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Abstract 21 

Interest in a sustainable alternative to fossil fuels has recently intensified as the effects of rising oil 22 

costs and dangers of increasing CO2 levels are becoming more apparent. Microalgae-derived 23 

biodiesel provides a promising alternative, as theoretical calculations of areal microalgal oil 24 

production are at least 10 to 20-fold greater than any other biofuel crop. Importantly, microalgae 25 

cultivation can achieved without competing with precious arable land or rainforests and freshwater 26 

resources. At present, large-scale microalgal oil production is not economically viable, and many 27 

technical and biological barriers still need to be overcome in order to improve lipid productivity and 28 

reduce cost of production. The main objective of this thesis was to improve microalgal lipid 29 

productivity and gain a deeper understanding of the molecular mechanisms behind lipid 30 

biosynthesis.  31 

In the first part of the present work, numerous microalgal strains were collected from coastal water 32 

in South East Queensland, Australia. After isolation of pure strains, the fastest growing algae were 33 

compared to each other using a specially developed standardised lipid induction assay. This assay 34 

combined rapid exponential growth with a nutrient starvation phase to induce lipid biosynthesis, a 35 

survival mechanism of microalgae under adverse conditions. Based on their lipid productivity and 36 

fatty acid profile, several strains, including Nannochloropsis sp. BR2 and several Tetraselmis sp,, 37 

were identified as potential feedstock cultures for biodiesel production.   38 

As the identified cultures can be considered as undomesticated, one method of further increasing 39 

algal lipid productivity is via mutation and selection of high-lipid yielding algal strains. Instead of 40 

using a transgenic approach, this research used adaptive evolution methods, incorporating 41 

mutagenesis and high-throughput selection to select for high-lipid yielding algal strains. UV-C and 42 

different laser beams were used as mutagens, followed by a selection method encompassing flow 43 

cytometry and microplate readers to effectively select individual cells with high lipid contents, but 44 

also uncompromised growth. After several generations of mutation and selection, higher lipid 45 

accumulation potential was observed in several strains.  46 

This research also focused on understanding the underlying mechanisms of nitrogen-starved lipid 47 

induction in Tetraselmis sp. M8 through various growth phases. Transcriptional profiling using 48 

RNA-Seq and quantitative real-time PCR analysis of this previously unsequenced genus, combined 49 

with physiological measurements after nutrient starvation, revealed that early lipid accumulation 50 

was predominately due to a reduced fatty acid degradation rate, while the rate of lipid biosynthesis 51 

remained unchanged. At 48 h onwards however, the expression of lipid biosynthesis genes was 52 
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significantly upregulated, indicating lipid accumulation was now an effect of active triacylglyceride 53 

(TAG) synthesis. This first report on the molecular mechanisms of lipid accumulation in 54 

Tetraselmis sp. identified potential bottlenecks and target genes for metabolic engineering to 55 

maximise lipid accumulation in microalgae. Apart from strain improvement, culturing and lipid 56 

induction techniques offer further scope to optimise lipid productivity. Current efforts in the 57 

development of cost-effective harvesting and algal oil extraction procedures may further position 58 

microalgae as a significant feedstock for economical biodiesel production.  59 

  60 
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DMSO – dimethyl sulfoxide 383 

DNA – deoxyribonucleic acid 384 

DW – dry weight 385 

ECH – enoyl-CoA hydratase 386 
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EMS – ethyl methane sulfonate 387 

ENR – enoyl-ACP reductase 388 

EPA – eicosapentaenoic acid 389 

FA – fatty acid 390 

FACS – fluorescence-assisted cell sorting 391 

FAME – fatty acid methyl acid 392 

FAT – Acyl-ACP thioesterase 393 

FS – fluorescence signal 394 

GC/MS – gas chromatography/mass spectrometry 395 

GHG – green house gas 396 

GK – glycerol-3-phosphate 397 

GM – genetically modified 398 

GO – Gene ontology 399 
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HACDH – hydroxyl-CoA dehydrogenase 401 
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KAR – 3-ketoacyl-ACP reductase 403 

KAS – 3-ketoacyl-ACP synthase 404 

KAT – ketoacyl-CoA thiolase 405 

LCAS – LC-PUFA acyl-Coenzyme A synthetase 406 

LC-PUFA – long chain polyunsaturated fatty acid 407 

LD – lethal dosage 408 

LHC – light harvesting complex 409 



22 

 

LPAAT – lyso-phosphantidic acid acyltransferase 410 

LPAT – lyso-phosphantidylcholine acyltransferase 411 

MAT – malonyl-CCoA:ACP transacylase 412 

MNU – N-methyl-N-nitrosourea 413 

mRNA – messenger ribonucleic acid 414 

MUFA – monounsaturated fatty acid 415 

N – nitrogen 416 

NCBI – National Center for Biotechnology Information 417 

NO3- - nitrate 418 

NTG – nitrosomethylguanidine 419 

OD – optical density 420 

P – phosphate 421 

PCR – polymerase chain reaction 422 

PDAT – phospholipid:diacylglycerol acyltransferase 423 

PDH – pyruvate dehydrogenase complex 424 

PO4
3- - phosphate 425 
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PSII – photosystem II 427 
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qRT-PCR – quantitative reverse transcriptase polymerase chain reaction 429 

RNA – ribonucleic acid 430 

RNA-Seq – RNA-sequencing 431 
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SW- seawater 433 

TAG – triacylglyceride  434 

TCA – tricaboxylic acid 435 

TFA – total fatty acid 436 

TLC – total lipid content 437 

UV-C – ultraviolet–C 438 

Wt – wildtype  439 

  440 



24 

 

Chapter 1: General Introduction 441 

This chapter presents the introduction of this thesis, whose general focus is the improvement 442 

of microalgal lipid biosynthesis for the purpose of biodiesel production. The three main aims of this 443 

thesis will also be introduced, along with the background and literature review for each aim, which 444 

have been published as peer-reviewed articles attached to this paper.  445 

Introduction 446 

Interest in a sustainable source of biofuel has recently intensified as the demand for petroleum-447 

based fuel and concerns about climate change continue to increase. While traditional crop-based 448 

seed plants are increasingly being used (Doan and Obbard, 2011), microalgae are now widely 449 

regarded as a promising source of biofuel due to their high lipid productivity, environmental 450 

benefits and ability to grow on non-arable land (Chisti, 2007,Malcata, 2011,Schenk et al., 2008). 451 

Theoretically, microalgae have a higher productivity per unit area which allows them to potentially 452 

produce 10 to 20 times more lipids (liter/ha) than palm oil (Ahmad et al., 2011), corn and soybean 453 

(Chisti, 2008,Gouveia and Oliveria, 2009,Hu et al., 2008). These can then be converted into 454 

biodiesel via transesterification. Nevertheless, the microalgae biodiesel industry is still in its infancy 455 

and there are still many technical and biological barriers that prevent large-scale biodiesel 456 

production. To date, the price of producing microalgal biodiesel is still more expensive than palm 457 

oil or petrodiesel (Dermirbas and Dermirbas, 2011), and there is still much room for improvement 458 

in every aspect of production in order for the price of microalgal biodiesel to be competitive. To 459 

that end, the main goal of this thesis is to improve microalgal lipid productivity and gain a 460 

deeper understanding into the molecular mechanisms behind microalgal lipid biosynthesis. 461 

The main aims of this PhD that will achieve this goal are: 462 

 463 

Aim 1: Collect, isolate and screen for high lipid productivity microalgae species. The use to a 464 

suitable, high lipid productivity microalgae strain is the basis of successful microalgal lipid 465 

production. While many studies have already identified strains with potential (Araujo et al, 2011, 466 

Rodolfi et al., 2008), the use of locally isolated microalgae strains over foreign strains has its 467 

advantages. Microalgal strains suitable for lipid and biodiesel production can be obtained from local 468 

waterways using the right collection, isolation and screening techniques. The chapter for this aim 469 

will present a successful method for the collection, isolation and screening of microalgae from local 470 

South East Queensland waterways to produce strains that have the comparatively best traits for 471 
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microalgal lipid production. This aim will also identify microalgal strains most suitable for 472 

subsequent Aims 2 & 3. 473 

 474 

Related literature reviews: 475 

• Lim, D. K. Y., Schenk, P. M. Microalgae selection and improvement: GM vs Non-GM. 476 

Submitted for publication (2014).  477 

• Lim, D. K. Y., Sharma, K., Garg, S., Schenk, P. M. The race for highly productive 478 

microalgae strains. Biofuels (2010) 1(6), 835-837. 479 

 480 

Related Chapter: Chapter 2 481 

 482 

Aim 2: Enhance microalgal lipid productivity via non-GM methods: Isolation of high-lipid 483 

improved strains following repeated UV-C mutagenesis and high-throughput growth 484 

selection. Non-GM methods of strain improvement do not require background genomic information 485 

or a complex transformation system in order to select for a desired trait. The mutation and selection 486 

to generate high-lipid producing mutants is desirable in situations where a wild-type strain 487 

possesses all the desirable traits for large-scale production (high growth rate, ease of harvest, 488 

robustness) except for very high-lipid content. This aim will present a mutation-selection program 489 

involving the use of induced mutagenesis and high throughput selection with the goal of producing 490 

improved Tetraselmis suecica strains with increased lipid productivity.  491 

 492 

Related literature reviews: 493 

• Lim, D. K. Y., Schenk, P. M. Microalgae selection and improvement: GM vs Non-GM. 494 

Submitted for publication (2014).  495 

 496 

Related chapters: Chapter 3 497 

 498 

Aim 3: Investigate the molecular mechanism of Tetraselmis sp. lipid production using a 499 

transcriptional profiling approach. Before genetic engineering of an organism can proceed, key 500 

related pathways and target genes must be mapped and identified. Work for this aim used next-501 
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generation sequencing to generate the transcriptome of Tetraselmis sp. M8 to map key lipid-related 502 

pathways during early-stationary phase. The expression of these pathways were then further 503 

analysed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) over 504 

multiple time points to gain an understanding into lipid production in Tetraselmis sp. and to identify 505 

potential bottlenecks and targets for genetic engineering. 506 

 507 

Related literature reviews: 508 

• Lim, D. K. Y., Schenk, P. M. Microalgae selection and improvement: GM vs Non-GM. 509 

Submitted for publication (2014).  510 

• Schuhmann, H., Lim, D. K. Y., Schenk, P. M. Perspectives on metabolic engineering for 511 

increase lipid contents in microalgae. Biofuels (2012), 3(1), 71-86.  512 

 513 

Related chapters: Chapter 4 514 

 515 

This research project started with Aim 1, where the collection, screening and isolation of local 516 

microalgae species identified the best strains for microalgae lipid production, as well as candidate 517 

strains for the rest of the project. This was followed up by Aim 2, which enhanced the lipid 518 

productivity of the candidate strain, Tetraselmis suecica, using repeated-UV mutagenesis and high-519 

throughput selection. While the objective of Aim 2 was the improvement of lipid productivity, the 520 

goal of Aim 3 was to better understand the molecular mechanisms behind lipid production in 521 

Tetraselmis sp., a locally isolated strain from Aim 1. Both Aim 2 and Aim 3 used different 522 

microalgae strains that shared the same genus. This was done to facilitate possible future work in 523 

the lab that would utilise information and techniques developed in Aim 3 to better understand the 524 

molecular basis behind the improvements achieved in Aim 2. Tetraselmis seucica was an ideal 525 

candidate for Aim 2 as it was a strain that possessed all the desirable traits for large-scale 526 

production except high lipid content. This aim would therefore present a method of improving a 527 

naturally low lipid content strain. The reason for choosing Tetraselmis sp. M8 for gene expression 528 

profiling (Aim 3) during lipid induction was the fact that (1) it was a local strain that had not been 529 

characterised on a molecular basis, (2) it displayed dominance under outdoor growth conditions and 530 

merit as a promising culture for large-scale production, (3) it showed high lipid productivity and it 531 

was important to identify the underlying mechanisms, (4) it provided a reference strain for the 532 

Algae Biotechnology Laboratory at UQ 533 
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Literature Review 534 

The general background of this thesis and the literature pertaining to microalgae’ improvement 535 

through strain selection, including genetically-modified and non-genetically modified methods, 536 

have been reviewed in the attached article by Lim & Schenk (Submitted), “Microalgae selection 537 

and improvement: GM vs Non-GM” (Review paper 1). The article discusses the overarching 538 

impacts that selecting the right microalgal strain has on every level of microalgal biodiesel 539 

production, as well as key traits that microalgae should possess for successful biodiesel production. 540 

Suitable isolation and screening strategies are discussed, with an emphasis on isolating microalgae 541 

from local environments that are more acclimated to local conditions. Screening strategies focus on 542 

identifying key traits required for microalgal biodiesel production. Various non-GM and GM 543 

methods of improving microalgal lipid productivity, as well as their pros and cons were also 544 

discussed. Non-GM methods that were reviewed focused primarily on the various mutation-545 

selection programs that used induced mutagenesis followed by fluorescence-activated cells sorting 546 

(FACS) to select for high performing mutants. Current GM work on microalgae was also reviewed, 547 

discussing the available genomic, transcriptomic and genetic engineering work pertaining to 548 

microalgal lipid production.  549 

 550 

Aside from this overall literature review, more in-depth literature reviews were also published. 551 

Lim et al. (2010) “The race for highly productive microalgae strains” evaluated a key paper by 552 

Huerlimann et al. (2010) “Growth, lipid content, productivity, and fatty acid composition of 553 

tropical microalgae for scale-up production” (Review paper 2). The review analysed the effects of 554 

different growth media on lipid production and composition during different growth phases, as well 555 

as the methods used by Huerlimann et al. (2010) to carry out multiple strain comparisons. This 556 

review helped form a good template for Aim 1 by analysing the paper’s method of identifying 557 

suitable microalgae for biodiesel production, which incorporated cell densities, growth rates, dry 558 

weight, lipid contents and fatty acid composition. Finally, “Perspectives on metabolic engineering 559 

for increased lipid production” (Review paper 3) provides an in-depth review on Aim 3. It presents 560 

an overview of the triacylglyceride (TAG) metabolic pathways in microalgae, particularly the fatty 561 

acid (FA) synthesis, TAG synthesis and lipid catabolism pathways. Furthermore, it summarises the 562 

current knowledge about metabolic engineering, systems biology and genome-scale metabolic 563 

pathway modelling that form the background template for Aim 3.  564 
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Abstract 600 

 601 

Despite being established as a sustainable feedstock for biofuel production with tremendous 602 

potential, the microalgae biofuel industry still struggles to make large-scale production 603 

economically viable. An overriding aspect in microalgae biodiesel production is strain selection, as 604 

it affects nearly all stages of production. This chapter highlights the key traits that microalgae 605 

should possess for successful biodiesel production, as well as suitable isolation and selection 606 

strategies. It also highlights the various methods that are currently available for the biological 607 

improvement of microalgae strains.   608 

 609 

Introduction 610 

 611 

The use of microalgae as a sustainable feedstock for biofuel production has received much 612 

recent interest in an effort to confront depleting fuel reserves, global warming and climate change. 613 

Microalgae represent a renewable source of energy as they use photosynthesis to convert CO2, 614 

sunlight and water into energy that is stored as lipids and carbohydrates (e.g. starch). These can be 615 

converted into biofuels (biodiesel and bioethanol) with areal productivities that are significantly 616 

higher than traditional biofuel land crops, potentially without the use of precious arable land and 617 

freshwater [1, 2]. While the potential of microalgae as a sustainable energy source, particularly 618 

biodiesel has been well established, many technical and biological barriers prevent large-scale 619 

economically viable production of microalgal biodiesel. So far, microalgae cultivation facilities in 620 
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Australia (Dunaliella salina), USA (Haematococcus pluvialis), Israel (H. pluvialis) and China 621 

(Spirulina) produce high value products such as omega-3 oils and carotenoid, produce algae for 622 

their nutritional value, but not for biofuel [3]. This is because microalgae biofuel companies can 623 

currently only produce microalgae oil at a price that is more expensive than palm oil ($0.66/L) and 624 

that needs to be reduced to as low as $0.48/L to be competitive with petrodiesel [4, 5]. To achieve 625 

this, the microalgae biofuel industry must improve many technical and biological aspects of 626 

production.  627 

 628 

One of the most important biological aspects of microalgal biodiesel production is the 629 

species being used for production. Selection of a suitable species has downstream effects on nearly 630 

every level of production, including growth conditions (pH, CO2, light intensity, salinity), 631 

harvesting method, oil extraction and ultimately the quantity and quality of the biodiesel produced. 632 

The overarching importance and impact of the producer species has driven research into more 633 

sophisticated methods of selecting, evaluating and identifying microalgal species with suitable 634 

characteristics. Furthermore, recent years have seen tremendous interest in genetically-modified 635 

(GM) species as well as improvement of non-GM species for lipid production. This review 636 

discusses the various traits that are desirable for microalgal biofuel production with a focus on 637 

lipids as feedstock for biodiesel. It also highlights the importance of species selection and 638 

evaluation and the various GM and non-GM methods for improving lipid productivity for biofuel 639 

production.  640 

 641 

Collection, isolation and screening of microalgae for biodiesel production 642 

 643 

Collection and isolation of microalgae 644 

 645 

Microalgae are found in nearly all natural waters, be it freshwater, brackish water, or marine 646 

ecosystem. Nevertheless, collection of microalgae for biodiesel production must focus on locations 647 

with the greatest likelihood of providing strains that are suitable for biodiesel production in an 648 

outdoor setting. Firstly, microalgal species should be collected from the local area, or at least an 649 

area with similar climatic and ecological conditions as in the intended production area. This is 650 



31 

 

because native strains are likely to be already acclimatized to local conditions and have a 651 

competitive advantage over foreign species. Furthermore, the sampling should focus on the aquatic 652 

environments that are exposed to fluctuating and/or occasional adverse conditions such as tidal 653 

pools and estuaries. These locations naturally select for microalgae that are robust, fast-growing, 654 

and have survival mechanisms (e.g. accumulation of storage lipids) to cope with changing 655 

conditions [6]. This is likely to increase the chances of finding a strain that is most suitable for 656 

biodiesel production.  657 

 658 

After samples have been collected from the environment, individual microalgal strains can 659 

be isolated and purified using a range of techniques. Traditional techniques such as 660 

micromanipulation and serial dilution to individual cells can be time and energy intensive, but are 661 

usually successful in isolating pure cultures, although they may fail to isolate rare strains. Antibiotic 662 

selection and enrichment of microalgae from mixed cultures can be used to select for strains with 663 

desirable traits such as a high growth rate and pH- or salinity-tolerance. Automated processes 664 

involving flow cytometry and robotics have been developed for rapid isolation of microalgal strains 665 

[7-9]. The use of high-throughput fluorescence assisted cell sorting (FACS) can distinguish 666 

different microalgal species by relying on the species’ different chlorophyll auto-fluorescence and 667 

green autofluorescence properties. Microalgal cells can also be stained with sub-lethal doses of 668 

lipid-staining Nile Red reagent prior to cell sorting and this can help isolate the cells with a high 669 

lipid content [10]. However, high lipid containing microalgal strains (e.g. Botryococcus braunii) 670 

often display slow growth and this may result in a low overall lipid productivity. Once isolated, a 671 

pure culture should be preserved by slow propagation in stock cultures or cryopreservation to 672 

prevent loss of competitiveness by genetic drift [11].  673 

 674 

Screening criteria 675 

 676 

Two of the most important criteria when screening microalgae for biodiesel production are 677 

the lipid productivity (depends on growth rate and lipid contents) and composition. A fast-growing 678 

highly oleaginous microalgal strain would translate directly to an overall increased productivity. 679 

However many fast-growing strains have low lipid contents, but their lipid biosynthesis is highly 680 

inducible and, therefore, under appropriate conditions their lipid productivity can be quite high [12]. 681 
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Furthermore, the qualitative and quantitative composition of a species’ triacylglycerides (TAG), the 682 

fraction of the lipids that are suitable for biodiesel production, affects the quality of the biodiesel 683 

produced and its potential to meet the biodiesel standards. The lipid content of different microalgal 684 

species can vary, ranging from 10 to 30% on average [14]. To be considered potentially suitable for 685 

commercial use, a microalgal strain should have a base lipid content of at least 20-30% (% of dry 686 

weight, DW). In addition, its fatty acid (FA) content should consist of a mix of saturated and 687 

monounsaturated short chain FAs, and as little polyunsaturated FA (PUFA) as possible [47]. More 688 

importantly, these numbers should be achieved not only in the laboratory, but also in medium- to 689 

large-scale outdoor operations that closely mimic an industrial production setting. Many microalgal 690 

species may achieve a high lipid productivity in the laboratory, but fail to do so in the variable 691 

outdoor conditions. Thus, it is important that laboratory screening is followed up by outdoor 692 

evaluation to determine the suitability of a strain for biodiesel production.  693 

Although most published biofuel studies have focused on a single species [11], an 694 

increasing number of multi-strain comparative studies evaluating the lipid content and composition 695 

in outdoor conditions is becoming available [15-17]. These studies often consist of a first round of 696 

laboratory screening for comparatively assessing the growth rate, the lipid productivity and the FA 697 

composition of several species prior to testing the best performers in larger scale outdoor 698 

photobioreactors or raceway ponds. The use of Nile Red staining of microalgal lipids combined 699 

with flow cytometry is a powerful tool in identifying the algae with a high lipid content [18]. While 700 

several microalgal species so far tested, possess the suitable lipid productivity and FA composition 701 

for producing biodiesel to conform to most fuel standards, no single species appears capable of 702 

meeting all requirements for a top grade biodiesel. Attaining a good grade of biodiesel may require 703 

mixing lipids from different species [19].  704 

 Another important criterion for selecting microalgae for biodiesel production is the ease of 705 

harvest. Harvesting costs can contribute up to 20 to 30% of the total cultivation cost [5]. Therefore, 706 

microalgal biodiesel production must use cost-effective harvesting methods such as settling and 707 

flocculation to keep the cost of production of the biodiesel to a minimum [20]. Some of the 708 

microalgae that have been identified as having a high lipid content have been harvested using low-709 

cost methods. Microalgae such as Tetraselmis, Chlorella and Scenedesmus settle naturally under 710 

suitable conditions, while species such as Nannochloropsis can be harvested using various flotation 711 

or flocculation techniques [21]. Nevertheless, it may be useful to specifically select a microalga that 712 

is easy to harvest.  713 



33 

 

 Screening for strains with a high tolerance to extreme environmental conditions (e.g. a high 714 

pH and/or salinity) may be useful. In an outdoor setting, particularly in open ponds, contamination 715 

by grazers and other undesirable microalgae can be a difficult problem. A high-tolerance microalga 716 

would not only better withstand the variable environmental conditions, but its culture environment 717 

could be deliberately altered to reduce the potential for contamination. A certain level of salinity 718 

tolerance is necessary also for a freshwater strain because evaporation of freshwater does increase 719 

salinity over time. Finally, the ease of extraction of the oil from different strains can be quite 720 

different [48]. Therefore when screening for strains, the availability and cost implications of certain 721 

oil extraction methods in relation to a particular strain must be taken into account. For example, 722 

Nannochloropsis sp. is generally regarded as one of the highest TAG-accumulating algae [15, 16], 723 

but its tough cell wall may require more costly pretreatments for efficient oil extraction [49], thus 724 

making it more suitable as a feedstock for high-value products such as omega-3 oil and not 725 

biodiesel.. Table 1 summarizes some of the desirable traits in a microalga intended for biodiesel 726 

production. Although a “perfect” microalga does not exist, the species selection must consider the 727 

issues relating to cultivation, harvesting and extraction.  728 

 729 

Table 1 - Desirable traits of a microalga intended for biodiesel production.  730 

 731 

Selection 
consideration 

Desirable traits 

Initial 
screening 

Local strain 

Rapid growth 

High extractable oil contents  

High saturated fatty acids, low unsaturated fatty acids 

Recoverable  by settling or foam flotation 

Outdoor 
cultivation 

Rapid and dominant growth 

Salinity tolerance 

High/low temperature tolerance 

Ability to control grazers 

High light tolerance 
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Shear resistance 

Harvesting Cells that autoflocculates or settle  at time of harvesting (this may 
coincide with nutrient depletion/lipid accumulation)  

Cells amenable to foam flotation  

Extraction Cells amenable to easy extraction 

High lipid recovery  

Added 
benefits 

Rapid and synchronized lipid production (high lipid inducibility) 

Utility of the microalgal cake after oil extraction (e.g. high protein 
contents for food/feed; presence of omega-3 fatty acids, antioxidants, 
sterols, carotenoids, astaxanthins and other pigments) for added 
value  

 732 

Microalgal strain improvements: Non-GM method  733 

 734 

No matter how robust a selection and screening process, it is rare to find an alga that meets all the 735 

main criteria for biodiesel production, in particular the criteria relating to large-scale operations. For 736 

example, many microalgae that are easy to harvest (e.g. Tetraselmis, Dunaliella) do not have as 737 

high a lipid content as Nannochloropsis, which is difficult to harvest and rupture. Nevertheless, 738 

microalgae are excellent candidates for molecular improvement, be it via GM or non-GM methods. 739 

Firstly, they have short cell division times (hours to days) that reduce development time. Secondly, 740 

their small size and unicellular nature excludes the need for large breeding programs and reduces 741 

cost. Thirdly, ultraviolet (UV) light and chemical mutagens can be easily applied to microalgae. 742 

Fourthly, microalgae can be selected and screened using traditional screening methods (e.g. 743 

antibiotics) as well as automated high-throughput techniques.  744 

 745 

The above mentioned non-GM method of mutagenesis followed by high-throughput selection are 746 

commonly used for improving microalgal strains. The advantages of the non-GM methods are that 747 

they require little or no knowledge of the biochemistry and genetics of the microalgal strain being 748 

improved and avoid the regulatory complications associated with the use of GM strains outdoors. In 749 

combination with the above noted methods, the use of Nile Red as a fluorescence probe for 750 

detecting neutral lipids is common [22]. Correlations between the Nile Red fluorescence signal and 751 
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the TAG content have been established for some microalgal species [23]. Some of the traditional 752 

improvement strategies of mutagenesis (e.g. the use of antibiotics and herbicides for selection) and 753 

subsequent selection of mutants using time-consuming analyses (e.g. gas chromatography, thin 754 

layer chromatography) were slow. Such studies typically achieved a yield improvement of between 755 

10 to 40% and were limited mostly to two to three rounds of mutation-selection (Table 2). More 756 

recently, Nile Red-staining combined with high-throughput FACS has allowed to accurately sort 757 

through millions of cells and select individual cells with a high lipid content. FACS has enabled 758 

isolation of cells with lipid levels of ≥60% DW in some cases without mutagenesis (Table 2).  759 

 760 

In addition to UV light, chemical mutagens (ethyl methane sulfonate, EMS; 761 

nitrosomethylguanidine, NTG; N-methyl-N-nitrosourea, MNU,  have been successfully used with 762 

various microalgal species (Table 2). In some of these studies, selection just for the high lipid cells 763 

produced mutants with reduced growth rates [10], emphasizing the importance of a growth selection 764 

step to ensure that strains maintain a high growth rate while producing a high level of lipids [24, 765 

