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We perform an extensive density-matrix renormalization-group study of the ground-state phase diagram of
the spin-1/2 J1-J2 Heisenberg model on the kagome lattice. We focus on the region of the phase diagram
around the kagome Heisenberg antiferromagnet, i.e., at J2 = 0. We investigate the static spin structure factor, the
magnetic correlation lengths, and the spin gaps. Our results are consistent with the absence of magnetic order
in a narrow region around J2 ≈ 0, although strong finite-size effects do not allow us to accurately determine
the phase boundaries. This result is in agreement with the presence of an extended spin-liquid region, as it has
been proposed recently. Outside the disordered region, we find that for ferromagnetic and antiferromagnetic J2,
the ground state displays signatures of the magnetic order of the

√
3 × √

3 and the q = 0 type, respectively.
Finally, we focus on the structure of the entanglement spectrum (ES) in the q = 0 ordered phase. We discuss the
importance of the choice of the bipartition on the finite-size structure of the ES.
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I. INTRODUCTION

The nature of the ground state of the antiferromagnetic
spin-1/2 Heisenberg model on the kagome lattice (KHA) has
been debated for a long time. Despite substantial analytical
and numerical effort, no agreement has been reached yet in
the community. The proposed ground states include several
valence bond crystals (VBCs) [1–7], and both gapped and
gapless spin liquids [8–25].

However, recent density-matrix renormalization-group
(DMRG) simulations [26–28] provided convincing evidence
that the ground state of the KHA is a gapped spin liquid
with topological entanglement entropy γ = log(2) [29–31].
This is compatible with both a spin liquid of the toric-code
or double-semion [32,33] type. Although the former appears
naturally in mean-field theories of the KHA [9] and for
quantum dimer models on the kagome lattice [34,35] and was
therefore favored, recent numerical studies provide indirect
evidence that the ground state of the KHA is in a double-
semion phase [36–39]. This was motivated by the observation
of a chiral spin-liquid phase adjacent to the Z2 phase [23,36].
Notice, however, that a recent theoretical analysis rules out the
double-semion scenario [40].

Moreover, it has been suggested that the spin-liquid behav-
ior survives upon introducing a small antiferromagnetic next-
nearest-neighbor interaction [31], i.e., in the J1-J2 Heisenberg
model (J1-J2 KHA). This is in contrast to the T = 0 phase
diagram of the classical version of the model. At J2 = 0,
the ground state of the classical J1-J2 KHA exhibits an
extensive degeneracy [41–47]. This is lifted upon introduc-
ing an infinitesimal J2, and the system develops magnetic
order [48]. Precisely, for ferromagnetic J2, the so-called√

3 × √
3 order emerges, whereas in the antiferromagnetic

case, one has the q = 0 order. The two ordering patterns are
shown schematically in Fig. 1. The magnetic order survives in
the quantum model, at least for large enough J2, as it has been
established by exact diagonalization studies [49]. However,
the precise phase boundary between the magnetically ordered

phases and the disordered spin-liquid region at J2 ≈ 0 has
not been determined yet (see Ref. [50] for some interesting
results obtained using the functional renormalization-group
approach).

In this work, by performing SU(2)-symmetric DMRG
calculations, we investigate the ground-state phase diagram
of the J1-J2 KHA as a function of J1 and J2. Here we set
J1 = 1, considering both positive and negative J2. We study the
finite-size behavior of the static spin structure factor, the spin-
spin correlation length, and the spin gap. For ferromagnetic
J2, we provide numerical evidence that magnetic order of the√

3 × √
3 type survives up to J2 � −0.1. On the other hand,

for antiferromagnetic J2, signatures of the q = 0 state already
appear at J2 � 0.2. In the narrow region at −0.1 � J2 � 0.2,
although strong finite-size effects are present, our data are
compatible with an extended disordered region, suggestive of
a spin-liquid behavior [31]. Finally, we analyze the structure
of the entanglement spectrum (ES) [51] in the q = 0 ordered
phase at large J2 � 0.2. Recently, it has been suggested that in
the presence of continuous symmetry breaking, the low-lying
levels in the ES are reminiscent of the so-called tower of
states, which appear in finite-size energy spectra [52–54]. This
correspondence has been checked numerically in Ref. [54] for
the J1-J2 KHA at large ferromagnetic J2, i.e., in the presence
of the

√
3 × √

3 order, and for the two-dimensional (2D)
Bose-Hubbard model in the superfluid phase [53]. Here we
investigate how the identification of the correct tower-of-states
structure in the ES depends on the choice of the bipartition, in
finite-size systems.

