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Abstract. Ulam’s method is a rigorous numerical scheme for approximating invariant densities of dynamical
systems. The phase space is partitioned into a grid of connected sets, and a set-to-set transition
matrix is computed from the dynamics; an approximate invariant density is read off as the leading
left eigenvector of this matrix. When a hole in phase space is introduced, one instead searches for
conditional invariant densities and their associated escape rates. For Lasota–Yorke maps with holes
we prove that a simple adaptation of the standard Ulam scheme provides convergent sequences of
escape rates (from the leading eigenvalue), conditional invariant densities (from the corresponding
left eigenvector), and quasi-conformal measures (from the corresponding right eigenvector). We also
immediately obtain a convergent sequence for the invariant measure supported on the survivor set.
Our approach allows us to consider relatively large holes. We illustrate the approach with several
families of examples, including a class of Lorenz-like maps.
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1. Introduction. Dynamical systems T̂ : I → I typically model complicated deterministic
processes on a phase space I. The map T̂ induces a natural action on probability measures η
on I via η �→ η ◦ T̂−1. Of particular interest in ergodic theory are those probability measures
that are T̂ -invariant, that is, η satisfying η = η ◦ T̂−1. If η is ergodic, then such η describe the
time-asymptotic distribution of orbits of η-almost-all initial points x ∈ I. In this paper, we
consider the situation where a “hole” H0 � I is introduced and any orbits of T̂ that fall into
H0 terminate. The hole induces an open dynamical system T : X0 → I, where X0 = I \H0.
Because trajectories are being lost to the hole, in many cases, there is no absolutely contin-
uous T -invariant probability measure.1 One can, however, consider conditionally invariant
probability measures [28], which satisfy η ◦ T−1(I) · η = η ◦ T−1, where 0 < η ◦ T−1(I) < 1 is
identified as the escape rate for the open system.
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1There may be no T -invariant measures at all, because the survivor set may be empty.
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ULAM’S METHOD FOR LASOTA-YORKE MAPS WITH HOLES 1011

We will study T̂ drawn from the class of Lasota–Yorke maps: piecewise C1 expanding
maps of the interval, such that |DT̂ |−1 has bounded variation. The hole H0 will be a finite
union of intervals. In such a setting, because of the expanding property, one can expect to
obtain conditionally invariant probability measures that are absolutely continuous with re-
spect to Lebesgue measure [5, 33, 22]. Such conditionally invariant measures are “natural”
when they correspond to the result of repeatedly pushing forward a Lebesgue measure by T̂ .
In the next section we will discuss further conditions due to [22] that make this precise: (i)
how much of phase space can “escape” into the hole, and (ii) the growth rate of intervals that
partially escape relative to the expansion of the map and the rate of escape. These conditions
also guarantee the existence of a unique absolutely continuous conditionally invariant prob-
ability measure (accim). This accim ν and its corresponding escape rate ρ are the first two
objects that we will rigorously numerically approximate using Ulam’s method. Existence and
uniqueness results for subshifts of finite type with Markov holes were previously established
by Collet, Mart́ınez, and Schmitt in [8]; see also [6, 7, 17].

One may also consider the set of points X∞ ⊂ I that never fall into the hole H0. A
probability measure λ on X∞ can be defined as the n → ∞ limit of the accim ν conditioned
on Xn. The measure λ will turn out to be the unique T̂ -invariant measure supported on X∞
which is absolutely continuous with respect to μ, the quasi-conformal measure2 for T with
escape rate ρ. We will also rigorously numerically approximate μ and thus λ. Robustness of
these objects with respect to Ulam discretizations is essentially due to a quasi–compactness
property, and a significant part of the paper is devoted to elaborating on this point.

Our main result, Theorem 3.2, concerns convergence properties of an extension of the well-
known construction of Ulam [32], which allows for efficient numerical estimation of invariant
densities of closed dynamical systems. The Ulam approach partitions the domain I into a
collection of connected sets {I1, . . . , Ik} and computes single-step transitions between partition
sets, producing the matrix

(1.1) P̂ij =
m(Ii ∩ T̂−1Ij)

m(Ij)
.

Li [21] demonstrated that the invariant density of Lasota–Yorke maps can be L1-approximated
by step functions obtained directly from the leading left eigenvector of P̂ . Since the publication
of [21] there have been many extensions of Ulam’s method to more general classes of maps,
including expanding maps in higher dimensions [10, 26], uniformly hyperbolic maps [12, 14],
nonuniformly expanding interval maps [27, 15], and random maps [13, 18]. Explicit error
bounds have also been developed, e.g., in [25, 13, 4].

We will show that in order to handle open systems, the definition of P̂ above need only
be modified to P , having entries

(1.2) Pij =
m(Ii ∩X0 ∩ T̂−1Ij)

m(Ij)
.

In analogy with the closed setting, one uses the leading left eigenvector to produce a step
function that solves an eigenequation, from which we can easily recover an approximation to

2See Definition 2.3 for the precise meaning, and [22] for a proof of uniqueness.
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1012 C. BOSE, G. FROYLAND, C. GONZÁLEZ-TOKMAN, AND R. MURRAY

the accim ν. However, in the open setting, the leading eigenvalue of P also approximates the
escape rate ρ of ν, and the right eigenvector approximates the quasi-conformal measure μ.
Note that for closed systems, ρ = 1 and μ = m.

The literature concerning the analysis of Ulam’s method is now quite large. Early work on
Ulam’s method for Axiom A repellers [14] showed convergence of an Ulam-type scheme using
Markov partitions for the approximation of pressure and equilibrium states with respect to the
potential − log |detDT̂ |Eu |. These results apply to the present setting of Lasota–Yorke maps,
provided that the hole is Markov and projections are done according to a sequence of Markov
partitions. Bahsoun [1] considered non-Markov Lasota–Yorke maps with non-Markov holes
and rigorously proved an Ulam-based approximation result for the escape rate. Bahsoun used
the perturbative machinery of [20], treating the map T as a small deterministic perturbation
of the closed map T̂ . In contrast, we apply the perturbative arguments of [20] directly to the
open map, considering the Ulam discretization as a small perturbation of T . The advantage
of this approach is that we can obtain approximation results whenever the existence results of
[22] apply. The latter make assumptions on the expansivity of T (large enough), the escape
rate (slow enough), and the rate of generation of “bad” subintervals (small enough). From
these assumptions we construct an improved Lasota–Yorke inequality that allows us to get
tight enough constants to make applications plausible. Besides estimating the escape rate, we
obtain rigorous L1-approximations of the accim and approximations of the quasi-conformal
measure that exploit quasi–compactness and converge weakly to μ. We can treat relatively
large holes.

An outline of the paper is as follows. In section 2 we introduce the Perron–Frobenius op-
erator L, formally define admissible and Ulam-admissible holes, and develop a strong Lasota–
Yorke inequality. Section 3 introduces the new Ulam scheme and states our main Ulam
convergence result. Section 4 discusses some specific example maps in detail. Proofs are
presented in section 5.

2. Lasota–Yorke maps with holes. The following class of interval maps with holes was
studied by Liverani and Maume-Deschamps in [22].

Definition 2.1. Let I = [0, 1]. We call T̂ : I � a Lasota–Yorke map if T̂ is a piecewise C1

map, with finite monotonicity partition3 Z, there exists Θ̂ < 1 such that ‖DT̂−1‖∞ ≤ Θ̂, and
ĝ := |DT̂ |−1 has bounded variation.

