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ABSTRACT

The aim of this thesis is to develop a novel computer-aided system with advanced medical image
processing approaches. This will allow automatic segmentation and quantification of the osteochon-
dral elements (i.e. the articulating bones and cartilages) from high-resolution three-dimensional (3D)
magnetic resonance (MR) images of the hip joint.

This research is motivated by the importance of early detection of structural changes and degen-
eration of the bones and articular cartilages for good patient outcomes, particularly for early and
pre-osteoarthritic conditions such as cam-type femoroacetabular impingement (FAI). MR imaging
provides an optimal tool for in vivo assessment of the hip joint structure, including the bones and
cartilages. This has generated extensive interest in the development of MR technologies to analyse
cartilage morphology and assess biochemical compositions of the hyaline cartilage to facilitate early
diagnostic and treatment for hip osteoarthritis (OA) and FAI.

Quantitative analyses can provide useful morphometric data from complex MR data. In the hip
joint, the segmentation of bones and cartilages is an essential prerequisite, which must be accurate,
reliable and reproducible, for quantitative measurements. However, this is difficult and is traditionally
performed using time- and expert-intensive manual or semi-automatic methods.

The hypothesis behind this research is that accurate and reproducible quantitative data can be au-
tomatically obtained from high-resolution 3DMR images of the hip joint, through the use of advanced
image processing techniques. To this end, this research focuses on two specific aims: Aim 1 - to de-
velop and evaluate a fully automated segmentation approach to deliver accurate and reproducible bone
and cartilage segmentations from high-resolution 3D MR images of the hip joint and Aim 2 - to au-
tomatically extract reliable and reproducible morphometric data based on the segmented subchondral
bones and articular cartilages.

The development of an automatic segmentation scheme for the bones and cartilages with high
precision and reproducibility is firstly needed in order to provide a basis for subsequent quantitative
measurements, which deliver reliable morphometric data of the segmented bones and cartilages for
the use in early OA and FAI studies. To attain these aims, images were acquired using different MR
sequences from a mixed demographic (male or female and young adult to elderly) of participants with
a variety of femoral head-neck junction presentations but no apparent hip OA. Different sequence
scans were used to image the same participant for the associated reproducibility experiments.

Two state-of-the-art methods (multi-atlas-based and active shape model (ASM) based algorithms)
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were developed and evaluated for automatic segmentation of proximal femurs and innominate bones
from large field of view (FOV) MR images (water-excitation dual echo steady state (DESS) and multi
echo data image combination (MEDIC)). The validation results have indicated accurate and robust
segmentation performance of both methods for potential use to generate data on the bone morphology
as well as provide a basis for subsequent cartilage segmentation; notably, the ASM-based method is
significantly more time-efficient, which is favourable for clinical utility.

Quantitative assessment of 3D bone morphology at the femoral head-neck junction was automati-
cally performed in terms of alpha angle measures for potential use in the detection and quantification
of cam-type lesions. Strong correlations were achieved between manual and automatic measures at
anterosuperior and anterior regions of the femoral head-neck junction, in evaluation of large FOV
DESS images from 30 subjects (including 18 high-performance athletes). The reproducibility experi-
ment, based on the subset of 18 athletes, revealed a high consistency in alpha angles obtained between
bilateral DESS and unilateral True Fast Imaging with Steady-state Precession (TrueFISP) images.

A hybrid cartilage segmentation scheme was developed, based on bone pre-segmentation, and uti-
lized an improved graph search framework with an arc-weighted graph representation and varying
surface feasibility constraints. This is the first method capable of automatic and reliable delineation
of the femoral and acetabular cartilages from MR images despite the indistinct separation between
the two apposed cartilage plates. The validation study, based on 46 high-resolution TrueFISP im-
ages, indicated an overall high level of validity and reliability of automated cartilage segmentations
in comparison with benchmark manual segmentations.

Quantitative measurements (i.e. volume and thickness) of the femoral and acetabular cartilages
were automatically obtained from cartilage segmentations, which had a good agreement with the re-
sults frommanual segmentation volumes. Subregional analyses of the cartilage morphology were per-
formed to learn a pattern of morphological variation across different subregions of each cartilage plate,
which is significant in detecting small cartilage changes, e.g. focal cartilage lesions. A preliminary
evaluation of reproducibility has demonstrated promising results in the volume and thickness measure-
ments obtained from MR scans using three imaging sequences, including high-resolution TrueFISP,
low-resolution DESS and low-resolution 3D turbo spin echo with variable flip angle (SPACE).

In summary, this thesis has developed and validated a computer-aided system involving several
novel technologies for reliable and repeatable automatic segmentation and quantification of the bones
and cartilages from high-resolution 3D MR images of the hip joint. These technical developments
show great potential for dedicated use in prospective large-scale research and clinical studies on mor-
phometric evaluation of the hip joint in pathoanatomical conditions such as early OA and cam FAI.
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1
INTRODUCTION

1.1 Scope of the Research

This research focuses on the development of a novel computer-aided system for three-dimensional
(3D) magnetic resonance (MR) images of the hip joint that incorporates advanced image segmentation
and quantification techniques. The scope of this system will be, given an input 3D MR image, to:

1. Automatically segment articular elements including the bones (i.e., the proximal femur, the
innominate bone) and articular cartilages (i.e., the femoral and acetabular cartilage plate) within
the hip joint and;

2. Perform quantitative measurements of the segmented structures for provision of reliable and
reproducible morphometric data.

The hypothesis behind this research is that accurate and reproducible quantitative data can be
automatically obtained from high-resolution noncontrast-enhanced 3D MR images of the hip joint,
through the use of advanced image processing techniques.

This thesis constitutes part of a larger research project known as Musculoskeletal (MSK) Segmen-
tation project, which is a collaboration between the School of Information Technology and Electrical
Engineering, University of Queensland, Australia, CSIRO Digital Productivity and Services Flag-
ship, Australian e-Health Research Centre, Australia, and Siemens Healthcare, Erlangen, Germany.
The aim of this MSK project is to develop automated quantitative joint analysis systems based on
advanced and innovative MR image processing algorithms for clinically-based morphometric and
biochemical analyses of the bone, articular cartilage and intra-articular tissues of joints within upper
and lower limb, as well as the spine.

1.2 Motivation

1.2.1 Clinical context

Osteoarthritis (OA) is a progressive degenerative disease of joints affecting over 1.8 million Aus-
tralians (AIHW 2014). It is predominantly present in the large weight-bearing joints such as the hip
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and knee, which causes joint pain, swelling, stiffness and reduced joint mobility leading to a signif-
icant functional impairment and disability (Dagenais et al. 2009; Felson 2006). In the hip joint, ad-
vancing stages of OA are associated with irreversible cartilage loss with concomitant changes in the
subchondral bone (e.g., marginal outgrowths, osteophytes and bony sclerosis) and pathophysiological
changes to soft-tissue structures in and around the joint (e.g., synovium, ligaments and surrounding
muscles) (Felson et al. 2000; Roemer et al. 2011). Symptoms from this cartilage degradation may
include groin pain, stiffness and subsequent deformity of the hip joint, which eventually progress to
severe conditions requiring surgical intervention in the form of total hip arthroplasty (THA). While
early joint structural abnormalities often present prior to the onset of clinically apparent hip OA, defin-
ing and characterizing early and pre-osteoarthritic conditions is important in assessing the trajectory
of disease development and progression as well as developing and evaluating strategies for prevention
and treatment of hip OA (Chu et al. 2012; Ding et al. 2010).

Femoroacetabular impingement (FAI) has been widely suggested to be a pre-osteoarthritic mech-
anism (Ganz et al. 2003; Tanzer and Noiseux 2004). Cam-type FAI characterized by an abnormal
shape of the femoral head-neck (FHN) junction can result in abnormal shear and compressive forces
during flexion and internal rotation of the hip joint, which instigates the initial chondrolabral damage
at the acetabular rim and further acetabular cartilage lesions (Tannast et al. 2008; Wagner et al. 2003).
Accurate detection and quantification of cam lesions may therefore assist initiating appropriate ther-
apy for cam-type FAI and reducing the subsequent damage to the articular cartilage and associated
surrounding soft tissues before the onset of hip OA.

Clinically, plain radiography (X-ray) is the standard imaging modality to assess the structural
anatomy of the hip joint and to examine related disease conditions such as joint spacing narrow-
ing in OA and abnormal FHN junction in cam-type FAI. However, plain radiographs do not directly
demonstrate the articular cartilage and have been considered to be insensitive to diagnose early stages
of OA (Karachalios et al. 2007). In contrast, MR imaging is an optimal tool for vivo assessment of the
full joint structure including the bones and articular cartilages. It provides multiplanar capabilities,
no ionizing radiation, a direct, thorough visualization of the cartilage and superb contrast between
the cartilage and other surrounding tissues (Burstein et al. 2000; Karachalios et al. 2007). Therefore,
these bring about extensive clinical interest in the development of MR technologies to quantitatively
analyze the cartilage morphology (e.g., volume, thickness and surface area) (Li et al. 2008) and to as-
sess biochemical compositions of the hyaline cartilage (Bittersohl et al. 2009; Carballido-Gamio et al.
2008b) as well as to evaluate other articulating structures (e.g., the osseous tissue, labrum) (Roemer
et al. 2011) that facilitates early diagnostic and management options for hip OA and pre-osteoarthritic
conditions such as FAI.

1.2.2 Technical motivation

Quantitative measurements of the bones and articular cartilages can provide reliable morphometric
data from the complex MR image information for potential use in research and clinical studies about
pathoanatomical conditions of the hip joint such as early OA and FAI.
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The segmentation of the anatomy of interest, i.e., the articulating bones and cartilages within the
hip joint in this research, is an essential prerequisite for subsequent quantitative analyses. In order
to precisely capture small morphological changes, particularly for the individual cartilage layer nor-
mally with 1∼3 mm thickness, this segmentation process must be performed with a high level of accu-
racy, robustness and reliability, which, in most clinical studies, was performed using fully manual or
semi-automatic methods (Li et al. 2008; Naish et al. 2006). The disadvantages of these manual/semi-
automated approaches are that they are very time-consuming and require skilled operators with con-
siderable experience but still have considerable inter- and intra-rater variability, particularly under the
influence of poor image quality, insufficient tissue contrast and various MR artefacts.

The development of a fully automatic segmentation method for MR images of the hip joint is
highly desirable not only to circumvent the need for the time- and expertise-intensive manual/semi-
automated methods but also to facilitate the provision of reliable and reproducible morphometric data
for dedicated use in large-scale research and clinical investigations about early and pre-OA of the hip
joint. However, this task is very challenging due to anatomical (e.g., the deeply located hip joint struc-
ture and very thin, highly spherical articular cartilage) and imaging (e.g., the limited image resolution,
complex tissue contrast and inhomogeneity in signal) difficulties.

1.3 Research Aims and Challenges

There are two main aims in this research in order to realize the proposed computer-aided system (see
Figure 1.1):

Aim 1: To develop and evaluate a fully automated segmentation approach with advanced image
segmentation techniques in order to deliver accurate and reproducible bone and cartilage seg-
mentations from high-resolution 3D MR images of the hip joint;

• Aim 1.1: To develop and evaluate the 3D automatic MR-based approach for segmenting the
articulating bones within the hip joint;

At the initial stage of this thesis, an automatic MR-based approach needs to be implemented
to deliver accurate segmentations of the bone elements (i.e., the proximal femur and innomi-
nate bone) of the hip joint. The fulfilment of this aim will not only provide a basis for quan-
titative measures of the bone morphology (Aim 2.1), but also allow the extraction of reliable
bone-cartilage interfaces (BCIs), which can be served as an initial reference framework for sub-
sequent cartilage segmentation (Aim 1.2). This proposed segmentation method needs to be
carefully validated against manually segmented volumetric data of the bones using various vol-
ume and distance based validation metrics in a dataset of high-resolution 3D MR images of the
hip joint with different acquisition sequences.

3



Automatic Bone Segmentation

(Aim 1.1)

Automatic Cartilage Segmentation

(Aim 1.2)

Quantitative Assessments of

Cam-Type Lesions

(Aim 2.1)

Quantitative Measurements of

Articular Cartilages

(Aim 2.2)

Aim 1 Aim 2MR 
Image

Morphometric 
Data

Computer-Aided System for MR Images of the Hip Joint

Figure 1.1: Computer-aided system for MR images of the hip joint.

• Aim 1.2: To develop and evaluate the 3D automatic MR-based approach for segmenting the
hip joint cartilages.

Accurate segmentation of the articular cartilage is important for subsequent quantitative mea-
surements of the cartilage morphology (Aim 2.2). It is extremely problematic to develop an
automatic segmentation method for the hip joint with the highly spherical and very thin car-
tilage with a large anatomical variability. In most previous studies, this segmentation task is
manually performed by well-trained clinical analysts.

The proposed cartilage segmentation approach will be developed based on the reliable BCIs, an
initial reference framework established from the bone segmentations (Aim 1.1). The individual
femoral and acetabular cartilage plates need to be well delineated with a good accuracy from
MR images of the hip joint without auxiliary techniques such as continuous leg traction (Nishii
et al. 1998). It will thereby allow small changes of the cartilages to be captured in the following
quantitative analyses. The evaluation needs to be performed using manually segmented carti-
lage volumetric data from a dataset of high-resolution 3D MR images.

Aim 2: To automatically extract reliable and reproducible morphometric data based on the seg-
mented subchondral bones and articular cartilages.

• Aim 2.1: To automatically extract reliable and reproducible 3D morphological information of
the head-neck junction from the segmented surface of the proximal femur;

Morphological measurements of the FHN junction based on 3D volumetric data of the proxi-
mal femur from MR images provide great potential to accurately detect and quantify possible
cam-type lesions that always present on a patient-specific basis. The traditional quantitative
assessment of cam lesions is performed on plain radiographs, which has inherent limitations
in two-dimensionally depicting the variable osseous deformities and visualizing potential dam-
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ages to the radiolucent articular cartilage. The development of a 3D quantification method is
necessary to extract reliable quantitative data of the bone morphology at the FHN junction for
assessing possible cam-type lesions from MR images.

The proposed quantificationmethodwill be performed based on the segmented 3D surface of the
proximal femur. The alpha angle, the most common radiographic measure (Nötzli et al. 2002),
will be automatically measured around the circumference of the FHN junction. The validity
and reliability of the proposed automatic quantitative measurement method will be evaluated
using manual alpha angle measures from auto-extracted reformatted radial MR images in the
hip joints with varying FHN junction presentations.

• Aim 2.2: To perform quantitative measurements of the segmented femoral and acetabular car-
tilages within the hip joint.

Quantitative measurements of hip joint cartilages provide great potential to deliver useful mor-
phometric information for assessment of the hip joint in pathoanatomical conditions such as
early and pre-OA. Morphometric data of articular cartilages from healthy hip joints can also
provide reference values to underpin quantitative biomarker imaging for characterization of
pre-osteoarthritic conditions in research and clinical studies, which target modifiable disease
stages in OA to monitor pathophysiological processes and evaluate therapeutic interventions
during the earliest stages of degeneration (Chu et al. 2012).

The proposed measurements will be mainly centred on the volume and thickness of the in-
dividual femoral and acetabular cartilage plates, which are considered to be sensitive to subtle
changes at very early stages of cartilage degeneration (Li et al. 2008; Nishii et al. 2004). The vol-
ume measurement is a direct numerical integration of the cartilage voxels indicating the global
cartilage loss to a certain degree. The cartilage thickness is an efficient measurement of local-
ized morphological changes that can be qualitatively visualized as a thickness map across the
articulating surface of each cartilage plate. Moreover, subregional analyses of the femoral and
acetabular plates offer a more sensitive tool to accurately locate abnormal changes of the carti-
lage in independent subregions and better understand the trajectory of the degeneration which
often starts with small focal lesions.

A preliminary evaluation will be performed to compare the morphometric data obtained from
manual and automatic cartilage segmentations from high-resolution 3DMR images. The repro-
ducibility will be also investigated using several MR acquisition protocols with different spatial
image resolutions and tissue contrast characteristics.

To achieve the above aims, there are some challenges that can be summarized in three major
aspects, which will be further explained in the following chapter in the aspects of the anatomical,
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imaging and technical background in the following chapter:

• Anatomical structure: The articular cartilages are relatively thin and highly curved within the
ball-and-socket hip joint deeply located in the human body. Wyler et al. (2009) has recently
reported a mean cartilage thickness range of 0.32 - 2.83 mm on the femoral head and 0.95 - 3.13
mm on the acetabulum according to a MR-arthrographic evaluation on 12 normal cadaver hips.
Furthermore, the individual femoral and acetabular cartilage plates are closely apposed, which,
with limited image resolution, makes it difficult to discern between two cartilage plates, partic-
ularly in the weight-bearing areas (Nishii et al. 1998). Although this issue has been addressed
in previous studies using leg traction devices during the acquisition process (Cheng et al. 2013;
Nishii et al. 2004; Sato et al. 2001), it might not be suitable in our study targeting routine MR
imaging examinations.

• MR acquisition: MR imaging of the hip joint is more challenging than the knee given that it
is deeply located in the body and surrounded by a large group of muscles with complex attach-
ments to tendons. The use of a general body coil or a phased array coil rather than a dedicated
hip surface array coil also makes it difficult to obtain a high spatial resolution with adequate
signal-to-noise ratio (SNR) and contrast-to-noise ratio between bone, cartilage, synovium and
other soft tissues. Moreover, various imaging artefacts including noise, partial volume effects
(PVE) and intensity inhomogeneity commonly seen in MR images of the hip joint can affect
accurate depiction of the articular cartilages as well as reliable detection of the cartilage lesions.

• Segmentation algorithm: The development of a fully automatic segmentation method for the
hip joint cartilages is quite difficult due to a combination of factors including the morpholog-
ical variety of the cartilages, unsatisfying image quality and limited resolution in MR images,
particularly for routine clinical examinations. To be of clinical significance, automatic segmen-
tation algorithms need to be accurate, precise and reliable to allow small changes to be captured
in cases across a wide range of the cartilage morphology as well as from a variety of MR im-
ages using different acquisition protocols (e.g., sequence, field of view (FOV), tissue contrast,
in-plane image resolution).

1.4 Expected Contributions of the Thesis

The major expected contributions of the research lie in the development and validation of automatic
segmentation and quantification approaches being proposed:

• Automatic segmentation of the bone elements within the hip joint
Methods will be developed for automatic segmentation of the bones in the hip region, i.e., in-
nominate bones and proximal femurs, using different advanced image segmentation techniques.
A validational studywill be performed to evaluate automatic bone segmentations against manual
segmentations from high-resolution 3D MR images of the hip joint region, which demonstrates
the capacity for generating morphometric data on the subchondral bone of the hip joint and pro-
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viding a basis for subsequent cartilage segmentation.

• 3D assessment of the femoral head-neck (FHN) junction for cam-type FAI
The 3D segmentation of the proximal femur offer opportunities for accurately visualizing and
quantifying possible cam-type lesions. Based on 3D reconstructions of the proximal femur from
MR images, a method will be presented to automatically evaluate 3D bone morphology and pro-
vides alpha angle measurements around the circumference of the FHN junction. The proposed
method will deliver reliable and reproducible measurements, particularly at the anterosuperior
and anterior FHN junction where cam-type lesions likely occur. This will be the first MR-based
study that allows fully automatic 3D quantitative assessment of cam-type lesions based on the
alpha angle measures.

• Automatic segmentation of the individual femoral and acetabular cartilages
Amethod will be proposed based on the bone pre-segmentation for automatic cartilage segmen-
tation from high-resolution 3D MR images of the hip joint. It will be the first method to allow
automatic and reliable delineation of the individual femoral and acetabular cartilage plates from
MR images acquired without continuous leg traction or contrast agents for a clear separation
between two cartilage plates. A high level of validity and reliability of automated cartilage seg-
mentations, in comparisons with benchmark manual segmentations, is expected to be achieved
for subsequent quantitative analyses.

• Quantitative measurements of the cartilages and partitioned subregions
Quantitative measurements (i.e., volume, thickness) of the segmented cartilage volumes will be
performed and compared with the results obtained from manual cartilage segmentations. Sub-
regional analyses of the femoral and acetabular cartilage plates will be investigated, particularly
at the weight-bearing areas of the articular surfaces, where focal cartilage lesions most likely
appear and subsequently lead to progressive degenerative conditions. Preliminary evaluation of
the reproducibility will be confirmed between several MR acquisition protocols with different
tissue contrast and image resolutions.

1.5 Organization of the Thesis

The thesis outline is as follows:

Chapter 2 provides the relevant clinical, imaging and technical background involving the hip
joint anatomy and pathology, MR imaging of the hip joint and current medical image segmentation
techniques. A methodological overview is then followed to systematically clarify the data acquisition
process and methods to be implemented in this thesis.

The subsequent four chapters then present a more detailed literature review, the proposed method-
ology and associated evaluation results respectively targeted for each of the four specific aims de-
scribed in Section 1.3.
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Chapter 3 presents the work to achieve Aim 1.1, which will develop and evaluate two state-of-
art methods for automatic segmentation of the bone elements from 3D MR images of the hip. This
is motivated by the need for quantitative analyses of the bone morphology, particularly at the FHN
junction and subsequent automatic cartilage segmentation.

In order to accomplish Aim 2.1, Chapter 4 proposes an automatic 3D quantification method for
quantitative assessing the bone morphology at the FHN junction for potential use in accurate detection
and quantitative measurement of possible cam lesions. The reliability and reproducibility is assessed
using 3D MR images of the hip joints with varying FHN junction presentations.

Chapter 5 centers on Aim 1.2 and introduces a novel hybrid cartilage segmentation scheme for
MR images of the hip joint with a prerequisite of the bone pre-segmentation. The proposed method is
validated against manual segmentation of the cartilages in a dataset of high-resolution 3DMR images.

For Aim 2.2, Chapter 6 performs quantitative measurements (i.e., volume and thickness) and
subregional analyses of the cartilage morphology based on the individual femoral and acetabular car-
tilage volumes automatically segmented from 3D MR images of the hip joint. The reliability and
reproducibility of these morphological measures is evaluated in order to examine the feasibility for
potential provision of the morphometric data in large-scale clinical and research studies about early
hip OA.

Finally, Chapter 7 concludes this thesis with a discussion of the methodologies used and the
primary contributions. Furthermore, it describes general limitations of the proposed techniques with
a summary of possible future work.
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2
BACKGROUND AND METHODOLOGICAL OVERVIEW

2.1 Basic Anatomy of the Hip Joint

The hip joint is a synovial joint of the ball-and-socket type formed between the head of the proximal
femur, i.e., "ball", and the acetabulum of the pelvis, i.e., "socket" (Figure 2.1). The hip, as the largest
weight-bearing joint in the human body, connects the upper and lower body halves and regularly ex-
periences loads over 2.5 times the bodyweight (Bergmann et al. 2001). As a wide range of movement
patterns (e.g., flexion and extension, abduction and adduction, medial and lateral rotation, and circum-
duction) largely rely on the articulation of this joint, a complicated anatomic structure involving bony,
cartilaginous, ligamentous and muscular supports has been developed within and around the hip joint
in order to achieve these mechanical functions (Anderson and Blake 1994; Johnston 1973).

2.1.1 Bone structure

The bone structure within the hip joint consists of two components: the proximal femur and the pelvic
bone (or innominate bone).

The femur is one of the longest bones in the human body and extends from the hip joint proximally
to the knee joint distally (Drake et al. 2009). It can be divided into three sections, where the proximal
one, as a part of the hip joint, contains the femoral head and neck, greater trochanter, lesser trochanter,
intertrochanteric line and crest (see Figure 2.1). The head of the proximal femur, a two-thirds of a
sphere (i.e., 45 - 56 mm diameter), locates into the acetabulum in a medial, cranial and slightly ventral
position. Fovea capitis femoris is a non-articular pit on the medial surface of the femoral head, which
is used for the attachment of ligamentum teres into the acetabular notch at the other side. The femoral
neck connects the femoral head to the shaft of the femur and usually projects superiorly, anteriorly
and medially from the upper femoral shaft. As the orientation of the femoral neck is closely related
to the range of movement and the loading of the hip joint, it is commonly examined by the angle of
anteversion and angle of inclination (Toogood et al. 2009). The angle of inclination, also referred
as the neck-shaft angle, is formed between the femoral neck and shaft at a frontal view, which is
approximately 125◦ (± 5◦) in the adult and varies in the life cycle (Fagerson 1998).

The pelvis is comprised of two halves (i.e., the innominate bones), each of which is formed through
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Figure 2.1: Articular surfaces of the hip joint (anterior view) (Used without permission from (Drake
et al. 2009)).

the fusion of three bone components, the ischium, pubis and ilium. The acetabulum, as the confluence
of these three bones, is a shallow, semi-spherical-cup-shaped cavity and locates anteriorly, laterally
and inferiorly on the outside of the pelvic bone. The center edge angle defined between the vertical line
and a line connecting the lateral rim of the acetabulum and the femoral head center Wiberg (1939),
is used to indicate the amount of inferior tilt of the acetabulum (Levangie and Norkin 1992). The
inferior margin of the acetabulum is known as the acetabular notch that incorporates the attachment
of ligamentum teres and vascular structures (Anderson and Blake 1994), which makes the acetabular
articular surface as an inverted horseshoe-shaped area covering other anterior, superior and posterior
margins (Drake et al. 2009).

2.1.2 Articular cartilage

In the hip joint, the articular surfaces include the spherical head of the femur and the lunate surface of
the acetabulum (Figure 2.1). Both articular surfaces are highly curved but neither coextensive nor com-
pletely congruent (Standring et al. 2005). The articular surface on the femoral head is a spheroidal and
slightly ovoid surface in young subjects and becomes more spherical during the ageing process. The
acetabular articular surface is lunate-shaped and appears like an incomplete ring, which is the broadest
at the anterosuperior region and deficient in the inferior region opposite the acetabular notch (Drake
et al. 2009). Both the articular surfaces are completely covered by the articular cartilage with the ex-
ceptions of the non-articular acetabular fossa and the femoral fovea. This cartilaginous tissue helps
to absorb the shock, distribute joint loads over a wider area of the bones and, with assistance of intra-
articular synovial fluid, provides a slick surface that allows almost frictionless movement between the
opposite bones within the joint (Standring 2008).

In healthy adult hip joints, the thickness of the articular cartilage ranges from 1.0 to 2.5 mm on the
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Figure 2.2: Thickness variation of articular cartilage of the femoral head (left) and the acetabular lunate
surface (right). A and B are designated reference grids, where the distance and angular direction of
sampling points (black dots in C and D) are measured from the center of the femoral head and the
acetabulum center. C and D show average contours of the thickness ranges indicated by the shaded
codes below the diagrams (Used without permission from (Fagerson 1998)).

femoral head and 1.2 to 2.3 mm in the acetabulum (Fagerson 1998). Figure 2.2 presents a general dis-
tribution pattern for the individual femoral and acetabular cartilage plates within the hip joint (Fager-
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Figure 2.3: Cross-sectional diagram of healthy articular cartilage: A, cellular organization in the zones
of articular cartilage; B, collagen fiber architecture. (Used without permission from (Sophia Fox et al.
2009)).

son 1998; Kurrat and Oberländer 1978). For the femoral cartilage plate, the medial central surface,
which is part of the contact area with the acetabulum, has the thickest cartilage coverage (2.5 - 3.5
mm), while the periphery of the articular surface has the thinnest one. The acetabular cartilage is
found thickest on the upper area of the horseshoe shape (> 2.5 mm), the major weight-bearing area,
and also the outer periphery (1.5 - 2.0 mm), while the thinnest cartilage coverage (< 1.0 mm) is in the
lower region at the caudal edge of the horseshoe shape close to the acetabular fossa.

The mechanical properties of the relatively thin articular cartilage within the hip joint result from
its unique structure and composition. The normal articular cartilage is comprised of an extracellular
matrix (ECM) and chondrocytes, the only type of cells. In the ECM, three classes of proteins are
involved: collagens, proteoglycans and other noncollagenous proteins. The collagen including 90-
95% type II collagen accounts for 10-15% of the wet weight and provides a tensile strength to the
articular cartilage, while the presence of proteoglycan aggregates gives the cartilage the ability to
resist the compression (Sophia Fox et al. 2009). Chondrocytes, which make up about 1-5% of the
total cartilage volume in adults, serve as observers rather than participants in the function of mature
articular cartilage, which are responsible for synthesizing and maintaining the ECM (Buckwalter et al.
2005). Therefore, the remarkable biomechanical properties of the articular cartilage is the result of
both the integrity of the collagen network and the maintenance of the high proteoglycan content within
the matrix (Sophia Fox et al. 2009; Tuan and Chen 2006).

In the structure of mature articular cartilage, four zones or layers can be identified as shown in
Figure 2.3, which are the superficial zone, transitional (or middle) zone, deep zone and calcified carti-
lage zone accordingly from the articular surface to the subchondral bone (Potter et al. 2009; Standring
2008). The thin superficial zone (10-20% of the total cartilage volume) contains an acellular sheet
of tightly-packed collagen fibres with their long axes parallel to the articular surface and a relatively
high number of flattened chondrocytes, which provides the greatest tensile and shear strength to pro-
tect deeper layers (Sophia Fox et al. 2009). The transitional zone as a bridge between the superficial
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Figure 2.4: Ventral view of the intra-articular structure of the (right-side) hip joint after opening of
the capsule and partial (top left) or complete (bottom right) exarticulation of the femoral head (Used
without permission from (Paulsen and Waschke 2013)).

zone and deeper zones, occupies 40-60% of the total cartilage volume with spheroid-shaped chon-
drocytes and abundant ECM. The deep zone has the largest diameter of collagen fibrils, highest con-
centration of proteoglycans and least water, which can provide the greatest resistance to compressive
forces (Sophia Fox et al. 2009). The thin calcified cartilage zone with a small volume of chondro-
cytes embedded in a calcified matrix always shows a lowmetabolic activity and provides an important
transition to the less resilient subchondral bone (Bhosale and Richardson 2008).