The article is organized as follows. Section II introduces the
J1-J2 Heisenberg model on the kagome lattice and the DMRG
method. In particular, we describe in detail the geometry
used in the DMRG simulations. In Secs. III and IV, we
discuss the numerical results for the static spin structure factor
and the spin-spin correlation length. The energy gaps are
presented in Sec. V. Finally, in Sec. VII, we investigate the
structure of the entanglement spectrum in the q = 0 ordered
phase.
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FIG. 1. (Color online) Ordering patterns of the classical J1-J2

Heisenberg model on the kagome lattice (J1-J2 KHA). The orienta-
tions of the spins of the three ferromagnetic sublattices are denoted
as α, β, and γ . Spins in different sublattices form an angle of 2π/3.
(a) The

√
3 × √

3 state arising at J2 � 0. (b) The q = 0 state, which
appears for J2 � 0. The dashed lines highlight the unit cells.

II. MODEL AND METHOD

The spin-1/2 J1-J2 Heisenberg model on the kagome lattice
is defined by the SU(2)-invariant Hamiltonian

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,k〉〉

Si · Sk. (1)

Here, Si is the spin operator acting on the lattice site i, while
〈i,j 〉 and 〈〈i,k〉〉 denote nearest- and next-nearest-neighbor
sites, respectively. We restrict ourselves to J1 = 1 in (1).

We obtain the ground state of the J1-J2 KHA using
SU(2)-symmetric DMRG calculations. The geometry used in
the simulations is depicted in Fig. 2. The two basis vectors of
the kagome lattice are denoted as e1,e2. The unit cell (thicker
purple lines) contains three sites. Since DMRG prefers open
boundary conditions, we consider kagome cylinders, using
periodic (open) boundary conditions in the e2 (e1) direction.

O
B
C

W

L

J1

PBC

e2

e1

J2

FIG. 2. (Color online) The J1-J2 Heisenberg model on kagome
cylinders. The spins are located at the vertices of the lattice. The two
basis vectors of the lattice are denoted as e1 and e2. Periodic (PBCs)
and open (OBCs) boundary conditions are imposed along the e2 and
e1 directions, respectively. The unit cells consist of three sites and are
denoted by the thicker (purple) triangles. J1 and J2 (see arrows) are
the interaction strengths between nearest- and next-nearest-neighbor
sites, respectively. The figure shows a cylinder with width W = 3
(YC6 geometry) and length L = 4. Here, W and L denote the number
of unit cells in the e2 and e1 directions, respectively. Notice that the
unit cells at the right boundary are incomplete in order to alleviate
edge effects in the DMRG simulation.

Here we focus on cylinders with width W and length L,
where W and L are the numbers of unit cells along the e2

and e1 directions, respectively. In order to alleviate spurious
effects due to sharp edges, the unit cells at the right boundary
of the cylinder contain only two sites. In the Appendix, we
show that the results are qualitatively the same for lattices
with integer number of unit cells and fully periodic tori. The
total number of spins on the lattice used for the main text is
given as W × (3L + 2). Here we consider only cylinders with
W = 3 and W = 4, which, following Ref. [29], are referred
to as YC6 and YC8 cylinders. The computational time scales
approximate linearly with L and exponentially with W . In
our DMRG calculations, we keep up to ∼5000 SU(2) states,
which correspond to approximately 20 000 U(1) states. This
allows us to obtain accurate ground-state wave functions for
cylinders with lengths L = 4,6,8,10,12 for both the YC6 and
YC8 geometries. The largest cylinder considered in this work
(with W = 4 and L = 12) contains 152 spins.

III. STATIC SPIN STRUCTURE FACTOR

Here we discuss the static spin structure factor S(q)
obtained from the ground state of the J1-J2 Heisenberg model
as a function of −0.2 � J2 � 0.4. The structure factor is
defined as

S(q) = 1

N

N∑
i,j=1

〈Si · Sj 〉eiq·(ri−rj ). (2)

Here, N is the total number of lattice sites, 〈·〉 denotes the
ground-state expectation value, ri is the position of site i, and
q is a generic vector in the reciprocal lattice.