25]. A further side effect of repeated mutation-selection has been a change in the FA content. An 766 

elevation of the PUFAs has been found in mutants relative to wild-types [26-29]. Rapid automated 767 

screening combined with conventional mutagenesis make this non-GM improvement approach 768 

attractive. These approaches combined with advances in transcriptomics could in the future help 769 

reveal potential targets for genetic engineering.  770 

  Table 2 – Some  microalgae mutation studies   771 

 772 

TFA – total fatty acid 773 

TLC – total lipid content 774 
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FS – fluorescence signal 775 

b - % DW 776 

d – mg/(L day) 777 

 778 

Microalgal strain improvement: GM-methods 779 

 780 

Genetically-modified microalgae are attracting a lot of interest, with a focus on developing new 781 

highly efficient strains. Unlike random mutagenesis followed by screening, developing transgenic 782 

microalgae requires a comprehensive knowledge of genomics, transcriptomics and the metabolic 783 

pathways for identifying the target genes for engineering. In addition, tools are required for gene 784 

manipulation, including selectable markers, vectors and techniques for systemic insertion in 785 

screening libraries [11]. The list of fully sequenced microalgal genomes in public databases 786 

(Phytozome, Joint Genome Institute, NCBI) continues to grow. This provides a valuable tool for 787 

annotating transcriptomic data and identifying the key genes in various metabolic pathways. While 788 

genomic data provide us with what an organism is potentially capable of doing, transcriptomics, 789 

metabolomics and proteomics reveal what pathways are currently active/suppressed with respect to 790 

a specific situation [30]. As the cost of pyrosequencing reduces, an increasing amount of 791 

transcriptomic data is becoming available. For the production of biofuels, pathways that are linked 792 

to lipid accumulation are of particular interest. These pathways have been studied in species such as 793 

Dunaliella tertiolecta [31], Haematococcus pluvialis [32], Phaeodactylum tricornutum [33], 794 

Neochloris oleoabundans [34], Chlorella vulgaris [35], and Chlamydomonas reinhardtii [36, 37]. 795 

These studies have successfully reconstructed pathways for FA, TAG, starch biosynthesis, FA β-796 

oxidation, TAG catabolism, and starch degradation. These pathways exhibited differential 797 

expression during lipid accumulating conditions such as nutrient starvation. Genes involved in the 798 

basic metabolic pathways such as ribosome biogenesis, the peptide metabolic processes and RNA 799 

processing were upregulated during the stationary phase after nutrient depletion, suggesting an 800 

enhanced basal metabolism is required to cope with depleting nutrients [37]. On the other hand, 801 

genes related to photosynthesis were down-regulated during nutrient starvation [37]. This was 802 

followed by upregulation of lipid metabolism and membrane related genes during the lipid 803 

accumulation phase [37], pointing to possible lipid reshuffling during this stage. Examination of 804 

transcript abundance during different stages of lipid accumulation revealed multiple carbon fixation 805 
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pathways, suggesting that a buildup of enzyme precursors may play a more important role in lipid 806 

biosynthesis than the actual enzyme levels themselves [33].    807 

 808 

While transcriptome studies do not directly contribute to strain improvement, they identify the key 809 

pathways and genes that could be the targets of genetic engineering. Genes such as ACCase (acetyl-810 

CoA carboxylase), DGAT (diacylglycerol acyltransferase) and CiS (citrate synthase) have been 811 

identified this way and manipulated to increase lipid production. The overexpression of an ACCase-812 

encoding gene in the diatoms Cyclotella cryptica and Navicula sapuvila resulted in an increased 813 

enzymatic activity, although no increase in lipid content was detected [38].  814 

 815 

The silencing of a CiS-encoding gene in C. reinhardtii increased TAG production by 169% [39], 816 

while the overexpression of DGAT2 in P. tricornutum increased its neutral lipid content by 35% 817 

[40]. Aside from lipid-related pathways, the improvement of the microalgal photosystems has also 818 

been the focus of much interest. This is because of the ~43% of the solar energy captured via 819 

photosynthesis only 4-8% is converted into biomass [1]. This may be improved , for example, by 820 

reducing the total light-capture antenna size to minimize the energy loss in a culture by selfshading 821 

and non-photochemical quenching. This has been achieved by reducing the levels of light 822 

harvesting complex (LHC) I and LHC II mRNAs and proteins [41] and also by reducing the size of 823 

the photosystem II (PSII) antenna [42]. In both cases the growth rates of the transgenic algae were 824 

significantly increased, with the transgenic strains achieving higher cell densities when grown in 825 

large-scale bioreactors.  826 

 827 

Conclusion  828 

 829 

Advances in microalgae breeding by strain selection and improvement represent the tip of the 830 

iceberg with regard to the overall effort required for making microalgae biodiesel production 831 

economically viable. Compared to commercial land crops, barely any effort has gone into selection 832 

and breeding of microalgal species. Similarly, compared to the petroleum industry, production of 833 

algal fuels has had an extremely short developmental history. Therefore, there is much scope for 834 

improving all aspects of production of algal fuels.  835 
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 836 

Chapter Summary 837 

 838 

• Microalgal strain selection has key implications on every other aspect of production of algal 839 
biodiesel. 840 

• Key factors for selecting microalgae are a high productivity of extractable lipids and ease of 841 
harvest. 842 

• Laboratory screening must always be followed by larger scale outdoor testing to ensure 843 
selection of a suitable species for commercial production. 844 

• Non-GM methods for strain improvement such as mutation-selection programs are highly 845 
effective and quite rapid. 846 

• GM methods are focused on improving photosystems, but increasing transcriptomics studies 847 
have identified key genes for genetic modification.   848 

 849 
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Chapter 2: Collection, isolation and screening for high lipid productivity 1024 

microalgae species 1025 

Selecting the right microalgal strains is one of the most important factors in microalgal lipid 1026 

production.  A potential candidate must possess traits such as high lipid accumulation capacity, the 1027 

right FA composition, fast growth rate and ease of harvest, especially under outdoor medium- to 1028 

large-scale settings to be considered a viable feedstock. While it is possible to obtain strains that 1029 

meet these criteria from microalgae collections, such as CSIRO’s Australian National Algae Culture 1030 

Collection, isolating strains from local waterways may prove advantageous, as they would already 1031 

be acclimated to local environments. This chapter, published as “Isolation and evaluation of oil-1032 

producing microalgae from Australian subtropical coastal waters and brackish waters” 1033 

(Research Paper 1), presents a successful method in collecting and isolating microalgal strains with 1034 

high-lipid productivity from local waterways. It then compares these local strains with other strains 1035 

from the Algae Biotechnology Laboratory’s Microalgae Collection at The University of Queensland 1036 

to identify the best strains for microalgae lipid and biodiesel production, as well as strains most 1037 

suitable for Aims 2 & 3.  1038 

Keypoints 1039 

• Collection of microalgae was focused on locations that experienced fluctuating conditions 1040 

(nutrients, temperature, salinity, light) such as tidal rock pools and river mouths.   1041 

• Nile-red staining was used as a preliminary screening method to identify strains with high-lipid 1042 

content. This was followed by a more detailed comparison that, by using a standard protocol, 1043 

looked at a strain’s growth rates, lipid content and lipid composition when under nutrient-1044 

deplete conditions.     1045 

• New isolates Chlorella sp. BR2 and Tetraselmis sp. M8, as well as Nannochloropsis sp. BR2, 1046 

and Dunaliella salina from the algae collection were identified as suitable candidates for a 1047 

multi-product algae-crop.  1048 

• Tetraselmis sp. M8 was tested in a mid-scale 1000 L-outdoor setting to reveal high-lipid 1049 

productivity and ideal FA composition for biodiesel production. Its ability to lose its flagella 1050 

and sink during nutrient starvation made it easy to harvest. 1051 

• Tetraselmis suecica was selected as a suitable species for Aim 2’s goal of improving lipid 1052 

productivity via mutation-selection, as it demonstrated high growth rate, but relatively low lipid 1053 

productivity.  1054 
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• The methods used for the collection, isolation and screening of local microalgae successfully 1055 

yielded strains Tetraselmis sp. M8 and Chlorella sp. BR2 with growth characteristics, lipid 1056 

content and composition that are suitable for both biodiesel and omega-3 production.  1057 

  1058 
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Research Paper 1: Isolation and evaluation of oil-producing microalgae from 1059 
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Chapter 3: Improving microalgae via non-GM methods: mutagenesis and high-1074 

throughput selection of high-lipid productivity improved strains 1075 

Following Chapter 2’s evaluation of all available strains in the Algae Biotechnology 1076 

Laboratory’s Microalgae Collection, Tetraselmis suecica was identified as an ideal candidate for 1077 

non-GM strain improvement in this chapter. The use of non-GM methods for microalgae strain 1078 

improvement is very attractive as it requires very little biochemical or genetic information, and 1079 

avoids the regulatory hurdles of using GM strains outdoors. Furthermore, the ability to increase a 1080 

strain’s lipid content is particular useful when a wild-type (undomesticated) strain possesses all the 1081 

desirable traits for large-scale production (high growth rate, ease of harvest, robustness) except for 1082 

very high lipid content. This made T. suecica an ideal strain for this purpose, as it possessed all the 1083 

aforementioned characteristics with the exception of a high lipid content. This chapter, presented in 1084 

Research paper 2 “Isolation of high-lipid Tetraselmis suecica strains following repeated UV-C 1085 

mutagenesis and high-throughput growth selection” presents the optimisation and development 1086 

of a mutation-selection program aimed at improving the lipid content of Tetraselmis suecica.  1087 

Keypoints 1088 

• Rounds 1 to 3 of the mutation-selection program consisted of mutagenesis followed by lipid 1089 

selection by FACS, and then growth selection in 96 well-plates. Additional lipid selection steps 1090 

using plate reader technology was introduced in rounds 4 & 5 to increase selection pressure.  1091 

• Two different UV-C dosages (50% & >98% lethal dosage) were used to generate two separate 1092 

T. suecica improved strain-lines. After five rounds of mutation-selection, both improved strains 1093 

had significantly higher lipid contents (114-123% more) when compared to the original wild-1094 

type.  1095 

• The growth rates of improved strains did not decrease and were not significantly different from 1096 

wild-type. 1097 

• GC/MS analysis revealed that improved T. suecica strains accumulated less saturated and 1098 

monounsaturated FA, but more polyunsaturated FA.  1099 

• Comparisons with wild-type control cultures were done 36 divisions after the last mutagenesis 1100 

step and were therefore considered to have a stable genetic make-up. 1101 

• Up to now it is not clear whether strain improvements were due to stable mutations or rather 1102 

adaptation of strains (e.g. by epigenetics) to the selection pressures. 1103 

  1104 
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Research Paper 2: Isolation of High Lipid Tetraselmis suecica Strains Following 1105 

Repeated UV-C Mutagenesis, FACS, and High-Throughput Growth Selection 1106 
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Highlights 1115 

 1116 

• UV-C mutagenesis and high throughput selection technology has been combined to improve 1117 

lipid productivity in Tetraselmis suecica.  1118 

• Both 50% and >98% lethal dosage successfully produced improved strains with 1119 

approximately 100% increase in lipid accumulation. 1120 

• Growth rates of improved strains remained unchanged.  1121 

                                                                            1122 

Abstract  1123 

 1124 

Mutagenesis and selection of microalgae can be used for accelerated breeding of elite strains, 1125 

providing a significant advantage over genetic engineering as prior biochemical and genetic 1126 

information is not required. UV-C-induced mutagenesis combined with fluorescence-activated cell 1127 

sorting (FACS) and microtiter plate reader cell density screening was used to produce Tetraselmis 1128 

suecica strains with increased lipid contents without compromising on cell growth. After five 1129 

rounds of mutation-selection, two dosages of UV-C (50% and >98% lethality) yielded two 1130 

improved strains (M5 and M24) that produced significantly more neutral lipids (increases of 114% 1131 
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and 123%, respectively). This study highlights that repeated UV-C mutagenesis and high-1132 

throughput selection for cell growth can be a viable combined approach to improve lipid 1133 

productivity in microalgae. These maybe used as elite strains for future breeding programs and as 1134 

potential feedstock for biodiesel production.  1135 

Introduction 1136 

 1137 

 As fossil fuel resources diminish and cause environmental damage, there is a rapidly-1138 

growing global demand for lipids, particularly triacylglycerides (TAGs) for the biofuel, aquaculture 1139 

and pharmaceutical industry. The need to develop sustainable lipid sources is now widely apparent. 1140 

Traditional crop-based plants are increasingly being used for oil and biofuel production, but these 1141 

cannot reasonably meet the growing demand [1]. Photosynthetic microalgae have repeatedly been 1142 

proposed as a more viable lipid source due to their high productivity, environmental benefits and 1143 

ability to produce different kinds of oils [2-4]. Theoretically, microalgae can produce 10 to 20 times 1144 

more lipids than oil palms [5], corn and soybean [6-8] while achieving CO2
 capture efficiencies of 1145 

up to 99% [9]. Furthermore, the production of microalgal biomass can be carried out without 1146 

competing for valuable resources, such as arable land, biodiverse landscapes (e.g. rainforests) and 1147 

freshwater [5]. However, the industry is still in its infancy and the cost of microalgal lipid 1148 

production is still too high to achieve full commercialization of microalgal lipid feedstocks. Having 1149 

the ideal algal strain with elevated lipid content, high growth rate and robust environmental 1150 

tolerance remains one of the most important factors to improve algae economics [10,11]. While 1151 

many studies have focused on species selection and characterization to identify strains that contain 1152 

two seemingly antagonistic traits: fast growth and high lipid content, genetic and metabolic 1153 

engineering provide opportunities to create potential elite strains that meet these requirements. At 1154 

present, induced mutagenesis provides a significant advantage over genetic engineering, as little 1155 

biochemical or genetic information regarding the chosen organisms is needed [12,13]. This 1156 

approach requires relatively little technical manipulation. Improved non-transgenic microorganisms 1157 

can be bred by incorporating mutagenesis and high-throughput selection, including microalgal 1158 

strains with enhanced lipid performance.  1159 

 1160 

Mutation studies involving ultraviolet (UV), ethyl methane sulfonate (EMS) and 1161 

nitrosomethylguanidine (NTG) have been performed on a range of microalgal species 1162 

(Phaeodactylum tricornutum, Pavlova lutheri,  Nannochloropsis oculata, Haematococcus pluvialis, 1163 
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Schizochytrium sp., Chlorella sorokiana, Scenedesmus obliquus, Isochrysis galbana, Dunaliella 1164 

salina) to produce mutants that exhibited increased/modified lipid content and growth rate [14-23]. 1165 

Many of these studies, however, rely upon time-consuming techniques like metabolite antibiotic 1166 

response to select for mutants and lipid extraction techniques to analyze their lipid content. Lately, 1167 

the combination of lipophilic dyes (e.g. Nile red) and high-throughput technologies such as 1168 

microplate readers and flow cytometry provided a powerful tool to isolate potential mutants from a 1169 

complex population based on specific fluorescence cell properties. A study using the Nile red 1170 

fluorochrome in conjunction with microplate reader technology has been shown to be able to select 1171 

C. sorokiniana and S. obliquus mutants with elevated lipid contents [21]. Automated fluorescence-1172 

assisted cell sorting (FACS) can be more efficient than a microplate reader-based selection, as much 1173 

larger populations of single cells can be handled, resulting in the recovery of a high number of 1174 

candidate cells with the desired lipid content. The use of FACS in combination with mutagenesis 1175 

has been described in mutation-selection studies that produced high-lipid content strains of I. 1176 

galbana [23] and carotenoid-hyperproducing D. salina strains [22]. Even without mutagenesis, the 1177 

use of FACS has been successful in generating higher lipid content strains of Nannochloropsis sp. 1178 

and T. suecica through selection alone [1,24]. While most studies involve only one screening step, 1179 

the present study combines a mutation-selection approach using UV-C-induced mutagenesis [19-1180 

21,23] with FACS [1,24] and microplate reader screening [21] to mutate, identify and isolate T. 1181 

suecica cells with a higher lipid content without reduced growth rate.   1182 

 1183 

Tetraselmis suecica is a flagellate green microalga commonly used as aquaculture feedstock, and 1184 

that is also considered a good candidate for biofuel production. This species is known to have a high 1185 

lipid content as well as being robust enough to tolerate a range of environmental conditions [25,26]. 1186 

Moreover, Tetraselmis cells have recently been shown to lose their flagella during stressful 1187 

conditions, quickly settling and thus reducing harvesting/dewatering cost [27]. The growth 1188 

characteristics of the T. suecica strain, used in the present study, have been previously described, 1189 

displaying one of the highest comparative microalgal growth rates, although with a slightly lower 1190 

total fatty acid content compared to other strains tested [28]. Therefore, this microalga was chosen 1191 

as a suitable candidate to generate an improved strain with fast growth and high-lipid content 1192 

properties.  1193 

 1194 

Material and Methods 1195 
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 1196 

Microalgae culturing conditions 1197 

 1198 

The parent culture of wild-type Tetraselmis suecica (wt) was originally collected by 1199 

Queensland Sea Scallops (Bundaberg, Australia; [28]) and cultured in autoclaved artificial seawater 1200 

with Guillard F medium [29] and maintained aerobically in 100 mL Erlenmeyer flasks with 1201 

constant orbital shaking (100 rpm) at 25°C, under a 12:12 h light/dark photoperiod of fluorescent 1202 

white light (120 μmol	  photons	  m-‐2s-‐1).	  	  1203 

 1204 

Mutagenesis  1205 

 1206 

The mutation program used UV-C (100-280 nm) as the mutagenic agent. First, the 1207 

appropriate dosage of UV-C treatment was determined in order to obtain an equivalent of the rate of 1208 

non-lethal mutations. To achieve this, kill curves were produced by two methods, to establish 50% 1209 

(LD50) and >98% lethal dosage. 1210 

 1211 

Mutagenesis was achieved by placing a 2 cm-deep culture of T. suecica (1 x 106 cells/mL; early 1212 

starvation phase) in a 140 mm-Petri dish under the lamps of a Bio-Rad GS Gene Linker UV 1213 

Chamber and exposure to 15, 25, 50 and 100 mJ of UV-C. Cultures were then left in the dark for 24 1214 

h to prevent DNA repair by photo-reactivation. The first kill curve was obtained by plating 200 µL 1215 

aliquots of 1/1000-diluted mutagenized cells onto a 1% agar plate containing F medium in artificial 1216 

seawater, which were then allowed to grow for 3 weeks before algal colonies from control and UV-1217 

exposed cells were counted. The second kill curve was carried out in 96 well-plates inoculated with 1218 

mutagenized cells after serial dilution down to 1 cell per well [22]. Wells with surviving microalgae 1219 

that multiplied were then counted after 3 weeks of growth. Both, agar plates and 96 well-plates 1220 

were grown under fluorescent white lights (50 μmol	   photons	   m-‐2s-‐1;	   16:8	   h	   light:dark	  1221 

photoperiod) and maintained at 24°C. Further stages of this study used UV-C dosages of 25 mJ 1222 

and 100 mJ to induce mutagenesis, as these provided a survival rate of 50% and <2%, respectively.  1223 

 1224 



83 

 

FACS and lipid quantification by Nile red fluorescence  1225 

 1226 

Nile red (Sigma Inc.) was used to stain lipids for (i) FACS and (ii) quantification of lipid 1227 

contents via a 96 well-microplate reader. First, the appropriate amount of Nile red working solution 1228 

required to produce the best lipid staining, while maintaining a high FACS survival rate, had to be 1229 

determined. Cell samples in starvation phase (1 mL at 0.8-1 x 106 cells/mL) were treated with 1, 2 1230 

and 3 µL of a working solution of Nile red in acetone or dimethyl sulfoxide (both 1 mg/mL). 1231 

Samples were then gently mixed and incubated in the dark for 10 min. Single cells were sorted 1232 

using a BD FACSVantage SE (Becton Dickinson) cell sorter with a 485 nm argon laser and 100 μm	  1233 

nozzle	  into	  96	  well-‐plates	  using	  F	  in	  seawater	  medium.	  Cell	  fluorescence	  was	  measured	  at	  585	  1234 

nm	   for	   yellow-‐gold	   fluorescence,	   indicative	   of	   neutral	   lipid	   content.	   Approximately	   10,000	  1235 

cells	  were	  analyzed,	  with	  dot	  plots	  of	  yellow-‐gold	  fluorescence	  (PE-‐A)	  vs.	  forward	  light	  scatter	  1236 

(FSC-‐A,	   cell	   size).	  Cell	   sorting	   regions	  were	  positioned	   to	   include	   cells	  presenting	   increased	  1237 

fluorescence	  and	  size	  compared	  to	   the	  general	  population	  of	  cells.	  FACS	  survival	  rates	  were	  1238 

then	  determined	  after	  2	  weeks	  of	  growth.	  	  1239 

	  1240 

To enable quantification of neutral lipid contents of T. suecica cells in a microtiter plate reader, the 1241 

ability of Nile red (in acetone working solution) to stain neutral lipids without killing the cells was 1242 

first established. Two populations of microalgal cells (106 cells/mL): (i) cells in late starvation 1243 

phase and (ii) cells in exponential growth phase were mixed to produce a population of 0, 25, 50, 75 1244 

and 100% of starved cells, as a proxy for increasing lipid content within a given volume. A total of 1245 

1 mL of these samples was then stained with 2 μL	  of	  a	  working	  solution	  of	  Nile	  red	  in	  acetone	  (1	  1246 

mg/mL).	  Samples were then gently mixed and incubated in the dark for 10 min. A total of 100 µL 1247 

from each sample was then loaded into a 96 well-microtiter plate (Sarsted) in triplicates. Yellow-1248 

gold fluorescence was measured on a POLARstar OPTIMA (BMG Labtech) plate reader using 1249 

fluorescence intensity mode. Gain was set at 3000, with excitation and emission wavelengths of 485 1250 

nm and 590 nm, respectively. These settings were used for further fluorescence intensity 1251 

measurements in this study.  1252 

 1253 
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 1254 

Figure 1. Mutation-selection cycle for the production of T. suecica cells for improved lipid 1255 

production. Cycles 1-3: the top 6 clones with the fastest growth after each sorting run were selected 1256 

for subsequent mutagenesis. Cycle 4 & 5: the top 24 fastest growers were scaled up and their lipid 1257 

production performance evaluated. The top 3 lipid producing cultures were selected for subsequent 1258 

cycles.  1259 

 1260 

Mutation-selection cycles 1261 

 1262 

Mutation and selection cycles are summarized in Fig. 1. Cultures were grown until late log 1263 

phase and then mutagenized according to the optimized method at 25 mJ and 100 mJ. Mutagenized 1264 

cultures were then left in the dark for 24 h and then cultured for 2 weeks to allow for culture 1265 

recovery (addition of fresh F medium every 7 days). Two days prior to FACS, nutrient deprivation 1266 

to stimulate lipid production was achieved by removal of previous medium by centrifugation (1,200 1267 

x g, 5 min) and replacement with only seawater (without F medium). FACS was then carried out 1268 

according to the optimized methodology, with mutagenized single cells sorted into 96 well-plates. 1269 

Plates were incubated at 24°C under a 16:8 h light:dark photoperiod of fluorescent white lights (50 1270 

μmol	  photons	  m-‐2s-‐1).	  For generations (cycles of mutagenesis and selection rounds) 1, 2 and 3,  the 1271 

plates after FACS were monitored daily, and the first 6 wells that showed visual signs of algal 1272 
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Flow cytometry 
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growth were selected and scaled up for subsequent rounds of mutagenesis and cell sorting. For 1273 

generations 4 and 5, the top 24 wells from the 96 well-plates after FACS that showed visual signs of 1274 

growth were scaled up (1:10 dilution) in a 24 well-plate. After 7 days of growth at 24°C under a 1275 

16:8 h light:dark photoperiod of fluorescent white light (50 μmol	  photons	  m-‐2s-‐1),	  the	  absorbance	  1276 

value	   (450	   nm)	   and	   fluorescence	   intensity	   of	   the	   wells	   were	   measured.	   Cell	   counts	   were	  1277 

performed	  on	  the	  top	  12	  wells	  that	  showed	  the	  highest	  fluorescence/absorbance	  ratio	  using	  a	  1278 

haemocytometer.	  The	  top	  3	  clones	  that	  showed	  the	  highest	  fluorescence/cell	  count	  ratio	  were	  1279 

selected	   and	   scaled	   up	   for	   subsequent	   rounds	   of	  mutagenesis.	   In	   all	   cycles	   of	   the	   program,	  1280 

selected	   strains	   were	   allowed	   to	   grow	   for	   3	   to	   4	   weeks	   to	   ensure	   a	   genetically	   stable	  1281 

population	  before	  mutagenesis.	  1282 

	  1283 

Standard protocol for culture growth analysis, lipid induction phase, sampling for 1284 

fluorescence and lipid analysis 1285 

 1286 

A standard protocol was designed to allow direct comparison of growth rates, fluorescence 1287 

intensity and fatty acid (FA) profile between selected strains and wt based on a modified method by 1288 

Lim et al. [28]. Briefly, a total of 5 mL of selected strain or wt culture in late log phase was used as 1289 

inoculum (8 h after start of the light cycle) for 50 mL artificial seawater complemented with F 1290 

medium in 100 mL Erlenmeyer flasks, and grown under constant orbital shaking (100 rpm) at 25°C, 1291 

under a 12:12 h light:dark photoperiod of fluorescent white light (120 μmol	  photons	  m-‐2s-‐1).	  After 1292 

day 7, nutrient deprivation to stimulate lipid production was achieved by centrifugation (1200 x g, 5 1293 

min) and replacement with only seawater (without F medium). Cultures were then grown for 1294 

another 5 days post starvation. Cell counts were performed on days 0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12 1295 

& 13, while fluorescence intensities were measured on days 0, 2, 3, 4, 5, 6 post starvation. The fatty 1296 

acid methyl ester (FAME) contents of the cultures were analyzed on day 4 post starvation.  1297 

 1298 

Fatty Acid Methyl Ester (FAME) analysis 1299 

 1300 

For FAME analyses, 4 mL of algal culture was collected from each replicate and centrifuged 1301 

at 16,000 x g for 3 min. After the supernatant was discarded, lipids in the algal pellet were 1302 
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hydrolyzed and methyl-esterified by shaking (1,200 rpm) with 300 µL of a 2% H2SO4/methanol 1303 

solution for 2 h at 80°C. Prior to the reaction, 50 mg of heneicosanoic acid (Sigma, USA) was 1304 

added as internal standard to the pellet. A total of 300 µL of 0.9% (w/v) NaCl and 300 µL of hexane 1305 

was then added followed by mixing for 20 s. Subsequently, phase separation was performed by 1306 

centrifugation at 16,000 x g for 3 min. A total of 1 mL of the hexane layer was then injected 1307 

splitless into an Agilent 6890 Gas Chromatograph coupled to a 5975 MSD Mass Spectrometer. A 1308 

DB-Wax column (Agilent, 122–7032) was used with running conditions as described for Agilent’s 1309 

RTL DBWax method (Application note: 5988–5871EN). Quantification of FAMEs was carried out 1310 

by taking the ratio of the integral of each FAME’s total ion current peak to that of the internal 1311 

standard (50 mg), with the molecular mass of each FAME also factored into the equation. FAMEs 1312 

were then identified based on mass spectral profiles, in comparison to standards and expected 1313 

retention times from Agilent’s RTL DBWax method (Application note: 5988–5871EN). 1314 

 1315 

Analytical methods 1316 

 1317 

Growth rates and doubling times were calculated from day 0 to day 7 to measure the growth 1318 

rate during growth phase, day 0 to day 10 to measure the overall growth rate, and from day 7 to day 1319 