The transfer operator for the map T̂ is the bounded linear operator L̂, acting on the space
BV of functions of bounded variation on I, defined by

L̂f(x) =
∑

T̂ (y)=x

f(y)ĝ(y).

Definition 2.2. Let T̂ : I � be a Lasota–Yorke map. Let H0 � I be a finite union of closed
intervals, and let X0 = I \H0. Let T : X0 → I be the restriction T = T̂ |X0 . Both T and the
pair T0 = (T̂ ,H0) are referred to as open Lasota–Yorke maps (or, briefly, open systems), and

3Throughout this paper, a monotonicity partition Z refers to a partition such that, for every Z ∈ Z, T̂ |Z
has a C1 extension to Z̄.
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ULAM’S METHOD FOR LASOTA-YORKE MAPS WITH HOLES 1013

their associated transfer operator is the bounded linear operator L : BV � given by

L(f) = L̂(1X0f).

For each n ≥ 1 let Xn =
⋂n

j=0 T̂
−jX0. Thus, Xn is the set of points that have not escaped

by time n. Also, we denote by T n the function T̂ n|Xn−1 . One can readily check that

Ln(f) = L̂n(1Xn−1f).

Definition 2.3. Let T be an open Lasota–Yorke map. A probability measure ν supported on
X0 ⊂ I which is absolutely continuous with respect to Lebesgue measure is called an absolutely
continuous conditional invariant measure (accim) for T if there exists a function of bounded
variation h such that 1X0 · h = dν

dm and Lh = ρh for some 0 < ρ ≤ 1.
A probability measure μ on I which satisfies μ(Lf) = ρμ(f) for every function of bounded

variation f : I → R, with ρ as above, is called a quasi-conformal measure for T .
Remark 2.4. We choose to display h as opposed to 1X0h in the upcoming figures, because

our numerical method directly discretizes the eigenequation Lh = ρh. Further, the value of
h outside X0 illustrates the amount of mass that escapes the open system in one step. For
convenience of notation, and despite the fact that the support of h may intersect H0, we will
refer to h as the accim as well.

Remark 2.5. It is usual to define ν to be an accim if ν(A) = ν(T̂−nA∩Xn)
ν(Xn)

for every n ≥ 0 and
Borel-measurable set A ⊂ I. This definition and that of Definition 2.3 are indeed equivalent;
see [22, Lemma 1.1] for a proof. The same lemma shows that if μ is a quasi-conformal measure
for T , then μ is necessarily supported on X∞ =

⋂
n≥0 X̄n. It is also usual to require μ to

satisfy μ(Lf) = ρμ(f) for continuous functions only. We will see that this makes no difference
in our setting, as this weaker requirement implies the stronger one in the previous definition.

2.1. Admissible holes and quasi-invariant measures. As in the work of Liverani and
Maume-Deschamps [22], we impose some conditions on the open system in order to be able
to analyze it. Let us fix some notation.

Let (T̂ ,H0) be an open Lasota–Yorke map, which we also refer to as T . For each n ≥ 1,
let Dn = {x ∈ I : Ln1(x) �= 0}, and let D∞ :=

⋂
n≥1Dn. In what follows, we assume that

D∞ �= ∅.
For each ε > 0 (not necessarily small), we let Gε = Gε(T ) be the collection of finite

partitions of I into intervals such that Zε ∈ Gε(T ) if (i) the interior of each A ∈ Zε is either
disjoint from or contained in X0, and (ii) for each A ∈ Zε, varA(1X0 |DT−1|) < ‖DT−1‖∞(1+
ε). Since H0 consists of finitely many intervals, this condition is possible to achieve, as the
work of Rychlik [29, Lemma 6] shows. We call Gε the collection of ε-adequate partitions (for
T ). The set of elements of Zε whose interiors are contained in X0 is denoted by Z∗

ε . Next,
the elements of Z∗

ε are divided into good and bad. A set A ∈ Z∗
ε is good if

lim
n→∞ inf

x∈Dn

Ln1A(x)

Ln1(x)
> 0.

We point out that it is shown in [22] that the limit above always exists, as the sequence
involved is increasing and bounded, and it is clearly nonnegative. The set A is called bad
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1014 C. BOSE, G. FROYLAND, C. GONZÁLEZ-TOKMAN, AND R. MURRAY

when the limit above is 0. We let

Zε,g = {A ∈ Z∗
ε : A is good}, and

Zε,b = {A ∈ Z∗
ε : A is bad}.

Finally, two elements of Z∗
ε are called contiguous if there are no other elements of Z∗

ε in
between them (but there may be elements of Zε that are necessarily contained in H0). We
let ξε = ξε(T ) be the infimum over ε-adequate partitions for T of the maximum number of
contiguous elements in Zε,b.

In a similar manner, we let G(n)
ε = G(n)

ε (T ) be the collection of finite partitions of I into

intervals such that Z(n)
ε ∈ G(n)

ε if (i) the interior of each A ∈ Z(n)
ε is either disjoint from or

contained in Xn−1, and (ii) for each A ∈ Z(n)
ε , varA |1Xn−1(DT

n)−1| < ‖(DT n)−1‖∞(1 + ε).

The partitions Z∗(n)
ε , Z(n)

ε,g , Z(n)
ε,b are defined analogously. We denote by ξε,n = ξε,n(T ) the

infimum over ε-adequate partitions for T n of the maximum number of contiguous elements in

Z(n)
ε,b ; thus ξε = ξε,1.
The following quantities are relevant in what follows:

ρ = ρ(T ) := lim
n→∞ inf

x∈Dn

Ln+11(x)

Ln1(x)
,

Θ̃ = Θ̃(T ) := exp

(
lim
n→∞

1

n
log ‖(DT n)−1‖∞

)
,

ξ̃ε = ξ̃ε(T ) := exp

(
lim sup
n→∞

1

n
log(1 + ξε,n)

)
,

αε = αε(T ) := ‖DT−1‖∞(2 + ε+ ξε).(2.1)

Definition 2.6 (admissible holes). Let T̂ : I � be a Lasota–Yorke map and ε > 0. We say
that H0 ⊂ I is

• an ε-admissible hole for T̂ if D∞ �= ∅ and ξ̃εΘ̃ < ρ,
• an admissible hole for T̂ if it is ε-admissible for ε = 1,4

• an ε-Ulam-admissible hole for T̂ if D∞ �= ∅ and αε < ρ.
The main result of Liverani and Maume-Deschamps [22] is concerned with the existence

of the objects we intend to rigorously numerically approximate. Relevant quasi–compactness
properties of L are made explicit as follows.

Theorem 2.7 (see [22, Theorem A and Lemma 3.10]). Assume that (T̂ ,H0) is an open sys-
tem with an admissible hole. Then we have the following:

1. There exists a unique accim, ν = 1I\X0
hm for (T̂ ,H0).

2. There exists a unique quasi-conformal measure μ for (T̂ ,H0) such that

μ(Lf) = ρμ(f)

for every f ∈ BV . Furthermore, this measure is atom-free and satisfies the property
that

μ(f) = lim
n→∞ inf

x∈Dn

Lnf(x)

Ln1(x)

4This is the choice made in [22].
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for every f ∈ BV , and ρ = μ(L1).
3. The measure λ = hμ is, up to scalar multiples, the only T -invariant measure supported

on X∞ and absolutely continuous with respect to μ.
4. There exist κ < 1 and C > 0 such that for any function of bounded variation f ,∥∥∥∥Lnf

ρn
− hμ(f)

∥∥∥∥
∞

≤ Cκn‖f‖BV .