2.1.3 Labrum, capsular and ligamentous structures

As illustrated in Figure 2.4, the acetabular labrum in the hip joint is a ring of fibrocartilaginous tis-
sue with the shape of an inverted "U" that is attached to the osseous margin of the acetabulum with
the continuity until the acetabular notch. This tissue structure is triangular in cross section with its
base attached to the acetabulum and apex forming the free edge of the labrum, which is turned in
against the femoral head (Fagerson 1998). The labrum deepens the acetabular socket and increases
the containment of the femoral head, which, therefore, helps with load distribution and stabilization
of the hip joint (Henak et al. 2011). In some previous studies, the labrum was also demonstrated to
act as a seal to prevent the direct contact between joint surfaces with pressurised fluid layer and uni-
formly distribute compressive loads across the cartilage surfaces, thereby lowering maximal cartilage
compressive forces during weight-bearing (Crawford et al. 2007; Ferguson et al. 2003).
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The hip capsule encompassing the entire hip joint and mostly the neck of the femur, proximally
attaches to the entire periphery of the acetabulum beyond the acetabular labrum and transverse liga-
ments (Fagerson 1998). Meanwhile, the capsule also runs distally and attaches anteriorly to the in-
tertrochanteric line and the root of the greater trochanter. While most of the fibres run longitudinally
parallel to the femoral neck with blood vessels, a small portion of the fibres, zona orbicularis, wrap
circularly around the neck of the femur to ensure the stability of the hip joint in distraction (Paulsen
and Waschke 2013).

Three strong extracapsular longitudinal ligaments are used to further reinforce the hip joint, which
include iliofemoral, pubofemoral and ischiofemoral ligaments (Fagerson 1998). As these ligaments
all start from the pelvic bone, they are named for their bony attachments on the femur at the other
side, respectively. These ligamentous structures are important to limit the range of hip extension and
prevent the backward tilting of the pelvis (Paulsen andWaschke 2013). The intracapsular ligamentum
teres is the fourth ligament within the hip joint covered by synovial membrane (see Figure 2.4), which
can protect blood vessels to and from the femoral head (Fagerson 1998).

2.2 Hip Osteoarthritis and Femoroacetabular Impingement

The hip joint as one of the largest weight-bearing joints usually suffers from a high prevalence of de-
generative conditions. Osteoarthritis (OA) and femoroacetabular impingement (FAI) are the primary
thrust of this thesis, and thus will be the focus in the further discussion.

2.2.1 Osteoarthritis (OA) of the hip joint

Osteoarthritis (OA) is a degenerative joint disease shown in Figure 2.5 defined by the American Col-
lege of Rheumatology as "a heterogeneous group of conditions that lead to joint symptoms and signs
which are associated with the defective integrity of articular cartilage in addition to related changes
in the underlying bone at the joint margins" (Roach and Tilley 2007). It is always associated with
signs and symptoms of inflammation including joint pain, swelling, stiffness and reduced joint mo-
bility leading to significant functional impairment and disability (Felson 2006). The hip degeneration
process involves not only the focal and progressive cartilage loss, but also degenerative conditions of
the entire joint, which include concomitant changes in the subchondral bone (such as the development
of marginal bony outgrowths, osteophytes and bony sclerosis) and damages to the soft tissue in and
around the hip joint (synovial membrane, ligaments, capsule and periarticular muscles) (Lane 2007;
Lories and Luyten 2011).

The articular cartilage has been generally recognized as the earliest evidence of joint degenera-
tion (Lloyd-Roberts 1955). Initial cartilage alterations usually occur in the molecular composition
and organization of the cartilage matrix, which further lead to deterioration in material properties and
structural integrities of the articular surfaces and underlying hyaline cartilages. The progression of
hip OA commonly results in the roughened and irregular articular surfaces, deeper fibrillation into
the cartilage until the fissures reach the subchondral bone (Buckwalter et al. 2005). Moreover, the
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Figure 2.5: Illustration of (left) normal and (right) osteoarthritis hip joint (Used with-
out permission from http://www.everettboneandjoint.com/birmingham-hip-resurfacing/
diseases.htm)

degradation of the cartilage layers can usually be observed in the weight-bearing area of the femoral
head on the upper quadrant in contact with the acetabulum.

The subchondral bone is currently considered to be another important aspect in the pathogenesis
of the disease, which can have progressive bone alternations involving stiffening and thickening of the
subchondral bone, osteophyte formation, subchondral sclerosis and development of subchondral bone
cysts (Lories and Luyten 2011; Perepezko et al. 2002). These abnormal bony changes are suggested
to precede alterations in the articular cartilages and adversely affect the biomechanical environment of
the overlying cartilage leading to secondary changes in the cartilage structure and integrity (Goldring
and Goldring 2010; Radin and Rose 1986).

Diagnosis and treatment of hip OA

The diagnosis of hip OA is performed on a basis of the patient history, clinical examinations, radio-
graphic evidences and laboratory data. According to the American College of Rheumatology, current
clinical diagnosis guideline contains physical examinations together with radiographic findings evi-
dent on plain radiographs (Wolfe et al. 1990). As the strongest clinical indicator of hip OA is pain,
particularly exacerbated by internal or external rotation of the hip (Lane 2007), a physical examination
is usually performed to rule out other causes of the hip pain. The Western Ontario and McMaster Uni-
versities Osteoarthritis Index (WOMAC) is a widely-usedmeasure with the long established reliability
and validity, for assessing pain, stiffness and physical function in patients with OA of the hip and/or
knee (McConnell et al. 2001). The radiographic findings chronologically include joint space narrow-
ing, osteophyte formation and development of subchondral sclerosis, which usually occur in patients
with severe OA (Conrozier et al. 1998; Dougados et al. 1996). For patients with early OA that do
not have these radiographic changes, more sophisticated imaging technologies such as multi-detector
computed tomography (CT) and MR imaging are necessary for further diagnosis confirmation. Cur-
rently, these modalities are not routinely used in clinics.
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To our best knowledge, there is no cure for hip OA or effective treatment proven to slow OA
progression. Current treatments to hip OA include lifestyle interventions, pharmacological therapy
and surgical approaches, which still aim to relieve pain and preserve physical functions (Lane 2007).
Although both non-pharmacological, e.g., weight loss and exercise, and pharmacological treatments
are important in the therapeutic program for hip OA, little literature has shown their cost-effectiveness.
Surgical intervention is normally considered when the joint pain cannot be controlled by conservative
treatments and significantly limits normal functional activities of daily living. Total hip arthroplasty
(THA), as one of the most beneficial surgical procedures, has demonstrated marked improvements in
physical function, social interaction and overall health; however, the optimal time for this type of joint
replacement surgeries is still not known (Laupacis et al. 1993; Murray et al. 1995).

2.2.2 Femoroacetabular impingement (FAI)

Femoroacetabular impingement (FAI) is a pre-osteoarthritic pathomechanical process of the hip joint
frequently seen in young active subjects, especially in conjunction with top-level sport activities. It
is characterized with varying bony abnormalities of the acetabulum and/or proximal femur causing
abnormal contact stresses and repetitive collisions during hip joint motion (Leunig et al. 2009). It
has been suggested that these deformities can initiate a cascade of degenerative, intra-articular events
including tears in the labrum, disruption of the labrochondral junction and cartilage damages at the
superior aspect of the acetabulum, and may eventually lead to hip OA (Ganz et al. 2003). Hence, early
recognition and intervention for the FAI syndrome is likely to have considerable impact on delaying
and preventing the development of progressive hip OA.

There are two distinct types of hip impingement based on the origin and the mechanism of the
impingement: cam and pincer (Lavigne et al. 2004), as illustrated in Figure 2.6.

• Cam FAI, mostly seen in young, active male patients, results from the excessive bone at the
head-neck junction of the femur that leads to jamming of an abnormal femoral head into the
acetabulum in vigorous flexion and internal rotation of the hip joint (Ito et al. 2001). It is postu-
lated that abnormal shear and compressive forces arising from a cam effect instigates the initial
chondrolabral damage at the anterosuperior acetabular rim, which would be followed by the ac-
etabular cartilage lesions and further reciprocal damage to the femoral head cartilage (Tannast
et al. 2008; Wagner et al. 2003). A larger extent of these anomalies at the FHN junction is asso-
ciated with increasing chondral damage, labral injury, and decreased range of motion (Johnston
et al. 2008).

• Pincer FAI, more frequently in middle-aged females with participation of athletic activities
involving hip motion, is secondary to the acetabular over-coverage resulting in impingement of
the acetabular rim against the femoral neck during range of motion (Larson 2012). The over-
coverage of the acetabular rim can be caused by retroversion of the acetabulum, coxa profunda
or protrusio, which, with repeated abutment with a normal FHN junction, leads to the labral
degeneration, ossification of the rim, and circumferential chondral damages (Yen and Kocher
2013).
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Figure 2.6: Cross-section of a hip joint displaying (a) the normal femoral and acetabular anatomy,
(b) cam FAI (bony excrescence causing reduced head-neck offset), (c) pincer FAI (acetabular over-
coverage of the femoral head) and (d) mixed FAI. (Used without permission from (Lavigne et al.
2004))

A combination of these two impingement conditions is classified as a mixed-type FAI (Tannast
et al. 2007), which is most commonly observed in symptomatic patients (Philippon et al. 2007).

Diagnosis of FAI

Diagnosis of FAI is based on clinical findings and radiographic analyses, including MR arthography.
Clinical evidences of FAI are characterized by anterior inguinal pain and decreased range of motion
with flexion, adduction and internal rotation, which are commonly assessed by a series of physical ex-
aminations including the anterior conflict test (flexion, abduction, intra-rotation = FADIR), Drehmann
test (flexion, abduction, extra-rotation = FABER) and posterior impingement test (Aliprandi et al.
2014).

Radiographic (X-ray) evaluation is firstly used to evaluate patients with a clinical suspicion of FAI
that allows for detecting the anatomical and skeletal abnormalities in both cam-type and pincer-type
FAI. The standard radiographic imaging comprises at least two projections: an anterior-posterior (AP)
pelvic view and an axial cross-table view (or Dunn view at 45◦ of hip flexion) shown in Figure 2.7.
Additionally, more projections can be performed such as Lequesne's false profile and lateral pelvic
projections to better evaluate morphological features associated with FAI. For cam-type FAI, the ab-
normal femoral sphericity with the convex appearance of the FHN junction can be detected as the
presence of a typical anterior or posterior bump on the radiographs. These osseous deformities can be
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Figure 2.7: Bony bump (arrow) in cam-type FAI observed on (left) the AP pelvic view and (right)
Dunn view at 45◦ of hip flexion. The alpha angle measurement (α) is illustrated in the latter view.
(Used without permission from (Aliprandi et al. 2014)).

quantified using several methods:

• Alpha Angle introduced by Nötzli et al. (2002) is used to quantify the amount of asphericity,
which is defined as the angle between the femoral neck axis and a line connecting the head
center with the point where the asphericity of the head-neck contour begins (see Figure 2.7).
On axial radiographs, an alpha angle exceeding 50◦ is an indicator of an abnormally shaped
FHN contour (Tannast et al. 2007). However, to our knowledge, no consensus has been reached
yet for its threshold value that allows to precisely distinguish between asymptomatic controls
and symptomatic FAI patients (Pollard 2011).

• Femoral head-neck (FHN) Offset is defined as the difference in radius between the anterior
femoral head and anterior femoral neck on a cross-table axial view of the proximal femur (Ito
et al. 2001; Siebenrock et al. 2004). As a general rule for clinical practice, an anterior offset less
than 10 mm is a strong indicator for cam-type impingement (Marín-Peña 2012).

• Triangular Index is constructed by measuring half of the head radius (r) on the neck axis and
drawing a line perpendicular to the neck axis in the measured point. The new radius (R) is
defined as the distance between the head center and the point intersection between the perpen-
dicular line and FHN contour (Gosvig et al. 2007). The significant difference between r and R
reveals a cam-type impingement.

The excessive acetabular coverage in pincer-type FAI is quantified with the lateral center edge
angle or the acetabular index. The lateral center edge angle is the angle formed by a vertical line
and a line connecting the femoral head center with the lateral edge of the acetabulum. A "normal"
lateral center edge angle has been described to range between 25◦ and 39◦ (Murphy et al. 1995). The
acetabular index is the angle formed by a horizontal line and a line connecting the medial point of
the sclerotic zone with the lateral center of the acetabulum. In hip with coxa profunda or protrusio
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acetabuli, the acetabular index is typically 0◦ or even negative. The femoral head extrusion index
is another parameter for quantification of femoral coverage, which defines the percentage of femoral
head that is uncovered when a horizontal line is drawn parallel to the inter-teardrop line. An extrusion
index higher than 25% is associated with hip dysplasia (Li and Ganz 2003).

2.3 Imaging of the Hip Joint

2.3.1 Plain radiography

Plain radiography (X-ray) is the primary diagnostic modality for the hip pathology, which has stan-
dard projections including AP, lateral ("frog-leg"), axiolateral views (see Figure 2.8). To evaluate
the progression of hip OA, radiographic changes can be observed shown in Figure 2.8c including
signs related to bone changes (cysts, sclerosis, osteophytes) and the cartilage loss (joint space nar-
rowing) (Ravaud and Dougados 1997). The first radiological sign often shows the development of
osteophytes but measurement of joint space width (JSW) is the most reliable and sensitive method
of grading severity of the disease (Gossec et al. 2009). While several parameters can be examined,
e.g., minimum JSW, mean JSW and a region of interest of the joint space, Conrozier et al. (2001)
has suggested measurement of the minimum interbone distance of the joint space width as the most
suitable method for evaluation of hip OA progression.

Standard radiographic imaging for FAI usually includes an AP pelvic view and an axial cross-table
view of the proximal femur while an alternative to the axial view, a Dunn view at 45◦ of hip flexion can
be acquired to reveal pathomorphologies of the anterior FHN junction (see Figure 2.7) (Tannast et al.
2007). From different views of the radiographs, several radiographic parameters can be measured
allowing accurate quantify the amount of asphericity of the femoral head (i.e., the alpha angle and
anterior offset) and excessive acetabular coverage (i.e., the lateral center edge angle and acetabular
index) (Siebenrock and Henle 2012).

Although radiographs can be used to identify morphological risk factors for OA and FAI and to
define disease conditions in advancing stages, they lack a direct visualization of the radiolucent artic-
ular cartilage and associated surrounding soft tissues, particularly for the tissue damages at the early
stage of hip OA. As the cartilage degeneration is initially focal and non-uniform and needs to be severe
enough to manifest on X-rays, the assessment of JSW alone has been reported insufficiently accurate
to indicate the structural integrity of the articular cartilage (Fife et al. 1991). Furthermore, this two-
dimensional (2D) radiographic visualization is dependent on patient positioning on the gantry and
the experience of the technologist, which would further affect the reliability of radiographic measure-
ments. Therefore, these limitations demonstrate a clear need for incorporation of advanced imaging
modalities, such as CT and MR imaging.

2.3.2 Computed tomography (CT)

Computed tomography (CT) imaging provide a clear cross-sectional visualization of the osseous
anatomy using computer-processed x-rays and allows for multiplanar 3D imaging options. Although
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Figure 2.8: (a) Anteroposterior (AP) and (b) lateral radiographs of the hip joint (Used without per-
mission from (Skripkus and Gentili 2006)); (c) demonstrates medial OA features observed on plain
radiographs including joint space narrowing (balck arrow), osteophyte formation (white arrow) and
abnormal head-neck offset (open arrow) (Used without permission from (Karachalios et al. 2007).

CT does not have a significant role in the evaluation of early OA, it is commonly used in three-
dimensionally quantifying bony abnormalities of the hip joint, which permits a better appreciation
of bony contours in multiple planes and particularly facilitates the assessment of the FHN junc-
tion (Beaulé et al. 2005a; Harris et al. 2013a; Kang et al. 2010). It has also proven to be a suitable tech-
nique for non-invasive investigation of subchondral bone changes within OA patients (Müller-Gerbl
et al. 1992). However, in CT imaging, the ionizing radiation makes this image modality unsuitable for
non-patients participating in large-scale research studies about FAI and early hip OA. Like X-rays, CT
scans can not provide a through visualization of the surrounding soft tissues including the cartilages
and lack the sensitivity for diagnosis and assessment of early and pre-OA conditions within the hip
joint such as concomitant lesions of the labrum and articular cartilage.

2.3.3 Magnetic resonance (MR) imaging

Magnetic resonance (MR) imaging is the most promising in vivo imaging modality for the full joint
assessment in both research and clinical studies, which, in comparison with the conventional radio-
graphy, has advantages of high spatial resolution, multiplanar capabilities, no ionizing radiation and
excellent tissue contrast allowing a direct visualization of the labrum and articular cartilage. As MR
imaging affords exquisite soft tissue contrast, this imaging modality enables improved evaluation and
monitoring of anatomical features of the injury and disease that may not be assessed adequately with
other imaging methods such as X-ray or CT.

Therefore, MR imaging offer the superiority in three ways for detection and monitoring of early
OA changes (Palmer et al. 2013):

1. very high image spatial resolution to visualize the articular cartilage;
2. biochemical MR imaging techniques for evaluation of cartilage composition;
3. whole hip joint assessment (i.e., all the structures within the joint), permitting the identification

of early changes distant to the cartilage.
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Figure 2.9: High-resolution large field-of-view MR images within the hip region acquired at 3.0 T
from the same subject: (a) water-excitation DESS (0.67 × 0.67 × 0.61 mm3), (b) MEDIC (0.65 ×
0.65 × 0.70 mm3) and (c) 3D proton density-weighted fat suppression SPACE (0.77 × 0.77 × 0.70
mm3).

2D and 3D MR sequences for cartilage imaging

In clinical practice, 2D fast spin-echo (FSE) sequences repeated in multiple planes have been com-
monly used to evaluate the articular cartilages because of the excellent tissue contrast and high in-plane
spatial resolution (Mintz et al. 2005). However, they have relatively thick slices and small gaps be-
tween slices, which can obscure pathologies secondary to partial volume averaging (Kijowski and
Gold 2011). Moreover, several measurement steps have to be performed to display the joint in mul-
tiple planes because voxels are not isotropic and thus multiplanar reformation (MPR) process cannot
be performed without loss of image quality.

Three-dimensional (3D) sequences acquire MR data from an imaging volume through the joint in
terms of thin, continuous slices, thereby reducing the partial volume averaging. They also provide
MPR images that allow the hip joint to be evaluated in any orientation following a single acquisition.
Gradient-echo sequences are the first 3D sequences used for cartilage imaging including T1-weighted
spoiled gradient echo (SPGR) (Nakanishi et al. 2001; Nishii et al. 2004) and Fast Low-Angle Shot
(FLASH) sequences (Mechlenburg et al. 2007), with incorporation of fat suppression to reduce chem-
ical shift artefacts and optimize the overall dynamic contrast range of the image. With these sequences,
the hyaline cartilage is high in signal intensity, and high contrast-to-noise ratios are achieved compar-
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ing with adjacent structures such as joint fluid, fat, cortical bone and muscle (Disler 1997). Also,
the Volumetric Interpolated Breath-hold Examination (VIBE) sequence recently proposed by Zheng
et al. (2010) is a faster and motion-impervious alternative to 3D FLASH for cartilage imaging. A
disadvantage of SPGR and FLASH sequences is that the images show uniform high signal intensity
throughout the hyaline cartilage and therefore may not show intrasubstance cartilage lesions without
articular surface morphological changes and associated articular surface contour defects (Naraghi and
White 2012).

Three-dimensional (3D) dual echo steady state (DESS) imaging is another commonly used tech-
nique for morphologic assessment of the articular cartilage with reduced scan time, higher SNR and
cartilage-to-fluid contrast when compared with 3D SPGR (Mosher and Pruett 1999). In knee OA
trials, 3D DESS has been validated for clinical applications allowing quantitative 3D assessment of
cartilage with good accuracy and precision (Eckstein et al. 2006), and is the sequence of choice for
the Osteoarthritis Initiative (Peterfy et al. 2008).

Another group ofMR imaging techniques is steady-state free precession (SSFP). Balanced SSFP is
also known as fast imaging employing steady-state acquisition (FIESTA) (GE Healthcare), True Fast
Imaging with Steady-state Precession (TrueFISP) (Siemens Healthcare) and balanced-fast-field echo
(FFE) (Philips Healthcare). These techniques depict fluid with higher signal while the cartilage signal
intensity is preserved, which thereby offer excellent synovial fluid-to-cartilage contrast (Vasanawala
et al. 2005) and have a good diagnostic performance in the assessment of cartilage morphology in the
knee joint (Duc et al. 2007a;b; Kornaat et al. 2005).

Recently, 3D FSE with variable flip angle sequences (3D turbo spin echo with variable flip an-
gle (SPACE), Siemens Healthcare) have recently been developed to overcome the drawbacks of 2D
imaging and to acquire isotropic images with high quality, high spatial resolution and relatively short
scan time, for evaluating the articular cartilage (Notohamiprodjo et al. 2009). In this technique, large
eligible turbo factors generated by a restore pulse and variable flip angle distribution are used to pro-
duce a pseudo steady state. It may provide high, T2 weighted tissue contrast and has better SNR
and SNR efficiency (Friedrich et al. 2011). However, these techniques have lower in-plane spatial
resolution when compared to other 3D cartilage imaging sequences with similar acquisition time and
have reduced magnetization transfer effect when compared to 2D FSE sequences (Van Dyck et al.
2012), which may potentially reduce the conspicuity of superficial cartilage lesions (Kijowski and
Gold 2011).

To our best knowledge, no comparison between different MR sequences has been investigated
for the hip joint. Figure 2.9 displays different MR characteristics observed in three different se-
quences, i.e., DESS, multi echo data image combination (MEDIC) and SPACE, acquired from the
same subject. There are several studies evaluating a variety of sequences for the knee joint (Duc
et al. 2007a; Friedrich et al. 2011; Kijowski et al. 2009). Similar sensitivity and specificity values
for water-excitation FLASH, water-excitation DESS and water-excitation TrueFISP sequences were
reported by Duc et al. (2007a) for detecting surgically confirmed cartilage lesions in 30 patients at 1.5
T.
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1.5 T, 3.0 T and 7 T

MR imaging of the hip joint is commonly performed on 1.5 T or 3.0 T scanners while imaging with a
1.5 T large-bore magnet is still regarded as the clinical standard. Most MR-based studies for morpho-
logical and compositional assessment of the articular cartilage within the hip joint were performed at
this field strength of 1.5 T (Li et al. 2008; Nakanishi et al. 2001; Siversson et al. 2014; Zhai et al. 2005).
On the other hand, 3.0 T systems have demonstrated promising improvements in the image quality
(e.g., higher SNR) and spatial resolution while using similar acquisition time, and may therefore be
better suited for the overall assessment of focal cartilage abnormalities (Link 2011). Moreover, Link
et al. (2006) have reported improved lesion detectability for cartilage MR imaging at 3.0 T.

More recently, ultra high field 7 T MR imaging has been applied in the musculoskeletal system,
which mainly benefits in increased SNR that scales approximately linearly with the magnitude of the
main magnetic field (see Figure 2.10). Deniz et al. (2013) found that 7 T provided a 2.3-fold SNR
gain over 3.0 T in the hip articular cartilage. With the extra SNR at 7 T, it can be used not only to
image with higher spatial resolution, which is critical for morphological assessment of the hip joint
cartilage, but also to shorten the scan time avoiding the motion artefact (Chang et al. 2014). However,
at the current stage, this ultra high field system is still in the research settings and numerous technical
challenges (e.g., the lack of the radiofrequency coils, B+

1 field inhomogeneity) must be addressed in
order to take full advantages of the potential benefits at 7 T.

Challenges in hip MR imaging

MR imaging evaluation of the articular cartilage within the acetabulum and femoral head can be very
challenging as the hip joint is usually located off the isocenter in the MR scanner during acquisition,
thereby decreasing the image quality. From the anatomical aspect of the hip joint, the femoral head
and acetabular cartilage layers are closely apposed making the separate articular surfaces difficult
to be discriminated from each other. Additionally, the articular cartilage is very thin, which also
poses difficulties in the detection of cartilage lesions. Although the continuous leg traction technique
during MR imaging and MR arthrography can be used for a good separation of the two articular
surfaces (Nishii et al. 1998), in most cases, the joint space between the femoral and acetabular articular
cartilage is extremely narrow despite the traction.

Another imaging challenge for the hip joint arises from the need for a large FOV, particularly to
encompass hip joints of both sides, and the absence of specialized radiofrequency coils. This results
in acquired images with low spatial resolution. Contrary to many investigations reporting excellent
results when imaging the articular cartilage of the knee joint, evaluation of the articular cartilage of
the hip joint is much more difficult. Alternatively, hip MR imaging is performed with either a surface-
phased array coil or a multichannel cardiac coil.

Several artefacts seen in MR images of the hip joint also bring about more challenges in the hip
imaging, which involve:

1. Noise: Due to the depth of the hip joint within the body, inadequate MR signal is usually ob-
tained in the MR image. As the image with a higher spatial resolution is acquired in order to
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Figure 2.10: High-resolutionMR imaging of hip joint cartilage at 7 T: (a) 3D water-excitation FLASH
and (b) 3D frequency-selective fat suppressed VIBE sequences at a resolution of 0.23 × 0.23 × 1.5
mm3 (Used without permission from (Chang et al. 2014)).

assess the articular cartilage, lower SNR is inevitable, even scanning at 3.0 T.
2. Bias field: The bias field is a phenomenon resulting in non-uniform signal obtained from the

same tissue at different locations of the MR image. Consequently, the image intensity of the
same tissue type can appear significantly different (see Figure 2.11a). The bias field originates
in the non-uniform B1 excitation field owing to non-uniformity in the interaction between the
radiofrequency field and the tissue being imaged.

3. Partial volume effects (PVE): Partial volume averaging is considered to be an inevitable ef-
fect because of finite and discrete characteristics of MR images. It commonly refers to loss of
contrast at the edge of two adjacent tissues, which is caused by the lack of sufficient spatial res-
olution or tissue fraction effect referring to the assignment of average intensity values to voxels
containing more than one tissue. This effect is more pronounced in larger voxels or anisotropic
voxels. Especially for MR assessment of the hip joint cartilage, most cartilage voxels are sub-
ject to significant PVE due to the strong curvature of the relatively thin cartilage layers (see
Figure 2.11b).

Biochemical MR techniques for cartilage assessment

As minor structural changes in cartilage degeneration or regeneration can hardly be observed using
conventional MR imaging techniques, even with the high field strength, biochemical MR imaging
offers a useful tool to visualize the cartilage quality in evaluating water, collagen and proteoglycan
content of articular cartilages.

The use of delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC)
was first described by Bashir et al. (1999) to allow the measurement of glycosaminoglycans (GAGs)
loss from cartilage ECM in a quantitative manner, and therefore is quite commonly used for quantita-
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Figure 2.11: MR artifacts observed in the image of the hip joint: (a) bias field in water-excitation
DESS image with a large field-of-view of bilateral hip joints and (b) partial volume averaging in
water-excitation DESS image with a small field-of-view of the right-side hip joint.

tive cartilage analyses (Bittersohl et al. 2009; Lattanzi et al. 2014;Mamisch et al. 2011). In dGEMRIC,
T1 relaxation time in cartilage is calculated after administration of a negatively charged contrast agent
(Gd-DTPA2−) as an indirect measure of the loss of GAGs, which is considered as an early degener-
ative biochemical change that precedes any structural damage in the cartilage (Pritzker et al. 2006).
T1 relaxation times are inversely proportional to the concentration of Gd-DTPA2− that is low in the
healthy cartilage (i.e., containing abundance of GAGs) and high in the areas of the degraded cartilage
where GAGs have been lost (Sur et al. 2009). Bittersohl et al. (2009) also reported a marked reduc-
tion of GAGs in the hip cartilage of FAI patients compared to asymptomatic volunteers when using
dGEMRIC, which might be an index for OA in an early phase. More recently, dGEMRIC has proven
to be accurate to detect cartilage damages in FAI patients with the promising intra- and inter-observer
repeatability (the kappa coefficient 0.76 and 0.68) (Lattanzi et al. 2014). Although dGEMRIC has
been extensively validated (Bashir et al. 1999; Bittersohl et al. 2009; Lattanzi et al. 2014; Mamisch
et al. 2011), it is still under discussion about how to best interpret dGEMRIC T1 maps to impact
clinical decisions.

T2 mapping has also made a contribution to the research on cartilage damages within the hip
joint (Nishii et al. 2010; 2008; Watanabe et al. 2007). It has been suggested that increasing T2 relax-
ation time was proportional to the distribution of the cartilage water and is sensitive to small water
content changes (Liess et al. 2002). This technique involves the acquisition of several images per slice
with different echo times. Calculating the slope of the T2 decay curve allows for determination of T2
on a pixel-by-pixel basis. Most studies in the literature have investigated the difference of T2 relax-
ation time between healthy and diseased hip joints. Carballido-Gamio et al. (2008b) demonstrated the
feasibility of in vivo quantification of T2 map for the hip cartilage achieving a short-term precision
of 5.89%. Nishii et al. (2008) found a positive correlation between the radiographic findings and T2
changes among patients with hip dysplasia. However, T2 mapping may not detect changes as early as
techniques that are sensitive to GAGs content, such as dGEMRIC or T1ρ.

Besides dGEMRIC and T2 mapping, other imaging techniques such as T1ρ (Carballido-Gamio
et al. 2008b), sodiumMR imaging (Zbýň et al. 2014), chemical exchange saturation transfer (CEST) (Ling
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et al. 2008) and fast field cycling nuclear magnetic resonance (NMR) (Broche et al. 2012) have been
developed for quantitative measurements of articular cartilage quality. However, these are still in
need of extensive validation in the general population before a general clinical application can be
considered. The segmentation of the articular cartilage with high accuracy and reproducibility is an
essential prerequisite for provision of reliable region of interests (ROIs) in subsequent quantitative
measurements on biochemical MR scans.