10 to measure the growth rate during starvation phase.  1320 

 1321 

Calculations for growth rate and doubling time are based on the following equations: 1322 

 1323 

Growth rate μ = Ln(Ny/Nx)/(ty-tx)  1324 

 1325 

Mean doubling time TAve  = (ty-tx)/ log2 (Ny/Nx)  1326 

 1327 

with Ny and Nx being the number of cells from the selected days of analysis. 1328 

 1329 
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Results 1330 

 1331 

Mutagenesis survival rate 1332 

 1333 

The appropriate dosage of UV-C exposure to obtain a 50% and <2% survival rate was 1334 

determined by treating microalgal cells with a range of UV-C dosages (0-100 mJ), followed by 1335 

growth on agar- (solid media) and in 96 well-plates (liquid media). Survival rate (Figure 2a) was 1336 

found to be dosage-dependent, with the survival rate decreasing as UV-C dosage increased. The 1337 

growth method was also had an effect of post-UV-C exposure survival rates. When grown on agar 1338 

plates, the LD50 was found to be at 16 mJ, while <2% survival rate was found to be at 63 mJ. In 1339 

liquid medium the 50% survival rate and <2% survival rate was at 26 mJ and 92 mJ, respectively 1340 

(Figure 2a) and this dosage was used during the subsequent experiments. 	  	  1341 

	  1342 

	  1343 

	  1344 

 1345 

 1346 

Figure 2. Optimization of UV-C lethal dosage and Nile red staining. (a) Survival rate of T. suecica 1347 

in agar plates and 96 well-plates after exposure to varying UV-C dosages. The 10 mJ survival rates 1348 

in 96 well-plates were not measured. (b) Fluorescence	   units	   of	  mixed	   starved	  &	   unstarved	  T.	  1349 

suecica	   population	   demonstrating	   the	   ability	   of	   Nile	   red	   staining	   in	   acetone	   to	   determine	  1350 

varying	   levels	   of	   neutral	   lipids	   in	   T.	   suecica.	    Data represent mean ±	   SEM	   from	   three	  1351 

independent	  replicates.  1352 
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	  1353 

Optimization	  of	  Nile red staining for Fluorescence-Activated Cell Sorting (FACS) 1354 

	  1355 

The	   use	   of	   appropriate	   Nile	   red	   staining	   solution	  was	   required	   to	   ensure	  maximum	  1356 

fluorescence	  while	  maintaining	  a	  high	  recovery	  of	  viable	  clones.	  While	  the	  increase	  in	  staining	  1357 

solution	   did	   not	   affect	   fluorescence	   intensities	   or	   clone	   recovery,	   it	   was	   found	   that	   cells	  1358 

stained	  with	  Nile	  red	  dissolved	  in	  acetone	  produced	  fluorescence	  intensities	  markedly	  higher	  1359 

than	   cells	   stained	   with	   Nile	   red	   in	   DMSO	   (Figure	   3).	   Unstained	   populations	   achieved	   a	  1360 

recovery	   rate	  of	  78%	  viable	   cells,	  while	  both	  DMSO	  and	  acetone	   solvents	   achieved	  40-‐50%	  1361 

recovery.	  	  Therefore	  for	  this	  study,	  the	  addition	  of	  1	  μL	  Nile	  red	  in	  acetone	  working	  solution	  1362 

was	  chosen	  for	  FACS.	  The	  ability	  of	  Nile	  red	  staining	  in	  acetone	  to	  determine	  varying	  levels	  of	  1363 

neutral	  lipids	  in	  T.	  suecica	  was	  also	  established	  (Figure	  3).	  This	  study	  also	  found	  that	  2	  mg/mL	  1364 

of	  Nile	   red	  was	   suitable	   to	   detect	   populations	   of	  T.	   suecica	  with	  >12.5%	  of	   cells	   containing	  1365 

neutral	   lipids,	   demonstrating	   a	   strong	   linear	   correlation	   (r2=	   0.98,	   n=6)	   between	   the	  1366 

percentage	  of	  starved	  cells	  and	  fluorescence	  intensity.	  	  1367 

  1368 

a" b"

c" d"
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	  1369 

Figure	  3.	  Two-‐dimensional	  dot	  plots	  of	  T.	  suecica	  stained	  with	  varying	  volumes	  of	  Nile	  red	  in	  1370 

acetone	  or	  DMSO	  working	  solution:	  (a)	  1	  μL	  Nile	  red-‐acetone,	  (b)	  2	  μL	  Nile	  red-‐acetone,	  (c)	  1	  1371 

μL	  Nile	  red-‐DMSO,	  (d)	  2	  μL	  Nile	  red-‐DMSO.	  Selected	  region	  of	  population	  P1	  is	  an	  example	  of	  1372 

what	  was	  gated	  for	  cell	  sorting.	  	  1373 

 1374 

Growth rates and cell density 1375 

 1376 

After the 5th cycle of mutation-selection, two strains with one of the best fluorescence/cell 1377 

count ratio (one from each UV dosage), were chosen for further analyses : (i) M5 (originating from 1378 

25 mJ UV-C (50% survival rate) mutagenesis) and (ii) M24 (100 mJ UV-C (<2% survival rate)) 1379 

were compared with wt T. suecica to determine their growth and lipid production performance. 1380 

During the first 7 days of growth, all cultures exhibited similar growth rates and cell densities. After 1381 

starvation was induced, both M5 (0.2 day-1; P=0.06) and M24 (0.2 day-1; P<0.05) exhibited higher 1382 

growth rates than wt. The strains also achieved significantly higher (P<0.05) cell densities than wt 1383 

(1.25 x 106 cells/mL) on day 10, and reached 1.82 x 106 cells/mL  and 1.71 x 106 cells/mL, 1384 

respectively. Overall growth rates (μ10	  days)	  of	  the	  selected	  strains	  were	  also	  found	  to	  be	  slightly	  1385 

higher	  than	  wt,	  although	  not	  at	  a	  significant	  rate	  (Figure	  4).	  	  1386 
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	  1387 

Figure 4. Cell density of T. suecica selected strains and wild-type over the span of 13 days with 1388 

induced starvation on day 7. Boxed data points indicate significant differences from wild-type 1389 

(P<0.05). Inserted table: Growth rates and doubling time for the first 7 days, first 10 days and from 1390 

day 7 to day 10. Asterisks indicate significant differences from wild-type (P<0.05). Data represent 1391 

mean ±	  SEM	  from	  two	  independent	  replicates.	  1392 

	   	  1393 
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	  1394 

	  1395 

	  1396 

Figure 5. Lipid accumulation in T. suecica wild-type and selected strains (M5 & M24) during 1397 

nutrient starvation phase measured by Nile red-stained fluorescence units at 485/590. (a) Total 1398 

fluorescence units measured represent total lipid accumulated per mL of culture (b) Total 1399 

fluorescence/cell represent total lipid accumulated per cell. Boxed data points indicate significant 1400 

differences from wild-type (P<0.05), data represent mean ±	   SEM	   from	   two	   independent	  1401 

replicates.	  1402 

	  1403 

Neutral lipid content  1404 

 1405 

After 7 days of growth, nutrient deplete conditions were used to induce lipid production, and 1406 

the neutral lipid content of selected T. suecica strains and wt were determined. Based on Nile Red 1407 

fluorescence, the total neutral lipid content of wt increased until day 3 and then plateaued, while the 1408 

total neutral lipid content of M5 and M24 continued to increase. From day 4 onwards, total neutral 1409 

lipid production of the selected strains was significantly higher than wt (P<0.05), with M5 and M24 1410 

achieving maximum total neutral lipids on day 5 (114% increase from wt) and day 6 (123% 1411 

increase from wt), respectively (Figure 5a). On a per cell basis, wt cells accumulated lipids from 1412 

day 2 to day 3 and then stopped, while selected strains cells continued to accumulate lipids until day 1413 

6. M5 cells had 80-90% more neutral lipids than wt on day 4 and 5 (P<0.05), while M24 cells 1414 

contained 96%-100% more neutral lipids than wt on day 5 and 6 (P<0.05; Figure 5b).   1415 

	  1416 
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GC/MS	  analyses	   revealed	  an	  overall	   reduction	   in	  monounsaturated	  FAs	   (MUFAs;	  P<0.05)	   in	  1417 

the	  selected	  strains	  on	  day	  5	  (Figure	  6).	  This	  trend	  was	  observed	  for	  C16,	  C16:1,	  C18,	  C18:1,	  1418 

C20	  and	  C20:1	  FAs,	  where	  significant	  reductions	  were	  accompanied	  by	  significant	  increases	  in	  1419 

polyunsaturated	   FAs	   (PUFAs),	   such	   as	   C16:4,	   C18:4	   and	   C20:5.	   The	   selected	   strains	   also	  1420 

exhibited	   an	   increase	   in	   C14	   and	   a	   decrease	   in	   C18:2,	   although	   this	   was	   only	   significant	  1421 

(P<0.05)	  in	  the	  M24	  strain.	    1422 

 1423 

Figure 6. Fatty acid composition in percentage of total FAME of wild-type and selected T. suecica 1424 

strains. Inserted table: Percentage of saturated, monounsaturated and polyunsaturated FA. Arrows 1425 

and asterisk indicate significant differences from wild-type (P<0.05).  Data represent mean ±	  SEM	  1426 

from	  two	  independent	  replicates.	  1427 

 1428 

Discussion 1429 

 1430 

This study describes a combined and repeated mutation-selection method designed to 1431 

increase the neutral lipid content of T. suecica without compromising its growth rate. It also 1432 

includes the optimization of key steps within the mutation-selection cycle, such as the appropriate 1433 
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UV-C dosage and Nile red concentration. UV-C has been successfully used to generate microalgae 1434 

mutants [19, 21], and was selected as a mutagenic agent because it was practical and safer than 1435 

chemical mutagens such as EMS and MTG. As chemical mutagens are more effective than UV 1436 

radiation, UV-C mutagenesis requires higher dosages (with lower survival rates) [30]. However, 1437 

although the frequency of mutants increases among survivors at high dosages, so does damage to 1438 

the genetic background which reduces clone recovery and fitness. Therefore, two different UV-C 1439 

dosages were chosen to either increase mutation probability (>98% lethal dosage) or increase 1440 

recovery of a high number of clones (50% lethal dosage) with less genetic background damage, a 1441 

survival rating similarly applied in other microalgae mutation studies [19,22]. The recovery of UV-1442 

C-exposed cells in liquid media was more effective, as survival rates in 96 well-plates were higher 1443 

compared to solid media agar plates. The poor growth of other flagellate microalgae on solid media 1444 

was also demonstrated for Pavlova lutheri as well as other filamentous and flagellate organisms, 1445 

primarily due to the dehydration of the medium [31,32].  1446 

 1447 

The use of Nile red as a fluorescence probe for neutral lipid detection and quantification in 1448 

microalgae has been well documented [1,21,22,24,23,33,34]; a strong correlation between lipid 1449 

content and fluorescence intensity has already been established [34]. The addition of solvents such 1450 

as acetone and DMSO has been shown to improve the transition of the dye into lipids, although 1451 

their efficacy varies between species, depending on the characteristics of the individual algae 1452 

species [34]. The optimization stage of this study revealed acetone as a better stain carrier than 1453 

DMSO for staining T. suecica cells that displayed higher fluorescence intensities during FACS. 1454 

Other flow cytometry studies involving D. salina [33], Nannochloropsis sp. [1] and I. galbana [23] 1455 

also utilized acetone as a carrier. The percentage of viable cells post-sorting achieved in this study 1456 

(40-50%) was lower than the 80% reported by Montero et al. [24], which was achieved by seawater 1457 

as sheath fluid, but still higher than the 20-30% reported by other studies involving the sorting of 1458 

other phytoplankton flagellates [35]. The staining efficacy of DMSO has been shown to be better 1459 

than acetone at a higher volume/volume [34], but would prove toxic and reduce FACS clone 1460 

recovery. Therefore when at similar volumes, acetone produced a higher fluorescence intensity than 1461 

DMSO and was the preferred solvent in this study. This study has also established a correlation 1462 

between Nile red fluorescence intensity between percentage of starved cell (a proxy of total lipid 1463 

content within a volume). In T. suecica, correlations between Nile red fluorescence signal and TAG 1464 

content [24], as well as neutral lipids estimated by gravimetry, have been established [36]. Other 1465 

studies have also found a strong correlation between fluorescence signal and total lipid content 1466 
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[34,37], thus confirming the use of Nile red fluorescence to quantify lipid content in this study to 1467 

allow for sorting of hyperlipidic T. suecica strains. 1468 

	  1469 

The	  overall	   aim	  of	   the	  mutation-‐selection	  program	  was	   to	   develop	   a	   strain	   that	   had	   a	   high	  1470 

lipid	  content	  while	  maintaining	  its	  high	  growth	  rate.	  For	  generations	  1	  to	  3,	  lipid	  selection	  was	  1471 

achieved	   during	   flow	   cytometry,	   while	   growth	   rate	   selection	   was	   carried	   out	   post-‐sorting	  1472 

during	   the	   grow-‐up	   phase	   of	   the	   sorted	   cells.	  While	   other	   studies	   pooled	   their	   sorted	   cells	  1473 

[1,24],	   individual	   cells	   were	   sorted	   into	   individual	   96	   well-‐plate	   wells	   to	   facilitate	   the	  1474 

selection	  of	  the	  top	  six	  fastest	  growing	  individuals	  that	  would	  be	  carried	  into	  the	  next	  cycle	  of	  1475 

selection.	   The	   growth	   screening	   step	   was	   introduced	   to	   maintain	   the	   growth	   rate	   of	   the	  1476 

selected	   strains,	   as	   there	   have	   been	   studies	   that	   indicated	   reduced	   growth	   rates	   in	   strains	  1477 

isolated	   for	   high	   lipid	   content	   [22,8,38,21].	   To	   confirm	   that	   the	   selected	   individuals	   still	  1478 

maintained	  their	  high	  lipid	  content,	  an	  additional	  screening	  step	  similar	  to	  that	  of	  Vigeolas	  et	  1479 

al.	   [21]	   was	   introduced	   in	   generations	   4	   and	   5.	   A	   total	   of	   24	   instead	   of	   six	   of	   the	   fastest	  1480 

growing	   strains	   were	   selected	   and	   scaled	   up	   in	   24	   well-‐plates	   before	   their	   Nile	   red	  1481 

fluorescence	   intensity	   and	   absorbance	   values	   were	   measured	   to	   obtain	  1482 

fluorescence/absorbance.	  As	   absorbance	   values	  do	  not	   account	   for	   cell	   viability	   and	   can	  be	  1483 

misleading,	  cell	  numbers	  were	  then	  used	  to	  confirm	  the	  top	  six	  performers	  with	  the	  highest	  1484 

fluorescence/absorbance.	  The	   final	  mutation-‐selection	  program	   therefore	  now	   incorporates	  1485 

FACS	  with	  a	  fast	  growth	  selection	  step,	  followed	  by	  a	  high	  lipid	  per	  cell	  step.	  	  	  1486 

 1487 

After five cycles of mutation-selection that yielded two improved strains: M5 and M24, a standard 1488 

protocol to compare the growth rates, lipid content and FA content was performed. Growth rate 1489 

comparisons found the overall growth rates of improved strains to be slightly higher than wt, with 1490 

significant increases occurring during the starvation period. Improved strains also achieved a 1491 

significantly higher maximum cell density compared to wt. While the growth rates achieved in this 1492 

study were expected to be lower than reported by Montero et al. [24] due to the lack of CO2 1493 

aeration, FACS-isolated T. suecica cells in that study exhibited lower growth rates than the original 1494 

wt. Reduced growth and cell density were also reported in a mutant study involving another 1495 

flagellate, D. salina, that did not incorporate a growth selection step [22], although no reduction in 1496 

growth rates was reported for I. galbana after two rounds of mutation-selection [23]. Other 1497 
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mutation studies that reported maintained or increased growth rates in mutants were found to have 1498 

incorporated a growth selection step as well [15-17,21]. 1499 

 1500 

When comparing neutral lipid productivities, selected T. suecica cultures in the current study 1501 

exhibited a 114-123% increase in total fluorescence compared to wt, and a 90%-100% increase on a 1502 

fluorescence per cell basis (but the cultures did not show any significant differences during nutrient 1503 

replete conditions on day 0; Figure 5). These results were much higher than other UV mutation 1504 

studies without FACS or Nile red fluorescence screening, which reported only a 8-35% increase in 1505 

FA content [14,18,19]. Nevertheless, the yield improvement of this study was more similar to 1506 

studies involving microplate reader screening and FACS. Vigeolas et al. [21] screened UV-mutated 1507 

cells based on Nile red fluorescence using a 96 well-plate reader to develop C. sorokiana and S. 1508 

obliquus strains with 50-300% increase in fluorescence units per cell, corresponding to similar 1509 

increases in TAG content per cell, while Bougaran et al. [23] combined UV mutagenesis and FACS 1510 

in an I. galbana mutation-selection procedure that increased lipid productivity by 80%. It is 1511 

interesting to note that in FACS studies without mutagenesis, a T. suecica strain with up to 4-fold 1512 

increase in fluorescence signal was obtained after two rounds of sorting [24], while a 1513 

Nannochloropsis sp. strain with a 3-fold increase in total lipid content was selected after three 1514 

rounds of sorting [17]. While significantly higher than wt, the neutral lipid content of both 1515 

improved T. suecica strains in the present study was not significantly different from each other 1516 

(Figure 5). This indicates that both 50% and >98% lethal dosage can be used to produce viable 1517 

mutants with selectable traits. Nevertheless, a 50% lethal dosage was preferred as the recovery of 1518 

clones was easier and less time-consuming.  1519 

 1520 

As cell sizes between selected cells and wt cells were not significantly different during FACS 1521 

analyses, it is expected that, similar to a per cell basis (Figure 5b), lipid contents per dry weight 1522 

would also be increased (although this was not directly measured here). Although selected cells 1523 

were not found to be significantly smaller, it appears that both, a more rapid growth after N 1524 

depletion (Figure 4) as well as an increased cellular lipid fluorescence (Figure 5b), contributed to an 1525 

increased overall lipid fluorescence in the selected cells (Figure 5a). This is in alignment with the 1526 

selection protocol (Figure 1) that selected for both of these traits. GC-MS data only showed a slight 1527 

increase of total fatty acid contents in the selected strains (30.7 and 29.7 µg/mL for M5 and M24, 1528 

respectively) compared to the wt (26.8 µg/mL), raising the question whether lipids other than fatty 1529 
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acids may have contributed to the higher lipid fluorescence in the selected strains. The comparison 1530 

of FA profiles between improved strains and wt T. suecica revealed a decrease in MUFAs such 1531 

C16:1 and C18:1, accompanied by increases in PUFAs such as C16:4, C18:4 and C20:5 (Figure 6). 1532 

While certain studies report unaltered FA composition in their mutants [1,17,21], there have been 1533 

studies that have also reported elevated PUFAs. The increase of PUFA in mutants has been 1534 

documented in P. lutheri mutants irradiated by UV [19] and Nannochloropsis sp. irradiated by EMS 1535 

and N-methyl-N-nitrosourea [15,16]. Furthermore, Chaturvedi & Fujita (2006) and Chaturvedi et al. 1536 

(2004) also reported increases in C14 and reductions in C18:1. This decrease in the proportion of 1537 

saturated FAs and MUFAs in comparison to an increase in PUFAs suggests that the mutants 1538 

preferentially store lipids in the form of PUFAs. This, along with an overall increase in neutral 1539 

lipids detected by elevated Nile red fluorescence, point towards mutations occurring in the gene 1540 

coding for ACCase enzyme and the coding sequences of key desaturases(s) genes. Changes in the 1541 

ACCase enzyme, considered to be the rate-limiting step in FA biosynthesis [39], would increase the 1542 

substrate pool of TAG production, leading to more short-chain FAs (e.g. C12, C14, C16) that 1543 

become precursors for MUFAs and PUFAs, as well as an increase in overall TAG accumulation 1544 

[16]. Variations in PUFA contents between wt and selected strains also point towards mutations in 1545 

key desaturase genes, which could explain the shift towards PUFA production [16]. Another 1546 

explanation towards increased PUFA production in selected strains is the antioxidant effect of 1547 

PUFAs against reactive oxygen species (ROS) generated during mutagenesis [40]. The antioxidant 1548 

function of PUFAs in marine microorganisms, particularly eicosapentaenoic acid (EPA), has been 1549 

reviewed and points towards their stabilizing function against oxidation by ROS. This is achieved 1550 

by increased PUFA presence as membrane phospholipids to function as shield molecules [41]. 1551 

Therefore, during the course of multiple rounds of mutation and selection, selected strains with 1552 

increased PUFA production would have increased survivability towards UV-C radiation. Future 1553 

studies should also investigate whether carbon partitioning is altered in the selected strains and 1554 

whether the increased lipid content may result from a decrease of starch reserves as was found for 1555 

other strains with elevated lipid contents [42]. 1556 

 1557 

Considering the average doubling time of 2.55 days of the selected strains, the fluorescence values 1558 

obtained during the comparison to wt were obtained more than 24 cell divisions after the final 1559 

selection cycle step, and 36 divisions after UV radiation in cycle 5. This supports the idea of a 1560 

stable genetic makeup of the obtained putative mutants that produce increased neutral lipid content. 1561 

Although the nature of these putative mutations are beyond the scope of this study, the observed 1562 



97 

 

improvements could be a result of adaptation (e.g. by epigenetics), and not DNA mutations. It 1563 

cannot be ruled out that strains adapted to, instead of mutated to UV-C exposure. Therefore, the 1564 

lipid content of these strains should be evaluated again in the future, particularly after long-term 1565 

storage without selection pressure for high lipid content. At that point, unchanged lipid content 1566 

values in comparison to wt would indicate a stable genetic mutation, while epigenetic change would 1567 

cause these strains to adapt back a more wt phenotype. Unlike plant crops that undergo very few 1568 

reproductive cycles between harvests (typically just one), bred elite microorganisms are constantly 1569 

at high risk to revert back to faster growing wt-like strains. At present, the risks of this occurring for 1570 

the microalgae in this study appear reduced, as the selected strains did not compromise on their 1571 

ability to grow.  1572 
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Chapter 4: Understanding the molecular mechanism of Tetraselmis sp. lipid 1690 

production: a new transcriptional profiling approach 1691 

Another way to improve the lipid content of microalgae strains is via genetic engineering. 1692 

Successful genetic manipulation of an organism first requires a comprehensive understanding of its 1693 

genomic and transcriptomic background. With regards to lipid content improvement, key lipid-1694 

related pathways such as FA synthesis, TAG synthesis and β-oxidation pathways must first be 1695 

mapped out, and key bottlenecks and committing steps identified. While genes can be identified via 1696 

genomic sequencing, global comparative transcriptomic analysis can provide the expression profile 1697 

of each gene within lipid-related pathways, allowing for a better understanding of the molecular 1698 

mechanisms behind lipid production. This chapter, presented in Research Paper 3 “The 1699 

transcriptome of Tetraselmis during nitrogen starvation reveals two-stage lipid 1700 

accumulation.” analysed the physiological and transcriptional changes related to lipid 1701 

accumulation in Tetraselmis sp. M8 as it transitions from growth phase into nitrogen starvation 1702 

phase. An Illumina Mi-Seq sequencing platform was used to generate the transcriptome of 1703 

Tetraselmis sp. M8 and to reveal global transcriptomic changes during early stationary phase. This 1704 

mapped out key lipid-related pathways and served as a platform for qRT-PCR analyses that 1705 

investigated the expression profile of these pathways as Tetraselmis sp. M8 transition from growth 1706 

phase to starvation phase.  1707 

Key findings 1708 

• Physiological observations revealed a distinct early-stationary phase (0-48 h) and a 1709 

stationary phase (48 h onwards) in Tetraselmis sp. M8. Significant lipid accumulation could 1710 

be detected as early as 16 h after exhaustion of exogenous nitrogen, but the rate of 1711 

accumulation significantly increased from 48 h onwards and was accompanied by an arrest 1712 

in cell division.  1713 

• Illumina Mi-Seq sequencing of control and nitrogen-starved samples generated 1714 

approximately 36,000,000 reads per sample, with 593 unique genes identified as 1715 

differentially expressed by The Differential Kmer Analysis Pipeline (DiffKAP). The 1716 

expression of lipid-related pathways by DiffKAP analysis was confirmed by qRT-PCR, 1717 

which was also performed in a time course at 16, 24, 32, 48, 72 h after nitrogen deprivation.  1718 

• Lipid accumulation during early-stationary phase was found to be a result of reduced lipid 1719 

catabolism, as expression of committing steps in the β-oxidation pathway was found to be 1720 
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significantly down-regulated, while expression of lipid biosynthesis pathways remained at 1721 

basal levels.  1722 

• As cells transitioned into stationary phase, lipid biosynthesis genes were found to be 1723 

significantly up-regulated, indicating that lipid accumulation was a result of active lipid 1724 

synthesis at that stage. 1725 

• A circadian effect on gene expression was observed in only the FA synthesis pathway, while 1726 

the TAG synthesis and β-oxidation pathway was unaffected.  1727 

• Genes encoding for ACCase, PP, ACSase and ECH are potential bottlenecks of lipid 1728 

biosynthesis in Tetraselmis sp. 1729 

  1730 
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Abstract 1743 

Comparative transcriptomic analysis provides insight into the molecular mechanism of lipid 1744 

metabolism and can reveal potential genetic engineering targets in microalgae. Using RNA-Seq, 1745 

transcriptome analysis on the previously unsequenced genus Tetraselmis was performed with the 1746 

oleaginous strain Tetraselmis sp. M8. RNA-Seq was carried out at 24 h after exhaustion of 1747 

exogenous nitrogen to reveal molecular changes during early stationary phase and to map out key 1748 

lipid-related pathways. Further gene expression profiling by quantitative real-time PCR at 16, 24, 1749 

36, 48 and 72 h revealed a distinct shift in the expression of the fatty acid (FA) and triacylglyceride 1750 

(TAG) biosynthesis pathways, as well as the β-oxidation pathway, when cells transitioned from log 1751 

phase into early-stationary and stationary phase. During early-stationary phase, observed lipid 1752 

accumulation could be linked to reduced expression of lipid catabolism genes, while lipid 1753 

biosynthesis genes were maintained at basal levels. During stationary phase however, genes 1754 

involved in lipid biosynthesis were up-regulated, indicating that Tetraselmis sp. shifts from reduced 1755 

lipid consumption to active lipid production during this period, as reflected in the increase in the 1756 

rate of lipid accumulation. This process appeared to be independent from DGAT gene expression, a 1757 

key gene for lipid accumulation identified in other microalgae.    1758 
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 1759 

Introduction 1760 

Currently, microalgae are considered as one of the most promising feedstocks for biofuel 1761 

production. Under the appropriate conditions (e.g. nutrient deprivation), oleaginous microalgae can 1762 

be induced to accumulate neutral lipids or triacylglycerides (Hu et al., 2008), which can be 1763 

converted into biodiesel via transesterification. Theoretically, microalgae can produce 10 to 20 1764 

times more lipids than oil palms (Ahmad et al., 2011), and in a manner without competing for 1765 

precious arable land, biodiverse landscapes (e.g. rainforests) and freshwater resources. Despite their 1766 

potential, the high cost of large-scale production still needs to be reduced in order for microalgal 1767 

biofuel to achieve its full commercialization potential and wide-scale use. Currently, algal strain 1768 

development remains one of the most important aspects of microalgae-for-biofuel development. 1769 

