance of the formazan at 490 nm was 

measured using a microplate reader (iMark, microplate reader, Bio-Rad). A higher absorbance 

reading is indicative of increased viable cell number (231). The MTS assays described in this 

chapter were used to evaluate the anti-proliferative activity of trastuzumab in SKBR3 cells and to 

optimize the conditions for siRNA transfection. 
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2.3.6 Ca2+ measurement assay 

Calcium measurement assays were performed using a fluorometric imaging plate reader 

(FLIPRTETRA, Molecular Biosciences), which is a high-throughput platform to measure intracellular 

Ca2+. This assay used a visible wavelength Ca2+ indicator dye (232). The indicator used in this 

project was Fluo-4 AM (Invitrogen), a molecule that exhibits an increase in fluorescence upon 

binding Ca2+ (233). 

 

The Fluorometric Imaging Plate Reader (FLIPR) has been developed to perform quantitative optical 

detection of receptor/ion channel–mediated changes in cellular membrane potential or intracellular 

calcium using fluorescent indicator dyes (234). In this chapter, cytoplasmic Ca2+ levels were 

measured in SKBR3 cells to evaluate the nature of ATP or EGF induced Ca2+ transients and store 

operated calcium entry (SOCE). 

 

Cells were seeded at 2 x 104 cells/well in a 96-well black-walled imaging plate (Corning). Media 

was changed every two days and after 10 days cells were loaded with Fluo-4 AM (4 µM) for 30 min 

at 37°C, then washed 3 times in physiological salt solution (PSS) (Appendix 1). Cells were then 

incubated for 15 min at room temperature to allow hydrolysis of the acetoxymethyl (AM) ester. 

Fluorescence was measured at an excitation wavelength of 470–495 nm and 515–575 nm emission. 

As [Ca2+]i levels increase, Ca2+ ions complex with Fluo-4 AM resulting in an increased 

fluorescence emission (235). Data analysis was performed using ScreenWorks Software (v2.0.0.27, 

Molecular Devices). Relative increases in [Ca2+]i were compared using response over baseline 

(fluorescence divided by starting fluorescence) (221, 236, 237). For ATP and EGF experiments, the 

relative maximum [Ca2+]i was used to generate concentration response curves.  

 

SOCE was assessed using external BAPTA (500 µM) to chelate extracellular Ca2+ and CPA (10 

µM) to empty intracellular Ca2+ stores through SERCA inhibition. Then 2 mM CaCl2 was added to 

allow Ca2+ influx through channels present on the plasma membrane (238, 239). Nominal Ca2+ 

solution (Appendix 1) was used to prepare the solution of BAPTA and CPA.  

 

The increase in [Ca2+]i caused by CPA produced the first peak in fluorescence. A second increase in 

[Ca2+]i was produced by the re-addition of Ca2+. The ratio between the influx and the store release 

was calculated as peak 2 maximum/peak 1 maximum as previously described as a measure of 

SOCE (238). 
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2.3.7 Immunoblotting 

Immunoblotting uses antibodies to identify and quantify specific proteins. It involves separating the 

denatured proteins by their molecular weight by using a sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) technique. In order for the antibody to detect the protein of interest, 

the separated proteins from the gel are transferred to a polyvinylidene difluoride (PVDF) membrane 

using an electric current (240). 

The protocol used for the detection of proteins in this thesis was as follows.  

 

2.3.7.1 Protein sample preparation 

Cells were seeded at 2 X 104 cells/well in a 96-well plate and cultured for 24 h before siRNA 

treatment. Protein was isolated 8 days after siRNA treatment. Cells were washed in cold PBS. 

Whole cell lysates were prepared by scraping wells with a pipette tip in the presence of 25 µL of 

lysis buffer containing protease and phosphatase cocktail inhibitor (Roche Applied Science). This 

protocol was performed on four consecutive wells and cell lysates were pooled from these four 

wells. Cell lysates were then vortexed for 60 s then incubated on ice for 20 min. The samples were 

then centrifuged at 14,000 rpm for 20 min at 4 °C to remove cellular debris. The supernatant was 

transferred into a new microfuge tube and stored at -80 °C.  

 

2.3.7.2 Bradford Assay 

Protein concentration was determined by a Bradford assay using a Bio-Rad protein assay kit. BSA 

in deionized water was used to generate a standard curve at concentrations of 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8 mg/mL. BSA solutions (10 µL/well) or protein samples were added to an individual 

well of a 96-well plate. As per the manufacturer’s instructions, the Bio-Rad Coomassie brilliant 

blue G-250 based reagent (500-0006, Bio-Rad) was prepared by adding 1 part of reagent to 4 parts 

of water. The diluted reagent (200 µL) was added to each well of the 96-well plate, which contained 

either standards or sample. Absorbance at 595 nm for each well was determined using a microplate 

reader (iMark, microplate reader, Bio-Rad). Linear regression analysis was used to generate the 

standard curve (Microplate Manager 6 software, v6.1, Bio-Rad) and calculate the protein 

concentration of samples.   

 

2.3.7.3 Electrophoresis and Immunoblotting 

Approximately 20 µg of total protein was used in a 25 µL final volume for electrophoresis. The 

sample for electrophoresis contained 6.25 µL of NuPAGE LDS Sample Buffer (4x) (Invitrogen), 
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2.5 µL of NuPAGE Reducing Agent (10x) (Invitrogen), the volume corresponding to 20 µg of 

protein sample and sufficient deionized water to achieve a final volume of 25 µL. The sample was 

then heated for 10 min at 70°C for protein denaturation. Samples (25 µL) or PageRuler Plus 

Prestained Protein Ladder (5 µL; ~10-250 kDa) (Thermo Scientific) were loaded in separate lanes 

on a NuPAGE® Novex® 4-12% Bis-Tris Protein Gel (Invitrogen). The gels were then positioned in 

an Xcell SureLock® Mini-Cell (Invitrogen) electrophoresis system in order to create an internal and 

external chamber. NuPAGE MOPS SDS running buffer (Invitrogen) was added to both chambers, 

and the buffer for the internal chamber also contained 500 µL of NuPAGE antioxidant solution 

(Invitrogen). Gels were run at 50 V for 10 min to stack proteins then the voltage was increased to 

190 V for approximately 60 min for protein separation. 

 

Proteins were then transferred to a PVDF membrane using an iBLOT Dry Blotting device 

(Invitrogen). After the transfer, membranes were blocked for 1 h in PBS-T, a PBS solution 

containing 0.1% of Tween20 (Sigma Aldrich). Depending on the antibody used, either 5% skim 

milk powder or 5% BSA was added (see below). The membranes were then incubated for 

approximately 1 h with the primary antibody (see conditions below) at room temperature. After 

primary antibody the blot was washed 3 times (15 min each wash) with PBS-T buffer, membranes 

were then incubated for 1 h with the secondary antibody (see conditions below).  

 

In this chapter, the primary antibodies used were: IGF1R-β rabbit polyclonal C-20 (SantaCruz 

Technologies) and IGF1R monoclonal XP® rabbit (IGF-I Receptor β, D23H3) (Cell Signaling) 

(Table 2.3). Each antibody was diluted 1:1000 in PBS-T buffer containing BSA (5%) (Table 2.3). 

Horseradish peroxidase (HRP) conjugated goat anti-rabbit IgG (H&L) (Bio-Rad) was the secondary 

antibody (1:10,000 dilution) (Table 2.3). As a loading control, β-actin levels were assessed using a 

monoclonal anti-mouse β-actin antibody (Sigma–Aldrich) in PBS-T (5% skim milk powder) at a 

1:10,000 dilution (Table 2.3). Horseradish peroxidase (HRP) conjugated goat anti-mouse IgG (Bio-

Rad) at 1:10,000 was the secondary antibody (Table 2.3). 

 

 

 

 

 

 

 



Chapter	
  2	
  

	
   54	
  

Table 2.3 Antibodies used in this chapter for immunoblotting 
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2.3.7.4 Image acquisition and analysis  

 Membranes were incubated with SuperSignal West Dura Extended Duration Substrate (Thermo 

Scientific) for 3 min, and then images were acquired using a Bio-Rad Versadoc MP400 Imaging 

System. Colorimetric imaging was used to acquire images of the ladder, and involved exposure for 

5 s under white light. Images of protein bound secondary antibodies were acquired using 

chemiluminescent imaging, the length of exposure varied between 1 to 10 min depending on the 

target.  

 

2.3.7.5 Densitometry. 

Densitometry was used to compare target protein levels. This was measured using Quantity-One® 

1-D imaging software (Bio-Rad). Using the volume tool, each band had background intensity 

subtracted and this value was compared with the corresponding β-actin loading control band. 
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2.4 Results 
 

2.4.1 Ca2+ pumps, channel and modulator mRNA levels in SKBR3 cells 

 

Quantitative RT-PCR assays were performed for 17 Ca2+ pumps, channels and modulators to 

evaluate mRNA levels in SKBR3 cells normalized to an endogenous control, 18s rRNA (Fig. 2.3). 

The targets chosen included different type of Ca2+ pumps such as PMCAs located on the plasma 

membrane or SPCAs located on the Golgi membrane. Different types of Ca2+ channels were also 

assessed including Orai channels that together with the STIM proteins produce SOCE, and several 

TRP channels located on the plasma membrane.  
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SKBR3 cells showed no detectable mRNA expression for PMCA2 (Fig. 2.3), in contrast with some 

other luminal breast cancer cell lines such as ZR-75-1 (98). PMCA1 and PMCA4 mRNA were 

abundant in SKBR3 cells (Fig. 2.3) consistent with their reported ubiquitous expression in a variety 

of cell types, including breast cancer cell lines (228) and their reported “housekeeping” roles (241). 

 

Ca2+ channels present on the plasma membrane such as the Orai channels showed large variations 

in mRNA levels. Orai1 mRNA was present at higher levels in SKBR3 cells than Orai2 and Orai3 

mRNA (Fig. 2.3). The high levels of Orai1 compared to other Orai isoforms are consistent with 

previous studies by McAndrew et al (72). However, in contrast to McAndrew et al, my studies 

found similar levels of Orai2 and Orai3, this may be due to different culture conditions or the 

confluence of the SKBR3 used in this study. 

 

The two Ca2+ sensors STIM1 and STIM2 showed different mRNA levels with a higher mRNA level 

of STIM1 compared to STIM2. This is in accordance with McAndrew and colleagues (72), who 

described a higher STIM1/STIM2 ratio in SKBR3 cells. Moreover, the relative mRNA level 

between STIM1 and STIM2 appears to be higher in SKBR3 cells compared to other breast cancer 

cell lines (72). 

 

Assessment of mRNA expression levels of SPCA pumps, located on the Golgi complex, indicated 

that SPCA1 and SPCA2 had similar mRNA levels in SKBR3 cells (Fig. 2.3). The presence of 

SPCA2 mRNA in SKBR3 cells is in contrast to the basal-like MDA-MB-231 breast cancer cell line 

where very low to no SPCA2 is present, but was similar to the luminal like MCF-7 breast cancer 

cell line where high levels of SPCA2 have been reported. (107). 

 

TPC channels have not been extensively studied in breast cancer cells. However, it has been 

previously reported that TPC1 is expressed in SKBR3 breast cancer cells (242) and that TPC1 and 

TPC2 mRNA is present in MDA-MB-231 and MDA-MB-468 cells (243). Consistent with the work 

of Brailoiu et al., mRNA levels of TPC1 were higher than TPC2 in SKBR3 cells (242). 

 

TRP channel mRNA levels have not been extensively assessed in SKBR3 breast cancer cells. 

However, studies have reported that TRPM7 is expressed in MCF-7 cells (244), MDA-MB-231 

cells (245) and in MDA-MB-468 cells (221). A study has also shown that TRPV1, TRPV4 and 

TRPV6 are expressed in MCF-7 cells (244), and another has reported TRPV6 and TRPV4 in T47D 

cells (246, 247). TRPV4 mRNA levels are higher in MDA-MB-468 cells compared to MDA-MB-
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231 and HCC1569 cells (248). Low levels of TRPC1 mRNA have also been reported in MCF-7 and 

MDA-MD-231 cell lines, but not in T47D cells (249). The SKBR3 cells assessed in this study 

appear to have high levels of TRPM7 and TRPV6 mRNA compared to the other TRP channels 

assessed (Fig. 2.3), with lower levels of TRPV1, TRPV4 and TRPC1. 

 

2.4.2 Characterization of Ca2+ signaling in SKBR3 cells 

In order to better understand calcium signaling in SKBR3 cells, cytoplasmic Ca2+ levels were 

assessed using the Ca2+ indicator Fluo-4 AM and a fluorescent imaging plate reader, FLIPR. The 

response to ATP and EGF and also SOCE were assessed in SKBR3 cells to represent different 

potential regulators of [Ca2+]i. 

 

Purinergic receptors are activated by ATP, and have been reported to increase [Ca2+]i in a variety of 

breast cancer cell lines (250). Increases in [Ca2+]i were assessed after stimulation with different 

concentrations of ATP (Fig. 2.4). In the presence of the Ca2+ chelator BAPTA, to remove 

extracellular Ca2+, the ATP response was still present, indicative of Ca2+ store release. However, the 

EC50 for ATP in the presence of BAPTA was 4.7 µM, 9-fold higher than in the absence of BAPTA 

(Fig. 2.4b) suggesting that Ca2+ influx is also important in the ATP response in these cells. The 

EC50 values were similar to that reported in the basal like MDA-MB-468 breast cancer cell line 

(224), and the luminal MCF-7 breast cancer cell line (251), suggesting that there is no major 

difference in ATP-mediated [Ca2+]i responses in these different breast cancer cell lines.
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Figure 2.4 Assessment of [Ca2+]i in SKBR3 cells following stimulation with different 

concentrations of ATP 

 

A. Average of Ca2+ traces from three independent experiments showing the increase of [Ca2+]i due 

to different concentration of ATP. ATP traces are shown as compared to the vehicle. B. The graph 

represents the dose response curves for measurements of maximum [Ca2+]i assessed using 0.001 

µM, 0.01 µM 0.1 µM, 1 µM, 10 µM, 100 µM and 1 mM of ATP in the presence or absence of 

BAPTA (0.5 mM) and are shown ± S.D. (n=3). The EC50 value without BAPTA was 0.51 µM, 

while in its presence the EC50 value was 4.7 µM. Statistical analysis was performed using two-way 

ANOVA with Bonferroni post-tests (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001).  
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EGF, the EGFR endogenous ligand, increases intracellular Ca2+ in several cell lines (252). EGF (50 

ng/mL) is known to phosphorylate EGFR and activate downstream signaling such as Akt (253). 

However, EGF did not increase [Ca2+]i in SKBR3 cells (Fig. 2.5). 
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Figure 2.5 Assessment of [Ca2+]i in SKBR3 cells following stimulation with 50ng/mL EGF 

 

A. Example of a Ca2+ trace upon EGF treatment. Acetic acid (AA) was used as the vehicle. B. The 

graph represents the measurement of maximum [Ca2+]i assessed using 50 ng/mL of EGF (n=3, ± 

S.D.).  
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SOCE influx is caused by the emptying of internal stores, mostly the ER store; this causes STIM1 

Ca2+ sensors, present on the ER membrane, to dimerize and activate Orai channels present on the 

plasma membrane to induce Ca2+ influx to replenish the empty Ca2+ stores (62). To evaluate store 

operated Ca2+ entry, SKBR3 cells were pretreated with 500 µM BAPTA (to chelate all extracellular 

Ca2+), followed by the addition of 10 µM CPA that causes the release of calcium from the ER. 

Upon re-addition of extracellular Ca2+ (2 mM), a calcium influx was produced increasing the 

cytosolic Ca2+ concentration (Fig. 2.6).  
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Figure 2.6 Assessment of [Ca2+]i in SKBR3 cells following SOCE stimulation 

 

Average of Ca2+ traces from three different experiments showing the SOCE in SKBR3 cell line. In 

the presence of external BAPTA (500 µM), CPA (10 µM) was added to empty the calcium store 

(first peak), then Ca2+ (2 mM) was added to assess store-depletion mediated Ca2+ influx (second 

peak). 
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The transient increase in [Ca2+]i due to store depletion (first peak) was not affected by the removal 

of extracellular Ca2+. The addition of CPA clearly promoted SOCE as evidenced by the greater Ca2+ 

influx (peak 2) in the presence of CPA-mediated Ca2+ store depletion (Fig. 2.6). A small Ca2+ influx 

(Ca2+ leak) was observed in the absence of CPA, this Ca2+ leak was similar in magnitude to that 

reported in MCF-7 and MDA-MB-231 breast cancer cells (72), but less than that recently reported 

in MDA-MB-468 breast cancer cells (238).  

 

2.4.3 Effect of Ca2+ pumps, channels and channel modulators silencing on the 

proliferation of SKBR3 cells 

In order to evaluate the effect of silencing specific Ca2+ pumps, channels and channel modulators 

on the proliferation of SKBR3 cells siRNA was used. The screen included 19 Ca2+ related targets 

chosen from the siRNA library present in the Calcium Signaling in Cancer Research Laboratory at 

the time these experiments were performed. The siRNA treatment was optimized as described in the 

methods section of this chapter. 

 

From the siRNA screen, three targets, STIM1, TPC2 and TRPV1 that potentially decrease SKBR3 

cell proliferation were selected as they reduced the percentage of cells in S phase (Fig. 2.7). Orai2 

and STIM2 siRNA appeared to also inhibit proliferation although to a lesser extent using this assay 

(Fig. 2.7). 
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STIM1 is an important element of store-operated Ca2+ entry as it is the Ca2+ sensor present on the 

ER. It detects the depletion of Ca2+ from the store and, via self-association activates Orai channels 

present on the plasma membrane and produces Ca2+ influx to replenish internal Ca2+ stores (62). 

 

STIM1 has been linked to cancer through its role in cell proliferation and migration (207, 254). 

Recently it has been shown that STIM1 is involved in cell proliferation in human epidermoid 

carcinoma A431 cells, where the silencing of STIM1 reduced cell proliferation in vitro and in vivo 

(xenografts) (254). 

 

The TPC2 channel, as discussion in section 1.1.2.1, is a recently discovered voltage-gated ion 

channel made up of 12 putative transmembrane segments (82). It is activated by NAADP and is 

mainly located on the lysosomal membranes (82). It is believed to function as a dual sensor for 

luminal pH and Ca2+ (83). Few studies have been carried out on the role of TPC2 in cancer, 

however, it appears that TPC2 may be involved in autophagy in astrocytes (255). TPC2 appears to 

be often overexpressed in primary human oral cancers even without gene amplification, and has 

been proposed as a potential contributor to the progression of some cancer cells (256). 

 

The transient receptor potential vanilloid 1 (TRPV1) channel is involved in nociception and 

coordination of painful stimuli (257). TRPV1 channels have been reported to increase expression in 

some prostate, colon, pancreatic and bladder cancers (258-261). TRPV1 overexpression can 

increase the migration and invasion in human hepatoblastoma cells (262).  

 

2.4.4 Effect of silenced Ca2+ pumps, channels and channel modulators on the 

proliferation of SKBR3 cell treated with trastuzumab 

The SKBR3 cell line was also used to evaluate trastuzumab activity and the role of Ca2+ pumps, 

channels and channel modulators in potentially modulating trastuzumab activity. 

 

Following the protocol described in section 2.3.4, different concentrations of trastuzumab (0.1 

µg/mL, 0.3 µg/mL, 1 µg/mL, 3 µg/mL, 10 µg/mL, 30 µg/mL, 100 µg/mL) were added 4 days after 

seeding, after 72 h of trastuzumab treatment, the percentage of cells in S phase was assessed using 

the Click-iT® Edu assay.  
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Trastuzumab induces cell-cycle arrest, in particular G1 to S phase (263) and thus has an anti-

proliferative effect in HER2-positive cells (264). The Click-iT® Edu assay clearly showed S phase 

decrease due to the anti-proliferative activity of trastuzumab (Fig. 2.8). 
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Figure 2.8 Dose response curve for trastuzumab inhibitory effect on the proliferation of 

SKBR3 cells 

 

In SKBR3 cells 72 h treatment with trastuzumab produced concentration dependent effects on the 

% of cells in S Phase. The IC50 for trastuzumab effects was 0.32 µg/mL (n= 3, ± S.D.). 
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The assesment of proliferation produced a concentration response curve which showed that 

trastuzumab inhibits the proliferation of SKBR3 cells with an IC50 of 0.32 µg/mL (Fig. 2.8). 

 

After assessing the effect of trastuzumab in SKBR3 cells, the next step was to evaluate how 

silencing selected Ca2+ pumps, channels and channel modulators could affect the trastuzumab 

response. Each siRNA sample was tested using two different concentrations of trastuzumab, 30 

µg/mL (maximal dose) and 0.3 µg/mL (submaximal dose), and water as a control. Non-Targeting 

siRNA (siNT) siRNA was transfected into SKBR3 cells treated with the same concentrations of 

trastuzumab and water as a control. Cells treated with only trastuzumab 30 µg/mL or 0.3 µg/mL 

were also included as additional controls. Results for each target were normalized to the cells 

treated with the respective siRNA and vehicle in order to evaluate the effect of silencing on the 

activity of trastuzumab and discount targets which simply affected proliferation. Figure 2.9 shows 

the combined effect of the silencing of each target and the activity of trastuzumab on cell 

proliferation using the Click-iT® Edu assay in comparison with cells treated with siNT and 

trastuzumab.  

 

At a submaximal dose of 0.3 µg/mL trastuzumab SPCA1, STIM1 and TRPM7 siRNA decreased the 

proliferation of SKBR3 cells, while TPC1 and TPC2 siRNA appeared to increase it (Fig. 2.9a). 

From this screen, these 3 targets, SPCA1,	
  TRPM7	
  and	
  STIM1, were selected for further assessment 

based on their more pronounced effects on the trastuzumab response (Fig. 2.9a). At a maximal dose 

of 30 µg/mL trastuzumab it appeared that TPC1 and TPC2 may have increased the effect of 

trastuzumab on SKBR3 (Fig. 2.9b). 
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Figure 2.9 siRNA screen of 19 Ca2+ pumps, channels and channel modulators in SKBR3 cells 

treated with trastuzumab  

 

The graph shows the normalized trastuzumab response. A. Effect of silencing 19 Ca2+ pumps, 

channels and channel modulators in SKBR3 using trastuzumab at submaximal concentration (0.3 

µg/mL), (n=1, S.D. produced from three separate wells from the same experiment). B. Effect of 

silencing 19 Ca2+ transporters in SKBR3 using trastuzumab at maximal concentration (30 µg/mL), 

(produced from three separate wells from the same experiment ± S.D.).  
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For each of the selected targets confirmation assays using the Click-iT® Edu assay to measure S 

phase were performed using three to four independent experiments. TRPM7 silencing at 7 days 

after siRNA treatment was confirmed using quantitative RT-PCR (Fig. 2.10a). TRPM7 siRNA 

treatment increased the anti-proliferative effect of 0.3 µg/mL trastuzumab as assessed by a 

reduction in the number of cells in S phase (Fig. 2.10b).  
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Figure 2.10 Effect of TRPM7 silencing on trastuzumab activity 

 

A. Quantitative RT-PCR at 7 days after siRNA treatment confirmed TRPM7 silencing in SKBR3 

cells (n=3, ± S.D.). 18s rRNA was used as internal control. B. TRPM7 silencing significantly 

enhanced the reduction in the percentage of cells in S phase induced by trastuzumab at submaximal 

but not at maximal concentrations (n=4, ± S.D.). Statistical analysis was performed using two-way 

ANOVA with Bonferroni post-test (* p ≤ 0.05). 
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The silencing of STIM1 7 days after siRNA treatment was confirmed using quantitative RT-PCR 

(Fig. 2.11a). The silencing of STIM1 enhanced trastuzumab activity at both 0.3 µg/mL and 30 

µg/mL trastuzumab (Fig. 2.11b).  
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Figure 2.11 Effect of STIM1 silencing on trastuzumab activity 

 

A. Quantitative RT-PCR at 7 days after siRNA treatment confirmed STIM1 silencing in SKBR3 

cell (n=3, ± S.D.). 18s rRNA was used as internal control. B. STIM1 silencing significantly 

enhanced trastuzumab effects on the % of cells in S phase at both concentrations tested (n=4, ± 

S.D.). Statistical analysis was performed using two-way ANOVA with Bonferroni post-test (* p ≤ 

0.05). 
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The silencing of SPCA1 was confirmed at day 7 after siRNA treatment using quantitative RT-PCR 

(Fig. 2.12a). The silencing of SPCA1 appeared to enhance the anti-proliferative activity of 

trastuzumab at the submaximal concentration tested (Fig. 2.12b). Because SPCA1 has been shown 

to be a key regulator of IGFR (106) a protein linked to trastuzumab resistance (265), this potential 

mechanism was further assessed. 
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Figure 2.12 Effect of SPCA1 silencing on trastuzumab activity 

 

A. Quantitative RT-PCR at 7 days after siRNA treatment confirmed SPCA1 silencing in SKBR3 

cell (n=3, ± S.D.). 18s rRNA was used as internal control. B. SPCA1 silencing significantly 

enhanced trastuzumab anti-proliferative effect at the submaximal concentration but not the maximal 

concentration (n=4, ± S.D.). Statistical analysis was performed using two-way ANOVA with 

Bonferroni post-test *(* p ≤ 0.01). 
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2.4.4.1 Effect of SPCA1 silencing on the proliferation of SKBR3 cell line 

treated with trastuzumab 

SPCA1 has been shown to be involved in the processing of IGF1R from its pro-form to the mature 

form in MDA-MD-231 cells (106). In this study, the expression of IGF1R forms in SKBR3 cells 

were evaluated and compared to expression of IGF1R in MDA-MB-231 cells. It appeared that the 

SKBR3 cell line did not showed very little expression of either the pro-form or mature IGF1R-β 

form, whereas these were observed in MDA-MB-231 cells, where the SPCA1 silencing phenotype 

was reproduced (Fig. 2.13). In SKBR3 cells the antibody (IGF1R-β rabbit polyclonal sc-713 (C-20) 

from SantaCruz Technologies), detected a band of approximately 130 kDa, which may be the 

IGF1R-α subunit (Fig. 2.13). This 130 kDa band may be slightly lighter in the SPCA1 siRNA 

treated sample. Further studies are required to assess other IGF1R–dependent and independent 

mechanisms for the promotion of the trastuzumab response with SPCA1 silencing. 
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Figure 2.13 Effect of siRNA silencing on the protein expression of IGF1R in SKBR3 and 

MDA-MB-231 cells 

 

An immunoblot showing IGF1R protein 48 h after SPCA1 silencing using siRNA in SKBR3 and 

MDA-MD-231 cells. An upper band around 250 kDa shows the pro-form of IGF1R and a band 

around 100 kDa shows the mature form of IGF1Rβ in MDA-MB-231. 
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Since the previous antibody used was a polyclonal antibody, another antibody for IGF1R, a 

monoclonal antibody selective for IGF1R-β receptor (IGF1R monoclonal XP® rabbit #9750 (IGF-I 

Receptor β, D23H3) from Cell Signaling), was used on untreated cell lines. The expected pro-form 

and the mature form of the IGF1R-β receptor in both SKBR3 and MDA-MB-231 cells was 

observed (Fig. 2.14). Silencing IGF1R using siRNA confirmed that the two bands were IGF1R 

(Fig. 2.14b). However, the expression of IGF1R-β in SKBR3 cells appeared to be much smaller 

compared to MDA-MB-231 (Fig.	
   2.14a). Moreover, SPCA1 silencing clearly did not increase 

levels of the pro form in SKBR3 cells as it did in MDA-MB-231 cells (Fig. 2.14b). 
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Figure 2.14 Effect of siRNA silencing on the protein expression of IGF1R in SKBR3 and 

MDA-MB-231 cells 

 

A. Immunoblot showing IGF1R protein in SKBR3 and MDA-MD-231 using a monoclonal 

antibody for the IGF1R-β. B. Immunoblot showing IGF1R protein level in SKBR3 after silencing 

of IGF1R and SPCA1 in SKBR3. MDA-MB-231 cells were used as control. 
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2.5 Discussion 
In this chapter I have evaluated the expression and the effect of silencing of Ca2+ channel, pumps 

and channel modulators on the HER2-positive SKBR3 breast cancer cell line. 