2.4 Medical Image Segmentation

Medical image segmentation is an essential prerequisite in providing non-invasive information about
anatomical structures of interest from original images in all medical imaging applications, which helps
clinicians or radiologists to better visualize the anatomy of structures, simulate biological processes,
localize pathologies, track the progress of diseases and evaluate the need for the radiotherapy or surg-
eries. The goal of the image segmentation is to segregate an original image into separate regions
or classes, where each has one or more homogeneous characteristics or features under certain crite-
ria (Farag et al. 2005). In a typical computer-aided diagnosis system, segmentation is an essential
stage, which is required to be accurate and reproducible to ensure the functionality of the system for
clinical applications. However, owing to issues such as low spatial resolution, poor-defined structure
boundaries, noise, variability of the anatomy and other image artefacts, the image segmentation still
remains a difficult task.

Manual segmentation is the most straightforward approach and is commonly used clinically that
involves a well-trained expert (clinician or radiographer) examining every image and outlining the
ROIs manually. In practice, manual segmentation is tedious and very time-consuming for slice-by-
slice ROI delineation. Although the advantages of manual methods stem from the knowledge of an
experienced expert, manual delineation of the ROIs can be subject to the large intra- and inter-rater
variability as it completely depends on the knowledge and beliefs of the clinicians performing the
operation, especially with no standardized rules to follow. Moreover, this is especially a problem in
MR images of the hip joint with various artefacts (i.e., noise, bias field, PVE) and poorly delineated
articular cartilage plates, which increases the variability between the resulting manual segmentations
obtained from different raters.

Semi-automatic segmentation methods are also preferred in common radiographic protocols be-
cause they allow expert clinicians to control the segmentation quality and play a critical role in the
final diagnostic decision. Although such semi-automatic methods are usually faster than manual ap-
proaches, they are also inconsistent by design when administered by different clinicians and/or used
with different internal parameter values.

Fully automatic segmentation algorithms are highly desired to circumvent the need for those time-
and expertise-intensive manual/semi-automated segmentation methods and facilitate the provision of
reproducible morphometric data in large-scale research and clinical studies. However, it is very chal-
lenging for automatic methods to achieve equivalent precision and robustness with manual or semi-
automatic approaches. This is mainly because of segmentation difficulties for MR images including
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intrinsic limitations of MR imaging (e.g., limited spatial resolution, insufficient tissue contrast, blur-
ring boundaries), the variety of the structure of interest (e.g., shape, size, tissue texture and pathology)
and artefacts (e.g., noise, bias field and PVE) seen in the medical image.

The development of automatic algorithms has been the focus of much research in the literature.
The common approaches for medical image segmentation include but not limited to classical image
analysis, atlas-based, model-based and graph-based segmentation techniques. In the following sec-
tions these paradigms will be briefly introduced.

2.4.1 Classical image analysis techniques

Standard image processing algorithms such as thresholding, region growing, edge detection, morpho-
logical operators and filters are the fundamental approaches to segment an image into several separate
regions (Rogowska 2000).

• Thresholding is a simple and straightforward technique to convert a multilevel image into a
binary image with groups of pixels/voxels having intensity values less than, greater than or equal
to the selected threshold. There are two main categories of thresholding algorithms including
global (based on grey-level histograms or local properties) and local thresholding methods (e.g.,
local adaptive thresholding). These techniques are commonly used in segmentation of the CT
image with its superior contrast resolution of the bony tissue (Zhang et al. 2010; Zoroofi et al.
2003).

• Region growing is a procedure that starts from a group of seed pixels/voxels in the query image
and assigns adjacent pixels/voxels or regions to the same segment if their image values are
close enough, according to certain predefined stop criterion. The advantage of region growing
is that it is capable of correctly segment spatially separated regions having the same properties
while preserving the connectivity within the same region. These techniques are dependent on
the selection of representative seed pixels/voxels and are usually semi-automatically applied
for segmentation of small volumetric structures such as the articular cartilage (Bae et al. 2009;
Waterton et al. 2000).

• Edge detection algorithms aim to detect object boundaries (i.e., sharp discontinuities in the im-
age) and segment regions enclosed by the boundaries, which are usually based on edge operators
such as Laplacian or gradient operators with consideration of local neighbouring pixels/voxels.
Edge detection, particularly based on gradient information is very sensitive to noise since both
the noise and the edges contain high frequency signals.

Since such fundamental image segmentation methods are sensitive to noise and are usually in-
sufficient for obtaining a fine segmentation, they are commonly used in the preprocessing or initial
segmentation.

2.4.2 Atlas-based segmentation

Atlas-based segmentation approaches form amiddle-ground between fully-manual and fully-automatic
segmentation approaches providing accurate segmentation of the structures of interest in many areas.

27



It commonly requires the selection or construction of one or multiple atlases with corresponding delin-
eations of the target objects that are usually acquired manually. Image registration is used to compute
the transformations in order to propagate the atlas segmentation and match the query image. During
the registration, the similarity between the atlas and the query image is maximized, while, at the same
time, the deformation is constrained to ensure that the spatial information of the atlas is maintained.

Single-atlas based segmentation is based on an atlas constructed from one or multiple labelled
segmented images. In the latter method, an average atlas can be generated by iteratively registering
multiple manual labeled training images and averaging the deformations. The resulting deformations
are then applied to both the training images and the related manual labels, which are further combined
into a smoothed intensity image and a probability map. This single atlas presents the average anatom-
ical variation of the training population. To segment a new image, the constructed atlas is registered
to the input image and the corresponding atlas label image is propagated to the target image using the
computed geometric mapping obtained from the registration. Obviously, the segmentation accuracy
significantly depends on the registration (if the registration fails, so does the segmentation). The ac-
curacy of single atlas-based methods is limited due to the dissimilarity in the structure (e.g., anatomy)
and image appearance between the atlas and the target image (Wang et al. 2013).

Multi-atlas based segmentation have been shown to be more accurate than other atlas-based meth-
ods using a single or average shape atlas (Rohlfing et al. 2004). In multi-atlas methods, multiple
atlases are obtained either from constructing one representative atlas for each mode based on clus-
tering training images (Blezek and Miller 2007) or from simply selecting the most relevant atlases
for the unknown image to segment (Aljabar et al. 2009; Rohlfing et al. 2004). The constructed mul-
tiple atlases are separately registered to the target image and the voxelwise label conflicts between
the registered atlases are then resolved using label fusion. In this case, by incorporating more than
one atlas, it offers advantages in reducing large anatomical discrepancy against a single atlas and im-
proving robustness against occasional registration failure. These multi-atlas approaches have been
successfully applied to the segmentation of the brain (Artaechevarria et al. 2009; Heckemann et al.
2006) and the prostate (Dowling et al. 2012). Different similarity measures for optimal atlas selection
have been investigated in (Aljabar et al. 2009). However, this algorithm can cause substantial com-
putational burdens when performing pairwise non-rigid registration (NRR) between the new image to
be segmented and each atlas in the training set.

2.4.3 Model-based segmentation

Methods based on the model paradigm is to delineate the structure of interest using closed parametric
curves or surfaces and deform under the influence of internal and external forces during the segmen-
tation process. In these techniques, global shape or texture prior knowledge can be incorporated to
constrain the freeform deformation.

Statistical shape model (SSM) has becoming a promising model to deliver reliable segmentation
results across a wide range of anatomical shapes (Cootes et al. 1994; 1995; Fripp et al. 2007; Heimann
andMeinzer 2009; Kainmueller et al. 2009; Seim et al. 2010). As strong shape constraints are enforced
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Figure 2.12: Different shapes of the proximal femur with varying shape parameters b1 and b2 for (a)
first and (b) second mode of variation of the SSM, respectively.

in the shape model, this algorithm is better equipped to deal with low-contrast boundaries. Generally,
the shape model is constructed by characterizing shape and shape variations based on the point dis-
tribution model (PDM) (Cootes et al. 1992), which represents the geometry of the biological shape
with enough corresponding landmarks. During the training process, the shapes of manually labeled
examples are represented using the PDMs, from which their mean shape and typical variations are
obtained using principal component analysis (PCA) (Jolliffe 2005).

Active shape model (ASM) proposed by Cootes et al. (1994; 1995) is one of the approaches that
utilize the SSM to describe a shape in terms of a trained mean shape and variants for each mode on
the shape. Given N training surfaces with the point-wise correspondences xi, i = 1, 2, . . . , N , all the
surfaces were Procrustes aligned (Gower 1975) to compute the mean shape x̄ and covariance matrix
C defined in 2.1.

x̄ =
1

N

N∑
i=1

xi, C =
1

N − 1

N∑
i=1

(xi − x̄)(xi − x̄)T (2.1)

PCA is used to model the variations seen in a population, which produces an eigenvalue decom-
position on C that delivers the modes of variation ϕi, i.e., eigenvectors, and their respective variances
λi, i.e., eigenvalues, i = 1, 2, . . . , N . This allows approximating every valid shape x within the shape
constraints of the training dataset by a linear combination of the first n modes,:

x = x̄+
n∑

i=1

biϕi (2.2)

29



where bi is the shape parameter for the ith orthogonal mode of variation that weights the influence
of that mode (Cootes et al. 1995). Figure 2.12 illustrates varying shape parameter b1 (-2.0 ∼ +2.0
standard deviations (SDs)) and b2 (-3.0 ∼ +3.0 SDs) for the first and second mode of variation in an
example SSM of the proximal femur.

The model can then be used to estimate the pose and shape parameters of a given surface and
generate new surface with the given pose and shape parameters. When used in a segmentation algo-
rithm, the shape model constrains the deformation within an allowable shape space, which improves
the robustness of the segmentation algorithm to weak and variable boundaries of the structure.

2.4.4 Graph-based segmentation

Graph-based segmentation approaches are another type of image segmentation techniques that are
becoming increasingly popular for automatic segmentation of medical structures/objects of interest
within 3D images. In previous studies (Boykov and Kolmogorov 2004; Wu and Chen 2002), the
graph-based approaches showed the ability to efficiently produce global optimal 3D segmentations in
a single pass (and correspondingly not get stuck in local optima) (Garvin and Wu 2014).

The optimal graph search approach originally presented in (Li et al. 2006; Wu and Chen 2002) has
been used extensively in medical image analysis applications (Li et al. 2005; Song et al. 2013; 2010;
Yin et al. 2010) for successful simultaneous segmentation of multiple object surfaces with mutually
interacting surface constraints (e.g., no intersection) encoded.

Generally, the graph search approach starts from the construction of a graph G = (N,A), where
N is a node set and A is an arc set. An arc connecting a node ni ∈ N and nj ∈ N can be written as
⟨ni, nj⟩ ∈ A. In a directed graph, ⟨ni, nj⟩ and ⟨nj, ni⟩ (i ̸= j) are considered distinct. Each node can
be assigned a real-valued weight and every arc can have a non-negative cost.

In an optimal graph search framework proposed by Li et al. (2006), a properly ordered multi-
column graph G = (N,A) in d-D can be constructed from a base graph M = (V,E) in (d − 1)-D
with a positive integerK. Each node vi ∈ V has a set ofK nodes inN , which is called the ith column
of G denoted by N(vi) here. The column N(vi) and N(vj) are adjacent if there is an arc ⟨vi, vj⟩ ∈ E

connecting vi and vj in the base graphM .

In order to simultaneously detect λ surfaces (λ > 1), the constructed graphG = (N,A) consists of
λ node-disjoint subgraphs {Gi = (Ni, Ai) : i = 1, 2, . . . , λ}. Each node can be assigned a cost value,
which is inversely related to the likelihood that the desired surface contains this node. Arcs (e.g., intra-
column, inter-column and inter-surface arcs) are added in order to enforce multiple surface feasibility
constraints such as the monotonicity, the smoothness and surface distance constraints. Therefore, the
goal of the graph search algorithm is to find an optimal surface set S with the minimum cost that also
satisfies:

1. Each surface intersects each column of G at exactly one node and preserves all topologies of
the base graphM ;

2. Each surface satisfies the pre-defined surface feasibility constraints, e.g., smoothness, inter-
surface distance.
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Consequently, the optimal surface segmentation problem can be transformed into seeking aminimum-
cost nonempty closed set in a directed node-weighted graph G̃ = (Ñ , Ã) as reported in (Wu and Chen
2002), which can be further solved by a minimum s− t algorithm.

2.5 Methodological Overview

2.5.1 MR data acquisition

In this research, MR images were obtained using a 3 T MR scanner (Magnetom Trio; Siemens, Erlan-
gen, Germany) at the University of Queensland. Volunteers with activity history levels ranging from
normal everyday activities to high level participation in sports such as water polo, rugby league and
rugby union were recruited. The participants are mostly relative young, healthy adults with no history
of developmental hip disorders or diagnosed symptoms of hip OA. The medical research ethics com-
mittee of the University of Queensland approved the current study and informed written consent was
obtained from all participants involved in the research.

A large 4-channel body matrix coil was used duringMR image acquisition with Generalized Auto-
calibrating Partially Parallel Acquisition (GRAPPA) (×2) enabled. MR examinations from a total of
63 volunteer subjects were used in this thesis. All the participants were imaged using several different
MR sequences after an initial scout image was obtained to assess the position of the subject within
the MR scanner. In some participants of the dataset, examinations using multiple MR sequences were
acquired from the same subject that can be used for reproducibility experiments.

This MR data acquisition process in this research can be summarized into two stages according to
the use in the later segmentation experiments:

• Stage I - Bilateral MR scans
MR images with a large FOV that encompass hip joints of both sides were acquired at the first
stage. Different MR sequences were investigated in the first 8 participants, which included T2w
3D DESS, T2w 3D MEDIC and 3D fat-suppressed SPACE (see Figure 2.9). It was found that
DESS and MEDIC had a similar bone-cartilage contrast that was much better than 3D SPACE,
but DESS had an improved cartilage-synovial fluid contrast. As such, MR images of bilateral
hip joints were obtained from another 27 participants only using DESS;

• Stage II - Unilateral MR scans
In order to allow accurate segmentation of the cartilage segmentation, high-resolution 3D True-
FISP images (in-plane spacing: 0.47 mm, slice thickness: 0.49 mm) with a relatively small FOV
of the unilateral hip joint were involved into the acquisition routine for the latter 46 participants,
where there were 18 participants hadMR examinations using both bilateral DESS and unilateral
TrueFISP. Slice interpolation (K-space) was enabled for a subset of 41 TrueFISP scans to obtain
an in-plane image resolution of 0.234 mm. In addition, another two unilateral MR sequences
(DESS and SPACE) were also used in the last 18 participants for reproducibility experiments.

Table 2.1 lists the parameters and number of acquired scans for each MR sequence that was in-
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Table 2.1: Acquisition parameters for each MR sequence.

BILATERAL UNILATERAL
Parameter MEDIC DESS TrueFISP DESS SPACE
No. of subjects 8 35 46 18 18
Plane Spacing (mm) 0.65 0.67 0.47 0.63 0.75
Slice Thickness (mm) 0.70 0.61 0.49 0.70 0.90
Acquisition Matrix 576 × 360 576 × 360 320 × 320 256 × 192 256 × 256
FOV (cm) 37.6 × 23.5 38.6 × 24.1 15 × 15 16.0 × 12.0 18.9 × 19.2
Repetition Time (ms) 22 15.46 10.65 12.71 1500
Echo Time (ms) 12 5.16 4.46 4.92 42
Bandwidth (Hz) 155 202 230 326 543
Flip Angle (degrees) 12 25 30 25 120

volved in this research. These MR scans served different aims in the thesis, which will be detailed in
the following chapters.

2.5.2 Segmentation methods

A priori is of great importance to provide crucial information such as the image environment or struc-
tures' shape/appearance for designing an effective algorithm, especially when the images are influ-
enced by noise or PVE. As stated before, the segmentation of the hip joint, particularly the cartilages,
is very challenging due to various anatomical, imaging and segmentation difficulties. It is only by
incorporating effective prior knowledge of the bones (e.g., shape) and cartilages (e.g., spatial relation-
ship and morphological features) from the training process using expert manual segmentations, that
one can expect to have any hope to automatically, accurately and robustly segment the hip joint.

In this research, the ASMbasedmethod using SSMswith shape prior knowledge is first considered
for the first segmentation task, automatic bone segmentation of the hip joint, because it is a well-
developed algorithm that has been successfully applied for segmentation of various anatomical shapes
including bone segmentation for the hip (using CT data) (Kainmueller et al. 2009) and knee joint (Fripp
et al. 2007; Seim et al. 2010). With the inclusion of shape constraints into the segmentation algorithm,
the ASM segmentation constrains the freeform gradient-driven deformation of the bone shapes within
a certain level of anatomical variations obtained from the training dataset. The SSMs of the bones
within the hip joint can be also served as a framework to incorporate prior knowledge of the cartilage
morphology, which is achieved by utilizing the corresponding landmarks of the bone shape to extract
morphological information from the training data of manual cartilage segmentations. This information
is analysed and utilized in the subsequent cartilage segmentation algorithm, e.g., identifying the BCI
from the segmented bone surfaces.

The graph search approach is a preferable option for delineation of the individual femoral and
acetabular cartilage plates, which are closely apposed within the hip joint. The original multi-layered
graph search framework (Yin et al. 2010) has successfully applied to the knee joint for simultaneous
segmentation of the cartilages. However, this approach is not readily applicable to the delineation of
multiple surfaces with poor separation of boundaries, e.g., the femoral and acetabular plates. There-
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fore, improvements need to be done to the original multi-layered graph search framework by incor-
porating prior knowledge of the cartilage morphology to obtained reliable segmentation of the two
cartilage plates under the insufficient image environment.

Moreover, the multi-atlas segmentation method acts as the state-of-the-art method in comparisons
with our proposed methods for both bone and cartilage segmentation. This is because it is easy to
implement and can provide accurate segmentation of the structures of interest when a large number
of training images with a wide range of anatomical variations are involved.
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3
BONE SEGMENTATION FROM LARGE FIELD OF

VIEW 3D MR IMAGES OF THE HIP JOINT

This chapter presents the work to attain Aim 1.1, which is to develop and evaluate automatic segmen-
tation methods for accurate and reliable segmentation of the bone elements (i.e., the proximal femurs
and innominate bones) from 3D MR images of the hip. Two state-of-the-art methods (multi-atlas and
ASM based approaches) are developed to automatically segment the bones from MR images with a
large FOV encompassing hip joints of both sides. A validational study is performed using DESS and
MEDIC images of bilateral hip joints acquired from 35 volunteers, which aims at examining the po-
tential suitability of these methods for generating morphometric data on the bone elements of the hip
joint and providing a basis for subsequent cartilage segmentation.

The core material of this chapter has been published in (Xia et al. 2012; 2011; 2013). The training
process of SSMs of the bones in the hip joint region and the ASM based bone segmentation algo-
rithm was initially proposed in (Xia et al. 2012; 2011). More advanced work in (Xia et al. 2013) was
presented to extend the evaluation to two state-of-the-art (multi-atlas and ASM based) methods for
automatic bone segmentation of high-resolution 3D MR images of the hip region and the preliminary
validation was applied to DESS and MEDIC images from 30 volunteers. In this chapter, results are
updated by incorporating manual segmentations from MR images in the full dataset of 35 volunteers
for the implementation of the multi-atlas method and the validation of automatic bone segmentations.

Related publication details

Xia, Y., Fripp, J., Chandra, S. S., Schwarz, R., Engstrom, C., and Crozier, S. (2013). Automated bone
segmentation from large field of view 3D MR images of the hip joint. Physics in Medicine and Biol-
ogy, 58(20):7375. http://iopscience.iop.org/0031-9155/58/20/7375/ (Xia et al. 2013)
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Revision submitted 28 August 2013
Accepted 30 August 2013
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Xia, Y., Chandra, S., Salvado, O., Fripp, J., Schwartz, R., Lauer, L., Engstrom, C., and Crozier, S.
(2012). Automated bone segmentation and bone-cartilage interface extraction fromMR images of the
hip. In International Society for Magnetic Resonance in Medicine (ISMRM) 20th Annual Meeting &
Exhibition: Adapting MRI in a Changing World (Xia et al. 2012)

Manuscript revision history
Submitted to the ISMRM conference 10 November 2011
Accepted 28 January 2012
Presented (traditional poster) in the ISMRM conference 10 May 2012
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(2011). Automated MR hip bone segmentation. In Digital Image Computing Techniques and Appli-
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DICTA.2011.13 (Xia et al. 2011)

Manuscript revision history
Submitted to the DICTA conference 13 July 2011
Accepted 8 August 2011
Presented (oral presentation) in the DICTA conference 6 December 2011

3.1 Introduction

Morphometric analyses of the osteochondral elements in the hip joint region using MR imaging have
the capacity to provide quantitative data for research and clinical investigations into pathoanatomical
conditions such as FAI through to early or more advanced stages of OA to assess bone and cartilage
changes. To facilitate this, automated MR-based segmentation approaches are being developed to cir-
cumvent the need for extensive time- and expertise-intensive manual/semi-automated segmentation
of osteochondral elements in the hip region (Kavanagh et al. 2011; Naish et al. 2006). In previ-
ous MR studies, advanced image analysis approaches such as SSM (Cootes et al. 1995), atlas-based
and graph search approaches have been successfully applied to automatic bone segmentation of the
knee (Ababneh et al. 2011; Fripp et al. 2007; Shan et al. 2012; Yin et al. 2010), ankle (Li et al. 2005)
and spine (Neubert et al. 2012) and for use in subsequent segmentation of the cartilage (Fripp et al.
2010; Seim et al. 2010).

In a recent MR study of the bone elements of the hip region, Schmid et al. (2011) reported a robust
bone segmentation algorithm especially for unilateral MR images of the hip joint with a limited FOV
where the bones were partially visible. In their approach, a SSM with robust PCA was proposed to
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address the segmentation difficulties arising from images with a small FOV and achieved an average
distance error of 1.21± 0.53 mm for the femur and 1.03± 0.38 mm for the innominate bone. In order
to segment large FOV MR images of the hip joint region (encompassing both hip joints) used in our
study, the widely utilized PCA (Section 2.4.3), we believe, is well suited for this application.

Alternatively, Dowling et al. (2012) used NRR to an average atlas for automated segmentation of
the pelvic organs including the bone elements of the hip region in MR images. There was moderate
agreement between manual and atlas segmentation results for the bone volume with a mean (± SD)
Dice's similarity coefficient (DSC) score of 0.79 (± 0.12). As the general atlas-based approaches have
been discussed in Section 2.4.2, multi-atlas-based algorithms are more accurate and robust against
occasional registration failures than other single-atlas-based methods (Rohlfing et al. 2004). To the
best of our knowledge, no other published work has been used the multi-atlas-based algorithm to
automatically segment the bone elements from MR images of the hip.

In this chapter, we evaluate automated bone segmentations, against manual segmentations, from
large FOV MR images of the hip region (proximal femurs, innominate bones) using two state-of-the-
art methods: (i) multi-atlas-based method using pairwise NRR and (ii) 3D ASM-based method to
assess their accuracy and computational efficiency. This aims examining the potential suitability of
the two approaches for large prospective clinical and research investigations into morphological bony
changes in conditions such as FAI and subsequent cartilage segmentation in OA.

3.2 Materials and Methods

3.2.1 Image dataset and MR acquisition protocol

Anonymized MR images of the hip joints (bilateral) from 35 volunteers (aged 18-49 years, 31 males
and 4 females, mass 85.0 ± 13.0 kg) were included in this study. This acquired dataset involved a
variety of the FHN junction presentations, which were examined based onMR images by a radiologist
(Dr. Duncan Walker) and measured alpha angles (40° - 88°) at two radial positions of 1:30 and 3:00
(Mr. Phillip Melville) for assessment of the cam-type bony architecture in a number of the high-
performance athletes.

The first eight subjects were imaged using T2w DESS and MEDIC sequences. These had similar
bone-cartilage contrast, but DESS had improved cartilage-synovial contrast. As such, all subsequent
subjects were only imaged using DESS. A total of 35 DESS and 8 MEDIC images were used in this
study. The parameters used in each imaging sequence are listed in Table 2.1. Example coronal slices
of the hip region from the different acquisition protocols are illustrated in Figure 3.1a and 3.1b.

Manual segmentation

For this study, the bone elements of the hip (left/right femur, left/right innominate bone) weremanually
labelled by the author (Rater 1) and Dr. Mark W Strudwick (an experienced radiographer, Rater
2) using ITK-SNAP (Yushkevich et al. 2006) with expert guidance from Dr. Craig Engstrom (an

37



(a) (b)

(c)

Figure 3.1: Example (top) coronal and (bottom) axial slices of MR images with multiple sequences
as well as an example of manual segmentations of the proximal femur (blue, green) and innominate
(brown, red) bone elements: (a) MEDIC; (b) DESS; (c) manual labels overlaying on a DESS image.

experienced MSK analyst). Figure 3.1c shows a typical example of manual segmentations of the bone
elements in the hip region as an overlay on the MR images.

The bones in the entire dataset of MR images (DESS for 35 subjects, MEDIC for 8 subjects) were
manually labelled on every slice by Rater 1. To investigate the inter-rater reliability, DESS images
from eight subjects were manually segmented in the coronal view on every fourth slice by Rater 2.
The images from four of these subjects (randomly selected) were re-segmented in a blinded fashion
two weeks later by Rater 2 for evaluation of the intra-rater reliability test.

3.2.2 Training process: shape modelling and atlas creation

Surface model creation from Newcastle CT

An independent set of CT images of the pelvis from 28 male patients involved in a prostate cancer
study at Calvary Mater Newcastle Hospital (Dowling et al. 2010) was utilized as a training dataset
in order to create shape models with a relatively large coverage of the bone elements within the hip
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Figure 3.2: Illustrative shape model creation process.

region. This involved:

1. Individual CT labelling: CT images were semi-automatically segmented using a multi-atlas-
based registration approach as detailed in (Xia et al. 2011). Briefly, six cases were randomly
chosen from the CT dataset for manual bone segmentation and then registered to all the other
22 cases using diffeomorphic demons NRR (Vercauteren et al. 2009). For each case, the propa-
gated atlas labels of the bones were averaged and thresholded at 50% to obtain an average bone
segmentation, which was then followed by necessary morphological post-processing steps such
as dilation and iterative voting hole filling.

2. Average CT atlas: all the CT images and bone labels were propagated to a common reference
space using the computed deformation fields, and further averaged into a CT atlas and a prob-
abilistic label atlas, as illustrated in Figure 3.2. A CT atlas surface was then extracted from the
thresholded (50%) label atlas followed by triangular decimation and mesh smoothing.

3. Individual CT surface with correspondence: the resulting surface was then transformed back
onto all 28 original CT images to obtain a batch of bone surfaces with the point-wise correspon-
dences. The propagated surfaces were iteratively deformed (< 3 iterations) towards the negative
gradient of the manual label images to 'snap' to the bone elements in CT images.

Statistical shape modelling

Using the standard PCA algorithm presented in Chapter 2, the SSM was created from all the bone
surfaces with the point-wise correspondences. In this chapter, we created 7 SSMs, including a bilateral
hip SSM involving all four bony elements of the hip trained from a set of 28 meshes, and two unilateral
hip SSMs (femur + innominate bone) as well as four SSMs of individual bones (left/right femur,
left/right innominate bone). The unilateral and individual bone SSMs employed 56 training surfaces
each (28 surfaces from one side and 28 flipped surfaces from the other side) in order to incorporate
additional anatomical variations in the shape models. Four types of the SSMs are shown in Figure 3.3
illustrating their first mode of variation (the left-side SSMs modelled the same shape variability as
the right-side shape models). The compactness for each type of the constructed SSMs is analysed in
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Figure 3.4.

3.2.3 Segmentation algorithms

Each MR image was preprocessed before two parallel segmentation pipelines (multi-atlas-based and
ASM-based algorithm) were applied to extract the bones. The overall segmentation diagram is pro-
vided in Figure 3.5.

Image preprocessing

All the acquired MR images were firstly pre-processed with:

1. N4 bias field correction (Tustison et al. 2010) (B-spline fitting: [spline distance = 200, spline
order = 3, sigmoid alpha = 0, sigmoid beta = 0.5], convergence: [maximum number of iterations
at each resolution = 100× 80× 80, convergence threshold = 0.001], shrink factor: 3).

2. Smoothing using gradient anisotropic diffusion (5 iterations, time step: 0.02, conductance: 1.0).

Multi-atlas-based segmentation pipeline

In this chapter, we implemented a multi-atlas-based method, which has been previously described
in (Chandra et al. 2012a) for use in the prostate segmentation.

To allow a more direct comparison of the performance of the two methods, only male subjects
were selected for use as atlases. The multi-atlas set was composed of preprocessed images from
DESS examinations acquired from 31 male subjects, whose bone areas were manually labelled on
every slice. Images acquired from four female subjects with corresponding manual segmentations
were not included in the multi-atlas training dataset for a more even comparison between the two
proposed methods. All the bilateral MR images in the multi-atlas set were split left-right. The atlases
of the right-side hip joint were flipped to the left-side doubling the number of atlases (N = 62 or N =
60 if a leave-one-subject-out validation was used).

To automatically segment an image, the image was firstly divided into two parts in the same way
as the atlas. For each side of the hip joint, the following steps were followed:

1. Pairwise NRR: the Nifty-Reg package (Modat et al. 2010) was employed to perform NRR be-
tween each atlas and this new preprocessed MR image.

2. Atlas selection: the most similar atlases were selected based on normalized mutual information
(NMI) that was computed between the MR image C and the deformed atlases Ai · Pi, where Pi

was the computed NRR transformation for the ith atlas.
3. Label fusion: the automatic bone segmentation was hence obtained by fusing the bone contours

of the chosen atlases via majority voting (Artaechevarria et al. 2009), whose number can be
variable in different cases according to the predefined selection criteria.

At Step 2, an atlas was selected for automatic labelling if it satisfied ri ≥ ϕ (0 ≤ ϕ ≤ 1, ϕ = 0.8

was used here), where the ratio ri for atlasAi was calculated using its NMI value as well as theminimal
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Figure 3.3: Hip bone shapemodels with the colourmap illustrating normalized variation of the primary
mode: (a) the bilateral hip SSM; (b) the unilateral hip SSM; (c) innominate bone SSM; (d) femur SSM.