Figures 3(a) and 3(b) show the expected structure factors
(the circles denote the positions of the peaks in momentum
space) for the classical

√
3 × √

3 state and the q = 0 state,
respectively. Figures 3(i)–3(iv) plot the DMRG result for S(q)
for J2 = −0.2, J2 = 0.0, J2 = 0.1, and J2 = 0.4. The data are
for a YC6 cylinder (with 3 × 12 unit cells; cf. Fig. 2). Clearly,
for J2 = −0.2, sharp peaks with S(qK ) ≈ 6 are visible at the
K points qK of the extended Brillouin zone [see Fig. 3(a), and
see Fig. 3(b) for the definition of the high-symmetry points), in
agreement with what is expected for the

√
3 × √

3 state. Notice
that the much smaller peaks at the M points of the first Brillouin
zone cannot be resolved with the available system sizes. We
observe that at J2 = 0, S(q) is featureless [see Fig. 3(ii)],
which signals the absence of magnetic order. On the other
hand, already at J2 = 0.1, some peaks start developing at the
M points qM , as expected for the classical q = 0 state [cf.
Fig. 3(b)]. These become sharper upon increasing J2 [one has
S(qM ) ≈ 5 for J2 = 0.4].

All of these features are more quantitatively discussed
in Fig. 4, plotting the (squared) antiferromagnetic order
parameter m2

Q ≡ S(Q)/N versus J2. Here, Q denotes the
positions of the peaks of the structure factors. Data are for
both YC6 and YC8 cylinders [Figs. 4(a) and 4(b)] with lengths
L = 4,6,8,10,12. Precisely, Fig. 4 plots m2

qK
for the

√
3 × √

3
order for J2 < 0 (empty symbols) and m2

qM
(i.e., the order

parameter for the q = 0 order) for J2 � 0. In the region
−0.1 < J2 < 0.2, m2

Q is almost featureless and S(Q) itself is
nearly size independent. This is compatible with a vanishing
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FIG. 3. (Color online) The static spin structure factor S(q) obtained from ground-state DMRG simulations of the J1-J2 Heisenberg model
on kagome cylinders with 3 × 12 unit cells (YC6) and several values of J2: (i) J2 = −0.2, (ii) J2 = 0.0, (iii) J2 = 0.1, (iv) J2 = 0.4. The
solid and the dotted lines show the first and the extended Brillouin zones, respectively. (a),(b) The expected structure factors for the classical√

3 × √
3 and q = 0 states, respectively. In (b), b1 and b2 form a basis for the reciprocal lattice, while K and M are the high-symmetry points.

The circles denote the peaks in the structure factors, whereas the numbers are the relative peak heights. Clearly, DMRG data at J2 = −0.2 and
J2 = 0.4 match the expected structure factors for the

√
3 × √

3 and the q = 0 states. On the other hand, at J2 ≈ 0, the height of the peaks in
the structure factor is vanishing [see (ii)], which is compatible with the absence of magnetic order.

order parameter in the thermodynamic limit, as expected in a
disordered phase. On the other hand, outside this region, S(Q)
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FIG. 4. (Color online) The antiferromagnetic order parameter
m2

Q ≡ S(Q)/N for the ground state of the J1-J2 Heisenberg model
plotted as a function of J2. Here, Q denotes the position of the peak in
the structure factor. (a),(b) The YC6 and YC8 cylinders, respectively.
Empty symbols at J2 < 0 are obtained from the peak at the K point
in the extended Brillouin zone [corresponding to the

√
3 × √

3 state;
see Fig. 3(b)], while full symbols at J2 � 0 correspond to the M point
(q = 0 state).

(and, as a consequence, m2
Q) exhibits a stronger dependence

on the cylinder size.
A sharp increase of the order parameter can be observed

for J2 ≈ −0.1 and J2 ≈ 0.2, which could signal a phase
transition in the thermodynamic limit. Surprisingly, while for
J2 � 0.2, m2

Q increases with W , for J2 � −0.1, it slightly
decreases. However, this could be attributed to strong finite-
size corrections due to the fact that the YC8 geometry is not
commensurate with the large unit cell of the

√
3 × √

3 pattern
(cf. Fig. 1). We anticipate that this change in the behavior of
the order parameter at J2 ≈ −0.1 and J2 ≈ 0.2 is reflected
in the triplet gap (cf. Sec. V). In a magnetically ordered
phase, for large system sizes, one should expect S(Q)/N =
m2

Q,∞ + a/
√

N + b/N + · · · , with m2
Q,∞ the order parameter

in the thermodynamic limit. Although a finite-size scaling
analysis would allow one to extract mQ,∞, thereby providing
conclusive evidence for the presence of magnetic order at
J2 � −0.1 and J2 � 0.2, it would require much larger system
sizes than the ones currently available. Finally, from Fig. 4, one
should observe that at fixed W , m2

Q decreases with the cylinder
length L, which might signal a vanishing order parameter in
the limit L → ∞, as expected, since infinitely long cylinders
should exhibit 1D behavior.