 

 Assessment of mRNA levels in SKBR3 cells showed that the expression of several Ca2+ 

transporters and modulators in some cases differed from other breast cancer cell lines. For example, 

SKBR3 cells had similar levels of SPCA1 and SPCA2, which is in contrast to MDA-MB-231 cells, 

which are characterized by lower levels of SPCA2 compared to SPCA1 (107). Moreover, SKBR3 

cells do not express PMCA2, which is in contrast to another luminal cell line, ZR-75-1 cells (228). 

 

Assessment of Ca2+ signaling in SKBR3 cells, demonstrated responsiveness to the purinergic 

receptor activator ATP. In contrast, EGF did not increase [Ca2+]i in this cell line. This was despite 

reports that 50 ng/mL of EGF can activate the EGFR receptor and downstream signaling such as 

ERK and Akt in this cell line (253). It might be that the EGF concentration required to activate the 

ERK and Akt pathways is less than the concentration required to show a cytosolic Ca2+ increase in 

SKBR3 cells. Indeed, in other cancer cell lines, such as gliomas and hepatoma cells, the 

concentration of EGF used to measure Ca2+ mobilization was higher (200-300 ng/mL) (252, 266). 

SOCE was also present in SKBR3 cells, consistent with studies in other breast cancer cell lines such 

as MCF-7 and MDA-MB-231 cells (72, 238). 

 

A screen of a variety of siRNAs to calcium pumps, channels and channel modulators identified that 

STIM1, TPC2 and TRPV1 silencing potentially have anti-proliferative effects in SKBR3 cells. 

TPC2 and TRPV1 have not been extensively studied in breast cancer cells, and this study suggests 

that these proteins should be further studied in SKBR3 cells, since TRPV1 is up-regulated in some 

breast cancer cell lines (267) and TPC2 has not been extensively studied in the context of breast 

cancer. However, studying TPC channels may be challenging since it is currently debated if these 

are Ca2+ channels or Na2+ channels (268). 

 

STIM1 silencing decreased SKBR3 proliferation and also enhanced the effects of trastuzumab. As 

described in section 1.5.3, STIM1 is associated with altered cell migration mediated by calpain 

activity, and STIM1 knockdown inhibits EGF-induced calpain activation (207). Moreover, the 

STIM1/STIM2 mRNA ratio appears to be higher in SKBR3 cells compared to other breast cancer 

cell lines (72), suggesting that STIM1 may be particularly important in this HER2-positive cell line.   
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Recently, STIM1, as part of SOCE, has been shown to be involved in the progression towards 

advanced androgen-independent prostate cancer, which is characterized by resistance to apoptotic 

cell death (161). It appears that a cytoskeleton reorganization occurs during neuroendocrine 

differentiation, which is a feature of advanced androgen-independent prostate cancer. This may 

contribute to SOCE down-regulation and progression of some cancers (269). As trastuzumab 

resistance is usually associated with progression to metastasis (128), it could be possible that 

STIM1 may play an important role in the acquisition of resistance and progression of the tumor to a 

more aggressive stage.  

 

Results in this chapter also identified that SPCA1 and TRPM7 silencing appear to increase 

trastuzumab effects in SKBR3 cells. SPCA1 has been linked to breast cancer (see section 1.1.2.2). 

SPCA1 silencing in MDA-MB-231 breast cancer cells alters the processing of IGF1R (106). 

Several studies have associated IGF1R with proliferation in cancer and trastuzumab resistance 

(108-110). Increased IGF1R signaling and expression have been shown only in trastuzumab 

resistant cells (189), and it has been reported that heterodimerization and/or heterotrimerization 

with IGF1R occurs only in trastuzumab resistant cell lines (158, 190).  However, the results 

presented in this chapter do not support the hypothesis that SPCA1 silencing promotes trastuzumab 

sensitivity through alterations in IGFR1 processing and further studies are required.  

 

TRPM7 is a regulator of the proliferation of MCF-7 and MDA-MB-231 breast cancer cells (245, 

270). TRPM7 also regulates cell adhesion through calpain by mediating the local influx of Ca2+ into 

peripheral adhesion complexes (271). TRPM7 is also reported to modulate NF-κB to regulate HIF-

1α activity, which plays a key role in tumor progression by regulating genes involved in cancer cell 

survival, proliferation and metastasis (199). The results in this chapter suggesting the involvement 

of TRPM7 in trastuzumab responsiveness are further investigated in chapter 5 of this thesis, in the 

context of trastuzumab resistance. 

 

The results presented in this chapter suggest a potential role for some calcium pumps, channels and 

channel modulators in trastuzumab responsiveness in SKBR3 cells. The rest of the work presented 

in this thesis will seek to determine the potential for some calcium pumps, channels and channel 

modulators to contribute to trastuzumab resistance and/or the reversal of trastuzumab resistance in 

SKBR3 cells. 
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3 Characterization of trastuzumab resistant HER2-positive 

SKBR3 cell lines 

 

3.1 Introduction 
Trastuzumab, as discussed in section 1.2.2, is a monoclonal antibody used for the treatment of 

HER2-positive breast tumors (132). Trastuzumab is used either in combination with chemotherapy 

or alone, and is one of the few treatments specifically approved for HER2-positive breast cancers. 

However, 25-30% of patients do not respond initially to this therapeutic agent (intrinsic or de novo 

resistance) (148) and it has been reported that most patients that are treated with trastuzumab 

acquire resistance within one year of the commencement of therapy (146).  

 

Trastuzumab resistance has been the subject of several studies (272), however the mechanisms 

involved in resistance remain unclear. Different approaches have been adopted to study 

mechanisms of trastuzumab resistance. The most common approach has been to use breast cancer 

cell lines that have been induced to become resistant to trastuzumab. This is achieved through 

maintained culturing of trastuzumab sensitive breast cancer cell lines in the presence of this agent 

(273, 274) or via cell lines established from mouse xenografts that have become resistant to 

trastuzumab treatment in vivo (275).   

 

This chapter describes the establishment of trastuzumab resistant and age-matched control cell lines 

from HER2-positive SKBR3 cells. These cell lines were developed to evaluate the possible 

alterations in calcium signaling associated with the acquisition of trastuzumab resistance in SKBR3 

cells.   
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3.2 Chapter Hypothesis 
The acquisition of trastuzumab resistance is associated with alterations in the expression of specific 

calcium channels, channel regulators and pumps. 

 

3.2.1 Aims 

a. To develop and characterize trastuzumab resistant cell lines using SKBR3 trastuzumab 

sensitive cells. 

b. To compare calcium signaling in SKBR3 trastuzumab sensitive and resistant cells. 

c. To compare mRNA and protein levels of specific calcium channels, channel regulators and 

pumps in SKBR3 trastuzumab sensitive and resistant cells using quantitative RT-PCR and 

immunoblot analysis. 
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3.3 Methods 
 

3.3.1 Materials and Cell Culture 

Trastuzumab was purchased from Roche Products, aliquoted and dissolved in sterile water to obtain 

a 10 mg/mL stock solution. The solution was stored at 4°C and was used within 1 month of 

preparation. 

 

The HER2-positive human breast cancer cell line SKBR3 and the other cell lines derived from 

SKBR3 were cultured in McCoy’s A5 media (Invitrogen) supplemented with 10% FBS and 5% 

Penicillin-Streptomycin mixture (Invitrogen) as recommended by ATCC (210). Cells were 

maintained at 37°C in a humidified atmosphere containing 95% O2 and 5% CO2, and passaged 

twice a week. A detailed passaging protocol is described in section 2.3.1.  

 

The culture conditions used to establish the resistant cell lines are discussed in detail in this chapter 

as part of the description of the development of methods to establish trastuzumab resistant SKBR3 

cell lines.  

 

SKBR3 cells were periodically tested for mycoplasma using MycoAlert™ Mycoplasma Detection 

Kit (Lonza) and they were genotyped to authenticate the cell line using the STR Promega 

StemElite™ ID Profiling Kit. The detail of the STR protocol is described in section 2.3.1.  

 

3.3.2 Approximation of viable cell number using an MTS assay 

Viable cells were measured using a CellTiter 96® AQueous Non-Radioactive Cell Proliferation 

Assay kit (Promega). MTS assays were used to evaluate the anti-proliferative activity of 

trastuzumab in parental SKBR3 cells and control and resistant cell lines. The MTS assay protocol 

for SKBR3 cells is described in section 2.3.5 of this thesis. 

 

3.3.3 Quantitative RT-PCR 

RNA was isolated using the protocol described in section 2.3.2. RNA was reverse transcribed as 

described in section 2.3.2. Protocol details for quantitative RT-PCR are described in section 2.3.2. 

RT-PCR was used in this chapter to evaluate the expression of selected calcium channels, pumps 

and channels modulators in the SKBR3 resistant cell lines produced. 
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3.3.4 siRNA-mediated silencing 

Small interfering RNA (siRNA) technology was used to silence selected calcium channels, pumps 

and channels modulators in this chapter. The siRNA used in these studies were ON-TARGETplus 

siRNAs (SMARTpool, Dharmacon). A detailed protocol of siRNA treatment is described in section 

2.3.3. 

 

3.3.5 Ca2+ measurement assays 

Calcium measurement assays were performed using a fluorometric imaging plate reader 

(FLIPRTETRA, Molecular Biosciences). [Ca2+]i was assessed to evaluate the nature of ATP or EGF 

induced Ca2+ transients and SOCE in trastuzumab resistant and age-matched control cell lines that 

were established as discussed in section 3.4.1 of this chapter. Protocol details for Ca2+ measurement 

assays using FLIPR are described in section 2.3.6 of this thesis. 

 

3.3.6 Immunoblotting 

Immunoblotting was used in this chapter to evaluate the expression levels of some growth factor 

receptor proteins in trastuzumab resistant and age-matched control cell lines that were established 

as discussed in section 3.4.1 of this chapter. Immunoblotting uses antibodies to quantify expression 

levels of specific proteins. The primary antibodies used were: HER2 polyclonal rabbit (Tyr1222), 

EGFR polyclonal rabbit (Tyr992), IGF1R monoclonal XP® rabbit (IGF-I Receptor β, D23H3) (Cell 

Signaling) (Table 3.1). Each antibody was used at a dilution of 1:1000. Horseradish peroxidase 

(HRP) conjugated goat anti-rabbit IgG (H&L) (Bio-Rad) at 1:10,000 dilution was used as the 

secondary antibody (Table 3.1). Anti-mouse β-actin monoclonal antibody (Sigma Aldrich) was 

used at 1:10,000 dilution to detect β-actin as an internal loading control (Table 3.1). Horseradish 

peroxidase (HRP) conjugated goat anti-mouse IgG (Bio-Rad) at 1:10,000 was used as a secondary 

antibody (Table 3.1). Full protocol details for immunoblotting are presented in section 2.3.7 of this 

thesis. 
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Table 3.1 Antibodies used in this chapter for immunoblotting 
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3.4 Results	
  

 

3.4.1 Establishment of trastuzumab resistant SKBR3 cell lines 

The HER2-positive human breast cancer cell line SKBR3 was a gift from a collaborator at the 

Garven Institute, Sydney. The general protocol for the establishment of trastuzumab resistance cells 

is illustrated in figure 3.1.  

 

SKBR3 cells were seeded into 8 individual wells of two 96-well plates (4 for each plate). For the 

establishment of acquired resistance cell lines, media was replaced with media containing 

trastuzumab (10 µg/mL) 24 h after plating. Each plate was maintained in a different incubator and 

cultured separately. During passaging, one of the 8 trastuzumab-treated cell lines was lost, due to 

loss of the cell pellet after centrifugation. In order to produce age-matched control cell lines, 

SKBR3 cells were cultured over a similar period, using the protocol described above, but in the 

absence of trastuzumab (media containing 1% cell culture grade water) (Fig. 3.1). Media was 

replaced every three days and cells were passaged at 80% confluence. After 4 passages in a 96 well 

plate, each cell line was scaled up to a 24-well plate, and consequently to a T25 flask after a further 

4 passages. Cell lines were then maintained in a T25 flask for continuous culturing in the presence 

of trastuzumab 10 µg/mL or control media for the duration of experiments (Fig. 3.1). 

 

For both groups, cells were detached with trypsin as described in section 2.3.1. Cells were cultured 

in 96-well plates, 24-well plates or T25 flasks with 150 µL, 1.5 mL and 5 mL of media, 

respectively. For passaging, the monolayers were washed with 50 µL, 600 µL or 2 mL PBS/EDTA 

followed by 30 µL, 300 µL or 1 mL of trypsin (depending on the cell culture surface area). Media 

(300 µL, 600 µL or 3 mL, respectively for 96-well plates, 24-well plates or T25 flasks) was used to 

stop the trypsin reaction. After centrifugation at 400 g for 2 min the cell pellet was re-suspended in 

150 µL, 1.5 mL or 3 mL of media and re-plated in a ratio of 1:6, 1:6 or 1:4 depending on well or 

flask size used. 

 

At every second passage, RNA was isolated from each cell line as described in section 2.3.2.1 of 

this thesis. This RNA was isolated to allow future studies for the assessment of temporal aspect 

changes in mRNA levels of targets during the development of trastuzumab resistance.  
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Figure 3.1 Timeline for the development of trastuzumab resistant cell lines 

 

Parental SKBR3 cells were incubated for 7 months in the presence or absence of trastuzumab (10 

µg/mL) to produce trastuzumab resistant and age-matched control cell lines. At every second 

passage, RNA was isolated from each cell line to evaluate the process of resistance acquisition. 
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After 4 months of continuous cell culture, the sensitivity of the cell lines to trastuzumab was 

assessed. The 8 control and 7 trastuzumab-treated cell lines were tested with 0.3 µg/mL of 

trastuzumab or with vehicle control.  Each cell line was seeded into a 96-well plate in trastuzumab-

free media. Cells were then treated with 0.3 µg/mL of trastuzumab or vehicle for 24 h after plating. 

After 7 days an MTS assay was performed. As shown in figure 3.2 some of the trastuzumab-treated 

cell lines such as T3 and T6 were less sensitive to trastuzumab. However, these experiments 

showed that at this time point most of the cell lines did not display pronounced resistance to 

trastuzumab. Hence, cell lines were cultured with trastuzumab for an additional 3 more months 

before trastuzumab sensitivity was again assessed. 
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At the end of the 7 months period, growth curves for each cell line were produced using an MTS 

assay to evaluate the proliferation of all the cell lines in the presence and absence of trastuzumab 

(10 µg/mL) over a 9 day protocol (Fig. 3.3 and Fig. 3.4). Six of the age-matched control cell lines 

(cultured with vehicle) retained their sensitivity to trastuzumab (Fig. 3.3). However, two of the cell 

lines from the age-matched control group (C5 and C6) did not respond to trastuzumab and hence 

demonstrated de novo resistance (Fig. 3.3e and Fig. 3.3f).  
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Figure 3.3 Assessment of trastuzumab response in age-matched control cells 

 

Cell lines were tested at 5 different time points for their response to trastuzumab using an MTS 

assay (n=3, ± S.D.). The cell lines C1, C2, C3, C4, C7 and C8 retained trastuzumab sensitivity, 

whereas C5 and C6 (E. and F.) exhibited de novo resistance. Statistical analysis was performed 

using two-way ANOVA with Bonferroni post-tests (ns = not significant, * p ≤ 0.05, ** p ≤ 0.01, 

*** p ≤ 0.001). 
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From the growth curves of the trastuzumab-treated cell lines it was observed that two cell lines (T3 

and T8) exhibited acquired resistance to this therapeutic agent (Fig. 3.4c and Fig. 3.4e). 
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Figure 3.4 Assessment of trastuzumab response in trastuzumab-treated cells 

 

Cell lines were tested at 5 different time points for their response to trastuzumab using an MTS 

assay (n=3, ± S.D.). The cell lines T3 and T8 (C. and D.) displayed acquired resistance to 

trastuzumab. Statistical analysis was performed using two-way ANOVA with Bonferroni post-tests 

(ns = not significant, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). 
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Two age-matched control cell lines were chosen (C1 and C7) and were renamed sensitive vehicle 1 

and 2 (SV1 and SV2), respectively (Table 3.2, Fig. 3.5 and Fig. 3.6). The two acquired resistant cell 

lines, T3 and T8, were renamed resistant trastuzumab 1 and 2 (RT1 and RT2), respectively and the 

two de novo resistant cell lines, C5 and C6, were renamed resistant vehicle 1 and 2 (RV1 and RV2), 

respectively (Table 3.2, Fig. 3.5 and Fig. 3.6). 
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Table 3.2 Colonies and names of the selected age-matched and resistant cell lines 

 

Colonies Type of cell lines Name 

C1 Age-matched control SV1 

C7 Age-matched control SV2 

T3 Acquired resistant RT1 

T8 Acquired resistant RT2 

C5 de novo resistant RV1 

C6 de novo resistant RV2 
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Figure 3.6 Response to trastuzumab at 216 h in the age-matched control and resistant SKBR3 

cell lines 

 

The bar graph shows the response to trastuzumab at the final time point (t=216 h) (n=3, ± S.D.). 

Statistical analysis was performed using two-way ANOVA with Bonferroni post-tests (*** p ≤ 

0.001). 
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One of the possible causes of trastuzumab resistance that has been evaluated is a possible N-

terminally truncated form of HER2 receptor, which is approximately 95 kDa (140). For all six cell 

lines the HER2 status at both the mRNA and protein level was assessed using quantitative RT-PCR 

and immunoblot assays, respectively. All the cell lines maintained HER2 overexpression at the 

mRNA (Fig. 3.7) and protein level (Fig. 3.8).  
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Figure 3.7 Characterization of HER2 mRNA in the SKBR3 derived cell lines 

 

Normalized mRNA levels of HER2 in the age-matched control and resistance cell lines produced 

(n=3, ± S.D.). 18s rRNA was used as an internal control and the results are shown as –ΔCt.  
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The antibody used to detect HER2 proteins recognizes the Tyr1222 located at the intracellular C-

terminal. The antibody used is able to detect the truncated form of HER2, but since a band was not 

observed at the expected size of the truncated HER2 (95 kDa), the trastuzumab resistance in these 

cell lines is not due to the presence of a truncated form of HER2. It appears that the level of HER2 

protein expression in the age-matched control and resistant cell lines was similar and comparable to 

the expression level in SKBR3 parental cells (Fig. 3.8). 
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Figure 3.8 Characterization of HER2 protein in the SKBR3 derived cell lines 

 

A. Representative immunoblot showing HER2 protein levels in the different cell lines, β-actin was 

used as a loading control, while MDA-MB-231 cell line was used as a negative control for HER2 

protein expression. B. Quantification of HER2 protein levels (n=3, ± S.D.). Statistical analysis was 

performed using one-way ANOVA with Bonferroni post-tests. 
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Some studies have shown that overexpression of EGFR may contribute to trastuzumab resistance in 

HER2-positive breast cancer (276, 277). Therefore, EGFR expression was assessed at the mRNA 

(Fig. 3.9) and protein level (Fig. 3.10) in the cell lines produced in this chapter. Neither EGFR 

mRNA or protein differed amongst the cell lines assessed (Fig. 3.9 and Fig. 3.10). 



Chapter	
  3	
  

	
   113	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Characterization of EGFR mRNA in the SKBR3 derived cell lines 

 

Normalized mRNA levels of EGFR in the age-matched control and resistant cell lines (n=3, ± 

S.D.). 18s rRNA was used as an internal control and the results are showed as -ΔCt.  
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Figure 3.10 Characterization of EGFR protein in the SKBR3 derived cell lines 

 

A. Representative immunoblot showing EGFR protein levels in the different cell lines. β-actin was 

used as loading control, while MDA-MB-468 cells were used as a positive control for high levels of 

EGFR expression (278). B. Quantification of EGFR protein levels (n=3, ± S.D.). Statistical analysis 

was performed using one-way ANOVA with Bonferroni post-tests, no significant difference (p > 

0.05) was observed between the SV1, SV2, RT1, RT2, RV1 and RV2. 
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One of the most studied potential causes of the acquisition of trastuzumab resistance (as discussed 

in section 1.5.1) is the up-regulation of IGF1R protein (155, 158, 190, 279). The level of IGF1R 

protein was therefore compared in the age-matched control and resistant cell lines. No significant 

differences were observed in the protein expression of the mature IGF1R-β in the resistant cell lines 

compared to the age-matched control cells (Fig. 3.11). 
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Figure 3.11 IGF1R expression in the age-matched control and resistant cell lines 

 

A. Representative immunoblot of IGF1R in different cell lines. The antibody recognized the pro-

form of IGF1R and the mature form IGF1R-β (280). β-actin was used as a loading control, while 

MDA-MB-231 cells were used as positive control for IGF1R expression (281). B. Densitometry 

performed for the pro-IGF1R isoform (n=3, ± S.D.). C. Densitometry performed for the IGF1R-β 

isoform. (n=3, ± S.D.). Statistical analysis was performed using one-way ANOVA with Bonferroni 

post-tests, no significant difference (p > 0.05) was observed between the SV1, SV2, RT1, RT2, 

RV1 and RV2. 
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Comparison of the expression of the pro-IGF1R and the mature IGF1R-β showed that the resistant 

RT2 cell line had a significant difference in the relative level of the two forms (Fig. 3.12) and thus, 

RT2 may have a higher post-translational modification of IGF1R. 
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Figure 3.12 Comparison of the expression of pro-IGF1R and IGF1R-β in the age-matched 

control and resistant cell lines 

 

The bar graph shows the expression level of the two IGF1R isoforms in the age-matched control 

and resistant cell lines. The RT2 cell line showed a significant difference between the pro-form and 

the mature form of IGF1R (n=3, ± S.D.). Statistical analysis was performed using two-way 

ANOVA with Bonferroni post-tests (* p ≤ 0.05). 
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3.4.2 Characterization of acquired trastuzumab resistant HER2-positive SKBR3 

cell lines 

After the characterization of growth factor receptors, the mRNA levels and consequences of 

silencing of different calcium transporters and modulators were evaluated in the two acquired 

trastuzumab resistant cell lines. Calcium signaling was assessed through evaluation of ATP and 

EGF responses and also SOCE.  

 

3.4.2.1 Assessment of Ca2+ channels, pumps and modulators in acquired 

trastuzumab resistant SKBR3 cells 

In order to evaluate the mRNA levels of calcium-related proteins, the mRNA levels of 45 targets 

were assessed, which included different types of calcium channels, pumps and also calcium channel 

modulators (Fig. 3.13). 
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From the assessment of these 45 targets, it was observed that most of the targets showed similar 

expression levels between the two age-matched control cell lines and the acquired resistant cell 

lines. Single graph columns for each target can be found in appendix 2 and mean –ΔCt	
  values	
  for	
  

each	
  target	
  can	
  be	
  found	
  in	
  appendix	
  3. 