Research efforts are continuously advancing bioprospecting (Nascimento et al., 2013), selective 1770 

breeding (Zayadan et al., 2014) and genetic engineering (Gimpel et al., 2013) of microalgae in an 1771 

effort to maximize growth and lipid accumulation of the highest performing strains. Importantly, 1772 

several lipid induction techniques have been identified in microalgae (Rodolfi et al., 2009; Sharma 1773 

et al., 2012). Microalgae typically reduce cell division during adverse conditions, such as nutrient 1774 

starvation or UV radiation, but are still able to accumulate starch or lipids during photosynthesis as 1775 

a survival mechanism (Timmins et al., 2009; Wang et al., 2009; Sharma et al., 2014). 1776 

Metabolic engineering via genetic modification or modulation of cultivation techniques 1777 

provides a promising area for increased lipid accumulation. This can be greatly assisted by 1778 

comprehensive genomic, transcriptomic, proteomic and metabolomic knowledge. For example, key 1779 

lipid-related pathways must be mapped out, and important bottleneck enzymes and their genes 1780 

identified as targets for manipulation. To that effect, global transcriptional profiling of microalgal 1781 

cells during lipid accumulation enables the identification of the underlying transcriptional networks. 1782 

Even without pre-existing reference genomes, comparative transcriptional analyses have been used 1783 

in microalgae to successfully map pathways and observe changes during induced lipid accumulation 1784 

(Rismani-Yazdi et al., 2011; Radakovits et al., 2012; Sun et al., 2013). In most studies, the focus 1785 

has been on metabolic pathway reconstruction and gene discovery at a single time-point, usually 48 1786 

to 96 h into starvation phase when lipid accumulation is at its peak (Guarnieri et al., 2011; Rismani-1787 

Yazdi et al., 2012; Sun et al., 2013). While this approach successfully allowed for the reconstruction 1788 

of fatty acid (FA), triacylglyceride (TAG), β-oxidation and other metabolic pathways, the limited 1789 

scope of these studies restricts our understanding how the expression of these pathways change, 1790 
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particularly during early stationary phase as cells transition from growth phase into starvation 1791 

phase. The few studies that have monitored the transcriptional profile of microalgae at various 1792 

growth stages have observed more transcriptional changes during early-stationary phase compared 1793 

to stationary phase. These changes occur particularly in photosynthesis, carbon and lipid synthesis 1794 

pathways, and can be linked to physiological changes (e.g. reduced cell division & increased lipid 1795 

synthesis) observed during that phase (Valenzuela et al., 2012; Lv et al., 2013). 1796 

 The appropriate lipid induction conditions and time point of RNA sampling are crucial in obtaining 1797 

distinct expression profiles between control and treatments cultures. Nitrogen depletion is a 1798 

commonly used method to induce lipid accumulation in microalgae (Hu et al., 2008; Rodolfi et al., 1799 

2009; Miller et al., 2010).  1800 

The flagellate green microalga Tetraselmis sp. is widely mentioned in the literature, but very little 1801 

sequence information is available on this genus in public databases. Tetraselmis sp. M8 1802 

(Chlorodendrophyceae) presents a good model organism, based on its reported ability to accumulate 1803 

high lipid content as well as its robustness to tolerate a range of environmental conditions (Chini 1804 

Zitelli et al., 2006; Rodolfi et al., 2009). Recently it has been shown that Tetraselmis cells lose their 1805 

flagella during stressful conditions, resulting in rapid settling, a feature that can significantly reduce 1806 

harvesting/dewatering costs and provide an avenue for commercial production (Lim et al., 2012). 1807 

The growth characteristics of Tetraselmis sp. M8 strain and its lipid accumulation capability and 1808 

composition were previously found suitable, in principle, for biodiesel production under both 1809 

laboratory and outdoor cultivation conditions (Lim et al., 2012).  1810 

Even in the absence of a fully sequenced and annotated genome, transcriptomic analysis by 1811 

microarrays or RNA-Seq can provide a powerful tool to improve our understanding of the 1812 

underlying physiological networks that allow microalgae to respond to environmental changes 1813 

(Nguyen et al., 2008; Rismani-Yazdi et al., 2012; Valenzuela et al., 2012; Lv et al., 2013; Sun et al., 1814 

2013). The primary objective of the present study was to gain insights into the lipid accumulation 1815 

mechanism of the genus Tetraselmis, particularly the expression of genes in the FA synthesis, TAG 1816 

synthesis and β-oxidation oxidation pathways, as cells transition from growth phase into stationary 1817 

phase. Physiological observations such as growth, lipid accumulation and FA profiles were linked 1818 

to transcriptional data obtained first by global transcriptomic sequencing, followed by quantitative 1819 

reverse transcriptase PCR (qRT-PCR) time-course analysis of each of the aforementioned 1820 

pathways.  1821 

 1822 
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 1823 

 1824 

Figure 1. Growth, lipid accumulation and chlorophyll content of Tetraselmis sp.  M8 under 1825 

nitrogen & phosphate-starved conditions. A. Cell density growth curve of Tetraselmis sp. M8, 1826 

cultured semi-continuously with dilutions every 2 days, showed reduced cell growth in nutrient 1827 

deplete cultures. B. Characterization of lipid accumulation via Nile red fluorescence (shown as 1828 

intensity per cell number) displayed increased lipid accumulation under nitrogen-starved conditions. 1829 

Boxed data points indicate time and treatments at which cells were harvested for RNA sequencing. 1830 

“c” and “p” indicate significant differences from control and phosphate-starved treatments, 1831 

respectively (Student’s T-test, P<0.05). C. Characterization of chlorophyll content (a, b and total) 1832 
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per cell number showed reduced chlorophyll content after 48 h of nitrogen starvation. “a” indicates 1833 

significant differences of chlorophyll a content to control. “A” indicates significant differences of 1834 

chlorophyll a content to both control and phosphate-starved treatment. “B” indicates significant 1835 

differences of chlorophyll b content to both control and phosphate-starved treatments. “T” indicates 1836 

significant differences of total chlorophyll content to both control and phosphate-starved treatments. 1837 

D-F. Epifluorescent images of Tetraselmis sp. M8 at day 1 of nutrient deprivation experiments, 1838 

using control (D), nitrogen-starved (E), and phosphate-starved (F) conditions, reveal increased lipid 1839 

accumulation in nitrogen-starved cells. All images were taken at 400x magnification. 1840 

Results 1841 

Nitrogen rather than phosphate deprivation leads to lipid biosynthesis in Tetraselmis  1842 

Nutrient deprivation is a well established method for inducing lipid biosynthesis in 1843 

microalgae and it had to be determined whether nitrogen or phosphorus starvation had the strongest 1844 

effect in Tetraselmis sp. M8. Semi-continuous cultures of Tetraselmis sp. M8 were established and 1845 

allowed to grow in parallel for three feeding cycles to adapt the cultures to exponential growth with 1846 

regular nutrient supply. Nitrogen and phosphorus deprivation treatments were then initiated by 1847 

feeding with nitrogen- and phosphate-deficient F/2 medium, respectively. Physiological parameters 1848 

such as cell density, lipid accumulation and chlorophyll content were monitored for the duration of 1849 

the experiment using replicates from three separately-grown cultures for each treatment (Figure 1). 1850 

The mock-treated control cultures displayed the highest cell density before and after dilution on day 1851 

2. Both nitrogen and phosphate-starved cultures were found to have significantly reduced cell 1852 

accumulation from day 1 onwards (Figure 1A, P<0.05). Phosphate-starved cultures had reduced 1853 

growth rates when compared to control cultures but accumulated cells throughout the experiment, 1854 

while nitrogen-starved cultures only underwent cell divisions until day 2. Lipid accumulation was 1855 

observed via measurement of Nile red fluorescence per cell number of the cultures (Figure 1B). 1856 

Nitrogen-starved cultures showed significantly higher Nile red fluorescence than the other 1857 

treatments from day 1 onwards (P<0.05), with a marked increase particularly after day 2 of 1858 

starvation. However, Nile red fluorescence for phosphate-starved cultures was only significantly 1859 

higher than the controls on day 1, and had similar fluorescence levels on subsequent days, 1860 

suggesting that N, rather than P starvation had the strongest effect on lipid accumulation in 1861 

Tetraselmis sp. M8. Microscopic analysis of day 1-cultures also confirmed that nitrogen-deprived 1862 

cells (Figure 1D) had the most and largest lipids bodies, followed by phosphate-deprived (Figure 1863 

1E) and control cells (Figure 1F), which showed very small lipid bodies.   1864 
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 1865 

 1866 

 1867 

Figure 2. Fatty acid profile of control and nutrient deficient culture at day 1 of the RNA-Seq 1868 

experiment. Inserted table: Percentage of saturated FA (SFA), monounsaturated FA (MUFA) and 1869 

polyunsaturated FA (PUFA). “c” indicates significant differences between nitrogen-starved and 1870 

control cultures. (Student’s T-test; P<0.05). 1871 

 1872 

GC/MS analyses were performed on day 1 after treatments to determine FA composition. Nitrogen-1873 

starved cultures exhibited significantly higher saturated (SFA) and monounsaturated FAs (MUFAs) 1874 

composition compared to controls, while polyunsaturated FAs (PUFAs) were significantly lower 1875 

(P<0.05, Figure 2).  C16 and C18:1 FAs showed the most significant increases, 5.6 % and 7.1% 1876 

respectively, while C18:3 decreased the most, 11.5%. It was also found that while there was a 1877 

general increase in SFAs and MUFAs, there were significant decreases in C14:1 and C16:1 FAs, 1878 

indicating that Tetraselmis sp. M8 could be storing lipids in the form of C16 and C18:1. 1879 

Chlorophyll content was also measured under the different nutrient deprivation treatments (Figure 1880 

1c). Compared to other treatments, N starvation led to significant increases in chlorophyll a on day 1881 

1, but was followed by significant decreases on day 2 and an overall decrease in chlorophyll content 1882 

(a & b) on day 3. 1883 
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 1884 

RNA-Seq of Tetraselmis sp. cells reveals distinct sequences compared to other known 1885 

microalgal sequences  1886 

To determine which genes would be required for N deprivation-induced lipid accumulation 1887 

in Tetraselmis sp. M8, cell harvesting for RNA sequencing was performed on day 1 control and 1888 

nitrogen-starved cultures (replicates from three separately-grown cultures each). This time point 1889 

was selected because it was the earliest time point to exhibit significant lipid accumulation. The 1890 

concentration of cDNA was normalized and then pooled for each treatment. Sequencing using the 1891 

Illumina Mi-Seq platform of the cDNA libraries produced approximately 36,000,000 reads per 1892 

treatment, at an average length of 151 bp per read. Initially, Tophat/Cufflinks was used to assemble 1893 

the RNA-Seq data using the closest available genome, Chlamydomonas reinhardtii. However, the 1894 

analysis was unsuccessful with less than 0.02% reads mapped and so this approach was abandoned. 1895 

The Differential Kmer Analysis Pipeline (DiffKAP) approach was then used to identify 1896 

Differentially Expressed Reads (DERs) between control and N-starved treatments (see Materials 1897 

and Methods for details). A total of 990,249 DERs were identified as higher expressed in the 1898 

controls (also considered as down-regulated in N-deprived samples), while 1,046,741 DERs were 1899 

identified as higher expressed in N-deprived cultures. These DERs were then annotated by BLAST-1900 

matching reads to Swissprot. A total of 195,291 DERs that were higher expressed in controls and 1901 

24,400 that were higher expressed in N-deprived samples could be annotated. This revealed a total 1902 

of 593 unique genes that were differentially expressed between treatments (Supplementary Table 1903 

1). It should be noted that this only represents 10.68% of total DERs due to stringent BLAST 1904 

criteria, as well as low similarity to other available sequences. Out of those, the majority of DERs 1905 

matched to Arabidopsis (18%), while the closest-related alga, Chlamydomonas reinhardtii, only 1906 

had a 3.6% match.  1907 

 1908 

Function of differentially expressed genes during N-deprivation of Tetraselmis  1909 

To assign functions to differentially expressed genes, , annotated DERs in both treatments 1910 

were assigned with GO terms using the Blast2Go platform, with their distribution presented in 1911 

Figure 3 (full dataset in Supplementary Table 2). The distribution of DERs from nitrogen-deprived 1912 

treatments was found to be distinctively different from those of control samples. In the N-starved 1913 

treatment, carbohydrate metabolic processing (45%) and nucleotide binding (42%) accounted for 1914 

the largest percentage of DERs, followed by DERs coding for catabolic processes, generation of 1915 
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precursor metabolites and response to stress (~20-30%). In comparison, the functional categories 1916 

that accounted for the largest percentage of DERs in control sequences were plastid, thylakoid, 1917 

generation of precursor metabolites and protein complex (~70-90%), followed by cellular protein 1918 

modification process, carbohydrate metabolic process, catabolic process and response to abiotic 1919 

stimulus (~10-33%). DERs linked to lipid metabolic process were found in both control and N-1920 

starved treatments at 7% and 11%, respectively, while DERs linked to lipid particle were found at 1921 

0.9% and 0.1%, respectively.  1922 

 1923 

 1924 

Figure 3. Distribution of Gene ontology (GO) terms assigned to annotated differentially 1925 

expressed reads (DERs) in Control and Nitrogen-starved treatments. Data are shown as a 1926 

percent of total annotated DERs from each treatment. Only GO terms containing more than 5% of 1927 

DERs are included in this figure.  1928 

 1929 

To identify and construct the lipid biosynthesis and degradation (including β-oxidation and lipases) 1930 

pathways in Tetraselmis sp., genes coding for key enzymes in these pathways were identified by 1931 

BLAST-searching the sequenced cDNA library uploaded onto TAGDB, using reference genes. In 1932 
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addition, following the Illumina Mi-Seq transcriptomics experiment, a subsequent independent time 1933 

course experiment was performed to investigate the expression of these pathways in more detail at 1934 

16, 24, 32, 48 and 72 h after nitrogen starvation (samples from three separately-grown and treated 1935 

cultures, each). Monitoring of the physiological parameters revealed cell accumulation in the N-1936 

starved cultures, similar to the RNA-seq experiment (Figure 4). As previously observed, cell 1937 

numbers in N-starved cultures increased only until 48 h, and then subsequently stopped dividing, 1938 

with significant differences between treatments occurring from 32 h onwards (Figure 4a, P<0.05). 1939 

In comparison, cell numbers in control cultures tripled between 0 and 48 h, and continued to 1940 

increase after dilution and feeding. Lipid accumulation in the time-course experiment exhibited 1941 

similar results to that of the RNA-Seq experiment. The nitrogen-starved cultures were found to 1942 

accumulate significantly more lipids as early as 16 h onwards (Figure 4b, P<0.05), and also 1943 

exhibited another marked increase after 48 h. RNA was extracted from control and N-starved 1944 

cultures at every time point, and qRT-PCR analysis performed to determine the expression of the 1945 

various pathways. Primers for qRT-PCR experiments were based on conserved regions, using 1946 

RNA-Seq data, in an effort to capture most gene family members.  1947 

Figures 5, 6 and 7 show the reconstructed pathways for FA synthesis, TAG synthesis and lipid 1948 

degradation based on the identified enzymes, using combined DiffKAP and qRT-PCR results.  1949 

Based on the DiffKAP results, the entire FA synthesis pathway, except for malonyl-CoA:ACP 1950 

transacylase (MAT), was found to be down-regulated when compared to controls. The expression 1951 

of genes coding for the entire TAG synthesis pathway remained unchanged. In the lipid degradation 1952 

pathway, genes encoding acyl-CoA synthetase (ACSase) was down-regulated, and acyl-CoA 1953 

oxidase (ACO) was up-regulated (Figure 7). Similarly, qRT-PCR data found the entire FA synthesis 1954 

pathway to be significantly down-regulated, except for genes encoding 3-ketoacyl-ACP reductase 1955 

(KAR) and enoyl-ACP reductase (ENR) whose expression remained unchanged. Transcript 1956 

abundances of genes encoding acetyl-CoA carboxylase (ACCase), ketoacyl-ACP synthase (KAS) 1957 

and Malonyl-CoA:ACP transacylase (MAT) were found to be 4- to 5-fold lower (P<0.05) in the N-1958 

starved treatments. The expression level of 3-ketoacyl-ACP reductase (KAR)-encoding gene(s) was 1959 

lower as well. qRT-PCR analysis of the genes in the TAG synthesis pathway confirmed the 1960 

DiffKAP findings, except for diacylglycerol acyltransferase (DGAT)-encoding gene(s) exhibiting 1961 

reduced expression levels (2-fold, P<0.05). In the lipid degradation pathway, ACSase expression 1962 

levels were significantly lower in nitrogen-starved cells by 2-fold, also confirming DiffKAP results. 1963 

Furthermore, although this was not seen in the DiffKAP results, qRT-PCR analysis revealed enoyl-1964 

CoA hydratase (ECH) expression levels to be 10-fold lower (P<0.05) than in control cultures. The 1965 

ACO-encoding gene(s) was also found to be up-regulated, although not at a significant level. 1966 
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Overall, qRT-PCR analysis confirmed the DiffKAP findings, with no contrasting results being 1967 

found. 1968 

 1969 

 1970 

Figure 4. Growth and lipid accumulation of Tetraselmis sp. M8 in a time-course experiment 1971 

using control and nitrogen-starved cultures. Grey shaded areas indicate time in dark cycle. A. 1972 

Growth curve of Tetraselmis sp. M8 cultures with significant differences (*) in cell density after 32 1973 

h (Student’s T-test; P<0.05). B. Characterization of lipid accumulation via Nile red fluorescence per 1974 

cell number with nitrogen-starved cultures displaying significantly higher Nile red fluorescence 1975 

from 16 h onwards (Student’s T-test; P<0.05).  1976 

 1977 

Despite earlier signs of cellular lipid accumulation, FA and TAG synthesis genes were only 1978 

upregulated at 48 h after N deprivation 1979 

Irrespective of experimental approach taken, gene expression levels in the FA synthesis 1980 

pathway of nitrogen-starved cells were mostly down-regulated or unchanged in the first 24 h, but 1981 

were then upregulated significantly from 48 h onwards (Figure 5). In the first 24 h, the expression 1982 

levels of genes encoding ACCase, KAR and 3-hydroxyacyl-ACP dehydratase (HD) (FA synthesis) 1983 

in control cells were 3-, 5.9- and 113-fold lower, respectively, (P<0.05) than in control cells, but 1984 

were then significantly up-regulated 3- to 11-fold higher (P<0.05) than control cells at 48 h and 72 1985 

h. For the MAT-encoding gene(s), expression levels between treatments were similar until 72 h, 1986 

when it was down-regulated by 2.5-fold (P<0.05). The expression level of ENR-encoding gene(s) 1987 

was similar between the treatments until 48 h onwards when this gene was found to be significantly 1988 

down-regulated in control cells (8 fold, P<0.05). In the nitrogen deprivation treatment, the KAS-1989 

encoding gene(s) was consistently down-regulated throughout the experiment. In the TAG synthesis 1990 
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pathway (Figure 6), gene expression remained largely unchanged between control and treated cells, 1991 

particularly in the first 24 h. After 48 h onwards, upregulation of the PP-encoding gene(s) in 1992 

nitrogen-starved cells was observed (P<0.05), followed by the upregulation of the gene(s) encoding 1993 

GK at 72 h (4-fold, P<0.05). No differences in expression were observed between control and 1994 

treatment for genes encoding glycerol-3-phosphate O-acyltransferase (GPAT) and 1-acyl-sn-1995 

glycerol-3-phosphate acyltransferase (AGPAT) throughout the entire experiment. DGAT-encoding 1996 

gene(s) was found to be significantly down-regulated (P<0.05) at 48 h and 72 h after nitrogen 1997 

starvation. In the lipid degradation pathway (Figure 7), only gene(s) encoding TAG lipase was 1998 

observed to be down-regulated (4.6-fold, P<0.05) in N-starved cells, while other genes remained 1999 

unchanged between treatments. Changes in gene expression can be observed from 48 h onwards, 2000 

with genes encoding ACSase being up-regulated (5-fold, P<0.05) in nitrogen-starved cellsand ECH 2001 

being down-regulated (83-fold, P<0.05) at 72 h.  2002 

In summary, as FA and TAG synthesis genes were mostly down-regulated at 24 h after N 2003 

deprivation (Figures 5 and 6), the observed increased lipid accumulation of cells harvested at this 2004 

time (Figures 1, 4B) is likely to be attributed to a reduced rate of FA degradation by beta oxidation 2005 

(Figure 7).  Cells at a later stage then clearly show upregulation of FA and TAG synthesis which 2006 

coincides with further increases in lipid fluorescence. 2007 

 2008 

Circadian effect 2009 

The expression levels of the pathways were also investigated at 16 h (at the end of the dark 2010 

cycle) and at 32 h (at the end of the light cycle) to determine the effects of the circadian rhythm on 2011 

gene expressions (Figure 8). The complete set of graphs for all genes including the 16 h and 32 h 2012 

time points is available in Supplementary Figures 1-3. In genes that encode ACCase, KAR, HD and 2013 

glycerol kinase (GK) (Figure 6, highlighted yellow), a circadian effect was observed in both control 2014 

and nitrogen-starved treatments, whereby expression was significantly up-regulated after and before 2015 

the dark cycle. In genes encoding MAT, 3-ketoacyl-ACP synthase (KAS), ENR and 1-acyl-sn-2016 

glycerol-3-phosphate acyltransferase (AGPAT) (Figure 6, highlighted orange) however, the 2017 

circadian effect was only observed in the control treatment, while gene expression in N-starved 2018 

cells remained consistent throughout the 16 h and 32 h time points. Furthermore, while all the genes 2019 

affected by the circadian cycle presented a diurnal expression, ENR- and GK-encoding genes 2020 

showed increased expression only towards the end of the light cycle at 32 h. Lastly, the circadian 2021 

rhythm had no measurable effect on genes involved in lipid catabolism.  2022 



115 

 

 2023 

Figure 5. Fatty acid synthesis pathway and changes in gene expression under nitrogen 2024 

deprivation. Genes in red font were down-regulated in nitrogen-starved treatment according to 2025 
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DiffKAP analysis. Inserted tables show qRT-PCR analysis of the RNA-seq RNA, with bold 2026 

numbers indicating significant differences (Student’s T-test; P<0.05). Graphs show qRT-PCR 2027 

expression analysis of genes at 0, 24, 48 and 72 h of the time course experiment, with asterisks (*) 2028 

indicating significant differences (Student’s T-test; P<0.05).  Genes affected by the circadian 2029 

rhythm were highlighted yellow (both control and nitrogen-starved affected) and orange (only 2030 

control affected). Acetyl-CoA carboxylase (ACCase); Malonyl-CoA:ACP transacylase (MAT); 3-2031 

ketoacyl-ACP synthase (KAS); 3-ketoacyl-ACP reductase (KAR); 3-hydroxyacyl-ACP dehydratase 2032 

(HD); Enoyl-ACP reductase (ENR); FAT (Acyl-ACP thioesterase). 2033 
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 2034 

Figure 6. Triacylglyceride synthesis pathway and changes in gene expression under nitrogen 2035 

deprivation. Genes in red font were found down-regulated in DiffKAP analysis of RNA-seq RNA. 2036 
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Inserted tables show qRT-PCR analysis of the RNA-seq RNA, with bold numbers indicating 2037 

significant differences (Student’s T-test; P<0.05). Inserted graphs show qRT-PCR expression 2038 

analysis of genes at 0, 24, 48 and 72 h of the time course experiment, with asterisks (*) indicating 2039 

significant differences (Student’s T-test; P<0.05). Genes affected by the circadian rhythm were 2040 

highlighted yellow (both control and nitrogen-starved affected) and orange (only control affected). 2041 

Glycerol kinase (GK); Glycerol-3-phosphate O-acyltransferase  (GPAT); 1-acyl-sn-glycerol-3-2042 

phosphate acyltransferase (AGPAT); Phosphatidate phosphatase (PP); Diacylglycerol O-2043 

acyltransferase (DGAT); Triacylglyceride (TAG) lipase.  2044 

 2045 
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 2046 

Figure 7. Lipid degradation pathway and changes in gene expression under nitrogen 2047 

deprivation. Genes in red font were found down-regulated in DiffKAP analysis of RNA-seq RNA. 2048 
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Inserted tables show qRT-PCR analysis of the RNA-Seq RNA, with bold numbers indicating 2049 

significant differences (Student’s T-test; P<0.05). Inserted graphs show qRT-PCR expression 2050 

analysis of genes at 0, 24, 48 and 72 h of the time course experiment, with asterisks (*) indicating 2051 

significant differences (Student’s T-test; P<0.05). Acyl-CoA synthetase (ACSase); Acyl-CoA 2052 

oxidase (ACO); Enoyl-CoA hydratase (ECH); Hydroxyacyl- CoA dehydrogenase (HAD); 2053 

Ketoacyl- CoA thiolase (KAT). 2054 

 2055 

 2056 

Figure 8. qRT-PCR expression analysis of circadian genes at 0, 16, 24, 32, 48 and 72 h after 2057 

nitrogen depletion. Grey shaded areas indicated dark cycle in the first 48 h. Relative transcript 2058 

abundance of KAR-encoding gene(s) was found to increase just after and right before the dark cycle 2059 

in both control and nitrogen-starved treatments, while only control cells exhibited a circadian 2060 

response in MAT-encoding gene(s).  2061 

 2062 

Discussion 2063 

Oleaginous microalgae such as Tetraselmis sp. have the potential to accumulate large 2064 

quantities of lipids during nutrient deplete conditions. To understand the expression profiles of 2065 

lipid-related pathways in Tetraselmis sp. during the early stages of lipid accumulation, this study 2066 

first determined the best nutrient conditions to stimulate lipid production and timepoint for RNA 2067 

sampling. The neutral lipid content of Tetraselmis sp. was quantified by measuring its Nile red 2068 

fluorescence. Nile red is commonly used as a fluorescence probe for neutral lipid detection in 2069 

microalgae (Mendoza et al., 2008; Chen et al., 2009; Doan and Obbard, 2011; Montero et al., 2011; 2070 

Bougaran et al., 2012; Mendoza et al., 2012; Vigeolas et al., 2012), with a strong correlation 2071 
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between fluorescence signal and total neutral lipid content well established (de la Jara et al., 2003; 2072 

Chen et al., 2009). RNA was extracted at 24 h after treatments and was followed by Illumina Mi-2073 

Seq transcriptomic analysis and qRT-PCR on control and nitrogen-starved cultures. This then 2074 

enabled the assembly of the TAG synthesis, lipid synthesis and lipid catabolism pathways for 2075 

Tetraselmis sp., including the differential expression of genes in those pathways, along with other 2076 

major gene groups between the two treatments. Data from this first round of “RNA-Seq” analysis 2077 

was followed by a second “detailed time course” experiment that analyzed the differential 2078 

expression of the aforementioned pathways at 16, 24, 32, 48 and 72 h by qRT-PCR. Primers were 2079 

designed in conserved regions based on reads with significant matches to the corresponding genes, 2080 

which allowed transcript quantification for several differentially expressed gene family member 2081 

simultaneously. However, it should be mentioned that this does not include reads obtained from 2082 

transcripts that were not differentially expressed.      2083 

 2084 

Pysiological response of Tetraselmis sp. to nutrient depletion 2085 

Physiological observations (Figure 1) of Tetraselmis sp. M8 during nutrient deprivation 2086 

revealed that nitrogen and not phosphate depletion induced lipid accumulation. This is similar to 2087 

many other microalgae (Rodolfi et al., 2009; Miller et al., 2010; Rismani-Yazdi et al., 2012; 2088 

