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bSchool of Computer, National University of Defense Technology, Changsha, China

Abstract

In the past decades, activity recognition has aroused a great interest for the research groups majoring in context-awareness
computing and human behaviours monitoring. However, the correlations between the activities and their frequent patterns have
never been directly addressed by traditional activity recognition techniques. As a result, activities that trigger the same set of
sensors are difficult to differentiate, even though they present different patterns such as different frequencies of the sensor events.
In this paper, we propose an efficient association rule mining technique to find the association rules between the activities and their
frequent patterns, and build an activity classifier based on these association rules. We also address the classification of overlapped
activities by incorporating the global and local weight of the patterns. The experiment results using publicly available dataset
demonstrate that our method is able to achieve better performance than traditional recognition methods such as Decision Tree,
Naive Bayesian and HMM. Comparison studies show that the proposed association rule mining method is efficient, and we can
further improve the activity recognition accuracy by considering global and local weight of frequent patterns of activities.

Keywords: Data mining, Association rule, Activity recognition, Global and local weight, Smart environments

1. Introduction

Activity recognition (de la Concepción et al., 2014;
Fernández-Caballero et al., 2012) has aroused a great interest
in the past decade and has been addressed by many research
groups using different kinds of physical devices and reasoning
techniques. The great interest in activity recognition can be
explained in many ways. On one hand, because of the unprece-
dented growing speed of the aging population around the world
(Chernbumroong et al., 2013), one can imagine that elderly
health-care will cost increasingly large amount of government
budget in the future. However, monitoring Activities of Daily
Living (ADL) (Reisberg et al., 2001) such as sleeping, cook-
ing and eating can help the aged to live independently at home,
and detecting the abnormal situation as soon as possible can
reduce the danger to the minimum extent. On the other hand,
as the increasing computational capability and memory storage
enable the intelligent computing units to be deployed invisibly
around the environments, there is a growing interest in the area
of context-awareness computing. Environment-embedded sen-
sors make it possible to gather various context information to
guide the applications to be intelligent and behave adaptively
toward the benefits of the residents. Human activity is one of
the most important context, and activity recognition bridges the
gap between various context-aware applications and intelligent
ambient sensors.

Activity recognition is related to expert and intelligent sys-
tems from two aspects. Firstly, activity recognition can be
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viewed as a middleware between low-level sensors and high-
level context-aware applications. The high-level context-aware
applications are expert systems which make decisions towards
the benefits of the users by reasoning the current observations
against the pre-defined domain knowledge. For example, one
application may turn the smartphone into silence mode if the
on-going activity is meeting. In this example, the pre-defined
rule to change smartphone’s mode and the activity recognition
component can be regarded as knowledge base and inference
engine respectively, which are the two most important sub-
systems in expert systems. On the other hand, activity recogni-
tion system itself can be viewed as an expert and intelligent sys-
tem. It learns knowledge from the labelled data and performs
inference to reason activities based on current sensor readings.
Activity recognition can explicitly specify the knowledge base
such as the decision rules in Decision Tree. The learned knowl-
edge can also be implicitly specified, such as the transition
probability in Hidden Markov model (HMM), the support vec-
tors in Support Vector Machine (SVM), the weights of potential
functions in Conditional Random field (CRF). The inference
process depends on the machine learning techniques used for
activity recognition, and it includes dynamic programming in
HMM and CRF, inner product between test vector and support
vectors in SVM.

Based on the activities to be recognised, there are mainly two
ways of recognition using different types of sensors. One is to
attach sensors to human body to capture the physical activity
signals such as acceleration and angular velocity (Banos et al.,
2012; Kwon et al., 2014), and then machine learning models are
trained with the labelled data and used to classify the test data.
The other one is to recognise high-level activities through the
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interactions between the people and the environments (Ordóñez
et al., 2013; Chernbumroong et al., 2013; Azkune et al., 2015;
Wen and Zhong, 2015). The argument for the second method is
that high-level activities usually share common sets of physical
actions, and are difficult to differentiate based solely on physical
signals. However, these kinds of high-level activities can be
characterised by the objects used by people, people’s location
and the time they perform the activities, and these objects can
be obtained from sensors such as electrical ID tags deployed in
the environments (Palmes et al., 2010; Gu et al., 2010).

Even though there are numerous ways for human activities
recognition, with each addressing a certain aspect of the prob-
lems during the recognition model construction, some issues
are still needed to be addressed. First of all, most of the activ-
ity recognition systems disregard the discriminative power of
the features they choose. Even if some works (Banos et al.,
2012; Könönen et al., 2010) use greedy algorithm to select the
best group of features that are able to yield high accuracy, all
the features are applied for classification if they are selected in
the previous step, ignoring the fact that some features may not
be informative in discriminating an activity from another. For
example, the irrelevant features in the feature vector may con-
tribute to the error when calculating the distance in instance-
based classifiers. Furthermore, human activities, characterised
by the sensor events in smart environments, may show some
degree of overlap and are difficult to distinguish using tradi-
tional methods (Rashidi et al., 2011). Note that the overlap is
termed as the phenomenon that different activity classes share
the same set of sensor events and are difficult to differentiate
solely based on the types of sensor events they triggered. How-
ever, the frequencies of sensor events may be different for the
activity classes and can be used to discriminate them. For ex-
ample, activity a1 triggers sensor events {s1, s3, s3, s3} and ac-
tivity a2 triggers sensor events {s1, s1, s1, s3}. The two activities
trigger the same set of sensor events {s1, s3} and are impossi-
ble to differentiate based solely on the types of triggered sen-
sor events. However, the activities have different frequencies in
these two sensor events, and these knowledge can be mined to
recognise overlapped activities.