(a) (b)

(c)

Figure 3.4: The compactness of (a) the bilateral hip SSM, (b) the unilateral hip SSM and (c) SSMs of
the proximal femur and innominate bone.

and maximal NMI values among all the atlases shown as (3.1).

ri =
NMI(C,Ai · Pi)−mink{NMI(C,Ak · Pk)}

maxk{NMI(C,Ak · Pk)} −mink{NMI(C,Ak · Pk)}
(3.1)
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ASM-based segmentation pipeline

At the initialization stage, the acquired MR image and the CT atlas were firstly joint-center-based
aligned using an automated joint locator algorithm (Nishii et al. 2004). The CT atlas was then resam-
pled to have the same FOV with the MR image. An affine transform was computed from an affine
registration performed using the ITK registration toolkit (Ibanez et al. 2003) between the resampled
atlas and the image to be segmented. An initialized surface can be then obtained by propagating the
associated atlas surface. To enhance the robustness of the initialization, checks for abnormal scaling
factors in the affine transform (20% different from the unity) were made, a failure of which resulted
in using the simply centered surface for initialization.

The automated bone segmentation was performed in a three-level multi-resolution Gaussian pyra-
mid the details of which are given in (Fripp et al. 2007) for the knee joint. The ASM segmentation
was iteratively performed as follows until it reached the convergence or the maximum number of
iterations, as shown in Figure 3.6:

• Deformation: Each vertex of the surface was independently adjusted towards the mean gradient
of the one-dimensional profile extracted along its normal direction.

• Shape constraints: The SSM was used to estimate the pose and shape parameters in order to
bring the deformation of the surface back to an anatomical reference built during the training of
the shape model.

Due to the CT dataset used for training, the atlas surface used for initialization always had larger
bone coverage than the MR image. In order to prevent overly compressing the deforming shape into
the MR image, the ASM segmentation was modified to force zero displacement to vertices lying
outside the MR image during the deformation process while still applying the shape constraints to the
whole shape.

To achieve the full bone segmentation of the hip joints on both sides, three main steps were in-
volved.

1. Coarse bone segmentation using the bilateral hip SSM, which maintained the constraints from
the whole bone structure of the hip region and improved the initialized alignment of the bone
surfaces from the affine transform.

2. Bone segmentation refinement for both sides using the unilateral hip SSMs followed by the
femur and innominate bone SSMs.

3. Bone surface relaxation (Fripp et al. 2007) to better fit the bone edges by applying the ASM for
a small number (<5) of iterations without shape constraints but smoothing.

3.2.4 Validation method

To verify their accuracy and robustness, automated bone segmentation results from the multi-atlas-
based and ASM-based methods were validated against manual segmentations. A leave-one-subject-
out approach, which removed atlas images of both hip joints from the same subject, was used for the
multi-atlas-based method.

42



Figure 3.5: Flow diagram of the multi-atlas-based and ASM-based segmentation pipelines.

The validation of the bone segmentation is reported using five volume/distance-based measures:
Sensitivity, Specificity, DSC (Dice 1945), mean absolute surface distance (MASD) (Gerig et al. 2001)
and relative absolute volume difference (RAVD) (Van Ginneken et al. 2007). LetNTP ,NTN ,NFP and
NFN respectively denote true positive, true negative, false positive and false negative voxel counts,
the Sensitivity =NTP /(NTP +NFN ) is the true positive fraction and Specificity =NTN /(NTN +NFP )
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Figure 3.6: Illustrative ASM segmentation process using an example SSM of the innominate bone.

Table 3.1: Comparison of validation measures (mean ± SD) between the multi-atlas and ASM based
method.

Multi-atlas-based ASM-based
Femur Innominate bone Femur Innominate bone

Sensivity 0.952 ± 0.037 0.927 ± 0.040 0.966 ± 0.017 0.965 ± 0.012
Specificity 0.998 ± 0.001 0.996 ± 0.004 0.998 ± 0.001 0.995 ± 0.001
DSC 0.954 ± 0.021 0.934 ± 0.032 0.949 ± 0.012 0.920 ± 0.018
MASD (mm) 0.715 ± 0.374 0.730 ± 0.476 0.904 ± 0.250 0.882 ± 0.145
RAVD (%) 2.99 ± 3.34 3.27 ± 4.17 4.15 ± 2.60 9.77 ± 3.73

is the true negative fraction. The DSC value is a spatial overlap ratio between automatic and manual
segmentations calculated as DSC = 2 NTP /(2 NTP + NFP + NFN ). The MASD (mm) is defined
as: dMASD = [davg(SA, SM) + davg(SM , SA)]/2, where davg(SA, SM) is the average directed surface
distance from all the points on the automated surface SA to the manual surface SM . The RAVD is
given in percentage terms, RAVD(%) = 100 × |A −M |/M , where A andM are the automatic and
manual segmentation volumes.

Moreover, the mean and SD Hausdorff distance dHausdorff(SA, SM)maps (Aspert et al. 2002; Com-
mandeur et al. 2011) are used to demonstrate the distribution of segmentation errors across the anatom-
ical regions of the bone components (i.e., the proximal femurs, innominate bones), where dHausdorff(SA,
SM ) = max(max(d(vA, SM), vA ∈ SA), max(d(vM , SA), vM ∈ SM )), SM and SA are manual and au-
tomatic segmentations of the bone component.

3.3 Results

3.3.1 Inter- and intra-rater reliability

Exploratory analyses showed good inter-rater reliability between the two raters with a mean DSC of
0.970 and 0.963 for manual segmentation of the femur and innominate bone volumes, respectively.
The intra-class correlation coefficients (ICCs) were found to be 0.997 (95% confidence interval (CI):
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DSC (femur, innominate bone) = (0.924, 0.900) DSC (femur, innominate bone) = (0.945, 0.886)

(a) Subject 17 DESS

DSC (femur, innominate bone) = (0.948, 0.925)DSC (femur, innominate bone) = (0.955, 0.941)

(b) Subject 26 DESS

DSC (femur, innominate bone) = (0.972, 0.962) DSC (femur, innominate bone) = (0.966, 0.943)

(c) Subject 11 MEDIC

Figure 3.7: Example coronal slices of bone segmentation results with DSC values for the multi-
atlas method (left) and ASM-based method (right): (a) below the mean DSC showing over/under-
segmentation occurred (arrows); (b) around the mean DSC; (c) above the mean DSC.

0.984 - 0.999) and 0.992 (95% CI: 0.880 - 0.998) for the inter-rater reliability of the femur and innom-
inate bone volumes.

Similarly, there was a good intra-rater reliability of Rater 2 for determination of the (femur, in-
nominate) bone volumes with mean DSC scores of (0.971, 0.965). The intra-rater ICCs were 0.997
(95% CI: 0.982 - 0.999) and 0.997 (95% CI: 0.986 - 0.999) for manual volumes of the femur and
innominate bone.

3.3.2 Segmentation accuracy

Both segmentation pipelines were successfully applied to all 43 MR image sets (35 DESS and 8
MEDIC studies). A summary of the volumetric and distance-based validation metrics for automatic
bone segmentations can be seen in Table 3.1 for both multi-atlas-based and ASM-based approaches in
comparison with the manual segmentation data. The two methods achieved mean (± SD) DSC values
for the femur and innominate bone volumes of 0.954 (± 0.021), 0.934 (± 0.032) and 0.949 (± 0.012),
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(a)

(b)

Figure 3.8: Histograms of DSC values for the (left) proximal femur and (right) innominate bone
segmentations using (a) multi-atlas-based method and (b) ASM-based method (light blue: left-side
cases and blue: right-side cases).

Initialization
ASM-based

Segmentation
Bone Surface

Relaxation

Figure 3.9: DSC scores for automatic segmentations of the proximal femur (green) and innominate
bone (yellow) obtained at (left) initialization, (middle) ASM-based segmentation and (right) bone
surface relaxation stage in the ASM-based segmentation pipeline.

0.920 (± 0.018) comparable to the manual inter- and intra-rater reliability data. Using paired t-test
analyses (Null hypothesis: no difference made between these two segmentation methods), the multi-
atlas-based method showed significant advantages in both DSC values (t(86) = 2.040, p < 0.05 and
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t(86) = 4.398, p < 0.05) and MASD (t(86) = −3.849, p < 0.05 and t(86) = −3.199, p < 0.05) for
the proximal femurs and innominate bones.

For the subset of 8 volunteers with both MR examinations, the multi-atlas-based and ASM-based
methods achieved mean ± SD DSC values (femur, innominate bone) of (0.949 ± 0.022, 0.911 ±
0.043) and (0.948 ± 0.010, 0.909 ± 0.043) for DESS images, (0.963 ± 0.016, 0.947 ± 0.019) and
(0.957 ± 0.007, 0.923 ± 0.019) for MEDIC images. The slight improvement in DSC for the MEDIC
is likely due to its higher contrast between the bone and other tissues.

Figure 3.7 provides qualitative comparisons of both bone segmentation results, showing a series of
illustrative coronal images from the DESS and MEDIC examinations of individual subjects with DSC
values below, about and above the overall mean study results. The histograms of both validation re-
sults are shown in Figure 3.8 demonstrating that most DSC values for the femur segmentations from
the two methods were distributed between 0.92 and 0.98. The DSC values of the innominate bone
segmentations using the ASM-based method ranged from 0.86 to 0.96, while the multi-atlas-based
method had a slightly wider range between 0.8 and 0.98. In Figure 3.9, it presents the boxplots of
DSC values for validation results at three different stages of the ASM-based segmentation pipeline,
including the initialization, ASM-based segmentation and bone surface relaxation. Based on the ini-
tialized bone surfaces with varied levels of accuracy due to varying posture of subjects and FOV of
MR scans, the ASM fit largely improved the accuracy of automatic bone segmentations with DSC
values of 0.93 ± 0.01 for the proximal femur and 0.89 ± 0.02 for the innominate bone, which was
further slightly refined by the bone surface relaxation.

Both themulti-atlas andASMautomated segmentation results showed high correlation (coefficient
of determination R2 > 0.9) with the manual data (Figure 3.10a). From the Bland-Altman analyses
(Figure 3.10b) (Bland and Altman 1986), the segmented volumes for the proximal femur had a mean
bias (i.e., relative volume difference (RVD)) of -0.47 ± 4.47% for the multi-atlas-based method and
3.61 ± 3.31% for the ASM-based method; for the innominate bone, the ASM-based method overes-
timated the bone volume with a bias of 9.77 ± 3.73% while the multi-atlas-based method showed a
bias of -1.41 ± 5.12%.

3.3.3 Hausdorff distance maps

To evaluate the accuracy of the bone 'edge' segmentations, particularly neighbouring the likely artic-
ular cartilage surfaces of the femoral head and acetabulum (approximating the BCI of the hip joint),
the distribution of segmentation errors near these anatomical regions of interest was calculated using
mean and SD Hausdorff distance maps (Aspert et al. 2002; Commandeur et al. 2011) generated for
both the bone components, i.e., the femoral head and acetabulum (Figure 3.11).

It can be seen that the femoral head was accurately segmented using both methods at the likely-
BCI region (Figure 3.11a, dashed circle 1), where the mean Hausdorff distance was mostly < 0.5
mm (corresponding to the in-plane image resolution of 0.65 and 0.67 mm for MEDIC and DESS,
respectively) with a small variance (< 1.0 mm). At the femoral fovea (Figure 3.11a, dashed circle 2),
which was typically devoid of a layer of articular cartilage, both automated approaches had a slightly
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(a)

(b)

Figure 3.10: Statistical analyses of automated segmentation results: (a) scatter plots plus the regression
lines for automated and manual segmentation: R2

Multi-atlas ≃ 0.948, R2
ASM ≃ 0.975 for the proximal fe-

mur and R2
Multi-atlas ≃ 0.974, R2

ASM ≃ 0.981 for the innominate bone; (b) Bland-Altman plots showing
the relative volume differences against the logarithm of the average of automated and manual vol-
umes. (The colored regions indicate the confidence intervals of ±1.96 SD limits for each automated
segmentation method.)

larger average distance error approaching 1-1.25 mm with a maximum error found to be 1.286 mm
for the multi-atlas-based method and 1.014 mm for the ASM-based method.

For the segmentation of the more complex-shaped acetabulum, larger Hausdorff distances were
found compared with the spherical-like femoral head. For both the multi-atlas-based and ASM-based
approaches, the average Hausdorff error at each vertex of the likely-BCI (Figure 3.11c, 'C'-shaped
region inside dashed circle 3) was in general below 1.0mmalthough in the inferior-lateral lunate region
of the acetabulum the ASM approach had a slightly larger Hausdorff distance error (Figure 3.11c,
dashed circle 4).
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Both approaches provided good segmentation of the femoral neck region (Figure 3.11a), which
was frequently used for measurement of alpha angles to assess cam-type FAI lesions, with the mean
Hausdorff distance < 0.5 mm in the DESS and MEDIC images. Figure 3.12 demonstrates the robust
performance of both methods for bone segmentation of the head-neck region of the femur in subjects
with a normal geometry (i.e., no cam-type lesion) and with moderate or large cam-type abnormalities.
Qualitatively, when a large cam lesion is present (Figure 3.12c, dashed circle), the FHN junction of
the example ASM segmentations appears to be less accurate than the multi-atlas segmentations. This
might be caused by the training dataset of asymptomatic subjects used for the shape model creation.

3.3.4 Computational time

Computational time was investigated to quantify the relative efficiency of these two segmentation
pipelines for potential clinical use. Each of the segmentation methods was performed under special-
ized research laboratory conditions using 12 processors with 24 GB RAM on a local cluster system.

For the multi-atlas algorithm (central processing unit (CPU)-based implementation) running on the
cluster, the average time required for segmentation of both the left and right hip joint was 382.08 ±
66.09 minutes (i.e., approximately 6 hours) including 4.84 ± 0.75 minutes for preprocessing, 373.01
± 65.42 minutes for all pairwise registration (N = 124 for a bilateral image), 3.48 ± 0.86 minutes
for atlas selection and 0.75 ± 0.17 minutes for label fusion.

An average time of 12.96 (± 1.60) minutes was required to segment an MR study using the ASM-
based scheme running on the cluster, which included 4.84 ± 0.75 minutes for preprocessing, 1.32 ±
0.31minutes for initialization and 6.77± 0.95minutes for ASM-based segmentation. For comparison,
using a normal personal computer (quad-core 2.53 GHz, 12 GM RAM), the average computational
time for the ASM-based scheme was still only 16.32 ± 2.19 minutes.

3.4 Discussion

The multi-atlas and ASM based approaches described in this chapter proved to be effective and robust,
achieving good segmentation of the bone elements within the hip joint region from high-resolution 3D
quasi isotropic MR images (DESS and MEDIC) acquired from a sample of volunteer subjects with
various histories of physical activity levels. Although slightly higher accuracy (in terms of DSC and
MASD), especially for segmentation of the innominate bone, was achieved using the multi-atlas-based
method, the ASM-based method required substantially less computational time than the multi-atlas
method (13 min versus 6 hours).

Compared to the recent work of Schmid et al. (2011), we demonstrated a fully automated ASM-
based method to segment MR images of the hip region with large FOV (encompassing both joints
simultaneously), which employed the widely utilized PCA that was easy for implementation and well-
suited for this application. Our MASD of 0.904± 0.250 mm for the femur and 0.882± 0.145 mm for
the innominate bone compared favourably with the robust SSM approach of Schmid et al. (2011). In
contrast with the average-atlas-basedmethod (Dowling et al. 2012), we presented a more sophisticated
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(c) Mean Hausdorff distance maps
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(d) SD Hausdorff distance maps

Figure 3.11: Comparison of mean and SD Hausdorff distance maps computed from the validation re-
sults of both sides using the multi-atlas-based method (left) and ASM-based approach (right) focusing
on the femoral head (dashed circle 1) with fovea (dashed circle 2) and acetabulum (dashed circle 3)
and inferiolateral lunate (dashed circle 4) regions.
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Figure 3.12: Example manual (top), automated multi-atlas (middle) and automated ASM (bottom))
segmentations of the head-neck region (dashed circle) of the femur including the directed Hausdorff
distance maps with: (a) normal geometry of the head-neck junction (no cam-type abnormality), (b)
moderate cam-type abnormality (arrows) and (c) large cam-type abnormality (arrows).

method using a multi-atlas scheme and obtained much better segmentation results for the femur and
innominate bone with mean DSC values of 0.954, 0.934, respectively.

Bothmulti-atlas-based andASM-based approaches were validated against manual segmentation of
hip bone elements from high resolutionMR images, whichwere acquired from volunteers with varying
FHN junction geometries. Overall, the validation results (Table 3.1) indicate accurate and robust
segmentation performance for both methods, including when cam lesions (alpha angle > 60°) were
present (see examples in Figure 3.12). These approaches therefore offer the capacity for automated
3D morphometric analyses of bone changes in conditions such as FAI to facilitate future quantitative
clinical applications.

The mean and SD Hausdorff distance maps (Figure 3.11) were computed to demonstrate the distri-
bution of the surface errors and to further evaluate the accuracy of the bone segmentation, particularly
neighbouring the likely BCIs of the femoral head and acetabulum. Using the multi-atlas-based and
ASM-based approaches, both the likely femoral and acetabular BCIs were well delineated. These
likely BCI surfaces could be readily used providing a reference frame for the assessment of the artic-
ular cartilage and allow the extension of the current segmentation pipeline to incorporate subsequent
automated segmentation and quantitative analyses (thickness, volume) of the cartilage in the hip as
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has been performed with the knee joint (Carballido-Gamio et al. 2008b; Fripp et al. 2010).

In our proposed multi-atlas-based method, segmentation performance relies heavily on the dataset
of atlases and the chosen ϕ value. It has been well recognized that dissimilarity between the atlas
set and the target image in terms of structure (e.g., anatomy) and appearance (e.g., image sequence,
different FOV) could cause a registration failure (Rohlfing et al. 2004). The threshold ϕ used in atlas
selection is important to exclude atlases with failed NRR results, which would introduce errors in the
subsequent stage of label fusion. Figure 3.13a demonstrates the fluctuation of average DSC scores
according to the ϕ value chosen from 0.0 (i.e., using all the atlases) to 0.99 (i.e., using the most similar
atlas). In our study, ϕ between 0.7 and 0.8 were reasonable thresholds to obtain successful bone
segmentations (DSC ≥ 0.8) as shown in Figure 3.13b. Even so, the multi-atlas-based method still
delivered insufficient accuracy (i.e., lowDSC scores) in cases with different FOV ofMR examinations
(Figure 3.14a) or different anatomical structures of the hip in female subjects (Figure 3.14b).

Compared with the validation results published in (Xia et al. 2013), there are two obvious im-
provements reported in this chapter. Firstly, slightly high DSC scores were achieved, particular for
segmentation of the innominate bone using the multi-atlas-based approach (DSC = 0.922 ± 0.031
as reported in the published work). This is because of the increased number of training cases that
brought more anatomical variability in the training dataset. As the SSMs used in the ASM-based
approach were generated from an independent dataset of CT images, little influence to its accuracy
was observed. Secondly, the computation time of the multi-atlas algorithm (∼ 6 hours) was half of
the time reported in (Xia et al. 2013) due to doubled parallel threads used for pairwise registrations.
Nevertheless, the proposed ASM-based approach is significantly more computational efficient than
the multi-atlas-based method.

One limitation of the current study is that the training set for model creation was restricted to
male cases, which may affect the performance of the SSM to robustly describe the anatomical vari-
ability among female subjects, especially for the (irregular) innominate bone structure. Both methods
achieved less accurate segmentation results of the innominate bone in female cases with mean DSCs of
0.890 and 0.899 respectively, while the mean DSCs for male cases were 0.941 and 0.924 for compar-
ison. Future work will involve using a larger training dataset, possibly with specific male and female
models, to better encode the shape variation and better handle different anatomical bone structures.
Notwithstanding this, the results from the current training data appear highly promising for subsequent
analyses or approaches for cartilage segmentation within the hip joint.

Two different MR sequences (DESS, MEDIC) were investigated in this work with the multi-atlas-
based and ASM-based approaches achieving high segmentation accuracy with either sequence. Al-
though indicative, further investigation on a larger cohort of data, especially pathological scans, is
required to evaluate these methods for subsequent clinical use.

In this research, we have limited our validational study to high-resolution DESS and MEDIC im-
ages. Fuller evaluations on routine lower-resolution clinical sequences (e.g., 2D or 3D fast spin-echo),
different scanner strength and subject cohorts are required to assess potential clinical applications for
automated calculation MR bone-based metrics (e.g., alpha angle for FAI) and associated segmenta-
tion of the BCI in the hip joint for use in cartilage morphological studies for research and clinical
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examinations of OA.

3.5 Conclusion

In this chapter, we presented two state-of-the-art methods developed for automated bone segmenta-
tion from bilateral MR images of the hip using two 3D nearly isotropic MR sequences (MEDIC and
DESS) previously used for cartilage assessment. The multi-atlas-based and ASM-based segmenta-
tion pipelines obtained bone volume (proximal femur, innominate bone) segmentation results with
mean DSC values of (0.954, 0.934) and (0.949, 0.920), respectively. Both methods delivered results
with high accuracy for the femur with varying FHN junction presentations, and the likely femoral and
acetabular BCIs were also well delineated (Figure 3.11); notably, the ASM-based approach is sig-
nificantly more time-efficient which is an important consideration for potential clinical utility (e.g.,
timeliness, patient throughput).

These obtained accurate bone segmentations can provide a basis for morphological measures to
be calculated (e.g., the alpha angle) of the femur (e.g., FHN junction), which will be investigated in
Chapter 4. Meanwhile, the ASM-based segmentation method can be further extended based on the
provision of reliable BCI surfaces for subsequent cartilage segmentation in Chapter 5.
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(a) (b)

Figure 3.13: Segmentation accuracy for various ϕ used in the multi-atlas-based segmentation pipeline
from 0, i.e., using all the atlases, to 0.99, i.e., using the most similar atlas: (a) average DSC values
with regions of 95% confidence interval for segmentations of the proximal femur and innominate
bone against ϕ; (b) the histogram of failed segmentations (DSC < 0.8) for both the proximal femur
and innominate bone with various ϕ values.

(a) DSC(femur, innominate bone) = (0.898, 0.923)

(b) DSC(femur, innominate bone) = (0.876, 0.835)

Figure 3.14: Example multi-atlas-based bone segmentations for MR images with: (a) different FOV
and (b) varied anatomical structure (i.e., the female subject).

54



4
AUTOMATED MR-BASED 3D QUANTITATIVE

ASSESSMENT OF THE FEMORAL HEAD-NECK
JUNCTION

This chapter presents the work to attain Aim 2.1, which is, based on automatic segmentation of the
bones for the hip joint, to automatically deliver reliable 3D morphological measurements of alpha
angles around the FHN junction of the proximal femur.

Accurate detection and quantification of cam-type deformities at the FHN junction may provide
great potential to reduce or delay the onset of hip OA. An automatic quantitative assessment method is
developed to evaluate the circumferential morphology of the FHN junction and calculate 360◦ alpha
angle measurements from 3D MR images. This method is performed based on 3D bone reconstruc-
tions of the proximal femur using an ASM based algorithm (Chapter 3). A dataset of 30 male sub-
jects (including 18 water polo players) with varying FHN junction presentations is used in preliminary
evaluation of the proposed assessment method, where its reproducibility is also evaluated using paired
bilateral DESS and unilateral TrueFISP examinations from a subset of 18 water polo players therein.

This work has been included in a manuscript that has been submitted to Physics in Medicine and
Biology, which specifically centres on Aim 2.1 and is thereby incorporated as this chapter.

Related publication details

Xia, Y., Fripp, J., Chandra, S. S., Walker, D., Crozier, S., and Engstrom, C. (2015). Automated 3D
quantitative assessment and measurement of alpha angles from the femoral head-neck junction using
MR imaging. Physics in Medicine and Biology. (Submitted) (Xia et al. 2015)

Manuscript revision history
Submitted to Physics in Medicine and Biology 2 April 2015
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4.1 Introduction

Accurate detection and quantification of cam lesions is important for research studies and evaluation
of treatments focusing on modifying the course of hip OA (Ganz et al. 2003; Tannast et al. 2008). A
2D alpha angle is frequently used to assess the severity of cam lesion (Nötzli et al. 2002). An alpha
angle exceeding 50◦ is commonly used as an indicator of femoral head asphericity and irregularity
of the FHN junction (Tannast et al. 2007). However, this 2D alpha angle clinically measured from
standard radiograhs (X-rays) has limitations in depicting the severity of cam lesions given the variable
3D morphology and location (Barton et al. 2011; Clohisy et al. 2009; Dudda et al. 2009; Meyer et al.
2006). Meyer et al. (2006) reported that femoral head asphericity (i.e., alpha angle) was likely to be
underestimated from routine anteroposterior radiographs. Radiographic diagnosis of cam-type FAI
also had low intra- and inter-observer agreement (Cohen's kappa coefficients < 0.6) with radiographic
structural features (e.g., head sphericity, head-neck offset/junction) (Clohisy et al. 2009).

Volumetric techniques such as CT and MR imaging, the latter providing images without the use
of ionizing radiation, afford direct 3D assessments of bone morphology at the FHN junction for en-
hanced measurement of cam lesions (Audenaert et al. 2011; Beaulé et al. 2005b; Bedi et al. 2012). In
a study on dray femur specimens with nondysplastic hips, Audenaert et al. (2011) reported that 3D CT
reconstructions of the proximal femur for calculation of alpha angles using radial plane slices showed
very strong correlations (r = 0.88) with manual measures obtained from images acquired across mul-
tiple planes. Manual CT reconstructions of the proximal femur have also been used for calculating
the sum of head-neck ratios at five cross-sectional areas along the femoral neck for investigation of
patients with symptomatic cam lesions (Masjedi et al. 2013b). In a recent CT-based study involving
fitting of a sphere or conchoid model to the femoral head, Harris et al. (2013a) observed significantly
greater maximum deviations in patients with cam lesions compared with asymptomatic control sub-
jects. These shape variations in bone protrusion around the FHN junction were further confirmed
using PCA modelling (Harris et al. 2013b). In a patented method, Chabanas et al. (2011) used an
automatic approach based around 3D surface models to determine the contour of the FHN junction
and identify the location of cam lesions from CT images.

In MR imaging, manual or semi-automated selection and analysis of slices through the FHN junc-
tion obtained in one or several reformatted 2D planes is commonly used for the assessment of cam
lesions (Nötzli et al. 2002; Rakhra et al. 2009; Sutter et al. 2012). Sutter et al. (2012) used radi-
ally reformatted MR images of the proximal femur for assessing the presence of cam lesions at the
anterosuperior FHN junction and found a 60◦ alpha angle diagnostic cut-off value (sensitivity and
specificity > 70%) between asymptomatic FAI patients and asymptomatic volunteers. Zilkens et al.
(2013) reported high reproducibility of alpha angle measures across 7 positions of the FHN circum-
ference obtained from reformatted 3D water-excitation DESS images. Recently, Kang et al. (2013)
described a method using 2D diagnostic graphs for assessment of cam lesions around the full circum-
ference of the FHN junction employing a combination of manual bone segmentation and modelling
algorithm applied to high-resolution T1w dual sense spin echo images acquired from a small dataset
of FAI patients and asymptomatic volunteers.
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(a) (b)

Figure 4.1: Example coronal slices of MR images acquired from the same subject using (a) bilateral
DESS and (b) unilateral TrueFISP sequences. (Red dash line in (a) the DESS image slice (a) indicates
a small FOV used in (b) the paired TrueFISP examination.)

To our knowledge, there is no fully automated method for 3D MR-based quantitative assessment
and measurement of the FHN junction for the diagnosis of cam lesions. In this chapter, we present a
novel automated method based on our bone segmentation algorithm (Chapter 3) that allows 3D recon-
struction of the proximal femur, which is then used to reliably determine the FHN morphometric and
alpha angle data. The automated measurement of alpha angles is validated against manual measures
obtained from bilateral DESS images of the hip joints. Further, analyses of automated 3D reconstruc-
tions of the proximal femur and alpha angle measurements are also compared for paired DESS and
TrueFISP examinations to assess its performance for MR images of different contrast characteristics.

4.2 Materials and Methods

4.2.1 Image datasets and MR acquisition protocols

Bilateral MR images of the hip joints were acquired from 30 male volunteers (including healthy active
individuals and high-performance athletes, aged 18-49 years, body mass index (BMI) 25.9 ± 2.6
kg/m2, all subjects were screened for a history of developmental hip disorders for exclusion purposes)
using a 3D water-excited DESS sequence. In a subset of these volunteers (18 water-polo players),
additional unilateral 3D TrueFISP images were acquired from the right hip joint. The parameters used
in each imaging sequence are described in Section 2.5.1 and listed in Table 2.1. Example coronal
slices are presented in Figure 4.1 to illustrate the different FOV coverage of the hip region between
these two acquisition protocols.

4.2.2 Manual bone segmentation and alpha angle measurements

The proximal femur was manually labelled from the acquired DESS and TrueFISP) images by the
author using ITK-SNAP (Yushkevich et al. 2006). As reported in Section 3.3.1, the intra- and inter-
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(a) (b)

Figure 4.2: Examples of manual alpha angle measurements for the (a) anterosuperior and (b) anterior
positions of the FHN junction from auto-extracted 2D radial planes reformatted from bilateral DESS
images.

rater reliability for manual bone segmentations of the proximal femur have mean DSC scores of 0.96
and 0.97, respectively.

Manual measurements (ground truth) of alpha angles were performed by two raters (Rater 1,
Dr. Duncan Walker, an experienced radiologist and Rater 2, Dr. Craig Engstrom, an experienced
anatomist) on all 30 DESS (bilateral) examinations. From the 3D images of each hip joint, image ref-
ormation was autoamtically performed using our proposed method (as described below) to generate
images from a series of radial plane slices to provide standardized (Rater independent) visualization
of bone morphology specifically around the upper anterior quadrant of the FHN junction. Following
the method of Nötzli et al. (2002), alpha angles were manually measured from two reformatted, auto-
extracted radial slices, i.e., anterosuperior - 45◦ and anterior - 90◦ images (Figure 4.2) using a plugin
developed from our inhouse Simple Medical Imaging Library Interface (SMILI)1 package (Chandra
et al. 2015a). These auto-extracted radial slices were all considered highly consistent with traditionally
acquired (i.e., manually processed) radial images by both Raters.