 

Voltage-gated calcium channels appeared to be the only class of target that showed a difference 

between the mRNA levels of the age-matched control cell lines and the acquired resistant cell lines. 

Evaluation of the voltage-gated Ca2+ channels across 3 independent cultures is shown in figure 

3.13. CaV3.2 showed a significant difference in mRNA in the two acquired resistant cell lines (RT1 

and RT2) compared to the control cell lines SV1 and SV2 (Fig. 3.14). 
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Fourteen Ca2+ signaling related targets were selected to evaluate the effect of their silencing on 

responses to trastuzumab in the acquired resistant cell line RT1. These targets were selected based 

on 1) mRNA changes associated with resistance (e.g. CaV3.2), 2) their ability to increase 

trastuzumab response in SKBR3 cells in experiments conducted in chapter 2 (e.g. SPCA1, TRPM7 

and STIM1) or 3) the availability of siRNA at the time these experiments were completed (SPCA2, 

STIM2, PMCA1, Orai1, Orai2, Orai3, TRPV1, TRPV4, TRPC1 and TRPC5).  

 

In order to confirm the resistance of the cell lines produced and validate each experiment performed 

on these cell lines, from the growth curves shown in figure 3.5, a threshold for trastuzumab 

response was set. The inhibition of cell growth by trastuzumab was no more than 25% in the 

resistant cell lines. Thus, for the siRNA screen a silenced target was considered as reversing 

trastuzumab resistance if it was able to produce a trastuzumab response higher than 25% (a dash 

line was drawn at 75% on the Y axis). Trastuzumab was added 24 h after siRNA treatment and 

repeated every two days. MTS assay was performed to evaluate cells viability after 196 h after 

siRNA treatment.  None of the 14 targets tested reversed the resistance and sensitized the cells to 

the effect of trastuzumab (Fig. 3.15).  
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Figure 3.15 siRNA screen of 14 Ca2+ targets on the acquired resistant cell line RT1 

 

An MTS assay performed on the acquired resistant cell line RT1 to evaluate the silencing effect of 

14 calcium targets on the trastuzumab response (3 wells, ± S.D.). Targets that showed a response 

lower than the dashed line drawn at 75% would have indicated a potential reversal of trastuzumab 

resistance.  
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3.4.2.2 Ca2+	
  signaling	
  profile	
  of	
  acquired	
  trastuzumab	
  resistant	
  SKBR3	
  

cells	
  

In order to evaluate possible differences in global calcium homeostasis between the age-matched 

controls and acquired resistant cell lines, the nature of ATP or EGF induced Ca2+ transients and the 

SOCE profile in these cell lines was assessed using the Ca2+ indicator Fluo-4 AM as described in 

section 2.3.6.  

 

A concentration-response curve of ATP was produced for each cell line to evaluate possible 

changes in intracellular Ca2+ signaling between the two types of cell lines (Fig. 3.16 and Fig. 3.17). 

The traces for each cell line showed a difference in responses to different concentrations of ATP. 

The SV2 cell line showed a higher response to ATP compared to the other age-matched control cell 

line SV1 (Fig. 3.16a and Fig. 3.16b). The acquired resistant cell line RT1 had an increased response 

to ATP at higher concentrations compared to SV1 (Fig. 3.16c). Moreover, some modest Ca2+ 

oscillation behavior (a second peak) was observed for the two acquired resistant cell line at a higher 

concentration of ATP (Fig. 3.16c and Fig. 3.16d). 
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Figure 3.16 Ca2+ traces of intracellular calcium in the age-matched control and acquired 

resistant cells upon ATP stimulation  

 

Average Ca2+ traces from three independent experiments measured using FLIPR showing the 

relative [Ca2+]i in response to increased concentrations of ATP (1mM, 100 µM, 10 µM, 1 µM, 100 

nM, 10 nM, 1nM) in the age-matched control (A. and B.) and acquired resistant cell lines (C. and 

D.) (n=3).  



Chapter	
  3	
  

	
   130	
  

The maximum Ca2+ response to ATP in the age-matched control cell lines and acquired resistant 

cells differed; the EC50 of the age-matched control cell lines SV1 and SV2 were 3.4 µM and 2.9 

µM, respectively, while the EC50 for the two acquired resistant cell lines were 0.9 µM (RT1) and 

1.6 µM (RT2), respectively (Fig. 3.17). Statistical analysis was performed comparing each acquired 

resistant cell line to the age-matched control cell line SV1. The acquired resistant cell lines RT1 

showed a statistically significant higher response to ATP at concentrations of 10 µM, 100 µM and 1 

mM (Fig. 3.17), however, significance was not achieved if compared to the age-matched control 

cell line SV2. 
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Figure 3.17 ATP concentration-response curve of the acquired resistant and age-matched 

control cell lines 

 

The concentration response curves for maximum [Ca2+]i was assessed using 0.001 µM, 0.01 µM 0.1 

µM, 1 µM, 10 µM, 100 µM and 1 mM of ATP in the age-matched control and acquired resistant 

cell lines (n=3, ± S.D.). Statistical analysis was performed using two-way ANOVA with Bonferroni 

post-tests. Statistical analysis refers to SV1, the * indicates statistical significance between SV1 and 

RT1, while the # between SV1 and RT2 (* p ≤ 0.05 **** p ≤ 0.0001). 
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Furthermore, it was observed that the acquired resistant cell lines showed a slower recovery after 

ATP addition (Fig. 3.18) with a significantly higher relative [Ca2+]i level at 800 s (Fig. 3.18). It 

could be speculated that Ca2+ was either sequestered or extruded at a slower rate in the resistant cell 

lines. 
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Figure	
   3.18	
   ATP	
   concentration-­‐response	
   curve	
   of	
   the	
   acquired	
   resistant	
   and	
   age-­‐

matched	
  control	
  cell	
  lines	
  at	
  800	
  s	
  

 

Concentration response curves for measurements of [Ca2+]i after 800 s after addition of ATP (0.001 

µM, 0.01 µM 0.1 µM, 1 µM, 10 µM, 100 µM and 1 mM) in age-matched control and acquired 

resistant cell lines ( n=3, ± S.D.). Statistical analysis was performed using two-way ANOVA with 

Bonferroni post-tests. Statistical analysis refers to SV1, the * is associated with statistically 

significant between SV1 and RT1, while the # is between SV1 and RT2 (# p ≤ 0.05, ** or ## p ≤ 

0.01, *** p ≤ 0.001, **** p ≤ 0.0001). 
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The response to 50 ng/mL EGF was also assessed in the acquired resistant cells. Similar to the 

results obtained from the SKBR3 parental cell line (section 2.4), EGF treatment did not produce any 

detectable [Ca2+]i increase in the two acquired resistant and age-matched control cell lines (Fig. 

3.19 and Fig. 3.20). 
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Figure 3.19 Assessment of [Ca2+]i in the age-matched control cell lines following stimulation 

with 50ng/mL EGF 

 

A. and B. Ca2+ traces upon EGF treatment from three independent experiments, acetic acid (AA) 

was a control for EGF. C. and D. The graphs represent the measurement of maximum [Ca2+]i 

assessed using 50 ng/mL of EGF (n=3, ± S.D.). Statistical analysis was performed using one-way 

ANOVA with Bonferroni post-tests. 
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Figure 3.20 Assessment of [Ca2+]i in the acquired resistant cell lines following stimulation with 

50ng/mL EGF 

 

A. and B. Ca2+ traces upon EGF treatment from three independent experiments. C. and D. The 

graph represents the measurement of maximum [Ca2+]i assessed using 50 ng/mL of EGF (n=3, ± 

S.D.). Statistical analysis was performed using one-way ANOVA with Bonferroni post-tests. 
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SOCE was assessed in the acquired resistant and age-matched control cell lines, using the same 

protocol used to evaluate SOCE in SKBR3 parental cells (section 2.3.2). Responses to the SERCA 

inhibitor CPA were similar in resistant and control cell lines as assessed by peak 1 (Fig. 3.21). 

These differences were quantified across 3 independent experiments (Fig. 3.22). 
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Figure 3.21 Assessment of SOCE in the age-matched control and acquired resistant cell lines 

 

Average of [Ca2+]i traces from three different experiments assessing SOCE in age-matched control 

and acquired resistant cell lines (n=3). In the presence of extracellular BAPTA (500 µM), CPA (10 

µM) was added to empty the calcium store (first peak), then Ca2+ (2 mM) was added to assess 

SOCE (second peak). 

 

C.	
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The two age-matched control cell lines showed similar maximum responses to CPA response (peak 

1), while the acquired resistant cell line RT1 had a modestly higher release of calcium from the 

stores upon CPA treatment (Fig. 3.22a). The second peak associated with 2 mM Ca2+ showed a 

higher response for the acquired resistant cell line RT1 cell line compared to SV1 (Fig. 3.22b).  
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Figure 3.22 Assessment of SOCE in the age-matched control and acquired resistant cell lines 

 

A. Maximum [Ca2+]i after addition of CPA (first peak) (n=3, ± S.D.). B. Maximum [Ca2+]i recorded 

after addition of CPA followed by re-addition of 2 mM Ca2+ (second peak) (n=3, ± S.D.). Statistical 

analysis was performed using two-way ANOVA with Bonferroni post-tests (** p ≤ 0.01).  
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The ratio between the second and first peaks (a common assessment for store operated calcium 

entry to discount effects on calcium influx due to differences in the degree of calcium store release 

(238, 282, 283) did not show a significant difference at 2 mM Ca2+ (Fig. 3.23). 
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Figure 3.23 Assessment of SOCE in the age-matched control and acquired resistant cell lines 

 

The bar graph represents the measurement of maximum [Ca2+]i assessed in the presence of external 

BAPTA using CPA to empty the stores (peak 1) in relation to the increase in [Ca2+]i associated with 

the re-addition of Ca2+ (n=3, ± S.D.). Statistical analysis was performed using one-way ANOVA 

with Bonferroni post-tests no significant difference (p > 0.05) was observed. 
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3.4.3 Characterization of de novo trastuzumab resistant HER2-positive SKBR3 cell 

lines 

 

As for the acquired resistant cell lines, the mRNA expression and function of calcium transporters 

and modulators were also assessed for the de novo trastuzumab resistant cell lines. The Ca2+ 

response to ATP and EGF and SOCE profile were likewise assessed in these cells. 

 

3.4.3.1 Assessment of Ca2+ channels, pumps and modulators in de novo 

trastuzumab resistant SKBR3 cells 

 

The mRNA level of the 45 targets that were assessed for the acquired resistant cell lines RT1 and 

RT2 were also evaluated for the de novo resistant cell line RV1 and RV2 (Fig. 3.24).  
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As for the acquired resistant cell lines, the 45 targets that were assessed showed a similar expression 

levels between the two age-matched control cell lines and the de novo resistant cell lines (Fig. 3.24). 

Individual graphs for each target can be found in appendix 2 and mean –ΔCt	
  values	
  for	
  each	
  target	
  

can	
  be	
  found	
  in	
  appendix	
  3. The Orai1, Orai2 and Orai3 channels and the Ca2+ sensors STIM1 and 

STIM2 as well as the voltage-gated calcium channels appeared to show altered mRNA levels in de 

novo resistant cell lines compared to age-matched control cell lines (Fig. 3.24).  

 

It was observed from the bar graphs that the Orai channels and the Ca2+ sensors STIM1 and STIM2 

did not show a significant difference in mRNA levels between the age-matched control cells and the 

de novo group. Only STIM2 showed a significant difference in mRNA expression and this was only 

compared to SV1 cell line (Fig. 3.25a). 

 

The expression of some voltage-gated calcium channels was significantly different in the two de 

novo resistant cell line compared to the age-matched of cell lines (Fig. 3.25b). The CaV3.2 channel 

showed significantly higher mRNA levels in both de novo cell lines. CaV2.1 channel showed 

significant lower expression in the de novo RV1 cell line compared to the age-matched control cell 

lines, however its mRNA levels were low in all the cell lines (ΔCt< -20). CaV3.3 showed a 

significant lower mRNA expression in both de novo cell lines RV1 and RV2 compared to one of the 

two age-matched control cell lines, SV1.  
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The 14 targets tested for the acquired resistant cell line RT1 were assessed to evaluate the effect of 

their silencing on trastuzumab sensitivity. Trastuzumab was added 24 h after siRNA treatment and 

repeated every two days. MTS assay was performed to evaluate cells viability after 196 h after 

siRNA treatment.  

 

From this screen, it was observed that TRPM7 and SPCA1, which were found to affect trastuzumab 

response in SKBR3 parental in section 2.6, as well as SPCA2, Orai1 and Orai2 may have also 

sensitized de novo resistant cells to trastuzumab (Fig. 3.26a and Fig. 3.26b).  
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Figure 3.26 siRNA screen of 14 Ca2+ targets on the de novo resistant cell line RV1 cell line 

 

An MTS assay was performed on the de novo resistant cell line RV1 to evaluate the effect of 

silencing 14 calcium targets on the response to trastuzumab (3 wells, ± S.D). Targets that showed a 

response lower than the dashed line drawn at 75% indicated a potential reversal of trastuzumab 

resistance. 
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Confirmation analyses were performed on SPCA1, SPCA2, Orai1, Orai2 and TRPM7. However, 

results from three independent experiments showed that the response to trastuzumab was not 

significantly restored when these target were silenced compared to the non-targeting control (siNT) 

(Fig. 3.27). 
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Figure 3.27 Confirmation analysis for targets that showed possible reversal of trastuzumab 

resistance in the de novo resistance RV1 cell line 

 

Results from three independent experiments for SPCA1, SPCA2, Orai1, Orai2 and TRPM7 using 

MTS assay (n=3, ± S.D.). Statistical analysis was performed using two-way ANOVA with 

Bonferroni post-tests. No significant difference (p > 0.05) was observed.  
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3.4.3.2 Ca2+ signaling profile of de novo trastuzumab resistant SKBR3 cells 

The nature of the ATP, EGF induced Ca2+ transient and the SOCE profile were also assessed for the 

de novo resistant cells using the Ca2+ indicator Fluo-4 AM in a Ca2+ measurement assay using 

FLIPR to evaluate possible differences in global calcium. 

 

A concentration-response curve of ATP was produced for each cell line. The traces for the de novo 

cell lines showed similar response to ATP (Fig. 3.28). Age-matched control traces were discussed 

in section 3.4.2. In regards to the two de novo resistant cell lines, RV1 and RV2, these showed 

similar increases in intracellular calcium upon ATP stimulation (Fig. 3.28c and Fig. 3.28d).  
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Figure 3.28 [Ca2+]i traces in the age-matched control and de novo resistant cells upon ATP 

stimulation 

 

Average [Ca2+]i traces from three independent experiments measured using FLIPR showing the 

relative [Ca2+]i in response to different concentration of ATP (1mM, 100 µM, 10 µM, 1 µM, 100 

nM, 10 nM, 1nM) in the age-matched control and de novo resistant cell lines.  
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Ca2+ response from the concentration-response curves for the de novo resistant cells RV1 and RV2 

showed an EC50 of 2.5 µM and 2.9 µM, respectively, which were similar to the EC50 of the age-

matched control cells (3.4 µM and 2.9 µM) (Fig 3.29). Thus, it appeared that, in contrast to the 

acquired resistant cells, the de novo resistant cell lines respond to ATP similarly to the age-matched 

control cell lines.  
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Figure 3.29 ATP concentration-response curve of the de novo resistant cell lines 

 

The graph represents the concentration-response curves for measurement of the maximum [Ca2+]i 

assessed using 0.001 µM, 0.01 µM 0.1 µM, 1 µM, 10 µM, 100 µM and 1 mM of ATP in the age-

matched control and de novo resistant cell lines (n=3, ± S.D.). Statistical analysis was performed 

using two-way ANOVA with Bonferroni post-tests. Statistics refers to SV1, the * is associated with 

statistical significance between SV1 and RT1, while the # is between SV1 and RT2 (* p ≤ 0.05). 
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The acquired resistant cell lines, as discussed in section 3.4.2, showed a delayed recovery compared 

to the age-matched control cell lines. In contrast, the de novo resistant cell lines did not show a 

slower recovery in comparison with the age-matched control cells (Fig. 3.30). 
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Figure 3.30 ATP concentration-response curve of the de novo resistant cell lines at 800 s 

 

The graph represents the concentration-response curves for measurements of [Ca2+]i at 800 seconds 

after the addition of ATP, assessed using 0.001 µM, 0.01 µM 0.1 µM, 1 µM, 10 µM, 100 µM and 1 

mM of ATP in the age-matched control and de novo resistant cell lines (n=3, ± S.D.). Statistical 

analysis was performed using two-way ANOVA with Bonferroni post-tests. No significant 

difference (p > 0.05) was observed. 
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The de novo resistant cells were also assessed for their Ca2+ response to 50 ng/mL EGF. As for the 

SKBR3 parental cell line showed in section 2.4, the age-matched and acquired resistant cell lines 

discussed in section 3.4.2, the de novo resistant cells EGF treatment did not produce increases in 

[Ca2+]i (Fig. 3.31).  
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Figure 3.31 Assessment of [Ca2+]i in the age-matched control and de novo resistant cells 

following stimulation with 50 ng/mL EGF 

 

A. and B. [Ca2+]i traces upon EGF treatment from three independent experiments, acetic acid (AA) 

was a control for EGF. C. and D. The graph represents the measurement of maximum [Ca2+]i 

assessed using 50 ng/mL of EGF (n=3, ± S.D.). Statistical analysis was performed using two-way 

ANOVA with Bonferroni post-tests. 
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The SOCE profile was also assessed for these cell lines (Fig. 3.32). The calcium traces for the age-

matched cell lines were discussed in section 3.4.2.  
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Figure 3.32 Assessment of SOCE in the age-matched control and de novo resistant cell lines 

 

Average of [Ca2+]i traces from three different experiments assessing SOCE in the age-matched 

control and acquired resistant cell lines. In the presence of extracellular BAPTA (500 µM), CPA 

(10 µM) was added to empty the calcium store (first peak), then Ca2+ (2mM) was added to assess 

SOCE (second peak). 
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The release of calcium from internal stores upon CPA treatment and re-addition of 2 mM Ca2+ was 

similar between the de novo and the age-matched control groups (Fig. 3.33a and 3.33b).  
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Figure 3.33 Assessment of SOCE in the age-matched control and de novo resistant cell lines 

 

A. Maximum [Ca2+]i recorded after addition of CPA (first peak) (n=3, ± S.D.). B. Maximum [Ca2+]i 

recorded after addition of 2 mM Ca2+ (second peak) (n=3, ± S.D.). Statistical analysis was 

performed using two-way ANOVA with Bonferroni post-tests. No significant difference (p > 0.05) 

was observed.  
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Furthermore, the ratio between second and first peak showed no significant difference between the 

two de novo cell lines and the age-matched control cell lines (Fig. 3.34). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter	
  3	
  

	
   178	
  

 

Figure 3.34 Assessment of SOCE in the age-matched control and de novo resistant cell lines 

 

The bar graphs represent the relative measurement of maximum [Ca2+]i assessed in the presence of 

external BAPTA using CPA to empty the stores (peak 1) in relation to the peak associated with 2 

mM Ca2+ addition (peak 2) (n=3, ± S.D.). Statistical analysis was performed using one-way 

ANOVA with Bonferroni post-tests. No significant difference (p > 0.05) was observed. 
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3.5 Discussion 
The establishment of SKBR3 trastuzumab resistant cell lines produced age-matched control cell 

lines, two acquired resistant cell lines (RT1 and RT2) and two de novo resistant cell lines (RV1 and 

RV2). The time taken to establish the resistant cell lines was 7 months, which was within the time 

range used in other studies to establish trastuzumab resistance (273, 274). Natha and Esteva 

developed trastuzumab resistant cell lines by continuously exposing SKBR3 parental cell lines to 

trastuzumab (4 µg/mL and 8 µg/mL) for 3 months (273), while Vazquez-Martin and colleagues 

developed them by exposing SKBR3 cells to increased concentration of trastuzumab for a minimum 

of 10 months (274). Their protocol consisted of 4 weekly treatments of trastuzumab 20 µg/mL for 3 

months, followed by two treatments weekly of 185 µg/mL for 2 months, then resistant cell lines 

were continuously cultured with trastuzumab 200 µg/mL for 5 months (274). However, in both 

studies, age-matched control cell lines were not produced during the development and the SKBR3 

parental cell lines were used as control. Continuous culture of cell lines for a long period of time 

may change the phenotype of the cell lines (284, 285). An example could be the two de novo 

resistant cell lines derived from the age-matched control cell lines that were developed during this 

thesis project. In recent studies where lapatin-resistant cell lines were established, age-matched 

control cell lines were also developed (286, 287). However, so far no studies using age-matched 

control cell lines have shown development of de novo resistant cell lines.  

 

The level of HER2 receptor was evaluated at both the mRNA and protein levels to confirm that 

trastuzumab resistance was not simply due to a loss of HER2 expression. It has been shown that the 

HER2 receptor may undergo a proteolytical cleavage of the extracellular domain and/or form 

alternative splice variants lacking the transmembrane and cytoplasmic domain (288). This produces 

a truncated HER2 receptor of about 95 kDa, which confers resistance to trastuzumab (288). A 

truncated HER2 receptor was not detected in any of the cell lines produced in this chapter. 

 

EGFR and IGF1R were also assessed in the produced cell lines, as it has been reported that they 

may also be involved in trastuzumab resistance, since EGFR and IGF1R proteins were found to be 

overexpressed in patients treated with trastuzumab (265). However, neither of these receptors 

showed an altered expression in the resistant cell lines compared to the age-matched control cells 

and EGF treatment did not produce a change in global cytosolic calcium in all of the cell lines 

tested, suggesting that EGFR may not play a role in trastuzumab resistance in this model.  
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Assessing mRNA levels in the cell lines produced identified that the	
  CaV3.2 channel had a higher 

expression in three out of four resistant cell lines compared to the age-matched controls. The 

CaV3.2 channel has been studied previously in prostate cancer and it was shown that up-regulation 

of this channel may be involved in the progression towards an androgen independent prostate 

cancer (289).  

 

In cancer cells, resistance to conventional treatment can often be due to a presence of residual 

cancer stem cells that cannot be targeted by the drug and these cells can then reproduce the tumor, 

which is often resistant to therapy (290). During cell development there is a switch between CaV3.2 

and CaV3.1 channel expression in cardiomyocytes (291, 292). In embryonic stem cells, CaV3.2 

channel expression is higher than CaV3.1, once the embryonic cells mature to a differentiated state, 

this ratio is switched with higher levels of CaV3.1 compared to CaV3.2 (291). Further work 

assessing CaV3.2 channel in resistant cell lines are described in chapter 4, where the properties of 

CaV3.2 are discussed in detail. 

 

Fourteen targets were also selected and silenced using siRNA to evaluate their potential effects on 

trastuzumab response in the acquired resistant cell line RT1 and the de novo resistance cell line 

RV1. The targets were chosen because they showed an altered mRNA expression (such as CaV3.2) 

or  showed an enhancement of trastuzumab activity when silenced in SKBR3 parental cells (such as 

SPCA1, TRPM7 and STIM1) or because there was sufficient siRNA available in the laboratory at 

the time these experiments were conducted. While none of the selected targets reversed trastuzumab 

resistance in the RT1 cell line, assessing the same targets in the de novo resistant RV1 cell line 

showed that TRPM7, SPCA1, SPCA2, Orai1 and Orai2 silencing appeared to increase sensitivity to 

trastuzumab. TRPM7 and SPCA1 were particularly interesting as they also enhanced trastuzumab 

activity in the SKBR3 parental cell line. However, confirmation assays (3 independent experiments) 

showed that there was no significant differences in the trastuzumab response when these targets 

were silenced compared to the age-matched control cell lines. Thus, the transient silencing of these 

targets do not reverse trastuzumab resistance in the de novo resistant cell line RV1 and this 

highlights the importance of validation assays of siRNA screens in resistance studies. 

 

Despite TRPM7 silencing did not re-establish sensitivity to trastuzumab in the de novo resistant cell 

line RV1, TRPM7 promoted trastuzumab response in parental SKBR3 cells (section 2.4.4). Thus, it 

may be an interesting target as it has also been linked to epithelial–mesenchymal transition (EMT) 
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in breast cancer cells (221). For these reasons, further experiments were carried out to evaluate the 

role of TRPM7 on trastuzumab resistance and these are presented in chapter 5. 

 

Calcium signaling was assessed in each of the cell lines established. The response to ATP produced 

an EC50 of 3.4 µM and 2.9 µM for SV1 and SV2, respectively, and an EC50 of 2.5 µM and 2.9 µM 

for RV1 and RV2, respectively. The EC50 for the two acquired resistant cell lines was 0.9 µM 

(RT1) and 1.6 µM (RT2). The response to ATP for the SKBR3 parental cell lines was 0.51 µM 

(showed in section 2.3.2), about 6-7 fold lower EC50 than the age-matched control cells. This 

suggests a remodeling of calcium handling due to long-term culturing and emphasizes the 

importance of using age-matched control cell lines. The differences in EC50 between the age-

matched control cells and the resistant cell lines were only significant for the acquired resistant cell 

lines, which showed a 2-3.5 fold lower ATP EC50 response compared to the age-matched control 

cell lines. The acquired resistant cell lines also had a prolonged recovery rate after stimulation with 

ATP compared with age-matched controls. Since the de novo resistant cell lines did not show 

differences compared to the age-matched control cell lines in Ca2+ handling upon ATP stimulation, 

this suggests that the mechanism of resistance may differ between the acquired and the de novo 

cells.  