In this paper, we apply association rule mining techniques
to find frequent patterns of human behaviours from annotated
daily life logs and use the frequent patterns to classify the hu-
man activities based on the sensor readings. In this way, the fre-
quent patterns of each activity are characterised by the sensors
triggered more frequent by the activity than by the others. This
is reasonable, since people tend to perform certain activities in
the same place and use the same objects, thus trigger almost the
same sensors every time they perform the activities. For exam-
ple, people are always cooking in the kitchen and interacting
with the kitchenware. In other words, human behaviours can be
characterised by the surrounding sensor readings, and in turn,
the sensor readings can be regarded as the patterns of human
behaviours, thus it can be used to recognise human activities if
they are frequent enough. The contributions of this paper can
be concluded as follows:

1. We propose an efficient association rule mining algorithm
to find the relationships between the activities and their frequent

patterns in smart environments.
2. We use the association rules to build a classifier that is

able to achieve a higher performance than traditional classifiers
commonly used for activity recognition in smart environments.

3. We also incorporate the global and local weights of sensor
events in different activities to differentiate overlapped activi-
ties.

The reminder of this paper is organised as follows: Section
2 describes the related work. Section 3 details how to use the
association rules to build a classifier, while Section 4 describes
the mining process of the association rules and the experiment
results are presented in Section 5. Finally, we conclude our
work in Section 6.

2. Related work

2.1. Association rule and associative classifier
Traditionally, association rules mining (Rodrı́guez-González

et al., 2013) is used to find the frequent itemsets among the his-
torical transactions and discover unknown relationships so as
to provide information for decision making or prediction (Ra-
jasethupathy et al., 2009).

An association rule is presented as X ⇒ Y where X and Y
are disjoint set of items and are called the antecedent and con-
sequent of the association rule respectively. Two conventional
criteria that are used to evaluate an association rule are support
and con f idence. The support of a rule is the ratio of the trans-
actions that contain both of its antecedent X and consequent Y,
while the confidence of a rule is the ratio of transactions that
contain its antecedent also contain its consequent. Only the
associations rules that meet the user-specified minimum sup-
port and minimum confidence are of interest. Apriori algorithm
(Agrawal et al., 1994) is the most simple and efficient associ-
ation rule mining algorithm that iterates the steps of candidate
generation and pruning to find the frequent itemsets, while FP-
growth algorithm (Han et al., 2000) transforms all the trans-
actions into a compact representation of a tree, avoiding the
candidate generation.

Associative classification is another research topic which
means to extract association rules from the training dataset and
select some of them to construct the classification models, and
is demonstrated in CBA, CMAR and CPAR (Chien and Chen,
2010) to achieve a better performance than traditional classi-
fiers such as Decision Tree. Recently, many research works
(Pach et al., 2008) also extend the associative classification to
deal with numerical data by introducing the concept of fuzzy
sets. Some others (Yan et al., 2009; Qodmanan et al., 2011)
even use the genetic algorithm to learn the membership func-
tion of fuzzy logic or to mine the association rules without user-
specified minimum support.

The difference between the aforementioned methods and our
association rules mining methods is that, we leverage the spe-
cial characteristics of the activity data in smart environments
and propose an efficient rules mining method for activity recog-
nition. This is crucial because sensor readings of the datasets
from smart environments usually last for several months and
contain millions of sensor event logs.



  

2.2. Activity recognition

Generally, the models recognizing human activities can be
classified into two categories: knowledge-driven models and
data-driven models. In knowledge-driven models, the activities
are usually represented in the form of rules specified with com-
mon sense, and the models have an advantage in being reused
among different environments. However, the limitation of the
statically and strictly defined rules makes the models being un-
able to deal with noises and uncertain information in sensor
readings (Gu et al., 2010). By contrast, data-driven models,
which are trained with realistic data, are more powerful when
facing the characteristics of randomness and erratic nature of
human behaviours. To name a few, they include Naive Bayesian
used in (Bao and Intille, 2004; Tapia et al., 2004), HMM in (Pat-
terson et al., 2005; Van Kasteren et al., 2008), SVM in (Cook
et al., 2013; Brdiczka et al., 2009; Zhan et al., 2014), Decision
Trees in (Bao and Intille, 2004; Hevesi et al., 2014), KNN in
(Sundholm et al., 2014; Hevesi et al., 2014) and CRF in (Vail
et al., 2007; Zhan et al., 2014).

In recent years, human activity recognition has focused on
areas such as less supervision, energy efficiency and activity
personalisation. In less supervision, authors try to build activity
recognition model using less labelled data with semi-supervised
learning methods (Stikic et al., 2011; Stikic and Schiele, 2009;
Stikic et al., 2008, 2009; Maekawa and Watanabe, 2011; Lee
and Cho, 2014), or discover frequent activity patterns from un-
labelled data (Huynh et al., 2008; Sun et al., 2014; Seitr et al.,
2015). In energy efficiency, researchers try to lower the energy
consumption of the activity recognition system by selecting a
subset of the sensors dynamically (Gordon et al., 2012; Zappi
et al., 2008; Keally et al., 2011) or change the sampling rate of
the sensors adaptively (Yan et al., 2012). As for activity person-
alisation (Reiss and Stricker, 2013; Zhao et al., 2011; Cvetkovic
et al., 2011), general activity models trained with data of var-
ious users are adapted and personalised for a specific user in
order to improve the general recognition accuracy.

By contrast, this paper aims to recognise high-level activi-
ties in smart environments. The high-level activities have much
more semantic meanings than low-level locomotion such as
running and walking, and can better characterise daily routines
of the human beings. Those semantic activity routines are much
more useful for expert systems to behave adaptively towards
the interests of the users, such as providing living assistance or
monitoring active level for the elderly people. The difference
also roots in the fact that we mine the frequent patterns that
can better characterise the activities and filter out irrelevant and
less informative sensor readings which may negatively affect
the recognition accuracy, and we also try to distinguish over-
lapped activities that are not addressed in traditional activity
recognition in smart environments (Van Kasteren et al., 2008;
Cook et al., 2013; Tapia et al., 2004).