Valenzuela et al., 2012) and shows that the transition to starvation phase, detected via a significant 2089 

increase in lipid accumulation compared to control, was as early as 16 h after exhaustion of 2090 

exogenous nitrogen. Furthermore, N-deprived cultures were found to undergo just one doubling 2091 

period within the first 48 h, after which cell growth ceased and the rate of lipid accumulation 2092 

significantly increased. This sudden halt in growth and increase in lipid content after 1 doubling 2093 

period also coincides with a significant decrease in chlorophyll a content (Figure 1C), and may 2094 

indicate the depletion of internal nitrogen stores and the transition from early-starvation to 2095 

starvation phase. Changes in these physiological parameters during the transition from early-2096 

stationary to stationary phase within the first 48 h have also been observed in Botryospharella 2097 

sudeticus (Sun et al., 2013), Phaeodactylum tricornutum (Valenzuela et al., 2012) and Neochloris 2098 

oleoabundans (Rismani-Yazdi et al., 2012).   2099 

 2100 

Functional category analysis of Tetraselmis sp. transcriptome during early-stationary phase 2101 
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RNA sequencing of control and nitrogen-starved treatments were performed on RNA 2102 

sampled 24 h after nitrogen depletion using an Illumina Mi-Seq platform. This was followed by 2103 

DiffKAP analysis (Figure 9), which revealed reads that were differentially expressed between the 2104 

two different sets of transcriptomes. These DERs were then annotated by BLAST-matching to 2105 

Swissprot and the annotated DERs were assigned with GO terms to determine the functional 2106 

categories that were differentially expressed (Figure 3). In the control cultures, GO terms linked to 2107 

plastid, thylakoid, generation of precursor metabolites and protein complex were each assigned 2108 

more than 70% of DERs, indicating down-regulation of genes linked to these pathways in N-starved 2109 

cultures that had less than 25% of DERs assigned to similar terms. This finding, when taken into 2110 

account the high abundance of DERs linked to carbohydrate metabolic process, nucleotide binding, 2111 

catabolic process and stress response in nitrogen-starved cultures, suggests a shift in carbon flux 2112 

away from photosynthesis as the cells respond to unfavorable growth conditions and transition into 2113 

stationary phase. These changes in transcript abundance can be linked to the reduction in 2114 

chlorophyll content 24 h later, as thylakoids are degraded and not replaced. Other microalgae 2115 

transcriptome studies have documented down-regulation of photosynthesis-related genes during 2116 

nitrogen deprivation, and suggest that light harvesting proteins may be in excess, and that this 2117 

response is linked to the recycling of nitrogen-rich proteins, but with no immediate effect on 2118 

photosynthesis capacity (Valenzuela et al., 2012; Lv et al., 2013; Sun et al., 2013). This response, 2119 

along with the observed reduction of transcripts linked to protein complex suggests that Tetraselmis 2120 

sp. cells begin to convert sugar and change nitrogen allocation during early-stationary phase.  2121 

While the reduction in protein synthesis support the observations of reduced cell accumulation, it is 2122 

interesting to find that transcripts linked to cell growth, cell cycle and reproduction were more 2123 

abundant in the transcriptome from nitrogen-deprived cells. The latter group may include negative 2124 

regulators of cell growth and reproduction, as cell density in starved cultures did not increase 2125 

(Figure 1A). Transcripts linked to lipid particle and lipid metabolic processes were also found to be 2126 

higher in nitrogen-deplete cultures, which was reflected in the larger lipid particles observed by 2127 

microscopic analyses (Figure 1E).  2128 

 2129 

Lipid accumulation during early-stationary phase of Tetraselmis sp. possibly due to reduced 2130 

β-oxidation.  2131 

To further analyze key pathways linked directly to lipid accumulation in Tetraselmis sp., 2132 

individual genes within FA synthesis, TAG synthesis and lipid catabolism were identified and 2133 
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linked to associated DERs from the DiffKAP analysis (Figure 6-8). This was followed by qRT-PCR 2134 

analysis of these pathways to confirm the DiffKAP analysis as well as a time-course analysis of 2135 

these genes. At 24 h after exhaustion of exogenous nitrogen, the entire FA synthesis pathway was 2136 

down-regulated. Expression of both TAG synthesis and lipid catabolism pathways was unchanged, 2137 

with only DGAT- and ACSase-encoding genes down-regulated in their respective pathway. These 2138 

results were confirmed in the follow up time-course experiment, which had similar expression 2139 

profiles at 24 h post nitrogen depletion. 2140 

 2141 

In Tetraselmis sp., although FA synthesis is down-regulated, the down-regulation of genes (TAG 2142 

lipase, ACSase) at the committing steps, as well as at the ECH-gene of the β-‐oxidation pathway 2143 

may indicate that the observed increase in lipid accumulation at this time point is a result of reduced 2144 

lipid degradation, rather than increased lipid synthesis. This observation has also been observed in 2145 

Nannochloropsis gaditana, where the lack of up-regulation amongst lipid biosynthesis genes 2146 

despite increased lipid production has been attributed to sufficiently abundant existing lipid 2147 

production machinery carried over from growth phase, coupled with a shift in carbon flux away 2148 

from carbohydrate synthesis (Radakovits et al., 2012). There is evidence supporting this in 2149 

Tetraselmis sp., as the maintenance of basal levels lipid production coupled with the decrease of 2150 

lipid catabolism would result in an overall increase in lipid production. Also similar to N. gaditana 2151 

and P. tricornutum, the observed down-regulation of genes encoding fructose-1,6-biphosphate and 2152 

fructose-1,6-biphosphate aldolase (Supplementary Table 1), key regulatory enzymes of carbon 2153 

metabolism (Calvin cycle and gluconeogenesis) in Tetraselmis sp., suggests a possible shift in the 2154 

carbon flux away from carbohydrate synthesis to lipid synthesis. This could contribute to the 2155 

increase of lipid production as carbon is being “pushed” into FA synthesis and not being “pulled” 2156 

by increased FA synthesis genes (Radakovits et al., 2012; Valenzuela et al., 2012; Yang et al., 2157 

2013). This diversion of carbon towards lipid metabolism is further supported by the observed 2158 

reduction in starch synthase genes (Supplementary Table 1). Overall, results in this study suggest 2159 

that the observed lipid accumulation of Tetraselmis sp. at 24 h is the result of a reduction in lipid 2160 

catabolism, coupled with a possible shift in carbon flux towards lipid synthesis.  2161 

 2162 

High lipid accumulation during stationary phase of Tetraselmis sp. due to active FA synthesis  2163 

The expression of lipid-related genes of Tetraselmis sp. M8 at 48 h and 72 h after nitrogen 2164 

deprivation was analyzed in the time course experiment. The aim was to investigate the increase in 2165 
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rate of lipid accumulation, as well as determine if the lack of expression in FA synthesis and TAG 2166 

synthesis pathways were consistent throughout the entire stationary phase. The expression of the 2167 

entire FA pathway in nitrogen-deprived cultures was significantly higher than the control cultures 2168 

after 24 h (Figure 6). The committing steps of TAG synthesis (GK- and GPAT-encoding genes) and 2169 

the phosphatidate phosphatase (PP)-gene were also found to be up-regulated in nitrogen-deprived 2170 

cultures (Figure 7). Interestingly, both TAG lipase and ACSase-encoding genes were similarly 2171 

upregulated in nitrogen-starved treatments, with only the ECH-gene being down-regulated at 72 h. 2172 

These observations suggest that lipid accumulation after 24 h has switched from a result of decrease 2173 

in catabolism to an increase in FA and TAG synthesis activity. Tetraselmis sp. M8 cells would be 2174 

actively producing more lipids as opposed to just consuming less, which would explain the increase 2175 

in the rate of lipid accumulation. The lack of a clear significant increase in many TAG synthesis 2176 

genes may suggest the TAG assembly pathway on a whole, may be more post-transcriptional 2177 

controlled in Tetraselmis sp., particularly for DGAT which exhibited reduced expression during 2178 

nitrogen-starvation. Post-transcriptional control of DGAT has been reported in proteomics studies 2179 

of Chlorella vulgaris (Guarnieri et al., 2011) and Brassica napus (Nykiforuk et al., 2002), and has 2180 

also been suggested for Neochloris oleoabundans (Rismani-Yazdi et al., 2012). The evidence for 2181 

post-transcriptional control of DGAT is further supported by the lack of the 2182 

phospholipid:diacylglycerol acyltransferase (PDAT) gene within the Tetraselmis sp. transcriptome 2183 

comprising more than 73,000,000 reads. This indicates that that Tetraselmis sp. may lack the acyl-2184 

CoA-independent mechanism for TAG biosynthesis that has been found in certain microalgae (e.g. 2185 

Dunaliella tertiolecta; Rismani-Yazdi et al., 2011), and thus relies solely on the TAG synthesis 2186 

pathway for lipid production. Further proteomic and metabolic studies have to be performed to 2187 

confirm this. The up-regulation of genes (e.g. for TAG-lipase and ACSase) within the β-‐oxidation	  2188 

pathway during starvation phase is not completely unexpected, and has previously been observed 2189 

in P. tricornutum in association with changing membrane dynamics to cope with nutrient depletion 2190 

(Valenzuela et al., 2012). The ECH-encoding gene however, was found to be progressively down-2191 

regulated after 24 h, and could present a potential bottleneck in the pathway. Nevertheless, the 2192 

increased rate in lipid accumulation observed after 24 h, coupled with the up-regulation of the FA 2193 

synthesis pathway is indicative that Tetraselmis sp. has transitioned from a state of reduced lipid 2194 

consumption during early-stationary phase to a state of active lipid production during stationary 2195 

phase.  2196 

  2197 
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Circadian effect on expression of lipid-related pathways 2198 

Gene expression of Tetraselmis sp. lipid pathways was analyzed at 16 h (start of light cycle) 2199 

and at 32 h (light/dark cycle transition) after nitrogen deprivation to identify lipid-related genes that 2200 

were affected by the circadian rhythm (Figure 9). These time points were removed from Figures 6-8 2201 

graphs to rule out the circadian influence on the overall expression analyses. Within the FA 2202 

pathway, GK- and AGPAT-encoding genes were found to be affected by the circadian cycle, while 2203 

genes in the lipid catabolism pathway were unaffected. Furthermore, the majority of these genes 2204 

(except for those encoding ENR and GK) were found to have a divergent expression, exhibiting a 2205 

spike in expression just at the start and end of the light cycle. This was different from those in P. 2206 

tricornutum (Chauton et al., 2013), where most of the FA synthesis genes showed increased 2207 

expression only at the onset of the light cycle, while β-oxidation genes showed increased  2208 

expression towards the end. This could suggest that FA synthesis in Tetraselmis sp. could be linked 2209 

to photosynthesis and the changing influx of carbon, while TAG and β-oxidation is not. 2210 

Furthermore, nitrogen-starvation appears to have an overriding effect on certain genes such as those 2211 

encoding MAT, KAS, ENR and AGPAT, where a spike in expression at the start or end of the light 2212 

cycle was no longer observed in comparison with control cultures.  2213 

 2214 

Nitrogen-starvation improves FA profile of Tetraselmis sp. for potential biodiesel production 2215 

A main reason Tetraselmis sp. presents a suitable feedstock for biodiesel production is its 2216 

suitable FA composition (Lim et al., 2012). Under nitrogen-deplete condition, the FA profile of 2217 

Tetraselmis sp. M8 was found to increase in its proportion of saturated (C16) and monounsaturated 2218 

FA (C18:1), and to decrease in polyunsaturated FA (C16:3, C18:3, C18:3,; Figure 2). Several genes 2219 

encoding enzymes involved in FA desaturation were identified by DiffKAP to have decreased 2220 

expression in nitrogen-deprived cultures (Supplementary Table 1), such as genes encoding omega-6 2221 

FA desaturase, palmitoyl-monogalactosyldiacylglycerol delta-7 desaturase, lipid desaturase ADS3.2 2222 

and delta-9 acyl-lipid desaturase. Desaturases such as delta-9 acyl- lipid desaturase have been found 2223 

in other microalgae that have a similar reduction in poly-unsaturated FA and an increase in 2224 

saturated FA (C16), improving their FA content’s cetane number and resulting biodiesel (Miller et 2225 

al., 2010; Rismani-Yazdi et al., 2012). 2226 

 2227 

DiffKAP vs qRT-PCR and experimental limitations 2228 
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There are several limitations associated with this study, most of which are present due to the 2229 

fact that Tetraselmis sp. is an unsequenced organism. The initial attempt at transcriptome assembly 2230 

to C. reinhardtii and Volvox carteri genomes had a <0.02% match, and we therefore used DiffKAP 2231 

to identify differentially-expressed read between the two treatments. Reads that were revealed as 2232 

either highly expressed in control or nitrogen-starved treatments were then annotated to Swissprot 2233 

by BLAST analyses. Limitations arose due to the high stringency of the BLAST parameters (e-2234 

value 10-16), coupled with the fact that Tetraselmis sp. sequences were not closely related to any 2235 

available genomes. This resulted in only 10.68% of DERs being annotated, leaving nearly 90% of 2236 

the DiffKAP results unannotated. This could have caused certain genes in our DiffKAP analysis of 2237 

the identified lipid metabolism pathways as not being differentially expressed. For example, genes 2238 

encoding MAT, DGAT and ECH, which were classified as “not differentially expressed” by 2239 

DiffKAP, although qRT-PCR analysis revealed these to be significantly down-regulated at 24 h in 2240 

both RNA-Seq and time-course experiments. Primers for this experiment were designed based on 2241 

the consensus sequence of all reads (extracted via TAGDB) that were related to a reference gene, 2242 

and thus the qRT-PCR results would more likely reflect the overall expression of whole gene 2243 

families, and not be limited to what was annotated. The nature of qRT-PCR analysis and the 2244 

primers would also explain the expression of genes that encode ACO and ENR, whose differential 2245 

expression was identified by DiffKAP, but not by qRT-PCR analysis. This is because DiffKAP 2246 

would have identified individual genes as being differentially expressed, while qRT-PCR analysis 2247 

revealed the gene family as being unchanged. Therefore, due to the limitations caused by the low 2248 

degree of annotation in DiffKAP, results from this analysis were used primarily as an overview of 2249 

gene expression in Tetraselmis sp. This was then followed up with qRT-PCR analysis, providing a 2250 

more accurate representation of gene expression in the lipid pathways.  2251 

 2252 

Another limitation in this study is the discrepancies in the feeding regime of the RNA-Seq and 2253 

time-course experiments. Cultures in the time-course experiment were fed with full strength F-2254 

media and diluted to 0.5 x 106 cells/mL every 48 h, compared to F/2 media and diluted by half in 2255 

the RNA-Seq experiment, effectively giving the cells in the time-course experiment more nutrients 2256 

per cell. This was done to induce a more extreme starvation difference, and by extension a more 2257 

distinct transcription profile between the two treatments as more nutrients would be available for 2258 

control cultures towards the end of every 48 h feeding cycle. The extra exogenous nutrients would 2259 

allow N-deprived cultures to have additional internal nutrient stores, and could exhibit a more 2260 

delayed expression profile compared to the RNA-Seq experiment. This could explain the 2261 
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discrepancies in the DGAT-encoding gene expression, where the significant difference observed in 2262 

the RNA-seq experiment was only observed 24 h later in the time-course experiment. 2263 

  2264 
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Conclusions 2265 

Nitrogen-induced lipid accumulation in Tetraselmis sp. is not a simple case of increased FA and 2266 

TAG synthesis. As this study has shown, there is a distinct early-stationary phase, characterized by 2267 

reduced cell division and increased lipid accumulation, followed by a stationary phase that is 2268 

characterized by a cessation of cell division and a significant increase in the rate of lipid 2269 

accumulation. These physiological changes are also reflected in the expression profile at these time 2270 

points, obtained through transcriptomics and qRT-PCR analyses.  At 24 h after exhaustion of 2271 

exogenous nitrogen, the majority of FA and TAG synthesis genes remained unchanged or down-2272 

regulated, while genes for committing steps of the β-oxidation pathway were significantly down-2273 

regulated. This implies that lipid accumulation at this phase was more of a result of decreased lipid 2274 

consumption, while maintaining basal lipid production levels using cell machinery still available 2275 

from growth phase. However, at 48 h after the onset of N-deprivation, the previously 2276 

unchanged/downregulated FA pathway was significantly up-regulated. This shift from reduced lipid 2277 

degradation to active FA production explains the increase in the rate of lipid accumulation at 48 h 2278 

and 72 h. Results from this study also revealed that DGAT gene expression is not a bottleneck gene 2279 

in Tetraselmis sp. lipid biosynthesis. Further proteomic and metabolomic work will be required to 2280 

confirm the possibility of post-transcriptional control of DGAT. 2281 

 2282 

Materials and Methods 2283 

Culture growth conditions – In order to detect changes in lipid-related pathways as cells transition 2284 

from continuous exponential growth in log phase to stationary phase, it was important that RNA 2285 

sampling was carried out on concurrently-grown control cultures that were maintained in log phase. 2286 

Therefore, semi-continuous cultures of Tetraselmis sp. M8 were first established in order to 2287 

maintain cells under constant nutrient-replete conditions and exponential growth phase before the 2288 

start of each experiment. This way, cells could be maintained in constant growth phase and cell 2289 

density by feeding and dilution in a constant cycle until the start of experiment. Three 1 L-master 2290 

cultures were maintained by replacing half the culture (500 mL each) with autoclaved 25 PSU 2291 

artificial seawater (Aquasonic) supplemented with F/2 medium (Guillard and Ryther, 1962; 2292 

enriched with an additional 100 μM of phosphate) every 48 h. The cultures were grown in 1 L-2293 

Schott bottles with constant bubbling at 24°C under 16:8 light/dark photoperiod of fluorescent 2294 

white lights (80 μmol photons m-2s-1). For RNA-Seq, semi-continuous cultures were maintained 2295 

with a regime as above. At the start of the experiment, master cultures were mixed and distributed 2296 
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to nine cultures (three cultures per treatment). Nitrogen-deprived and phosphate-deprived cultures 2297 

had media replaced with nitrogen-deficient or phosphate-deficient F/2 medium to induce lipid 2298 

production, while control cultures received N/P-replete medium. For the time course experiment, 2299 

the semi-continuous cultures were maintained by diluting to 0.5 x106 cells/mL and feeding with F 2300 

medium (enriched with an additional 100 μM of phosphate) every 48 h. Full strength F medium 2301 

was used as larger difference in nutrient levels between treatments were expected to lead to more 2302 

pronounced lipid induction. At the start of the experiment the nitrogen-starvation treatment was 2303 

supplied by replacing with nitrogen deficient F-medium. In both experiments, the nitrogen and 2304 

phosphate concentration of the cultures were measured daily to ensure nutrient-deplete conditions 2305 

only occurred at 48 h after feeding (Supplementary Figure 4). The dilution and feeding regime was 2306 

altered in the time course experiment to reduce the duration in which cultures experienced nutrient-2307 

deplete conditions at 48 h before feeding.   2308 

 2309 

Physiological parameter analysis 2310 

During the course of the experiments, various physiological parameters such as cell density, 2311 

Nile red fluorescence, nitrate and phosphate concentration, chlorophyll a & b and fatty acid (FA) 2312 

content were measured.  2313 

Total nitrate and phosphate contents in the media were measured as described by Adarme-Vega et 2314 

al. (2014) using API Aquarium pharmaceutical Nitrate NO3- and Phosphate PO4
3- test kits with 2315 

absorbance measurements taken on a spectrophotometer (Hitachi U-2800 UV-VIS) at 545 nm and 2316 

690 nm, respectively. Cultures are considered nutrient (nitrogen and/or phosphate) starved (or 2317 

deprived) when we cannot detect nitrate NO3- and/or phosphate PO4
3-. For chlorophyll extraction, 2318 

90% acetone and glass beads were added to a 5 mL microalgal pellet (extracted via centrifugation, 2319 

10000 x g, 7 min) and then vortexed for 3 min before being stored in the dark at 4°C for 2 h. 2320 

Cellular debris was then pelleted (500 x g, 20 min) and the optical density (OD) of the acetone 2321 

supernatant was measured on a spectrophotometer at 664 nm, 647 nm and 630 nm. The calculations 2322 

for the concentration of chlorophyll a & b were performed as described by Franson et al. (2005). 2323 

For lipid accumulation measurements, 1 mL of culture was stained with 6 µL of Nile red in DMSO 2324 

solution (250 mg/mL). Samples were then gently vortexed and incubated in the dark for 10 min. 2325 

200 µL was loaded into a 96 well-microtiter plate (Sarsted) in triplicates. Yellow-gold fluorescence 2326 

was then measured on a POLARstar OPTIMA (BMG Labtech) plate reader using fluorescence 2327 

intensity mode. Gain was set at 3000, with excitation and emission wavelengths of 485 nm and 590 2328 
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nm selected. Specific fluorescence was obtained by dividing the Nile red fluorescence intensity by 2329 

the cell number. Cell density was monitored via cell counts using a haemocytometer. FAs were 2330 

analyzed using GC/MS by the Metabolomics Australia as described previously (Lim et al., 2012), 2331 

with the exception that 5 mg of culture was used, instead of 4 mL culture.  2332 

 2333 

Microscopic analyses 2334 

Cells were stained with Nile red (250 µg/mL) at 24 h after nitrogen and phosphorus deplete 2335 

media were added to cultures. Photographs were taken using an Olympus BX60 microscope and an 2336 

Olympus DP50 digital camera. Epifluroescent (excitation: 510-550 nm; emission: 590 nm) images 2337 

were captured at 400x magnification.  2338 

 2339 

RNA sampling and extraction  2340 

Sampling for RNA was performed on control and nitrogen-starved cultures at the desired 2341 

time-points of 24 h for the RNA-Seq experiments and at 16, 24, 32, 48 and 72 h for the time-course 2342 

experiment. At these time points, 10 mL of culture was collected  by centrifugation (10000 x g, 7 2343 

min) from each replicate; the supernatant was discarded and the collected cell pellets immediately 2344 

flash-frozen with liquid nitrogen and stored at -80°C. Just before RNA extraction, cell pellets were 2345 

resuspended in lysis buffer (SV Total RNA Isolation System, Promega) and then ground using a 2346 

micro pestle.  Total RNA was then extracted following the manufacturer’s instructions, with the 2347 

exception that the incubation at 70°C was done at room temperature instead. Total RNA was not 2348 

pooled but kept as respective replicates and then stored at -80°C.  2349 

 2350 

cDNA library contruction & sequencing  2351 

cDNA libraries were made from replicates of the RNA-seq experiment, following the 2352 

TruSEQ RNA V2 kit protocol; each replicate with their own adapters to barcode samples. cDNA 2353 

products were then quantified on a Qubit ® 2.0 Fluorometer (Invitrogen) and checked for quality on 2354 

a Bioanalyzer 2100 (Agilent). 151 bp paired-end sequencing of the cDNA libraries was then 2355 

performed on an Illumina Mi-Seq platform using standard manufacturer protocols. Libraries of the 2356 

same treatment were pooled together, with each treatment being sequenced on a separate run.  2357 
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 2358 

Sequence analysis and differential Kmer Analysis Pipeline (DiffKAP) 2359 

Standard RNA-Seq analysis relies on mapping individual short sequence reads to a reference 2360 

genome or transcriptome and then applying statistical tests to identify differentially expressed 2361 

genes. We attempted to apply the popular Tophat/Cufflinks (Trapnell et al., 2012) on the RNA-Seq 2362 

data using an available genome of the closest species, Chlamydomonas reinhardtii, as reference. 2363 

The analysis was unsuccessful as less than 0.02% reads were mapped.  Therefore, we developed a 2364 

Differential Kmer Analysis Pipeline (DiffKAP) that enabled identification of differentially 2365 

expressed genes in RNA-Seq data between the two treatments without using a reference. The 2366 

DiffKAP pipeline consists of six steps, as shown in Figure 9. DiffKAP uses Jellyfish (Marçais and 2367 

Kingsford, 2011) to perform k-mer counting, and automatically determines an optimal k-mer size 2368 

by finding the ‘knee point’ in the k-mer uniqueness graph (Kurtz et al., 2008). For this study, an 2369 

optimal k-mer size of 17 was found to give the best balance between the specificity and sensitivity 2370 

of the information content. The abundance of each k-mer was normalized by dataset size, and 2371 

differentially expressed k-mers (DEKs) were determined using the following formula, where k is 2372 

the query k-mer, c1 and c2 represent the normalized k-mer occurrence in datasets 1 and 2, 2373 

respectively, X represents the minimum difference of the k-mer occurrence and Y is the minimum 2374 

fold change of k-mer occurrence between the two datasets required to call a k-mer as differentially 2375 

expressed. In this study, the minimum difference (X) used was 3, while the minimum fold change 2376 

(Y) used was 2 2377 

k = DEK ⇔ c! − c! ≥ X   Y ≤
c!
c!
   Y ≤

c!
c!