Remark 2.8. It follows readily from the proof of Theorem 2.7 [22] that the same conclusion
can be obtained if the hypothesis of H0 being an admissible hole is replaced by H0 being an
ε-admissible hole for some ε > 0.

To close this section, we present a lemma concerning admissibility of different holes, ob-
tained by enlarging an initial hole H0 to Hm := I \ Xm. This broadens the applicability of
Theorem 3.2 because enlarging the holes may reduce the number of contiguous bad intervals
and also reduce the variation remaining on the domain of the open Lasota–Yorke map without
decreasing the expansion.

Lemma 2.9 (enlarging holes). Let T0 = (T̂ ,H0) be an open system with an ε-admissible
hole, and for each m ≥ 0 let Hm := I \Xm. Then, for each m ≥ 0, Tm := (T̂ ,Hm) is an open
system with an ε-admissible hole. Furthermore, let ρ(Tm), h(Tm), and μ(Tm) be the escape
rate, accim, and quasi-conformal measures, respectively, of Tm. Then we have the following:

1. ρ(Tm) = ρ(T0),
2. L̂m(h(Tm)) = ρ(T0)

mh(T0), and
3. μ(Tm) = μ(T0).
The proof of Lemma 2.9 is presented in section 5.3.

3. Ulam’s method for Lasota–Yorke maps with holes.

3.1. The Ulam scheme. In the case of a closed system T̂ , the well-known Ulam method
introduced in [32] provides a way of approximating the transfer operator with a sequence of
finite-rank operators L̂k defined as in, e.g., [21], each coming from discretizing the interval
I into k bins (which may or may not be of equal length). The only requirements are that
each bin be a nontrivial interval, and that the maximum diameter of the partition elements,
denoted by τk, goes to 0 as k goes to infinity. We call such a k-bin partition Pk. The operator
L̂k preserves the k-dimensional subspace span{χj : χj = 1Ij , Ij ∈ Pk}. The matrix P̂k defined

in the introduction represents the action of L̂k on this space, with respect to the ordered basis
(χ1, . . . , χk) [21].

In the case of an open system (T̂ ,H0), one can still follow Ulam’s approach to define a
discrete approximation Lk to the transfer operator L. For a function f ∈ BV , the operator is
defined by Lk(f) = πk(Lf) = πkL̂(1X0f), where πk is given by the formula

πk(f) =

k∑
j=1

1

m(Ij)

(∫
χj f dm

)
χj.

The entries of the Ulam transition matrix Pk representing Lk in the ordered basis (χ1, . . . , χk)
are

(Pk)ij =
m(Ii ∩X0 ∩ T̂−1Ij)

m(Ij)
.
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(When the partition Pk is uniform,5 the transition matrices P̂k defined in (1.1) are stochastic,
and Pk are substochastic, the loss of mass being a consequence of the presence of a hole.)
Since the entries of Pk are nonnegative, an extension of the Perron–Frobenius theorem applies
and provides the existence of a nonnegative eigenvalue 0 ≤ ρk ≤ 1 of maximal absolute value
for Pk, with associated left and right eigenvectors with nonnegative entries; see, e.g., [3]. In
general, these may or may not be unique. Nonnegative left eigenvectors pk of Pk induce
densities on I according to the formula

hk =

k∑
j=1

[pk]jχj ,

where we adopt the convention that a vector x can be written in component form as x =
([x]1, . . . , [x]k). Nonnegative right eigenvectors ψk of Pk induce measures μk on I according
to the formula

μk(E) =
k∑

j=1

[ψk]j m(Ij ∩ E).

We conclude the section with the following.
Lemma 3.1. Let Pk be the matrix representation of Lk = πk ◦ L with respect to the basis

{χj}. If Pkψk = ρkψk, then the measure μk corresponding to ψk satisfies μk(Lkπkϕ) =
ρkμk(ϕ) for every ϕ ∈ L1(m).

Proof. Let ϕ ∈ L1(m), and set ϕk = πkϕ. Then,

μk(ϕ) =

∫
ϕdμk =

k∑
j=1

∫
Ij

ϕdm [ψk]j =

k∑
j=1

∫
Ij

πkϕdm [ψk]j

=

k∑
j,j′=1

∫
Ij

ϕk dm (Pk)jj′[ψk]j′(ρk)
−1 =

k∑
j′=1

∫
Ij′

Lkϕk dm [ψk]j′(ρk)
−1

= (ρk)
−1

∫
Lkϕk dμk = ρk

−1μk(Lkϕk),

where the last equality in the second line follows from the fact that Pk is the matrix represent-
ing Lk in the basis {χj} and acts on densities by right multiplication (i.e., if p is the vector
representing the function ϕk, then pTPk is the vector representing Lkϕk).

3.2. Statement of the main result. The main result of this paper is the following. Its
proof is presented in section 5.2.

Theorem 3.2. Let T̂ : I � be a Lasota–Yorke map with an ε-Ulam-admissible hole H0. Let
h ∈ BV be the unique accim for the open system (T̂ ,H0), and μ the unique quasi-conformal
measure for the open system supported on X∞, as guaranteed by Theorem 2.7. Let ρ be the
associated escape rate. For each k ∈ N, let ρk be the leading eigenvalue of the Ulam matrix
Pk. Let hk be densities induced from nonnegative left eigenvectors of Pk corresponding to ρk.
Let μk be measures induced from nonnegative right eigenvectors of Pk corresponding to ρk.
Then, the following hold:

5That is, m(Ii) = m(Ij) ∀i, j.
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(1) For k sufficiently large, ρk is a simple eigenvalue for Pk. Furthermore,

lim
k→∞

ρk = ρ,

and there exists η ∈ (0, 1) such that |ρk−ρ| ≤ O(τk
η),6 where τk is the maximum diameter

of the elements of Pk.
(2) limk→∞ hk = h in L1(m).
(3) limk→∞ μk = μ in the weak-∗ topology of measures. Furthermore, for every sufficiently

large k, supp(μ) ⊆ supp(μk).

We will also establish a relation between admissibility and Ulam-admissibility of holes.

Lemma 3.3 (admissibility and Ulam-admissibility). If H0 is an ε-admissible hole for T̂ , there
is some n ∈ N such that Hn−1 := I \Xn−1 is ε-Ulam-admissible for T̂ n.

The proof of this lemma is presented in section 5.4. This result, together with Lemma 2.9,
broadens the scope of applicability of Theorem 3.2 by allowing us to (i) replace the map by
an iterate (Lemma 3.3), or (ii) enlarge the hole in a dynamically consistent way (Lemma 2.9).
It also ensures that several examples in the literature can be treated with our method; in
particular, all the examples presented in [22].

Remark 3.4. In the case of full-branched maps (see section 4.1 for a precise definition),
the value of αε in (2.1) can be replaced by ‖DT−1‖∞(1 + ε + ξε), and we can still obtain
the conclusions of Theorem 3.2. Essentially this is because, taking the usual approach of
considering T bivalued at the endpoints of the monotonicity partition, in the full-branched
case one can regard g as continuous on monotonicity intervals and hence find a finite partition
Z ′
ε such that for every A ∈ Z ′

ε, varA(g) ≤ ε‖DT−1‖∞. This is instead of the bound varA(g) ≤
(1 + ε)‖DT−1‖∞, which is used in Lemma 5.1 just before (5.3).