2.3. Frequent patterns for activity recognition

In some scenarios, activities are recognised by frequent pat-
terns mining and matching (Huang et al., 2010). Gu et al.
(Palmes et al., 2010; Gu et al., 2010) propose to recognise

activities with emerging patterns, which are the sensor events
that appear frequently in one activities and infrequently in the
others. They dynamically segment the sensor event sequence
into windows, and then computing the score for each activity
by accumulating the weights of the sensor events in the win-
dows against each activity. Although each sensor event may
have different weighs against different activities, each activity
is characterised by a certain sensor event with 100 percentage.
However, in pervasive environment, human activities show a
great degree of variation and are impossible to be characterised
by a small set of sensor events with 100 percentage. By con-
trast, unsupervised techniques (Rashidi et al., 2011; Rashidi and
Cook, 2009) are much more suitable for activity frequent pat-
terns mining and clustering in pervasive environment where the
sensor data shows a high degree of randomness and discontinu-
ity. However, it neglects the fact that some activities may trigger
the same set of sensors, and sensor readings from these sensors
would be unavoidably regarded as the same pattern based on the
similarity computation in the literature, which makes it difficult
to distinguish overlapped activities. Lühr et al. (Lühr et al.,
2007) also apply association rule mining to recognise activity
in smart environments. However, they only focus on frequent
sensor event sequences, which is vulnerable to the noises and
the various ways that the residents perform the activities in the
realistic environments.

To overcome the problems stated above, we develop an ef-
ficient Apriori-modified algorithm to mine the associations be-
tween the activities and the sensor events they triggered. We
also consider the global and local weight of the sensor events in
order to discriminate the activities that have the same frequent
patterns but differing in sensor events frequency.

3. Associative classifier

In this section, we give the of definitions of the associa-
tion rules between the activity classes and their frequent sensor
event patterns, and describe the method using the association
rules together with their confidences to build an activity classi-
fier.

3.1. Activity trace

An activity trace is a set of sensor events triggered during an
activity, as is shown in Table.1.

As can be seen from table, the activity trace Sleeping only
triggers sensors m003 and m007, which can be regarded as the
patterns of Sleeping. If they are frequent enough in activity
Sleeping and infrequent in other activities, then they are fre-
quent patterns of activity Sleeping, and can be used to charac-
terise it. The goal of the associative classifier building is to find
these kinds of frequent patterns for each activity and generate
association rules in order to construct the classifier. Note that
frequent itemsets can be regarded as frequent patterns for one
activity if they are frequent in that activity and infrequent in
others.

Normally there are three ways (Van Kasteren et al., 2008) to
represent binary sensor events, but experiment on the influence



  

Table 1: Example of an activity trace

Timestamps SensorID Status Activity

2010-11-04 00:03:50.20 M003 ON Sleeping begin
2010-11-04 00:03:57.39 M003 OFF
2010-11-04 02:32:33.35 M003 ON
2010-11-04 02:32:38.89 M003 OFF
2010-11-04 03:42:21.82 M003 ON

· · ·
2010-11-04 05:40:34.52 M007 OFF
2010-11-04 05:40:40.48 M003 OFF
2010-11-04 05:40:40.84 M003 ON
2010-11-04 05:40:42.45 M007 ON
2010-11-04 05:40:43.64 M003 OFF Sleeping end

of sensor event representation is out of the scope of this paper.
Without loss of generality, we represent the set of sensors as:

S = {s1, s2, · · · , sn}

where n is the total number of sensors deployed around the en-
vironment. Similarly, the set of activities to be recognised is
represented as:

A = {a1, a2, · · · , am}

Given the representations above, an activity trace can be rep-
resented in the form of a transaction in frequent itemset mining:

T = {ai, S ′}

where ai is the class label of activity trace T , and S ′ ⊆ S is the
set of sensor events triggered by activity ai. Correspondingly,
the notions of support and confidence of an activity trace given
a set of sensor events can be defined in Eq.(1) and Eq.(2) :

supp(S ′ ⇒ ai) =
∑

T∈D fS ′,ai (T )
|D| (1)

con f (S ′ ⇒ ai) =
∑

T∈D fS ′,ai (T )∑
T∈D fS ′(T )

(2)

and

fS ′,ai (T ) =

1, S ′ ⊂ T
∧

ai ∈ T
0, otherwise

(3)

where |D| is the total number of activity traces in the training
dataset, and

∑
T∈D fS ′(T ) is the number of activity traces that

contain S ′ while
∑

T∈D fS ′,ai (T ) is the number of activity traces
contain S ′ and are labelled as ai. As previously stated, the sup-
port of a rule is the percentage of activity traces that contain the
literal in the rule, while the confidence is the conditional prob-
ability of the consequent (activity) given the antecedent (sensor
events).

As shown in Table.1, a sensor might be triggered more than
once during an activity trace. If we simply record the status of
a sensor rather than its triggering frequency, information about
the activity would be lost. Even though this information makes
no contribution if each activity possesses the frequent patterns

Preparing meal eating

Figure 1: Example of overlapped activities

extremely different from that of the others, it is difficult to dis-
tinguish activities that share the common patterns but different
in sensor event frequencies, as illustrated in Fig.1.

Assume the activity Eating only triggers the sensor near the
table, while the Preparing meal triggers that sensor less of-
ten than Eating, which means the sensor event near the table
weights more in Eating than in Preparing meal. However, if
this information is neglected, the sensor event near the table
would make the same contribution to recognising Preparing
meal and Eating, and these two activities would be constantly
mis-classified as each other.