In the dataset of bilateral DESS images, the intra-rater (Rater 2) and inter-rater reliability for alpha
angle measurements was determined for both the anterosuperior and anterior radial planes. All manual
measurements were performed in a blinded fashion and in the present study, the larger alpha angle from
the two repeated measures of Rater 2 for each hip and both radial planes was used here for comparison
with the corresponding automatic measures.

4.2.3 Automated MR-based 3D bone reconstruction and alpha angle
measurements

As shown in Figure 4.3, the full workflow diagram for automated extraction of the 3D bone mor-
phology of the proximal femur and measurement of alpha angles for assessment of cam-type lesions

1http://smili-project.sourceforge.net/
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Figure 4.3: Workflow diagram of automated alpha angle measurement scheme for assessment of cam
lesions from MR images of the hip joint.

involves the ASMbased bone segmentation pipeline (Chapter 3), construction of a 3D local coordinate
system (Figure 4.3a), automatic MR image reformation (Figure 4.3b) and alpha angle measurement
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(Figure 4.3c).

Automatic bone segmentation

As a preprocessing step, the bone surface of the proximal femur was automatically segmented from
MR images using a 3D ASM based method presented in Chapter 3. Briefly, the automatic bone seg-
mentation approach was applied toMR images of the hip region and consisted of i) model initialization
using a joint locator (Nishii et al. 2004), ii) coarse bone segmentation using a composite SSM of the
bone elements of the hip joint, e.g., a bilateral hip SSM (only for MR images encompassing bilat-
eral hip joints) and SSMs of an individual hip joint, iii) bone segmentation refinement using SSMs of
an individual bone element (proximal femur, os coxa) and iv) bone surface relaxation without shape
constraints. An additional improvement to the above segmentation method involved, before bone sur-
face relaxation, further refinement of the of the segmentation of the proximal femur using a focused
SSM of the femur (Chandra et al. 2014), which was built from the same training data but with pre-
determined weights representing a specified ROI, i.e., the FHN junction. This focused shape model
provided lower reconstruction errors and higher accuracy achieved at the selected ROI of the femur.

Automatic 3D reference coordinate system construction

Based on the segmented 3D bone surfaces of the femur, a point landmark (femoral head center (FHC))
and two reference axes (femoral neck (FN) and femoral shaft (FS) axes) were automatically deter-
mined based on sample points within the ROIs of the femoral head, neck and proximal shaft of the
femur, respectively (i.e., pre-defined in the atlas surface of the proximal femur shown in Figure 4.3),
for construction of a new local reference coordinate system.

• The FHC was initialized using the Hough transform (Nishii et al. 2004) applied to MR images
followed by an iterative least squares algorithm for 3D sphere fitting to the femoral head of the
segmented bone model (the predefined ROI of "Fh" in Figure 4.3a).

• The FN axis was determined as the central axis of an optimal one-sheeted hyperboloidal surface
model (Masjedi et al. 2013a; Sholukha et al. 2011), which was best fitted to the 3D point cloud
of the femoral neck that was the pre-defined ROI "Fn" in Figure 4.3a in the atlas model of the
proximal femur. A random sample consensus paradigm (Fischler and Bolles 1981) integrated
with the least-square-based quadric surface fitting algorithm (Dai et al. 2007) was applied to
estimate geometric parameters of this hyperboloid model and, simultaneously, to handle a large
portion of outliers in the relatively large number of sample points at the femoral neck.

• The FS axis was estimated by fitting an optimal elliptic cylinder model to the partial surface of
the femoral shaft (ROI of "Fs" in Figure 4.3a).

Based on the detected FHC, FN and FS axes, the segmented bone surface of the proximal femur
was rigidly transformed to a local 3D reference coordinate system (x′, y′, z′)with the FHC as its origin.
As illustrated in Figure 4.3b, theZ ′ axis was defined by the FN axis with its positive direction pointing
towards the greater trochanter of the femur. The Y ′ axis was along the normal direction of the 2D plane
determined by the axes of FN and FS and pointing anteriorly and the X ′ axis was thereby orthogonal
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to the resulting Y ′ and Z ′ axes and pointing superiorly. Each point (x′, y′, z′) was expressed using
spherical coordinates (r, θ, φ), where r, θ and φ denoted the radius, inclination angle and azimuth
angle of this point, respectively.

With the constructed reference coordinate system, the MR images were automatically reformatted
into a series of standardized radial 2D slices centred at the FHC and rotated around the FN axis. This
emulated the manual reformation process commonly performed in previous studies (Sutter et al. 2012;
Zilkens et al. 2013).

Automatic alpha angle measurement

Based on the local spherical coordinates (r, θ, φ), a 2D shape map, following the work of Kang et al.
(2013), was generated to assess the asphericity of the femoral head, where radial distances dR from
the FHC to the points of intersection with the bone surface of the femoral head were calculated and
represented as a function of θ and ϕ. The generated 2D shape map (Figure 4.3c) was a 120-by-360
matrix used to describe the 3D surface of the femoral head and neck, in which each element denoted
a direction from the FHC as a coordinate pair (θ, ϕ), where θ = 1◦, 2◦, ..., 120◦ and ϕ = 1◦, 2◦, ...,
360◦, and the intensity of each pixel was calculated as I(θ, ϕ) = dR/R, whereR was the radius of the
fitted sphere model.

With the computed 2D shape map of the femoral head, the FHN margin (Figure 4.3c) was auto-
matically located by finding a horizontal cut of the shape map with smoothness constraints allowing
a maximum change of 1◦ between neighbouring columns. Thereafter, alpha angles for all the radial
positions 1◦ ∼ 360◦ (i.e., the entire circumference) of the FHN junction, were calculated for iden-
tification of cam lesions with reference to alpha angle measures as well as provision of data on the
location (i.e., the epicentre) and size (e.g., extent of exostosis) of abnormal bone protrusion around
the FHN junction.

Automated workflow time

For the bilateral DESS images, the entire automatic processing and measurement steps took around
13 - 14 minutes for an MR examination from one individual case using a normal PC (quad-core 2.53
GHz, 12 GB RAM). The majority of this time (i.e., ∼12 minutes) was spent on bone segmentation
(detailed in Section 3.3.4), from which the 3D femoral coordinate system and alpha angles around the
entire circumference of the FHN junction were obtained. A similar computation time (< 15 minutes)
was required for automated analyses of the higher resolution unilateral TrueFISP images.

4.2.4 Validation method and statistical analyses

The validation of the bone segmentationwas assessed usingDSC (Dice 1945) andMASDvalues (Gerig
et al. 2001) as defined in Section 3.2.4. The directed Hausdorff distances (Aspert et al. 2002; Com-
mandeur et al. 2011) were presented in the current study to visualize the distribution of segmentaiton
errors locally at specific ROIs (i.e., the femoral head and neck). Further, biases of the 3D coordinate
systems constructed from MR images using the different DESS and TrueFISP acquisition sequences
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were compared using root mean square (RMS) errors (mm) for the FHC and angular differences (de-
grees) for the FN and FS axes.

All statistical analyses were performed using the R statistical package and p < 0.01 was set as
an a priori significance level in the current study. The ICC, with 95% CIs, was used to evaluate the
intra- and inter-rater reliability of manual alpha angle measures. The agreement between manual and
automatic alpha angle measurements was assessed using linear regression and Pearson's correlation
coefficients, with categorization of significant values of r = 0.60 - 0.79 as strong and 0.80 - 1 as very
strong correlations (Harris et al. 2014). Bland-Altman plots (Bland and Altman 1986) were used to
visualize the agreement in alpha angle measures between the manual and automatic approaches. In
terms of comparing the automated measures between the paired DESS and TrueFISP datasets, a two-
way repeated measures analysis of variance (ANOVA) was performed using alpha angle data obtained
at four pre-selected positions within the upper anterior quadrant of the FHN junction.

4.3 Results

For all 3D bilateral DESS and unilateral TrueFISP examinations, the automatic scheme provided suc-
cessful segmentations of the proximal femur for 360◦ measurement of alpha angles around the FHN
junction. No user-interaction was required for any of the automatic segmentation and quantification
steps or for any post-hoc manual editing of the resulting bone surfaces and alpha angle measures.

4.3.1 Intra- and inter-rater reliability of manual alpha angle measures from
auto-extracted slices

The intra-rater reliability (Rater 2) for manual measurement of alpha angles from the auto-extracted
reformatted radial slices from the DESS images was very high for both the anterosuperior (ICC(1,1)
= 0.98; 95% CI: 0.96 - 0.99, p < 0.01) and anterior positions (ICC(1,1) = 0.97; 95% CI: 0.95 - 0.98,
p < 0.01). Likewise, the inter-rater reliability for manual measurement of alpha angles from these
auto-extracted radial DESS slices was very high for both the anterosuperior (ICC(2,1) = 0.95; 95%
CI: 0.91 - 0.97, p < 0.01) and anterior positions (ICC(2,1) = 0.96; 95% CI: 0.94 - 0.98, p < 0.01).
As shown in Figure 4.4, linear regressions (r > 0.95) for the manual alpha angle data obtained by
the Raters revealed very small biases of -0.94◦ ± 3.50◦ and 0.12◦ ± 3.50◦ for the measures from the
anterosuperior and anterior radial plane slices with very strong correlations of r = 0.96 and 0.95
(p < 0.01), respectively.

4.3.2 Comparisons between manual (ground truth) and automatic measures

Bone reconstruction: The validation of automatic bone reconstructions for the proximal femur, in
comparison with the corresponding manual segmentations, for the DESS images, achieved DSC and
MASD values of 0.95 ± 0.01 and 0.80± 0.21 mm, respectively. For the TrueFISP images, the corre-
sponding DSC and MASD values between the manual and automatic segmentations were 0.95± 0.01
and 0.99± 0.19 mm, respectively. The mean and SD of the directed Hausdorff distances are shown in
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Figure 4.4: Statistical analyses of manual alpha angle measures at the (a, c) anterosuperior and (b, d)
anterior positions between Rater 1 and Rater 2 based on automatic image reformation process in the
dataset of 30 bilateral DESS images for hip joints of both sides: (a-b) are the scatter plots with the
regression lines (r is the Pearson's correlation coefficient), (c-d) are the Bland-Altman plots.

Figure 4.5 to illustrate the accuracy of the segmented femur surfaces, particularly at the femoral head
and neck, and view the distribution of segmentation errors across various anatomical regions. The av-
erage Hausdorff distance for the femoral head and neck was under 0.8 mm with a very small variance,
which indicates accurate bone delineation within the region achieved by the automatic segmentation
scheme.

Alpha angle measurements: There were very strong positive, statistically significant correlations
between the manual and automatic alpha angle measures obtained from the DESS images for both the
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Figure 4.5: (a) Mean and (b) standard deviation maps of directed Hausdorff distances computed from
validation results of the bilateral DESS (N = 30) and unilateral TrueFISP (N = 18) examinations.

anterosuperior (r = 0.84, p < 0.01) and anterior (r = 0.92, p < 0.01) positions (Figure 4.6a and 4.6b).
The Bland-Altman plots (Figure 4.6c and 4.6d) indicated average angular differences of -2.49◦ (SD:
7.34◦) and -4.01◦ (SD: 3.98◦) between the manual and automatic alpha angle measurements at the
anterosuperior and anterior positions of the FHN junction, respectively.

4.3.3 Comparisons between automatic measures of alpha angles from DESS
and TrueFISP images

Comparisons of the constructed coordinate systems using automated bone segmentations from the
matched 3D DESS and TrueFISP scans (18 individuals, right hips) showed a mean RMS error of 0.83
mm (SD: 0.72 mm) for the FHC location and mean angular differences of 2.11◦ (SD: 0.94◦) and 0.43◦

(SD: 0.49◦) for the FN and FS axes, respectively. Figure 4.7 shows representative examples of the
reformatted 2D radial plane slices at five different positions within the upper anterior quadrant of the
FHN junction extracted from DESS and TrueFISP scans in cases having larger alpha angle (e.g., >
60◦) consistent with cam-type lesions and smaller alpha angles (e.g., < 50◦) without cam-type lesions.
Figure 4.7 also illustrates that despite differences in the contrast (characteristics) between the DESS
and TrueFISP images, the automatic image reformation process is consistent based on the proposed
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Figure 4.6: Statistical analyses of alpha angles at the positions of (a,c) 45◦ and (b,d) 90◦ of the FHN
junction measured between the manual method based on automatic image reformation process and
the proposed automated assessment scheme from 30 bilateral DESS images: (a-b) are the scatter plots
with the regression lines (r is the Pearson's correlation coefficient), (c-d) are the Bland-Altman plots.

3D local reference coordinate systems constructed from these two MR sequences.

Figure 4.8a shows themean (± 95%CI) alpha angle curves computed from the automatic measures
between the DESS and TrueFISP images. There was good agreement of alpha angles varying across
all the locations 1◦ 180◦ of the FHN junction obtained using our method, where the largest alpha
angle was likely to be located within the upper anterior quadrant between 45◦ and 75◦ positions of
the FHN junction. In Figure 4.8b, for four different pre-selected positions particularly at 30◦, 45◦,
60◦ and 90◦, there were strong correlations with Pearson's correlation coefficients r = 0.86, 0.78,
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0.83 and 0.94 (p < 0.01) achieved between alpha angle measures from these two MR sequences and
boxes of these alpha angles are also largely overlapped. The two-way repeated measures ANOVA test
also showed no significant effects of the MR sequences (i.e., DESS and TrueFISP) on the automatic
alpha angle measures (F < 0.01, p = 0.98), but presumably there was a main effect for measurement
position (F = 14.36, p < 0.01). There was no significant interaction between MR sequences and
measurement positions of the FHN junction (F = 1.5, p = 0.21).

4.4 Discussion

We have successfully developed a quantitative assessment method for MR images of the hip joint
which automatically evaluates 3D bone morphology and provides 360◦ calculation of alpha angles
around the FHN junction. At the anterosuperior and anterior FHN positions, as investigated in pre-
vious clinical studies (Dudda et al. 2009; Pfirrmann et al. 2006; Rakhra et al. 2009), there were very
strong correlations (r > 0.8, p < 0.01) between the manual (ground truth) and automatic alpha angle
measures as derived from the ASM-based 3D segmentations of the proximal femur. Similarly, there
were strong correlations (r > 0.78, p < 0.01) between the automatic alpha angle measures derived
from paired DESS and TrueFISP images acquired across multiple sites in the upper anterior quadrant
of the FHN junction.

Universally, the automated method required under 15 minutes to calculate alpha angles around the
FHN circumference and allowed detailed analysis of alpha angle sized and distribution characteristics
for assessing the full extent and shape of cam lesions (e.g., see the 2D shape map in Figure 4.3c; polar
plots in Figure 4.9). In previous studies on cam-type FAI, manual alpha angle measures from one or
two locations of the FHN junction were always substantially overlapped between asymptomatic and
symptomatic hips (Jung et al. 2011; Sutter et al. 2012). In a recent study of Lepage-Saucier et al.
(2014), the ranges of anterosuperior and anterior alpha angles in asymptomatic hips were found far
beyond the current morphometric definitions (i.e., 50◦/55◦/60◦ cut-off thresholds for cam-type FAI).
Our assessment method, which automatically provides 3D visualization of the bone morphology and
360◦ measurement of alpha angles around the FHN junction (Figure 4.9), could assist the redefinition
of this morphometric parameter (alpha angle) that can be used in the diagnosis of cam-type FAI.

For the bilateral DESS images, the manual measurements of alpha angles from the auto-extracted
radial slices at the anterosuperior and anterior positions of the FHN junction showed very high intra-
and inter-rater reliability (ICCs > 0.95). The excellent reliability of these ground truth measures was,
in large part, attributed to the standardized, auto-extraction of the radial slices (see Figure 4.2), which
avoided the intra/inter-rater inconsistencies (subjective biases) associated with traditional manual im-
age reformation processes. Although direct visualization of the auto-extracted 2D radial slices (Fig-
ure 4.3b) is not necessary for the automated measurement of alpha angles from the current assessment
scheme, all images are readily obtained to allow further evaluation or review by expert observers.

For the large range of alpha angles (41◦ to 88◦) from the anterosuperior and anterior positions ob-
tained in the current study, the fully automated and manual measures compared very favourably. The
exceptionally robust performance of the automatic measurement approach using a 2D shape map of
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the femoral head for determining alpha angles across individuals with "normal" values (e.g., < 50◦-
55◦ (Nouh et al. 2008; Nötzli et al. 2002)), "high" values (60-70◦) and "very high" values (> 70◦)
attested the effectiveness of this method to analyse a wide variety of bone morphologies occurring
at the anterosuperior and anterior positions of the FHN junction. Similarly, the very strong correla-
tions between the manual and automated alpha angle measures for the anterosuperior (r = 0.84) and
anterior (r = 0.92) positions were obtained across these two different locations where typically the
anterosuperior slice profile demonstrated a greater concavity of the FHN junction (Figure 4.7).

In the current study, a focal ossification within a lateral segment of the anterosuperior femoral
cartilage in an isolated case (Figure 4.10a) produced a very large discrepancy between the manual
and automatic alpha angle measures at the anterosuperior position (Figure 4.6a, see the extreme out-
lier). This "abnormality" was not consistent with a classic protuberance (exostosis) of bone typically
associated with a cam-type lesion but rather was "confined" within the regular cartilage profile. At
review, the automated analyses of the alpha angle (∼40◦) was considered to be "definitionally correct"
although both raters used the medical edge of this abnormal bone "lesion" to determine their manual
measures (∼80◦). Further investigation of such intra-chondral bone lesions would be of interest in
terms of the development of an algorithmic approach for automated analyses of various pathoanatom-
ical characteristics and for more detailed consideration of possible in vivo impingement or associated
damage to joint structures.

Application of the automated 3D bone reconstruction process to unilateral TrueFISP images, in
comparison with matched DESS images, showed good reproducibility with relatively small biases
reported for the location of the FHC and directions of the FN and FS axes in the constructed local
coordinate system for the proximal femur. In terms of automated measurement of alpha angles be-
tween paired DESS and TrueFISP images, there were strong correlations for these angles analysed for
a series of positions across the upper anterior quadrant of the FHN junction ranging from r = 0.78 for
the anterosuperior (45◦) to r = 0.94 for the anterior (90◦) positions (see Figure 4.8b).

To facilitate clinical application of the current work, future investigations involving fuller eval-
uation of the automated measurement method with larger subject cohorts with varied demographics
(e.g., asymptomatic and symptomatic, males and females, different age groups) and clinical MR se-
quences (e.g., 2D or 3D fast spin-echo) would be beneficial. Similarly, further work to include and
validate the automatic measurement of a suite of parameters such as the FHN offset (Tannast et al.
2007), triangular index (Gosvig et al. 2007) and 3D head-neck ratios (Masjedi et al. 2013b) along
with the alpha angle measures as validated in the current assessment scheme would enhance efforts
targeting morphometric quantification of cam lesions. Moreover, our automated assessment method
can be extended in future work to provide simultaneous 3D measurements from the acetabulum for
parallel analysis of pincer-type lesions in FAI (Dandachli et al. 2012; Tannast et al. 2007).

Our automatic approach is ideally suited for MR analyses of FHN alpha angles in both individual
patients and in population-based investigations of asymptomatic (apparently healthy) and FAI co-
horts. On a patient-specific basis, the automated 3D method offers 360◦ alpha angles for detecting
and characterizing the variable presentations and locations of cam lesions around the FHN junction
(e.g., epicentre and extent of these osseous protrusions) for clinical evaluation and treatment purposes.
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In larger scale studies, the fully automated approach offers the capacity to provide comprehensive 3D
morphometric assessment and alpha angles for the FHN junction to better understand the development
of cam lesions in relation to various age, activity and anatomical characteristics.

4.5 Conclusion

This chapter presented a novel quantitative assessment and measurement method to automatically
evaluate 3D bone morphology and determine the alpha angles circumferentially around the FHN
junction from MR images of the hip joint. Our developed automatic 3D method generated alpha
angle measures circumferentially for the FHN junction with very good reliability and reproducibility
for two different MR images (i.e., DESS and TrueFISP sequences). This work therefore has the po-
tential to facilitate dedicated analyses of cam-type lesions of the FHN junction and, more generally,
large-scale morphometric and clinic MR investigations into the human hip region.
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Figure 4.7: Representative auto-extracted 2D radial slices at five different positions in the upper anterior quadrant of the FHN junction (from left to right,
0◦, 30◦, 45◦, 60◦, 90◦) from (top) DESS and (bottom) TrueFISP examinations of the right hip joints with (a) big and (b) small alpha angles (Red arrows
indicating the perceptible cam-type lesion).
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Figure 4.8: (a) Average alpha angle curves with regions of 95% CI across all positions 0◦ - 180◦ of
the FHN junction and (b) linear correlation plots and boxplots of alpha angles at four pre-selected
positions (30◦, 45◦, 60◦, 90◦) in the upper anterior quadrant of the FHN junction in the reproducibility
test between paired DESS and TrueFISP scans from 18 subjects.
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Figure 4.9: Example assessment results for hip joints having (a) smaller anterosuperior and anterior
alpha angles, (b) a larger anterosuperior alpha angle, (c) larger anterosuperior and anterior alpha an-
gles: (from left to right) diagrams of alpha angles (blue dots) around the FHN junction (The red line
indicates the average alpha angle contour computed from the bilateral DESS images (i.e., 60 hips).),
anterosuperior radila slices, anterior radial slices and 3D visualization of the segmented femur sur-
faces.
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Figure 4.10: Comparisons of manual and automatic alpha angle measures in cases having varying
presence of osteophytes at the anterosuperior position of the FHN junction.
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5
AUTOMATIC CARTILAGE SEGMENTATION FROM
HIGH-RESOLUTION 3D MR IMAGES OF THE HIP

JOINT

This chapter presents the work to attain Aim 1.2, which is to develop and evaluate the 3D autoamtic
method for segmenting the hip joint cartilages from high-resolution MR images. To this end, a hy-
brid segmentation scheme was introduced here to provide automatic segmentations of the femoral and
acetabular cartilages from MR images acquired without joint distraction or contrast agents. This de-
veloped scheme builds on the ASM-based bone segmentation algorithm (Chapter 3), which proved to
have good accuracy particularly within the likely BCI regions. Automatic cartilage segmentation is
performed using an improved graph search framework with an integration of an arc-weighted graph
representation and varying surface feasibility constraints in order to allow reliable delineation of two
cartilage plates despite weak or no separation between cartilage boundaries. These segmented carti-
lage volumes are then carefully validated against expert manual segmentations from TrueFISP MR
examinations of volunteers with no apparent OA or clinically reported hip pain.

The presentation of this novel automatic cartilage segmentation approach was also included in
the accepted manuscript in Physics in Medicine and Biology (Xia et al. 2014). At the current stage,
manual segmentations of the individual femoral and acetabular cartilage plates have all been obtained
from the full dataset of 46 TrueFISP images. The results for training of the articular cartilage model
and validation of automatic cartilage segmentations are thereby updated accordingly in this thesis. In
addition, a comparative study is also conducted to evaluate the segmentation accuracy between our
proposed method and a multi-atlas-based algorithm (state-of-the-art) that has been successfully ap-
plied to segment the bones of the hip joint in Chapter 3.

Related publication details

Xia, Y., Chandra, S. S., Engstrom, C., Strudwick, M. W., Crozier, S., and Fripp, J. (2014). Auto-
matic hip cartilage segmentation from 3DMR images using arc-weighted graph searching. Physics in
Medicine and Biology, 59(23):7245. http://stacks.iop.org/0031-9155/59/i=23/a=7245 (Xia
et al. 2014)
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5.1 Introduction

Accurate segmentation of the articular cartilage in the hip joint can provide a basis for quantita-
tive radiological analyses (e.g., cartilage volume, thickness, curvature and joint surface coverage)
of pathoanatomical conditions such as OA. Quantitative assessment of cartilage using recent bio-
chemical MR imaging techniques (e.g., dGEMRIC (Bittersohl et al. 2009; Mamisch et al. 2011), T1ρ
(Carballido-Gamio et al. 2008b), T2 (Nishii et al. 2010; Watanabe et al. 2007) and T2∗ (Bittersohl
et al. 2012) mapping) also relies on the provision of ROIs, i.e., the segmentation volumes, to evaluate
water, collagen and proteoglycan content of articular cartilages.

Currently, due to anatomical and imaging challenges particularly for the hip joint (Section 1.3),
MR-based quantitative analyses for hip joint cartilages have not paralleled advances in comparable
work with the knee joint (Fripp et al. 2010; Tamez-Pena et al. 2012; Yin et al. 2010). Compared with
the knee joint, the highly curved hip cartilages are much thinner with an average thickness of 1.4
and 1.2 mm for the femoral head and acetabular plates, respectively (Hodler et al. 1992). Contempo-
rary 3T MR sequences for the hip joint have a maximum in-plane resolution of 0.312 × 0.312 mm
with 1.5 mm slice thickness (Carballido-Gamio et al. 2008b) although scans of 0.6 × 0.6 mm with
larger slice thickness are usually acquired in clinical examinations (Kijowski 2010). Consequently,
a large portion of image voxels are subject to considerable PVE making reliable cartilage segmenta-
tion difficult for manual and more automated methods (Cicuttini et al. 2000; Hodler et al. 1992; Li
et al. 2008; Naish et al. 2006; Zhai et al. 2005). Furthermore, the distinction between the individual
femoral and acetabular cartilage plates is particularly difficult to discern in weight-bearing areas of
these closely apposed plates (Nishii et al. 1998). In response to these issues, previous studies have
employed approaches using leg traction devices (Cheng et al. 2013; Nishii et al. 2004; Sato et al. 2001)
or contrast agents/mechanisms (Baniasadipour et al. 2007) for segmentation of the hip joint cartilages
in the presence of weak boundaries, i.e., poor separation between the femoral and acetabular plates
(see Figure 5.1).

In this chapter, we present a hybrid segmentation scheme that incorporates an improved multi-
object multi-surface graph search framework for fully automatic segmentation of the articular car-
tilages from high-resolution 3D MR images of the hip joint. This developed scheme relies on the
following processes: bone pre-segmentation using a 3D ASM algorithm introduced in Chapter 3, ex-
traction of the BCI and segmentation of the hip joint cartilage using an improved multi-layered graph
search algorithm (Yin et al. 2010).

The improvements to the earlier graph search framework (Yin et al. 2010) are made by a novel
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integration of an arc-weighted graph representation (Song et al. 2013) incorporating varying surface
feasibility constraints learned from prior knowledge of the articular cartilage within the hip joint.
These specified segmentation properties and constraints are encoded by both node weights and arc
costs. This will allow fully automatic and reliable segmentation of the individual femoral and acetab-
ular cartilage plates from 3D MR images with weak or no separation between cartilage boundaries,
which were usually solved by continuous leg traction or contrast agents during the acquisition. To our
best knowledge, this is the first method that allows to do this. This method has been validated against
expert manual segmentations for the combined and individual cartilage plates from MR examinations
of 46 healthy volunteers, and is further compared with a multi-atlas-based method similar to (Chandra
et al. 2012a; Siversson et al. 2013).

5.2 Previous work

5.2.1 Manual and semi-automatic segmentation of hip joint cartilage

Presently, quantitative radiological investigations on the hip joint cartilage mostly rely on manual or
semi-automatic segmentation approaches (Cicuttini et al. 2000; Hodler et al. 1992; Li et al. 2008;
Naish et al. 2006; Zhai et al. 2005). Cicuttini et al. (2000) and Zhai et al. (2005) measured the hip car-
tilage volume bymanually contouring cartilage boundaries on individual 2D images ofMR scans from
OA patients. Naish et al. (2006) utilized a semi-automatic livewire algorithm to evaluate thickness
distribution maps of the combined hip cartilage from 3D gradient-echo MR images. Li et al. (2008)
reported semi-automatic segmentation of the individual acetabular and femoral cartilage plates (using
active contours) in 2D MEDIC MR images without the use of continuous leg traction. The use of
these manual and semi-automatic approaches for cartilage segmentation typically requires skilled an-
alysts with considerable experience and is time-consuming, e.g., 1 hour per image for semi-automatic
analysis (Naish et al. 2006) and 3 hours for manual delineation of the cartilages on each SPACE im-
age (Chandra et al. 2015b); consequently the development of an accurate automatic scheme for hip
joint cartilage segmentation would be beneficial for large-scale clinical and research studies focusing
on morphometric evaluations.

5.2.2 Automatic segmentation of hip joint cartilage

There has been limited development of approaches for fully automated segmentation of hip cartilage
from CT and MR images. Several studies have employed edge detection algorithms for segmentation
of the combined hip cartilages from MR (Nishii et al. 2004; Sato et al. 2001) and CT (Baniasadipour
et al. 2007) images; however, only rudimentary validation was reported in these studies. Siversson
et al. (2013) validated automated segmentations of the combined hip cartilage volume from a multi-
atlas label fusion method against manual measures reporting a mean DSC of 0.84 from 3D TrueFISP
images (isotropic 0.6 mm) acquired from ten patients with cartilage degeneration, although this work
did not generate segmentations for the individual femoral and acetabular cartilage plates. Recently,
Cheng et al. (2013) proposed a mathematical model of two adjacent sheet structures to simulate the
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(a) (b)

Figure 5.1: Example (a) sagittal and (b) oblique coronal reformatted MR slice (top right, in-plane
resolution: 0.234 mm, slice thickness: 0.490 mm) with manual labels (bottom right, red: femoral
cartilage, purple: acetabular cartilage) overlaid on the zoomed region of the hip joint (left), with weak
to non-existent boundaries between the femoral and acetabular cartilage plates (arrows show the bright
signal of synovial fluid).

femoral and acetabular cartilages to evaluate the accuracy limits on thickness measurements. This
approach, however, requires a distinct discrimination of two cartilage layers as might be obtained in
MR imaging using physical separation of the hip joint via continuous leg traction (Cheng et al. 2013;
Nishii et al. 2004; Sato et al. 2001).