4. Examples. To illustrate the efficacy of Ulam’s method beyond the small-hole setting,
we present some examples of Ulam-admissible open Lasota–Yorke systems. We start with the
case of full-branched maps in section 4.1, and treat some more general examples, including
β-shifts, in section 4.2. We then analyze Lorenz-like maps, which provide transparent evidence
of the scope of the results for open systems, as well as closed systems with repellers. They
also illustrate how the admissibility hypothesis may be checked in applications.

4.1. Full-branched maps. In the examples ahead, we will use the following notation.
Given a Lasota–Yorke map with holes, (T̂ ,H0) with monotonicity partition Z, we let Zh =
{Z ∈ Z : Z ⊆ H0}, Zf = {Z ∈ Z : Z ∩H0 = ∅, T (Z) = I}, and Zu = {Z ∈ Z : Z �∈ Zh ∪Zf}.
Thus, the elements of Zf are precisely those contained in X0 that are full branches for T , and
those of Zu are the remaining ones.

Definition 4.1. A full-branched map with holes, (T̂ ,H0), is a Lasota–Yorke map with holes
such that Zu = ∅.

For piecewise linear maps, the situation is rather simple.

Lemma 4.2. Let T0 = (T̂ ,H0) be a piecewise linear full-branched map with holes. Then,

6In fact, any η < log ρ/β
− log β

with ρ > β > αε is valid.
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for every ε > 0 the following holds: ξε(T0) = 0,

ρ(T0) = 1− Leb(H0), and

αε(T0) = max
Z∈Zf

Leb(Z)(1 + ε).

Proof. If T0 is a piecewise linear full-branched map, then each interval Z ∈ Zf is good.
Therefore ξε(T0) = 0. Also,

L0(1)(x) =
∑

y∈Z∈Zf ,T0(y)=x

1

|DT0(y)| =
∑
Z∈Zf

Leb(Z) = 1− Leb(H0),

which yields the first claim. The second statement follows from Remark 3.4 and the fact that
supx∈Z∈Zf

1
|DT0(x)| = maxZ∈Zf

Leb(Z).
In fact, in the piecewise linear, full-branched setting, a direct calculation shows that the

Lebesgue measure is an accim for the open system. For perturbations of these systems, explicit
estimates of ρ and αε are not generally available. However, we have the following bounds.

Lemma 4.3. Let T0 = (T̂ ,H0) be a full-branched map with holes. Then, for every ε > 0
there exists some computable m ∈ N such that ξε(Tm) = 0, where Tm := (T̂ ,Hm) is obtained
from T0 by enlarging the hole, as in Lemma 2.9. Furthermore,

ρ(Tm) = ρ(T0) ≥ inf
x∈I

∑
y∈Z∈Zf ,T0(y)=x

1

|DT0(y)| =: ρ0 and

αε(Tm) ≤ sup
x∈Z∈Zf

1

|DT0(x)| (1 + ε) =: αε,0.

An immediate consequence is the following.
Corollary 4.4. In the setting of Lemma 4.3, if ρ0 > αε,0, then Hm is ε-Ulam admissible

for T̂ . In this case, Lemma 2.9 allows one to approximate the escape rate, accim, and quasi-
conformal measure for T0 via Theorem 3.2 applied to Tm.

Proof of Lemma 4.3. First, let us note that for any map with Zf �= ∅ we have that D∞ �= ∅,
as the map has at least one fixed point outside the hole. If m is sufficiently large, each interval
Z ∈ Z(m) is either (i) contained in Hm−1, and thus not in Z∗(m), or (ii) Tm

0 (Z) = I and
varZ(ĝ1Xm) < ‖ĝ1Xm‖∞(1 + ε). In the latter case, Z is a good interval for T0, because
μ0(Z) = ρ−m

0 μ0(Lm
0 1) ≥ ρ−m

0 ‖DTm
0 ‖−1∞ μ0(I) > 0. Since good intervals for T0 and for Tm

coincide (see the beginning of the proof of Lemma 2.9), we get that ξε(Tm) = 0.
Furthermore,

ρ(T0) = ρ(T0)μ0(1) = μ0(L0(1)) ≥ inf
x∈I

L0(1)(x) = inf
x∈I

∑
y∈Z∈Zf ,T0(y)=x

1

|DT0(y)| .

The bound on αε(Tm) follows directly from Remark 3.4.
The following is an interesting consequence of Lemmas 4.2 and 4.3.
Corollary 4.5. Let (T̂ ,H0) be a piecewise linear full-branched map with holes and at least

two full branches. Thus, Leb(H0) < 1−maxZ∈Zf
Leb(Z). Then, if ε > 0 is sufficiently small,
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H0 is ε-Ulam-admissible for any full-branched map (Ŝ,H0) that is a sufficiently small C1+Lip

perturbation of (T̂ ,H0) (where the C1+Lip topology is defined, for example, by the norm given
by the maximum of the C1+Lip norms of each branch). In particular, Theorem 3.2 applies.

Proof. The statement for (T̂ ,H0) follows from Lemma 4.2. For perturbations, the state-
ment follows from Lemma 4.3, by observing that the quantities ρ0 and αε,0, as well as the
variation of 1/|DT̂ | on each interval, depend continuously on T̂ , with respect to the C1+Lip

topology.
Corollary 4.5 can apply to maps with arbitrarily large holes, as the next example shows.
Example 4.6 (arbitrarily large holes). Let δ > 0, H0 = [δ, 1 − δ], and

Tδ(x) =

{
δ−1x if x < δ,

δ−1(1− x) if 1− δ ≤ x ≤ 1.

Then, Leb(H0) = 1− 2δ < 1− δ = 1−maxZ∈Zf
Leb(Z), and the hypotheses of Corollary 4.5

are satisfied. Thus, Ulam’s method converges for sufficiently small C1+Lip perturbations of
Tδ that are full-branched.

Remark 4.7.
(I) It is worth noting that if in Example 4.6 the hole is enlarged to [δ, 1], neither the hy-

potheses of Corollary 4.5 nor the results of [22] apply. This corresponds to a degenerate
setup where the survivor set consists of a single point. In this case, the Ulam method
could still be implemented. The leading left eigenvectors would successfully approx-
imate an accim, which is uniform with escape rate δ. However, the corresponding
measures induced from the right eigenvectors would converge in the weak-∗ topology of
C(I) to an (invariant) atomic measure at 0, instead of to a quasi-conformal measure,
as the partition is refined. This simple example illustrates that there are obstacles to
applying Theorem 3.2 if the hypotheses are weakened.

(II) Example 4.6 displays the potential misalignment between statistical and topological
features of open dynamical systems: as δ is varied, the maps Tδ are all topologically
conjugate to one another, yet each δ has a unique natural escape rate. (As δ → 1/2
these rates approach 0.) Nonetheless, each map also supports an uncountable number
of accims for each ρ ∈ (0, 1) [9, section 3], but the densities of these measures do not
have bounded variation and are therefore undetectable by our methods.

Other examples of this type may be found in [1] and [2]. Bahsoun [1] established rigorous
computable bounds for the errors in the Ulam method, which allowed him to find rigorous
bounds on the escape rate for open Lasota–Yorke maps. Bahsoun and Bose [2] related the
escape rate to the Lebesgue measure of the hole. Both results rely on the existence of Lasota–
Yorke-type inequalities, relating BV and L1(m) norms. Such inequalities may be obtained by
exploiting the full-branched structure of the map.

Example 4.8 (Bahsoun [1]). Let

T̂ (x) =

{
2.08x if x < 1

2 ,

2− 2x if x ≥ 1
2 .

