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Phase equilibrium measurements for clathrate hydrates of flue gas (CO2 + N2 + O2) in 

the presence of tetra-n-butyl ammonium bromide or tri-n-butylphosphine oxide 

Jianwei Du and Liguang Wang* 

The University of Queensland, School of Chemical Engineering, Brisbane, QLD 4072, Australia. 

 

Abstract This paper reports the measured hydrate phase equilibria of simulated flue gas (12.6 vol% 

CO2, 80.5 vol% N2, 6.9 vol% O2) in the presence of tetra-n-butyl ammonium bromide (TBAB) or 

tri-n-butylphosphine oxide (TBPO), at 0 wt%, 5 wt%, and 26 wt%, respectively. The 

measurements of the phase boundary between hydrate-liquid-vapor (H-L-V) phases and 

liquid-vapor (L-V) phases were performed within the temperature range (275.97 - 293.99) K and 

pressure range (1.56 - 18.78) MPa with using the isochoric step-heating pressure search method. It 

was found that addition of TBAB or TBPO allowed the incipient equilibrium hydrate formation 

conditions for the flue gas to become milder. Compared to TBAB, TBPO was largely more 

effective in reducing the phase equilibrium pressure.  

Keywords: Semi-clathrate hydrate; Phase equilibrium; Carbon dioxide capture; Hydrate promoter; Gas 

separation. 
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1. Introduction 

CO2 emission from coal fired power stations is among the major contributors to global warming 

[1, 2]. There is a pressing need to develop safe, cost-effective technologies to capture CO2 from fossil 

fuel combustion [3]. Despite the satisfactory separation efficiency of current CO2 capture methods, a 

challenge remains as to how to reduce the cost and achieve high regenerability [3, 4]. One of the most 

promising attempts for addressing this challenge is CO2 hydrate formation [5-12]. CO2 hydrate is one 

of gas hydrates that are inclusion compounds with cages formed by the hydrogen-bonded water 

molecules and guest species [13]. One can employ the differences in the hydrate phase equilibrium 

conditions of CO2 [14], O2 [15] and N2 [15] to selectively engage CO2 into the cages of hydrate [16] 

while leaving other gas molecules behind. However, gas hydrate formation in water generally requires 

high working pressure; there is a need for lowering the pressure requirement in order to improve the 

process safety and lower the cost.  

One demonstrated method for lowering the pressure requirement for hydrate formation is to use 

chemical additives. Chemicals such as Tetrahydrofuran (THF) and cyclopentane (CP) are capable of 

reducing the equilibrium pressure [17-19] but the high volatility of these chemicals is undesirable. A 

group of additives, known as semi-clathrate hydrate (SCH) formers or ionic hydrate formers, are 

nonvolatile and can lead to lower pressure requirement than THF and CP [20, 21]. In these SCH 

crystalline solids, CO2, CH4, H2, or other gas molecules can be trapped in dodecahedral cavities (5
12

), 

along with larger cavities composed of water and anions encaging the cations with covalent bonded 

alkyl chains [22]. Shimada et al. [23] and Kamata et al. [24] investigated SCHs formed from 

tetra-n-butyl ammonium bromide (TBAB) and showed that the unoccupied cages in these SCHs could 

trap suitably sized molecules and thus can be used as a vehicle for storing and separating gases. SCHs 



  

 

have drawn increasing interest for their potential applications in gas storage [25-27] and gas separation 

[28-30].  

Table 1. Phase equilibrium measurements for clathrate hydrates of binary mixture of (CO2 + N2) 

with or without additives. 

Authors 
CO2 content in the 

feed gas / mol% 
Additives Additive mass fraction/ wt% 

Fan et al. [34] 90.99, 96.52 − − 

Kang et al. [32] 

6.63, 11.59, 17.61, 

48.15, 77.8, 96.59 
−  − 

17, 70 THF 3.89, 11  

Bruusgaard et al. [36] 0, 21, 50, 80, 100 − − 

Bouchafaa et al. [39] 10, 30, 50, 75 
−  − 

TBAB 10, 30, 40 

Kim et al. [38] 84.1, 90.6 − − 

Sfaxi et al. [37] 
27.1, 47.6, 74.8,  

77.3, 81.2 
− − 

Deschamps et al. [40] 24.9 
TBAB 

 
40 

Lu et al. [41] 15.9 

− − 

THF 1.077, 3.89, 10.77, 14.29 

TBAB 5, 15.3, 34.8, 40.7, 45.7 

Meysel et al. [31] 20, 50, 75 TBAB 5, 10, 20 

Mohammadi et al. [21] 15.1, 39.9 TBAB 5, 15, 30 

− denotes no additives 

Phase equilibrium measurements are an important step toward elucidating the phenomena of gas 

enclathration, optimizing the thermodynamic models, and developing effective CO2 capture processes. 