To the best of our knowledge, no fully automated algorithm for segmenting individual femoral
and acetabular cartilage layers has been reported for 3D MR images of the hip joint without the use
of joint distraction or contrast agents. In comparison, a number of MR studies on the knee joint have
reported automatic segmentation approaches for morphometric analyses of femoral, tibial and patellar
cartilage plates (Dodin et al. 2010; Folkesson et al. 2007; Fripp et al. 2010; Lee et al. 2011; Tamez-
Pena et al. 2012; Yin et al. 2010). Amongst these approaches, the BCI has been used regularly as an
underlying frame of reference for subsequent cartilage segmentation (Dodin et al. 2010; Fripp et al.
2010; Lee et al. 2011; Yin et al. 2010). Though promising results have been obtained for individual
knee cartilages, adapting these existing methods to the hip joint faces considerable challenges given
the issues of substantial PVE and signal intensity similarities between the closely apposed articulating
cartilage interfaces of the femoral and acetabular layers.

5.2.3 Optimal 3D graph search framework

The optimal 3D graph search framework has been successfully applied in MR studies of cartilage seg-
mentation in the knee (Yin et al. 2010) and ankle (Li et al. 2005), where an object-specific graph was
constructed from the pre-segmented triangulated mesh of the articulating bones within these joints.
This work was performed using the node-weighted graph representation, where the connectedness
from one node to the other was simply of equal importance under the defined surface feasibility con-
straints. However, this approach is not readily applicable to the delineation of multiple surfaces with
poor separation of boundaries, e.g., the femoral and acetabular cartilage plates. More recently, an
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arc-weighted graph representation using weights of graph arcs to linearly penalize shape changes has
been used for segmentation of the closely opposed bladder and prostate in CT images (Song et al.
2010). Song et al. (2013) have developed a more sophisticated graph construction scheme for the
intra-rentinal layer segmentation from optical coherence tomography images of the eyes, which in-
corporated both shape and context prior penalties in the graph to make greater use of prior information
for separation of apposed layers.

In this MR study of the hip cartilages, our newly proposed hybrid graph search framework coa-
lesces the discrete works of Yin et al. (2010) and Song et al. (2013) to enable simultaneous segmenta-
tion for the individual femoral and acetabular cartilage plates of the hip joint in the presence of weak
boundaries.

5.3 Materials and Methods

5.3.1 MR image acquisition

A set of unilateral TrueFISP images with a small FOV of the right hip joint were used in this work,
which were acquired from from 46 volunteers with no apparent OA or clinically reported hip pain
(aged 31.7 ± 9.6 (18 - 60) years, 31 males and 15 females, BMI: 23.9 ± 4.9 kg/m2). The parameters
for unilateral TrueFISP sequence are listed in Table 2.1. Slice interpolation (K-space) was enabled for
a subset of 41 subjects to obtain an in-plane image resolution of 0.234mm spacing. Example TrueFISP
images are shown in Figure 5.1 illustrating a typically indistinct separation between the femoral and
acetabular cartilages.

Manual segmentation

The articular cartilages within the hip joint weremanually segmented byDr. MarkWStrudwick (Rater
1, an experienced radiographer) using ITK-SNAP (Yushkevich et al. 2006) to produce cartilage plate
labels across all the MR images.

The cartilages in the initial 22 MR examinations were segmented as a combined cartilage volume,
i.e., no partitioning into the individual femoral or acetabular plates. MR images from 9 randomly
selected subjects were segmented by Dr. Craig Engstrom (Rater 2, an experienced MSK analyst) to
investigate the inter-rater reliability for manual segmentations of the combined cartilage volume. In a
blinded fashion, MR scans from 3 of these 9 subjects were re-segmented by both raters to assess the
intra-rater reliability.

The individual femoral and acetabular cartilage plates were manually labelled by Rater 1 from all
MR images (N = 46), which also included the first 22 MR scans whose combined cartilage volumes
were further manually delineated into two individual cartilage partitions at a later stage. MR images of
5 subjects (randomly selected) were re-segmented for intra-rater reliability analyses of each cartilage
partition.

In this study, the set of manual segmentations (N = 46) with the individual femoral and acetabular
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cartilage partitions from Rater 1 was used in the training process of the hip articular cartilage model
as well as the validation against automatic cartilage segmentation results.

5.3.2 Multi-atlas based cartilage segmentation

In this chapter, a multi-atlas-based segmentation method (state-of-the-art) was implemented for a val-
idational comparison with our newly proposed segmentation scheme, which has been successfully
applied for segmentation of the bone elements in the hip joint region in Chapter 3. In this method,
the multi-atlas set is composed of preprocessed TrueFISP images (N4 bias field correction (Tustison
et al. 2010) and smoothing using gradient anisotropic diffusion detailed in Chapter 3) with correspond-
ing manual data with different labels for the individual femoral and acetabular cartilage partitions as
well as the subchondral bones (proximal femur, acetabulum) (N = 46 or N = 45 if a leave-one-out
cross-validation was used).

To automatically segment an image, the image is firstly preprocessed in the same way as the train-
ing images and cropped into a small FOV, focusing on the articular cartilages within the hip joint, based
on the size and center of the femoral head detected by a joint center locator (Nishii et al. 2004). The
extracted ROI of the input image is then used in order to reduce the heavy computational burdens in
the pairwise NRR with the atlases using the Nifty-Reg package (Modat et al. 2010). The most similar
atlases are chosen based on a similarity metric NMI that was defined in (3.1) (A threshold ϕ = 0.8was
used here), whose corresponding manual segmentations are fused via majority voting (Artaechevarria
et al. 2009) to obtain automatic segmentations of the individual femoral and acetabular cartilages.

5.3.3 Our approach: model generation and graph-based cartilage
segmentation

The proposed segmentation scheme for the hip cartilage can be summarized in two phases (see Fig-
ure 5.2): i) bone pre-segmentation and BCI extraction and ii) graph-based cartilage segmentation.
Based on bone pre-segmentation for the hip joint, the BCI can be identified as the ROI on each individ-
ual bone surface in order to locate the articular cartilage for the subsequent graph-based cartilage seg-
mentation phase. In the proposed graph search framework, the femoral and acetabular cartilage plates
are simultaneously segmented using an arc-weighted graph representation that incorporates multiple
surface feasibility constraints (e.g., surface smoothness, inter-surface distance and inter-object sep-
aration) learned from prior knowledge of cartilage morphology. In the following section, we first
describe the model training process then introduce the proposed optimal graph search framework for
the hip joint.

Training of the articular cartilage model

In order to obtain the prior knowledge required as a basis for the BCI extraction and subsequently
for the graph-based cartilage segmentation, an articular cartilage model is generated using a training
set of manual segmentations where the computed statistical properties of each cartilage plate (e.g.,
cartilage location, likelihood and thickness) are directly mapped to each vertex on the mean surface of
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Figure 5.2: Automatic segmentation scheme for the articular cartilage from MR images of the hip
joint.

a SSM of the articulating bone. In this chapter, manual segmentations of the individual femoral and
acetabular cartilage plates (N = 46 or N = 45 if leave-one-out validation was used) were used for the
model generation (Figure 5.3). The following statistical properties were included:

• Cartilage Probability: The probability (0 - 1) at each vertex of cartilage tissue being present
(see Figure 5.3a). This is used to initialize the extraction of the BCI from bone segmentations.

• Cartilage Thickness: The mean and SD of the cartilage thickness (mm) on each vertex indicates
the range of possible thickness changes for each plate as shown in Figures 5.3b and 5.3c. This
is used to enforce the distance constraints between each pair of the cartilage inner (i.e., the BCI)
and outer interface (i.e., articulating surface) in the graph representation.

• Joint Spacing: The mean and SD of the joint spacing between the articulating surfaces of the
femoral and acetabular cartilage plates indicates the range of the possible separation distance at
each vertex in the interacting region. This is used to enforce the separation constraints between
the two articulating cartilage interfaces in the graph representation. Note: the distance values
are only measured at the vertices in the interacting region (see Figure 5.4) of the bone surfaces
along the same direction as the cartilage thickness.

In addition to the above statistical properties, the mean and SD of the thickness difference between
pairs of neighbouring vertices is computed from the training set to provide the prior information used
for the surface smoothness constraints to the outer interface of each cartilage plate.

As per the ball-and-socket-like 3D geometry of the hip joint, the cartilage thickness used in this
work was defined with reference to the center of the femoral head(∼joint center), following previous
studies (Li et al. 2008; Naish et al. 2006; Sato et al. 2001). At each vertex within the BCI regions on
the bone surface, the thickness was calculated as the distance of the intersection points with the inner
and outer interface of the (femoral or acetabular) cartilage plate along the radial direction from the
joint center.
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Figure 5.3: Cartilage probability and thickness measures of the acetabular (left) and the femoral head
(right) cartilage models of the hip joint based on manual segmentations from the training dataset of
46 subjects: (a) probability of segmented cartilage tissue being present (valued 0 to 1), (b) average
and (c) standard deviation of cartilage thickness (in mm) mapped to the atlas bone surfaces of the
acetabulum and femoral head.

Bone pre-segmentation and BCI extraction

The bone segmentation approach used in this chapter has been previously presented in Chapter 3 (Xia
et al. 2013). This approach is based on 3D ASMs, built from a training set of triangulated surface
representations of each of the articulating bones in the hip joint with a hierarchical approach similar
to previous studies (Chandra et al. 2012b; Yokota et al. 2009). To adapt this segmentation method to
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Figure 5.4: Articular interacting regions on the femoral head and acetabulum with the projection
from the average thickness map of the (a) acetabular and (b) femoral cartilage plates using one-to-one
correspondences built from BCI surface coupling. Dashed circles show the corresponding regions
between (left) the articular interacting regions and (right) reference average cartilage thickness maps
in the articular cartilage model.

TrueFISP images of the unilateral hip joint (i.e., small FOV), initialization of 3D ASM is performed
based on a joint center locator (Nishii et al. 2004) and is then followed by coarse bone segmentation
using a unilateral hip joint SSM and segmentation refinement using SSMs of individual bone elements,
i.e., the proximal femur and acetabulum.

Instead of using the entire bone surface as the base graph for graph construction (Li et al. 2005; Yin
et al. 2010), the predicted BCIs are extracted from the segmented bone surfaces using the approach
of Fripp et al. (2007), which is based on the trained articular cartilage model and the estimated tissue
properties of the cartilage.

Graph-based cartilage segmentation

Given the extracted BCIs, the segmentation task in this study can be represented as a multiple surface
detection problem, which is to simultaneously detect four interfaces from two closely apposed carti-
lage plates and to co-optimize the inner and outer interfaces of the femoral and acetabular cartilage
plates. The background information of the optimal graph search approach for solving this problem is
given in Section 2.4.4.

As shown in Figure 5.5, a directed multi-object graphG including four subgraphs {Gi = (Ni, Ai) :
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i = 0, 1, 2, 3} is constructed, whereG0, G1, G2 andG3 are the subgraphs respectively for the femoral
inner interface, acetabular inner interface, femoral outer interface and acetabular outer interface in the
hip joint. Ni and Ai are the node set and arc set for the subgraph Gi, respectively. GF = G0 ∩ G2

denotes a dual-surface graph for the femoral cartilage, which is constructed from the base graph
MF = (VF , EF ), i.e.the femoral BCI surface, and GA = G1 ∩ G3 denotes a dual-surface graph
for the acetabular cartilage constructed from the base graphMA = (VA, EA), i.e., the acetabular BCI
surface. In order to integrate the two dual-surface graphs, i.e., GF and GA, into a multi-object graph,
inter-object graph separation constraints are implemented via inter-object arcs (see Figure 5.5).

1) BCI surface coupling
To construct a multi-object graph, the femoral and acetabular BCIs should be coupled to build one-
to-one correspondences in interacting regions between these two base graphs with different surface
topologies. Compared with the work of Yin et al. (2010) introducing a nonlinear cross-object sur-
face mapping algorithm using electric field lines of force, our proposed coupling process is modified
based on the anatomical "ball-and-socket" structure of the hip joint. Assuming both the femoral and
acetabular BCIs as partial sphere-like surfaces, each vertex on one BCI surface is mapped to the other
BCI surface if the line connecting the detected center of the femoral head and this vertex intersects
with the other BCI surface. The intersection point is then included in the vertex collection of the other
BCI surface. This results in the two base graphs "sharing" common vertices in the interacting regions,
which allows the construction of inter-object arcs between the two corresponding columns from two
objects' graphs. This surface coupling method is also applied to the training process of the articular
cartilage model (see Figure 5.4).

2) Arc-weighted graph construction
We firstly consider the construction of a single arc-weighted dual-surface graph G = G0 ∩ G1 for
one of the cartilage plates, where G0 = (N0, A0) and G1 = (N1, A1) are the subgraphs for the inner
and outer cartilage interfaces, from the related BCI surface, i.e., the base graphM = (V,E). At each
vertex on the BCI, two spatially coincident columns of equidistant nodes are constructed along its
"normal" direction, which is re-computed as the direction from the femoral head center to this vertex.
The two columns of nodes constructed at vp ∈ V with the length K can be denoted by N0(vp) ≡
{n0(p, k) ∈ N0 : k = 0, 1, . . . , K−1} and N1(vp) ≡ {n1(p, k) ∈ N1 : k = 0, 1, . . . , K−1}. The
lengthK is determined by the required node spacing and the expected maximum cartilage thickness,
which is computed based on the maximum distance between the two BCI surfaces.

In order to enforce multiple surface feasibility constraints, different graph arcs are constructed in
the arc-weighted dual-surface graph as follows:

• Intra-Column Arcs: To ensure that the optimal surface intersects with each column exactly once,
along every column Ni(vp), i ∈ {0, 1}, every node ni(p, k) has a directed arc with +∞ weight
to the node ni(p, k − 1), k = 1, 2, . . . , K − 1.

• Inter-Column Arcs: To control the stiffness of output surfaces, surface smoothness constraints
are implemented by inter-column arcs, which are imposed between each pair of adjacent columns

82



Figure 5.5: Examples showing the construction of the multi-object graph with inter-object arcs at the
interacting regions within the hip joint. GF is the dual-surface graph constructed from the femoral
BCI and GA is the dual-surface graph constructed from the acetabular BCI.

in the graph. Let Ni(vp) and Ni(vq) be two adjacent columns (p ̸= q, ⟨vp, vq⟩ ∈ E), and
∆p,q is the index difference of the nodes ni(p, ∗) and ni(q, ∗) where the optimal surface in-
tersects with the column Ni(vp) and Ni(vq). Two smoothness constraint parameters ∆p,q and
σp,q learned from the prior information are used to define the allowed possible range of sur-
face changes between neighbouring columns Ni(vp) and Ni(vq), i.e., the hard constraint term
|∆p,q − ∆p,q| ≤ α1σp,q (α1 is a constant factor, α1 = 2.5 was used here), and to penalize the
surface deformation inside the allowed range using a prior penalty function fs(∆p,q−∆p,q). An
example for the construction of inter-column arcs is illustrated in Figure 5.6a.

– Hard constraint term: The possible range is defined as [∆p,q − α1σp,q,∆p,q + α1σp,q].
Along the column Ni(vp), a directed arc with +∞ weight is constructed from each node
ni(p, k) to the node ni(q, k

′) in the column Ni(vq), k′ = max(0, k − (∆p,q − α1σp,q)).
Simultaneously, along the column Ni(vq), a directed arc (+∞) is constructed from each
node ni(q, k) to the node ni(p, k

′) in the columnNi(vp), k′ = max(0, k− (∆p,q+α1σp,q)).
– Prior penalty term: In order to "distribute" the smoothness penalty within the allowed
range, for every pair of nodes, say ni(p, k) and ni(q, k

′), ∆p,q = k′ − k, a weighted arc is
added using the second derivative of the prior penalty function fs(·) if (∆p,q − α1σp,q) ≤
∆p,q ≤ (∆p,q + α1σp,q). Suppose h = ∆p,q − ∆p,q, the second derivative for fs(h) is
computed as: f ′′

s (h) = [fs(h+ 1)− fs(h)]− [fs(h)− fs(h− 1)].
For each pair of the node ni(p, k) and ni(q, k

′), k′ = k +∆p,q + h,

* When h < 0, an arc is added from ni(p, k) to ni(q, k
′) with the weight f ′′

s (h);
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(a)

(b)

Figure 5.6: The construction of an arc-weighted graph for example showing (a) surface smoothness
constraints between the neighboring column Ni(vp) and Ni(vq), ∆p,q = 1, σp,q = 2, α1 = 1; (b)
inter-surface distance constraints between two columns N0(vp) and N1(vp) at the vertex vp, Λp = 2,
ϕp = 1, α2 = 1.
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* When h > 0, an arc is added from ni(q, k
′) to ni(p, k) with the weight f ′′

s (h);
* When h = 0, an arc ⟨ni(q, k

′), ni(p, k)⟩ is added with the weight f ′′
s (0

+) = fs(1) −
fs(0) and its reverse arc ⟨ni(p, k), ni(q, k

′)⟩ is also constructedwith theweight f ′′
s (0

−) =

fs(−1)− fs(0).

• Inter-Surface Arcs: To define the distance between the inner and outer cartilage interface (i.e.,
the cartilage thickness), inter-surface distance constraints are implemented by inter-surface arcs,
which are imposed between each pair of columns constructed at the same vertex. Let N0(vp)

and N1(vp) be the columns at the vertex vp ∈ V , and Λp is the distance of the two surfaces at
this vertex. For inter-surface distance constraints, Λp and ϕp are parameters learned from the
priors, which defines the possible range of cartilage thickness changes at the vertex vp ∈ V , i.e.,
|Λp − Λp| ≤ α2ϕp, where α2 is a constant factor (α2 = 2.5 was used here), and also penalizes
cartilage thickness changes inside the allowed range with a prior penalty function fd(Λp −Λp).
Figure 5.6b shows an example of the inter-surface arc construction.

– Hard constraint term: The possible range [Λmin,Λmax] of the thickness at the vertex vp is
defined by the two prior parameters, whereΛmin = max(0,Λ−α2ϕp) andΛmax = Λ+α2ϕp.
Along the column N0(vp), a directed arc with +∞ weight is constructed from each node
n0(p, k) to the node n1(p, k + Λmin) in the column N1(vp). Simultaneously, along the
column N1(vp), a directed arc (+∞) is constructed from each node n1(p, k) to the node
n0(p,max(0, k − Λmax) in the column N0(vp).

– Prior penalty term: In order to penalize the preferred thickness learned from the prior
information, for every pair of nodes, say n0(p, k) in N0(vp) and n1(p, k

′) in N1(vp), Λp =

k′ − k, a weighted arc is added using the second derivative of the prior penalty function
fd(·) if Λp is within the interval of [Λmin,Λmax]. Let h = Λp−Λp and the second derivative
for fd(h) is computed similarly to f ′′

s (h).
For each pair of the node n0(p, k) and n1(p, k

′), k′ = k + Λp + h,

* When h < 0, an arc is added from n0(p, k) to n1(p, k
′) with the weight f ′′

d (h);
* When h > 0, an arc is added from n1(p, k

′) to n0(p, k) with the weight f ′′
d (h);

* When h = 0, an arc ⟨n1(p, k
′), n0(p, k)⟩ is added with the weight f ′′

d (0
+) = fd(1)−

fd(0) and its reverse arc ⟨n0(p, k), n1(p, k
′)⟩ is also constructedwith theweight f ′′

d (0
−) =

fd(−1)− fd(0).

• Inter-object Arcs: The inter-object arcs are used to enforce multi-object separation constraints
between two interacting objects, i.e., GF and GA. After coupling the two BCI surfaces, one-to-
one correspondences between these two base graphs are built at the interacting regions. Suppose
V1

′ is the collection of the interacting vertices on the femoral BCI and V2′ is the collection of
the interacting vertices on the acetabular BCI. For every pair of coupled vertices in the inter-
acting regions, e.g., in Figure 5.5, vp ∈ V1

′ and vp′ that is its corresponding point found on the
acetabular BCI, two columns N0(vp) and N2(vp) are constructed at the vertex vp along the line
between vp and vp′ , while N1(vp′) and N3(vp′) are constructed at vp′ . The inter-object arcs are
added between the column N2(vp) and N3(vp′) in the same way as the inter-surface arcs with
the hard constraint |Γp − Γp| ≤ α3ψp (α3 is a constant factor, α3 = 1.0 was used here) and the
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prior penalty function ft(Γp − Γp).

3) Cost function design
The overall energy of the set S of surfaces Si (i = 0, 1, 2, 3) shown in (5.1) contains four terms
involving:

E(S) =
3∑

i=0

∑
ni(p,k)∈Si

ci(p, k)︸ ︷︷ ︸
boundary energy term

+
3∑

i=0

∑
(vp,vq)∈Ei

fs(∆p,q −∆p,q)︸ ︷︷ ︸
smoothness prior penalty term

+
1∑

i=0

∑
vp∈Vi

fd(Λp − Λp)︸ ︷︷ ︸
inter-surface prior penalty term

++
∑

vp∈V1
′∪V2

′

ft(Γp − Γp)︸ ︷︷ ︸
inter-object prior penalty term

(5.1)

• Boundary energy term defined as the summation of the on-surface costs associatedwith all nodes
on the surface Si. For each column in Gi, e.g., Ni(vp), vp ∈ Vi, the on-surface cost ci(p, k)
associated with the graph node ni(p, k) is computed using a nonedge-based cost function (5.2)
as described in (Li et al. 2006) and its node weight wi(p, k) is then assigned according to (5.3):

ci(p, k) =
k−1∑
k′=0

(I(ni(p, k
′))− a1)

2 +
K−1∑

k′=k+1

(I(ni(p, k
′))− a2)

2 (5.2)

where I(·) is the intensity value of the node. a1 and a2 are the intensity mean of nodes ni(p, k
′)

within the range of k′ ∈ [0, k) and k′ ∈ (k,K − 1].

wi(p, k) =

ci(p, k) if k = 0

ci(p, k)− ci(p, k − 1) otherwise
(5.3)

• Prior penalty term of surface smoothness constraints with the prior penalty function (5.4).

fs(∆p,q −∆p,q) =
(∆p,q −∆p,q)

2

2σ2
p,q

(5.4)

Assuming that the extracted BCIs are close to actual bone boundaries,∆p,q = 0 is used and σp,q
is set as a constant in the subgraph G0 and G1 for the inner cartilage interfaces. In the subgraph
G2 and G3 for the outer cartilage interfaces, ∆p,q and σp,q are the mean and SD of thickness
difference between pairs of neighboring vertices in the articular cartilage model of the hip joint.

• Prior penalty term of inter-surface distance constraints with the prior penalty function (5.5)

fd(Λp − Λp) =
(Λp − Λp)

2

2ϕ2
p

(5.5)

The prior parameters Λp and ϕp are the mean and SD of the cartilage thickness at the vertex vp
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in the articular cartilage model.
• Prior penalty term of multi-object separation constraints with the prior penalty function (5.6)

ft(Γp − Γp) =
(Γp − Γp)

2

2ψ2
p

(5.6)

The prior parameters Γp and ψp are the mean and SD of the joint spacing at the vertex vp ob-
tained from the articular cartilage model.

4) Graph optimization
With this constructed graphG = (N,A), we can find an optimal cut C∗ = (N ∗,N ∗

) (N ∗∪N ∗
= N ),

minimizing total weights of nodes inN ∗ plus total arc weights of C∗, which can be solved by using a
minimum s− t cut algorithm (Hochbaum 2001; Wu and Chen 2002). A min-cut/max-flow algorithm
proposed by Boykov and Kolmogorov (2004) was used in this work.

5) Post-processing
After graph optimization, the segmented cartilage volumes are post-processed using the estimated
cartilage tissue properties by removing segmentation voxels of synovial fluid, which likely have the
image intensity higher than the average intensity of the cartilage tissue plus three times its correspond-
ing SD (see as the bright signal in Figure 5.1b).

5.3.4 Validation method

The validation of automated cartilage segmentations is reported using five volume/distance-based
measures: sensitivity, DSC (Dice 1945), RAVD (Van Ginneken et al. 2007) and MASD (Gerig et al.
2001) and 95% Hausdorff distance (Fedorov et al. 2008; Litjens et al. 2014). Let TP, FP and FN
respectively denote true positive, false positive and false negative counts for the voxels, then sensitivity
= TP / (TP + FN) is the true positive fraction and the DSC = 2TP / (2TP + FP + FN). The RAVD is
given in percentage terms, RAVD (%) = 100 × |A - M|/M, where A and M are automatic and manual
segmentation volumes, respectively. The MASD (mm) is defined as:

dMASD = [davg(SA, SM) + davg(SM , SA)]/2,

where davg(SA, SM) is the average directed surface distance from all points on the automated surface
SA to the manual surface SM . The 95% Hausdorff distance (mm) (Fedorov et al. 2008; Litjens et al.
2014) is the 95th-percentile value of the Hausdorff distances in order to estimate the accuracy of the
alignment between two segmentation volumes. The regular Hausdorff distance is defined as:

dHausdorff = max{max{d(vA, SM), vA ∈ SA},max{d(vM , SA), vM ∈ SM}}.
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5.4 Results

Each MR image of the hip joint was automatically segmented for all 46 TrueFISP examinations using
the described hybrid scheme. A leave-one-out cross-validation approach was performed, whereby a
new articular cartilage model was generated from the remaining 45 cases when the case to be seg-
mented was included in the training set. No user-interaction was required for any of the automatic
segmentation steps or for any post-hoc manual editing of resulting surfaces.

5.4.1 Inter- and intra-rater reliability

As summarized in Table 5.1, reliability analyses for manual segmentations of the combined cartilage
volumes showmean DSC values of 0.82 and (0.86, 0.88) for the inter- and intra-rater (Rater 1, Rater 2)
reliability, while mean RAVD values were 11.61% and (4.58%, 2.18%). For the manual partitioning
of each cartilage plate, the intra-rater reliability of Rater 1 had mean DSC and RAVD values of 0.85
and 2.50% for the femoral partition and 0.80 and 5.07% for the acetabular partition.

5.4.2 Segmentation accuracy

A summary of the comparative volumetric and distance-based validation metrics is presented in Ta-
ble 5.2. Comparisons between automatic and manual segmentation methods for the combined car-
tilage volumes showed a mean DSC value of 0.81 (± 0.03) and a RAVD of 7.54% (± 5.77), while,
for segmentation of the individual femoral and acetabular cartilage plates, they showed mean (± SD)
DSC values of 0.77 (± 0.03) and 0.73 (± 0.05), and RAVD values of 8.86% (± 8.19) and 8.63%
(± 6.23). Figure 5.7 shows boxplots for DSC values between manual and automatic segmentations
for the cartilage volume data where the interquartile ranges of DSC values were 0.79 - 0.83 for the
combined, 0.75 - 0.79 for the femoral and 0.70 - 0.76 for the acetabular plate.

Representative examples of validation results of the combined, femoral and acetabular cartilage
plates with maximum, median and minimum DSC values are shown in Figure 5.7. Overall, there was
good consistency between automatic and manual segmentations of the cartilages across the majority
of the articulating surfaces of the femoral and acetabular plates. There were, however, specific ar-
eas where differences between automated and manual segmentations were consistently more apparent
such as around the femoral head fovea, the acetabular fossa and the more peripherally located, thinner
regions of cartilage coverage (see yellow regions in B2, B3, C3 example slices of Figure 5.7). Exam-
ples of automated segmentation results for cases with average DSC values are provided in Figure 5.8a,
which shows a typical reliable delineation between the femoral and acetabular cartilage plates within
the hip joint. Figure 5.8b presents corresponding 3D visualizations of the segmented cartilage plate
volumes with the reference of the (proximal femur, acetabular) bone structures, which indicates great
potential for provision of morphometric data in the subsequent research and clinical studies related to
articular cartilages of the hip joint that will be further investigated in the next chapter.

In order to investigate the effect of the prior penalization used in our new hybrid segmentation
scheme, a comparison was performed against a node-weighted graph representation, which was still
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Table 5.1: Inter- and intra-rater reliability of manual segmentations for the combined, femoral and
acetabular cartilage volumes.

No. of DSC RAVD∗ (%) 95% Hausdorff (mm)
subjects Mean SD Mean SD Mean SD

Combined Inter Rater 1vs2 9 0.82 0.03 11.61 7.68 1.36 1.19
Intra Rater 1 3 0.86 0.05 4.58 3.97 1.37 1.02
Intra Rater 2 3 0.88 0.01 2.18 2.67 0.49 0.00

Femoral Intra Rater 1 5 0.85 0.01 2.50 6.19 0.52 0.05
Acetabular Intra Rater 1 5 0.80 0.02 5.07 8.74 1.58 0.79
∗ MASD = 100 × 2 |M1 −M2|/(M1 +M2), M1 and M2 are two manually segmented volumes.

encoded with hard surface constraints but no prior penalization via weighted arcs; it yielded mean (±
SD) DSC values of 0.81 (± 0.02), 0.76 (± 0.03) and 0.71 (± 0.05) for the combined, femoral and
acetabular cartilage volumes, respectively. Comparatively, the hybrid segmentation scheme showed
statistically significant improvements in DSC scores for segmentation of the femoral (t(45) = 7.98,
p < 0.001) and acetabular (t(45) = 10.12, p < 0.001) cartilage volumes, while no significant differ-
ence was found for segmentation of the combined cartilage volumes (t(45) = 1.23, p = 0.223).