To cope with this problem, we introduce the concept of
global weights of sensor events, which are the frequencies of
different sensor events in different activities. In this way, we
can incorporate the frequencies of the sensor events into the cal-
culation of the confidence of an association rule. Correspond-
ingly, the representation of an activity trace can be extended as
follows:

T = {ai, nsi1 , nsi2 , · · · , nsi,ni
} (4)

where ni = |S ′| is the number of sensors triggered during the
activity trace ai, and nsi1 is the times that sensor si1 ∈ S ′ is
triggered during the activity trace, that is the frequency of the
sensor event. Accordingly, the confidence of the association
rule can be extended as in Eq.(5).

con f (S ′ ⇒ ai) =
∑

T∈D( fS ′,ai (T ) ∗ φS ′ (T ))∑
T∈D( fS ′ (T ) ∗ φS ′(T ))

(5)

where
φS ′(T ) = nsi1 ⊕ nsi2 ⊕ · · · ,⊕nsi,ni

In this paper, we define φS ′(T ) as:

φS ′ (T ) = min(nsi1 , nsi2 , · · · , nsi,ni
) (6)

Note that we consider the frequencies of the sensor events
rather than the temporal relationships among them, as people
do not follow exactly the same steps every time they perform
the activities in realistic scenarios. This can be best illustrated
by the activity Housekeeping which shows the most variation
in its activity traces, because there is no strict order to do the
housework. Furthermore, sometimes the ongoing activity may
be interrupted by other unknown steps and result in disconti-
nuities. Therefore, it is more reasonable to cluster the sensor
events and consider their intensity rather than model the tempo-
ral relations between the sensor events (Cook, 2010). Finally,
different people perform the activities differently, and the tem-
porary patterns in the sensor events can even be used to infer the



  

Table 2: Example of sensor noises

Activity trace No. Sensor1 · · · Activity Label

T1 200 · · · a1

T2 123 · · · a1

· · · · · · · · · · · ·
T10 153 · · · a1

· · · · · · · · · · · ·
T50 1 · · · a2

T51 1 · · · a3

T52 1 · · · a4

· · · · · · · · · · · ·
T100 1 · · · a2

identify of the people (Hodges and Pollack, 2007). Therefore,
the temporal patterns of one person can not be scaled to others.

It is important to note that an unrelated sensor may be trig-
gered in an activity trace due to signal noises, which is quite
common in sensor network. The noises need to be filtered out
as they influence the confidences of the association rules, and
even affect the accuracy of classification when using the rules.

Taking Table.2 for example, the frequency of sensor1 in T50,
T51, T52 and T100 is rather small and can be regarded as noise
or randomly triggered by the user rather than the pattern of the
other activities (e.g. a2, a3, a4), otherwise the confidence of ac-
tivity a1 given the sensor event of sensor1 would be negatively
affected. Therefore, we apply a threshold in order to filter out
the sensor events that can be neglected, and then Eq.(5) can be
extended to Eq.(7).

con f (S ′ ⇒ ai) =∑
T∈D( fS ′,ai (T ) ∗ max(0, φS ′(T ) − threshold))∑

T∈D( fS ′ (T ) ∗ max(0, φS ′(T ) − threshold))
(7)

3.2. Recognise activity with local weight

All the association rules that meet the user-specified mini-
mum support and confidence can be aggregated to build a clas-
sifier. Basically, building a classifier follows two steps. Firstly,
pruning the rules that are inferior (Chen and Chen, 2008) to
other rules. Secondly, further deleting the rules that do not
increased the classification accuracy by applying the group
of rules obtained from the first step onto the training dataset.
When classifying a test instance, the rule whose antecedent sat-
isfies the instance will be used to classify it. The purpose of
the first step is to prune the redundant and conflict rules. Given
Two rules, r1 and r2, r2 is redundant if it has the same con-
sequent part as r1 and the antecedent of r1 is the subset of r2,
and (1) r1 has a higher confidence than r2 or (2) they have the
same confidence but r1 has a stronger support than r2 or (3)
they have the same confidence and support, but r1 is generated
earlier than r2. If they have the different consequent then are
conflicted with each other (Chen and Chen, 2008).

However, in our scenario, it is possible that a sensor event
happens during different activity traces with different frequen-
cies. Therefore, association rules built on this sensor event with

different activity as consequent should not be regarded as con-
flict, because activities can possibly overlap with each other and
share the same set of frequent patterns. In this way, by min-
ing the frequency information about a sensor triggering, we are
able to differentiate the activities that share common frequent
patterns. As for the redundancy, the rule whose confidence is
lower than that of others would be deleted if the antecedent of
the later is the subset of that of the former, which is illustrated
in the mining process.

Since each activity has its own frequent pattern, for each ac-
tivity we create a group of association rules in which the ac-
tivity is the consequent and the frequent patterns are the an-
tecedent. When performing classification, for each test in-
stance, the group of association rules are applied to aggregate
the evidence against the activity based on the test instance,
which is demonstrated to be able to achieve better performance
than only choose one association rule for classification (Chien
and Chen, 2010).

Without the loss of generality, for each activity we create a
list fplist that stores the frequent patterns of the activity. The as-
sociation rules, whose antecedents are those frequent patterns,
meet the user-specified minimum support and confidence, de-
noted as follow:

f plist(ai) =
{X|∀x ∈ X, con f (x⇒ ai) ≥ mcon f , supp(x⇒ ai) ≥ msupp}

where x is a frequent pattern of activity ai. Since the redun-
dant rules have been pruned, the association rule with x as its
antecedent must have a higher confidence and stronger support
than the rules whose antecedent is the subset of x. Therefore,
we order the frequent patterns of the activity in descending or-
der in terms of their lengths. Suppose two rules, r1 and r2, the
antecedent of r1 is the superset of that of r2, and then r2 would
not be used to aggregate the evidence of the test instance if r1
has already been used, so as to avoid the duplicate aggregation.
The algorithm of classification is illustrated in Alg.1 (line 6),
assuming that we already have the ordered frequent patterns of
each activity and confidences of the association rules.