IV. SPIN-SPIN CORRELATION LENGTHS

From the structure factor S(q), one can define a correlation
length ξ (Q,qmin) as [55,56]

ξ (Q,qmin) = 1

|qmin|

√
S(Q)

S(Q + qmin)
− 1, (3)

where qmin is the point next to the peak (at Q) of the
structure factor. Here we choose qmin = b1/L, with b1 being
the reciprocal lattice vector corresponding to the long direction
of the cylinder [see Fig. 3(b) for its definition]. Other choices of
qmin are expected to be equivalent in the 2D limit W,L → ∞.

Figure 5 plots ξ (Q,qmin) for the YC6 [Fig. 5(a)] and
YC8 [Fig. 5(b)] cylinders, and various cylinder lengths L.
In the figure, we show ξ (qK,qmin) (empty symbols) and
ξ (qM,qmin) (full symbols) in the region with J2 < 0 and
J2 � 0, respectively. The qualitative behavior is the same for
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FIG. 5. (Color online) The magnetic correlation length ξ calcu-
lated from Eq. (3) as a function of J2 for (a) the YC6 and (b)
the YC8 cylinders at various cylinder lengths L. For J2 � −0.05,
the correlation length (empty symbols) is calculated using Q = qK

in (3) and measures the strength of the
√

3 × √
3 magnetic order. For

J2 � 0, ξ (full symbols) is defined using Q = qM and it measures the
strength of the q = 0 magnetic order.

both YC6 and YC8 cylinders. We obtain small correlation
lengths with weak dependence on the cylinder length for
−0.1 � J2 � 0.15. In particular, at J2 = 0, both correlation
lengths are of the order of the lattice constant, as expected
in a spin liquid [30]. This behavior reflects that of the order
parameter m2

Q (cf. Fig. 4). Outside the disordered region, the
correlation lengths show an increasing trend as a function of
the cylinder length L. For the extremal values J2 = −0.2 and
J2 = 0.4 considered in this work, ξ (Q,qmin) is of the order of
the system size.

V. THE SPIN TRIPLET GAPS

Using SU(2)-invariant DMRG simulations, we obtain
the lowest-energy eigenstate in both the S = 0 and S = 1
sectors. We extrapolate their energies in the single-site DMRG
truncation error to get the best ground-state energy estimate.
Subtracting the extrapolated energies, we obtain the spin triplet
gap �t . This is plotted in Fig. 6 for the YC6 and YC8
geometries and several cylinder lengths. Error bars result from

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4
J2

0.00

0.05

0.10

0.15

0.20

tr
ip

le
t

ga
p

Δ
t

(a) YC6

L = 4

L = 6

L = 8

L = 10

L = 12

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4
J2

0.00

0.05

0.10

0.15

0.20

tr
ip

le
t

ga
p

Δ
t

(b) YC8

L = 4

L = 6

L = 8

L = 10

L = 12

FIG. 6. (Color online) The spin triplet gap �t of the J1-J2

Heisenberg model on the kagome lattice as a function of next-
nearest-neighbor interaction J2. Spin gaps for the (a) YC6 and (b)
YC8 cylinder, and various cylinder lengths are shown. The gaps are
obtained by subtracting the energies of the lowest-energy states in the
S = 0 and S = 1 symmetry sectors, which can be directly accessed
by SU(2)-symmetric DMRG simulations.

the extrapolation in the truncation error and are, in many cases,
smaller than the symbol sizes. In both cases, the gap shows
the same qualitative behavior. There is a dome-shaped region
for −0.1 � J2 � 0.2, with a weak dependence on L and a
peak at J2 � 0.1. Remarkably, at the kagome point J2 = 0,
the triplet gap is almost independent of the system size, and
its value �t ≈ 0.13 is in perfect agreement with the result
�t = 0.13(1) of Ref. [30]. A sharp dip is visible at J2 ≈ 0.2
and for both geometries, which could suggest a phase transition
between the spin-liquid and the q = 0 ordered phase in the
thermodynamic limit. A less pronounced feature is also visible
at J2 ≈ −0.1. For both J2 � −0.1 and J2 � 0.2, �t shows a
strong dependence on the system size with a decreasing trend
as a function of L,W , suggesting a vanishing behavior in the
limit L,W → ∞, as expected in a magnetically ordered phase.