 

Prolonged plateau after ATP stimulation has also been observed in taxol-resistant cell lines, which 

had lower ryanodine and IP3 receptor sensitive Ca2+ stores than sensitive cell lines (293). The 

delayed recovery after ATP stimulation may be due to an altered activity and/or expression of 

purinergic receptors or a slower reuptake of intracellular Ca2+ by the ER due to altered expression 

or activity of SERCA pumps, ryanodine receptor or IP3 receptors. Moreover, another reason could 

be a decreased efflux of Ca2+ through PMCA pumps or Ca2+ exchangers. IP3 receptors and PMCA 

pumps did not show altered mRNA expression in the resistant cell lines produced in the current 

study. It has been reported that in taxol-resistant adenocarcinomas cell lines the calcium profile of 

IP3 receptors, which showed similar expression in taxol-resistant and taxol-sensitive cell lines, was 

still significantly different in response to IP3 receptor agonists (293). Thus, further experiments 

investigating the expression, activity and role of purinergic, ryanodine and IP3 receptors are needed 

to assess the mechanism of delayed recovery in these resistant cell lines.   

 

Another reason for the delayed recovery after ATP stimulation in the acquired resistant cell line 

could be due to altered SOCE. This was also evaluated and although the acquired resistant cell line 

RT1 showed a higher CPA and calcium addition response, the ratio between the two peaks did not 
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appear to be changed. This suggests that SOCE is not altered in the resistant cell lines compared to 

age-matched control cell lines. SOCE has not previously been assessed in trastuzumab resistance.  

However, in other type of cancers, such as androgen independent prostate cancer PCa cells, 

apoptosis resistance is associated with decreased Orai1 expression and SOCE (161). Moreover, in 

the glutamate-mediated cell death resistant HT-22 cell lines SOCE is significantly reduced (294). 

 

In summary, the profiling of the age-matched control and trastuzumab resistant cell lines have 

underlined the importance of having an age-matched control group since the cells may undergo 

signal remodeling independent of the mechanism of resistance. Additionally, the ATP response 

appeared to be altered in the acquired resistant cell lines RT1 and RT2, but not in the de novo 

resistant cell lines RV1 and RV2. Finally, from the assessment of the mRNA expression of 45 

targets, CaV3.2 channel showed a higher expression in three out of four resistant cell lines and 

appears to be an interesting target to further evaluate in the context of trastuzumab resistance. 
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4 The role of CaV3.2 channel in trastuzumab resistance in 

trastuzumab resistant SKBR3R cells 
 

4.1 Introduction 
The CaV3.2 channel is a T-type voltage-gated calcium channel (295). T-type channels are activated 

by low voltage and they mediate the influx of calcium into cells. T-type voltage-gated calcium 

channels are formed by an α1 subunit, that consists of four repeats each of six transmembrane 

domains; these repeats form the pore of the channel, which is highly conserved (295). Other 

auxiliary subunits associate with the α1 subunit, such as the β subunit (296). Three isoforms of T-

type channels are known, and they differ due to their α1 subunit (CaV3.1, CaV3.2 and CaV3.3) 

encoded by CACNA1G, CACNA1H and CACNA1I, respectively (297). 

 

T-type channels are found in neurons, heart, kidneys, smooth and skeletal muscles, endocrine 

tissues and sperm, but compared to L-type channels they are more limited in their tissue distribution 

(297). CaV3.2 channel is manly found in the kidney and liver, but is also expressed in the heart, 

brain, pancreas, placenta, testis, lung, skeletal muscle and adrenal cortex (297). CaV3.2 channels are 

also involved in smooth muscle contraction, proliferation of some cell types and aldosterone and 

cortisol secretion from adrenal zona fasciculate cells (295, 298). 

 

Mutations of this channel are involved in childhood absence epilepsy (299). The CaV3.2 channel is 

also implicated in painful diabetic neuropathy where aberrant up-regulation of the channel activity 

was reported in response to glucose elevation (300). Moreover, inhibition of post-translational 

modification (glycosylation) of CaV3.2 channel or channel activity reverse mechanical and thermal 

hyperalgesia in diabetic animals in vivo (301, 302). 

 

In cancer, CaV3.2 channels are expressed in T-cell Jurkat cell line, neuroblastoma (303, 304), 

glioma (304), retinoblastoma cell lines (305), but not in the HL-60 leukemia cell line. Indeed, HL-

60 cells are insensitive to CaV3.2 channel inhibitors (306). CaV3.2 channels are also expressed in 

the prostate cancer cell lines PC3, DU-145 (306) and LNCaP (303). In the latter cell line, CaV3.2 

channel mRNA increases with neuroendocrine-mediated differentiation, which is associated with a 

more aggressive tumor and invasiveness (303). CaV3.2 channels are also expressed in the basal 

breast cancer cell lines MDA-MB-435, MDA-MB-231 (306) but not in the basal BT-20 cell line 

(307). CaV3.2 is also expressed in luminal MCF-7 and T-47D breast cancer cell lines (307) and in 
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the luminal HER2-positive breast cancer cell line MDA-MB-361 (306). However, no expression of 

CaV3.2 channels was reported by Asaga et al, in SKBR3 cells, the HER2-positive cell line used in 

my study (307). A splice variant (δ25B) of CaV3.2 channel has been reported to be a function 

channel able to facilitate Ca2+ entry (306). In some breast cancer cell lines (SK-N-SH, MDA-MB-

231 and MDA-MB-361) only one splice variant form (δ25B) of CaV3.2 channel was reported to be 

expressed, while in other cell lines both, the CaV3.2 isoform and splice variant, were expressed 

(PC3 and MDA-MB-435) (306).  

 

Despite a study showing that CaV3.1, but not CaV3.2 channels are involved in the regulation of 

cellular proliferation and apoptosis in MCF-7 breast cancer cells (308), an in vivo study performed 

on athymic nude mice injected with MCF-7 breast cancer cells showed a reduction of cell 

proliferation with CaV3.2 channel inhibition (309). CaV3.2 channel expression has also been 

reported to be elevated in malignant mesothelioma (a rare and highly aggressive tumor) patient 

samples compared to normal mesothelium (310). 

 

Basal-like and HER2-positive breast cancers are known to have poorer prognosis than other 

molecular subtypes (121, 311). HER2-positive breast cancer subtypes are usually enriched with the 

luminal gene cluster (312). However, it appears that when the HER2 receptor is amplified in basal 

breast cancers this results in a novel breast cancer sub-entity that exhibits de novo trastuzumab 

resistance (313, 314). Indeed, the HER2-positive JIMT-1 cell line, derived from a patient who did 

not respond to trastuzumab, expresses basal and mesenchymal markers such as SLUG, TWIST1, 

ZEB1 and vimentin (312, 313). Thus, it appears that the heterogeneity of HER2-positive breast 

tumor produces variability in clinical outcome. For this reason, Staaf and colleagues (315), 

developed the HER2-derived prognostic predictor (HDPP), a 158 genes signature, which includes 

genes involved in tumor invasion and metastasis such as CXCR4, PLAU, CX3CR1, TGFBR3, and 

STAT5A. The HDPP signature is a prognostic factor in HER2-positive and also in basal subtype and 

is an effective predictor of patient outcome (315). 

 

T-type Ca2+ channels are known to increase motility and invasion in HT1080 fibrosarcoma cells 

(316). Moreover, as described earlier, the CaV3.2 channel is found to have an increased expression 

during neuroendocrine differentiation in prostate cancer and induces progression towards the more 

aggressive androgen-independent stage (289). Thus, it could be speculated that the CaV3.2 channel 

levels may be a useful diagnostic tool to predict a more aggressive and metastatic HER2-positive 

tumor that is unresponsive to trastuzumab. 
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As presented in chapter 3, CaV3.2 channel showed a significantly higher expression in the two de 

novo resistant cell lines RV1 and RV2 compared to the age-matched control cell lines SV1 and 

SV2. Hence in this chapter the following hypotheses and aims were addressed. 
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4.2 Chapter Hypotheses 
Alterations of CaV3.2 are a characterizing feature of some breast cancer cells lines and breast cancer 

subtypes and is an early event in the development of trastuzumab resistance. 

 

4.2.1 Aims 

a. To assess CaV3.2 mRNA levels in basal-like and luminal breast cancer cell lines and clinical 

breast cancer subtypes. 

b. To characterize the temporal changes in CaV3.2 mRNA associated with the acquisition of 

trastuzumab resistance in SKBR3 cells. 

c. To assess the ability of siRNA-mediated silencing of CaV3.2 channels, to reverse 

trastuzumab resistance in trastuzumab resistant SKBR3 cells. 

d. To assess the ability of pharmacological inhibitors of CaV3.2 channels, to reverse 

trastuzumab resistance in trastuzumab resistant SKBR3 cells. 
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4.3 Methods 
 

4.3.1 Materials 

Trastuzumab was purchased from Roche Products, aliquoted and dissolved in sterile water to obtain 

a 10 mg/mL stock solution. The solution was stored at 4°C and was used within 1 month of 

preparation. Mibefradil (Sigma Aldrich) was dissolved in water to obtain a 100 mM stock solution, 

which was aliquoted and maintained at -20 °C prior to use. ML218 (Sigma Aldrich) was dissolved 

in DMSO to obtain a stock solution of 10 mM and aliquoted and maintained at 4°C. 

 

4.3.2 Cell Culture 

The HER2-positive human breast cancer cell line SKBR3, the age-matched control and resistant 

SKBR3 cell lines were cultured in McCoy’s A5 media (Invitrogen) supplemented with 10% FBS 

and 5% Penicillin-Streptomycin mixture (Invitrogen) as recommended by ATCC (210). Media used 

to culture the acquired resistant cell lines was supplemented with trastuzumab (10 µg/mL). Cells 

were maintained at 37°C in a humidified atmosphere containing 95% O2 and 5% CO2, and passaged 

twice a week. A detailed passaging protocol is described in section 2.3.1.  

 

SKBR3 cells and the established cell lines were periodically tested for mycoplasma using 

MycoAlert™ Mycoplasma Detection Kit (Lonza) and were genotyped to authenticate the cell line 

using the STR Promega StemElite™ ID Profiling Kit. The STR protocol is described in section 

2.3.1.  

 

 

4.3.3 MTS assay 

Viable cell numbers were approximated using a CellTiter 96® AQueous Non-Radioactive Cell 

Proliferation Assay kit (Promega). MTS assays were used to evaluate the anti-proliferative activity 

of trastuzumab in parental SKBR3 cells, control and resistant cell lines. The protocol for MTS 

assays in SKBR3 cells is described in section 2.3.5 of this thesis. 

 

4.3.4 Quantitative RT-PCR 

RNA was isolated using the protocol described in section 2.3.2. RNA was reverse transcribed as 

described in section 2.3.2. Protocol details for quantitative RT-PCR are described in section 2.3.2. 
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In this chapter, a plate study was performed using StepOne Plus v2.3 software (Applied 

Biosystems) (317) to compare mRNA levels of CaV3.2 channels in a panel of different breast 

cancer cell lines and normal breast cancer cells, with those of the SKBR3 cell lines developed in 

chapter 3. 

 

4.3.5 siRNA-mediated silencing 

Small interfering RNA (siRNA) technology was used to silence CaV3.2 channels in this chapter. 

The siRNA used in these studies was ON-TARGETplus siRNA (SMARTpool, Dharmacon). A 

detailed protocol of siRNA treatment is described in section 2.3.3. 

 

4.3.6 Gene expression profile in human breast tumors 

Microarray is used to evaluate the expression of a large number of genes simultaneously (318). It 

hybridizes a target DNA strand to a large set of oligonucleotide probes attached to a solid support, 

which can be detected by fluorescence since the target sample and the reference sample are labeled 

with Cy3 or Cy5 probes, respectively (318). Data from a single experiment is viewed as a 

normalized ratio (Cy3/Cy5), where deviation from 1 is indicative of increased or decreased levels of 

gene expression in relation to the reference sample (318). 

Analysis of the microarray profiles of 547 human breast tumors from an Agilent mRNA expression 

microarray platform (319) is freely available online. Tumors were grouped by molecular subtypes 

(103 basal-like, 58 HER2-amplified, 241 luminal A and 145 luminal B) and analyzed for CaV3.2 

channel expression using Partek Genomics Suite (Partek Inc.). 
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4.4 Results 
 

4.4.1 Assessment of CaV3.2 channel mRNA expression in different breast cancer cell 

lines 

The mRNA of CaV3.2 channel was found to be up-regulated in two de novo resistant cell lines 

compared to the age-matched control cell lines as described in section 3.4.3.1. Further experiments 

were performed to evaluate the mRNA expression in a panel of breast cancer cell lines including 

HER2-positive and HER2-negative cell lines, basal and luminal cell lines and four cell lines derived 

from non-cancer breast tissue. These results were compared, using a plate study (317), to the 

CaV3.2 channel mRNA levels in the six cell lines produced in chapter 3. 

 

CaV3.2 channels were not present in any of the non-cancer derived breast cell lines, however 

CaV3.2 mRNA levels were high in MCF-7 and T-47D which are two luminal estrogen receptor 

and/or progesterone receptor positive and HER2-negative breast cancer cell lines (Fig. 4.1). While 

CaV3.2 mRNA levels were lower in the ZR-75-1 cell line (estrogen receptor positive and HER2-

negative) and in the SKBR3 cell line (Fig. 4.1) compared to the luminal cell lines. Among the three 

basal cell lines tested, only HCC1569, a HER2-positive breast cancer cell line had detectable levels 

of CaV3.2 mRNA (Fig. 4.1). 

 

Comparing these results with the mRNA expression observed for the cell lines produced in chapter 

3, it can be noted that the two age-matched control cell lines have similar CaV3.2 mRNA levels to 

SKBR3 cells, while RT1, RV1 and RV2 showed similar CaV3.2 levels to the basal-like HCC1569 

cell line (Fig. 4.1), which is known to have an intrinsic resistance to trastuzumab (156). 
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CaV3.2 channel mRNA was also evaluated during the development of the age-matched control and 

resistant cell lines (Fig. 4.2). During the 7 months of development of these cell lines, RNA was 

isolated regularly to evaluate changes in mRNA expression of targets during the acquisition of 

trastuzumab resistance as described in section 3.4.1. 

 

Five time points of 1, 3, 4, 6 and 6+ months after the start of the protocol were selected to evaluate 

CaV3.2 channel mRNA levels, for the last time point cells were assessed after defrosting from liquid 

nitrogen. From figure 4.2 it can be observed that CaV3.2 channel mRNA levels were increased by 3-

5 fold in RV1, RV2 and RT1 cells compared to the SV1 cell line after 6 months and that this 

elevation was maintained in RT1 and RV1 (2-7 fold) compared to the age-matched control SV1 cell 

line even after defrosting from liquid nitrogen (Fig. 4.2).  
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Figure 4.2 CaV3.2 channel mRNA levels during the development of the age-matched control 

and resistant cell lines 

 

The mRNA expression of CaV3.2 channel was 3-5 fold higher than SV1 in three out of four 

resistant cell lines (RT1, RV1 and RV2) after 6 months from the beginning of the protocol and this 

elevation (3-7 fold) was maintained compared to the age-matched control SV1 cell line after 

defrosting from liquid nitrogen (6+ months) for RT1 and RV1. Statistical analysis was performed 

using two-way ANOVA with Bonferroni post-tests, the * indicates statistical significance between 

SV1 and RT1, # between SV1 and RV1, and + between SV1 and RV2 (** p ≤ 0.01, **** or #### 

or ++++ p ≤ 0.001). 
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4.4.2 Assessment of CaV3.2 channel in a gene expression database of human breast 

cancer tumors 

CaV3.2 channel expression was also evaluated in a database of human breast tumors. Since mRNA 

assessment of CaV3.2 in the panel of different breast cancer cell line suggested a correlation 

between luminal and basal HER2-positive breast cancer cells, this was assessed in clinical samples 

(section 4.4.1). 

 

This assessment was kindly performed with A/Prof. Paraic Kenny at the Albert Einstein College of 

Medicine, Bronx NY (USA). The mRNA expression of CaV3.2 channel was evaluated among 

different breast cancer subtypes (Fig. 4.3). In accordance with the mRNA level assessment of 

CaV3.2 in a panel of breast cell lines (section 4.4.1) the luminal breast cancer subtype showed a 

higher expression of this channel while the basal-like subtype tumors showed the lowest expression 

(Fig. 4.3). HER2-positive breast cancer tumors presented an intermediate expression between the 

luminal and the basal (Fig. 4.3).  
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Figure 4.3 Assessment of the expression of CaV3.2 channels in a gene expression database of 

human breast tumors 

 

The graph shows the relative expression of CaV3.2 channel (CACNA1H) in different molecular 

subtypes of human breast tumors. 103 basal-like, 58 HER2-amplified, 241 Luminal A and 145 

Luminal B cases were included in the analysis (319). CaV3.2 channel had a higher level in the 

luminal subtypes and lower levels in the basal-like subtype. This analysis was kindly performed by 

A/Prof. Paraic Kenny from the Albert Einstein College of Medicine, Bronx NY (USA). Statistical 

analysis was assessed by comparing medians using the Kruskall-Wallis test followed by Dunn’s 

Multiple Comparison Test (*** p ≤ 0.001). 

 

****
****

****
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Basal HER2-positive breast cancer cell lines are known to be resistant to trastuzumab and thus they 

show an intrinsic resistance to this therapeutic agent (156). Indeed, basal markers are associated 

with resistance to trastuzumab (313). The basal HER2-positive breast cancer cell line HCC1569 had 

a significantly higher expression of CaV3.2 channels compared to the luminal SKBR3 cell line and 

this also correlates with the expression of this channel in the two de novo resistant cell lines RV1 

and RV2 as described in section 4.4.1. Thus, I evaluated if the elevated expression of CaV3.2 

correlates with HER2 status in basal tumors. Among the 103 clinical samples that belonged to the 

basal subtype, two tumors showed very high expression levels of both the HER2 receptor and 

CaV3.2 channels (Fig. 4.4). The R-squared value for this analysis was 0.047, thus only a weak 

correlation is shared between the expressions of HER2 and CaV3.2 channel. Unfortunately, the 

clinical treatment (e.g. trastuzumab therapy) and outcomes of these patients are not available, so 

trastuzumab resistance could not be assessed.  
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Figure 4.4 Assessment of the correlation of HER2 status with the CaV3.2 channel expression 

in basal tumors 

 

The graph shows the correlation between CaV3.2 channel (CACNA1H) expression and HER2 status 

in the human basal breast tumors. This analysis was kindly performed with A/Prof. Paraic Kenny 

from the Albert Einstein College of Medicine, Bronx NY (USA). The R-squared for these results 

was 0.047. 
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4.4.3 Assessment of the consequences of CaV3.2 silencing on trastuzumab resistance 

in SKBR3 resistant cell lines 

The CaV3.2 channel was part of the assessment of silencing of selected targets in RT1 and RV1 cell 

lines presented in sections 3.4.2.1 and 3.4.3.1. However, since elevated mRNA levels of CaV3.2 

were a feature of the de novo resistant cell lines (RV1 and RV2), further experiments were 

performed to evaluate the effect of CaV3.2 channel silencing in all of the six cell lines produced. 

The efficacy of the siRNA to silence CaV3.2 channel was first assessed in RV1 cell line, mRNA 

levels were reduced of approximately 46% at the time that the MTS assay was performed (Fig. 4.5). 
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Figure 4.5 Assessment of CaV3.2 channel silencing efficacy 

 

CaV3.2 mRNA remaining 192 h after silencing. The silencing of CaV3.2 channel was assessed in the 

RV1 cell line. At this time point, when the cell viability was assessed CaV3.2 channel was silenced 

by about 46% in RV1 cell line (3 wells ± S.D.). 
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As described in section 3.3.8.1, silencing of the CaV3.2 channel was defined as reversing 

trastuzumab resistance if it was able to produce a trastuzumab response higher than 25% (a dash 

line was drawn at 75% on the Y axis). From three independent experiments using an MTS assay, it 

was observed that the silencing of CaV3.2 in the age-matched control cell lines did not produce an 

enhancement of the trastuzumab response (Fig. 4.6), while for the resistant cell lines, the silencing 

of CaV3.2 channel did not reverse trastuzumab resistance (Fig. 4.6).  
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4.4.4 Assessment of the effects of the CaV3.2 pharmacological inhibitors mibefradil 

and ML218 on trastuzumab resistance in RV1 resistant cell line  

The lack of effect of CaV3.2 silencing on trastuzumab resistance could have been due to incomplete 

silencing of CaV3.2 with the long protocol. Therefore a pharmacological approach was carried out 

to evaluate the effect of CaV3.2 channel inhibitors on resistance to trastuzumab. These studies were 

conducted in the RV1 cell line since the cells has high levels of CaV3.2 channel. 

 

Mibefradil was clinically used for the treatment of hypertension before being withdrawn from the 

market due to metabolic drug interactions (320). Mibefradil inhibits both T-type and L-type 

voltage-gated Ca2+ channels, but is more selective for the T-type subtype (321). It is known to 

inhibit the proliferation of various cell types that express T-type Ca2+ channels (322). Mibefradil 

was used in combination with trastuzumab (10 µg/mL) at three different concentrations (0.01 µM, 

0.1 µM and 1 µM) on the de novo resistant cell line RV1 (Fig. 4.7). These concentrations were 

chosen based on concentrations used to inhibit T-type channels in several cancer cell lines including 

MCF-7 cells (321, 323). After seeding (24 h), cells were treated with mibefradil alone or in 

combination with trastuzumab and the treatment was repeated every two days. After 216 h an MTS 

assay was performed to evaluate cell viability. As described for siRNA treatment in section 4.4.3, 

similarly, pharmacological inhibition of CaV3.2 channel was considered as reversing trastuzumab 

resistance if it was able to produce a trastuzumab response higher than 25% (a dash line was drawn 

at 75% on the Y axis).  Mibefradil alone did not have any effect on the proliferation of RV1 cell 

lines and in combination with trastuzumab, the inhibitor did not re-establish trastuzumab sensitivity 

at any of the concentrations assessed (Fig. 4.7). 
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Figure 4.7 Effect of mibefradil on trastuzumab sensitivity in the RV1 de novo resistant cell 

line 

 

An MTS assay after 216 h after seeding was performed on the RV1 cell line using mibefradil at 

three different concentrations (0.01 µM, 0.1 µM and 1 µM) alone and in combination with 

trastuzumab (10 µg/mL) to evaluate the pharmacological inhibition of CaV3.2 channel on the 

proliferation of RV1 and the effect on trastuzumab response. After seeding (24 h), cells were treated 

with mibefradil alone or in combination with trastuzumab and the treatment was repeated every two 

days (n=3, ± S.D.). Water was used as control. Statistical analysis was performed using two-way 

ANOVA with Bonferroni post-tests, Mibefradil alone was compared to vehicle, while the 

combination of mibefradil and trastuzumab was compared to trastzumab alone (p > 0.05). 
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ML218 appears to be more selective for CaV3.2 compared to the other T-type Ca2+ channels (324), 

but as yet has not been widely used (324, 325). ML218 was also used to evaluate the effect of 

pharmacological inhibition of CaV3.2 channel on trastuzumab responses. 

 

Three different concentrations of ML218 were used (100 nM, 1 µM and 10 µM) alone and in 

combination with trastuzumab (10 µg/mL) (Fig. 4.8). These concentrations were chosen based on 

studies carried out in HEK293 cells (324). After seeding (24 h), cells were treated with ML218 

alone or in combination with trastuzumab and the treatment was repeated every two days. After 216 

h an MTS assay was performed to approximate viable cell number. As observed for mibefradil, 

ML218 alone did not have any effect on RV1 proliferation or responses to trastuzumab (Fig. 4.8). 
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Figure 4.8 Effect of ML218 on the proliferation of RV1 de novo resistant cell line 

 

MTS assay 216 h after seeding performed on RV1 cell line using ML218 at three different 

concentrations (100 nM, 1 µM and 10 µM) alone and in combination with trastuzumab (10 µg/mL) 

to evaluate the pharmacological inhibition of CaV3.2 channel on the proliferation of RV1 and the 

effect on trastuzumab resistance 24 h after seeding, cells were treated with ML218 alone or in 

combination with trastuzumab and the treatment was repeated every two days (n=3, ± S.D.). DMSO 

was used as control. Statistical analysis was performed using two-way ANOVA with Bonferroni 

post-tests, ML218 alone was compared to vehicle, while the combination of ML218 and 

trastuzumab was compared to trastzumab alone (p > 0.05).  
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4.5 Discussion 
In this chapter the role of CaV3.2 channel in trastuzumab resistance was further evaluated. The 

expression of CaV3.2 channel was assessed in a panel of breast cell lines in order to evaluate any 

possible correlations between CaV3.2 expression and breast cancer characteristics. From this 

investigation, it was observed that the CaV3.2 channel was not expressed in cell lines derived from 

non-cancer breast tissue, while it was highly expressed in two luminal breast cancer cell lines 

(MCF-7 and T-47D). The luminal ZR-75-1 cell line and the HER2-positive SKBR3 cell lines 

showed a lower level of CaV3.2 mRNA. Among the basal subtypes, only the HER2-positive 

HCC1569 cell line had detectable levels of CaV3.2 mRNA. These levels were 4 fold higher than the 

luminal SKBR3 cell line. These results are consistent with a restriction landmark genomic scanning 

(RLGS) study that assessed the expression of CaV3.2 in breast cancer cell lines, where MCF-7 was 

reported to have high levels of CaV3.2 and the basal cell line MDA-MD-231 had little or no CaV3.2 

(307). 