Algorithm 1 Algorithm of classifying an unlabelled activity
trace
Input:

Unlabelled activity trace X
fplist of each activity class

Output:
Activity class label of X

1: for each ai ∈ {a1, a2, · · · am} do
2: temp = ∅;
3: evidence(X, ai) = 0
4: for each x ∈ f plist(ai)) do
5: if x ⊆ X and !set(x).issubset(set(temp)) then
6: evidence(X, ai) +=

con f (x⇒ai)
con f (x⇒ai)+1

7: temp.append(x)
8: end if
9: end for

10: end for
11: return ai with maximum evidence(X, ai) ;



  

While the global weights of the sensor events have been en-
coded into the confidences of the association rules in Eq.(7), lo-
cal weights are still not considered. Local weight illustrates the
relative frequency of a sensor event with respect to the others in
the same activity trace. As one can see that, global weight mea-
sures the inter-activity trace sensor event frequency, while the
local weight reflects sensor event frequency of the intra-activity
trace. The local weight of a sensor event also means the degree
that the sensor event dominates the activity trace. Without the
local weight, all the sensor events in an activity trace are treated
equally and the information of the sensor events frequencies is
lost. Considering the local weight, the aggregation of the evi-
dence in Alg.1 (line 6) can be extended as in Eq.(8).

evidence(X, ai)+ =
con f (x⇒ ai)

con f (x⇒ ai) + 1
∗ No f Tri(x)

No f Tri(X)
(8)

where No f Tri(x) is the aggregated sensor events in frequent
pattern x, and No f Tri(X) is the aggregated sensor events in
activity trace. The ratio No f Tri(x)

No f Tri(X) denotes the local weight of
frequent pattern x.

4. Mining process

In the previous section, we describe how to use association
rules to recognise activities, taking the global weight and local
weight of sensor event into consideration. In this section, we
present the algorithm of mining the association rules from the
training dataset.

Generally, the mining process of the association rules can
be characterised with two steps: (1) generating all the frequent
itemsets that meet the minimum user-specified threshold, and
(2) extracting the association rules based on the frequent item-
sets. In this paper, we modify the Apriori algorithm to mine
the frequent patterns of each activity, and the mining process
can be divided into two steps: for each activity, we (1) joint
the frequent (k-1)-itemsets together to generate the candidate
k-itemsets, and (2) prune the itemsets that are infrequent and
construct the frequent k-itemsets. We iterate the two steps until
no new candidates can be generated, and finally all the frequent
itemsets form the frequent patterns of the activity.

Traditionally, the Apriori algorithm has to pass over the
database to count the frequency of the new generated candi-
date itemsets, which introduces lots of overhead. To boost the
efficiency of the mining process, we associate each itemset with
a Tid list. While the Tid list of an activity records IDs of all the
activity traces that are labelled as the activity, the Tid list of a
sensor event (or an itemset) contains both of the ID of the trans-
actions (activity traces) containing the sensor event and its cor-
responding frequency in those transactions. With the Tid list,
our algorithm can be illustrated in Alg.2.

Firstly, we create the itemset L1 for each activity. Each ele-
ment of L1 contains only one type of sensor event which is the
1-frequent pattern for the activity. At each iteration, frequent
k-itemsets are merged with each other to generate the candi-
date (k+1)-itemsets (line 9). After that, the Tid list of each of
the newly formed (k+1)-itemsets is obtained with the function

intersection (line 12). Finally, the potential (k+1)-itemsets are
selected to form the frequent (k+1)-itemsets. Line 14 selects
frequent (k+1)-itemsets by examining whether or not the sup-
port and confidence of the corresponding association rules meet
the minimum threshold.

The evaluation (line 14) of the candidate k-itemsets takes
place after the computing of their Tid lists, because comput-
ing the confidence of k-itemsets against an activity needs their
Tid lists. The confidence of the association rules can be ob-
tained with Eq.(9), in which the function aggre is used to ag-
gregate the global weight of itemsets. Eq.(9) is consistent with
Eq.(7) except that we perform aggregation based on the Tid list
rather than going through the whole database. In special case, if
the global weights of the itemsets are neglected, the only infor-
mation left is the number of transactions that contain the item-
set, and the function aggre can be replaced with the length of
Tid list. The function intersection (line 12) return the Tid list of
the new generated k-itemsets, and each element of the Tid list
consists of the ID of the transaction containing the k-itemset
and the aggregated triggered times of the k-itemset in that trans-
action. The aggregated triggered times can be obtained based
on Eq.(6).

con f (S ′ ⇒ ai) =
aggre(Tid list(S ′, ai))

aggre(Tid list(S ′))
(9)

Algorithm 2 Algorithm of mining frequent patterns for activity
classes
Input:

Activity traces: T1,T2, · · · , Tn

Sensor set: {s1, s2, · · · , sn}
Activity class: {a1, a2, · · · , am}

Output:
Frequent patterns of each activity ai

1: for each si ∈ {s1, s2, · · · sm} do
2: create the Tid list for si

3: end for
4: for each ai ∈ {a1, a2, · · · , am} do
5: create the Tid list for ai

6: L1 = {si|len(Tid list(si, axis = 0)∩Tid list(ai)) ≥ msupp ∗ n∧
con f (si ⇒ ai ≥ mcon f )}

7: for k = 1; Lk , ∅; k++ do
8: // generate candidate (k+1)-itemset Ck+1 from Lk

9: Ck+1 = {{s1, · · · , sk−2, sk−1, sk}|{s1, · · · , sk−2, sk−1} ∈ Lk ∧
{s1, · · · , sk−2, sk} ∈ Lk}

10: //computing the Tid list for candidate (k+1)-itemset
11: // assuming S k in Ck+1 is generated from S x and S y in Lk

12: Tid list(S k) = intersection(Tid list(S x),Tid list(S y))
13: // prune the itemsets the do not meet the minimum threshold
14: Lk+1 = {S k |S k ∈ Ck+1 ∧ len(Tid list(S k, axis = 0) ∩