 

 2378 

A single set of unique reads was obtained by removing duplicate reads within the datasets. 2379 

Differentially expressed reads (DERs) were determined by a strict criterion to minimize false 2380 

positives and defined as when all constituent k-mers in the read are differentially expressed k-mers 2381 

(DEK), where r is the query read and 𝕂 denotes all constituent k-mers in r. 2382 

r = DER ⇔ ∀k ∈ 𝕂 = DEK  

For each DER, the median k-mer abundance was calculated for each of the two datasets, and the 2383 

ratio of median k-mer abundance (RoM) provided as a prediction of expression ratio. These reads 2384 

were then categorized based on their expression ratios. 2385 
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1. RoM = 0: Only present in nitrogen-starved  2386 

2. 0 < RoM < 0.5: Highly induced in nitrogen-starved 2387 

3. 0.5 ≤ RoM ≤ 2: Not differentially expressed 2388 

4. 2 < RoM < ∞: Highly induced in control 2389 

5. RoM = ∞: Only present in control  2390 

All DERs were annotated by comparison with a user-specified protein database, e.g. Swissprot 2391 

database (Boutet et al., 2007), with a user-defined e-value of 10-16. The expression level of 2392 

differentially-expressed genes was calculated as the median RoM of all DERs which were 2393 

annotated with the same gene. The DiffKAP program is available from 2394 

http://appliedbioinformatics.com.au/index.php/DiffKAP 2395 

 2396 

 2397 

Figure 9. DiffKAP dataflow diagram 2398 

 2399 

Functional annotation and pathway assignments 2400 

Successfully-annotated DERs from both treatments were fed into Blast2GO software in 2401 

order to assign associated gene ontology (GO) terms with an annotation cutoff of 55, and GO 2402 
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weight of 5 (Gotz et al., 2008). Genes in FA synthesis, TAG synthesis and lipid catabolism 2403 

pathways were identified by BLAST matching the Tetraselmis sp. transcriptome that was first 2404 

uploaded into TAGdb (Marshall et al., 2010) using reference sequences obtained from DiffKAP or 2405 

NCBI. Similar reads from the BLAST results were also extracted from TAGdb for primer design. 2406 

Automated gene assembly was not carried out to avoid the generation of potentially false contig 2407 

sequences that could then be wrongly used by other studies for further assembly of other sequence 2408 

data. Gene assembly for individual genes was carried out for qRT-PCR primer design (see below). 2409 

 2410 

Quantitative reverse transcriptase real-time PCR  2411 

For optimal primer design, reads extracted from TAGdb were assembled to the initial 2412 

reference gene using Geneious to yield a consensus sequence, which was then used as the next 2413 

reference sequence for TAGdb to BLAST the transcriptome for more similar reads for assembly. 2414 

This procedure was repeated until a sequence length of more than 500 bp was obtained. This 2415 

sequence was then used for Primer Express to generate a primer pair. The full primer list in shown 2416 

in Supplementary Table 3.  2417 

Extracted RNA from all replicates and experiments were used for cDNA synthesis using 2418 

Superscript III reverse transcriptase (Invitrogen) for quantitative reverse transcriptase real-time PCR 2419 

(qRT-PCR) following the manufacturer’s instructions. For qRT-PCR, each reaction was performed 2420 

in a final volume of 10 µL, and contained 1 µl cDNA (10 ng/µL), 1 µL of each primer (1 µM), 5 µL 2421 

SYBR Green using the 7900 HT Fast Real-time PCR system (Applied Biosystems). Thermal 2422 

cycling conditions consisted of 10 min at 95°C and 45 cycles of 15 s at 95°C and 1 min at 60°C 2423 

prior to 2 min at 25°C. Transcript levels were normalized to the expression of β-ACTIN.  2424 
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Supplementary table 1. Annotated Differentially Expressed Reads (DERs) between control and 2552 

nitrogen-starved treatment of Tetraselmis sp. M8 2553 

	   	  2554 

Lipid-‐related	  pathways
fatty	  acid	  synthesis
lipid	  catabolism
gluconeogenesis
polyunsaturated	  fatty	  acid	  synthesis

Only	  in	  -‐N Upregulated	  in	  -‐N Downregulated	  in	  -‐N Absent	  in	  -‐N Total
[NU+]	  prion	  formation	  protein	  1	   0 79 0 0 79
125	  kDa	  kinesin-‐related	  protein	   0 12 0 0 12
15-‐cis-‐phytoene	  desaturase	   0 0 4 0 4
1-‐deoxy-‐D-‐xylulose-‐5-‐phosphate	  synthase	   0 0 363 0 363
1-‐deoxy-‐D-‐xylulose-‐5-‐phosphate	  synthase	  1,	  chloroplastic	   0 0 175 0 175
1-‐deoxy-‐D-‐xylulose-‐5-‐phosphate	  synthase,	  chloroplastic	   0 0 20 0 20
2-‐Cys	  peroxiredoxin	  BAS1,	  chloroplastic	   0 0 239 0 239
2-‐Cys	  peroxiredoxin	  BAS1,	  chloroplastic	  (Fragment)	   0 0 43 0 43
2-‐Cys	  peroxiredoxin	  BAS1-‐like,	  chloroplastic	   0 0 1 0 1
2-‐dehydro-‐3-‐deoxyphosphooctonate	  aldolase	   0 426 0 0 426
2-‐dehydro-‐3-‐deoxyphosphooctonate	  aldolase	  1	   0 832 0 0 832
2-‐dehydro-‐3-‐deoxyphosphooctonate	  aldolase	  2	   0 804 0 0 804
2-‐isopropylmalate	  synthase	   0 0 5 0 5
2-‐isopropylmalate	  synthase	  2,	  chloroplastic	   0 0 4 0 4
2-‐isopropylmalate	  synthase	  B	   0 0 8 0 8
2-‐oxoisovalerate	  dehydrogenase	  subunit	  alpha,	  mitochondrial	   0 39 0 0 39
2-‐oxoisovalerate	  dehydrogenase	  subunit	  alpha,	  mitochondrial	  (Fragment)	   0 6 0 0 6
30S	  ribosomal	  protein	  S10	   0 0 9 0 9
30S	  ribosomal	  protein	  S13,	  chloroplastic	   0 0 6 0 6
37	  kDa	  inner	  envelope	  membrane	  protein,	  chloroplastic	   0 0 101 0 101
3-‐hydroxyacyl-‐[acyl-‐carrier-‐protein]	  dehydratase	  FabZ	  (HD) 0 0 4 0 4
3-‐ketoacyl-‐CoA	  thiolase	  1,	  peroxisomal	  (KAT) 0 41 0 0 41
3-‐ketoacyl-‐CoA	  thiolase	  2,	  peroxisomal	  (KAT) 0 1 0 0 1
3-‐ketoacyl-‐CoA	  thiolase	  5,	  peroxisomal	  (KAT) 0 2 0 0 2
3-‐ketoacyl-‐CoA	  thiolase,	  peroxisomal	  (KAT) 0 5 0 0 5
3-‐oxoacyl-‐[acyl-‐carrier-‐protein]	  reductase	  5,	  chloroplastic	  (KAR) 0 0 11 0 11
3-‐oxoacyl-‐[acyl-‐carrier-‐protein]	  reductase,	  chloroplastic	  (KAR) 0 0 28 0 28
3-‐oxoacyl-‐[acyl-‐carrier-‐protein]	  synthase	  I,	  chloroplastic	  (KAS) 0 0 245 0 245
3-‐oxoacyl-‐[acyl-‐carrier-‐protein]	  synthase	  II,	  chloroplastic	  (KAS) 0 0 6 0 6
4-‐diphosphocytidyl-‐2-‐C-‐methyl-‐D-‐erythritol	  kinase,	  chloroplastic	   0 0 19 0 19
4-‐diphosphocytidyl-‐2-‐C-‐methyl-‐D-‐erythritol	  kinase,	  chloroplastic/chromoplastic	  (Fragment)	   0 0 1 0 1
4-‐hydroxy-‐3-‐methylbut-‐2-‐en-‐1-‐yl	  diphosphate	  synthase,	  chloroplastic	   0 0 217 0 217
4-‐hydroxy-‐3-‐methylbut-‐2-‐enyl	  diphosphate	  reductase	   0 0 270 0 270
4-‐hydroxy-‐3-‐methylbut-‐2-‐enyl	  diphosphate	  reductase,	  chloroplastic	   0 0 42 0 42
4-‐hydroxyphenylpyruvate	  dioxygenase	   0 4 0 0 4
4-‐hydroxy-‐tetrahydrodipicolinate	  synthase,	  chloroplastic	   0 0 22 0 22
50S	  ribosomal	  protein	  L1	   0 0 58 0 58
50S	  ribosomal	  protein	  L11	   0 0 96 0 96
50S	  ribosomal	  protein	  L13,	  chloroplastic	   0 0 8 0 8
50S	  ribosomal	  protein	  L15	   0 0 72 0 72
50S	  ribosomal	  protein	  L15,	  chloroplastic	  (Fragment)	   0 0 9 0 9
50S	  ribosomal	  protein	  L27,	  chloroplastic	   0 0 4 0 4
50S	  ribosomal	  protein	  L3,	  chloroplastic	   0 0 20 0 20
50S	  ribosomal	  protein	  L4	   0 0 11 0 11
50S	  ribosomal	  protein	  L4,	  chloroplastic	   0 0 2 0 2
5'-‐adenylylsulfate	  reductase	  1,	  chloroplastic	   0 0 5 0 5
5'-‐adenylylsulfate	  reductase	  3,	  chloroplastic	   0 0 4 0 4
ABC	  transporter	  F	  family	  member	  5	   0 3 0 0 3
ABC	  transporter	  G	  family	  member	  7	   0 0 15 0 15
ABC	  transporter	  I	  family	  member	  6,	  chloroplastic	   0 0 15 0 15
Acetate	  kinase	   0 1 0 0 1
Acetyl-‐CoA	  acetyltransferase,	  cytosolic	  1	   0 2 0 0 2
Acetyl-‐CoA	  carboxylase	  (ACCase) 0 0 14 0 14
Acetyl-‐CoA	  carboxylase,	  mitochondrial	  (ACCase) 0 0 3 0 3
Aconitate	  hydratase,	  mitochondrial	   0 1043 0 0 1043
Actin	   0 0 1 0 1
Actin-‐1	   0 0 5 0 5
Acyl-‐coenzyme	  A	  oxidase	  2,	  peroxisomal	  (ACO) 0 2 0 0 2
Acyl-‐coenzyme	  A	  oxidase,	  peroxisomal	  (ACO) 2 0 0 0 2
Adenosine	  3'-‐phospho	  5'-‐phosphosulfate	  transporter	  1	   0 11 0 0 11
Adenosylhomocysteinase	   0 0 10 0 10
Adenosylhomocysteinase	  1	   0 0 60 0 60
Adenylate	  kinase	   0 0 14 0 14
Adenylate	  kinase	  1	   0 0 10 0 10
Adenylate	  kinase	  2,	  mitochondrial	   0 0 6 0 6
Adenylate	  kinase	  A	   0 0 65 0 65
Adenylate	  kinase	  B	   0 0 3 0 3
Adenylate	  kinase,	  chloroplastic	   0 0 9 0 9
Adenylosuccinate	  synthetase	  2,	  chloroplastic	   0 0 3 0 3