It is interesting to investigate the behavior of �t in the limit
L → ∞, i.e., for infinitely long cylinders. This is illustrated in
Fig. 7, plotting �t as a function of 1/L for J2 = −0.2,0.1,0.4
and both YC6 and YC8 cylinders. The dotted lines are
the linear extrapolations to the infinite cylinder limit. The
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FIG. 7. (Color online) The spin triplet gap in the J1-J2 Heisen-
berg model on the kagome lattice plotted vs 1/L for both YC6 and
YC8 cylinders. Data for L = 4,6,8,10,12 and J2 = −0.2,0.1,0.4 are
shown in the figure. The lines denote the linear extrapolations to the
infinite cylinder limit.

extrapolated gaps are shown in Fig. 8. The triplet gap shows a
peak at J2 � 0.1 with a value of approximately �t ≈ 0.14 for
the YC6 and �t ≈ 0.18 for the YC8 cylinder. It is interesting
to observe that the maximum of the gap is not at J2 ≈ 0, where
the structure factor is featureless (cf. Fig. 4). For larger |J2|,
the extrapolated gap exhibits decreasing behavior as a function
of J2. We should remark that although the extrapolated gaps
seem to vanish outside the disordered region, this should not be
associated with the presence of Goldstone modes, as infinite
long cylinders are expected to exhibit 1D behavior and no
symmetry breaking.
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FIG. 8. (Color online) The spin triplet gap �t in the J1-J2

Heisenberg model: Extrapolations to the infinitely long cylinder limit.
We show �t for both the YC6 and the YC8 cylinders as a function
of the next-nearest-neighbor coupling J2. Error bars result from the
extrapolation in the cylinder length (see Fig. 7).

VI. DISCUSSION

Here we discuss the physical implications of the numerical
results presented in Secs. III–V. We divide the discussion
into three parts for different parameter ranges. First we con-
sider the case J2 � −0.1, then −0.1 � J2 � 0.2, and finally
J2 � 0.2.

(a) J2 � −0.1. The static spin structure factor at J2 ≈ −0.2
[see Fig. 3(i)] exhibits sharp peaks at the K points of the
extended Brillouin zone. The peak positions are in agreement
with what is expected for the classical

√
3 × √

3 order.
Moreover, the DMRG data suggest a sudden increase of the
antiferromagnetic order parameter m2

Q with increasing |J2|.
The corresponding spin-spin correlation length is of the order
of the system size, and it increases upon increasing |J2|. This
could suggest magnetic order of the

√
3 × √

3 type in the
thermodynamic limit. This is also weakly confirmed by the
behavior of the triplet gap �t . We numerically observe that �t

decreases upon increasing L and W for J2 � −0.1, which is
consistent with a vanishing behavior in the 2D limit (cf. Figs. 6
and 8), as expected in a magnetically ordered phase, due to the
presence of the Goldstone modes.

(b) −0.1 � J2 � 0.2. In this region, we observe a dome-
shaped triplet gap. For both the YC6 and YC8 geometries,
the DMRG data support a finite gap in the infinite cylinder
limit (see Fig. 8), excluding the presence of magnetic order.
Interestingly, for the YC8 cylinders, this gap is almost
independent of the cylinder length. The structure factor is
almost featureless (cf. Fig. 3), although some peaks at the M

points of the extended Brillouin zone are visible, signalling the
onset of the q = 0 order at larger J2. The spin-spin correlation
lengths for both the

√
3 × √

3 and q = 0 magnetic order are of
the order of the lattice constant. These results confirm earlier
DMRG studies performed at J2 = 0 [29,30], in agreement with
an extended Z2 spin-liquid region around J2 = 0. Notice that
our data does not support an algebraic U(1) spin liquid, which
would imply a vanishing spin gap, in contrast with what has
been found recently by variational Monte Carlo methods [7].
Also, from the present data, we cannot exclude a transition
from the Z2 spin liquid to a valence bond crystal (VBC)
for small ferromagnetic J2, as it was reported in Ref. [7].
Notice that the breaking of the lattice symmetry is hard to
detect [57] using the cylinder geometry. In order to detect
the VBC phase, it would be useful to study the dimer-dimer
correlation function 〈Dα

i D
β

j 〉, where Dα
i ≡ Sri

· Sri+α , with

α = x̂,ŷ, and the corresponding structure factor S
α,β

d (q) ≡
1/N

∑
i,j eiq(ri−rj )〈Dα

i D
β

j 〉. Moreover, it would be interesting
to calculate the topological entanglement entropy γ , which is
expected to be zero in the VBC phase, while it is γ = log(2) in
the Z2 spin-liquid phase. However, this would require larger
cylinders in order to perform a precise finite-size scaling
analysis of the von Neumann entropy.