5.4.3 Comparison with the multi-atlas-based method

The multi-atlas-based algorithm was also applied to all 46 TrueFISP images, which obtained mean
(± SD) DSC values of 0.80 (± 0.05), 0.77 (± 0.05) and 0.73 (± 0.06), and RAVD of 9.01% (±
7.61), 8.76% (± 7.00) and 13.02% (± 9.66) for segmentation of the combined, femoral and acetabular
cartilage volumes (see Table 5.2). Using paired t-test analyses, no significant difference was found in
DSC values for validation results of the combined (t(45) = −1.232, p = 0.224), femoral (t(45) =

−0.260, p = 0.796) and acetabular (t(45) = 0.084, p = 0.934) cartilage segmentations.

Figure 5.10 illustrates a case-by-case comparison between the multi-atlas-based and our proposed
method in DSC scores of validation results for the combined, femoral and acetabular cartilage seg-
mentations, respectively. For each cartilage partition, a similar trend across the cases can be observed
while there are a few cases, e.g., case 11 and 18, having an evident drop in the DSC value when using
the multi-atlas-based approach (see asterisk symbols in Figure 5.10). This resulted from the poor im-
age quality, particularly low or no contrast at the BCIs and articulating cartilage (cartilage-synovial
fluid) interfaces, which was especially true for case 18 shown in Figure 5.10a with a segmentation
failure (DSC < 0.6) using the multi-atlas-based algorithm. In contrast, our method shows compara-
tively robust performance on this image, although segmentation errors can still be noticed for delin-
eation of interfaces between the bone and cartilage layer. Figure 5.10b indicates superior delineation
performance between the individual femoral and acetabular cartilage plates with our method in case
11, where the acetabular cartilage volume was largely underestimated using the state-of-the-art. For
case 45, the multi-atlas-based approach achieved higher DSC values than the proposed segmentation
method; however, both methods demonstrated qualitatively high levels of accuracy at the region of
significance for both the femoral and acetabular cartilages (Figure 5.10c).
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5.5 Discussion

We have presented a new, fully automatic approach for successful segmentation of the combined and
the individual femoral and acetabular cartilage plates in the hip joint from high-resolution 3D MR
images. This multi-stage approach is based on pre-segmentation of bone surfaces using a 3D ASM
algorithm (Chapter 3) followed by implementation of an improved optimal multi-object multi-surface
graph search framework, which employed an arc-weighted graph representation with varying surface
feasibility constraints learned from prior knowledge of cartilage morphometry. In the present study,
this hybrid scheme automatically segmented the individual femoral and acetabular cartilage plates
from TrueFISP MR images without employing auxiliary approaches such as continuous leg traction
for hip joint distraction or contrast agents during image acquisition.

In comparison with traditional manual segmentation of the combined hip joint cartilage volume,
used as the “benchmark” in the present work and for previous quantitative research and clinical stud-
ies focusing on morphometric analyses of cartilage (Li et al. 2008; Naish et al. 2006), our automated
approach achieved a good mean DSC value of 0.81 in the context of mean inter-rater and intra-rater
manual segmentation DSC scores of 0.82 and 0.86 to 0.88. Similarly, the automated approach pro-
vided good overall cartilage segmentations compared with the time- and expertise-intensive manual
segmentations of MR images for the individual femoral (mean DSC score of 0.77) and acetabular
(mean DSC score of 0.73) cartilage volumes. These outcomes compared favourably with the intra-
rater reliability DSC values of 0.85 and 0.80 for repeated manual measurements of the individual
femoral and acetabular cartilage plates.

In comparison with an in-house implementation of the original layered optimal graph image seg-
mentation of multiple objects and surfaces (LOGISMOS) algorithm (Yin et al. 2010), the current hy-
brid approach, with integration of prior penalty terms (Song et al. 2013) in the graph representation,
achieved significantly higher DSC values for segmentation of the individual femoral and acetabular
cartilage volumes (see Section 5.4.2). For these partitioned cartilage plates, the smaller volumes and
higher surface-to-volume ratios of these individual plates and boundary separation difficulties between
the closely apposed cartilage surfaces readily explain the lower DSC values in comparison with the
combined hip cartilage segmentations. Further, delineation errors associated with both manual and
automated segmentations could be readily apportioned to the substantial PVE occurring around the
tapered edges and/or thinner regions of the highly curved cartilage tissue in the hip joint (Figure 5.7).

Furthermore, there is no significant difference in DSC values obtained between our developed
automatic segmentation scheme and the multi-atlas-based method (state-of-the-art). However, our
proposed method demonstrated comparative robust performance on MR examinations with the poor
image quality, particularly no or low tissue contrast for the BCIs and articulating cartilage interfaces
(Figure 5.10a). Even though improvements could be made to the multi-atlas-based method by incor-
porating a larger number of atlases with more variation, heavy computational burdens are an important
concern for its potential clinical applications, particularly with consideration of timeliness and patient
throughput. Therefore, our proposed method offers a good level of both segmentation precision and
time-efficiency and has more potential for prospective research and clinical utilities.
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Our current segmentation scheme offers the potential for quantitative assessment of the in vivo
morphological characteristics of the individual femoral and acetabular cartilage plates from 3D MR
images of the hip joint. Combined with biochemical MR imaging, this automated approach presents
exciting avenues to systematically evaluate potential imaging biomarkers in large MR datasets of pre-
OA and early OA studies for application to radiological examinations for disease diagnosis and clinical
trials investigating therapeutic interventions.

There are a number of limitations in the present study. The evaluation of our newly developed
method was performed on high-resolution 3TMR (TrueFISP) images of the hip from relatively young,
healthy participants. Further, the current bone segmentation scheme was developed within a frame-
work of a water excited or FS MR sequence with "dark" bones and bright cartilage and fluid; the au-
tomated approach will likely transfer to images with similar contrast characteristics (DESS, MEDIC,
FS SPACE) although such validation needs to be undertaken. Moreover, future work involving MR
images from non-FS sequences, from lower-resolution routine clinical sequences (e.g., 2D or 3D fast
spin-echo) across different scanner field strengths (including scan-rescan reliability analyses involving
different positioning, image sequences and in-plane resolutions) and in individuals with a spectrum
of hip joint pathology will be required for a fuller evaluation of our current automated framework.
Clinically, our approach is likely to be applicable for the hip joint in early and/or less severe OA con-
ditions. For more severe disease states involving changes to the femoral head (currently modelled as
a sphere-like structure with its center serving as a reference landmark for the BCI surface coupling
and cartilage thickness measurements), dedicated analyses will be needed for evaluating potential
segmentation errors.

5.6 Conclusion

We have presented a fully automatic approach for successful cartilage segmentation from 3D MR
images of the hip joint based on improvements to the optimal graph search framework incorporat-
ing prior knowledge of cartilage morphometry to simultaneously segment the femoral and acetabular
plates despite their closely apposed surfaces (narrow joint spacing) and weak boundaries between
these articulating structures. The proposed scheme provided an overall high level of validity and re-
liability of automated segmentations of the femoral and acetabular cartilage volumes in comparison
with benchmark manual segmentations. Hence, the developed scheme has the capacity to provide
automated reproducible quantitative volumetric data on the hip cartilages, without reliance on time-
and expertise-intensive manual approaches, for potential use in large prospective pre-OA and early
OA studies. The feasibility of this developed segmentation scheme for use in subsequent quantitative
measurements will be then investigated in Chapter 6.
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Table 5.2: Comparative volumetric and distance-based validation metrics for comparisons between manual and automatic segmentations of the combined,
femoral and acetabular cartilage plates. The obtained automatic cartilage segmentations were obtained using the multi-atlas-based (state-of-the-art) and
our proposed segmentation method, respectively.

Sensitivity DSC RAVD (%) 95% Hausdorff (mm) MASD (mm)
Mean ± SD Mean ± SD Min - Max Mean ± SD Min - Max Mean ± SD Min - Max Mean ± SD Min - Max

State-of-the-Art
Combined 0.79 ± 0.07 0.80 ± 0.05 0.60 - 0.86 9.01 ± 7.61 0.39 - 34.20 1.45 ± 0.95 0.54 - 6.10 0.32 ± 0.13 0.20 - 1.03
Femoral 0.76 ± 0.07 0.77 ± 0.05 0.54 - 0.84 8.76 ± 7.00 0.22 - 32.76 1.62 ± 1.14 0.52 - 6.69 0.31 ± 0.18 0.18 - 1.38
Acetabular 0.71 ± 0.10 0.73 ± 0.06 0.51 - 0.81 13.02 ± 9.66 1.10 - 44.28 2.06 ± 1.47 0.59 - 5.83 0.33 ± 0.16 0.16 - 0.89
Our Method
Combined 0.80 ± 0.05 0.81 ± 0.03 0.74 - 0.85 7.54 ± 5.77 0.05 - 21.77 1.73 ± 0.77 0.68 - 3.85 0.38 ± 0.08 0.23 - 0.58
Femoral 0.76 ± 0.06 0.77 ± 0.03 0.70 - 0.84 8.86 ± 8.19 0.21 - 36.12 2.20 ± 1.10 0.70 - 4.81 0.35 ± 0.10 0.20 - 0.61
Acetabular 0.73 ± 0.07 0.73 ± 0.05 0.62 - 0.83 8.63 ± 6.23 0.32 - 26.07 2.48 ± 1.59 0.66 - 7.67 0.38 ± 0.15 0.18 - 0.80
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Figure 5.7: Boxplots of validation results with example slices for maximum, median, minimum DSC values for the combined, femoral and acetabular
cartilage volumes (red - region in common, yellow - only in manual segmentations, blue - only in automatic segmentations).
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Figure 5.8: (a) 2D MR slices (top) with overlaid cartilage segmentations (bottom) (green - femoral cartilage, red - acetabular cartilage) and (b) 3D
visualization of smoothed cartilage volumes (green - femoral cartilage, orange - acetabular cartilage) with the reference of (proximal femur, acetabulum)
bone surfaces obtained from an example automatic segmentation results around the mean DSC of (0.79, 0.76, 0.74) for the (combined, femoral, acetabular)
cartilage.
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(a)

(b)

(c)

Figure 5.9: DSC results for segmentation of the (a) combined, (b) femoral and (c) acetabular cartilages
obtained using the multi-atlas-based method (dashed line) and our proposed method. The results are
sorted based on DSC scores of the combined cartilage segmentations from our approach (Asterisk
symbols indicate cases with an evident drop of the DSC value using the multi-atlas-based method).
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DSC(Combined, Femoral, Acetabular) = (0.76, 0.70, 0.72)

DSC(Combined, Femoral, Acetabular) = (0.60, 0.54, 0.51)

(a) Case 18

DSC(Combined, Femoral, Acetabular) = (0.81, 0.76, 0.75)

DSC(Combined, Femoral, Acetabular) = (0.74, 0.70, 0.60)

(b) Case 11

DSC(Combined, Femoral, Acetabular) = (0.81, 0.79, 0.68)

DSC(Combined, Femoral, Acetabular) = (0.85, 0.83, 0.77)

(c) Case 45

Figure 5.10: Overlaid segmentations for (a) case 18, (b) case 11 and (c) case 45 obtained using (top)
the multi-atlas-based method and (bottom) our proposed method.
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6
QUANTITATIVE ANALYSES OF THE CARTILAGES

AND ITS REPRODUCIBILITY

This chapter presents the work to attainAim 2.2, which is to perform quantitative measurements of the
segmented femoral and acetabular cartilages within the hip joint from high-resolution 3DMR images.

Quantitative measurements and subregional analyses for the cartilage morphology (i.e., volume,
thickness) is performed based on automatic cartilage segmentation volumes obtained from MR im-
ages of the hip joint using the graph-based segmentation scheme in Chapter 5. Quantitative results are
compared between manual and automatic cartilage segmentation results of 3D TrueFISP images from
46 volunteer subjects. Subregional analyses are performed within the majority of the weight-bearing
regions for the individual femoral and acetabular cartilage plates, where seven clinically-defined sub-
regions were automatically identified and evaluated using quantitative volume and thickness measure-
ments. In addition, the reproducibility of quantitative analyses is evaluated using unilateral 3D DESS
and SPACE examinations from the subset of 18 subjects.

In this chapter, the work on volume and thickness measurements was included in the publication
of (Xia et al. 2014), which presented initial quantitative measurement results based on a subset of
TrueFISP images from 26 subjects.

Related publication details

Xia, Y., Chandra, S. S., Engstrom, C., Strudwick, M. W., Crozier, S., and Fripp, J. (2014). Auto-
matic hip cartilage segmentation from 3DMR images using arc-weighted graph searching. Physics in
Medicine and Biology, 59(23):7245. http://stacks.iop.org/0031-9155/59/i=23/a=7245 (Xia
et al. 2014)
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6.1 Introduction

Quantitative analyses of the cartilage morphology (i.e., thickness, volume, surface areas) that fully
exploit the 3D nature of MR imaging techniques, represent a powerful tool in cartilage and OA in-
vestigations (Li et al. 2008; Nishii et al. 2004). Compared with clinically used radiographic scoring
methods, quantitative analyses of the hip joint cartilage can be more objective and less observer-
dependent (Roemer et al. 2011). This allows relatively small structural alterations in the cartilage to
be detected over time while these changes might not be apparent to the human eye. In particular, sub-
regional morphological analyses of cartilage can detect and monitor subtle structural changes during
the pathological process with better sensitivity and specificity, which therefore provide an indepth un-
derstanding of the cartilage degeneration across different subregions (Carballido-Gamio et al. 2008b;
Subburaj et al. 2013).

However, to be of value in clinical applications, the fulfilment of quantitative analyses requires
the cartilage to be segmented with a high level of reliability and reproducibility, which was previously
achieved using manual and semi-automatic approaches (Cicuttini et al. 2000; Li et al. 2008; Mech-
lenburg et al. 2007; Naish et al. 2006; Zhai et al. 2005). The cartilage thickness of the hip joint was
initially measured in (Hodler et al. 1992) from 1.5T coronal and sagittal fat-suppression spin-echo
MR images of ten cadavers. Due to problems encountered with an imprecise delineation of the BCI,
limited spatial resolution (0.46 mmwith slice thickness 3 mm) and insufficient tissue contrast between
the cartilage and joint fluid, the method was insufficiently accurate to be of value in clinical practice.
Cicuttini et al. (2000) measured the volume of the femoral head cartilage based on 3D rendering from
disarticulation contours that were manually delineated on each slice of 1.5T 3D fat-suppressed SPGR
images. In the dataset of 10 hip specimens, the cartilage volume was found ranged from 1.8 ml to 7.8
ml, which had the average 12% over- or under-estimation in comparison to the results measured by
the dissection and volume displacement. A similar technique was used to manually determine the vol-
ume and thickness of the femoral head cartilage from MR images of 151 subjects randomly selected
from an older adult cohort study (Zhai et al. 2005). Moreover, Mechlenburg et al. (2007) evaluated
three stereologic methods of manual thickness measurement for the hip joint cartilage on 3D FLASH
images, and indicated the superiority of the measurement method based on the center of the femoral
head.

Nakanishi et al. (2001) utilized semi-automatic 3D visualization techniques to measure the carti-
lage thickness and to evaluate the entire femoral cartilage between SPGR images of 10 normal volun-
teers and 5 patients with advanced OA or osteonecrosis. Naish et al. (2006) reported a good test-retest
coefficient of variation (CoV) of 2.5% using a semi-automatic livewire-based method to determine
the thickness of the combined hip joint cartilage, which was promising for reproducible quantitative
assessment of hip cartilage thickness in longitudinal studies. More recently, semi-automatic segmen-
tation of the individual acetabular and femoral cartilage plates of the hip was first reported on 1.5T
MR images (in-plane resolution 0.5 mm, 3 mm slice thickness) using a 2D MEDIC sequence with no
use of continuous leg traction (Li et al. 2008). In this noninvasive system, good reproducibility was
obtained for the global, femoral and acetabular cartilage volume with the root mean square CoV of
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3.3%, 3.6% and 5.6% comparable to the data in the literature; however, for the hip cartilage subregion
(inferior, anterior, superior and posterior) analysis, less repeatability was noted with the F statistic
(ANOVA) of 0.969 (p = 0.38) for independent effects and 0.736 (p = 0.78) for interaction effects.

The disadvantages of thesemanual and semi-automatic approaches are that they are time-consuming
(e.g., 1 hour per image for the livewire-based semi-automatic method (Naish et al. 2006), 3 hours per
SPACE scan for manual cartilage segmentation (Chandra et al. 2015b)) and require skilled opera-
tors with significant experience. These would become problematic for potential research and clinical
application in large prospective early and pre-OA studies to evaluate potential imaging biomarkers.

In this chapter, it is assumed that 3D MR image is an accurate representation of the cartilages and
allows reliable and reproducible quantitative analyses (e.g., volume, thickness) to be performed using
automatic segmentations of the individual femoral and acetabular cartilage plates. Therefore, we aim:

1. to perform quantitative volume and thickness measurements based on automatic cartilage seg-
mentations from 3D TrueFISP examinations of 46 subjects, which are compared with measure-
ments from the corresponding manual segmentations;

2. to carry out preliminary analyses of the subregional cartilage morphology, particularly at the
weight-bearing regions of the individual acetabular and femoral cartilage plates;

3. to evaluate the reproducibility of the proposed segmentation and quantitative analysis scheme
for the hip joint using various MR acquisition protocols. This is achieved using MR examina-
tions with 3D DESS and SPACE sequences in a subset of 18 subjects.

6.2 Materials and Methods

6.2.1 Data acquisition

TrueFISP, DESS, SPACE images

An MR dataset of 3D high-resolution TrueFISP examinations acquired from 46 volunteer subjects
introduced in Chapter 5 was used for the subsequent quantitative analyses of the hip joint cartilage.
Additionally, a subset of 18 subjects were imaged using another two different MR sequences,3D T2w
DESS and 3D fat-suppressed proton density weighted (PDw) SPACE, with a lower image resolution
to investigate the reproducibility of our proposed MR-based segmentation and quantitative analysis
scheme. The parameters for each imaging sequence are listed in Table 2.1. Example coronal slices of
TrueFISP, DESS and SPACE images acquired from the same subject are shown in Figure 6.1.

SPRI clinical SPACE and T2 mapping images

Another MR dataset provided by the Steadman Philippon Research Institute (SPRI) (Vail, Colorado,
USA) as per Chandra et al. (2015b); Ho et al. (2014), was used in this chapter to obtain the prior
information of clinically-defined anatomical subregions for the individual femoral and acetabular car-
tilage plates. This dataset consists of 24 anonymized volunteers (12 males and 12 females, aged 23-34
years, body masses 53-151 kg) enrolled in an asymptomatic study after subjective scoring, objective
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(a) (b)

(c)

Figure 6.1: Example coronal slices of MR images acquired from the right-side hip joint of the same
subject with three different sequences: (a) TrueFISP, (b) DESS and (c) SPACE.

clinical examinations and radiological evaluation using the Hip Osteoarthritis MRI Scoring System
(HOAMS) (Roemer et al. 2011). MR acquisition was performed on a clinical 3T scanner (Magnetom
Verio, Siemens Healthcare, Germany) using a large 4-channel matrix coil with volunteers positioned
supine during scanning.

All the volunteers were imaged using a 3D fat-suppressed PDwSPACE sequence (acquisition time:
8 min, TR/TE: 1500/44 ms, flip angle: 120◦, voxel size: 0.75 × 0.75 × 0.9 mm, acquisition matrix:
256 × 256 and FOV: 19.2 × 19.2 cm) and a multi-echo spin-echo T2 mapping sequence (MESE T2
Map SAG; acquisition time: 6.45 min TR/TE: 2080/18-90 ms, flip angle: 180◦, voxel size: 0.78 ×
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0.78 × 2.0 mm, FOV: 20 × 20 cm).

Manual segmentation and analyses

All TrueFISP examinations acquired from 46 volunteers were manually segmented by Dr. Mark W
Strudwick (an experienced radiographer) to produce labelled images for the individual femoral and
acetabular cartilage plates (see Chapter 5). No manual segmentation was performed on the DESS and
SPACE scans due to segmentation difficulties related to the decrease in SNR and insufficient image
contrast, particularly poor/no delineation between the two cartilage plates (see Figure 6.1).

In the SPRI dataset, all MR examinations (N = 24) using the T2 mapping sequence were manu-
ally segmented on a slice-by-slice basis using a stylus and touch screen monitor and Mimics software
(Materialise, MI, USA) by a trained musculoskeletal radiologist under the expert supervision of Dr.
Charles Ho. Manual segmentation was performed only on the regions of high confidence for both the
femoral and acetabular cartilage plates. Meanwhile, the corresponding 3D SPACE images were simul-
taneously examined on an adjacent monitor in order to identify areas of synovial fluid and chemical
shift artefact. All manual segmentations of cartilage were imported into a custom Matlab program
(Mathworks, MA, USA) to generate regional analyses for 12 anatomical partitions using manually
defined landmarks considered clinically noteworthy (see Figure 6.2a). In this study, seven high con-
fidence superior regions within the weight-bearing regions of the articulating surfaces were chosen
from these partitions for quantitative analyses, which include three acetabular and four femoral parti-
tions (the femoral superior neck partition was further divided into two regions). The inferior regions
of both femoral and acetabular plates were omitted from the current analyses, which are likely to be
inconsistent in T2 manual delineations across the current dataset due to the large slice thickness and
variability of the thinner cartilages in these regions. An example of manual cartilage segmentations
from the T2 mapping scans is shown in Figure 6.2b with the color map indicating the coverage of each
superior region of high confidence that will be considered in this chapter.

6.2.2 Quantitative analyses

Cartilage volume

The cartilage volume is commonly measured as a direct numerical integration of the voxels attributed
to each segmented cartilage partition, which are used to indicate the global cartilage loss to a certain
degree. The volume calculation is performed on the raw voxelization of the segmented 3D volumes
for the combined, femoral and acetabular cartilages, respectively.

Cartilage thickness

The cartilage thickness for each cartilage plate is commonly defined as the distance between its bone-
cartilage (inner) interface and cartilage-synovial (outer) interface (Li et al. 2008). In this chapter, the
center of the femoral head is firstly estimated using a joint locator (Nishii et al. 2004) and serves as a
reference landmark for measuring the cartilage thickness at each vertex of the BCI surface, which aims
tomitigate PVE since the cartilage surface is intersected perpendicularly with the line from the femoral
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(a)

(b)

Figure 6.2: (a) Partitioned regions with associated regional descriptors for the (top) acetabular and
(bottom) femoral cartilages of the hip joint based on manual landmarks (red dots), which were illus-
trated using a 3D innominate bone volume from the left-side hip joint and a bone volume of proximal
femur from the right-side hip joint, respectively; (b) Example manual cartilage segmentation over-
laid on both the (left) 3D SPACE and (right) T2 echo as slices of the 3D image volume. (Used with
permission from (Chandra et al. 2015b; Ho et al. 2014))

head center (Mechlenburg et al. 2007). At each BCI vertex, a one-directional grey-value profile with
the sampling spacing of 0.125 mm is extracted from the voxelization of cartilage segmentations along
the direction from the femoral head center to this vertex (see Figure 6.3). The cartilage thickness of
each cartilage plate at this vertex can be measured as the distance of intersection positions with the
corresponding outer and inner interfaces (i.e., the distance between A and B, the distance between B
and C in Figure 6.3), which are found by one-directional profile searching in the labelled image of
cartilage segmentations.
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Figure 6.3: Cartilage thickness measurement illustrated on an example 2D slice overlaid with manual
cartilage contours. The example slice is assumed to go through the estimated center of the femoral
head. Point A, B and C are the intersection points on the dashed line from the femoral head center
with the inner acetabular cartilage interface, the outer acetabular cartilage interface (or outer femoral
cartilage interface) and the inner femoral cartilage interface, respectively. The cartilage thickness is
measured as the distance between A and B for the acetabular cartilage plate, between B and C for the
femoral cartilage plate.

Subregional analyses

Atlases with a scalar field of maximum likelihood for each cartilage subregion are firstly trained for
the individual femoral and acetabular cartilage plates using the SPRI 3D SPACE dataset with the re-
lated manual cartilage delineation and partitioning. This offline training process has been detailed in
the work of Chandra et al. (2015b). Briefly, 3D-SPACE images were first automatically segmented
to obtain triangulated surfaces of the proximal femur and innominate bone with the point-wise cor-
respondences using the ASM-based bone segmentation method (Chapter 3). On the other hand, T2
map manual delineations of the acetabular and femoral cartilage plates were rigidly aligned to the
corresponding 3D SPACE images. The spatial statistics and extents of the individual partitioned re-
gions from these propagated manual segmentations were determined using surface registration with
the contoured regions being extracted from the propagated T2 maps as scalar fields using a closed
form registration algorithm (Gower 1975). The regional scalar fields were then superimposed to the
segmented bone surfaces and averaged to obtain the partition map of maximum likelihood for each
subregion, which is used to segment the individual subregions of the cartilages.

In this chapter, the trained cartilage partition maps of the femoral and acetabular cartilage plates
are used to further partition automatic segmentation volumes from TrueFISP images into 12 clinically-
defined subregions. As the cartilage coverage of manual segmentations from TrueFISP images (see
Chapter 5) is different from manual delineations of SPRI T2 mapping scans and the partitioned in-
ferior regions of both cartilage plates in T2 mapping delineations are highly inconsistent, only seven
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high-confidence cartilage regions at the weight-bearing regions are investigated, which included the
anterior-superior (AceAntSupFossa), mid-superior (AceSupLat) and posterior-superior (AcePostSup-
Fossa) zones of the acetabular cartilage plate, and the anterior-superior (FemSupAntFovea), mid-
superior-anterior (FemSupNeckAnt), mid-superior-posterior (FemSupNeckPost) and posterior-superior
(FemSupPostFovea) zones of the femoral cartilage plate.

For all these seven subregions, cartilage volume and thicknessmeasurements are both performed in
subregional analyses of automatic cartilage segmentations from 46 TrueFISP images. The significance
of differences in thickness measurements for various subregions of each individual cartilage plate is
investigated using one-way ANOVA analyses followed by Tukey's honestly significant difference
(HSD) tests.

6.3 Results

6.3.1 Quantitative analyses on TrueFISP images

Quantitative analyses (i.e., volume, thickness and subregional analyses) were performed using auto-
matic segmentations of the individual femoral and acetabular cartilages obtained from 46 3DTrueFISP
images using the proposed graph-based segmentation scheme (see in Chapter 5). Although there was
no ground truth available for direct validation of these cartilage volume and thickness measurements,
the morphological data obtained from the related manual cartilage segmentations were considered as
ground truth for validation of the volume and thickness measurements.

Cartilage volume

The mean volumes for manual and automatic segmentations of the combined cartilage within the hip
joint from all TrueFISP examinations of 46 subjects were 9572 and 9182 mm3. For each individual
cartilage plate, the mean volumes of manual and automatic segmentations were 6354 and 6018 mm3

for the femoral cartilage, and 3218 and 3164 mm3 for the acetabular cartilage.

There were strong positive correlations between manual and automatic segmentation volumes for
the combined (Pearson's correlation coefficient r = 0.92, p < 0.001), femoral (r = 0.86, p <

0.001) and acetabular (r = 0.92, p < 0.001) cartilages (Figure 6.4a-6.4e). From the Bland-Altman
analyses in Figure 6.4b-6.4f, the automated data for the combined, femoral and acetabular cartilage
volumes had a mean (± SD) volume difference error of -3.03% (± 9.05), -3.97% (± 11.46) and -
0.45% (± 10.72) indicating a slight under-segmentation of the femoral cartilage volume and thereby
the combined cartilage volume.

Cartilage thickness

Figure 6.5a illustrates the average thickness maps for the femoral and acetabular cartilage plates ob-
tained from automatic segmentations of 3D TrueFISP images in 46 subjects. Compared to Figure 5.3b,
the absolute thickness difference maps against manual cartilage segmentations demonstrate highly
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(c) (d)

(e) (f)

Figure 6.4: Comparative analyses between automatic and manual cartilage volume data:(left) scatter
plots with linear regression lines and (right) Bland-Altman plots of volume segmentations for the
(a, b) combined, (c, d) femoral and (e, f) acetabular cartilages. Segmentations of the combined and
individual femoral and acetabular cartilage volumes were from all TrueFISP images of 46 subjects.

consistent thickness patterns (i.e., the absolute difference < 0.2 mm) within the majority of the artic-
ulating surfaces of the femoral and acetabular plates (see Figure 6.5b). However, the cartilage areas
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near the fovea of the femoral head and the fossa of the acetabulumwere mis-classified with an absolute
thickness difference above 0.4 mm, which correspond to the attachment site of the ligamentum teres;
this anatomically variable intra-capsular ligament has a similar signal intensity profile to the adjacent
cartilage tissue.

A quantitative comparison of the computed average cartilage thickness maps (Figure 6.5) was per-
formed within the majority of the articulating surfaces for both cartilage plates (defined as the vertices
with probabilities of having the cartilage tissue > 90% in the articular cartilage model, see Figure 5.3a).
Within the defined ROI, the thickness statistics were in a good agreement between manual and au-
tomatic segmentations for both cartilage plates with a mean (± SD) thickness of 1.53 mm (± 0.32)
and 1.51 mm (± 0.32) for the femoral plate, and of 1.40 mm (± 0.25) and 1.40 mm (± 0.24) for the
acetabular plate (Table 6.1). The absolute mean differences between the manual and automatic thick-
ness values were 0.13 mm (± 0.12) and 0.09 mm (± 0.06) for the femoral and acetabular cartilages,
respectively. Strong positive correlations were found between manual and automatic thickness maps
within the ROI for the femoral (r = 0.85) and acetabular (r = 0.89) thickness distribution.