Tid list(ai)) ≥ msupp ∗ n ∧ con f (S k ⇒ ai) ≥ mcon f ∧
con f (S k ⇒ ai) > max(con f (S x ⇒ ai), con f (S y ⇒ ai))}

15: end for
16: frequent patterns of activity ai: L1 ∪ L2 ∪ · · · ∪ Lk

17: end for
18: return

For the illustrative purpose, Fig.2 gives an example of the
process mining the frequent patterns of activity a1. Suppose



  

a1<1,3,6,7>

a1:{s1}<1,3,6>
<1,3,6,8,9> a1:{s2}<3,6>

<3,6,8,9> a1:{s3}<6,7>
<1,6,7,8>

a1:{s1,s2}<3,6>
<3,6,8,9> a1:{s1,s3}<1,6>

<1,6,8>
a1:{s2,s3}<6>

<6,8>

a1:{s1,s2,s3}<6>
<6,8>

Activity sensor activity

Trace events class

T1 s1 s3 s4 a1

T2 s4 s5 a2

T3 s1 s2 a1

T4 s4 a3

T5 s4 s5 a2

T6 s1 s2 s3 a1

T7 s3 s5 a1

T8 s1 s2 s3 a3

T9 s1 s2 s4 a2

Figure 2: Example of the frequent patterns mining process

that the minimum support is 20% and the minimum confidence
is 60%, each layer corresponds to each iteration in Alg.2. The
right superscript is the Tid list of the sensor event jointed with
the activity, while the right subscript is the Tid list of the sen-
sor event only. The global weight is not incorporated in the
example simply for illustrative purpose. In the first iteration, 1-
itemsets ({s1}, {s2} and {s3}) are constructed with the confidence
and support of the corresponding association rules meeting the
minimum threshold. In the second iteration, {s1} is merged with
{s2} to generate 2-itemset {s1, s2}, while in the third iteration
{s1, s2} and {s1, s3} are merged together and {s1, s2, s3} is gen-
erated, after that no new candidates can be generated and the
pattern mining for activity a1 terminates. During each iteration,
the new generated item sets must be evaluated in order to prune
the infrequent ones. For example, {s2, s3} is prune because the
support of association rule ({s2, s3} ⇒ a1) is 1/9, not meeting
the minimum threshold, and {s1, s2, s3} is pruned for the same
reason.

Compared with traditional mining algorithm such as Apriori,
the advantages of our method reside in: (1) Instead of searching
all the frequent itemsets, we are only focus on the associations
between the activities and the sensor events. (2) For every item-
set we create an Tid list, with which we do not have to traverse
the database every time to calculate the support of the candidate
itemsets. The only overhead that this method introduces is the
computation of the Tid list of candidate itemset when merging
two itemsets, and the complexity is O(n). (3) With the help
of Tid list, the association rules can be generated during the
frequent itemsets mining process using Eq.(9). More impor-
tantly, the confidences of the association rules can be used to
prune the itemsets that do not meet the minimum threshold as
shown in Alg.2 (line 14), resulting in a much smaller searching
space. All the differences mentioned above account for the effi-
ciency of our method, and we demonstrate the effectiveness of
our method in Section 5.

5. Evaluation

5.1. Set up

In this section, we use the dataset of smart environments from
the CASAS research group to validate our method. The dataset
(Cook, 2010) contains the sensor readings from motion sensors,
door closure sensors and temperature sensors. There is only one
female resident in the home performing her daily activities, and

Figure 3: Sensor deployment in the smart environment

Table 3: The activities to be recognised

Activity No. Activity name Activity traces

1 Bed to toilet 104
2 Eating 181
3 Enter/Leave home 263
4 Housekeeping 33
5 Meal preparation 930
6 Relaxing 1795
7 Sleeping 242
8 Working 112

the deployment of sensors in the house is shown in Fig.3. The
datasets were annotated and the collected data has the form just
the same as in Table.1.

The activities we are to recognise and the number of activ-
ity traces are list in Table.3. Note that activities such as Res-
perate are filtered out, because they contain too few activity
traces to generate the association rules. In the realistic scenario,
the frequencies of activities vary from one to another, and the
supports may be unbalanced for different kinds of activities in
the transactions. For example, if the number of activity traces
of an activity ai is much smaller than that of the others, then
its frequent patterns may not satisfy the minimum support. To
deal with this problem, we construct the transactions non-time-
sequentially so that activity traces of different activities account
for the same percentage of the transactions.

5.2. Efficiency of mining algorithm

Since using Tid list to mine the frequent patterns and gener-
ate the association rules is efficient, we compare our mining al-
gorithm with the traditional association rule mining algorithms.
The first baseline algorithm is to search the whole space with
Tid list, and generate the whole frequent itemsets, and then con-
struct the association rules, referred to as with list searchall.
The second baseline algorithm is to search the whole space
without Tid list, and generate the whole frequent itemsets with
each iteration scanning the data base, and then construct the as-
sociation rules, referred to as without list searchall. Searching
the whole space means mining association rules not only be-
tween the sensor events and the activities, but also among the
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Figure 4: Mining overhead of different frequent pattern mining
algorithms

sensor events, which is quite common in traditional frequent
itemsets mining algorithm.

The experiments are carried out on a computer (Intel(R)
Core(TM) i7-4770 CPU @ 3.40GHz 8 processors 16G mem-
ory) running Ubuntu 12.0.4. We vary the minimum support
from 0.012 to 0.025 and present the result in Fig.4 that shows
the execution overhead (y-axis) of different mining algorithms
as a function of the minimum support (x-axis). The execution
time of the two baselines are further decomposed into the over-
head of mining the frequent patterns and the overhead of gen-
erating the association rules.