 

The expression of CaV3.2 channel was also evaluated in a gene expression database of human 

breast tumors. The results from this analysis also correlate with the expression seen in the breast 

cancer cell lines. The luminal molecular subtype showed the highest levels of this channel while the 

basal subtype the lowest. 

 

Interestingly, the only basal breast cancer cell line that had detectable levels of CaV3.2 mRNA was 

the HER2-positive HCC1569 cell line. HCC1569 cells are known to express HER2 and be resistant 

to trastuzumab, as appears to be the case for most HER2-positive breast cancer cell lines of the 

basal molecular subtype (156). Indeed, intrinsic resistance to trastuzumab is associated with the 

expression of basal markers such as cytokeratines 5 and 6 (313). The JIMT-1 cell line that was 

established from a patient that was resistant to trastuzumab from the beginning of the therapy also 

has several features of the basal subtype (149). Thus, it could be speculated that CaV3.2 channels 

up-regulation is a feature of HER2-positive breast cancers with basal characteristics. The 

correlation of CaV3.2 channel and HER2 receptor expression in the basal breast tumor subtype 

showed that only two samples out of the 103 basal tumors presented a high expression of both 

targets. The R-squared for this experiment was 0.047, thus only a weak correlation is shared 

between the expression of HER2 and CaV3.2 channel. One of the reasons of this low percentage 

could be due to a low number of HER2-positive tumors within the 103 basal samples tested.  
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CaV3.2 mRNA was also evaluated during the development of the trastuzumab resistant cell lines. It 

was observed that CaV3.2 mRNA levels were elevated in three out of the four resistant cell lines 

(RT1, RV1 and RV2) compared to the two age-matched control cell lines 6 months after the 

beginning of the protocol, and this elevation was maintained for RT1 and RV1 after defrosting from 

liquid nitrogen. Since resistance to trastuzumab developed at 7 months, it appears that increased 

CaV3.2 mRNA was associated with the development of trastuzumab resistance but was not an event 

that clearly preceded resistance. 

 

CaV3.2 channel silencing was assessed as part of an siRNA screen in chapter 3. Further experiments 

were conducted in all the cell lines produced in this chapter. Firstly, siRNA efficacy in silencing 

CaV3.2 channel in the resistant cell line, RV1 was confirmed. At 196 h from the siRNA treatment 

(the same time point used to evaluate cell viability using MTS assay) CaV3.2 channel was silenced 

by 46%. However, from three independent experiments performed for each cell lines, CaV3.2 

silencing did not re-establish trastuzumab sensitivity. 

 

The cells that were treated with CaV3.2 siRNA still retained 54% of CaV3.2 mRNA and this 

incomplete silencing could have prevented the re-establishment of trastuzumab sensitivity. Thus, a 

pharmacological approach tested two T-type Ca2+ channel inhibitors, mibefradil and ML218. 

However, neither of these were able to re-establish trastuzumab sensitivity, suggesting that these 

agents do not represent a clinical approach to reverse trastuzumab resistance.  

 

Altered glycosylation is a characteristic of many cancers (326) and may play an important role in 

breast cancer (327). HER2 may increase N-acetylglucosaminyl transferase activity (328) and Fc 

functions can be modulated by altering glycosylation status and binding affinity to Fc receptors, 

resulting in changes in antibody-dependent cellular cytotoxicity, serum half-life, anti-inflammatory 

properties, and complement activation (329). It has been proposed that trastuzumab may have 

altered activity in trastuzumab resistant breast cancer due to altered glycosylation status of HER2 

(327). In this context, it is interesting to note that the surface expression and activity of CaV3.2 

channel is controlled by N-linked glycosylation, which is essential for the sorting of proteins and 

their trafficking to the plasma membrane (300). It could be that altered N-glycosylation may lead to 

reductions in CaV3.2 surface expression and activity in the resistant cell lines. Thus, although 

CaV3.2 mRNA is up-regulated, the channel may not be functional. De-glycosylation of CaV3.2 

channel using neuraminidase can reverse peripheral diabetic neuropathic pain where CaV3.2 

channel is known to play a role (301). Moreover, glucose levels (which are reported to be higher in 
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trastuzumab resistant cell lines) (330), can regulate the glycosylation of CaV3.2 channels (300). 

Future studies could assess the glycosylation state of CaV3.2 channels in trastuzumab resistant 

breast cancer cells. 

 

CaV3.2 channel is considered a candidate oncogene in T-cell leukemia (331) and in prostate cancer 

(289). From the results shown in this chapter, CaV3.2 channels showed higher expression levels in 

basal HER2-positive HCC1659 breast cancer cell line and in the two de novo resistant cell lines 

RV1 and RV2. Thus, CaV3.2 channel could be used as diagnostic marker to predict responses to 

trastuzumab. However, more studies are needed to be carried out on HER2-positive breast tumor 

samples from trastuzumab treated patients with survival data, to evaluate if CaV3.2 channel 

expression may predict responsiveness to this therapeutic.  
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5 Assessment of TRPM7 in trastuzumab resistant HER2-positive 

SKBR3R cell lines  

 

5.1 Introduction 
Transient receptor potential cation channel melastatin 7 (TRPM7) is a Ca2+ channel present on the 

plasma membrane that mediates the influx of Ca2+ and Mg2+ (Fig. 5.1). The TRPM7 gene is also 

known by other names, such as CHAK1, TRP-PLIK, and LTRPC7 (332-334). The TRPM7 channel 

is an ion channel linked to an atypical α-kinase (Fig. 5.1) and it was discovered by screening 

databases for homologs of human eukaryotic elongation factor 2 kinase (eEF2K) (335). Only one 

other TRP channel is known to be linked to a kinase, the TRPM6 channel (336, 337). TRPM7 

channel activity is regulated by free magnesium and Mg-nucleotide complexes such as Mg-ATP, 

which inhibits the TRPM7 channel (338).  

 

The atypical α-kinase does not seem to be essential for channel activity (339, 340), although the 

kinase can auto-phosphorylate at Ser1511 and Ser1567, mutation of these two amino acids does not 

alter channel activity as measured by Ca2+ influx (341). However, complete deletion of the kinase 

produces an apparently inactive TRPM7 channel, possibly due to altered processing and trafficking 

of TRPM7 to the plasma membrane (341). 

 

There are only a few substrates that are known for the TRPM7 α-kinase. The phosphorylation of 

myosin IIA, IIB and IIC by the TRPM7 kinase has been linked to the regulation of cell motility and 

adhesion (342-344). Another substrate of the kinase is annexin A1, an important regulator of 

membrane fusion (345). The phosphorylation of annexin A1 by the TRPM7 kinase has been linked 

to the regulation of cell growth and apoptosis (345, 346). Moreover, TRPM7 kinase is able to 

phosphorylate another atypical α-kinase, eEF2K, which is then associated with the inhibition of 

eukaryotic elongation factor 2 (eEF2) activity (347). The TRPM7 kinase can also phosphorylate 

myelin basic protein and the histone H3 (341). These phosphorylation events are Mg-dependent 

(348). Manganese like magnesium, zinc, and cobalt, can also inhibit the kinase activity of TRPM7, 

while Ca2+ does not appear to play a role (348). 
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Figure 5.1 Structure of TRPM7 channel 

 

The TRPM7 channel is an ion channel linked to an atypical α-kinase and it mediates the influx of 

both Ca2+ and Mg2+. The few known substrates for this kinase are myosin IIA, IIB and IIC, annexin 

A1 and the eEF2K. (Taken from Bae CY and Sun H, 2011 (349)) 
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TRPM7 channels are ubiquitously expressed, with TRPM7 expression reported in almost every 

tissue (340), and high expression in the heart, pituitary, bone, and adipose tissue (350). TRPM7 has 

been linked to a number of diseases or disease relevant processes including brain ischemia, 

cardiovascular disease and specific processes important in cancer progression (351). Inhibition of 

TRPM7 can produce cell cycle arrest in Jurkat T-cells (352), and apoptosis in differentiated mast 

cells (353) and hepatic stellate cells (354). In the rat, embryonic hepatocytes have a higher level of 

TRPM7 expression than adult hepatocytes, showing a possible involvement of TRPM7 in the 

differentiation process (355). As discussed above, TRPM7 can also regulate cell adhesion. Indeed, 

overexpression of this channel produces cell rounding and detachment of cells by m-calpain in a 

Ca2+ dependent manner (271, 332). 

 

Global disruption of TRPM7 expression in mice at early embryonic stages is lethal (356), while 

deletion at later embryonic stages produces viable mice or mice with cardiomyopathy at 

intermediate embryonic stages (357). Ablation of TRPM7 in a mouse model of global ischemia 

protects neurons from cell death (358). TRPM7 may also be involved in hypertension, as 

hypertensive rats show lower levels of TRPM7 mRNA compared to control rats and angiotensin II 

stimulation increases TRPM7 mRNA in control rats, but not in those with hypertension (359). 

 

Since TRPM7 is involved in cell proliferation, differentiation and migration, this protein has also 

been studied in cancer (360). TRPM7 is up-regulated in pancreatic adenocarcinomas (361) and 

primary breast cancer tissues compared to normal tissue (245). Due to increased metastasis 

formation in breast cancers with high levels of TRPM7, this channel is considered a predictor of 

poor prognosis (245, 362). Support for the involvement of TRPM7 in cancer progression is also 

suggested by the ability of TRPM7 silencing to inhibit proliferation of different cancers such as 

gastric adenocarcinoma (363) and head and neck carcinomas (364), and to reduce cell migration 

and invasiveness in cancers of the lung (365), nasopharynx (366), pancreas (361), and the MDA-

MB-435 breast cell line (362). Moreover, in pancreatic ductal adenocarcinomas, patient survival is 

inversely correlated with TRPM7 expression (361). TRPM7 silencing also reduces the ability of 

MDA-MB-468 breast cancer cells to undergo EGF-induced EMT (221). Collectively, the 

aforementioned studies highlight the potential importance of TRPM7 in various aspects of cancer 

progression; however, its role in the development of resistance to trastuzumab has not yet been 

explored.  
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Recently, two pharmacological TRPM7 inhibitors have been identified; NS8593 (367) and 

waixenicin A (352). NS8593 is a gating modulator potentiated by Mg2+ that produces a reversible 

blockage of the channel (367), while waixenicin A is a compound isolated from Hawaiian Soft 

Coral Sarcothelia edmondsoni that exhibits cytosolic activity potentiated by Mg2+ binding to the 

kinase (352). Indeed, mutation of the Mg2+ binding site on the kinase domain of TRPM7 reduces 

the potency of waixenicin A, while deletion of the kinase domain enhances its efficacy 

independently of Mg2+ (352). Recently, a TRPM7 kinase inhibitor has been identified - NH125 

(368). However, this compound is not selective for TRPM7, as it inhibits another atypical α-kinase - 

eEF2K (368). 

 

In chapter 2, TRPM7 silencing was found to enhance trastuzumab response in SKBR3 cells (section 

2.4.4). Despite TRPM7 mRNA levels remaining constant in the acquisition of trastuzumab 

resistance (sections 3.4.2.1 and 3.4.3.1), TRPM7 activity may still be a critical regulator of 

trastuzumab responses in trastuzumab resistant cells. This chapter therefore sort to evaluate the 

ability of TRPM7 inhibition to reverse trastuzumab resistance in SKBR3 cells using siRNA-

mediated silencing and TRPM7 pharmacological inhibitors.  
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5.2 Chapter Hypothesis 
Inhibition of TRPM7 will reverse trastuzumab resistance in breast cancer cells. 

 

5.2.1 Aims 

a. To assess TRPM7 mRNA levels in normal breast cells, basal-like and luminal breast cancer 

cell lines. 

b. To assess the ability of siRNA-mediated silencing of TRPM7 channels to reverse 

trastuzumab resistance in trastuzumab resistant SKBR3 cells. 

c. To assess the ability of pharmacological inhibitors of TRPM7 channels to reverse 

trastuzumab resistance in trastuzumab resistant SKBR3 cells. 
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5.3 Methods 
 

5.3.1 Materials 

Trastuzumab, purchased from Roche Products, was aliquoted and dissolved in sterile water to 

obtain a 10 mg/mL stock solution. The solution was stored at 4°C and was used within 1 month of 

preparation. The NS8593, purchased from Sigma Aldrich, was dissolved in DMSO to obtain a 30 

mM stock solution, and aliquoted and maintained at 4°C. The NH125 was purchased from Tocris 

Bioscience, dissolved in DMSO to obtain a stock solution of 100 mM and maintained aliquoted at -

20 °C. 

 

5.3.2 Cell Culture 

The HER2-positive human breast cancer cell line SKBR3, age-matched control and resistant 

SKBR3 cell lines were cultured in McCoy’s A5 media (Invitrogen) supplemented with 10% FBS 

and 5% Penicillin-Streptomycin mixture (Invitrogen), as recommended by ATCC (210). Media 

used to culture acquired resistant cell lines was supplemented with trastuzumab (10 µg/mL). Cells 

were maintained at 37°C in a humidified atmosphere containing 95% O2 and 5% CO2, and passaged 

twice a week. A detailed passaging protocol is described in section 2.3.1.  

 

SKBR3 cells and the established cell lines were periodically tested for mycoplasma using 

MycoAlert™ Mycoplasma Detection Kit (Lonza) and were genotyped to authenticate the cell line 

using the STR Promega StemElite™ ID Profiling Kit. The STR protocol is described in section 

2.3.1.  

 

5.3.3 MTS assay 

Viable cell numbers were approximated using a CellTiter 96® AQueous Non-Radioactive Cell 

Proliferation Assay kit (Promega). MTS assays were used to evaluate the anti-proliferative activity 

of trastuzumab in the age-matched control and resistant cell lines. The protocol for MTS assays 

used for SKBR3 cells was also applied to age-matched and resistant cell lines and is described in 

section 2.3.5 of this thesis. 
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5.3.4 Quantitative RT-PCR 

RNA was isolated using the protocol described in section 2.3.2. RNA was reverse transcribed as 

described in section 2.3.2. Protocol details for quantitative RT-PCR are described in section 2.3.2. 

In this chapter, a plate study was performed using StepOne Plus v2.3 software (Applied 

Biosystems) (317) to compare the mRNA levels of TRPM7 channels in different breast cancer cell 

lines and normal breast cancer cells with those of the SKBR3 cell lines developed in chapter 3. 

 

5.3.5 siRNA-mediated silencing  

Small interfering RNA (siRNA) technology was used to silence TRPM7 channels in this chapter. 

The siRNA used in these studies was ON-TARGETplus siRNA (SMARTpool, Dharmacon). A 

detailed protocol of siRNA treatment is described in section 2.3.3. 
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5.4 Results 
 

5.4.1 Assessment of TRPM7 channel mRNA expression in different breast cancer 

cell lines 

TRPM7 mRNA levels were not significantly different between the resistant cell lines compared to 

the age-matched control cell lines, as described in sections 3.4.2.1 and 3.4.3.1. However, to evaluate 

a possible correlation between different subtypes of breast cancer and non-malignant breast tissue, 

TRPM7 mRNA expression was assessed in a panel of breast cell lines including HER2-positive and 

HER2-negative cell lines, basal and luminal cell lines, and four cell lines derived from non-cancer 

breast tissue. These results were compared using a plate study (317) to allow comparison with the 

TRPM7 mRNA levels of the six cell lines produced in chapter 3. 

 

TRPM7 mRNA was present in all the breast cancer cell lines tested (Fig. 5.2), and in contrast with 

the CaV3.2 channel mRNA expression shown in figure 4.1 of chapter 4, TRPM7 was also present in 

the non-cancer derived breast cell lines examined. TRPM7 mRNA did not show any expression 

trends (e.g. relation to estrogen receptor status, luminal or basal subtype) for any of the breast 

cancer subtypes, however its mRNA levels were higher in the MCF-7 cancer cell line (Fig. 5.2). 

Interestingly, TRPM7 mRNA was elevated in the resistant and the age-matched control cell lines 

compared to the SKBR3 parental cell line, and their levels of mRNA expression were similar to the 

TRPM7 expression seen in MCF-7 cells (Fig. 5.2). This suggests that continual passaging may have 

increased levels on TRPM7 mRNA levels in SKBR3 cells to levels equivalent to MCF-7 cells.  
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5.4.2 Silencing	
  TRPM7	
  does	
  not	
  reverse	
  trastuzumab	
  resistance	
  in	
  SKBR3R	
  

cell	
  lines	
  

TRPM7 was part of the assessment of silencing of selected targets in RT1 and RV1 cell lines 

presented in sections 3.4.2.1 and 3.4.3.1. However, TRPM7 is a prognostic marker and a predictor 

of poor prognosis in breast cancer (245, 360, 362), and I found in this project that silencing of 

TRPM7 enhanced trastuzumab activity in the SKBR3 parental cell line (section 2.4.4). Thus, further 

experiments were performed to evaluate the effect of TRPM7 silencing in all the six cell lines 

produced in this thesis. The efficacy of the siRNA to silence TRPM7 was assessed in the RV1 cell 

line. TRPM7 mRNA levels were reduced by approximately 56% under these transfection conditions 

at the equivalent time point used for MTS assays (Fig. 5.3). 
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Figure	
  5.3	
  Assessment	
  of	
  the	
  efficacy	
  of	
  TRPM7	
  silencing	
  
 

TRPM7 mRNA remaining 192 h after silencing. The silencing efficacy of TRPM7 was assessed in 

the RV1 cell line. At this time point, when cell viability was assessed, TRPM7 was silenced by 

approximately 56% (3 wells ± S.D.). 

RV1

siN
T

siT
RP
M7

0

50

100

150

200

%
/m
R
N
A
/re
m
ai
ni
ng



Chapter	
  5	
  

	
   219	
  

As described earlier in section 3.3.8.1, silencing of the TRPM7 channel was defined as reversing 

trastuzumab resistance if it was able to produce a trastuzumab response higher than 25% (a dash 

line was drawn at 75% on the Y axis).  From three independent experiments, it was observed that 

silencing of TRPM7 in the age-matched control cell lines did not enhance the trastuzumab response 

(Fig. 5.4), in resistant cell lines, the silencing of TRPM7 also did not reverse trastuzumab resistance 

(Fig. 5.4). 
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5.4.3 Pharmacological inhibitor  

Similar to studies assessing the CaV3.2 Ca2+ channel (section 4.4.10), a pharmacological approach 

was taken to evaluate the effect of TRPM7 inhibition on resistance to trastuzumab. These studies 

were conducted in the RV1 cell line. 

 

A recently discovered selective TRPM7 inhibitor NS8593 (367) is commercially available and was 

used in these studies. As described earlier, NS8593 is a gating modulator of the TRPM7 channel 

that is potentiated by Mg2+, and it produces a reversible blockage of the channel (367). This 

compound is also known to inhibit Ca2+-activated K+ channels (369, 370). The earlier mentioned 

waixenicin A is another selective TRPM7 inhibitor (352) and it has a cytosolic activity potentiated 

by Mg2+ binding to the kinase (352). However, it appears that its binding site is not directly on the 

kinase, as deletion of the kinase domain does not suppress waixenicin A activity (352). Since 

waixenicin A is not currently commercially available, only NS8593 could be used to evaluate the 

effects of TRPM7 pharmacological inhibition on trastuzumab activity in these studies. NS8593 was 

used in combination with trastuzumab (10 µg/mL) at three different concentrations (100 nM, 1 µM 

and 10 µM) on the de novo resistant cell line RV1 (Fig. 5.5). These concentrations were chosen 

based on previous studies carried out in HEK293 cells (367) and MDA-MB-468 cells (221). After 

seeding (24 h), cells were treated with NS8593 alone or in combination with trastuzumab and the 

treatment was repeated every two days. After 216 h, an MTS assay was performed to evaluate cell 

viability. As described for siRNA treatment in section 5.4.2, pharmacological inhibition of TRPM7 

channel was defined as reversing trastuzumab resistance if it was able to produce a trastuzumab 

response higher than 25% (a dash line was drawn at 75% on the Y axis).  NS8593 alone did not 

have any effect on the proliferation of RV1 cell line, and in combination with trastuzumab, the 

inhibitor did not re-establish trastuzumab sensitivity at any of the concentrations assessed (Fig. 5.5). 
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Figure 5.5 Effect of NS8593 on trastuzumab sensitivity in the RV1 de novo resistant cell line 

 

An MTS assay 216 h after seeding was performed on the RV1 cell line using NS8593 at three 

different concentrations (100 nM, 1 µM and 10 µM) alone and in combination with trastuzumab (10 

µg/mL) to evaluate pharmacological inhibition of TRPM7 channel on the proliferation of RV1 and 

the effect on the trastuzumab response. Cells were treated with NS8593 alone or in combination 

with trastuzumab (24 h after plating) and the treatment was repeated every two days (n=3, ± S.D.). 

DMSO was used as control. Statistical analysis was performed using two-way ANOVA with 

Bonferroni post-tests, NS8593 alone was compared to vehicle, while the combination of NS8593 

and trastuzumab was compared to trastuzumab alone (p > 0.05). 
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Due to the dual activity of TRPM7 as a channel and kinase, and the inefficacy of the gating 

inhibitor NS8593, I evaluated if the kinase activity of TRPM7 could have a role in reversing 

trastuzumab resistance. Since a specific TRPM7 kinase inhibitor has not yet been developed, the 

most selective atypical α-kinase inhibitor commercially available was used - NH125. This 

compound inhibits eEF2K (371) with an IC50 of 18 µM in an in vitro kinase assay (368) and is able 

to inhibit the TRPM7 kinase with an IC50 of 55 µM. NH125 also inhibits ERK2 with an IC50 of 70 

µM (368). NH125 decreases cell viability of several cancer cell lines with a reported IC50 of 1–5 

µM, and an IC50 of 3.6 µM for MCF-7 breast cancer cells (372).  

 

NH125 was used to evaluate the possible role of the TRPM7 atypical α-kinase in trastuzumab 

sensitivity in a resistant cell line. NH125 was used in combination with trastuzumab (10 µg/mL) at 

two different concentrations (10 µM and 30 µM) on the de novo resistant cell line RV1 (Fig. 5.6). 

These concentrations were chosen based on a previous kinase assay study (368). Similar to the 

NS8593 protocol, 24 h after seeding, cells were treated with NH125 alone or in combination with 

trastuzumab with treatments repeated every two days. After 216 h, an MTS assay was performed to 

evaluate cell viability. NH125 at 30 µM alone significantly decreased cell viability of RV1 cells, 

and this effect was greater when given in combination with trastuzumab, suggesting that some 

sensitivity to trastuzumab was restored (Fig. 5.6).  
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Figure 5.6 Effect of NH125 on the proliferation of the RV1 de novo resistant cell line 

 

MTS assay performed 216 h after seeding on the RV1 cell line with NH125 at two different 

concentrations (10 µM and 30 µM) alone and in combination with trastuzumab (10 µg/mL) to 

evaluate the effect of pharmacological inhibition of TRPM7 kinase on the proliferation of RV1 and 

the effect on trastuzumab resistance. After plating (24 h), cells were treated with NH125 alone or in 

combination with trastuzumab and the treatment was repeated every two days (n=3, ± S.D.). DMSO 

was used as control. Statistical analysis was performed using two-way ANOVA with Bonferroni 

post-tests (* p ≤ 0.05, ** p ≤ 0.01).  
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5.5 Discussion 
In this chapter the role of TRPM7 in trastuzumab resistance was further evaluated. As for the 

CaV3.2 channel studies in section 4.4.1, the expression of TRPM7 was evaluated in a panel of 

different breast cell lines in order to evaluate any possible correlations between TRPM7 expression 

and breast cancer characteristics. From this experiment it was shown that TRPM7 was expressed in 

all of the cell lines tested, including cell lines derived from non-cancer breast tissue. MCF-7 cells 

were associated with the highest levels of TRPM7 mRNA. In contrast to CaV3.2 mRNA levels 

(section 4.4.1), TRPM7 did not show any differences in mRNA levels between luminal (SKBR3) 

and basal (HCC1569) HER2-positive cell lines. Several studies of TRPM7 have been carried out in 

MCF-7 (245, 270, 373), MDA-MB-468 (221) and MDA-MB-435 breast cancer cell lines (362), 

however, only one study has compared the expression of TRPM7 in a panel of breast cancer cell 

lines. This current study compared TRPM7 mRNA levels in MCF-7, MDA-MB-231 and MDA-

MB-435 cell lines. The data presented in this chapter showed a similar profile of mRNA levels in 

the cell lines evaluated (373), with higher TRPM7 levels in MCF-7 cells compared to MDA-MB-

231 cells.  

 

TRPM7 mRNA levels were increased in both age-matched control and resistant SKBR3 cell lines 

compared to the parental SKBR3 cell line. Thus, the continuous culture of the SKBR3 cell line 

produced an increase in TRPM7 mRNA, underlining the importance of age-matched control cell 

lines as appropriate controls for resistant cell line development. Indeed, as previously discussed in 

chapter 3, the continuous culture of cell lines for a long period may change many aspects of the 

phenotype of some cell lines (284, 285), the increase of TRPM7 mRNA in all the cell lines 

produced in this thesis may represent another example of such changes. 