Protein	  Name
#	  of	  annotated	  reads	  identified	  as	  differentially	  expressed	  by	  DIFFKAP
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Adenylosuccinate	  synthetase,	  chloroplastic	   0 0 103 0 103
Adenylyl-‐sulfate	  kinase	   0 202 0 0 202
Adenylyl-‐sulfate	  kinase	  1,	  chloroplastic	   0 12 0 0 12
Adenylyl-‐sulfate	  kinase	  2,	  chloroplastic	   0 69 0 0 69
Adenylyl-‐sulfate	  kinase,	  chloroplastic	   0 102 0 0 102
ADP,ATP	  carrier	  protein	   0 0 50 0 50
ADP,ATP	  carrier	  protein	  1,	  chloroplastic	   0 3 103 0 106
ADP,ATP	  carrier	  protein	  2,	  chloroplastic	   0 17 310 0 327
Alanine-‐-‐glyoxylate	  aminotransferase	  2	  homolog	  1,	  mitochondrial	   0 48 0 0 48
Alanine-‐-‐glyoxylate	  aminotransferase	  2	  homolog	  3,	  mitochondrial	   0 42 0 0 42
Alanine-‐-‐glyoxylate	  aminotransferase	  2,	  mitochondrial	   0 42 0 0 42
Alanine-‐-‐tRNA	  ligase	   0 0 3 0 3
ALBINO3-‐like	  protein	  1,	  chloroplastic	   0 0 4 0 4
Aldehyde-‐alcohol	  dehydrogenase	   0 58 0 0 58
Alpha,alpha-‐trehalose-‐phosphate	  synthase	  [UDP-‐forming]	  1	   0 0 8 0 8
Aminomethyltransferase,	  mitochondrial	   0 0 277 0 277
Ammonium	  transporter	  1	  member	  2	   0 57 0 0 57
Ammonium	  transporter	  1	  member	  3	   0 108 0 0 108
AP2-‐like	  ethylene-‐responsive	  transcription	  factor	  BBM	   0 10 0 0 10
Argininosuccinate	  synthase	   0 0 411 0 411
Aspartate	  aminotransferase	  1	   0 8 0 0 8
Aspartate	  aminotransferase	  P2,	  mitochondrial	  (Fragment)	   0 14 249 0 263
Aspartate	  aminotransferase,	  chloroplastic	   0 0 179 0 179
Aspartate	  aminotransferase,	  cytoplasmic	   0 32 87 0 119
Aspartate	  aminotransferase,	  cytoplasmic	  isozyme	  1	   0 0 13 0 13
Aspartate	  aminotransferase,	  mitochondrial	   0 0 846 0 846
ATP	  synthase	  delta	  chain,	  chloroplastic	   0 0 8 0 8
ATP	  synthase	  gamma	  chain,	  chloroplastic	   0 0 676 0 676
ATP	  synthase	  subunit	  b',	  chloroplastic	   0 0 304 0 304
ATP-‐dependent	  Clp	  protease	  ATP-‐binding	  subunit	  clpA	  homolog	   0 16 0 0 16
ATP-‐dependent	  Clp	  protease	  ATP-‐binding	  subunit	  ClpC	   0 7 0 0 7
ATP-‐dependent	  RNA	  helicase	  dbp2	   0 53 0 0 53
ATP-‐dependent	  RNA	  helicase	  DBP2	   0 33 0 0 33
Aurora	  kinase	   0 51 0 0 51
Aurora	  kinase	  A	   0 9 0 0 9
Aurora	  kinase	  A-‐B	   0 24 0 0 24
Beta-‐carotene	  3-‐hydroxylase,	  chloroplastic	  (Fragment)	   0 0 30 0 30
Bifunctional	  3'-‐phosphoadenosine	  5'-‐phosphosulfate	  synthase	   0 5 0 0 5
Cell	  division	  control	  protein	  2	  homolog	   0 1 0 0 1
Cell	  division	  control	  protein	  2	  homolog	  C	   0 137 0 0 137
Chaperone	  protein	  ClpB	   0 58 0 0 58
Chaperone	  protein	  ClpC,	  chloroplastic	   0 12 0 0 12
Chaperone	  protein	  ClpD,	  chloroplastic	   0 8 0 0 8
Chaperone	  protein	  ClpD1,	  chloroplastic	   0 32 0 0 32
Chaperone	  protein	  ClpD2,	  chloroplastic	   0 1 0 0 1
Chaperonin	  CPN60-‐1,	  mitochondrial	   0 0 6 0 6
Chaperonin	  CPN60-‐like	  1,	  mitochondrial	   0 0 4 0 4
Chloride	  channel	  protein	  CLC-‐c	   0 3 0 0 3
Chlorophyll	  a-‐b	  binding	  protein	  1,	  chloroplastic	   0 0 1772 0 1772
Chlorophyll	  a-‐b	  binding	  protein	  13,	  chloroplastic	   0 0 1736 0 1736
Chlorophyll	  a-‐b	  binding	  protein	  151,	  chloroplastic	   0 0 47 0 47
Chlorophyll	  a-‐b	  binding	  protein	  1A,	  chloroplastic	   0 0 210 0 210
Chlorophyll	  a-‐b	  binding	  protein	  1B,	  chloroplastic	   0 0 1 0 1
Chlorophyll	  a-‐b	  binding	  protein	  1B-‐21,	  chloroplastic	   0 0 274 0 274
Chlorophyll	  a-‐b	  binding	  protein	  2,	  chloroplastic	   0 0 129 0 129
Chlorophyll	  a-‐b	  binding	  protein	  215,	  chloroplastic	   0 0 5 0 5
Chlorophyll	  a-‐b	  binding	  protein	  22L,	  chloroplastic	   0 0 43 0 43
Chlorophyll	  a-‐b	  binding	  protein	  22R,	  chloroplastic	   0 0 4 0 4
Chlorophyll	  a-‐b	  binding	  protein	  25,	  chloroplastic	   0 0 2 0 2
Chlorophyll	  a-‐b	  binding	  protein	  3,	  chloroplastic	   0 0 992 0 992
Chlorophyll	  a-‐b	  binding	  protein	  36,	  chloroplastic	   0 0 498 0 498
Chlorophyll	  a-‐b	  binding	  protein	  37,	  chloroplastic	   0 0 792 0 792
Chlorophyll	  a-‐b	  binding	  protein	  3B,	  chloroplastic	  (Fragments)	   0 0 418 0 418
Chlorophyll	  a-‐b	  binding	  protein	  3C,	  chloroplastic	   0 0 16 0 16
Chlorophyll	  a-‐b	  binding	  protein	  4,	  chloroplastic	   0 0 1630 0 1630
Chlorophyll	  a-‐b	  binding	  protein	  48,	  chloroplastic	   0 0 71 0 71
Chlorophyll	  a-‐b	  binding	  protein	  5,	  chloroplastic	  (Fragment)	   0 0 24 0 24
Chlorophyll	  a-‐b	  binding	  protein	  7,	  chloroplastic	   0 0 4 0 4
Chlorophyll	  a-‐b	  binding	  protein	  8,	  chloroplastic	   0 0 859 0 859
Chlorophyll	  a-‐b	  binding	  protein	  AB80,	  chloroplastic	   0 0 37 0 37
Chlorophyll	  a-‐b	  binding	  protein	  AB96	  (Fragment)	   0 0 34 0 34
Chlorophyll	  a-‐b	  binding	  protein	  CP24	  10A,	  chloroplastic	   0 0 33 0 33
Chlorophyll	  a-‐b	  binding	  protein	  CP26,	  chloroplastic	   0 0 7 0 7
Chlorophyll	  a-‐b	  binding	  protein	  CP29	   0 0 2439 0 2439
Chlorophyll	  a-‐b	  binding	  protein	  E,	  chloroplastic	   0 0 3 0 3
Chlorophyll	  a-‐b	  binding	  protein	  L1818,	  chloroplastic	   0 0 620 0 620
Chlorophyll	  a-‐b	  binding	  protein	  M9,	  chloroplastic	   0 0 329 0 329
Chlorophyll	  a-‐b	  binding	  protein	  of	  LHCII	  type	  1	  (Fragment)	   0 0 11 0 11
Chlorophyll	  a-‐b	  binding	  protein	  of	  LHCII	  type	  I,	  chloroplastic	   0 0 83950 0 83950
Chlorophyll	  a-‐b	  binding	  protein	  of	  LHCII	  type	  III,	  chloroplastic	   0 0 1677 0 1677
Chlorophyll	  a-‐b	  binding	  protein	  type	  1	  member	  F3,	  chloroplastic	   0 0 299 0 299
Chlorophyll	  a-‐b	  binding	  protein	  type	  2	  member	  1A,	  chloroplastic	   0 0 7160 0 7160
Chlorophyll	  a-‐b	  binding	  protein	  type	  2	  member	  1B,	  chloroplastic	   0 0 1817 0 1817
Chlorophyll	  a-‐b	  binding	  protein	  type	  2	  member	  2	  (Fragment)	   0 0 935 0 935
Chlorophyll	  a-‐b	  binding	  protein	  type	  I,	  chloroplastic	   0 0 3 0 3
Chlorophyll	  a-‐b	  binding	  protein,	  chloroplastic	   0 0 18313 0 18313
Chlorophyll	  a-‐b	  binding	  protein,	  chloroplastic	  (Fragment)	   0 0 1261 0 1261
Chlorophyll	  synthase,	  chloroplastic	   0 0 43 0 43
Chlorophyllide	  a	  oxygenase,	  chloroplastic	   0 0 756 0 756
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Chromosome-‐associated	  kinesin	  KIF4	   1 5 0 0 6
Citrate	  synthase	  2,	  peroxisomal	   0 19 0 0 19
Citrate	  synthase	  3,	  peroxisomal	   0 15 0 0 15
Citrate	  synthase,	  glyoxysomal	   0 137 0 0 137
CMP-‐sialic	  acid	  transporter	  1	   0 23 0 0 23
CMP-‐sialic	  acid	  transporter	  3	   0 27 0 0 27
CMP-‐sialic	  acid	  transporter	  4	   0 21 0 0 21
Copper	  methylamine	  oxidase	   0 3 0 0 3
Coproporphyrinogen-‐III	  oxidase,	  aerobic	   0 0 15 0 15
Coproporphyrinogen-‐III	  oxidase,	  chloroplastic	   0 0 306 0 306
Cyanate	  hydratase	   0 0 4 0 4
Cyanate	  hydratase	  2	   0 0 6 0 6
Cyclin-‐B2-‐1	   0 5 0 0 5
Cyclin-‐dependent	  kinase	  A-‐2	   0 1 0 0 1
Cyclin-‐dependent	  kinase	  B1-‐1	   0 326 0 0 326
Cyclin-‐dependent	  kinase	  B1-‐2	   0 45 0 0 45
Cycloartenol-‐C-‐24-‐methyltransferase	   0 0 16 0 16
Cysteine	  synthase	   0 0 43 0 43
Cysteine	  synthase,	  chloroplastic/chromoplastic	   0 0 52 0 52
Cytochrome	  b6-‐f	  complex	  iron-‐sulfur	  subunit	   0 0 444 0 444
Cytochrome	  b6-‐f	  complex	  iron-‐sulfur	  subunit	  1,	  cyanelle	   0 0 161 0 161
Cytochrome	  b6-‐f	  complex	  iron-‐sulfur	  subunit,	  chloroplastic	   0 0 645 0 645
Cytochrome	  P450	  97B1,	  chloroplastic	   0 0 11 0 11
DEAD-‐box	  ATP-‐dependent	  RNA	  helicase	  20	   0 65 0 0 65
DEAD-‐box	  ATP-‐dependent	  RNA	  helicase	  30	   0 38 0 0 38
Delta-‐9	  acyl-‐lipid	  desaturase	  1	   0 0 47 0 47
Delta-‐aminolevulinic	  acid	  dehydratase,	  chloroplastic	   0 0 53 0 53
Deoxycytidylate	  deaminase	   0 4 0 0 4
Deoxyhypusine	  synthase	   0 28 0 0 28
Deoxyuridine	  5'-‐triphosphate	  nucleotidohydrolase	   0 407 0 0 407
Dicarboxylate	  transporter	  1,	  chloroplastic	   0 0 36 0 36
Dicarboxylate	  transporter	  2,	  chloroplastic	   0 0 5 0 5
Dihydrolipoyllysine-‐residue	  acetyltransferase	  component	  of	  pyruvate	  dehydrogenase	  complex,	  mitochondrial	   0 24 0 0 24
Dihydrolipoyllysine-‐residue	  acetyltransferase	  component	  of	  pyruvate	  dehydrogenase	  complex,	  mitochondrial	  (Fragments)	  0 3 0 0 3
Dihydroxy-‐acid	  dehydratase	   0 0 57 0 57
DNA	  excision	  repair	  protein	  ERCC-‐6-‐like	   0 2 0 0 2
DNA	  mismatch	  repair	  protein	  MSH7	   0 15 0 0 15
DNA	  repair	  and	  recombination	  protein	  RAD54-‐like	  (Fragment)	   0 2 0 0 2
DNA	  repair	  helicase	  UVH6	   0 38 0 0 38
DNA	  repair	  protein	  RAD51	  homolog	   0 6 0 0 6
DNA	  repair	  protein	  RAD51	  homolog	  1	   0 38 0 0 38
DNA	  repair	  protein	  RAD51	  homolog	  A	   0 37 0 0 37
DNA	  repair	  protein	  RAD51	  homolog	  B	   0 52 0 0 52
DNA	  topoisomerase	  2	   0 52 0 0 52
DNA	  topoisomerase	  2-‐alpha	   0 20 0 0 20
Dual	  specificity	  protein	  kinase	  TTK	   0 2 0 0 2
Dynamin-‐related	  protein	  5A	   0 27 0 0 27
Dynein	  gamma	  chain,	  flagellar	  outer	  arm	   0 1 0 0 1
Dynein	  light	  chain	  2,	  cytoplasmic	   0 1 0 0 1
Elongation	  factor	  3	   0 128 0 0 128
Elongation	  factor	  3A	   0 44 0 0 44
Elongation	  factor	  G,	  chloroplastic	   0 0 2 0 2
Elongation	  factor	  G,	  chloroplastic	  (Fragment)	   0 0 5 0 5
Enoyl-‐[acyl-‐carrier-‐protein]	  reductase	  [NADH]	  1,	  chloroplastic	  (ENR) 0 0 31 0 31
Enoyl-‐[acyl-‐carrier-‐protein]	  reductase	  [NADH]	  2,	  chloroplastic	  (ENR) 0 0 98 0 98
Enoyl-‐[acyl-‐carrier-‐protein]	  reductase	  [NADH],	  chloroplastic	  (ENR) 0 0 107 0 107
Eukaryotic	  translation	  initiation	  factor	  3	  subunit	  A	   0 0 3 0 3
Ferredoxin	   0 0 1227 0 1227
Ferredoxin,	  chloroplastic	   0 0 5 0 5
Ferredoxin-‐1	   0 0 2435 0 2435
Ferredoxin-‐2	   0 0 4 0 4
Ferredoxin-‐-‐NADP	  reductase,	  chloroplastic	   0 0 1175 0 1175
Ferredoxin-‐-‐NADP	  reductase,	  embryo	  isozyme,	  chloroplastic	   0 0 81 0 81
Formate	  acetyltransferase	   0 59 0 0 59
Formate	  acetyltransferase	  (Fragment)	   0 2255 0 0 2255
Fructose-‐1,6-‐bisphosphatase,	  chloroplastic	   0 0 921 0 921
Fructose-‐bisphosphate	  aldolase	  1,	  chloroplastic	   0 0 1839 0 1839
Fructose-‐bisphosphate	  aldolase,	  chloroplastic	   0 0 21 0 21
Fumarate	  hydratase	  2,	  chloroplastic	   0 0 3 0 3
Fumarate	  hydratase,	  mitochondrial	   0 0 10 0 10
G2/mitotic-‐specific	  cyclin-‐1	   0 1 0 0 1
Geranylgeranyl	  diphosphate	  reductase	   0 0 89 0 89
Geranylgeranyl	  diphosphate	  reductase,	  chloroplastic	   0 0 1880 0 1880
Geranylgeranyl	  pyrophosphate	  synthase	  homolog	   0 0 125 0 125
Geranylgeranyl	  pyrophosphate	  synthase,	  chloroplastic	   0 0 8 0 8
Geranylgeranyl	  pyrophosphate	  synthase,	  chloroplastic/chromoplastic	   0 0 31 0 31
Glucose-‐1-‐phosphate	  adenylyltransferase	   0 0 4 0 4
Glucose-‐1-‐phosphate	  adenylyltransferase	  large	  subunit	  1,	  chloroplastic	   0 0 14 0 14
Glucose-‐1-‐phosphate	  adenylyltransferase	  large	  subunit	  2	  (Fragment)	   0 0 1 0 1
Glucose-‐1-‐phosphate	  adenylyltransferase	  large	  subunit	  2,	  chloroplastic	   0 0 75 0 75
Glucose-‐1-‐phosphate	  adenylyltransferase	  large	  subunit	  2,	  chloroplastic/amyloplastic	   0 0 37 0 37
Glucose-‐1-‐phosphate	  adenylyltransferase	  large	  subunit	  3,	  chloroplastic	   0 0 6 0 6
Glucose-‐1-‐phosphate	  adenylyltransferase	  large	  subunit	  3,	  chloroplastic/amyloplastic	   0 0 21 0 21
Glucose-‐1-‐phosphate	  adenylyltransferase	  large	  subunit,	  chloroplastic/amyloplastic	   0 0 86 0 86
Glucose-‐1-‐phosphate	  adenylyltransferase	  small	  subunit,	  chloroplastic	   0 0 200 0 200
Glucose-‐1-‐phosphate	  adenylyltransferase	  small	  subunit,	  chloroplastic/amyloplastic	   0 0 546 0 546
Glucose-‐6-‐phosphate	  isomerase,	  cytosolic	   0 0 3 0 3
Glutamate	  synthase	  [NADH]	   0 29 0 0 29
Glutamate	  synthase	  [NADH],	  amyloplastic	   0 418 0 0 418
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Glutamate	  synthase	  [NADPH]	  large	  chain	   0 18 0 0 18
Glutamate	  synthase	  1	  [NADH],	  chloroplastic	   0 1536 0 0 1536
Glutamate	  synthase	  2	  [NADH],	  chloroplastic	   0 768 0 0 768
Glutamate-‐1-‐semialdehyde	  2,1-‐aminomutase	   0 0 279 0 279
Glutamate-‐1-‐semialdehyde	  2,1-‐aminomutase,	  chloroplastic	   0 0 771 0 771
Glutamate-‐-‐glyoxylate	  aminotransferase	  1	   0 0 63 0 63
Glutamate-‐-‐glyoxylate	  aminotransferase	  2	   0 0 13 0 13
Glutamate-‐-‐tRNA	  ligase,	  chloroplastic/mitochondrial	   0 0 201 0 201
Glutamine	  synthetase	   0 29 0 0 29
Glutamine	  synthetase	  cytosolic	  isozyme	   0 127 0 0 127
Glutamine	  synthetase	  nodule	  isozyme	   0 16 0 0 16
Glutamyl-‐tRNA	  reductase	  1,	  chloroplastic	   0 0 29 0 29
Glutamyl-‐tRNA	  reductase	  2,	  chloroplastic	   0 0 37 0 37
Glutamyl-‐tRNA	  reductase,	  chloroplastic	   0 0 2 0 2
Glyceraldehyde-‐3-‐phosphate	  dehydrogenase	   1 328 0 0 329
Glyceraldehyde-‐3-‐phosphate	  dehydrogenase	  (Fragment)	   0 210 0 0 210
Glyceraldehyde-‐3-‐phosphate	  dehydrogenase	  1	   0 17 0 0 17
Glyceraldehyde-‐3-‐phosphate	  dehydrogenase	  1	  (Fragment)	   0 17 0 0 17
Glyceraldehyde-‐3-‐phosphate	  dehydrogenase	  1,	  cytosolic	   0 1 0 0 1
Glyceraldehyde-‐3-‐phosphate	  dehydrogenase	  2	   0 1 0 0 1
Glyceraldehyde-‐3-‐phosphate	  dehydrogenase	  2,	  cytosolic	   0 3 0 0 3
Glyceraldehyde-‐3-‐phosphate	  dehydrogenase	  2,	  cytosolic	  (Fragment)	   0 2 0 0 2
Glyceraldehyde-‐3-‐phosphate	  dehydrogenase	  A,	  chloroplastic	   0 0 1488 0 1488
Glyceraldehyde-‐3-‐phosphate	  dehydrogenase	  A,	  chloroplastic	  (Fragment)	   0 0 518 0 518
Glyceraldehyde-‐3-‐phosphate	  dehydrogenase	  B,	  chloroplastic	   0 0 234 0 234
Glyceraldehyde-‐3-‐phosphate	  dehydrogenase	  B,	  chloroplastic	  (Fragment)	   0 0 4 0 4
Glyceraldehyde-‐3-‐phosphate	  dehydrogenase,	  cytosolic	   0 836 0 0 836
Glyceraldehyde-‐3-‐phosphate	  dehydrogenase,	  cytosolic	  (Fragment)	   0 119 0 0 119
Glycine	  dehydrogenase	  [decarboxylating],	  mitochondrial	   0 0 10 0 10
Glycine-‐rich	  protein	  2	   0 0 61 0 61
Glycogen	  phosphorylase	  1	   0 8 0 0 8
Granule-‐bound	  starch	  synthase	  1,	  chloroplastic/amyloplastic	   0 0 62 0 62
GTP-‐binding	  protein	  128up	   0 0 28 0 28
H/ACA	  ribonucleoprotein	  complex	  subunit	  4	   0 0 38 0 38
Heat	  shock	  70	  kDa	  protein	   0 0 5 0 5
Heat	  shock	  70	  kDa	  protein	  6,	  chloroplastic	   0 0 24 0 24
Histone	  H2B	   0 38 0 0 38
Histone	  H2B.3	   0 33 0 0 33
Histone	  H2B.4	   0 826 0 0 826
Histone	  H2B.6	   0 1 0 0 1
Histone	  H2B.7	   0 29 0 0 29
Histone	  H2B.9	   0 21 0 0 21
Homogentisate	  1,2-‐dioxygenase	   0 20 0 0 20
Homospermidine	  synthase	  2	   0 3 0 0 3
Hydroxylamine	  reductase	   0 0 336 0 336
Inducible	  nitrate	  reductase	  [NADH]	  1	   0 0 12 0 12
Inducible	  nitrate	  reductase	  [NADH]	  2	   0 0 9 0 9
Inner	  membrane	  ALBINO3-‐like	  protein	  1,	  chloroplastic	   0 0 1 0 1
Inner	  membrane	  ALBINO3-‐like	  protein	  2,	  chloroplastic	   0 0 3 0 3
Inosine-‐5'-‐monophosphate	  dehydrogenase	   0 0 13 0 13
Isoamylase	  1,	  chloroplastic	   0 4 0 0 4
Isoamylase	  3,	  chloroplastic	   0 13 0 0 13
Isocitrate	  dehydrogenase	  [NADP]	   0 13 0 0 13
Isoleucine-‐-‐tRNA	  ligase	   0 0 3 0 3
Katanin	  p60	  ATPase-‐containing	  subunit	  A1	   0 4 0 0 4
Kinesin-‐3	   0 3 0 0 3
Kinesin-‐like	  calmodulin-‐binding	  protein	   0 152 0 0 152
Kinesin-‐like	  calmodulin-‐binding	  protein	  homolog	   0 119 0 0 119
Kinesin-‐related	  protein	  4	   0 1 0 0 1
Kinesin-‐related	  protein	  8	   0 2 0 0 2
Leucine	  aminopeptidase	  2,	  chloroplastic	   0 0 24 0 24
Leucine	  aminopeptidase	  3,	  chloroplastic	   0 0 43 0 43
Leucine	  aminopeptidase,	  chloroplastic	   0 0 21 0 21
Long	  chain	  acyl-‐CoA	  synthetase	  2	  (ACSase) 0 0 70 0 70
Long	  chain	  acyl-‐CoA	  synthetase	  4	  (ACSase) 0 0 3 0 3
Magnesium-‐chelatase	  subunit	  ChlD	   0 0 12 0 12
Magnesium-‐chelatase	  subunit	  ChlD,	  chloroplastic	   0 0 77 0 77
Magnesium-‐chelatase	  subunit	  ChlH,	  chloroplastic	   0 0 3383 0 3383
Magnesium-‐protoporphyrin	  IX	  monomethyl	  ester	  [oxidative]	  cyclase	  1,	  chloroplastic	   0 0 2388 0 2388
Magnesium-‐protoporphyrin	  IX	  monomethyl	  ester	  [oxidative]	  cyclase	  2,	  chloroplastic	   0 0 2619 0 2619
Magnesium-‐protoporphyrin	  IX	  monomethyl	  ester	  [oxidative]	  cyclase,	  chloroplastic	   0 0 175 0 175
Malate	  dehydrogenase	  [NADP]	  1,	  chloroplastic	   0 0 329 0 329
Malate	  dehydrogenase	  [NADP],	  chloroplastic	   0 0 1712 0 1712
Malate	  dehydrogenase	  2,	  glyoxysomal	   0 3 0 0 3
Malate	  dehydrogenase,	  chloroplastic	   0 16 0 0 16
Methionine	  synthase	   0 0 230 0 230
Methionine	  synthase	  (Fragment)	   0 0 28 0 28
Methylcrotonoyl-‐CoA	  carboxylase	  beta	  chain,	  mitochondrial	   0 17 0 0 17
Methylenetetrahydrofolate	  reductase	  1	   0 0 7 0 7
Methylenetetrahydrofolate	  reductase	  2	   0 0 3 0 3
Methylmalonate	  semialdehyde	  dehydrogenase	  [acylating]	   0 5 0 0 5
Methylmalonate	  semialdehyde	  dehydrogenase	  [acylating]	  2	   0 4 0 0 4
Methylmalonate-‐semialdehyde	  dehydrogenase	  [acylating]	   0 36 0 0 36
Methylmalonate-‐semialdehyde	  dehydrogenase	  [acylating],	  mitochondrial	   0 55 0 0 55
Mitochondrial	  uncoupling	  protein	  1	   0 0 32 0 32
Mitogen-‐activated	  protein	  kinase	  kinase	  kinase	  2	   0 1 0 0 1
Mitotic	  spindle	  assembly	  checkpoint	  protein	  MAD2A	   0 4 0 0 4
Molybdenum	  cofactor	  sulfurase	   0 12 0 0 12
NAD(P)	  transhydrogenase,	  mitochondrial	   0 168 0 0 168
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NADH-‐cytochrome	  b5	  reductase	  2	   0 0 14 0 14
NADP-‐specific	  glutamate	  dehydrogenase	   0 0 19 0 19
NAD-‐specific	  glutamate	  dehydrogenase	   0 0 2 0 2
Negative	  regulator	  of	  genetic	  competence	  ClpC/MecB	   0 25 0 0 25
Nitrate	  reductase	  [NAD(P)H]	   0 0 57 0 57
Nitrate	  reductase	  [NADH]	   0 0 170 0 170
Nitrate	  reductase	  [NADH]	  2	   0 0 17 0 17
Nitrogen	  regulatory	  protein	  P-‐II	   3 0 0 0 3
Nucleolar	  GTP-‐binding	  protein	  2	   0 0 10 0 10
Nucleoside	  diphosphate	  kinase	   0 0 11 18 29
Nucleoside	  diphosphate	  kinase	  (Fragment)	   0 0 212 0 212
Nucleoside	  diphosphate	  kinase	  1	   0 0 36 16 52
Nucleoside	  diphosphate	  kinase	  2,	  chloroplastic	   0 0 37 7 44
Nucleoside	  diphosphate	  kinase	  A	   0 0 65 0 65
Nucleoside	  diphosphate	  kinase	  B	   0 0 94 0 94
Nucleoside	  diphosphate	  kinase	  II,	  chloroplastic	   0 0 61 0 61
Omega-‐6	  fatty	  acid	  desaturase,	  chloroplastic	   0 0 671 0 671
Oxygen-‐evolving	  enhancer	  protein	  1,	  chloroplastic	   0 0 2182 0 2182
Oxygen-‐evolving	  enhancer	  protein	  1-‐2,	  chloroplastic	   0 0 444 0 444
Oxygen-‐evolving	  enhancer	  protein	  2,	  chloroplastic	   0 0 1316 0 1316
Oxygen-‐evolving	  enhancer	  protein	  2-‐3,	  chloroplastic	   0 0 30 0 30
Palmitoyl-‐monogalactosyldiacylglycerol	  delta-‐7	  desaturase,	  chloroplastic	   0 0 555 0 555
Peptide	  methionine	  sulfoxide	  reductase	  MsrA	   0 0 153 0 153
Peptide	  methionine	  sulfoxide	  reductase	  MsrA	  1	   0 0 59 0 59
Peptidyl-‐prolyl	  cis-‐trans	  isomerase	   0 0 85 0 85
Peptidyl-‐prolyl	  cis-‐trans	  isomerase	  B	   0 0 51 0 51
Peptidyl-‐prolyl	  cis-‐trans	  isomerase	  CYP20-‐2,	  chloroplastic	   0 0 87 0 87
Peptidyl-‐prolyl	  cis-‐trans	  isomerase	  CYP38,	  chloroplastic	   0 0 77 0 77
Peptidyl-‐prolyl	  cis-‐trans	  isomerase	  F,	  mitochondrial	   0 0 43 0 43
Peptidyl-‐prolyl	  cis-‐trans	  isomerase,	  chloroplastic	   0 0 11 0 11
Peroxiredoxin-‐2B	   0 0 66 0 66
Peroxiredoxin-‐2E-‐2,	  chloroplastic	   0 0 47 0 47
PFL-‐like	  enzyme	  TdcE	   0 26 0 0 26
Phospho-‐2-‐dehydro-‐3-‐deoxyheptonate	  aldolase	  1,	  chloroplastic	   0 11 0 0 11
Phosphoenolpyruvate	  carboxylase	  1	   0 10 0 0 10
Phosphoenolpyruvate	  carboxylase	  2	   0 6 0 0 6
Phosphoenolpyruvate/phosphate	  translocator	  2,	  chloroplastic	   0 0 1 0 1
Phosphoglycerate	  kinase	   0 0 738 5 743
Phosphoglycerate	  kinase	  1,	  chloroplastic	   0 0 5 5 10
Phosphoglycerate	  kinase	  2,	  chloroplastic	   0 0 13 5 18
Phosphoglycerate	  kinase,	  chloroplastic	   0 0 454 8 462
Phosphoglycolate	  phosphatase	  1B,	  chloroplastic	   0 0 46 0 46
Phosphoribosylaminoimidazole-‐succinocarboxamide	  synthase	   0 10 0 0 10
Phosphoribosylaminoimidazole-‐succinocarboxamide	  synthase,	  chloroplastic	   0 8 0 0 8
Phosphoribosylaminoimidazole-‐succinocarboxamide	  synthase,	  chloroplastic	  (Fragment)	   0 31 0 0 31
Phosphoribulokinase,	  chloroplastic	   0 0 2960 0 2960
Photosystem	  I	  reaction	  center	  subunit	  II	   0 0 96 0 96
Photosystem	  I	  reaction	  center	  subunit	  II,	  chloroplastic	   0 0 2558 0 2558
Photosystem	  I	  reaction	  center	  subunit	  III,	  chloroplastic	   0 0 610 0 610
Photosystem	  I	  reaction	  center	  subunit	  IV	   0 0 635 0 635
Photosystem	  I	  reaction	  center	  subunit	  IV,	  chloroplastic	   0 0 459 0 459
Photosystem	  I	  reaction	  center	  subunit	  XI,	  chloroplastic	   0 0 754 0 754
Photosystem	  II	  10	  kDa	  polypeptide,	  chloroplastic	   0 0 8 0 8
Photosystem	  II	  CP43	  chlorophyll	  apoprotein	   0 0 12 0 12
Photosystem	  II	  D2	  protein	   0 0 3 0 3
Photosystem	  II	  reaction	  center	  PSB28	  protein,	  chloroplastic	   0 0 3 0 3
Photosystem	  II	  stability/assembly	  factor	  HCF136,	  chloroplastic	   0 0 90 0 90
Phytoene	  dehydrogenase	   0 0 4 0 4
Phytoene	  dehydrogenase,	  chloroplastic/chromoplastic	   0 0 17 0 17
Phytoene	  synthase,	  chloroplastic	   0 0 157 0 157
Plastidic	  ATP/ADP-‐transporter	   0 11 159 0 170
Plastocyanin	   0 0 14 0 14
Plastocyanin,	  chloroplastic	   0 0 3052 0 3052
POC1	  centriolar	  protein	  homolog	  B	   0 2 0 0 2
Polyadenylate-‐binding	  protein	  1-‐B	   0 14 0 0 14
Polyadenylate-‐binding	  protein,	  cytoplasmic	  and	  nuclear	   0 17 0 0 17
Potassium-‐transporting	  ATPase	  alpha	  chain	  1	   0 7 0 0 7
Potassium-‐transporting	  ATPase	  alpha	  chain	  2	   0 118 0 0 118
Presenilin-‐like	  protein	  At2g29900	   0 38 0 0 38
Probable	  125	  kDa	  kinesin-‐related	  protein	   0 35 0 0 35
Probable	  1-‐deoxy-‐D-‐xylulose-‐5-‐phosphate	  synthase	  2,	  chloroplastic	   0 0 56 0 56
Probable	  1-‐deoxy-‐D-‐xylulose-‐5-‐phosphate	  synthase,	  chloroplastic	   0 0 165 0 165
Probable	  30S	  ribosomal	  protein	  3,	  chloroplastic	   0 0 42 0 42
Probable	  30S	  ribosomal	  protein	  PSRP-‐3	   0 0 6 0 6
Probable	  5'-‐adenylylsulfate	  reductase	  1,	  chloroplastic	   0 0 13 0 13
Probable	  acetyl-‐CoA	  acetyltransferase,	  cytosolic	  2	   0 2 0 0 2
Probable	  aconitate	  hydratase,	  mitochondrial	   0 275 0 0 275
Probable	  adenylate	  kinase	  2,	  chloroplastic	   0 0 61 0 61
Probable	  ADP-‐ribosylation	  factor	  GTPase-‐activating	  protein	  AGD6	   0 7 0 0 7
Probable	  agmatinase	  2	   0 45 0 0 45
Probable	  arabinose	  5-‐phosphate	  isomerase	   0 476 0 0 476
Probable	  ATP-‐dependent	  Clp	  protease	  ATP-‐binding	  subunit	   0 5 0 0 5
Probable	  coproporphyrinogen-‐III	  oxidase	   0 0 4 0 4
Probable	  cytosol	  aminopeptidase	   0 0 1 0 1
Probable	  deoxyhypusine	  synthase	   0 2 0 0 2
Probable	  DNA	  topoisomerase	  2	   0 7 0 0 7
Probable	  E3	  ubiquitin-‐protein	  ligase	  ARI7	   0 5 0 0 5
Probable	  E3	  ubiquitin-‐protein	  ligase	  ARI8	   0 4 0 0 4
Probable	  fructose-‐bisphosphate	  aldolase	  1,	  chloroplastic	   0 0 120 0 120
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Probable	  fructose-‐bisphosphate	  aldolase	  3,	  chloroplastic	   0 0 922 0 922
Probable	  glucose-‐1-‐phosphate	  adenylyltransferase	  large	  subunit,	  chloroplastic	   0 0 7 0 7
Probable	  granule-‐bound	  starch	  synthase	  1,	  chloroplastic/amyloplastic	   0 0 14 0 14
Probable	  H/ACA	  ribonucleoprotein	  complex	  subunit	  4	   0 0 4 0 4
Probable	  hydroxyacid-‐oxoacid	  transhydrogenase,	  mitochondrial	   0 3 0 0 3
Probable	  lipid	  desaturase	  ADS3.2,	  chloroplastic	   0 0 182 0 182
Probable	  mannose-‐1-‐phosphate	  guanylyltransferase	  1	   0 0 1 0 1
Probable	  mannose-‐1-‐phosphate	  guanylyltransferase	  2	   0 0 18 0 18
Probable	  mannose-‐1-‐phosphate	  guanylyltransferase	  3	   0 0 1 0 1
Probable	  mediator	  of	  RNA	  polymerase	  II	  transcription	  subunit	  36b	   0 0 5 0 5
Probable	  methylcrotonoyl-‐CoA	  carboxylase	  beta	  chain,	  mitochondrial	   0 8 0 0 8
Probable	  methylenetetrahydrofolate	  reductase	   0 0 56 0 56
Probable	  methylmalonate-‐semialdehyde	  dehydrogenase	  [acylating],	  mitochondrial	   0 110 0 0 110
Probable	  phenylalanine-‐4-‐hydroxylase	  1	   0 15 0 0 15
Probable	  phosphoserine	  aminotransferase	   0 6 0 0 6
Probable	  pyridoxal	  biosynthesis	  protein	  PDX1	   0 0 132 0 132
Probable	  pyridoxal	  biosynthesis	  protein	  PDX1.1	   0 0 41 0 41
Probable	  pyridoxal	  biosynthesis	  protein	  PDX1.2	   0 0 13 0 13
Probable	  pyruvate	  kinase,	  cytosolic	  isozyme	   0 78 0 0 78
Probable	  rhamnose	  biosynthetic	  enzyme	  1	   0 140 0 0 140
Probable	  rhamnose	  biosynthetic	  enzyme	  2	   0 174 0 0 174
Probable	  rhamnose	  biosynthetic	  enzyme	  3	   0 151 0 0 151
Probable	  serine	  hydroxymethyltransferase,	  cytosolic	   0 0 2 0 2
Probable	  serine/threonine-‐protein	  kinase	  mps1	   0 2 0 0 2
Probable	  serine/threonine-‐protein	  kinase	  ndrB	   0 22 0 0 22
Probable	  ubiquitin-‐conjugating	  enzyme	  E2	  C	   0 122 0 0 122
Probable	  WRKY	  transcription	  factor	  3	   0 178 0 0 178
Probable	  WRKY	  transcription	  factor	  4	   0 13 0 0 13
Proliferating	  cell	  nuclear	  antigen	  (Fragment)	   0 128 0 0 128
Prolycopene	  isomerase,	  chloroplastic	   0 0 21 0 21
Propionyl-‐CoA	  carboxylase	  alpha	  chain,	  mitochondrial	   0 3 0 0 3
Protein	  henna	   0 2 0 0 2
Protein	  LUTEIN	  DEFICIENT	  5,	  chloroplastic	   0 0 15 0 15
Protein	  TOC75-‐3,	  chloroplastic	   0 0 7 0 7
Protein	  translocase	  subunit	  SecA,	  chloroplastic	   0 0 75 0 75
Protein	  translocase	  subunit	  SECA1,	  chloroplastic	   0 0 9 0 9
Protein	  transport	  protein	  Sec61	  subunit	  alpha	   0 10 0 0 10
Protochlorophyllide	  reductase	  (Fragment)	   0 0 5 0 5
Protochlorophyllide	  reductase,	  chloroplastic	   0 0 38 0 38
Protoporphyrinogen	  oxidase,	  chloroplastic	   0 0 65 0 65
Pullulanase	  1,	  chloroplastic	   0 56 0 0 56
Putative	  ammonium	  transporter	  1	  member	  5	   0 7 0 0 7
Putative	  diflavin	  flavoprotein	  A	  3	   0 0 5 0 5
Putative	  glutamate	  synthase	  [NADPH]	   0 399 0 0 399
Putative	  glycerol-‐3-‐phosphate	  transporter	  1	   0 21 0 0 21
Putative	  glycerol-‐3-‐phosphate	  transporter	  3	   0 5 0 0 5
Putative	  K(+)-‐stimulated	  pyrophosphate-‐energized	  sodium	  pump	   0 0 10 0 10
Putative	  peroxiredoxin	  sll0755	   0 0 39 0 39
Putative	  peroxiredoxin	  sll1621	   0 0 61 0 61
Putative	  peroxiredoxin	  ycf42	   0 0 559 0 559
Putative	  ribonucleoside-‐diphosphate	  reductase	  small	  chain	  B	   0 6 0 0 6
Pyridoxal	  biosynthesis	  lyase	  PdxS	   0 0 151 0 151
Pyridoxine	  biosynthesis	  protein	  PDX1	   0 0 2 0 2
Pyrophosphate-‐energized	  vacuolar	  membrane	  proton	  pump	   0 0 952 0 952
Pyrophosphate-‐energized	  vacuolar	  membrane	  proton	  pump	  1	   0 0 223 0 223
Pyruvate	  dehydrogenase	  E1	  component	  subunit	  alpha,	  mitochondrial	   0 240 0 0 240
Pyruvate	  dehydrogenase	  E1	  component	  subunit	  alpha-‐1,	  mitochondrial	   0 87 0 0 87
Pyruvate	  dehydrogenase	  E1	  component	  subunit	  alpha-‐2,	  mitochondrial	   0 168 0 0 168
Pyruvate	  dehydrogenase	  E1	  component	  subunit	  beta	   0 0 5 0 5
Pyruvate	  dehydrogenase	  E1	  component	  subunit	  beta-‐3,	  chloroplastic	   0 0 20 0 20
Pyruvate	  kinase	   0 92 0 0 92
Pyruvate	  kinase,	  cytosolic	  isozyme	   0 110 0 0 110
Pyruvate,	  phosphate	  dikinase	   0 22 0 0 22
Pyruvate,	  phosphate	  dikinase	  1,	  chloroplastic	   0 16 11 0 27
Pyruvate,	  phosphate	  dikinase	  2	   0 45 16 0 61
Pyruvate,	  phosphate	  dikinase,	  chloroplastic	   0 68 28 0 96
Ribonucleoside-‐diphosphate	  reductase	  small	  chain	   0 567 0 0 567
Ribonucleoside-‐diphosphate	  reductase	  small	  chain	  A	   0 68 0 0 68
Ribonucleoside-‐diphosphate	  reductase	  small	  chain	  C	   0 314 0 0 314
Ribonucleoside-‐diphosphate	  reductase	  subunit	  M2	   0 151 0 0 151
Ribosome	  biogenesis	  protein	  nsa2	   0 13 0 0 13
Ribosome	  biogenesis	  protein	  NSA2	   0 5 0 0 5
Ribosome	  biogenesis	  protein	  NSA2	  homolog	   0 377 0 0 377
Ribosome	  modulation	  factor	   2 3 0 0 5
Ribulose	  bisphosphate	  carboxylase	  small	  chains,	  chloroplastic	   0 0 90 0 90
Ribulose	  bisphosphate	  carboxylase/oxygenase	  activase,	  chloroplastic	   0 0 1468 0 1468
Ribulose-‐phosphate	  3-‐epimerase	   0 7 0 0 7
Ribulose-‐phosphate	  3-‐epimerase,	  cytoplasmic	  isoform	   0 80 0 0 80
RNA-‐binding	  protein	  PNO1	   0 39 0 0 39
RNA-‐binding	  protein	  pno1	   0 7 0 0 7
rRNA	  2'-‐O-‐methyltransferase	  fibrillarin	   0 0 5 0 5
rRNA-‐processing	  protein	  FCF1	  homolog	   0 46 0 0 46
Sec-‐independent	  protein	  translocase	  protein	  TATA,	  chloroplastic	   0 0 32 0 32
Serine	  hydroxymethyltransferase	   0 0 61 0 61
Serine	  hydroxymethyltransferase	  1	   0 0 51 0 51
Serine	  hydroxymethyltransferase	  2	   0 0 79 0 79
Serine	  hydroxymethyltransferase	  2,	  mitochondrial	   0 0 89 0 89
Serine	  hydroxymethyltransferase,	  cytosolic	   0 0 260 0 260
Serine	  hydroxymethyltransferase,	  mitochondrial	   0 0 2243 0 2243
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Serine/threonine-‐protein	  kinase	  38	   0 91 0 0 91
Serine/threonine-‐protein	  kinase	  Aurora-‐1	   0 87 0 0 87
Serine/threonine-‐protein	  kinase	  Aurora-‐2	   0 8 0 0 8
Serine/threonine-‐protein	  kinase	  tricorner	   0 7 0 0 7
Serine/threonine-‐protein	  phosphatase	  PP1-‐alpha	  catalytic	  subunit	   0 1 0 0 1
Sodium/potassium-‐transporting	  ATPase	  subunit	  alpha	   0 689 0 0 689
Sodium/potassium-‐transporting	  ATPase	  subunit	  alpha-‐1	   0 5 0 0 5
Sodium/potassium-‐transporting	  ATPase	  subunit	  alpha-‐3	   0 52 0 0 52
Sodium/potassium-‐transporting	  ATPase	  subunit	  alpha-‐4	   0 8 0 0 8
Sodium/potassium-‐transporting	  ATPase	  subunit	  alpha-‐A	   0 96 0 0 96
Sodium/potassium-‐transporting	  ATPase	  subunit	  alpha-‐B	   0 17 0 0 17
Soluble	  starch	  synthase	  1,	  chloroplastic/amyloplastic	   0 0 3 0 3
Spermidine	  synthase	  2	   0 0 2 0 2
Starch	  synthase	  1,	  chloroplastic/amyloplastic	   0 0 26 0 26
Starch	  synthase	  3,	  chloroplastic/amyloplastic	   0 0 16 0 16
Structural	  maintenance	  of	  chromosomes	  protein	  2	   0 16 0 0 16
Structural	  maintenance	  of	  chromosomes	  protein	  2-‐1	   0 114 0 0 114
Structural	  maintenance	  of	  chromosomes	  protein	  2-‐2	   0 81 0 0 81
Structural	  maintenance	  of	  chromosomes	  protein	  3	   0 2 0 0 2
Structural	  maintenance	  of	  chromosomes	  protein	  4	   0 296 0 0 296
Succinate	  dehydrogenase	  [ubiquinone]	  flavoprotein	  subunit	  1,	  mitochondrial	   0 18 0 0 18
Succinate	  dehydrogenase	  [ubiquinone]	  flavoprotein	  subunit,	  mitochondrial	   0 30 0 0 30
Succinate	  dehydrogenase	  [ubiquinone]	  iron-‐sulfur	  subunit	   0 4 0 0 4
Succinate	  dehydrogenase	  [ubiquinone]	  iron-‐sulfur	  subunit,	  mitochondrial	   0 93 0 0 93
Sugar	  phosphate	  exchanger	  2	   0 34 0 0 34
SUMO-‐conjugating	  enzyme	  SCE1	   0 3 0 0 3
Superoxide	  dismutase	  [Mn]	   0 0 31 0 31
Superoxide	  dismutase	  [Mn],	  mitochondrial	   0 0 25 0 25
TFIIH	  basal	  transcription	  factor	  complex	  helicase	  XPD	  subunit	   0 10 0 0 10
Thermospermine	  synthase	  ACAULIS5	   0 0 1 0 1
Thiamine	  thiazole	  synthase	  2,	  chloroplastic	   0 0 369 0 369
Thiamine	  thiazole	  synthase	  4,	  chloroplastic	   0 0 150 0 150
Thiamine	  thiazole	  synthase,	  chloroplastic	   0 0 79 0 79
Thiol	  protease	  aleurain-‐like	   0 3 0 0 3
Thioredoxin	   0 0 9 0 9
Thioredoxin	  M-‐type,	  chloroplastic	   0 0 366 0 366
Thioredoxin-‐1	   0 0 183 0 183
Transcription	  factor	  MYB1R1	   0 44 0 0 44
Transketolase	   0 0 515 0 515
Transketolase	  10	   0 0 104 0 104
Transketolase	  2	   0 0 32 0 32
Transketolase	  7	   0 0 9 0 9
Transketolase,	  chloroplastic	   0 0 537 0 537
Transketolase,	  chloroplastic	  (Fragment)	   0 0 91 0 91
Transketolase-‐1,	  chloroplastic	   0 0 192 0 192
Transketolase-‐2,	  chloroplastic	   0 0 27 0 27
Triosephosphate	  isomerase,	  chloroplastic	   0 0 2 0 2
Triosephosphate	  isomerase,	  cytosolic	   0 0 10 0 10
Tryptophan	  5-‐hydroxylase	  1	   0 5 0 0 5
Tyrosine-‐-‐tRNA	  ligase	   0 0 1 0 1
Ubiquitin-‐conjugating	  enzyme	  E2	  20	   0 5 0 0 5
Ubiquitin-‐conjugating	  enzyme	  E2	  C	   0 41 0 0 41
UDP-‐galactose/UDP-‐glucose	  transporter	  5	   0 81 0 0 81
UDP-‐galactose/UDP-‐glucose	  transporter	  5B	   0 375 0 0 375
UDP-‐glucose	  4-‐epimerase	   0 1 0 0 1
UDP-‐glucose	  4-‐epimerase	  2	   0 1 0 0 1
UDP-‐glucose	  4-‐epimerase	  4	   0 27 0 0 27
UDP-‐glucose	  4-‐epimerase	  5	   0 49 0 0 49
UDP-‐glucose	  4-‐epimerase	  GEPI48	   0 5 0 0 5
UDP-‐glucose	  6-‐dehydrogenase	   0 24 0 0 24
UDP-‐glucose	  6-‐dehydrogenase	  1	   0 87 0 0 87
UDP-‐glucose	  6-‐dehydrogenase	  2	   0 84 0 0 84
UDP-‐glucose	  6-‐dehydrogenase	  3	   0 60 0 0 60
UDP-‐glucose	  6-‐dehydrogenase	  4	   0 259 0 0 259
UDP-‐glucose	  6-‐dehydrogenase	  5	   0 187 0 0 187
UDP-‐N-‐acetylglucosamine	  pyrophosphorylase	   0 1 0 0 1
UDP-‐sulfoquinovose	  synthase,	  chloroplastic	   0 0 637 0 637
UMP-‐CMP	  kinase	   0 75 0 0 75
Uncharacterized	  protein	  ycf45	   0 65 0 0 65
Urea-‐proton	  symporter	  DUR3	   0 1093 0 0 1093
Uroporphyrinogen	  decarboxylase	  1,	  chloroplastic	   0 0 48 0 48
Vacuolar	  cation/proton	  exchanger	  2	   0 18 0 0 18
Vacuolar	  cation/proton	  exchanger	  3	   0 1 0 0 1
Valine-‐-‐tRNA	  ligase	   0 0 2 0 2
WD	  repeat-‐containing	  protein	  WRAP73	   0 2 0 0 2
Xanthine	  dehydrogenase	   0 15 0 0 15
Zeta-‐carotene	  desaturase	   0 0 23 0 23
Zeta-‐carotene	  desaturase,	  chloroplastic/chromoplastic	   0 0 26 0 26
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Supplementary Table 2. Distribution of annotated Differentially Expressed Reads (DERs) 2562 