In this case, Corollary 4.5 applies. In fact, Leb(H0) =
.08
4.16 and 1−maxZ∈Zf

Leb(Z) = 1
2 . We
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note that ρ controls the rate of mass loss, which is slower than 4.08/4.16, while αε is related
to the relaxation rate on the survivor set.

4.2. Nearly piecewise linear maps with enough full branches. When nonfull branches
are present, the dynamics is typically non-Markovian. Thus, even in the piecewise linear
setting there may not be direct ways to find the various objects of interest (escape rates,
accims and quasi-conformal measures) exactly. We show that Ulam’s method provides rigorous
approximations in specific systems. The following example is closely related to [22, Definition
6.2 and Lemma 6.3].

Lemma 4.9. Let T = (T̂ ,H0) be a piecewise linear Lasota–Yorke map with holes, and as-
sume Zf �= ∅. Let cu be the maximum number of contiguous elements in Zu. If ‖DT−1‖∞(3+

cu) < ρ, then H0 is (1 + ε)-Ulam-admissible for T̂ for every ε > 0 sufficiently small. Thus,
the hypotheses of Theorem 3.2 are satisfied.

Proof. For any map with Zf �= ∅ we have that D∞ �= ∅, as the map has at least one fixed
point outside the hole. Furthermore, for each Z ∈ Z one has that varZ(g) ≤ 2‖g‖∞, so Z is
a (1 + ε)-adequate partition for T . Also, it follows from the definition of Zg that Zf ⊆ Zg.
Thus, Zb ⊆ Zu and ξ1+ε ≤ cu. Therefore, αε ≤ ‖DT−1‖∞(3+ ε+ cu) < ρ, provided that ε > 0
is sufficiently small.

A concrete example to which the previous lemma applies is that of β-shifts.

Example 4.10. Let β > 1, and let T̂β be the β-shift, T̂β(x) = βx (mod 1). Let H0 ⊂ I be

a finite union of closed intervals, and let f be the number of full branches of T̂β outside H0.

Then, for the open system (T̂β ,H0), we have that ρ ≥ f
β . Then, the hypotheses of Lemma 4.9

are satisfied, provided f > 3 + cu. This happens, for example, when β ≥ 5 and H0 is a single

interval of the form [ [β]β , y] or [y, 1], with
[β]
β < y < 1. It also happens when β ≥ 6 and H0 is a

single interval contained in [ [β]β , 1], or when β ≥ 7 and H0 is any interval leaving at least seven
full branches in X0. (Recall from subsection 2.1 that two bad elements of Zu are contiguous
if there are no good elements of Zf ∪ Zu between them, but there may be elements of Zh in
between.)

We include Figures 1–3, obtained from numerical experiments for β = 5.9 and two different
choices of holes. They include approximations to the densities of accims and cumulative
distribution functions of the quasi-conformal measures for systems with a hole, as well as the
accim and conformal measure for the closed system.

Remark 4.11. Using lower bounds on ρ such as those of Lemma 4.3, one can extend the
conclusion of Lemma 4.9 as in Corollary 4.5, to cover small C1+Lip perturbations of piecewise
linear maps that respect the partition Zh ∪ Zf ∪ Zu.

4.3. Lorenz-like maps. Let us consider the following two-parameter family of maps of
I = [−1, 1]:

(4.1) Tc,α(x) =

{
cxα − 1 if x > 0,

1− c|x|α if x < 0,

where c > 0, α ∈ (0, 1). When c > 2, the system is open, and the hole is implicitly defined as
H0,c,α = T−1

c,α (R \ [−1, 1]).
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Figure 1. Ulam approximations with k = 10000 for T̂β (β = 5.9) and H0 = ∅. Left: Graph of approxi-
mate density hk of accim. Right: The “quasi-conformal” measure, depicted as μk([0, x]) vs. x. Note that μk

approximates Lebesgue measure on [0, 1], as (T̂β, ∅) is closed.
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Figure 2. Ulam approximations with k = 10000 for T̂β (β = 5.9) and H0 = [ 5
5.9

, 1] (shown in red). The
computed value of ρk is 0.8475 (4 s.f. (significant figures)), and in fact agrees up to 11 s.f. with the exact value
for ρ (the length of X0: 5/5.9). Left: Graph of computed density hk of accim (note that the function 1 is a
fixed point of both L and πkL). Right: The approximate quasi-conformal measure, depicted as μk([0, x]) vs. x.
Note that μk has no support on H0.

This family of maps has been studied in connection with the famous Lorenz equations,

ẋ = σ(y − x),

ẏ = rx− y − xz,(4.2)

ż = −bz + xy.

We take a relatively standard point of view [19, 30, 16], regarding σ = 10 and b = 8/3 as
fixed and r as a parameter. The chaotic attractor discovered by Lorenz [23] at r = 28 has
since been proved to exist by Tucker [31] (via computer-assisted methods). Its formation
is now well understood: A homoclinic explosion occurs at rhom ≈ 13.9265, giving rise to
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Figure 3. Ulam approximations with k = 10000 for T̂β (β = 5.9) and H0 = [0.9001, 1] (shown in red).
The computed value of ρk is 0.9086 (4 s.f.) Left: Graph of approximate density hk of accim. Right: The
approximate quasi-conformal measure, depicted as μk([0, x]) vs. x. Note that μk has no support on H0.

a chaotic saddle. As r increases through rhet ≈ 24.0579, heteroclinic connections between
(0, 0, 0) and a symmetric pair of periodic orbits Γ± appear, and the chaotic saddle becomes
an attractor Ω. The orbits Γ± disappear in subcritical Hopf bifurcations at rHopf ≈ 24.7368
(parameter values from [11]). For r < rhet almost all orbits are asymptotic to one of two fixed
points; for rhet < r < rHopf orbits may approach one of these fixed points or the attractor Ω;
for r > rHopf almost all orbits are attracted to Ω.

Maps like (4.1) model this situation via the following reductions. First, solutions to the
ODEs (4.2) induce a flow on R3; from this, a return map to the section Σ = {(x, y, z) : z =
r − 1} may be constructed. This two-dimensional map is an open dynamical system, since
not all orbits return to Σ.7 For “preturbulent” r ∈ (rhom, rhet), the chaotic saddle admits
a strong stable foliation; the return map to Σ may be further reduced by identifying points
on the same stable leaf, resulting in one-dimensional models. We illustrate our results with
the much-studied family (4.1) (see [16]). The discontinuity at x = 0 corresponds to the
intersection of the stable manifold of (0, 0, 0) with Σ; the exponent 0 < α < 1 is derived from

the eigenvalues of the linearization of the system at the origin, α = |λs|
λu

. The parameter c
controls how “open” the map is: when c ≤ 2, the system is closed, and when c > 2, the one-
step survivor set X0 has the form X0 = [−xc,α, xc,α], where xc,α = (2/c)1/α; this is illustrated
in red in Figure 4.

The escape rates of the system Tc,α for parameters 0 < α < 1, 2 < c < 3 are illustrated in
Figure 5. Figure 6(left) illustrates the cumulative distribution functions of the quasi-conformal
measures, μc,α, for c = 2.01 and various values of α. The densities of the accims with respect
to Lebesgue are illustrated in Figure 6 for several α values. For α < 0.5, the densities become
concentrated near the endpoints, as the α = 0.45 plot in Figure 6(right) illustrates.