 

TRPM7 silencing was assessed as part of an siRNA screen described in chapter 3. Further 

experiments were conducted in all the cell lines produced in this chapter. Studies in this chapter 

confirmed the efficacy of siRNA-mediated silencing of TRPM7 in the resistant cell line, RV1. At 

196 h from the siRNA treatment (the same time point used to evaluate cell viability), TRPM7 was 

silenced by 56%. However, this amount of TRPM7 silencing did not re-establish trastuzumab 

sensitivity.  

 

Resistant and sensitive cell lines treated with TRPM7 siRNA likely still retained significant 

amounts of TRPM7 mRNA (~44% for RV1 cells). This incomplete silencing could have prevented 

the re-establishment of trastuzumab sensitivity. As described in section 2.4.4, in the SKBR3 
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parental cell line, where TRPM7 silencing produced an enhancement of the trastuzumab response, 

cells retained approximately 60% of TRPM7 mRNA expression at the equivalent time point used 

for the Click-iT® EdU proliferation assay. Thus, the larger amount of TRPM7 mRNA in the age-

matched control and resistant cell lines compared to parental SKBR3 cells could have prevented the 

re-acquisition of trastuzumab sensitivity. Moreover, in the SKBR3 parental cell line, a different 

proliferation assay (Click-iT® EdU assay) was used to evaluate the effect of TRPM7 silencing on 

trastuzumab activity. Due to the large amount of experiments carried out in the 6 cell lines 

produced, a less expensive but less powerful assay, the MTS assay, was used, this could also be 

another reason for the lack of effect and should be addressed in future studies.  

 

A pharmacological approach was also used in this chapter. Inhibition of TRPM7 gating with 

NS8593 did not decrease cell viability and it did not reverse trastuzumab resistance. This suggests 

that TRPM7 gating may not be involved in trastuzumab activity. This compound was previously 

used in another breast cancer cell line (MDA-MB-468), where inhibition of TRPM7 using NS8593 

produced a decrease in EGF-induced vimentin expression (221). In SKBR3 resistant cell lines the 

inhibitor did not produce changes in cell viability, however, its role in EMT induction was not 

tested in this cell line. 

  

The inhibitor of the TRPM7 atypical α-kinases, NH125, was also used to evaluate the possible 

involvement of TRPM7 kinase in trastuzumab resistance. NH125 at 30 µM alone significantly 

decreased cell viability in the RV1 cell line. This response was augmented when used in 

combination with trastuzumab. This suggests that the TRPM7 kinase may be involved in 

trastuzumab resistance. However, as previously stated, TRPM7 silencing was not able to replicate 

the effect observed with NH125. This could be due to an incomplete silencing of TRPM7 and the 

larger amount of mRNA present in this cell line, which may allow sufficient TRPM7 kinase activity 

to contribute to trastuzumab resistance. However, since NH125 is also able to inhibit eEF2K (371), 

the effect observed with this compound could also be due to its inhibition of eEF2K.  

 

TRPM7 directly phosphorylates eEF2K and this kinase can phosphorylate eEF2 inhibiting its 

activity (347). Since eEF2 participates in protein synthesis (347), TRPM7 may indirectly regulate 

the elongation state of some proteins. Thus, even if the effect observed with NH125 was due solely 

to the inhibition of eEF2K activity, modulation of TRPM7 kinase, through its activity on eEF2K, 

could indirectly regulate eEF2 and represent a novel approach to reverse trastuzumab resistance. 

The atypical α-kinase eEF2K has also been shown to be involved in trastuzumab activity in MCF-7 
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and MDA-MB-468 cells, where the silencing of eEF2K in these cell lines enhanced the cytotoxicity 

effect of trastuzumab (374).  

 

Recently, Chen and colleagues demonstrated that the ability of NH125 to inhibit the growth of PC3 

prostate cancer cells via inhibition of eEF2 protein activity was not only due to the inhibition of 

eEF2K activity, but also via the inhibition of multiple pathways that included 5' AMP-activated 

protein kinase (AMPK) and protein phosphatase 2A (PP2A) (371). Chen and colleagues used 

nanomolar concentrations of NH125 based on an early study, which used different kinase assay 

conditions and showed that the IC50 of NH125 for eEF2K was 60 nM (372). However, a more 

recent study showed that NH125 inhibits TRPM7 and eEF2K in the micromolar range (368). 

Hence, the observations of Chen et al may be a consequence of NH125 preferentially inhibiting 

different kinases. 

 

The role of eEF2K in trastuzumab resistance has not been previously evaluated, however, it has 

recently been assessed in a lapatinib resistant SKBR3 cell line (375). In this cell line, eEF2K had a 

higher expression and phosphorylation status and eEF2 was highly activated (dephosphorylated) 

(375). Since lapatinib induces the inhibition of eEF2 in SKBR3 parental cells, it was speculated that 

altered activity of eEF2K may have prevented the ability of lapatinib to induce the phosphorylation 

of eEF2 in lapatinib resistant cell lines (375). Indeed, the inhibition of eEF2K by NH125 in the 

SKBR3 parental cell line significantly decreased eEF2 phosphorylation. However, the combination 

of NH125 and lapatinib in SKBR3 parental cells did not reduce lapatinib sensitivity. It was 

therefore concluded that eEF2K is not a major mediator of lapatinib resistance (375). Since 

trastuzumab resistant cells maintain their sensitivity to lapatinib (154), the resistance mechanisms 

and the role of atypical α-kinases may be different between these two mechanisms of resistance. 

 

Hence, the results presented in this chapter and the work of others suggests that atypical α-kinase 

eEF2K and/or the atypical α-kinase of TRPM7 may be involved in trastuzumab resistance in some 

HER2-positive breast cancer cell lines. However, further experiments are required to fully 

understand the relative roles of eEF2K and TRPM7 atypical α-kinases in potentially reversing 

trastuzumab resistance. 

 

In order to further evaluate the role of TRPM7 kinase in trastuzumab resistance, a different TRPM7 

inhibitor could be used, such as rottlerin, which was previously used to inhibit TRPM7 kinase 

(348). However, rottlerin inhibits several proteins such as different protein kinases C (376-378), 
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eEF2K (379), human ether-a-go-go hERG potassium channel (380) and Ca2+-activated K+ channels 

(381). NH125 could also be used in association with TRPM7 and/or eEF2K silencing to further 

define the mechanism of the effect of NH125 in RV1 cells. The effect of NH125 should also be 

assessed in the other cell lines described in this thesis and other trastuzumab resistant cell lines. 
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6 Analysis of calcium-related protein expression from microarrays 

and clinical samples for the identification of possible therapeutic 

targets important in trastuzumab resistance 

 

6.1 Introduction 
The work described in chapters 3, 4 and 5 involved the assessment of a relatively small number 

of targets (9 calcium pumps, 31 calcium permeable channels and 2 calcium channel regulators) 

in the trastuzumab resistant SKBR3 cell lines developed during the current studies. CaV3.2 and 

TRPM7 mRNA expression was also assessed in a number of different cell lines developed from 

malignant and non-malignant breast tissue. CaV3.2 channel mRNA expression was also 

evaluated in a microarray data of primary human breast tumors (319) stratified by molecular 

subtypes (103 basal-like, 58 HER2-amplified, 241 Luminal A and 145 Luminal B).   

 

The use of high-throughput large-scale gene expression microarray and proteomic analysis is 

now widely used in cancer research (382, 383). Microarray analysis has allowed the 

identification of breast cancer heterogeneity at the molecular level and can predict prognosis 

(118, 119). Microarray analysis can be also used with breast cancer tissues to predict response 

to chemotherapy (384, 385). Molecular signatures can also predict distant metastasis (386), 

invasiveness (387), survival (388) and chromosomal instability (389).  

 

Stable isotope labeling by amino acids in cell culture (SILAC) assay is a powerful form of 

quantitative proteomic analysis. The technique uses a mass spectrometry method based on 

stable isotope quantitation (390, 391). In breast cancer, SILAC has been used to evaluate 

responses to chemotherapy in T47D (392) and MDA-MB-231 cells (393) and to evaluate new 

prognostic markers for estrogen receptor negative tumors (394). This assay has also been used 

to produce a proteomic profile of HER2-positive breast cancer cell line from the Her2 

transgenic mouse model (395). 

 

In this chapter, publically available cDNA microarray data and SILAC assay results from 

studies performed in SKBR3 cells and/or clinical samples have been used to identify proteins 

involved in calcium signaling that may be important in trastuzumab resistance. 
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6.2 Chapter Hypothesis 
Alteration of specific calcium related proteins is a characteristic of trastuzumab resistance in 

HER2-positive trastuzumab sensitive breast cancer cell lines and in HER2-positive clinical 

breast cancers.  

 

6.2.1 Aims  

a. To assess changes in mRNA levels of calcium related proteins in SKBR3 sensitive and 

resistant cell lines using microarray data. 

b. To assess changes in protein levels of calcium related proteins in SKBR3 sensitive and 

resistant cell line using SILAC data. 

c. To assess changes in mRNA level of calcium related proteins in clinical breast cancers 

resistant to trastuzumab using microarray data. 
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6.3 Methods 
 

6.3.1 Cell Culture 

The HER2-positive human breast cancer cell line SKBR3, the age-matched control and resistant 

SKBR3 cell lines were cultured in McCoy’s A5 media (Invitrogen) supplemented with 10% FBS 

and 5% Penicillin-Streptomycin mixture (Invitrogen) as recommended by ATCC (210). Media used 

to culture the acquired resistant cell lines was enriched with trastuzumab (10 µg/mL). Cells were 

maintained at 37°C in a humidified atmosphere containing 95% O2 and 5% CO2, and passaged 

twice a week. A detailed passaging protocol is described in section 2.3.1.  

 

SKBR3 cells and the established cell lines were periodically tested for mycoplasma using 

MycoAlert™ Mycoplasma Detection Kit (Lonza) and were genotyped to authenticate the cell line 

using the STR Promega StemElite™ ID Profiling Kit. The STR protocol is described in section 

2.3.1. 

6.3.2 Quantitative RT-PCR 

RNA was isolated using the protocol described in section 2.3.2. RNA was reverse transcribed as 

described in section 2.3.2. Protocol details for quantitative RT-PCR are described in section 2.3.2. 

In this chapter, a plate study was performed using StepOne Plus v2.3 software (Applied 

Biosystems) (317) to compare the mRNA levels in parental SKBR3 breast cancer cell lines with 

those of the SKBR3 cell lines developed in chapter 3.  

 

6.3.3 Gene expression profile in human breast tumors 

Microarray is used to evaluate the expression of a large number of genes simultaneously (318). It 

hybridizes between a target DNA strand with a large set of oligonucleotides probes attached to a 

solid support. Hybridization is detected by fluorescence since the target sample and the reference 

sample are labeled with different fluorescent probes (318). Data from a single experiment is viewed 

as a normalized ratio between the two probes, where deviation from 1 is indicative of increased or 

decreased levels of gene expression in relation to the reference sample (318). Microarray data from 

two different studies on a trastuzumab resistant SKBR3 cell line produced by exposing SKBR3 

parental cells to trastuzumab (100 µg/mL) for 12 months (396) and clinical samples from patients 

that were resistant to trastuzumab (397) were analyzed to evaluate possible changes in the mRNA 

levels of Ca2+-related proteins in trastuzumab resistance. 
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6.3.4 Stable isotope labeling by amino acids in cell culture (SILAC) analysis 

SILAC is a high-throughput approach for quantitative proteomics that uses mass spectrometry 

(398). It allows the accurate quantification of proteins through metabolic encoding of whole cell 

proteomes using stable isotope labeled amino acids. For this analysis two cell populations are 

cultured under the same conditions except for the type of amino acid that is added to the culture, 

which can be light (for example natural 12C arginine) or heavy (for example 13C arginine) (398). 

These amino acids are incorporated into newly synthesized proteins usually after at least five cell 

divisions, each of these amino acids is then replaced by its isotope analog (398). The two types of 

samples are then combined, digested with trypsin and analyzed by mass spectrometry. The tryptic 

cleavage produces pairs of peptides that differ only by molecular weight, the heavy sample is 

detected via the mass shift since the two types of amino acids have the same chemical and physical 

properties (398). Since trypsin cleaves carboxy-terminal to lysine and arginine residues, double 

labeling of both amino acids is often used. The heavy/light (H/L) signal pairs are analyzed to 

quantify protein expression between the two samples. 

In this chapter, publically available online SILAC data from Boyer and colleagues (399) were used 

to evaluate possible changes in protein expression of calcium related proteins in a trastuzumab 

resistant SKBR3 cell line produced by exposing parental SKBR3 cells to trastuzumab 100 µg/mL 

for 9 months (400). 
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6.4 Results and Discussion 
 

6.4.1 Assessment of calcium signaling related proteins in a cDNA microarray of a 

trastuzumab resistant SKBR3 cell line 

Valabrega and colleagues (396) produced cDNA microarray data, where the levels of a large 

number of genes in a trastuzumab resistant SKBR3 cell line, produced by exposing a SKBR3 

parental cell line to trastuzumab 100 µg/mL for 12 months, were compared with the parental 

SKBR3 cell line (396). They identified 865 genes that were significantly altered, they selected 8 

representative genes and confirmed their altered mRNA levels using quantitative RT-PCR; among 

these were signal transducer and activator of transcription 3 (STAT3), EGFR, HER2 and TNFα, 

which were all down-regulated, and growth factor receptor-bound protein 2 (GRB2), ATP-binding 

cassette sub-family C member 2 (ABCC2), dual specificity phosphatase 6 (DUSP6) and interleukin 

1 receptor type I (IL1R1) which were all up-regulated (396). This microarray data set is freely 

available online (Accession n. GSE17630: 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17630) and I analyzed it in order to 

evaluate the levels of calcium-related proteins, which may be altered in the Valabrega et al. (396) 

trastuzumab resistant SKBR3 cell line compared to the SKBR3 parental cell line. The full data set is 

represented in a volcano plot (Fig. 6.1). The gene list was classified using the gene ontology 

PANTHER (Protein Analysis Through Evolutionary Relationships, version 9.0), a Ca2+-related 

protein list of 75 genes was evaluated (Table 6.1). Each Ca2+-related protein is reported in the 

volcano plot graph in red (Fig. 6.1).  
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Figure 6.1 Global gene expression levels comparing the Valabrega et al. trastuzumab resistant 

SKBR3 cell line and the parental SKBR3 cell line  

 

Volcano plot of 865 genes which are significantly (p ≤ 0.05) alterated in the trastuzumab resistant 

SKBR3 cell line compared to the parental cell line with fold changes greater than 4 in the Valabrega 

et al. study (396). Data is graphed as logarithm fold change (LogFC) against p-value. Red dots 

represent the 75 calcium-related genes that were selected through the gene ontology program 

PHANTER. 
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From this analysis 65 calcium-related genes were down-regulated while 10 were up-regulated 

(Table 6.1). Among the 65 genes that showed a decrease in expression were several S100 calcium 

binding proteins (S100A3, S100A4, S100A5, S100A7, S100A8, S100A9, S100A10 and S100P) (Table 

6.1), members of a group of 22 proteins that are involved in several intracellular and extracellular 

functions (55). TUBB genes (TUBB3, TUBB4, TUBB6) encoding for β-tubulins were also down-

regulated (Table 6.1). These are proteins that form with α-tubulins the microtubules (401). Coronin 

1A (CORO1A), a microtubule interacting protein (402), and two ankyrin genes (ANKS6 and 

ANKRD58), which are part of the cytoskeleton (403), also showed a decrease in mRNA levels 

(Table 6.1) with trastuzumab resistance. Genes involved in inflammation processes and/or immune 

responses such as chemokine ligands (CCL2 and CX3CL1), bradykinin receptors (BDKRB1 and 

BDKRB2), prostaglandin-endoperoxide synthase 1 (PTGS1) and TNF were down-regulated, while 

the chemokine (C-X-C motif) receptor 4 (CXCR4) was up-regulated (Table 6.1). Genes such as 

connective tissue growth factor (CTGF), MMP9 and transforming growth factor 1 (TGFBI), which 

are all part of the extracellular matrix (404), showed decreased expression (Table 6.1). Similarly, 

glycoproteins such as wingless-type MMTV integration site family, member 5A (WNT5A), alpha-1 

antiproteinase (SERPINA3) and zona pellucida glycoprotein 3 (ZP-3) were down-regulated (Table 

6.1). Other important Ca2+-related proteins such as the intermediate messenger calmodulin 1 

(CALM1), calpain 1 and 2 (CAPN1 and CAPN2) and calcium/calmodulin-dependent protein kinase 

II gamma (CAMK2G) showed decreased expression (Table 6.1). EGFR, which is involved in 

several cancers and is a target of some new anticancer agents (405), was down-regulated (Table 6.1) 

as previously reported and confirmed by Valabrega and colleagues (396). Two annexin proteins 

were also significantly altered: annexin A11 (ANXA11) was down-regulated, while annexin A2 

(ANXA2) was up-regulated (Table 6.1). 

 

Several Ca2+-related transporters analyzed showed a decreased expression: SERCA3 (ATP2A3), the 

potassium intermediate/small conductance calcium-activated channel KCa3.1 (KCNN4), the 

calcium homeostasis modulator 2 (FAM26B), TRPM2 and TRPM4 channels, CaV3.3 channel 

(CACNA1I), the voltage-gated L-type calcium channel subunit β-1 (CACNB1) and the 

sodium/lithium/calcium exchanger NCKX6 (SLC24A6) (Table 6.1). In contrast, the potassium large 

conductance calcium-activated channel KCa1.1 (KCNMA1), the sodium/potassium/calcium 

exchanger NCKX3 (SLC24A3) and IP3R1 (ITPR1) were up-regulated (Table 6.1). The gene that 

showed the highest increase was galectin-3 (LGALS3) (Table 6.1), which has been previously 
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identified as playing important roles in cell adhesion, cell growth, differentiation and apoptosis 

(406). 
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Table 6.1 Changes in gene expression of calcium-related genes in the Valabrega et al. 

trastuzumab resistant SKBR3 cell line compared to the parental SKBR3 cell line	
  

Calcium-related genes present in the Valabrega et al. microarray analysis (396) with significantly (p 

≤ 0.05) and greater than a 4 fold changes. Genes were selected through the gene ontology program 

PHANTER, 65 calcium-related genes were down-regulated (green) and 10 were up-regulated (red). 

The table reports the Logarithm Fold change and p-value for each gene. P-value ≤ 0.05 was 

considered significant. 

 

Gene Name	
   Description logFC p-value 

S100A4 S100 calcium binding protein A4 -5.819827636 1.51E-07 

S100A8 S100 calcium binding protein A8 -5.613127666 9.98E-09 

TUBB6 tubulin beta 6 class V -5.58691565 6.36E-08 

S100P S100 calcium binding protein P -5.063547579 3.76E-07 

DHRS3 dehydrogenase/reductase (SDR family) 

member 3 

-4.938890006 7.92E-07 

DHRS2 dehydrogenase/reductase (SDR family) 

member 2 

-4.938788317 3.64E-06 

S100A9 S100 calcium binding protein A9 -4.861836544 5.40E-06 

TGM1 transglutaminase 1 -4.830787517 2.35E-06 

ATP2A3 ATPase, Ca2+ transporting (SERCA3) -4.689038558 3.01E-06 

KCNN4 potassium intermediate/small conductance 

calcium-activated channel subfamily N 

member 4 (KCa3.1) 

-4.609674831 6.86E-06 

ADA adenosine deaminase -4.479588372 4.57E-06 

TRPM2 transient receptor potential cation channel 

melastatin 2 

-4.366245053 6.06E-06 

CORO1A coronin actin binding protein 1A -4.322808622 5.63E-06 

CCL2 chemokine (C-C motif) ligand 2 -4.123764384 1.95E-07 

PTGS1 prostaglandin-endoperoxide synthase 1 

(prostaglandin G/H synthase and 

cyclooxygenase) 

-4.118597865 3.14E-06 

FAM26B calcium homeostasis modulator 2 -4.037879457 5.97E-07 

EGFR epidermal growth factor receptor -3.851552146 4.18E-06 

TMC6 transmembrane channel-like 6 -3.772235815 7.98E-07 
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ADM adrenomedullin -3.732973327 1.84E-06 

GAL galanin/GMAP prepropeptide -3.506804735 1.59E-06 

AQP3 aquaporin 3 -3.50243339 4.16E-06 

PACSIN1 protein kinase C and casein kinase substrate 

in neurons 1 

-3.421906245 4.37E-07 

S100A10 S100 calcium binding protein A10 -3.371730268 1.40E-06 

CTGF connective tissue growth factor -3.319692778 1.46E-07 

ADORA2A adenosine A2a receptor -3.26548744 3.26E-06 

PRNP prion protein -3.196376297 1.66E-07 

TMBIM1 transmembrane BAX inhibitor motif 

containing 1 

-3.179250719 2.95E-06 

ZP3 zona pellucida glycoprotein 3 (sperm 

receptor) 

-3.176014814 1.59E-07 

ANKS6 ankyrin repeat and sterile alpha motif domain 

containing 6 

-3.172814483 1.25E-07 

CDH24 cDNA FLJ25193 fis -3.153883739 1.79E-07 

TUBB4 tubulin, beta 4A class IVa -3.127070651 2.32E-06 

ANXA11 annexin A11 -3.077389225 1.48E-07 

EDN2 endothelin 2 -2.948233038 4.98E-07 

TRPM4 transient receptor potential cation channel 

melastatin 4 

-2.939722594 4.78E-07 

BDKRB1 bradykinin receptor B1 -2.891068931 6.94E-07 

ASPHD1 aspartate beta-hydroxylase domain containing 

1 

-2.875269398 4.85E-06 

TGFBI transforming growth factor beta 1 -2.765385284 2.62E-07 

CACNB1 calcium channel voltage-dependent beta 1 

subunit 

-2.676975593 2.79E-06 

SLC24A6 solute carrier family 8 

(sodium/lithium/calcium exchanger) member 

B1 (NCKX6) 

-2.6656577 1.13E-06 

ANKRD58 ankyrin repeat domain family member D -2.580029928 4.38E-07 

BDKRB2 bradykinin receptor B2 -2.576729588 3.73E-06 

CX3CL1 chemokine (C-X3-C motif) ligand 1 -2.554766744 1.81E-06 
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WNT5A wingless-type MMTV integration site family 

member 5A 

-2.527245112 4.35E-07 

JPH2 junctophilin 2 -2.523846551 2.96E-06 

S100A5 S100 calcium binding protein A5 -2.470700329 4.59E-07 

TUBB3 tubulin beta 3 class III -2.427270499 1.40E-06 

CD40 CD40 molecule, TNF receptor superfamily 

member 5 

-2.42665339 6.14E-06 

CACNA1I calcium channel voltage-dependent T-type 

alpha 1I subunit (CaV3.3) 

-2.394025191 7.41E-07 

CAPN2 calpain 2 -2.314518696 1.89E-06 

S100A7 S100 calcium binding protein A7 -2.294970552 6.98E-06 

SRI sorcin -2.253750138 1.76E-06 

SERPINA3 serpin peptidase inhibitor -2.220675185 1.38E-06 

CAPN1 calpain 1 -2.215508751 8.55E-07 

VAMP5 vesicle-associated membrane protein 5 -2.180458476 1.00E-06 

CAMK2G calcium/calmodulin-dependent protein kinase 

II gamma 

-2.163451898 4.91E-06 

SCAMP5 secretory carrier membrane protein 5 -2.156457625 1.88E-06 

CLIC4 chloride intracellular channel 4 -2.1274632 1.40E-06 

SAA1 serum amyloid A1 -2.071115395 5.27E-06 

DENND2D cDNA DKFZp667I053 -2.06043246 2.40E-06 

CALM1 calmodulin 1 -2.058147638 1.60E-06 

PTPN21 protein tyrosine phosphatase non-receptor 

type 21 

-2.057497049 1.27E-06 

MMP9 matrix metalloproteinase 9 -2.056194708 5.38E-06 

S100A3 S100 calcium binding protein A3 -2.053934471 7.83E-06 

TNF tumor necrosis factor -2.03002356 1.29E-06 

NMB neuromedin B -2.008299496 2.68E-06 

CXCR4 chemokine (C-X-C motif) receptor 4 2.027921343 2.50E-06 

ANXA2 annexin A2 2.136030312 2.58E-06 

KCNMA1 potassium large conductance calcium-

activated channel subfamily M alpha member 

1 (KCa1.1) 

2.492504484 4.40E-07 



Chapter	
  6	
  

	
   240	
  

SLC25A4 solute carrier family 25 (mitochondrial 

carrier; adenine nucleotide translocator) 

member 4 

2.537414689 1.76E-06 

ASPH aspartate beta-hydroxylase 2.825599379 2.26E-07 

GNAS GNAS complex locus 3.309578788 8.39E-06 

SLC24A3 solute carrier family 24 

(sodium/potassium/calcium exchanger) 

member 3 (NCKX3) 

3.363325998 2.29E-07 

CLCA2 chloride channel accessory 2 3.372484296 7.39E-06 

ITPR1 inositol 1,4,5-trisphosphate receptor type 1 3.527589105 2.55E-07 

LGALS3 galectin-3 5.61000007 4.58E-06 
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In their experiments, Valabrega and colleagues compared parental cell lines with trastuzumab 

resistant SKBR3 cell line that they established (396). However, it should be noted that some targets 

could change their expression levels during long-term continuous culturing as earlier described for 

TRPM7 in chapter 5 (section 5.4.1). In contrast, CaV3.2 did not show changes in mRNA expression 

between parental SKBR3 cells and age-matched control cell lines, but was significantly different 

between age-matched control and trastuzumab resistant cell lines (section 4.4.1). Other examples of 

alterations in mRNA levels with long-term culturing were also identified during the experiments 

conducted for this thesis. For example, Orai1 and Orai2 channels did not show significantly altered 

mRNA levels between age-matched control and resistant cell lines as described in sections 3.4.2.1 

and 3.4.3.1. However, Orai1 mRNA levels were significantly increased in the age-matched control 

cell lines SV1 and SV2 cells and in the resistant cell lines RT1, RT2 and RV1 compared to the 

parental SKBR3 cell line (Fig. 6.2a). The mRNA levels of Orai2 were significantly increased 

between parental SKBR3 cells and the two de novo resistant cell lines RV1 and RV2 (Fig. 6.2b). 