The incipient hydrate formation conditions of binary mixture of CO2 and N2 has been extensively 

studied [16, 21, 31 - 41], and Table 1 lists the feed gas compositions and chemical additives used in 

phase equilibrium measurements. The chemical additive predominately used in these studies was 

TBAB or THF. Note also that O2 was absent in the feed gas mixture studied by others, who assumed 



  

 

that O2 has the same performance as N2 in enclathration. In the present work, we measured the hydrate 

phase equilibrium conditions of ternary mixture of CO2, N2 and O2, representing the flue gas from 

Australian coal-fired power stations [42 - 44], in the presence and absence of TBAB or 

Tri-n-butylphosphine Oxide (TBPO). TBPO is a less known SCH former and with water, it could form 

both TBPO·28H2O and TBPO·34.5H2O SCHs under atmospheric pressure, with the melting point 

being 279.65 and 280.25 K, respectively [45, 46]. The latter TBPO hydrate (corresponding to 26 wt% 

TBPO aqueous solution) with a higher melting point has a crystal unit composed of four 51264 cages, 

four 5
12

6
3
 cages, four 5

12
6

2
 cages, and fourteen 5

12
 cages associated with 148 H2O in hydrate structure, 

and the unoccupied 5
12 

cages can encage small gas molecules [45]. The present work was carried out 

with the purpose of understanding the effects of additive type and concentration on the phase 

equilibrium conditions of flue gas.  

 

2. Experimental 

2.1. Materials 

TBAB and TBPO used in the present work were supplied by Sigma-Aldrich. Simulated flue gas 

was obtained from Coregas Pty Ltd. All of these materials were used as received. Deionized water was 

used to prepare the aqueous solutions of TBPO or TBAB. The specifications of the materials used in 

the experiments are listed in Table 2. 

Table 2 Specifications of the materials used in the experiments. 

Sample name Chemical formula Supplier Composition
a 

TBAB (CH3CH2CH2CH2)4N(Br) Sigma-Aldrich 0.99 mass fraction 

TBPO [CH3(CH2)3]3P(O) Sigma-Aldrich 0.95 mass fraction 



  

 

Simulated flue gas 

CO2 

Coregas Pty Ltd 

0.126 mole fraction 

N2 0.805 mole fraction 

O2 0.069 mole fraction 

a
 No further purification was done before use. 

2.2. Experimental apparatus  

The schematic diagram of the experimental apparatus and its details can be found elsewhere [47, 

48]. Briefly, the high pressure reactor used in the present work was a home-made non-visual 102 ml 

stainless steel cylindrical vessel with inside diameter of 38 mm and depth of 90 mm. The vessel was 

immersed in a liquid bath, which was connected to a temperature control circulator. A gas booster was 

used to feed the pressurized flue gas into the vessel. A magnetically driven stirrer with rotating speed of 

600 rpm was used to agitate the test liquid in the vessel. A thermowell coupled with a matched 1/10 

DIN ultra precise immersion RTD sensor was inserted into the reactor to measure the liquid or hydrate 

phase temperature with an uncertainty of ± 0.03 K. A pressure transducer with accuracy of ± 0.01 MPa 

was used to measure the gas pressure inside the reactor. The experimental data were collected using a 

data acquisition system at 10-second intervals. 

2.3. Experimental procedure 

The high pressure vessel was cleaned at least seven times with using deionized water and dried 

prior to the introduction of TBAB or TBPO aqueous solution. The test solution was then loaded 

into the vessel. A vacuum pump (Javac CC-45) was used to degas the entire system with its effect 

on the concentration of the test solution being negligible. The hydrate phase equilibrium 

measurements were performed at the temperature range of (275.97 - 293.99) K and pressure range 

(1.56 - 18.78) MPa with using the isochoric equilibrium step-heating pressure search method. 