The escape rate results for these one-dimensional maps can be interpreted coherently with
respect to the behavior of the Lorenz system (4.2) (although the scenarios differ according to

7For example, the stable manifold to the fixed point (0, 0, 0) intersects Σ, and some orbits of the flow travel
directly to (0, 0, 0) after leaving Σ.
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Figure 4. Lorenz map Tc,α, c = 2.05, α = .6 (blue). Note that [−1, 1] � Tc,α[−1, 1]; bounds of the interval
[−1, 1] are depicted in red (the branches of T extend beyond the red box). The chaotic repelling set is confined
to the interval between two fixed points (green).
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Figure 5. Numerical estimate of escape rates via the open Ulam method with k = 10000 bins. Left: Colored
image of leading eigenvalue ρ10000 for a range of α and c (light for ρ near 1, dark near 0). Right: ρ10000 as a
function of α for c = 2.05, 2.01, 2.001.

whether α ≶ 1/2).

• Regarding Tc,α as a map on R, for each value of α ∈ (0, 1) and c > 2 there are two
pairs of fixed points: repellers at ±yc,α ∈ (−1, 1) (illustrated in green in Figure 4) and
an attracting outer pair ±zc,α with |zc,α| > 1 (beyond the domain of Figure 4). The
inner points ±yc,α correspond to the periodic orbits Γ± from the Lorenz flow, and the
outer pair correspond to the attracting fixed points of the flow.

• At some c = c∗(α) ≤ 2 the inner and outer pairs coalesce in a saddle-node bifurcation,
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Figure 6. Open Ulam approximations for Tc,α (k = 20000). Left: Cumulative distribution functions for
μ2.01,α, where α = 0.45, 0.5, 0.65, 0.95. Right: Accims for T2.01,α (same α).

and for c < c∗ the only attractor is a chaotic absolutely continuous invariant measure
supported on [−1, 1].

(α > 1/2) Each Tc,α is uniformly expanding on X0 for c > 2. For c > 2 there is a chaotic
repeller in X0 and a fully supported accim on [−1, 1]. Lebesgue almost every orbit
escapes and is asymptotic to one of the “outer fixed points.” At c = 2 the points
±xc,α = ±1 = ±yc,α become fixed points, with T ′(±1) = 2α > 1. The open system
thus “closes up” as c decreases to 2; this corresponds to the bifurcation point rhet in
the Lorenz flow (where the origin connects to Γ±). For values of c < 2, Tc,α admits an
acim (which can be accessed numerically by Ulam’s method), and the quasi-conformal
measure is simply the Lebesgue measure. The approach of ρk to 1 as c → 2 can be
seen in Figure 5, and the close agreement of μ2.01,α with the Lebesgue measure can be
seen in Figure 6(left) for α = 0.95.

(α < 1/2) For c > 2, Tc,α is open on [−1, 1], but the uniform expansion property fails for c
sufficiently close to 2. Indeed, when c = 2 the fixed points at ±1 are the outer pair
±zc,α and T ′(±1) < 1. For c ∈ (c∗, 2), these attractors ±zc,α ∈ [−1, 1] and coexist
with a chaotic repeller in [−yc,α, yc,α]. Fortunately, for c > c∗ the open system Tc,α
with hole I \ [−yc,α, yc,α] is a Lasota–Yorke map with holes, because it is piecewise
expanding. Corollary 4.4 shows that ε-Ulam admissibility of the open system is implied
if ε is sufficiently small and

|T ′
c,α(yc,a)|−1 = sup

x∈[−yc,α,yc,α]
|T ′

c,α(x)|−1 < inf Lc,α1(x).

This condition can be verified directly via elementary calculus. Thus, for c > 2, our
main theorem holds for the application of Ulam’s method to Tc,α on [−yc,α, yc,α]. How-
ever, it is simple to extend this result to [−1, 1]: all points in the intervals ±(yc,α, 1)
escape in finitely many iterations, and corresponding cells of the partitions used in
Ulam’s method are “transient.” The leading eigenvalue from Ulam’s method and
approximate quasi-conformal measure on [−yc,α, yc,α] agree with those computed on
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[−1, 1]. The approximate accims agree (modulo scaling) between ±yc,α; the only differ-
ence is that the different X0’s lead to different concentrations of mass on preimages of
the hole. The approximated escape rates are displayed in Figure 5, and concentration
of accim on the hole (neighborhoods of ±1) is evident in Figure 6(right). Note also
that Figure 6(left) depicts some approximate quasi-conformal measures for c = 2.01
and α < 0.45.

Remark 4.12. Recent work on Lorenz-like systems [24] has focused on Lorenz maps with
less regularity, such as piecewise C1+ε. We expect that our approach could be extended to
this setting, although some technical modifications would be necessary.

5. Proofs.

5.1. Auxiliary lemmas. Under the assumptions of Theorem 2.7, the quasi-conformal mea-
sure μ of (T̂ ,H0) satisfies some further properties that will be exploited in our approach. The
measure μ can be used to define a useful cone of functions in BV . For each a > 0 let

Ca = {0 ≤ f ∈ BV : var(f) ≤ aμ(f)}.

Combining the result of Lemmas 4.2 and 4.3 from [22] with the argument in the proof of
Lemma 3.7 (therein), the conditions on T imply the existence of a constant a1 > 0 such that
for any a > a1 there are an εa > 0 and N ∈ N such that

(5.1) LNCa ⊆ Ca−εa .

The values of N , a1, and εa are all computable in terms of the constants associated with T .
We present a modified version of these arguments, based on the classical work of Rychlik [29],
that specialize to the case N = 1 and allow us to improve some of the constants involved in
the estimates of [22]. Most notably, the value of αε below is smaller than that in [22], a fact
which will allow us to treat a larger class of open systems.

Lemma 5.1. Let (T̂ ,H0) be a Lasota–Yorke map with an ε-Ulam-admissible hole. Then
there exists Kε > 0 such that for every f ∈ BV ,

var(Lf) ≤ αε var(f) +Kεμ(|f |).

Furthermore, there is a constant a1 > 0 such that for any a > a1 there is an εa > 0 such that

(5.2) LCa ⊆ Ca−εa .

Proof. We address the general case first; the particular full-branched case will be addressed
at the end of the proof. In the general case, we recall that αε = ‖DT−1‖∞(2 + ε+ ξε).

Let Z be the monotonicity partition for T̂ . Define ĝ : I → R by ĝ(x) = |DT̂ (x)|−1 for every
x ∈ (

I \⋃Z∈Z ∂Z
) ∪ {0, 1}, and ĝ(x) = 0 otherwise. We obtain the following Lasota–Yorke

inequality by adapting the approach of Rychlik [29, Lemmas 4-6]. Let Zε ∈ Gε. Then,

var(L̂f) ≤ var(f ĝ) ≤ (2 + ε)‖DT̂−1‖∞ var(f) + ‖DT̂−1‖∞(1 + ε)
∑
A∈Zε

inf
A

|f |.
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We slightly modify ĝ to account for the jumps at the hole H0, and define g : I → R by
g = 1X0 ĝ. Now, only elements of Z∗

ε contribute to the variation of L̂f , and we get

var(Lf) = var(L̂(1X0f)) ≤ var(f(1X0 ĝ)) =
∑
A∈Z∗

ε

var
A
(f(1X0 ĝ))

≤
∑
A∈Z∗

ε

var
A
(f)‖1X0 ĝ‖∞ + ‖1Af‖∞ var

A
(1X0 ĝ)

≤
∑
A∈Z∗

ε

var
A
(f)‖DT−1‖∞ +

(
inf
A

|f |+ var
A
(f)

)
var
A
(g).