Thus, in the absence of age-matched control cell lines, both Orai1 and Orai2 could have been 

identified as two possible targets due to their change in mRNA levels between parental and resistant 

SKBR3 cell lines. 
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Figure 6.2 Levels of mRNA of Orai isoforms in the age-matched control (SV1 and SV2), 

resistant SKBR3 cell lines (RT1, RT2, RV1, RV2) and parental SKBR3 cells 

 

A. Orai1 mRNA levels in parental SKBR3, age-matched control and resistant SKBR3 cell lines. 

Orai1 showed significantly lower mRNA levels in the SV1, SV2, RT1, RT2 and RV1 cell lines 

compared to parental SKBR3 cells. B. Orai2 mRNA levels in parental SKBR3, age-matched control 

and resistant SKBR3 cell lines. Orai2 showed significantly higher mRNA levels in the RV1 and 

RV2 cell lines compared to the parental SKBR3 cells. Statistical analysis was performed using one-

way ANOVA with Bonferroni post-tests (* p ≤ 0.05, ** p ≤ 0.01, *** p≤0.001). 
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6.4.2 Assessment	
  of	
  calcium	
  signaling	
  related	
  proteins	
  in	
  SILAC	
  analysis	
  of	
  a	
  

trastuzumab	
  resistant	
  SKBR3	
  cell	
  line	
  

Similar to the gene expression microarray analysis, SILAC proteomics analysis has been used to 

evaluate changes in protein expression in a trastuzumab resistant SKBR3 cell line produced by 

exposing parental SKBR3 cells to trastuzumab 100 µg/mL for 9 months (400). Online, publically 

available SILAC data from the study by Boyer and colleagues (399) were analyzed. Boyer and 

colleagues (399) compared the expression of a set of proteins using SILAC in trastuzumab sensitive 

(light labeled) and trastuzumab resistant SKBR3 cell line (heavy labeled). They used two labeled 

amino acids (lysine and arginine) for each sample and in the second experiment they inverted these 

labels, in order to have the trastuzumab sensitive cells labeled with heavy amino acids and the 

trastuzumab resistant SKBR3 cell line labeled with the light amino acids (399). From their 

experiments they found that the CUB domain-containing protein 1 (CDCP1), paxillin (PXN) and 

MAPK1 had elevated protein expression in their trastuzumab resistant SKBR3 cell line compared to 

the parental cell line. They also identified that the silencing of these targets significantly increased 

trastuzumab sensitivity in trastuzumab resistant SKBR3 cells (399). Raw data from this SILAC 

experiment are shown in figure 6.3a and b. Lists of Ca2+-related proteins from the SILAC data were 

generated by the gene ontology program PANTHER and those proteins with significant (p ≤0.05) 

changes are shown in tables 6.2 and 6.3.  
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Figure 6.3 Protein expressions analyzed using SILAC analysis comparing the Boyer et al. 

trastuzumab resistant SKBR3 cell line and parental SKBR3 cells 

 

A. Volcano plot showing differences in protein expression between Boyer et al. parental SKBR3 

cell line (L) and trastuzumab resistant cell line (H) (399), the protein ratio is expressed as Log2. B. 

Volcano plot showing differences in protein expression between the parental SKBR3 cell line (H) 

and the trastuzumab resistant cell line (L), the protein ratio is expressed as Log2 where the labeling 

was inverted. Statistical significance was calculated using Perseus software. Targets with p-value 

between 0.01 and 0.05 are colored in red, between 0.01 and 0.001 are colored in yellow and <0.001 

are colored in green. 
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Among the Ca2+-related proteins only 7 appeared to be significantly altered; 4 down-regulated and 

3 up-regulated. SERCA3 (ATP2A3), in accordance with the gene expression analysis shown in 

section 6.4.1 using a different trastuzumab resistant SKBR3 cell line, showed a decrease in protein 

levels in the trastuzumab resistant SKBR3 cell line (Table 6.2). The protein S100A6 was also 

down-regulated at protein level (Table 6.2), however this S100 protein isoform was not one of the 

isoforms identified as altered at the mRNA level in section 6.4.1. Another down-regulated protein 

was TMEM165 (Table 6.2), which is a transmembrane protein found in the Golgi that plays a role 

in terminal Golgi glycosylation (407). The sodium/potassium-transporting ATPase subunit beta-1 

(ATP1B1) indirectly involved in intracellular Ca2+ homeostasis (408) also showed a lower protein 

expression in the Boyer et al. (399) trastuzumab resistant SKBR3 cell line (Table 6.2). 

 

Three Ca2+-related proteins (EGFR, IGF1R and galectin-3) were significantly up-regulated in the 

first replicate (Table 6.2). Interestingly, the data shown in section 6.4.1, also identified galectin-3 

mRNA as higher in the Valabrega et al. (396) trastuzumab resistant SKBR3 cells. In contrast, 

EGFR showed down-regulation at mRNA levels but had higher protein levels (Table 6.2). 
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Table 6.2 Changes in protein expression of calcium-related proteins in the Boyer et al. 

trastuzumab resistant SKBR3 cell line compared to parental SKBR3 cell line 

 

Calcium-related proteins from the first set of experiments from the Boyer et al. SILAC analysis 

(399), where sensitive SKBR3 cells were labeled with light isotopes and resistant SKBR3 cell line 

with heavy isotopes. The data were processed using the gene ontology program PHANTER and p-

values were calculated with B significance using the Perseus software. The table shows the Log2 of 

the ratio between the values found for resistant (H) and sensitive (L) cell lines and the p-value for 

each protein. P-value ≤ 0.05 was considered significant. 

 

 

Protein Name Protein Descriptions Log2 (Ratio 

H/L) 

p-value 

ATP2A3 Putative uncharacterized protein ATP2A3 -1.28514 0.01241 

ATP1B1 Sodium/potassium-transporting ATPase subunit 

beta-1 -1.03913 0.03956 

S100A6 S100 calcium binding protein A6 -1.03664 0.03999 

TMEM165 Transmembrane protein 165 -1.01168 0.04454 

EGFR Epidermal growth factor receptor 1.09552 0.02389 

LGALS3BP Galectin-3-binding protein 1.63868 0.00047 

IGF1R Insulin-like growth factor 1 receptor 1.86084 0.00006 
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In the second replicate, where the labeled isotopes were inverted, two proteins were significantly 

down-regulated (Table 6.3): SERCA3 as reported in the first experiment (Table 6.2) and annexin 

A7 (ANXA7) (Table 6.3).  
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Table 6.3 Change in protein expression (reverse) of calcium-related proteins in the Boyer et 

al. trastuzumab resistant SKBR3 cell line compared to parental SKBR3 cell line 

 

Calcium-related proteins from the second set of experiments from the Boyer et al. SILAC analysis 

(399), where the labeled isotopes were inverted. Thus sensitive SKBR3 cells were labeled with 

heavy isotopes and resistant SKBR3 cell line with light isotopes. The data were processed through 

gene ontology program PHANTER and p-value was calculated with B significance using Perseus 

software. The table also reports the Log2 of the ratio between the values found for resistant (L) and 

sensitive (H) cell lines and the p-value for each protein. P-value ≤ 0.05 was considered significant. 

 

Protein Name Protein Descriptions Log2(Ratio 

L/H) 

p-value 

A8MYK9 Putative uncharacterized protein ATP2A3 

(SERCA3) -1.25401 0.00416 

ANXA7 Annexin A7 -0.83874 0.04282 
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6.4.3 Assessment of calcium signaling related proteins in a cDNA microarray 

analysis of clinical breast cancers resistant to trastuzumab 

In sections 6.4.1 and 6.4.2 of this chapter, cDNA microarray data and SILAC analysis were carried 

out in vitro comparing parental SKBR3 and trastuzumab resistant cell lines. In this section, Ca2+-

related genes were analyzed in samples derived from a study of 50 women with HER2-positive 

tumors treated with neoadjuvant chemotherapy plus trastuzumab and their responses to the 

therapeutic agent were evaluated (397). In their study Liu and colleagues produced a prognostic 

signature highly predictive for HER2-positive estrogen receptor negative breast cancer tumors 

(397). The signature was developed by evaluating the gene expression profile of tumor-initiating 

cells purified from a HER2-positive estrogen receptor negative mouse model (397). Tumor-

initiating cells are the fraction of cancer cells that retain their tumorigenic potential (409). The 

prognostic signature consisted of 17 genes: 8 up-regulated (Aurkb, Ccna2, Scrn1, Npy, Atp7b, 

Chaf1b, Ccnb1, Cldn8) and 9 down-regulated (Nrp1, Ccr2, C1qb, Cd74, Vcam1, Cd180, Itgb2, 

Cd72, St8sia4) (397). 

 

The prognostic signature obtained from the mouse model was then used to predict response to 

classic chemotherapy and/or trastuzumab in a cohort of 50 HER2-positive patients treated with 

chemotherapy plus trastuzumab (397). They concluded that the prognostic signature identified 

patients that could benefit from trastuzumab therapy (397). 

 

The publically available microarray data (accession n. GSE37946: 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37946) was kindly analyzed with A/Prof. 

Paraic Kenny at the Albert Einstein College of Medicine, Bronx NY (USA). Ca2+-related genes 

(234) were selected by A/Prof. Paraic Kenny, and were assessed for their potential association with 

trastuzumab response (Fig. 6.4). Of the genes assessed 28 were significantly altered (21 down-

regulated and 7 up-regulated) between the pathological complete trastuzumab response (pCR) 

group and the residual or recurrent disease (RD) group (Table 6.4). 
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Figure 6.4 Gene expression profiles of 50 HER2-positive patients treated with neoadjuvant 

chemotherapy plus trastuzumab 

 

Volcano Plot of the gene expression profile of the 234 Ca2+-related genes performed on breast 

cancer tissues from 50 women treated with neoadjuvant chemotherapy plus trastuzumab. The gene 

expression profile of Ca2+-related proteins between pathological complete response (pCR) to 

trastuzumab group and residual or recurrent disease (RD) group were compared. The Ca2+-related 

genes that were significantly (p≤0.05) different are highlighted in red. 
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Among the 21 down-regulated genes, 11 are associated with immune response such as several 

chemokines like the chemokine (C-C motif) ligand 5 (CCL5) and 21 (CCL21), the chemokine (C-C 

motif) receptor 5 (CCR5) and the chemokine (C-X-C motif) receptor 3 (CXCR3) (Table 6.4). 

Tyrosine kinases and other proteins involved in the regulation of T- and B-cell antigen receptor 

signaling were down-regulated: coronin-1A (CORO1A), protein tyrosine phosphatase receptor type 

C (PTPRC), proto-oncogene tyrosine-protein kinase (FYN), lymphocyte-specific protein tyrosine 

kinase (LCK), protein kinase C β (PRKCB), transforming growth factor β 1 (TGFBI), leukocyte 

immunoglobulin-like receptor subfamily B member 1 (LILRB1), P2X purinergic receptor ligand-

gated ion channel 5 (P2XR5) and GTPase IMAP family member 5 (GIMAP5) (Table 6.4) were also 

down-regulated. Proteins associated with mitochondria such as the glutathione S-transferase omega 

1 (GSTO1) and the coiled-coil domain containing 109B (CCDC109B) also known as the calcium 

uniporter MCUb showed lower gene expression in the trastuzumab resistant samples, while the 

anti-apoptotic protein Blc-2 was up-regulated (Table 6.4). The calcium permeable ion channel 

TRPV2, the voltage-gated L-type calcium channel subunit β 2 (CACNB2) and the calcium store 

release regulator aspartate beta-hydroxylase (ASPH) were down-regulated (Table 6.4). Two 

proteins involved in transcriptional repression were up-regulated; the zinc finger protein RFP 

(TRIM27) and Myb proto-oncogene protein. Interestingly, galectin-3 was the most up-regulated 

gene in this data set of clinical samples and this was consistent with the in vitro microarray data set 

(section 6.4.1) and the first SILAC replicate (section 6.4.2).  
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Table	
   6.4	
   Changes	
   in	
   gene	
   expression	
   of	
   calcium-­‐related	
   proteins	
   in	
   tumor	
   samples	
  

resistant	
  to	
  trastuzumab	
  

 

Calcium-related genes with significant (p≤0.05) alterations between trastuzumab resistant and 

sensitive HER2-positive breast cancers (397). The table shows the fold change of RD vs. pCR and 

p-value for each gene. P-value ≤ 0.05 was considered significant. 

Gene 

Symbol 
Gene Title 

Fold-Change 

(RD vs. pCR) 
p-value 

CORO1A coronin actin binding protein 1A -1.55071 0.0409446 

PTPRC protein tyrosine phosphatase receptor type,C -1.51766 0.0316064 

FYN FYN oncogene  -1.50765 0.0132336 

CCL5 chemokine (C-C motif) ligand 5 -1.47577 0.0194717 

LCK lymphocyte-specific protein tyrosine kinase -1.4651 0.0481232 

PRKCB protein kinase C beta -1.43882 0.038215 

CCL21 chemokine (C-C motif) ligand 21 -1.39039 0.00864041 

TGFBI transforming growth factor beta 1 -1.32253 0.0210382 

CCDC109B coiled-coil domain containing 109B (MCU) -1.29713 0.0403331 

P2RX5 

purinergic receptor P2X ligand-gated ion 

channel 5 

-1.26571 0.0220851 

GIMAP5 GTPase IMAP family member 5 -1.24253 0.0465282 

GSTO1 glutathione S-transferase omega 1 -1.22846 0.0248836 

TRPV2 

transient receptor potential cation channel 

vanilloid 2 

-1.18225 0.0114534 

CCR5 chemokine (C-C motif) receptor 5 -1.17992 0.0378762 

LILRB1 

leukocyte immunoglobulin-like receptor 

subfamily B member 

-1.17499 0.0246245 

ASPH aspartate beta-hydroxylase -1.17171 0.0424494 

CXCR3 chemokine (C-X-C motif) receptor 3 -1.10822 0.0462544 

CHRNA4 cholinergic receptor nicotinic alpha 4 -1.10212 0.0135477 

RASA3 RAS p21 protein activator 3 -1.08676 0.044573 

RCVRN recoverin -1.08323 0.042936 

CACNB2 voltage-dependent calcium channel beta 2 -1.06513 0.0423614 
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subunit 

PKD1 polycystic kidney disease 1 1.13746 0.0356451 

BCL2 B-cell lymphoma 2 1.15001 0.0128584 

TRIM27 tripartite motif-containing 27 1.17819 0.0169138 

SLC24A1 

solute carrier family 24 

(sodium/potassium/calcium exchanger) 

member 1 (NCKX1) 

1.1892 0.0021799 

PSEN1 presenilin 1 1.26903 0.0455082 

MYB myb oncogene  1.36808 0.0490876 

LGALS3 galectin-3 1.42799 0.0111746 
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6.5 Conclusion 
In this chapter, a different approach using large-scale high-throughput analyses was used to identify 

possible targets that may be associated with trastuzumab resistance. Different types of data sets 

were evaluated such as gene expression profile microarray data on trastuzumab sensitive and 

resistant SKBR3 cell lines and clinical samples and protein expression profiling by SILAC analysis 

from trastuzumab sensitive and resistant SKBR3 cell lines. 

 

From the cDNA microarray data performed on Valabrega et al. (396) trastuzumab sensitive and 

resistant SKBR3 cell line, it was observed that several S100 proteins were down-regulated (S100A3, 

S100A4, S100A5, S100A7, S100A8, S100A9, S100A10 and S100P) (Table 6.1 section 6.4.1) and the 

S100A6 protein was down-regulated in the first SILAC experiment (Table 6.2 section 6.4.2). 

Changes in the expression of S100 proteins has been reported in several cancers, they are important 

regulators of numerous intracellular and extracellular processes such as Ca2+ homeostasis, protein 

phosphorylation, enzyme activity, proliferation and cytoskeleton components such as microtubules 

(55). Rhee and colleagues showed that S100A4, S100A7, S100A8, and S100A9 were down-

regulated in isogenic MCF10 breast cancer cell lines and they were involved in transformation and 

cancer progression (410). In contrast, in another study several S100 proteins (S100A1, S100A2, 

S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14) were found to have 

increased expression in basal breast tumor samples compared to non-basal subtype (411). S100A7 

and S100P appear to have different roles depending on the estrogen receptor status of the breast 

cancer, and their up-regulation appears indicative of drug resistance, metastasis and a poor 

prognosis (55, 412). In the HER2-positive breast cancer tissues, S100A14 was found to be 

significantly up-regulated compared to normal adjacent tissue and able to modulate HER2 signaling 

in BT474 and SKBR3 cell lines (413), unfortunately S100A14 was not part of any data set tested in 

this project. Collectively these current studies and those of other investigators suggest that S100 

proteins may have different roles depending on the breast cancer molecular subtype. 

  

Several proteins involved in the organization of microtubules (TUBB3, TUBB4, TUBB6, CORO1A, 

ANKS6 and ANKRD58) and of the extracellular matrix (CTGF, MMP9, TGFBI) were down-

regulated in the gene expression profile shown in section 6.4.1. Coronin 1A and TGFBI also had 

reduced expression in the clinical microarray data set (Table 6.4 section 6.4.3). Different α- and β-

tubulins including TUBB4 and TUBB6 were also tested in the two SILAC experiments, but none of 

these proteins appeared to be significantly altered at the protein level (Tables 6.2 and 6.3 section 

6.4.2). Tubulins were not assessed in the clinical microarray data. From these analyses, it appears 
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that trastuzumab resistance may induce cells to undergo morphological remodeling. Indeed, 

microtubule formation is controlled by the extracellular matrix (414) and loss of TGFBI expression 

induces microtubules destabilization and resistance to paclitaxel in ovarian and breast cancer cell 

lines (415). β-tubulins are a drug target in several cancers (416, 417), but they are also associated 

with drug resistance in cancer (418, 419). Indeed, increased β-tubulin 3 mRNA levels are often 

associated with resistance to paclitaxel and vinorelbine in MCF-7 and MDA-MB-231 cells (420) 

and in breast cancer patients (421, 422). In contrast, overexpression of β-tubulin 3 in HER2-positive 

breast cancer patients is a predictor of good response to paclitaxel and trastuzumab (423). Since 

resistant SKBR3 cells were associated with potential alterations in β-tubulin 3 mRNA it would have 

been interesting to evaluate mRNA levels in the clinical samples analyzed in section 6.4.3, however 

tubulins were not part of this data set. 

 

A number of genes involved in inflammation and immune response showed altered mRNA levels in 

the microarrays analyzed in section 6.4.1 and 6.4.3. Ca2+-related proteins involved in these 

processes were present in the SILAC data set. Different chemokine ligands and receptors such as 

CCL2, CX3CL1 in the gene expression profile performed on the Valabrega et al. (396) SKBR3 

cells (Table 6.1 section 6.4.1) and CCL5, CCL21, CCR5 and CXCR3 in the clinical samples 

microarray (Table 6.4 section 6.4.3) were down-regulated in the trastuzumab resistant group, while 

CXCR4 mRNA was up-regulated in the Valabrega et al. (396) trastuzumab resistant SKBR3 cell 

line (Table 6.1 section 6.4.1). Other genes linked to inflammation and immune response such as 

BDKRB1, BDKRB2, TNF, TGFBI, CD40, PTGS1 and PTPN21 in the microarray performed on the 

Valabrega et al. (396) resistant SKBR3 cells (Table 6.1 section 6.4.1) and CORO1A, PTPRC, FYN, 

LCK, PRKCB, TGFBI, LILRB1 and also P2XR5 and GIMAP5 in the clinical samples (Table 6.4 

section 6.4.3) were down-regulated. Galectin-3 was one of the genes that showed the highest 

change in trastuzumab resistant cell line at mRNA (396) (Table 6.1 section 6.4.1), protein level 

(399) (Table 6.2 section 6.4.2) and in trastuzumab non-responsive patients (Table 6.4 section 6.4.3). 

It should be noted that galectin-3 was not detected in the second replicate of the SILAC experiment 

possibly due low phosphopeptide abundances of this protein or biological noise in the second 

replicate (424). Galectin-3 is implicated in cell adhesion, cell growth and differentiation, apoptosis, 

inflammation in cancer (406) and tumor progression (425, 426). Galectin-3 has also been associated 

with metastasis in murine lung adenocarcinoma cell lines (427).   

 

Trastuzumab response relies in part on the immune system since it induces an antibody cell 

mediated cytotoxicity and a subsequent antigen-specific immune activation (428). Indeed, 
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activation of immune pathways can predict trastuzumab response as reflected in the association 

between lymphocytes infiltration and trastuzumab efficacy and improved prognosis (428). Since 

several genes involved in inflammation and immune response showed altered levels in the data sets 

analyzed, the expression of some of these genes could perhaps restore normal immune signaling 

and thus reverse trastuzumab resistance.  

 

Among the Ca2+ transporters assessed SERCA3, KCa3.1 channel, TRPM2 and TRPM4, NCKX6, 

CaV3.3 channel and CACNB1 in the microarray analysis of the Valabrega et al. (396) trastuzumab 

resistant SKBR3 cell line were down-regulated, while KCa1.1 channel, NCKX3 and IP3R1 were 

up-regulated (Table 6.1 section 6.4.1). From the SILAC experiments, SERCA3 in both replicates 

and the sodium/potassium-dependent ATPase subunit beta-1 in the first replicate showed 

significantly lower protein levels (Tables 6.2 and 6.3, section 6.4.2). In the clinical breast cancer 

samples TRPV2, MCUb and CACNB2 had decreased mRNA levels in trastuzumab non-responsive 

patients (Table 6.4 section 6.4.3), while the exchanger NCKX1 was up-regulated.  

 

SERCA3 was one of the most down-regulated proteins in the Valabrega et al. (396) and Boyer et al. 

(399) trastuzumab resistant cell lines at the mRNA and protein levels, however, in HER2-positive 

trastuzumab non-responsive patients SERCA3 was not significantly altered. Down-regulation of 

SERCA3 is associated with tumorigenesis in HER2-negative and triple negative primary breast 

cancer tissue samples (429) and also with EGF-induced EMT in MDA-MB-468 cells (430). It 

should be noted that the down-regulation of SERCA3 mRNA observed in the trastuzumab resistant 

SKBR3 cell line with microarray (396) and SILAC (399) analysis, could be due to a possible 

change in SERCA3 expression with long-term culturing as was observed for TRPM7 in section 

5.4.1 and as reported for two other Ca2+ channels Orai1 and Orai2 channels in section 6.4.1. Hence, 

assessment of SERCA3 in the cell lines produced in chapter 3 with age-matched controls would 

improve our understanding of changes in SERCA3 associated with trastuzumab resistance. 

 

IGF1R has been widely studied in the context of trastuzumab resistance (155, 158, 190, 279). 

IGF1R showed higher protein levels in the first SILAC experiment (Table 6.2 section 6.4.2), while 

it was not detected in the second repeat. From the immunoblotting shown in chapter 3 section 3.4.1, 

IGF1R did not show changes at a protein level between the age-matched control and resistant 

SKBR3 cell lines. Thus, as discussed earlier for SERCA3 and TRPM7, the up-regulation observed 

in the SILAC experiment may be due to the use of a parental cell line rather than an age-matched 

control cell line. Indeed, a study, conducted using immunohistochemical analysis on clinical 
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samples from patients with metastatic HER2-positive tumors receiving trastuzumab therapy, 

concluded that IGF1R may not be relevant as a trastuzumab response predictor (191). 

 

EGFR expression was down-regulated at the mRNA level, but up-regulated at the protein level in 

the two experiments performed comparing parental and trastuzumab resistant SKBR3 cell lines 

with publically available data (Table 6.1, section 6.4.1 and Tables 6.2 and 6.3, section 6.4.2). It 

should be noted that EGFR showed significantly higher expression levels only in the first SILAC 

experiment. From the screen I performed on the cell lines produced in chapter 3 it was observed 

that EGFR did not show a change in either mRNA or protein levels (section 3.4.1). A study that 

analyzed the expression of EGFR in HER2-positive patients treated with trastuzumab showed that 

EGFR expression was not correlated with trastuzumab response (431). Hence, changes in EGFR 

may not be uniform across experimental models or may not be clinically relevant.  