  

 

Figure 1 shows typical pressure-temperature traces, from which the hydrate dissociation point can 

be determined [13]. In the present work, the uncertainty for determining the hydrate dissociation 

point was ± 0.01 MPa and ± 0.1 K. 
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Figure 1. Determination of hydrate dissociation point of flue gas from pressure-temperature trace: (a) 5 

wt% TBAB; (b) 5 wt% TBPO. 

 

3. Results and Discussion 

     The reliability and accuracy of our experimental system have been described in our recent work 

[47]. In the present work, the phase equilibrium conditions of flue gas + water are tabulated in Table 3 

and plotted in Figure 2.  

Figure 2 shows the phase equilibrium conditions of the flue gas hydrate in the absence of 

additives. Also plotted in this figure are the phase equilibria of simple hydrates of N2, O2, and CO2, for 

comparison. As shown, the equilibrium pressure increased with increasing temperature. At a given 

temperature, the equilibrium pressure of the flue gas hydrate was lower than N2 and O2 hydrates but 

was higher than that of CO2 hydrate. This result is consistent with the fact that CO2 hydrate is 

thermodynamically more stable than N2 and O2 hydrates. However, the measured incipient hydrate 

formation pressure for flue gas is prohibitively high and needs to be significantly decreased for 

hydrate-based technology applications. In what follows, two additives TBAB and TBPO were 



  

 

respectively tested for their effects on hydrate phase equilibrium conditions, and the results are 

tabulated in Table 4 and plotted in Figures 3 and 4, respectively.  

Table 3. Phase Equilibrium Data of Flue Gas Hydrate in Deionized Water. 

Flue Gas + H2O 

T/K
a
  p/MPa

b
  

276.0 8.49 

277.1 11.52 

278.1 14.21 

279.0 17.17 

                                  a
 Standard uncertainty on temperature u(T) = 0.1 K 

                      
b
 Standard uncertainty on pressure u(p) = 0.01 MPa. 
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Figure 2. Hydrate phase equilibrium conditions of N
2
, O

2
, CO

2
, and flue gas (12.6 vol% CO
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, 80.5 

vol% N
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, 6.9 vol% O
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Table 4. Phase Equilibrium Data of Flue Gas Hydrate with TBAB or TBPO solutions, at two 

initial loadings.  



  

 

 

Flue Gas + H2O + TBAB 

5 wt% 26 wt% 

T/K
a
  p/MPa

b
  T/K

a
  p/MPa

b
  

281.5 2.67 285.6 1.63 

283.4 6.01 286.9 3.84 

284.8 9.91 288.6 7.32 

286.7 14.13 290.4 11.69 

288.4 18.78 291.8 17.41 

Flue Gas + H2O + TBPO 

5 wt% 26 wt% 

T/K
a
  p/MPa

b
  T/K

a
 p/MPa

b
 

283.8 2.26 284.1 1.56 

288.0 5.73 287.4 4.08 

290.3 9.35 290.6 8.54 

292.3 14.09 292.6 13.29 

293.9 18.47 294.0 18.14 

                  a
 Standard uncertainty u(T) = 0.1 K 

            
b
 Standard uncertainty u(p) = 0.01 MPa 
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Figure 3. Hydrate phase equilibrium conditions for flue gas measured at different TBAB 

concentrations. The lines are drawn to guide the eye. 
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Figure 4. Hydrate phase equilibrium conditions for flue gas measured at different TBPO 

concentrations. The lines are drawn to guide the eye. 

 

Figures 3 and 4 respectively show that addition of TBAB and TBPO considerably shifted the 

phase equilibrium curves to the lower right region. Specifically, at 5 MPa, increasing TBAB 

concentration from 5 wt% to 26 wt% would increase the hydrate phase equilibrium temperature from 

283 K to 288 K, that is, a 5-K shift. In contrast, increasing TBPO concentration from 5 wt% to 26 wt% 

would see only a 1-K shift. The above observation made for flue gas hydrates at high pressures was 

consistent with the observation made at 0.1 MPa that the difference in the dissociation temperature 

between 40.8 wt% TBAB (corresponding to TBAB·26H2O) and 32 wt% TBAB (TBAB·38H2O) was 

relatively large (i.e. 5 K) [49] whereas the difference between 30.2 wt% TBPO (TBPO·28H2O) and 

26.0 wt% TBPO (TBPO·34.5H2O) was rather small (less than 1 K) [45, 46]. Moreover, the measured 

dissociation temperature of 5 wt% TBPO at ambient pressure was 276.2 K (with uncertainty of 0.5 K), 

whereas the corresponding temperature of 5 wt% TBAB was estimated by extrapolation to be 274.8 K 



  

 

or lower, depending on the hydrate type [40]. 