Subregional analyses

An example of automatic segmentation volumes in various subregions for the acetabular and femoral
cartilage plates are provided in Figure 6.6. Table 6.2 summarizes subregional quantitative results of
volume and thickness measurements for all seven clinically-defined partitions at the weight-bearing
regions of the acetabular and femoral cartilage plate using automatic cartilage segmentations from the
3D TrueFISP dataset. For the acetabular cartilage plate, the anterior-superior subregion (AceAntSup-
Fossa) was found to have the largest cartilage volume (an average volume of 869.82 mm3) and the
thickest cartilage layer (an average thickness of 1.18 mm), which is sequentially followed by the
mid-superior (AceSupLat) (an average volume: 632.66 mm3, an average thickness: 1.13 mm) and
posterior-superior (AcePostSupFossa) subregions (an average volume: 581.52 mm3, an average thick-
ness: 0.93 mm). The anterior-superior (FemSupAntFovea) zone of the femoral cartilage plate had a
larger cartilage volume size (1906.29 ± 357.49 mm3) and a thicker cartilage layer (1.30 ± 0.12 mm)
than the other three subregions. Due to further subdivisions of the mid-superior subregion (i.e., mid-
superior-anterior and mid-superior-posterior), the volumes for these two subdivided partitions, Fem-
SupNeckAnt and FemSupNeckPost, were relatively small with average sizes of 539.99 and 669.73
mm3, respectively. An average thickness difference of 0.2 mm was found between these two subre-
gions of FemSupNeckAnt (1.26 ± 0.20 mm) and FemSupNeckPost (1.04 ± 0.17 mm). The cartilage
layer at the posterior-superior (FemSupPostFovea) subregion was thinnest among these four femoral
subregions, which had an average thickness of 0.95 mm (± 0.12).

Figure 6.7 shows boxplots for average cartilage thickness values for all 46 cases at different sub-
regions of the acetabular and femoral cartilage plates measured from automatic segmentations of uni-
lateral TrueFISP images. Significant differences were found when comparing the partitioned subre-
gions for the individual femoral (one-way ANOVA, F = 52.58, p < 0.001) and acetabular (one-way
ANOVA, F = 21.73, p < 0.001) cartilage plate. The anterior-superior subregion (Region-4 in Fig-
ure 6.7a) had a significantly thinner cartilage layer (Tukey's HSD p < 0.001) than the other two
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Figure 6.5: Cartilage thickness maps:(a) average thickness with color scale (0 - 2.5 mm) for automatic
segmentations and (b) absolute thickness difference against manual segmentations from the set of 46
TrueFISP images with color scale (0 - 1.0 mm) for the femoral and acetabular cartilage.

subregions (Region-2 and Region-3 in Figure 6.7a) of the acetabular cartilage plate. For the femoral
cartilage plate, the cartilage layer at both the anterior-superior and mid-superior-anterior partitions
(Region-2 and Region-3a in Figure 6.7b) was significantly thicker (Tukey's HSD, p < 0.001) than
that of the mid-superior-posterior and posterior-superior partitions (Region-3b and Region-4 in Fig-
ure 6.7b). Moreover, the cartilage thickness at the mid-superior-posterior subregion was found to be
significantly larger (Tukey's HSD, p < 0.001) than that of the posterior-superior subregion.

6.3.2 Reproducibility: DESS and SPACE images

To investigate the reproducibility of our proposed cartilage segmentation and quantitative analysis
scheme in various MR sequences and relatively lower image resolution quantitative (volume, thick-
ness) measures for unilateral DESS and SPACE scans of the same subject were calculated using the
related automatic segmentation volumes of the femoral and acetabular cartilages. Figure 6.8 provides
a qualitative comparison of automatic segmentations from different MR examinations of the same
subject using TrueFISP, DESS and SPACE sequences, which demonstrates similar delineation re-
sults of the individual femoral and acetabular cartilage plates for these MR scans. However, due to a
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Table 6.1: Cartilage thickness (mm) statistics within the majority of the articulating surfaces for the
femoral and acetabular cartilage plates obtained from manual and automatic segmentations of all 46
TrueFISP images.

Femoral Acetabular
Manual Automatic Difference∗ Manual Automatic Difference∗

Mean 1.530 1.509 -0.020 1.400 1.396 -0.004
SD 0.320 0.322 0.177 0.249 0.238 0.112
Min 0.875 0.845 -0.573 0.970 1.008 -0.248
Max 2.377 2.413 0.671 2.190 2.432 0.291
∗The thickness difference is calculated at each vertex as the value of the automatic
thickness subtracted from the manual measure.

lower resolution of 0.625 mm and 0.75 mm used for DESS and SPACE sequences, unfilled gaps were
observed in 3D visualizations of segmentation volumes for these two sequences, particularly for 3D
SPACE images and for the relatively thinner cartilage partitions, e.g., the acetabular posterior-superior
and femoral posterior-superior subregions (see Figure 6.9).

Figure 6.10 illustrates a case-by-case comparison in volume measurements of the cartilage based
on automatic segmentations of the combined, femoral and acetabular cartilages using three different
MR sequences in the dataset of 18 subjects, wheremanual cartilage segmentation volumes of TrueFISP
images were treated as the ground truth. For each cartilage partition, a similar trend across all 18
cases was observed, while in some cases, cartilage volumes were likely to be under-estimated using
the SPACE sequence, e.g., case 5, 7 and 13, and to be over-estimated using the DESS sequence,
e.g., case 10 and 18, in Figure 6.10. Similar findings were also observed in Figure 6.11, where, in
the computed average thickness maps for the individual femoral and acetabular cartilage plates, the
measured cartilage thickness values were comparatively largest using the DESS sequence and smallest
using the SPACE sequence (see dashed circles in Figure 6.11).

6.4 Discussion

In this chapter, we have presented the work based on automatic segmentations of the individual
femoral and acetabular cartilage plates within the hip joint, which aimed to deliver reliable and re-
producible morphometric data in terms of the volume and thickness of the hip joint cartilage. The
quantitative measurements obtained from automatic cartilage segmentation volumes in the TrueFISP
MR dataset showed a good agreement with the results obtained using the corresponding manual seg-
mentations. The Pearson's correlation coefficients were both over 0.86 for volume measurements of
individual femoral and acetabular cartilage plates, and the absolute mean thickness differences of 0.13
and 0.09 mm within the majority of the articulating surfaces for the femoral and acetabular cartilage,
respectively.

In the right-side hip joints from 46 healthy male subjects, the mean volumes of (9572, 6354, 3218)
mm3 and (9182, 6018, 3164) mm3 were obtained from manual and automatic segmentations for the
(combined, femoral, acetabular) cartilage plates. These are in general agreement with the findings
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Figure 6.6: Example 3D visualization of the segmented cartilage volumes with the partitioned regions
(see Figure 6.2a) for the individual (a) acetabular and (b) femoral cartilage plates obtained from a 3D
high-resolution TrueFISP image.

from the previous work using the state-of-the-art manual techniques despite study design differences
in term of MR imaging protocols, sample sizes and disease state of participants. Zhai et al. (2005)
reported a mean femoral head cartilage volume of 5.9 ml (± 1.0) manually measured from 79 male
subjects and 4.7 ml (± 0.8) from 72 female subjects. In the recent work of Li et al. (2008), the average
cartilage volumes were found to be 8106.3± 2370.9mm3, 3966.7± 1284.2mm3 and 4139.7± 1212.7
mm3 respectively for the combined, femoral and acetabular cartilages.

For quantitative cartilage thickness measurements, high consistency was observed between the
average thickness maps of manual and automatic cartilage segmentations within the majority of the
articulating surfaces (see Figure 6.5). Within the defined ROI of cartilage tissue being present with
high confidence (i.e., the probability > 90%), the average manual and automatic cartilage thickness
measures were (1.53, 1.51) mm for the femoral and (1.40, 1.40) mm for the acetabular plate, where
the mean absolute difference in cartilage thickness between manual and automated segmentations was
∼0.1 mm for both cartilage plates. In comparison, Li et al. (2008) reported that the cartilage thickness
distribution (mean± SD) was 0.93± 0.15 mm for the femoral and 1.09± 0.13 mm for the acetabular
plates semi-automatically determined from 2D MEDIC MR images. In 3D FLASH MR images from
26 adult patients with dysplastic hips, Mechlenburg et al. (2007) calculated the cartilage thickness
using three different manual measurement approaches reporting a mean thickness range of 1.18 –
1.78 mm for the femoral and 1.15 - 1.46 mm for the acetabular cartilage. Additionally, Cheng et al.
(2013) performed a simulation study on accuracy limits of cartilage thickness measurement using OA
patients and reported the biases between MR-based measured and model-based simulated thicknesses
within 0.12 mm.

From subregional quantitative analyses within the weight-bearing regions of the cartilage plates,
we observed that both anterior-superior subregions of the opposing acetabular and femoral cartilage
plates were covered by the thickest cartilage layer (1.18 ± 0.22 mm for the acetabular and 1.30 ±
0.12 mm for the femoral cartilage), which tallies with the common anatomical knowledge of regional
thickness variation for the acetabular and femoral cartilages (Fagerson 1998) (see Figure 2.2). Signif-
icant differences in the cartilage thickness were found between different subregions of the individual
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cartilage plate. For example, the cartilage thickness at the anterior-superior partition of the acetabular
cartilage plate was significantly larger than that at the posterior-superior partition. Between the two
partitions of the mid-superior region for the femoral cartilage plate, the mid-superior-anterior subre-
gion had a thicker cartilage layer than the mid-superior-posterior subregion (see Figure 6.7).

Currently, more advanced techniques have been developed for the knee joint allowing point-
wise intra- and inter-subject comparisons of the cartilage and further detect localized morphological
changes in the knee cartilage (Carballido-Gamio et al. 2008a;c; Guo et al. 2015; Williams et al. 2003).
For the hip joint, our preliminary work on subregional analyses of the hip joint cartilages showed great
potential to effectively detect focal cartilage defects, to elucidate spatial pattern of cartilage thinning
and to potentially identify subregions with increased rates of (and sensitivity to) cartilage loss in in-
tervention trials. Furthermore, these subregional analyses can also be used jointly with biochemical
MR imaging techniques (such as dGEMRIC, T1ρ, T2 and T2∗ mapping) allowing both morphological
and biochemical MR evaluation of the hip joint cartilages in a region-wise fashion (Carballido-Gamio
et al. 2008b; Subburaj et al. 2013). The SPRI dataset introduced in this chapter has also been used
in another concurrent work in our project by Chandra et al. (2012a), which validated the proposed
cartilage segmentation scheme to extract biochemical information of the hip joint cartilages from MR
T2 mapping images.

The current work has qualitatively demonstrated a good reproducibility with another two MR se-
quences (DESS and SPACE) featuring a lower image resolution. Promising consistency was observed
in quantitative volume and thickness measurements using automatic cartilage segmentations from the
paired TrueFISP, DESS and SPACE images (see Figure 6.10 and 6.11). However, due to significant
PVE affecting most cartilage voxels (particularly at the thinner regions of the highly curve cartilage
layer) in the latter two MR examinations to different degrees, the volume and thickness measure-
ment results showed slight over-estimation using the DESS sequence and under-estimation using the
SPACE sequence. Further improvements can be possibly made by incorporating advanced MR image
upsampling techniques such as super-resolution algorithms (Van Reeth et al. 2012). Nevertheless,
as reported in the work of hip cartilage T2 mapping assessment (Chandra et al. 2012a), automatic
cartilage volumes from 3D low-resolution SPACE images were sufficiently accurate to deliver good
agreement (a relative difference error < 10%) between manual and automatic analyses of T2 values.

There are a number of limitations in the present study. Quantitative analyses were performed on
MR images of the hip joint acquired from relatively young, healthy participants, which are similar
to the limitations of the proposed automatic cartilage segmentation method discussed in Chapter 5.
Future studies on individuals with a spectrum of hip joint pathologies (e.g., early or pre-OA) will be
required for a fuller evaluation of our current segmentation and quantitative analysis scheme for the
hip joint. Current quantitative analyses were successfully applied to three different MR sequences,
TrueFISP, DESS and SPACE, which had similar contrast characteristics ("dark" bones and bright car-
tilage and fluid) although a more detailed validation needs to be undertaken. More MR examinations
involving non-fat-suppressed sequences, lower-resolution routine clinical sequences (e.g., 2D or 3D
fast spin-echo) across different scanner field strength, should be also investigated and carefully vali-
dated. Clinically, the proposed thickness measurement is more likely to be applicable for the hip joint
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with the spherical-like femoral head, which could be in early and/or less severe OA conditions without
bony deformities of the femoral head. For the hip joint with the non-spherical femoral head such as
in more severe OA states, a more dedicated model for the femoral head, e.g., an ellipsoid model (Liu
et al. 2014), will be needed to reduce the potential measurement errors.

6.5 Conclusion

This chapter demonstrated the feasibility of extracting reliable and reproducible quantitative measure-
ments of the cartilage morphology from the automatically segmented cartilage volumes from high-
resolution MR images of the hip joint. A good agreement was achieved in the morphometric data of
volume and thickness measurements obtained from manual and automatic cartilage segmentations for
both the femoral and acetabular cartilage plates. This can be of great use for provision of morphomet-
ric data in large-scale research and clinical studies on morphological evaluation of hip joint cartilages,
without reliance of time- and expert-intensive manual methods. The subregional analyses have also
demonstrated significant morphological differences of the cartilage layer across different subregions.
This indicates the potential application of our method as an advanced surrogate measure allowing
small cartilage changes, e.g., focal cartilage lesions, to be captured for dedicated use in prospective
research and clinical studies on morphological evaluation of the hip joint cartilages related to hip OA.
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Table 6.2: Quantitative volume and thickness measurements of the partitioned subregions for the individual femoral and acetabular cartilage plates.

Region Cartilage Volume (mm3) Average Cartilage Thickness (mm)
ID Mean SD Min Max Mean SD Min Max

Acetabular Cartilage Plate
AceAntSupFossa 2 869.82 230.61 512.98 1518.74 1.18 0.22 0.81 1.65
AceSupLat 3 632.66 199.42 272.01 1129.77 1.13 0.22 0.72 1.49
AcePostSupFossa 4 581.52 161.15 301.13 972.22 0.93 0.13 0.59 1.17
Femoral Cartilage Plate
FemSupAntFovea 2 1906.29 357.49 1184.56 2710.41 1.30 0.12 1.06 1.59
FemSupNeckAnt 3a 539.99 119.80 285.09 789.72 1.26 0.20 0.88 1.76
FemSupNeckPost 3b 669.73 168.78 321.72 1162.03 1.04 0.17 0.74 1.55
FemSupPostFovea 4 858.82 239.78 407.23 1690.80 0.95 0.12 0.66 1.25
(Ant: Anterior, Sup: Superior, Post: Posterior, Lat: Lateral)
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Figure 6.7: Boxplots display the average thickness in each partitioned subregion of the individual (a)
acetabular and (b) femoral cartilage plates calculated from automatic segmentations of 46 TrueFISP
images. Asterisks indicate significant differences between the partitioned subregions.
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Figure 6.8: Example 2D axialMR slices with overlayed cartilage segmentation contours obtained from
MR examinations of case 11 using three different acquisition sequences: (a) TrueFISP, (b) DESS and
(c) SPACE.
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Figure 6.9: 3D visualizations of the (a) acetabular and (b) femoral cartilage volumes automatically
segmented from three different MR examinations of case 11: (from left to right) TrueFISP, DESS,
SPACE.
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Figure 6.10: Volume measurements of the (a) combined, (b) femoral and (c) acetabular cartilages for
each case obtained from automatic segmentations of TrueFISP, DESS and SPACE scans as well as
manual segmentations from TrueFISP images in the dataset of 18 subjects.
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Figure 6.11: Average thickness maps with color scale (0 - 2.5 mm) for automatic segmentations of the (a) femoral and (b) acetabular cartilage plates
obtained from manual or automatic segmentations of MR examinations in 18 volunteers: (from left to right) manual segmentations (ground truth),
TrueFISP, DESS, 3D SPACE.





7
GENERAL DISCUSSION AND CONCLUSION

Quantitative measurements of the bones and articular cartilages can provide useful morphometric data
from the large volume of complex MR data for potential use in research and clinical studies about
pathoanatomcial conditions such as early hip OA and FAI. Accurate detection and quantification of
structural changes in the bones and cartilages at an early stage may assist initiating appropriate therapy
and reducing subsequent irreversible damages to the articular cartilages and associated articulating
structures before the onset of hip OA.

The segmentation of bones and cartilages fromMR images is an essential prerequisite, which must
be accurate, reliable and reproducible, for subsequent quantitative measurements. However, this has
been difficult to perform previously for the hip joint because of anatomical (e.g., the deeply located
joint structure and very thin, highly spherical articular cartilage) and imaging (e.g., the limited image
resolution, complex tissue contrast and inhomogeneity in signal) challenges.

7.1 Key Contributions and Findings

This thesis has developed and validated several novel technologies in the proposed computer-aided
system (Figure 1.1) that demonstrate the clinical feasibility of automatic segmentation and quantifi-
cation of the osteochondral elements, i.e., the articulating bones and cartilages, from high-resolution
3D MR images of the hip joint.

This was achieved within two main aims:

1. To develop and evaluate a fully automated segmentation approachwith advanced image segmen-
tation techniques in order to deliver accurate and reproducible bone and cartilage segmentations
from high-resolution 3D MR images of the hip joint and;

2. To automatically extract reliable and reproducible morphometric data based on the segmented
subchondral bones and articular cartilages.

These two aims were accomplished in several stages (presented in Chapter 3-6):
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• Chapter 3 developed and evaluated automatic segmentation of the bone elements within the hip
joint region from high-resolution large FOVMR images using two state-of-the-art methods, i.e.,
the multi-atlas and ASM based algorithms (Aim 1.1);

• Chapter 4 automatically performed quantitative measurement and assessment (i.e., alpha an-
gles) of 3D bone morphology at the FHN junction of the proximal femur for potential use in
accurate detection and quantification of cam-type lesions (Aim 2.1);

• Chapter 5 developed a novel hybrid cartilage segmentation scheme, which allowed fully auto-
matic and reliable delineation of the individual femoral and acetabular cartilage plates fromMR
images acquired without continuous leg traction or the use of contrast agents (Aim 1.2);

• Chapter 6 performed reliable and reproducible quantitative measurements (i.e., volume, thick-
ness) of the segmented femoral and acetabular cartilages from MR images using three different
imaging sequences, i.e., TrueFISP, DESS and 3D SPACE (Aim 2.2). Subregional analyses of
quantitative measurements were also performed to investigate a morphological pattern of vol-
ume and thickness variation across different partitioned subregions for each cartilage plate.

The main findings are summarized below.

In Chapter 3, the multi-atlas and ASM based methods both proved to be effective and robust
achieving good segmentations of the femoral and innominate bones within the hip joint region from
high-resolution 3D nearly isotropic MR images (DESS and MEDIC), which were acquired from vol-
unteer subjects with varying FHN junction geometries. The results indicated accurate and robust
segmentation performance, including when cam lesions were present, which showed the capacity of
both methods for 3D morphometric analyses of cam-type deformities. Based on Hausdorff distance
metrics, the likely femoral and acetabular BCIs were well delineated using these methods, which both
achieved the average Hausdorff distance mostly < 0.5 mm (corresponding to the in-plane resolution
of 0.65 mm and 0.67 mm for MEDIC and DESS images). These likely BCI surfaces could be read-
ily used providing a reference frame for subsequent cartilage segmentation. Although the multi-atlas
method showed slight advantages in terms of DSC and MASD metrics regarding the accuracy per-
formance, the ASM-based approach was significantly more time-efficient than the multi-atlas method
(13 minutes versus 6 hours), which would be favourable for potential clinical utility (e.g., timeliness,
patient throughput).

The proposed 3D method for automatic measurement and assessment of the FHN junction (Chap-
ter 4) achieved strong correlations (Pearson's correlation coefficient r > 0.8, p < 0.01) between
manual and automatic alpha angle measures at both anterosuperior and anterior positions of the FHN
junction (where cam lesions often appear) from a set of 30 DESS images encompassing both hip joints.
The preliminary study on the reproducibility of the proposed method revealed a high consistency in
alpha angle measures across different positions within the upper anterior quadrant of the FHN junction
obtained from bilateral DESS images and unilateral TrueFISP images.
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A novel hybrid cartilage segmentation scheme (Chapter 5) was developed based on an improved
multi-object multi-surface graph search framework with a novel integration of the arc-weighted graph
representation and varying surface feasibility constraints learned from prior knowledge of the cartilage
morphology. The proposed method successfully segmented the individual cartilage plates from MR
images with weak or no separation between cartilage boundaries and provided an overall high level of
validity and reliability of automated segmentation of the femoral and acetabular cartilage volumes in
comparison with benchmark manual segmentations, which had mean DSC values of (0.81, 0.77, 0.73)
for segmentation of (combined, femoral, acetabular) cartilage volumes in the validation dataset of 46
high-resolution TrueFISP images. Moreover, compared with the multi-atlas-based method (state-of-
the-art), this scheme showed comparative robustness for MR images with poor image quality, partic-
ularly when there was low or no tissue contrast for the BCIs and cartilage-synovial fluid interfaces.

In Chapter 6, a very good agreement was obtained for both volume and thicknessmeasurements be-
tween automatic andmanual segmentations of the femoral and acetabular cartilage plates in the dataset
of 46 TrueFISP images. In subregional analyses of each individual cartilage plate, the anterior-superior
subregion was found having the thickest cartilage layer, which tallies with common knowledge of
regional thickness variation for the femoral and acetabular cartilages (Fagerson 1998). Significant
differences in the cartilage thickness were found across different subregions of the individual carti-
lage plate, which indicated the significance of subregional morphological analyses that may improve
the sensitivity of cartilage thickness measurement and allow small cartilage changes to be captured.
Furthermore, even when partial volume effects were pronounced, moderate reproducibility was nev-
ertheless obtained for the proposed volume and thickness measurements based on automatic cartilage
segmentations from high-resolution TrueFISP, low-resolution DESS and low-resolution 3D SPACE
examinations of the same participant.

7.2 Implications of Findings

The innovative developments presented in this thesis provide a series of effective tools to perform
quantitative assessment of the osteochondral elements (e.g., the subchondral bones, articular carti-
lages) within the hip joint from high-resolution 3D MR images. These approaches deliver reliable
and reproducible morphometric data of these joint structures of interest without reliance of time- and
expertise-intensive manual methods, which have great potential to be used in large-scale research and
clinical studies on pathoanatomical conditions such as early hip OA and FAI. Additionally, these al-
gorithms with an overall good level of reliability, robustness and time-efficiency can be favourably
implemented to the software platform of MR systems for potential clinical utility (e.g., timeliness,
patient throughput).

The preliminary evaluation on automatic quantification of 3D bone morphology at the FHN junc-
tion has demonstrated the feasibility to accurately locate the epicenter of a cam lesion and quantify the
severity of cam-type deformities from MR images of the hip joint (Figure 4.9). This may therefore
assist initiating appropriate therapy for cam-type FAI and predicting the subsequent cartilage damage
potentially leading to the onset of hip OA (Beaulé et al. 2012). As there is limited consensus on al-
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pha angle measures from 2D plain radiographs and reformatted MR radial views (Clohisy et al. 2009;
Meyer et al. 2006; Sutter et al. 2012), our method based on 3D reconstructions of the proximal femur
offers great advantages in providing 360◦ alpha angle measurements for detecting and characterizing
the variable presentations and locations of cam lesions on a patient-specific basis. Moreover, the pro-
posed ASM-based bone segmentation method with fast, accurate and robust performance, including
when cam lesions were present, lays the foundation to automate this quantification process, which
enables its application in prospective large-scale research and clinical studies on cam-type FAI.

The developed hybrid cartilage segmentation schemewill be of great use for providing quantitative
measures of the cartilage morphology in prospective large-scale research and clinical investigations
about hip OA. These quantitative measurements based on automatic cartilage segmentations can be
comparable to the results obtained from the segmentation data using time-consuming and expert-
intensive manual approaches, as presented in Chapter 6. The subregional analyses of the cartilage
morphology deliver advanced surrogate measures to detect small changes of the cartilage initialized
in independent subregions, particularly within the weight-bearing region. These partitioned subregion
volumes of the cartilage can automatically offer the extracted ROIs for biochemical evaluation using
advanced MR technologies such as dGEMRIC (Siversson et al. 2014), T2 mapping (Chandra et al.
2015b; Ho et al. 2014), T1ρ (Rakhra et al. 2012). Ideally, these developments can greatly help to
obtain a thorough morphological and biochemical patterns of cartilage degeneration within the hip
joint, which is significantly important for diagnosis and intervention of hip OA at a very early stage.

7.3 Limitations of the Study

In this thesis, there are several limitations mainly around four aspects:

1. Clinical Application: The evaluation of the developed bone and cartilage segmentation methods
was based on high-resolution 3 T MR images of the hip joint. In order to allow the prospective
clinical application, a fuller evaluation of the current automated segmentation framework is re-
quired on a larger dataset of MR images from lower-resolution routine clinical sequences (e.g.,
2D or 3D FSE, SPGR) across different scanner field strengths (e.g., 1.5 T), imaging positioning,
image sequences and in-plane resolutions. The current framework demonstrated a promising re-
producibility in lower-resolution DESS (in-plane spacing: 0.63 mm, slice thickness: 0.70 mm)
and SPACE (in-plane spacing: 0.75, slice thickness 0.90) images with a good consistency of
the obtained quantitative volume and thickness measurements in Chapter 6 although a more de-
tailed validation needs to be undertaken.

2. Algorithm Generalization: The proposed bone segmentation scheme was developed within the
framework of a water excited or fat suppressed MR sequence with 'dark' bones and bright car-
tilage and fluid. Our automated approach has been successfully transferred to water excitation
DESS, MEDIC, fat-suppressed SPACE images with similar contrast characteristics, although
non-fat-suppressed MR sequences need to be further evaluated with certain adjustments to the
segmentation algorithms.
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3. Demographics: The training database for creation of bone SSMs in Chapter 3 was restricted
to male cases. Consequently, this affected the performance of the SSM to robustly describe
the anatomical variation among female subjects especially for the (irregular) innominate bone
structure. However, this factor may have less impact on segmentation accuracy of the proximal
femur and subsequent quantitative assessment of cam-type lesions. A larger training dataset,
possibly with specific male and female models, will be necessary to better encode shape varia-
tion and handle different anatomical bone structures.

4. Cartilage Pathology: The validation dataset of TrueFISP images in Chapter 5 was obtained
from relatively young, healthy participants. Although a variety of the FHN junction geometries
(including very larger alpha angles> 70◦) was included in this dataset, no subject was clinically
diagnosed with cartilage degeneration conditions. A comprehensive validation on symptomatic
patients with a wide spectrum of the hip joint pathology including hip OA with varying degrees
of severity is required before a wide employment in the clinical setting is possible. Nevertheless
our approach is likely to be applicable for the hip joint in early and/or less severe OA conditions.

7.4 Opportunities and Future Directions

7.4.1 Bone and cartilage segmentation

The training process of the SSM and articular cartilagemodel can be improved by incorporating a large
and targeted demographic (e.g., male and female, different age groups). This is important because of
the inherent anatomical variety in the bones and cartilages of the hip joint between males and females,
subjects in different age groups.

More advanced preprocessing techniques can be incorporated into the current segmentation frame-
work in order to improve the image quality and handle various MR artefacts for the later automatic
segmentation process. As significant PVE affecting most cartilage voxels is the primary concern about
adapting our methods to low-resolution routine clinical scans, advanced image upsampling techniques
such as super-resolution algorithms (Van Reeth et al. 2012) can be explored in the future. Additionally,
a spectrum of techniques focusing on contrast enhancement and denoising can be also investigated.

Future improvements to the cartilage segmentation method can be made to minimize segmentation
errors that were obviously observed near the femoral fovea and acetabular fossa or at other periph-
eral articulating regions outside the weight-bearing areas (Figure 5.7). Due to the anatomical variety
(e.g., different location and appearance) of the femoral fovea, the extraction of BCI surfaces can be
further improved with some particular refinement steps to automatically locate the femoral fovea and
acetabular fossa based on the joint morphology and other image-based features. More sophisticated
classification methods such as Markov random field (MRF) techniques (Lee et al. 2011; Park et al.
2013), can be used to better define the coverage of the BCI surfaces and handle the peripheral regions
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with very thin cartilage and insufficient tissue contrast.

7.4.2 Quantitative analysis

More quantitativemeasurements such as the FHN offset (Tannast et al. 2007), triangular index (Gosvig
et al. 2007) and 3D head-neck ratios (Masjedi et al. 2013b) can be incorporated into the current quanti-
tative assessment scheme for a thorough and reliable evaluation of 3D bonemorphology of the femoral
head and neck. Another future research area can involve the evaluation of the abnormal bonemorphol-
ogy for the hip joint with pincer-type FAI to detect and quantify the overcoverage of the acetabulum
since accurate 3D reconstruction of the innominate bone can be automatically obtained from MR im-
ages using our developed method.

With current biochemical MR techniques, there are possibilities to perform a comprehensive as-
sessment of the hip joint cartilages in both morphological and biochemical ways, which may assist
earlier detection of cartilage degenerative conditions. This has been initially investigated in another
concurrent work in our project by Chandra et al. (2015b) for validating the capability of our segmen-
tation scheme to automatically extract T2 mapping information across subregions of the femoral and
acetabular cartilages. Similarly, more applications can be made to dGEMRIC and other biochemical
MR imaging techniques.

Another obvious area to pursue is to investigate the clinical value of these results (volume, thick-
ness, subregional analyses) by correlating them to health status, progression or other clinical findings.
This can also demonstrate the applicability of the proposed automatic framework for use in prospective
large-scale cross-sectional and longitudinal studies on hip OA.

7.5 Conclusion

In summary, this thesis presents an innovative computer-aided system involving a series of techno-
logical developments for automatic segmentation and quantitative assessment of the osteochondral
elements within the hip joint fromMR images. The developed algorithms provide automatic segmen-
tations of the bones and cartilages with an overall high level of validity and reliability, in comparisons
with benchmark manual segmentations. To our best knowledge, it is the first method for automatic and
reliable segmentation of the individual femoral and acetabular cartilage plates fromMR images despite
weak or no separation between cartilage boundaries. The obtained segmentations were successfully
used in quantitative measurements of the bone and cartilage morphology, which provide reliable and
reproducible morphometric data allowing small structural changes of the bone and cartilage to be cap-
tured. The findings of this thesis provide great potential for dedicated use in prospective large-scale
research and clinical studies focusing on morphometric evaluations of the hip joint in pathoanatomical
conditions such as early OA and FAI.
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