assigned with GO terms presented as a percentage of total annotated DERs in each treatment 2563 

	  2564 

GO	  Terms Nitrogen-‐starved Control
actin	  binding 0.32 0.00
anatomical	  structure	  morphogenesis 11.60 2.72
antioxidant	  activity 0.00 0.53
behavior 1.93 0.00
calcium	  ion	  binding 0.01 2.16
carbohydrate	  binding 2.17 0.00
carbohydrate	  metabolic	  process 45.29 12.16
catabolic	  process 34.10 10.50
cell	  cycle 6.71 0.03
cell	  death 2.36 2.98
cell	  differentiation 11.39 1.10
cell	  envelope 0.00 1.43
cell	  growth 8.25 0.23
cell	  proliferation 0.82 0.04
cell	  wall 0.31 1.04
cell-‐cell	  signaling 2.09 0.00
cellular	  homeostasis 3.14 1.69
cellular	  protein	  modification	  process 4.97 33.14
chromatin	  binding 0.42 0.03
cilium 0.10 0.00
cytoplasmic	  membrane-‐bounded	  vesicle 2.70 0.56
cytoskeleton	  organization 1.63 0.01
cytosol 16.50 1.88
DNA	  binding 8.47 1.96
DNA	  metabolic	  process 8.46 0.27
electron	  carrier	  activity 0.57 4.51
embryo	  development 3.70 0.24
endoplasmic	  reticulum 2.73 0.09
endosome 2.56 0.49
enzyme	  regulator	  activity 0.55 0.91
extracellular	  region 2.14 4.99
generation	  of	  precursor	  metabolites	  and	  energy 24.61 83.01
Golgi	  apparatus 1.94 0.77
ion	  channel	  activity 0.25 0.00
ion	  transport 5.17 6.27
lipid	  metabolic	  process 11.29 7.37
lipid	  particle 1.00 0.11
microtubule	  organizing	  center 0.60 0.01
mitochondrion 17.91 6.84
mitochondrion	  organization 1.48 0.15
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motor	  activity 2.57 0.00
nuclear	  chromosome 0.53 0.00
nuclease	  activity 0.74 0.02
nucleolus 0.32 0.18
nucleoplasm 1.41 0.02
nucleotide	  binding 42.15 8.11
oxygen	  binding 0.00 0.07
peptidase	  activity 0.68 0.96
peroxisome 0.76 0.07
plasma	  membrane 13.46 1.12
plastid 15.12 93.23
protein	  complex 17.17 73.34
protein	  kinase	  activity 3.49 0.03
protein	  transport 0.50 2.88
receptor	  binding 0.17 0.00
regulation	  of	  gene	  expression,	  epigenetic 2.66 0.04
reproduction 13.84 0.32
response	  to	  abiotic	  stimulus 12.78 10.58
response	  to	  biotic	  stimulus 1.27 5.62
response	  to	  endogenous	  stimulus 0.61 2.79
response	  to	  external	  stimulus 6.30 0.52
response	  to	  stress 20.95 9.20
ribosome 2.68 0.73
secondary	  metabolic	  process 3.32 8.93
sequence-‐specific	  DNA	  binding	  transcription	  factor	  activity 1.07 0.01
signal	  transducer	  activity 0.03 0.00
signal	  transduction 0.93 2.88
thylakoid 0.01 82.71
transcription	  regulator	  activity 0.14 0.00
translation 2.99 0.39
translation	  factor	  activity,	  nucleic	  acid	  binding 1.03 0.01
translation	  regulator	  activity 0.06 0.00
vacuole 0.50 0.69
viral	  process 0.23 0.00
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Supplementary table 3. List of primers used for qRT-PCR 2567 

	  2568 

	  2569 

Primer	  Name Forward Reverse
Acetyl-‐CoA	  carboxylase	  (ACCase) CTCTTCAACGCCAACACGAAAG TTCCCGTGATACCCTCCGTTA
Malonyl-‐CoA:ACP	  transacylase	  (MAT) AATTCTCGCCCAGCAGTTGAC CACCTCGTAAGCCCTCTCCAG
3-‐ketoacyl-‐ACP	  synthase	  (KAS) AGCATAACCTGATCGAGGAGCTT GAAAGAGTTGGACATTGCTGCAGT
3-‐ketoacyl-‐ACP	  reductase	  (KAR) CGGAGGAGATGTTAATGATGCG ATCAACCTCACCGGCGTCTT
3-‐hydroxyacyl-‐ACP	  dehydratase	  (HD) ACCCGCATCATGAGGCAATC CGACACAGCAGGCAAGAACA
Enoyl-‐ACP	  reductase	  (ENR) CTCCTTGACCTCAGTTGGGACA CTCAAACGGGTCCTTAATGGAGT
Glycerol	  kinase	  (GK) ATTGCGTCCAGCACCTCCTT CTGGTGGGAATGACGCTGTC
Glycerol-‐3-‐phosphate	  O-‐acyltransferase	  	  (GPAT)	   ATCGAGTAGTGAGCGACAAACTTTGGGGTCATCCATTATGTGCTTCTTG
1-‐acyl-‐sn-‐glycerol-‐3-‐phosphate	  acyltransferase	  (AGPAT) CTGGACCTTCCTCCTCGCTATC AGAGGTGCGCTTGAACTTATCG
Phosphatidate	  phosphatase	  (PP) TGTGGTCGGAGATCACATACGATACAGTAGAGCGAGAACGACACCAG
Diacylglycerol	  O-‐acyltransferase	  (DGAT) ATCAGAGGAACCTGTCCCATCA CTGCCATTTTTCACGAGCTAATG
Triacylglyceride	  (TAG)	  lipase CTACTGTCGCATCTGGTTACCAAA GAAATGTGAGGTCGCCGATTAG
Acyl-‐CoA	  synthetase	  (ACSase) CACGTTGCTGTGCTTAATCTGC CGAGTGCAACCCTGAGGATATG
Acyl-‐CoA	  oxidase	  (ACO) GATGGTGGCTGCTTTGGACA GGCCAAGGGAAACGAAAAGTC
Enoyl-‐CoA	  hydratase	  (ECH) CGCCTCATCCATAAGCTGCTC CCTCACCTGCAGAAGGATTGAT
Hydroxyacyl-‐	  CoA	  dehydrogenase	  (HAD) TGTTTCTTTCCCTACAACATGGC CAAACTCGCTCTTGATGATCTTGTC
Ketoacyl-‐	  CoA	  thiolase	  (KAT) ACTGCGGCATCACCATCG CAGGCTGAGGTCCCGCAT
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 2570 

Supplementary Figure 1. Expression of genes in the FA synthesis pathway at 0, 16, 24, 32, 48 and 2571 

72 hours.  2572 
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 2573 

Supplementary Figure 2. Expression of genes in the TAG synthesis pathway at 0, 16, 24, 32, 48 2574 

and 72 hours.  2575 



151 

 

 2576 

 2577 

Supplementary Figure 3. Expression of genes in the lipid catabolism pathway at 0, 16, 24, 32, 48 2578 

and 72 hours.  2579 
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 2580 

Supplementary Figure 4. Nitrogen and Phosphate concentrations monitored during (A) RNA-seq 2581 

experiment and (B) &(C) Time-course experiment.    2582 
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Chapter 5: Concluding Discussion and Future Work 2583 

This thesis had the overall aim of identifying approaches for improving microalgal lipid 2584 

productivity and gaining a deeper understanding of the molecular mechanisms behind microalgal 2585 

lipid biosynthesis. The first aim (chapter 2) collected and identified candidate microalgal strains 2586 

with high lipid productivity suitable for lipid and biodiesel production. Two strains that were 2587 

isolated from local waterways, Tetraselmis sp. M8 and Chlorella sp. BR2, belong to genera that 2588 

have been established as good candidates for large-scale production (Araujo et al., 2589 

2011,Huerlimann et al., 2010). This showed that strains with the ideal characteristic for large-scale 2590 

lipid production can be obtained from local waterways, and thus present a possible alternative to 2591 

purchasing commercial strains. It must be noted that the objective of the ‘Standard Protocol’ 2592 

developed in Aim 1 was to compare all the strains under the same growth/starvation conditions and 2593 

time period. It was never meant to determine a strains ‘true’ lipid producing potential, as different 2594 

strains have different growth rates, and thus be at different stages of growth when the starvation 2595 

period was applied on day 7. It is recognized that the applied nutrient starvation has different 2596 

impacts on cells that still contain nutrient reserves vs. stationary phase. The ‘Standard Protocol’ was 2597 

designed as an initial screen to rule out low lipid productivity strains, with more in depth analysis 2598 

on the strains that show high-lipid potential to be carried out later, preferably in conditions that 2599 

more closely resemble a commercial setting. 2600 

Future work regarding this aim should be focused on improving the standard protocol to 2601 

more closely resemble a commercial setting. Other members of the laboratory have already begun 2602 

this work. The volume of cultures were increased to 200 mL and aeration via bubbling added in the 2603 

evaluation of other new strains in the laboratory (Van Thang, Unpublished). Furthermore, as 2604 

commercial viability of large-scale microalgal lipid production is dependent on a biorefinery 2605 

approach, other parameters such as protein, starch and carotenoid contents should also determined 2606 

during strain evaluation. Another approach that can be taken to improve the collection and isolation 2607 

of high-lipid strains is to identify the best sampling location and times that could yield such strains. 2608 

The characterisation of collected samples from various water bodies, along with the related 2609 

environmental data could reveal the natural environmental conditions which high-lipid microalgae 2610 

are selected for. This information would not only help to improve the collection of high-lipid 2611 

strains, but could potentially help the industry gain insight into the best conditions to select for and 2612 

maintain laboratory strains’ lipid productivity.  2613 
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The second aim (Chapter 3) of this thesis improved the lipid productivity of Tetraselmis 2614 

suecica via non-GM methods. The mutation-selection method that was developed successfully 2615 

produced two lines of improved T. suecica strains, both exhibiting >110% increase in lipid content 2616 

(measured by Nile red fluorescence) when compared to the wild-type strain. The two improved 2617 

lines T. suecica M5 and T. suecica M24 were generated from two different lethal dosages (LD), 2618 

50% and >98% respectively. Both lethal dosages were selected to either increase recovery of clones 2619 

(50% LD) or increase mutation probability (>98% LD). In the end, although both dosages yielded 2620 

strains with improved lipid productivity after five rounds of mutations, no significant differences in 2621 

lipid productivity or growth rates were found between them. Therefore, as the goal of mutagenesis 2622 

was to induce a positive mutation, a lower LD (i.e. 50%) is recommended for future mutagenesis 2623 

studies as (i) culture recovery after UV exposure was less time-consuming and (ii) this reduces the 2624 

possibility of background damage.  2625 

As discussed in Chapter 3, the observed improvements in the putative mutants could be 2626 

either a mutation to, or adaptation to UV-C. Therefore, after 6 months of growth under maintenance 2627 

conditions during storage, the growth rates and lipid production of M5 and M24 were compared 2628 

once again to wild-type. During storage, both improved strains and wild-type T. suecica were 2629 

cultured in 100 mL filter cap tissue culture flasks (CellStar) at 25°C, under a 16:8 h light/dark 2630 

photoperiod of fluorescent white light (60 µmol photons m-2s-1). Cultures were not shaken and were 2631 

maintained by replacing half the culture (50 mL) with autoclaved artificial seawater (Aquasonic) 2632 

supplemented with F/2 medium once every 2 weeks. These conditions aimed at minimising cell 2633 

division and at avoiding high selection pressures. After the cultures were revived by gradual volume 2634 

scale-up, strain comparisons were carried out in 250 mL cultures supplemented with F medium and 2635 

air bubbling at 25°C, under a 16:8 h light/dark photoperiod of fluorescent white light (120 µmol 2636 

photons m-2s-1). The growth rates and lipid content (Nile red fluorescence) of these cultures were 2637 

measured as in Chapter 3, with starvation of cultures occurring 2 days into growth upon exhaustion 2638 

of exogenous nitrogen. 2639 

 2640 
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 2641 

Figure 1. Cell density of T. suecica, M5 and M24 over the span of 7 days with nutrient 2642 

starvation occurring on day 2. Circled data points indicate significant differences from wild-type 2643 

(P<0.05). 2644 

 2645 

 2646 

Figure 2. Lipid accumulation in T. suecica wild-type and selected strains (M5 & M24) during 2647 

nutrient starvation phase measured by Nile red fluorescence. (a) Total fluorescence units 2648 

measured represent total lipid accumulated per mL of culture (b) Total fluorescence/cell represents 2649 

total lipid accumulated per cell. Circled data points indicate significant differences from wild-type 2650 

(P<0.05), data represent mean ± SEM from two independent replicates. 2651 
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Interestingly, strain comparison after 9 months in storage (6 months after comparison in 2652 

Chapter 3) revealed some changes in strain performance. Firstly, while cell proliferation was similar 2653 

amongst all three strains in the first comparison, results in this comparison revealed that M24 2654 

displayed higher cell densities (P<0.05) than wild-type five days into the experiment. Secondly and 2655 

more importantly, total fluorescence values of the putative mutants were only significant higher 2656 

(P<0.05) than wild-type on day 4 of starvation, while no significant differences in fluorescence/cell 2657 

were detected. These changes seem to indicate that the lipid content of the improved strains may 2658 

have reverted back to wild-type conditions, and that initial improvements in lipid content may have 2659 

been a result of epigenetics (e.g. via DNA methylation), instead of a stable DNA mutation. This 9-2660 

month period after selection pressure was last applied, appears to be a sufficiently long period for 2661 

the strains to re-adapt to the absence of selection pressure. DNA methylation has been reported an 2662 

adaptive response to environmental stimuli in plants such as osmotic stress (Jarvis et al., 2663 

1992,Turner et al., 2001), and has been argued to be the main source of amplified fragment length 2664 

polymorphism (AFLP) changes in cryopreserved microalgae (Muller et al., 2007). In fact, the 2665 

methylated base m6Da, which plays an important role in processes such as mismatch repair, 2666 

transposition, replication and chromosome segregation has been detected in T. suecica under normal 2667 

growth conditions (Jarvis et al., 1992). This implies that DNA methylation occurs naturally in T. 2668 

suecica and presents a dominant source of epigenetic drift in a species with a high reproductive 2669 

cycle. This would explain the results of other T. suecica and Nannochloropsis sp. selection studies 2670 

that isolated high-lipid content strains with just high-throughput selection alone (no mutagenesis 2671 

step) (Doan and Obbard, 2011,Montero et al., 2011), as the short time period between isolation and 2672 

lipid content analysis would not have been sufficient for the methylation to have reverted.  2673 

The effect of epigenetics on highly reproductive organisms such as microalgae brings into 2674 

question the efficacy of strain improvement in microalgae, be it via GM or non-GM methods. While 2675 

the ability of such programs to generate an improved strain is no longer in doubt, the overarching 2676 

effects of epigenetics implies that consistent selection pressures must be applied even on stable 2677 

DNA mutants/transformants to prevent strains from reverting back to unimproved features. 2678 

Nevertheless, the methods developed in this thesis for the selection of high-lipid content strains 2679 

without compromising growth rate represents a useful tool that can be used to revive a strain’s lipid 2680 

performance.  2681 

The main objective of Aim 3 (Chapter 4) was to gain a deeper understanding of the 2682 

underlying mechanism of lipid accumulation in the previously unsequenced Tetraselmis genus. This 2683 

was achieved by using a combination of global comparative transcriptomics and qRT-PCR analysis. 2684 
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Transcriptomic analysis performed 24 hours after nitrogen deprivation successfully mapped out 2685 

three main lipid-related pathways (FA synthesis, TAG synthesis and β-oxidation), while 2686 

physiological observations revealed a distinct pre-starvation phase from 0 to 24 h after nitrogen 2687 

deprivation. The RNA-Seq analysis of Tetraselmis sp. M8 was not only crucial in revealing the 2688 

molecular changes in key gene groups, it more importantly provided a platform from which more 2689 

in-depth expression profile studies on Tetraselmis sp. could be performed. The follow-up qRT-PCR 2690 

analsysis of Tetraselmis sp.’s lipid-related revealed that lipid accumulation in the first 48 hours of 2691 

nitrogen deprivation was a result of significant reduction in lipid catabolism gene expression, as 2692 

lipid synthesis genes were maintained at basal levels, arguably relying on cell machinery still 2693 

available from cell growth (Radakovits et al., 2012). This was followed by a significant up-2694 

regulation of lipid synthesis genes at 48 hours after N-deprivation as lipid accumulation was now a 2695 

result of active lipid synthesis. Furthermore, this study also showed the commonly considered 2696 

bottleneck gene, DGAT, to be consistently down-regulated during the starvation phase, despite 2697 

increased lipid accumulation being observed. While post-transcriptional control of DGAT has been 2698 

previously observed (Guarnieri et al., 2011,Nykiforuk et al., 2002), the lack of a clear up-regulation 2699 

in TAG pathway genes as a whole may indicate that the pathway may be more post-2700 

transcriptionally controlled in Tetraselmis sp. M8. Although these key findings do not conform 2701 

fully to traditional microalgal lipid pathway expression profiles, they do not come as a surprise due 2702 

the diversity of microalgae and their genomes. Attempts to assemble the Tetraselmis sp. M8 2703 

transcriptome to one of its closest sequenced relative Chlamydomonas reinhardtii had less than 1% 2704 

match. In fact, phylogenetic analysis reveals Tetraselmis (class: Chlorodendrophyceae) to belong to 2705 

a totally separate class to that of other microalgae that have been similarly anslysed. (e.g. 2706 

Chlamydomoas, Dunaliella, Chlorella, Phaedactylum).  2707 

Analysis of the lipid-related pathways also successfully revealed key genes and potential 2708 

bottlenecks in the lipid biosynthesis pathway of Tetraselmis sp. Genes encoding for the committing 2709 

steps of β-oxidation (TAG lipase and ACSase) and ECH were found to play a key role in reducing 2710 

lipid catabolism. This was crucial in reducing lipid consumption and thus increasing lipid 2711 

accumulation during early starvation phase. Furthermore, these genes exhibited significant changes 2712 

in the nitrogen-starved treatments throughout the entire experiment, and thus can be considered 2713 

essential to lipid accumulation in Tetraselmis sp. Other potential bottleneck genes are those 2714 

encoding for ACCase, KAR and ENR in the FA synthesis pathway, which exhibited significant 2715 

activity during the starvation phase. ACCase and ENR in particular, are the committing and final 2716 

step of FA synthesis and could therefore be rate-limiting, and have been found to be potentially 2717 

rate-limiting in Neochloris oeloabundans as well (Rimani-Yazdi et al., 2012) Overall, the 2718 
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information obtained from Chapter 4 was not limited to the lipid synthesis pathway in this study, 2719 

but has also recently been used as the basis for other studies in the lab such as Adarme-Vega et al. 2720 

(2014)’s (Adarme-Vega et al., 2014) gene expression study of enzymes involved in long chain-2721 

PUFA synthesis, and Ahmed, F.’s work on carotenoid gene expression (Ahmed, Unpublished). 2722 

With regards to the future work arising from this thesis, the sequencing of the Tetreselmis 2723 

sp. M8 genome should be a priority. The current transcriptomics data could then be accurately 2724 

assembled to it, and the remaining 90% of the DiffKAP data annotated to allow for a more robust 2725 

analysis of Tetraselmis gene expression. This should not be limited to lipid metabolism, but 2726 

expanded to include other key carbon metabolism pathways (e.g. starch and protein synthesis) as 2727 

well, thus gaining a deeper understanding of the carbon flux during lipid accumulation. The 2728 

assembly of the transcriptome would also allow for the transcriptional profiling of individual gene 2729 

members, and not whole gene families as done in this study. Aside from genomic sequencing and 2730 

analysis of the carbon flux within Tetraselmis sp. M8 during lipid accumulation, proteonomic 2731 

analysis should also be done to investigate the post-transcriptoinal control of many of the genes in 2732 

this study, in particular the DGAT gene. The genetic information gained regarding Tetraselmis sp. 2733 

M8 in Chapter 4 could also be used in conjunction with the work done in Chapter 5. Lipid-related 2734 

pathways of improved strains generated by the selection-mutation program could be analysed to 2735 

reveal the genetic (if any) and transcriptional changes behind the observed improvements. This 2736 

could ultimately lead to a better understanding of transcriptional and epigenetic control of 2737 

physiological pathways in microalgae, and/or the identification of potential DNA engineering 2738 

targets.  2739 

In conclusion, this thesis has successfully met its aims and made key contributions to 2740 

knowledge.  Aim 1 developed a method by which locally sourced microalgae with high lipid 2741 

content and suitability for lipid production can be obtained, while showing that locally sourced 2742 

strains are as competitive as purchased strains from CSIRO. Aim 2 developed a non-GM, strain 2743 

improvement program that successfully improved the lipid productivity of a strain without 2744 

compromising its growth rate. This program can be easily applied to maintain the lipid content of 2745 

lab strains that have lost their lipid productivity after long periods in storage, or further improve the 2746 

lipid content of strains that already have a good growth rate. Furthermore, aim 2 also work also 2747 

raised the possibility that increased lipid productivity could be an effect of epigenetics, phenotypic 2748 

plasticity and/or adaptation and not necessarily permanent genetic change. Aim 3 investigated the 2749 

molecular mechanisms behind lipid production in Tetraselmis sp. M8 and discovered that during 2750 

the 2 distinct phases of lipid accumulation, early-stationary and stationary, both had different 2751 
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underlying molecular mechanisms. This thesis demonstrates that it is possible to build up a 2752 

microalgal production system without prior infrastructure of established strains or protocols. The 2753 

thesis therefore spans the initial steps of isolating and characterising new strains, to establishing 2754 

new protocols for microalgae breeding using a non-GM high-throughput mutation/selection 2755 

approach, to molecular characterisation of metabolites and gene expression profiles during N 2756 

starvation-induced lipid accumulation. Although a lot more work can be done, this study has 2757 

significantly advanced knowledge and may serve as an example how a research team can establish a 2758 

new program in algae biotechnology by combining both classical as well as cutting-edge new 2759 

methods. 2760 

 2761 
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