(c) 0.2 � J2. We find sharp peaks in the static spin structure
factor [cf. Fig. 3(iv)] at the M points of the extended Brillouin
zone. This is in agreement with what is expected for the
q = 0 magnetic order. The triplet gap exhibits a decreas-
ing behavior upon increasing W and L. Correspondingly,
the spin-spin correlation length rapidly increases with J2

(cf. Fig. 5).
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VII. ENTANGLEMENT SPECTROSCOPY IN
THE Q = 0 PHASE

Given a spatial bipartition of the cylinder in parts A and B,
the so-called entanglement spectrum (ES) levels [51] {ξi} are
constructed from the Schmidt decomposition of the ground-
state wave function |ψ〉 as

|ψ〉 =
∑

i

eξi/2
∣∣ψA

i

〉 ⊗ ∣∣ψB
i

〉
, (4)

where |ψA(B)〉 form an orthonormal basis set for subsystem
A(B). Alternatively, the ES can be thought of as the spectrum
of an effective entanglement Hamiltonian HE that is defined
as

HE ≡ exp(−ρA), (5)

where ρA is the reduced density matrix of subsystem A. Since
the DMRG algorithm works directly in the Schmidt basis,
the ES is available essentially for free during a ground-state
simulation and provides another useful tool to characterize the
properties of the ground state.

It has been proposed recently [52] that in a model that
breaks a continuous symmetry in the thermodynamic limit,
the low-lying part of the ground-state entanglement spectrum
(ES) exhibits the tower-of-states structure, which describes
the finite-size energy spectrum of the model. In particular,
for a spin model that fully breaks the SU(2) symmetry, many
features of the low-lying ES levels can be understood in terms
of the entanglement Hamiltonian

HE ∝ S2
A

W
+ · · · , (6)

where SA is the total spin in subsystem A, and W ∼ √
N is

the cylinder width (cf. Fig. 2). The low-lying spectrum of (6)
is shown schematically in Fig. 9, plotting ES levels versus
SA(SA + 1). In each sector with fixed SA, there are (2SA +
1)2 levels (rhombi in the figure) forming the tower of states,
which are divided from higher-lying levels by an entanglement
gap. The tower-of-states levels exhibit linear behavior with
respect to SA(SA + 1). Notice that although (6) gives (2SA +
1)2 degenerate levels in each spin sector, this degeneracy is, in
general, lifted, as shown in Fig. 9. The correspondence between
the ES and tower of states has been numerically verified in
the J1-J2 KHA in Ref. [54] for J2 = −1.0, i.e., deep in the√

3 × √
3 ordered phase.

Notice that both the
√

3 × √
3 and the q = 0 ordering

patterns correspond to full breaking of the SU(2) symmetry
(see Fig. 1), as they contain three ferromagnetic sublattices.
As a consequence, deep in the q = 0 phase, one should expect
the same tower-of-states structure shown in Fig. 9 in the
ES. However, here we provide numerical evidence that the
identification of the correct tower of states depends on the
choice of the bipartition, at least for small system sizes.

This is illustrated in Fig. 10, plotting the half-system ES
for a kagome cylinder with 4 × 12 unit cells (YC8 geometry)
at J2 = 1.0 and for two different bipartitions. The bipartitions
are shown in Figs. 10(a) and 10(b): The three ferromagnetic
sublattices forming the q = 0 state (cf. Fig. 2) are denoted as
A, B, C; bonds connecting spins on different sublattices are
shown with different colors. While Fig. 10(a) corresponds to

0 5 10 15 20

SA(SA + 1)

E
S

le
ve

ls

entanglement gap

ToS levels

higher lying ES levels

(2SA + 1)2

levels

FIG. 9. (Color online) The expected structure of the entangle-
ment spectrum (ES) in the q = 0 magnetically ordered phase in the
J1-J2 Heisenberg model on the kagome lattice. ES levels are plotted
vs SA(SA + 1), with SA being the total spin in subsystem A. The
rhombi denote the ES levels displaying the tower-of-states structure.
The number of tower-of-states levels in each sector with fixed SA is
given as (2SA + 1)2. These are divided from the higher-lying levels
by an entanglement “gap.”

a straight cut, Fig. 10(b) has a zigzag structure. One should
observe that the straight cut crosses only B-C and A-B bonds,
whereas all three types of bonds (A-B, B-C, and A-C) are
crossed by the zigzag cut in Fig. 10(b). This suggests that
the straight cut might not capture the quantum correlations
between sublattices A and C. Notice that for the

√
3 × √

3
state, this is not the case as the straight cut would cross all
three different types of bonds. The difference between the two
cuts is reflected in the corresponding entanglement spectra.