From the figure we can observe that the overhead of the first
baseline is constantly higher than the second one, while our
method performs the best in terms of time consumption and is
able to remain at a stable level across different minimum sup-
ports. Furthermore, when we decrease the minimum support
in the two baseline algorithms, the execution overhead and the
time spent on rules generation increase significantly. By con-
trast, the changes of the minimum support have little impact on
our method. The reasons for the efficiency of our method are
the constrained search space, the pruning policy and the simul-
taneous generation of frequent patterns and association rules.

5.3. Accuracy analysis

In this subsection, we compare the accuracy of our algorithm
with other typical activity recognition methods such as Deci-
sion Tree, Naive Bayesian and HMM. Decision Tree is a dis-
criminative classifier which performs classification by detecting
the boundaries between different classes, while Naive Bayesian
and HMM are generative classifiers which compute the degree
that a test instance belongs to a certain labelled class. The dif-
ference between Naive Bayesian and HMM is that HMM con-
siders the temporal relationships among the activities to smooth
out the outliers.

Fig.5 presents the accuracy of each classifier. Our associa-
tive classifier achieves the highest average accuracy of 99.18%,
significantly higher than that of Decision Tree and HMM, and
much higher than that of Naive Bayesian, which are 96.29%,
95.74% and 88.68% respectively. From the confusion matrix of
our method (Table.4) we can see that activities Housekeeping
and Relaxing contribute nearly 85% to the misclassifications,
this is because these two activities show more randomness in

Figure 5: Accuracy of different classifiers. The x-axis shows
the accuracy achieved by each activity class and the average
accuracy of all the activities.

Table 4: Confusion matrix of our method

Activity 1 2 3 4 5 6 7 8
Bed to toilet 104 0 0 0 0 0 0 0
Eating 0 179 0 0 1 1 0 0
Enter/Leave home 0 0 263 0 0 0 0 0
Housekeeping 0 1 0 21 7 4 0 0
Meal preparation 0 0 0 0 929 1 0 0
Relaxing 0 0 0 2 0 1792 1 11
Sleeping 0 0 0 1 0 0 241 0
Working 0 0 0 0 0 0 0 112

the activity traces and some of their instances are unavoidably
overlapped.

Interestingly in the confusion matrix (Table.5) of Naive
Bayesian, many instances of other activities are mis-classified
as Housekeeping, which accounts for most of the misclassifica-
tions. As previously stated, Housekeeping is one of the activ-
ities that have the most variations in the frequent patterns and
overlap some of its frequent patterns with that of other activi-
ties. Even though the frequencies of the sensor events are differ-
ent between Housekeeping and that of others, Naive Bayesian
cannot capture this information and result in much more mis-
classifications. For example, activity Eating and Housekeeping
both trigger the sensor near the table, but Eating triggers the ta-
ble sensor much more frequent compared with other activities
such as Housekeeping. During Housekeeping the residents just
pass by the table when she was doing the housework. Naive
Bayesian treats the events of the table sensor equally when ag-
gregating the evidence for these two activities. Another reason
accounts for the low performance of Naive Bayesian may be
the assumptions of independence among features and normal
distribution of feature values (Bao and Intille, 2004). The mis-
classifications of Decision Tree (Table.6) is much more random
and evenly, and this is because Decision Tree differentiates the
test instances by the boundaries and capture the conjunctions in
feature values (Bao and Intille, 2004) rather than computing the
probability against the class that they belong to. The House-
keeping activity accounts for most of the misclassification in
HMM (Table.7) with the accuracy of 0%, which again explains
the randomness nature of the activity.



  

Table 5: Confusion matrix of Naive Bayesian

Activity 1 2 3 4 5 6 7 8
Bed to toilet 80 0 0 24 0 0 0 0
Eating 0 138 0 26 17 0 0 0
Enter/Leave home 0 0 261 2 0 0 0 0
Housekeeping 0 1 0 33 0 0 0 0
Meal preparation 0 0 0 106 824 0 0 0
Relaxing 0 0 0 233 0 1560 2 0
Sleeping 0 0 0 5 0 0 237 0
Working 0 0 0 1 0 0 0 111

Table 6: Confusion matrix of Decision Tree

Activity 1 2 3 4 5 6 7 8
Bed to toilet 106 0 0 0 0 0 0 0
Eating 0 175 0 0 3 3 0 0
Enter/Leave home 0 0 263 0 0 0 0 0
Housekeeping 0 1 0 33 0 0 0 0
Meal preparation 1 81 4 1 832 7 0 4
Relaxing 0 15 1 4 7 1763 1 4
Sleeping 0 0 0 1 2 1 239 0
Working 0 0 0 0 0 0 0 112

Table 7: Confusion matrix of HMM

Activity 1 2 3 4 5 6 7 8
Bed to toilet 103 0 0 0 0 0 1 0
Eating 0 149 0 1 21 9 0 0
Enter/Leave home 0 0 262 1 0 0 0 0
Housekeeping 0 12 0 0 9 12 0 0
Meal preparation 0 43 0 21 856 10 0 0
Relaxing 0 0 0 6 0 1789 0 0
Sleeping 3 0 0 0 1 1 237 0
Working 0 0 0 2 0 2 0 108
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Figure 6: Accuracy comparison with or without global and lo-
cal weight. Y-axis shows the accuracy while x-axis presents the
accuracy achieved by individual activity and the average accu-
racy of all the activities.

5.4. Global and local weight

We also evaluate the influence of global weight and local
weight on the recognition accuracy and experiment on four set-
tings: (1) with global and local weight(with g w and l w), (2)
without global weight but with local weight(with l w without
g w), (3) without local weight but with global weight(with g w
without l w), and (4) without global weight and without local
weight(without g w and l w).

As is presented in Fig.6, we can see that local weight im-
proves accuracy more than global weight overall, and incorpo-
rating both of them achieves the best accuracy. Furthermore, in
some activities such as Eating, local weight plays more impor-
tant role than global weight. While in some other activities such
as Housekeeping, global weight brings much more benefit than
local weight. The reason may lay in the nature of the activities
performed by the resident.