Thus, since for every A ∈ Z∗
ε , varA(g) ≤ ‖DT−1‖∞(1 + ε), one has that

(5.3) var(Lf) ≤ (2 + ε)‖DT−1‖∞ var(f) +
∑
A∈Z∗

ε

‖DT−1‖∞(1 + ε) inf
A

|f |.

Now we proceed as in the proof of [22, Lemma 2.5] and observe that there exists δ > 0 such
that if A ∈ Zε,g, then

(5.4) inf
A

|f | ≤ δ−1μ(1A|f |),

whereas if A ∈ Zε,b, we let A′ ∈ Zε,g be the nearest good partition element,8 and get

inf
A

|f | ≤ inf
A′ |f |+ var

I(A,A′)
(f),

where I(A,A′) is an interval that contains A and has as an endpoint xA′ ∈ A′, fixed in advance,
such that, after possibly redefining f at the discontinuity points of f , |f(xA′)| = infA′ |f |.
Notice that either I(A,A′) ⊆ I−(A′) or I(A,A′) ⊆ I+(A

′), where I+(A
′) is the union of

A′
+ := A′ ∩ {x : x ≥ xA′} with the contiguous elements of Zε,b on the right of A′, and I−(A′)

is defined in a similar manner. Thus,

(5.5)
∑

A∈Zε,b

inf
A

|f | ≤ ξε var(f) + 2ξε
∑

A′∈Zε,g

inf
A′ |f |,

where the factor 2 appears due to the fact that a single good interval could have at most ξε
bad intervals on the left and ξε bad intervals on the right. Combining (5.4) and (5.5), we get∑

A∈Z∗
ε

inf
A

|f | ≤ ξε var(f) + δ−1(1 + 2ξε)
∑

A′∈Zε,g

μ(1A′ |f |).

Plugging this back into (5.3), we get

var(Lf) ≤ ‖DT−1‖∞(2 + ε+ ξε) var(f) + ‖DT−1‖∞(1 + ε)δ−1(1 + 2ξε)μ(|f |).
8It is shown in [22, Lemma 2.4] that whenever (T,H0) is an open system with an admissible hole, then

Zε,g �= ∅.
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We get the first part of the lemma by choosing Kε = ‖DT−1‖∞(1 + ε)δ−1(1 + 2ξε). For the
second part, we recall that μ(Lf) = ρμ(f), so for every f ∈ Ca we have that

var(Lf)
μ(Lf) ≤ αε

ρ
a+

Kε

ρ
.

Thus, Lf ∈ Ca, provided that a > Kε
ρ−αε

=: a1.

Moving toward a BV,L1(Leb) Lasota–Yorke inequality, we have the following.
Lemma 5.2. Let ζ > 0 be given. Then there is a constant Bζ <∞ such that

μ(f) ≤ Bζ |f |1 + ζ var(f)

for 0 ≤ f ∈ BV (I).
Proof. Let Z(n) be the n-fold monotonicity partition for T0, where n is such that μ(Z) < ζ

2

for all Z ∈ Z(n). This choice is possible in view of [22, Lemma 3.10]. Choose k such that every
subinterval of size 1

k intersects at most two such Z. Then, if Y is any subinterval of length 1/k,

there are elements Z1, Z2 ∈ Z(n) such that Y ⊂ Z1 ∪ Z2; hence μ(Y ) < ζ = ζ km(Y ). Now
let ξ be a partition of I into subintervals of length 1/k, and set

F =
∑
Y ∈ξ

ess supY f 1Y .

Then, f ≤ F and F − f ≤ ∑
Y ∈ξ VY (f)1Y , where VY (f) denotes the variation of f inside the

interval Y . Thus,

|F − f |1 ≤
∑
Y ∈ξ

VY (f)m(Y ) ≤ VI(f)/k.

We now estimate ∫
f dμ ≤

∫
F dμ =

∑
Y ∈ξ

ess supY fμ(Y )

≤
∑
Y ∈ξ

ess supY fζ

= ζ k |F |1
= ζ k |f |1 + ζ k |F − f |1
≤ ζ k |f |1 + ζ VI(f).

Setting Bζ = ζ k completes the proof.
A direct consequence of Lemmas 5.1 and 5.2 is the following.
Corollary 5.3. Let αε < α < ρ, where αε is defined in (2.1). Then, there exists K > 0 such

that

(5.6) var(Lf) ≤ α var(f) +K|f |1.9
9For convenience, we have dropped the dependence of ε on α and K. This should cause no confusion in

what follows, as ε is fixed throughout the section.
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Proof. Let ζ ′ = α−αε
Kε

, where Kε comes from Lemma 5.1. Let Bζ′ be given by Lemma 5.2.
Then, Lemma 5.1 ensures

var(Lf) ≤ αε var(f) +Kε(Bζ′ |f |1 + ζ ′ var(f))
= α var(f) +K|f |1.

Another useful result regarding the relation between the Ulam approximations and the
accim and quasi-conformal measure is the following.

Lemma 5.4. There exists n > 0 such that (Pn
k )ij > 0 for all i, j satisfying μ(Ii) > 0 and∫

Ij
h dm > 0.

Proof. Fix i, j satisfying the hypotheses. By Theorem 2.7,

lim
n→∞ ‖(Lnχi)/ρ

n − μ(Ii)h‖∞ = 0.

Choose nij large enough so that
∫
Ij
LNχi dm > 0 for all N ≥ nij. Because there are a finite

number of Ii and Ij, we can set n = maxi,j nij and obtain
∫
Ij
Lnχi dm > 0 for all i, j satisfying

the hypotheses. Note that this implies
∫
Ij
(πkL)nχi dm > 0 because the support of the

integrand is possibly enlarged by taking Ulam projections. This now implies (Pn
k )ij > 0.

5.2. Proof of the main result. The lemmas presented in section 5.1 allow us to derive
parts (1) and (2) of Theorem 3.2 via the perturbative approach from [20]. Indeed, Theorem 2.7
shows that ρ > α is the leading eigenvalue of L, and that it is simple. Furthermore, Lk is a
small perturbation of L for large k, in the sense that sup‖f‖BV =1 |(Lk −L)f |1 → 0 as k → ∞.
Indeed,

sup
‖f‖BV =1

|(Lk − L)f |1 = sup
‖f‖BV =1

|(πk − Id)Lf |1 ≤ sup
‖f‖BV =‖L‖BV

|(πk − Id)f |1

≤ ‖L‖BV max
Ij∈Pk

m(Ij),

and the latter is proportional to τk, the diameter of the partition, which tends to 0 as k → ∞.

Since πk decreases variation [21], Corollary 5.3 implies the uniform inequality

(5.7) var(Lkf) ≤ α var(f) +K|f |1 ∀k ∈ N,

which is the last hypothesis to check to be in the position to apply the perturbative machinery
of [20]. In particular, this implies quasi–compactness and hence a spectral decomposition of
Lk acting on BV . This result ensures that, for sufficiently large k, Lk has a simple eigenvalue
ρk near ρ, and its corresponding eigenvector hk ∈ BV converges to h in L1(Leb), giving the
convergence statements in (1) and (2).

In order to show (3), we consider the operator L̄k := Lk ◦ πk. In view of Lemma 3.1,
L̄∗
kμk = ρkμk and L̄khk = ρkhk. As in the previous paragraph, one can check that L̄k is a

small perturbation of L. In fact,

sup
‖f‖BV =1

|(L̄k −L)f |1 ≤ 2 max
Ij∈Pk

m(Ij) = 2τk.
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Also, the Lasota–Yorke inequality (5.6) holds with L replaced by L̄k. Thus, [20, Corollary 1]
(see (iii) below) shows that, for large k, ρk is the leading eigenvalue of L̄k.