The ES obtained using the straight cut [Fig. 10(a)] is
reported in Fig. 10(c). The ES levels are plotted versus
SA(SA + 1). Full symbols denote the lowest (2SA + 1)2 levels
in each spin sector. Strong deviations from the expected picture
in Fig. 9 are visible. In particular, no gap between the tower-
of-states levels and the rest of the spectrum is visible. Better
agreement with Fig. 9 is found using the zigzag cut, as is clear
from Fig. 10(d). For instance, the low-lying levels now show a
clear linear behavior with respect to SA(SA + 1). Moreover, in
the SA = 0 and SA = 1 sectors, the tower-of-states levels are
well separated from higher-lying levels by an entanglement
gap, although this becomes smaller for SA = 2, when the
low-lying levels start mixing with the rest of the spectrum.
Finally, we should mention that despite the numerical evidence
in Fig. 10, within the available system sizes, we cannot exclude
that the difference between the ES in Figs. 10(c) and 10(d)
disappears considering larger cylinders.

VIII. CONCLUSION

We performed an extensive DMRG study of the ground-
state phase diagram of the J1-J2 Heisenberg model on kagome
cylinders. We restricted ourselves to J1 = 1, considering both
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FIG. 10. (Color online) Spin-resolved entanglement spectra obtained from the ground-state wave function of the J1-J2 Heisenberg model
on the kagome lattice at J2 = 1.0. Data are for a cylinder with 4 × 12 unit cells. (a),(b) Schematic representation of the q = 0 state on the
kagome lattice. A, B, and C denote the three ferromagnetic sublattices. Bonds connecting spins in different sublattices are shown with different
colors. The black dashed line marks the cut defining the bipartition used to calculate the entanglement spectrum. Two possible cuts are shown:
(a) The cut crosses only A-B and B-C bonds, (b) the cut crosses A-B, B-C, and A-C bonds. (c),(d) The entanglement spectra obtained from
the bipartitions shown in (a) and (b), plotted vs SA(SA + 1), with SA being the total spin in subsystem A. Each symbol corresponds to a 2SA + 1
degenerate multiplet of levels. The red symbols denote the lowest (2SA + 1)2 levels. Notice that deviations from the expected tower-of-states
structure (cf. Fig. 9) are large using the bipartition shown in (a).

antiferromagnetic and ferromagnetic J2. In particular, we
investigated the behavior of the model around the pure kagome
point at J2 = 0. To this purpose, we monitored the behavior of
the spin triplet gap, the static structure factor, and the magnetic
correlation length, as a function of J2. We should remark
that our results are based on finite-size cylinders. Strong
finite-size effects do not allow us to provide conclusive results
about the phase diagram of the model in the thermodynamic
limit.

By comparing the finite-size behaviors of the spin gap,
the structure factor, and the correlation lengths, we found
numerical evidence suggesting that the ground state of the
model displays magnetic order for J2 � −0.1 and J2 � 0.2.
Precisely, for J2 � −0.1, the structure factor exhibits sharp
peaks at the K points of the extended Brillouin zone, in
agreement with what is expected for the classical

√
3 × √

3
state, whereas at J2 � 0.2, one observes peaks at the M

points, which signal the q = 0 magnetic pattern. In both
cases, the correlation lengths associated with the two structures
show a rapid increase upon increasing |J2| and the system
size. Correspondingly, the triplet gap decreases, suggesting
a vanishing gap in the thermodynamic limit. Within the
system sizes accessible to the simulations, our results are
consistent with the presence of a magnetically disordered
phase for −0.1 � J2 � 0.2, which is compatible with spin-
liquid behavior [31]. In this region, the spin gap shows a
weaker dependence on the cylinder size. Moreover, the DMRG
data support a finite gap for infinitely long cylinders. The
static structure factor is featureless at the J2 = 0 point, and
it exhibits not very pronounced structures in the whole region
−0.1 � J2 � 0.2. The magnetic correlation lengths associated
with the

√
3 × √

3 and the q = 0 order are of the order of the
lattice unit.