6. Conclusion

In this paper, we develop an efficient association rule min-
ing algorithm to find the frequent patterns of human activi-
ties in smart environments. We leverage the association rule
to build an activity classifier and demonstrate that it is able to
achieve better performance than traditional classifier such as
Naive Bayesian, Decision Tree and HMM. Furthermore, we
incorporate the global weight and local weight of the sensor
events to differentiate the activities that share common frequent
patterns but have different sensor events frequencies.

It is not necessary that a classifier performs optimally for all
given activity classification problems (Preece et al., 2009). This
paper shows different ways of activity recognition by leveraging
the correlations between the activities and their own frequent
patterns. More importantly, the activities that have overlapped
frequent patterns or even share the same frequent patterns can
still be differentiated if they have different weights in the com-
mon frequent patterns.

Recognising pre-define activities has been fully addressed by
many work, and detecting the basic activities such as walking



  

and standing is meaningless because activities of daily living
are more complex and various in real scene than in the experi-
ment environment. As a result, new search areas such as finding
frequent behaviour patterns and temporal relationships of activ-
ities have aroused a great interest. However, most of them only
try to find the sequence frequent patterns, and the problem are
equivalent to discovering frequent episodes in event sequences,
which is just one aspect of human behaviours. It is conceivable
that other aspects of human behaviours such as the correlations
of different context information from the viewpoint of coexis-
tence, are still needed to be modelled. Therefore, our future
work is to find the frequent patterns of human behaviours in
much more pervasive environment, not confining in a small set
of information sources and predefined activities.
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Azkune, G., Almeida, A., López-de Ipiña, D., and Chen, L. (2015). Extending
knowledge-driven activity models through data-driven learning techniques.
Expert Systems with Applications, 42(6):3115–3128.

Banos, O., Damas, M., Pomares, H., Prieto, A., and Rojas, I. (2012). Daily liv-
ing activity recognition based on statistical feature quality group selection.
Expert Systems with Applications, 39(9):8013–8021.

Bao, L. and Intille, S. S. (2004). Activity recognition from user-annotated ac-
celeration data. In Pervasive computing, pages 1–17. Springer.

Brdiczka, O., Crowley, J. L., and Reignier, P. (2009). Learning situation models
in a smart home. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, 39(1):56–63.

Chen, Z. and Chen, G. (2008). Building an associative classifier based on fuzzy
association rules. International Journal of Computational Intelligence Sys-
tems, 1(3):262–273.

Chernbumroong, S., Cang, S., Atkins, A., and Yu, H. (2013). Elderly activi-
ties recognition and classification for applications in assisted living. Expert
Systems with Applications, 40(5):1662–1674.

Chien, Y.-W. C. and Chen, Y.-L. (2010). Mining associative classification rules
with stock trading data–a ga-based method. Knowledge-Based Systems,
23(6):605–614.

Cook, D. J. (2010). Learning setting-generalized activity models for smart
spaces. IEEE intelligent systems, 2010(99):1.

Cook, D. J., Krishnan, N. C., and Rashidi, P. (2013). Activity discovery and
activity recognition: A new partnership. Cybernetics, IEEE Transactions
on, 43(3):820–828.
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de la Concepción, M. Á., Morillo, L. S., Gonzalez-Abril, L., and Ramı́rez,
J. O. (2014). Discrete techniques applied to low-energy mobile human
activity recognition. a new approach. Expert Systems with Applications,
41(14):6138–6146.

Fernández-Caballero, A., Castillo, J. C., and Rodrı́guez-Sánchez, J. M. (2012).
Human activity monitoring by local and global finite state machines. Expert
Systems with Applications, 39(8):6982–6993.

Gordon, D., Czerny, J., Miyaki, T., and Beigl, M. (2012). Energy-efficient
activity recognition using prediction. In Wearable Computers (ISWC), 2012
16th International Symposium on, pages 29–36. IEEE.

Gu, T., Chen, S., Tao, X., and Lu, J. (2010). An unsupervised approach to
activity recognition and segmentation based on object-use fingerprints. Data
& Knowledge Engineering, 69(6):533–544.

Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate
generation. In ACM SIGMOD Record, volume 29, pages 1–12. ACM.

Hevesi, P., Wille, S., Pirkl, G., Wehn, N., and Lukowicz, P. (2014). Monitoring
household activities and user location with a cheap, unobtrusive thermal sen-
sor array. In Proceedings of the 2014 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, pages 141–145. ACM.

Hodges, M. R. and Pollack, M. E. (2007). An’object-use fingerprint’: the use
of electronic sensors for human identification. In Proceedings of the 9th
international conference on Ubiquitous computing, Ubicomp’2007, pages
289–303. Springer-Verlag.

Huang, P.-C., Lee, S.-S., Kuo, Y.-H., and Lee, K.-R. (2010). A flexible se-
quence alignment approach on pattern mining and matching for human ac-
tivity recognition. Expert Systems with Applications, 37(1):298–306.

Huynh, T., Fritz, M., and Schiele, B. (2008). Discovery of activity patterns
using topic models. In Proceedings of the 10th international conference on
Ubiquitous computing, pages 10–19. ACM.

Keally, M., Zhou, G., Xing, G., Wu, J., and Pyles, A. (2011). Pbn: towards
practical activity recognition using smartphone-based body sensor networks.
In Proceedings of the 9th ACM Conference on Embedded Networked Sensor
Systems, Sensys’2011. ACM.

Könönen, V., Mäntyjärvi, J., Similä, H., Pärkkä, J., and Ermes, M. (2010).
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We propose an efficient frequent activity patterns mining in smart environments 
We build an accurate activity classifier based on the mined frequent patterns 
We distinguish overlapped activities with global and local weights of sensor events 
We use publicly available dataset of smart environments to validate our methods 
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