Let Πk be the spectral projectors defined by

Πk :=
1

2π i

∮
∂Bδ(ρ)

(z − L̄k)
−1 dz,

where δ is small enough to exclude all spectra of L apart from the peripheral eigenvalue ρ.
Also let

Π0 :=
1

2π i

∮
∂Bδ(ρ)

(z − L)−1 dz.

Then, [20, Corollary 1] provides K1,K2 > 0, and η ∈ (0, 1) for which
(i) |(Πk −Π0)f |1 ≤ K1 τk

η ‖f‖BV ,
(ii) ‖Πkf‖BV ≤ K2 |Πkf |1,
(iii) for large enough k, rank(Πk) = rank(Π0).
Since ρ is simple and isolated, this setup implies that for large enough k, each Πk is a bounded,
rank-1 operator on BV,

Πk = μk(·)hk,
where each hk ∈ BV , L̄khk = ρk hk, and ρk ∈ Bδ(ρ). Since hk = Πkhk, we can choose
|hk|1 = 1 so that ‖hk‖BV ∈ [1,K2]. Now, let g ∈ BV . Then, by the above,

|μk(g)− μ(g)| = |(μk(g)− μ(g))hk |1 ≤ |μk(g)hk − μ(g)h|1 + |μ(g)(hk − h)|1
= |Πk(g)−Π0(g)|1 + |μ(g)| |hk − h|1 → 0 as k → ∞.

Since μ and μk are in fact measures, the above is enough to show that μk → μ in the weak-∗
topology.

In particular, there is a k0 such that μk(h) > 0 for all k ≥ k0. To show the last claim
of (3), we will show that if μk(h) > 0, then supp(μ) ⊆ supp(μk). Let ψk be a leading right

eigenvector of L̄k such that Pkψk = ρkψk and [ψk]l =
μ(Il)
m(Il)

(l = 1, . . . , k). Choose i such that

μ(Ii) > 0, j such that [ψk]j =
∫
Ij
hdm =

∫
Ij
hdμk > 0, and n ≥ nij as in Lemma 5.4. Then,

[ψk]i = ρ−n[Pk
nψk]i ≥ ρ−n[Pk

n]ij [ψk]j > 0.

This establishes that μk(Ii) > 0 and hence that supp(μ) ⊆ ∪{Ii : μ(Ii) > 0} ⊂ supp(μk), as
claimed.

For the quantitative statement of (1), note that for every f ∈ BV , 0 = (L − ρI)h =
(L − ρI)Π0f , so that

(ρk − ρ)hk = (L̄k − L)hk + (L − ρ)(Πk −Π0)hk.

Hence,

|ρk − ρ| |hk|1 ≤ 2τk‖hk‖BV + (|L|1 + |ρ|)K1 τk
η ‖hk‖BV

≤ 2(τk + (1 + |ρ|)K1 τk
η)K2 |hk|1,

where K1, K2, and η are as above. This gives the error bound |ρk − ρ| ≤ O(τk
η).
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5.3. Proof of Lemma 2.9. Let Lm be the transfer operator associated with Tm. That is,
Lm(f) = L̂(1Xmf). Then, Ln

m(f) = L̂n(1Xm+n−1f), and therefore,

(5.8) L̂m ◦ Ln
m = Lm+n

0 .

Hence, an interval is good for T0 if and only if it is good for Tm for every m. In the rest of
this proof we will say that an interval is good if it is good for either (and therefore all) Tm.

Let Z0 = Z ∨H0, where H0 is the partition of H0 into intervals, and we recall that Z is
the monotonicity partition of T̂ . Let Gε be an ε-adequate partition for T0. Then, a partition

Gε,m may be constructed by cutting each element of Gε∨Z(m)
0 into at most K pieces, where K

is independent of m, in such a way that the variation requirement maxZ∈Gε,m varZ(ĝ1Xm) ≤
‖DT−1

m ‖∞(1 + ε) is satisfied, and thus Gε,m is an ε-adequate partition for Tm. Indeed, K =
2+

⌈‖ĝ‖∞/ essinf(ĝ)⌉ is a possible choice; the term 2 allows one to account for possible jumps

at the boundary points of Hm, as there are at most two of them in each Z ∈ Gε ∨ Z(m)
0 . The

term M = �‖ĝ‖∞/ essinf(ĝ)� allows one to split each interval Z ∈ Gε ∨ Z(m)
0 into at most

M subintervals Z1, . . . , ZM , in such a way that, for every 1 ≤ j ≤ M , varint(Zj)(ĝ1Xm) ≤
(1 + ε)‖ĝ1Xm‖∞. The chosen value of M is necessary to account for the possible discrepancy
between ‖ĝ1X0‖∞ and ‖ĝ1Xm‖∞. (Recall also that ĝ is continuous on each int(Zj).)

Now, let b = #Z0. Then, each bad interval of Gε gives rise to at mostKbm (necessarily bad)
intervals in Gε,m. When a good interval of Gε is split, it also gives rise to at most Kbm intervals
in Gε,m. In this case some of the intervals may be bad, but it is guaranteed that at least one
of them remains good, as being good is equivalent to having nonzero μ measure. Thus, the
number of contiguous bad intervals in Gε,m is at most Kbm(B +2), where B is the number of
contiguous bad intervals in Gε. Therefore, ξ̃ε(Tm) = exp

(
lim supn→∞

1
n log(1 + ξε,n(Tm))

) ≤
ξ̃ε(T0).

Clearly, Θ̃(Tm) ≤ Θ̃(T0). Finally, we will show that ρ(T0) ≤ ρ(Tm). Recall that ρj is
the leading eigenvalue of Lj . Let f ∈ BV be nonzero and such that L0f = ρ0f . We claim
that Lm(1Xm−1f) = ρ01Xm−1f , which yields the inequality, because necessarily 1Xm−1f �= 0.
Indeed,

ρ01Xm−1f = 1Xm−1L0f = 1Xm−1Lmf = Lmf = Lm(1Xm−1f),

where the second equality follows from the fact that L0(1Hmf) is supported on T (Hm) =
Hm−1; the third one, from the fact that Lmf is supported on T (Xm) ⊆ Xm−1; and the last
one, because Lm(1Hm−1f) = 0.

The first statement of the lemma follows. The relations between escape rates, accims,
and quasi-conformal measures follow from comparing via (5.8) the statements of part (4) of
Theorem 2.7 applied to T0 and Tm.

5.4. Proof of Lemma 3.3. Assume that H0 is an ε-admissible hole for T̂ . Then, T n :=
(T̂ n,Hn−1) is an open Lasota–Yorke map. Fix Θ̃ < η < ρ so that for all n sufficiently large,

exp

(
1

n
log ‖(DT n)−1‖∞

)
exp

(
1

n
log(1 + ξε,n)

)
< η.
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Then, ‖(DT n)−1‖∞ξε,n < ηn. By possibly making n larger, we can assume that (2 +
ε)‖(DT n)−1‖∞ < ηn, and that 2ηn < ρn. Then, ‖(DT n)−1‖∞(2 + ε+ ξε,n) < ρn.

We remark that ξε(T
n) = ξε,n(T ). Thus αε(T

n) = ‖(DT n)−1‖∞(2+ε+ξε,n). Furthermore,

in view of Theorem 2.7, ρ(T n) = limm→∞ infx∈Dmn

Ln(m+1)1(x)
Lnm1(x) = μ(Ln1) = ρn.
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