Figure 5 compares the effects of TBPO and TBAB on lowering the pressure requirement for flue 

gas hydrate formation. With an initial reagent loading of 5 wt%, at any given temperature under study, 

the TBPO SCHs had much lower phase equilibrium pressure than TBAB SCHs. With an initial reagent 

loading of 26 wt%, the TBPO SCHs had slightly lower phase equilibrium pressure than TBAB SCHs at 

temperature above 287 K. Below 287 K, however, TBAB appears to be more effective than TBPO in 

reducing the hydrate equilibrium pressure of flue gas. Overall, TBPO seems more effective than TBAB 

in reducing the phase equilibrium pressure. 
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Figure 5. Comparison between TBAB and TBPO at different concentrations: (a) 5 wt% and (b) 26 

wt%. The lines represent the best linear fits to the experimental data (see Table 4). 

 

In Figure 5, the semi-logarithmic plots of p and T can be considered reflecting the 

Clausius-Clapeyron plots (lnp versus 1/T, not shown here) since within a narrow temperature range 

(270 – 300 K), there is a strong linear relationship between 1/T and T, with R
2
 > 0.999. It was found 

that the R
2
 values of the linear fits for TBAB were lower than those for TBPO, and the slopes of the 

linear fits for TBAB curves were larger than those of TBPO, implying different energetics of 

dissociation of flue gas hydrates with TBAB and TBPO. 

 



  

 

4. Conclusions 

The phase equilibrium conditions of simulated flue gas (12.6 vol% CO2, 80.5 vol% N2, 6.9 vol% 

O2) in the presence of deionized water and the aqueous solutions of TBAB or TBPO at 5 wt% and 26 

wt% were measured in the temperature range of (275.97-293.99) K and pressure range (1.56-18.78) 

MPa. It was found that addition of TBAB or TBPO allowed the dissociation conditions of flue gas 

hydrate to shift to higher temperatures and lower pressures. The semi-clathrate hydrates of TBPO + 

flue gas are generally more stable thermodynamically than that of TBAB + flue gas. At a given 

temperature, the equilibrium pressures of the semi-clathrate hydrates decreased noticeably with 

increasing initial TBAB loading from 5 to 26 wt%, but only minor changes were seen with the 

corresponding increase in initial TBPO loading. At 5 wt%, TBPO performed better than TBAB in 

reducing the equilibrium pressure over the entire temperature range under study. At 26 wt%, TBPO 

outperformed TBAB in reducing the equilibrium pressure at temperature above 287 K. 
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Table 4. Phase Equilibrium Data of Flue Gas Hydrate with TBAB or TBPO solutions, at two 

initial loadings.  

 

Flue Gas + H2O + TBAB 

5 wt% 26 wt% 

T/K
a
  p/MPa

b
  T/K

a
  p/MPa

b
  

281.5 2.67 285.6 1.63 

283.4 6.01 286.9 3.84 

284.8 9.91 288.6 7.32 

286.7 14.13 290.4 11.69 

288.4 18.78 291.8 17.41 

Flue Gas + H2O + TBPO 

5 wt% 26 wt% 

T/K
a
  p/MPa

b
  T/K

a
 p/MPa

b
 

283.8 2.26 284.1 1.56 

288.0 5.73 287.4 4.08 

290.3 9.35 290.6 8.54 

292.3 14.09 292.6 13.29 

293.9 18.47 294.0 18.14 

                  a
 Standard uncertainty u(T) = 0.1 K 

            
b
 Standard uncertainty u(p) = 0.01 MPa 

 

  



  

 

Highlights: 

� Semi-clathrate hydrate phase equilibria for ternary gas mixture of CO2, N2, 

and O2 are reported; 

� An isochoric pressure-search method was used; 

� TBPO outperforms TBAB in promoting the formation of flue gas hydrate. 

 