 

In summary, from the analysis of three different data sets where the expression of Ca2+-related 

proteins was evaluated in two different trastuzumab resistant SKBR3 cell lines and in patients that 

were not responsive to trastuzumab, it was observed that trastuzumab resistance may produce a 

reprogramming of signals between the cell and the extracellular matrix and a decrease in immune 

and inflammatory signaling. The only common result among the three data sets was the up-

regulation of galectin-3 (Fig. 6.6), which is involved in tumor progression in breast cancer (425, 

426). Thus, future studies should be conducted to further evaluate the functional role of galectin-3 

in trastuzumab resistant cells. It should be noted that gene expression profiling and SILAC assays 

cannot identify changes in function and/or alterations in cellular localization; changes in calcium 

signaling in trastuzumab resistance could also be mediated by such changes.  
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Figure 6.5 Comparison of all Ca2+-related protein identified as significantly altered in the 

three data sets analyzed   

 

A. Down-regulated Ca2+-related proteins found in the three data sets analyzed (396, 397, 399), 

SERCA3 was common to the two data sets produced from SKBR3 cell lines, while coronin A1 was 

found in both gene profile microarrays. B. Up-regulated Ca2+-related proteins found in the three 

data sets analyzed. Only galectin-3 was up-regulated in all of the three data sets (396, 397, 399).
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7 Conclusions 
Ca2+ is an essential element of the cell and it regulates several life and death processes (1-3, 74). 

Intracellular calcium concentrations are therefore highly regulated through a variety of calcium 

channels and pumps in order to maintain Ca2+ homeostasis and cell function (1, 3, 5, 74). Altered 

expression and/or function of Ca2+ channels and pumps are associated with several diseases 

including the progression of some cancers (7, 91, 432). Specific Ca2+ channels and pumps may 

represent novel therapeutic targets in some cancers, including those of the breast (4).  

  

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death in 

women worldwide (114). Breast cancer is a heterogenic disease, which is classified by tumor size, 

stage of the tumor, receptor status and cDNA microarray based on global gene expression to 

determine the molecular subtype of cancer (119). Among the different subtypes, HER2-positive 

breast cancers represent approximately 20-25% of all breast tumours (122-124). These breast 

cancers are associated with poor prognosis and a low overall survival rate (125, 126). The first and 

leading agent currently used for the treatment of HER2-positive breast cancers is the monoclonal 

antibody trastuzumab (132, 135, 136).  

 

Despite the great improvement in HER2-positive patient outcome that trastuzumab has produced, 

25-30% of eligible patients show an inherent resistance to trastuzumab (148) and a large number of 

patients who initially responded to the treatment acquire resistance within one year (140). 

Trastuzumab resistance has been widely studied (129, 146, 329, 433), however, the mechanisms of 

trastuzumab resistance are still not fully understood. 

 

Since calcium signaling is involved in the development and progression of several types of cancer 

(4, 45, 99, 432) and chemoresistance (161-164, 166, 167), in this thesis I evaluated the role of 

calcium channels, pumps and channel modulators in the acquisition of trastuzumab resistance.  

 

Characterization of HER2-positive, trastuzumab sensitive SKBR3 breast cancer cells showed that 

the inhibition of the Ca2+ channels TPC2 and TRPV1 and the Ca2+ channel modulator STIM1 

decreased cell proliferation. The silencing of the calcium pump SPCA1, the calcium sensor STIM1 

and the Ca2+ permeable ion channel TRPM7 enhanced the response to trastuzumab. This is the first 

study that has reported a link between regulators of Ca2+ signal and responses to trastuzumab. 

Studies should now be conducted in other HER2-positive cell lines (e.g. BT474) and in in vivo 

models to determine if these effects are not restricted to SKBR3 cells in vitro.  
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Despite promoting the sensitivity of SKBR3 cells to trastuzumab, the silencing of SPCA1, STIM1 

and TRPM7 did not reverse trastuzumab resistance in the acquired or de novo trastuzumab resistant 

cell lines developed during these studies. This suggests that in trastuzumab resistance alternative 

signaling pathways may be activated and represents further evidence that approaches that increase 

trastuzumab responses in trastuzumab sensitive cells may not necessarily increase sensitivity to this 

therapeutic agent in resistant cells. The work presented in this thesis therefore provides further 

evidence for the importance of studies assessing trastuzumab resistant cell lines.  

 

An extensive evaluation of several Ca2+ channels, pumps and channel modulators conducted in age-

matched control and trastuzumab resistant SKBR3 cell lines identified CaV3.2 as the target among 

45 tested targets to have altered mRNA levels between resistant and age-matched control cell lines. 

Although CaV3.2 channels showed higher mRNA in the two de novo resistant cell lines RV1 and 

RV2 and also in the basal HER2-positive HCC1569, it should be noted that CaV3.2 expression 

showed only a weak correlation with HER2 expression in clinical basal breast samples and it was 

not significantly altered in the clinical samples analyzed. This may indicate that CaV3.2 may not be 

a prognostic marker for trastuzumab resistance in basal HER2-positive breast tumors. However, 

since CaV3.2 channel mRNA was higher in the de novo resistant cell lines and in HCC1569 cells, 

additional studies to evaluate the role of CaV3.2 channel as a possible predictor of trastuzumab 

response in a clinical setting may be appropriate. CaV3.2 channel should also be further evaluated 

through overexpression of this protein in parental SKBR3 cell line to assess the consequences of 

elevated CaV3.2 levels on trastuzumab sensitivity. Although in these studies both siRNA and 

pharmacological inhibition of CaV3.2 did not restore trastuzumab sensitivity in a trastuzumab 

resistant SKBR3 cell line, siRNA and pharmacological inhibition of CaV3.2 could be conducted in 

the de novo trastuzumab resistant HER2-positive cell lines HCC1569 and JIMT-1. 

 

Ca2+ signaling profiling was conducted in parental, age-matched control and trastuzumab resistant 

SKBR3 cell lines. These studies demonstrated that all of the cell lines tested showed responsiveness 

to the purinergic receptor activator ATP and had a functional SOCE pathway. The acquired 

resistant cell lines RT1 and RT2 showed lower sensitivity to ATP compared to the age-matched 

control cell lines (SV1 and SV2) suggesting that purinergic receptors and/or regulators of ATP-

mediated Ca2+ signals may be associated with trastuzumab resistance. Further studies should be 

carried out to evaluate the role of purinergic receptors in trastuzumab resistance. The expression of 
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purinergic receptor isoforms should be assessed in trastuzumab resistant SKBR3 cells to help define 

the mechanism for this change in ATP-mediated Ca2+ signaling.  

 

The SKBR3 parental cell line and age-matched controls showed a different sensitivity to ATP but 

similar SOCE. The different sensitivity to ATP may be due to a possible remodeling of Ca2+ 

signaling during continuous culturing. Indeed, long-term culture of cell lines have been reported to 

change the phenotype of many cell lines (284). Examples of such changes were also observed in 

this thesis. Results presented in this thesis showed that Orai channels and STIM sensors do not have 

altered mRNA levels in trastuzumab resistant cell lines compared to age-matched control cell lines. 

However, Orai1 and Orai2 channels showed significantly different mRNA levels between parental 

and age-matched control cell lines. This suggests that a remodelling of Orai mRNA levels may 

occur during long-term culturing. These findings support the use of age-matched cell lines in the 

assessment of changes associated with trastuzumab resistance. 

 

TRPM7 also showed higher mRNA levels in the age-matched control and trastuzumab resistant cell 

lines compared to the parental SKBR3 cell line. Evaluation of TRPM7 in resistant cell lines showed 

that TRPM7 silencing and the TRPM7 gate inhibitor NS8593, did not reverse trastuzumab 

resistance. The inability of TRPM7 silencing to promote trastuzumab sensitivity in the trastuzumab 

resistant cell lines was in contrast to the inability of TRMP7 siRNA to completely silence the 

elevated TRPM7 mRNA levels, which occurred as a result of long-term culture. To improve the 

efficacy of TRPM7 silencing future studies could use an alternative method, such as shRNA.	
  The 

TRPM7 α-kinase inhibitor NH125, was able to reverse trastuzumab resistance, however, since 

NH125 has also been reported to inhibit eEF2K, another α-kinases (368, 371), further experiments 

are needed to fully understand the mechanism by which NH125 reverses trastuzumab resistance. 

Such studies could involve eEF2K silencing and assessment of the effect of NH125 in eEF2K 

deficient cells. The phosphorylation of known substrates of TRPM7 kinase, such as annexin A1, 

myosin IIA, IIB and IIC could also be evaluated in samples treated with NH125 to further explore 

the association between NH125, TRPM7 kinase inhibition and trastuzumab resistance. In any case, 

these studies have identified NH125 as an agent capable of restoring trastuzumab sensitivity in 

trastuzumab resistant SKBR3 cells. This agent should now be evaluated in other trastuzumab 

resistance models.    

 

Finally, the evaluation of the levels of several Ca2+-related proteins in three different datasets 

suggests that SERCA3 may have reduced expression in trastuzumab resistant SKBR3 cell lines, but 
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not in clinical samples. This study also identified galectin-3, a protein involved in cell adhesion, cell 

growth and differentiation, apoptosis, inflammation in cancer (406) and tumor progression (425, 

426), as up-regulated in both cell line and clinical sample datasets of trastuzumab resistance. 

Clinical samples demonstrated a potential remodelling of Ca2+-related proteins involved in immune 

and inflammation response with trastuzumab resistance. Further experiments should now be 

performed to evaluate the functional role of SERCA3 and galectin-3 in trastuzumab resistant cells 

to confirm the results found from the gene expression datasets and SILAC experiments evaluated in 

this thesis.  

 

In summary, it appears that some breast cells may undergo a reprogramming of cellular signaling 

with the acquisition of trastuzumab resistance. Future research on the targets identified in this thesis 

(CaV3.2, TRPM7, SERCA3 and galectin-3) may help identify new biomarkers for trastuzumab 

resistance and/or new ways to restore or induce trastuzumab sensitivity in HER2 breast cancers that 

are resistant to this important therapeutic. 
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9 Appendix	
  

9.1 Appendix 1 – Solutions 
Nominal Calcium Solution (pH 7.2) Concentration 

NaCl  140 mmol/L 

glucose  11.5 mmol/L 

HEPES  10 mmol/L 

KCl  5.9 mmol/L 

MgCl2  1.4mmol/L 

NaH2PO4  1.2 mmol/L 

NaHCO3  5 mmol/L 

 

PSS Solution (pH 7.2) Concentration 

NaCl  140 mmol/L 

glucose  11.5 mmol/L 

CaCl2  1.8 mmol/L 

HEPES  10 mmol/L 

KCl  5.9 mmol/L 

MgCl2  1.4mmol/L 

NaH2PO4  1.2 mmol/L 

NaHCO3  5 mmol/L 
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9.2 Appendix 2 – Single bar graph for each target 
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9.3 Appendix 3 – mRNA levels for each Ca2+ related genes assessed in this 

thesis 

TARGET SKBR3 SV1 SV2 RT1 RT2 RV1 RV2 

HER2 nt -2.726 -2.672 -2.817 -2.867 -2.816 -4.601 

EGFR nt -9.909 -10.565 -9.581 -10.240 -11.949 -8.607 

PMCA1 -7.397 -9.523 -9.107 -9.486 -9.123 -9.493 -8.618 

PMCA2 nd nd nd nd nd nd nd 

PMCA4 -8.567 -9.938 -9.918 -9.330 -9.723 -9.202 -8.715 

Orai1 -10.059 -9.340 -9.087 -9.146 -9.139 -8.511 -7.516 

Orai2 -13.918 -8.687 -9.100 -8.777 -8.584 -7.607 -7.157 

Orai3 -12.788 -10.235 -9.496 -9.217 -9.070 -8.930 -8.783 

STIM1 -11.101 -6.277 -5.748 -5.593 -5.684 -5.950 -7.180 

STIM2 -14.010 -8.577 -8.905 -8.994 -8.558 -9.569 -11.941 

SPCA1 -6.841 -8.506 -8.559 -8.416 -8.720 -8.931 -9.532 

SPCA2 -7.648 -10.898 -10.029 -9.824 -9.751 -10.952 -10.649 

TRPM2 nt nd nd nd nd nd nd 

TRPM3 nt nd nd nd nd nd nd 

TRPM7 -6.049 -4.305 -4.652 -4.327 -4.137 -4.360 -5.126 

TRPM8 nt -18.153 -17.494 -19.237 -19.220 -17.067 -14.095 

TRPV1 -12.755 -11.014 -10.994 -11.021 -10.474 -11.205 -9.947 

TRPV3 nt -14.505 -15.206 -14.730 -15.242 -15.858 -14.549 

TRPV4 -15.085 -11.145 -9.779 -10.574 -10.001 -12.018 -13.277 

TRPV5 nt -18.191 -18.353 -19.237 -19.220 -15.858 -13.995 

TRPV6 -7.681 -10.165 -9.652 -8.953 -9.374 -10.199 -9.727 

TRPC1 -16.072 nd nd nd nd nd nd 
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IP3R1 nt -11.916 -11.606 -11.342 -12.843 -11.949 -12.698 

IP3R2 nt -10.835 -10.719 -10.942 -10.243 -10.044 -10.208 

IP3R3 nt -8.939 -8.680 -9.091 -8.693 -7.977 -8.476 

SERCA1 nt -16.878 -16.734 -14.298 -13.894 -14.629 -13.510 

SERCA2 nt -7.774 -7.558 -7.429 -7.309 -7.845 -7.463 

SERCA3 nt -6.643 -5.987 -6.594 -6.287 -6.359 -8.055 

TPC1 -9.229 -7.617 -7.432 -6.699 -6.903 -7.535 -6.819 

TPC2 -12.738 -8.651 -8.854 -8.328 -8.040 -8.354 -7.767 

MCU nt -9.909 -9.529 -9.469 -9.172 -9.663 -8.753 

CaV1.1 nt nd nd nd nd nd nd 

CaV1.2 nt nd nd nd nd nd nd 

CaV1.3 nt -11.123 -10.756 -10.300 -10.688 -10.716 -10.231 

CaV1.4 nt nd -16.560 -18.147 -17.552 -18.559 nd 

CaV2.1 nt -17.177 -16.135 nd nd nd -17.483 

CaV2.2 nt -18.781 -18.748 -17.248 -18.349 nd -17.669 

CaV2.3 nt nd nd -18.047 nd nd nd 

CaV3.1 nt -14.332 -14.676 -13.781 -16.693 -14.630 -14.068 

CaV3.2 nt -13.222 -14.613 -11.563 -14.684 -10.867 -10.967 

CaV3.3 nt -16.790 -15.007 -12.969 -17.658 -14.332 -13.995 

Catsper 1 nt -14.483 -14.190 -12.202 -14.774 -13.363 -14.163 

Catsper 2 nt nd nd nd nd nd nd 

Catsper 3 nt -14.923 -14.039 -14.148 -15.048 -14.355 -14.291 

Catsper 4 nt nd nd nd nd nd nd 

	
  

mRNA levels of all the Ca2+ related genes tested in the SKBR3 parental cell line, age-matched 

control and resistant cell lines in this thesis. The CT values obtained for each target have been 



Appendix	
  

	
  

	
   333	
  

normalized to a control gene, 18s rRNA. Data are shown as –ΔCT. The ΔCT was calculated as the 

difference between the CT value of the target and the 18s rRNA. A high -ΔCT corresponds to an 

elevated mRNA level, while a low - ΔCT  to a low mRNA levels. (nt= not tested, nd= not detected). 
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9.4 Appendix 4 – Chemicals 

	
  

Chemicals Catalog Number Suppliers 

4’,6-diamidino-2-phenylindole (DAPI)  D1306  Invitrogen  

β-mercaptoethanol  M3148  Sigma Aldrich  

Adenosine triphosphate (ATP)  A6419  Sigma Aldrich  

BAPTA-AM  B6769  Invitrogen  

BAPTA (tetra sodium)  B1214  Invitrogen  

BioRad Coumassie Brilliant Blue based 

reagent  

500-0006  BioRad Laboratories  

Bovine serum albumin (BSA), essentially 

fatty-acid free (for FLIPR)  

A3803  Sigma Aldrich  

Bovine serum albumin (BSA), molecular 

grade  

B4287  Sigma Aldrich  

Calcium chloride (2H2O)  C7902  Sigma Aldrich  

Cell titer 96 aqueous one solution cell 

proliferation assay  

G5421  Promega  

Click-iT® EdU Alexa Fluor 555 Imaging 

Kit  

C10338  Invitrogen  

Cyclopiazonic acid (CPA)  C1534  Sigma Aldrich  

DharmaFECT 4 transfection reagent  T-2004-01  Dharmacon  

Dimethyl sulfoxide (DMSO)  D8418  Sigma Aldrich  

Distilled water (UltraPure, RNase/DNase 

free)  

10977015  Invitrogen  

EGTA-AM  E1219  Invitrogen  

Epidermal growth factor (EGF)  E9644  Sigma Aldrich  

Ethylenediamine tetraacetic acid (EDTA)  431788  Sigma Aldrich  
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Fetal bovine serum (FBS), batch number 

7C0030  

12003C  Sigma Aldrich  

Fluo-4 AM  F14201  Invitrogen  

Glucose powder  G7021  Sigma Aldrich  

Goat serum  G9023  Sigma Aldrich  

HEPES  H3375  Sigma Aldrich  

iBlot gel transfer stacks PVDF regular  IB4010-01  Invitrogen  

Magnesium chloride (anhydrous)  M8266  Sigma Aldrich  

McCoy’s A5 Modified media 1660  Invitrogen  

Mibefradil  M5441  Sigma Aldrich  

ML218 SML0385 Sigma Aldrich 

MycoAlert Mycoplasma Detection kit  LT07-218  Lomb Scientific  

NH125 3439 Tocris Bioscience 

NS8593 N2538 Sigma Aldrich 

NuPAGE 4-12% Bis-Tris gel  NP0321BOX  Invitrogen  

NuPAGE antioxidant  NP0005  Invitrogen  

NuPAGE LDS sample buffer (4X)  NP0007  Invitrogen  

NuPAGE MOPS SDS running buffer 

(20X)  

NP0001  Invitrogen  

NuPAGE reducing agent  NP0004  Invitrogen  

Omniscript RT kit  205113  Qiagen  

PageRuler Plus prestained protein ladder  #26619 Thermo Fisher Scientific  

Paraformaldehyde (16%)  15710  ProSciTech  

Penicillin-streptomycin solution  15140  Invitrogen  

Phosphate buffered saline (PBS)  P3813  Sigma Aldrich  

PhosSTOP phosphatase inhibitor  04906845001  Roche  
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Potassium chloride  P5405  Sigma Aldrich  

Protease inhibitor, complete mini  11836153  Roche  

Random Primers  C1181  Promega  

RNasin Ribonuclease inhibitor  N2111  Promega  

RNeasy Plus mini kit  74104  Qiagen  

siRNA buffer (5X)  B-002000-UB  Dharmacon  

Sodium bicarbonate (NaHCO3)  S5761  Sigma Aldrich  

Sodium chloride  S5886  Sigma Aldrich  

SuperSignal west dura extended duration 

substrate  

34076  Thermo Fisher Scientific  

TaqMan FAST PCR master mix  4352042  Applied Biosystems  

TaqMan universal PCR master mix  4324018  Applied Biosystems  

Tris-HCl  T5941  Sigma Aldrich  

Triton-X 100  T8787  Sigma Aldrich  

Trypsin (0.25%)-EDTA (for cell culture)  25200  Invitrogen  

Tween-20  P9416  Sigma Aldrich  

96-well Cell-Bind (FLIPR) cell culture 

plates  

3340  Corning  

96-well clear, round-bottom (FLIPR) 

reagent plates  

3797  Corning  

96-well, FLIPR-TETRA black tips  90000762  Molecular Devices  

96-well imaging grade (ImageXpress) 

plates  

353219  BD Biosciences  
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9.5 Appendix 5 – Antibodies 
 

Antibody Catalog 

Number 

Supplier 

Anti-mouse horseradish peroxidase-

conjugated secondary 

 

170-6516 BioRad 

Anti-rabbit horseradish peroxidase-

conjugated secondary 

170-6515  BioRad  

β-Actin AC-15 Sigma Aldrich 

EGFR polyclonal rabbit (Tyr992) #2232 Cell Signaling 

HER2 polyclonal rabbit (Tyr1222) #2242 Cell Signaling 

IGF1R-β rabbit polyclonal (C-20) sc-713 SantaCruz 

Technologies 

IGF1R monoclonal XP® rabbit (IGF-I 

Receptor β, D23H3) 

#9750 Cell Signaling 
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9.6 Appendix 6 – Gene expression assays 

Gene name Gene Expression ID 

18s RNA (Control) 4319413E 

Catsper 1 Hs00364950_m1 

Catsper 2 Hs00542505_m1 

Catsper 3 Hs00604374_m1 

Catsper 4 Hs01374398_m1 

CaV1.1 Hs00163885_m1 

CaV1.2 Hs00167681_m1 

CaV1.3 Hs01073321_m1 

CaV2.1 Hs01579431_m1 

CaV2.2 Hs01053090_m1 

CaV2.3 Hs00167789_m1 

CaV3.1 Hs00367969_m1 

CaV3.2 Hs00234934_m1 

CaV3.3 Hs00184168_m1 

EGFR  Hs01076092_m1  

HER2 Hs00170433_m1  

IP3R1  Hs00181881_m1  

IP3R2  Hs00181916_m1  

IP3R3  Hs01573555_m1  

MCU  Hs00293548_ml  

Orai1  Hs00385627_m1  

Orai2  Hs00259863_m1  

Orai3  Hs00743683_s1  
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PMCA1  Hs00155949_m1  

PMCA2 Hs00155975_m1 

PMCA4  Hs00608066_m1  

SERCA1  Hs01092295_m1  

SERCA2  Hs00544877_m1  

SERCA3  Hs00193090_m1  

SPCA1  Hs00205122_m1  

SPCA2  Hs00208296_m1  

STIM1  Hs00162394_m1  

STIM2  Hs00372712_m1  

TPC1  Hs00330542_m1  

TPC2  Hs01552063_m1  

TRPC1  Hs01553152_m1  

TRPM2  Hs01066085_m1  

TRPM3  Hs00257553_m1  

TRPM7  Hs00292383_m1  

TRPM8 Hs00375481_m1 

TRPV1  Hs00218912_m1  

TRPV2 Hs00901640_m1 

TRPV3  Hs00376854_ml  

TRPV4 Hs01099348_m1 

TRPV5  Hs00219765_m1  

TRPV6  Hs00367960_m1  
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9.7 Appendix 7 – Dharmacon On Target Plus Pool siRNAs 
Gene Catalog number 

CaV3.2 L-006128-00-0005 

Non-targeting  D-001810-10-05  

Orai1  L-014998-00-0005  

Orai2  L-015012-00-0005 

Orai3  L-015896-00-0005 

PMCA1  L-006115-00-0005 

PMCA4  L-006118-00-0005  

SPCA1 L-006119-00-0005 

SPCA2 L-006280-00-0005 

STIM1  L-011785-00-0005  

STIM2  L-013166-01-0005  

TPC1 L-010710-00-0005 

TPC2 L-006508-00-0005 

TRPC1  L-004191-00-0005  

TRPC4  L-006510-01-0003  

TRPC5  L-006511-00-0003  

TRPC6  L-004192-00-0003  

TRPM6  L-005048-00-0003  

TRPM7  L-005393-00-0003  

TRPV1 L-006518-00-0005 

TRPV4  L-005263-00-0003  

TRPV6  L-003607-00-0005  
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9.8 Appendix 8 – Suppliers 

Supplier Address 

Applied Biosystems (now Life Technologies)  30-32 Compark Circuit  

Mulgrave VIC 3170  

AUSTRALIA  

BD Biosciences (Becton, Dickinson and 

Company)  

4 Research Park Drive  

Macquarie University Research Park  

North Ryde NSW 2113  

AUSTRALIA  

Bio-Rad Laboratories  446 Victoria Road  

Gladesville NSW 2111  

AUSTRALIA  

Genesearch  14 Technology Drive  

Arundel QLD 4214  

AUSTRALIA  

Invitrogen (now Life Technologies)  30-32 Compark Circuit  

Mulgrave VIC 3170  

AUSTRALIA  

Lomb Scientific (now Thermo Fisher Scientific)  5 Caribbean Drive  

Scoresby VIC 3179  

AUSTRALIA  

Millennium Science  PO BOX 49  

Surrey Hills VIC 3027  

AUSTRALIA  

Molecular Devices Corporation  1311 Orleans Drive  

Sunnyvale CA 94089-1136  

UNITED STATES OF AMERICA  

Promega  75-85 O’Riordan Street  

Sydney Corporate Park  

Alexandria NSW 2015 

AUSTRALIA 

Qiagen  PO BOX 641  
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Doncaster VIC 3108  

AUSTRALIA  

Quantum Scientific (now VWR International)  1/31 Archimedes Place  

Murarrie QLD 4172  

AUSTRALIA  

Roche Products  4-10 Inman Road  

Dee Why NSW 2099  

AUSTRALIA  

Sapphire Bioscience  126 Cope Street  

Waterloo NSW 2017  

AUSTRALIA  

Sigma Aldrich  PO BOX 970  

Castle Hill NSW 1765  

AUSTRALIA  

Thermo Fisher Scientific  5 Caribbean Drive  

Scoresby VIC 2179  

AUSTRALIA  

Bio-Scientific  PO BOX 78 

Gymnea NWS 2227 

AUSTRALIA 
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9.9 Appendix 9 – Australian Distributors 
Company Australian Distributor 

Abcam  Sapphire Bioscience  

Cell Signaling  Genesearch  

Corning  Sigma Aldrich  

Dharmacon  Millennium Science  

Santa Cruz  Quantum Scientific (now VWR International)  

TPP  Lomb Scientific (now Thermo Fisher 

Scientific)  

Tocris Bioscience Bio-Scientific 
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