As a final point, we investigated the structure of the ground-
state entanglement spectrum (ES) in the q = 0 ordered phase.
We found that the identification of the tower-of-states structure,
which is associated with the SU(2) symmetry breaking in the
thermodynamic limit, depends dramatically on the choice of

the spatial bipartition of the state, at least for small system
sizes.

Recently, we became aware of two related works. In
Ref. [58], a DMRG study of the phase diagram of the J1-J2-J3

Heisenberg model on the kagome lattice is performed, and in
Ref. [59], the phase diagram of the J1-J2 Heisenberg model on
the kagome lattice is studied with a variational Monte Carlo
method. The results of both works are in qualitative agreement
with the ones reported in this paper.
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FIG. 11. (Color online) The static spin structure factor S(q) ob-
tained from ground-state DMRG simulations of the J1-J2 Heisenberg
model (a) on kagome cylinders with integer number of 3 × 12 unit
cells and (b) on small tori with 3 × 3 unit cells for different values
of J2. The solid and the dotted lines show the first and the extended
Brillouin zones, respectively. The spin correlations are qualitatively
the same as in Fig. 3 for all J2 values and boundary conditions.
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APPENDIX: INDEPENDENCE ON
BOUNDARY CONDITIONS

In this work, we used a lattice geometry with a noninteger
number of unit cells (cf. Fig. 2). Here we show that this
does not affect the phase diagram presented in Fig. 3. We
also investigate the effect of boundary conditions, discussing
the structure factor for the J1-J2 Heisenberg model on

kagome tori. In Fig. 11, we present the static spin structure
factors for lattices with an integer number of unit cells at
J2 = −0.2,0.0,0.4, as well as for fully periodic small tori at
J2 = −0.1,0.0,0.4. For all of the lattice geometries, we find
antiferromagnetic correlations corresponding to the

√
3 × √

3
state at J2 = −0.2 and J2 = −0.1, and antiferromagnetic
correlations corresponding to the q = 0 state at J2 = 0.4. At
J2 = 0.0, the structure factor for the cylinder geometry with
integer number of unit cells is structureless, while for the small
torus, the structure factor shows slightly enhanced correlations
at the K points of the extended Brillouin zone.
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V. Alba, Phys. Rev. B 88, 144426 (2013).
[55] A. W. Sandvik, AIP Conf. Proc. 1297, 135 (2010).
[56] A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).
[57] A. W. Sandvik, Phys. Rev. B 85, 134407 (2012).
[58] S.-S. Gong, W. Zhu, L. Balents, and D. N. Sheng, Phys. Rev. B

91, 075112 (2015).
[59] Y. Iqbal, D. Poilblanc, and F. Becca, Phys. Rev. B 91, 020402

(2015).

104418-8

http://dx.doi.org/10.1103/PhysRevB.42.8436
http://dx.doi.org/10.1103/PhysRevB.42.8436
http://dx.doi.org/10.1103/PhysRevB.42.8436
http://dx.doi.org/10.1103/PhysRevB.42.8436
http://dx.doi.org/10.1063/1.347830
http://dx.doi.org/10.1063/1.347830
http://dx.doi.org/10.1063/1.347830
http://dx.doi.org/10.1063/1.347830
http://dx.doi.org/10.1103/PhysRevB.63.014413
http://dx.doi.org/10.1103/PhysRevB.63.014413
http://dx.doi.org/10.1103/PhysRevB.63.014413
http://dx.doi.org/10.1103/PhysRevB.63.014413
http://dx.doi.org/10.1103/PhysRevB.68.214415
http://dx.doi.org/10.1103/PhysRevB.68.214415
http://dx.doi.org/10.1103/PhysRevB.68.214415
http://dx.doi.org/10.1103/PhysRevB.68.214415
http://dx.doi.org/10.1103/PhysRevB.76.180407
http://dx.doi.org/10.1103/PhysRevB.76.180407
http://dx.doi.org/10.1103/PhysRevB.76.180407
http://dx.doi.org/10.1103/PhysRevB.76.180407
http://dx.doi.org/10.1103/PhysRevB.77.144415
http://dx.doi.org/10.1103/PhysRevB.77.144415
http://dx.doi.org/10.1103/PhysRevB.77.144415
http://dx.doi.org/10.1103/PhysRevB.77.144415
http://dx.doi.org/10.1088/1367-2630/14/11/115031
http://dx.doi.org/10.1088/1367-2630/14/11/115031
http://dx.doi.org/10.1088/1367-2630/14/11/115031
http://dx.doi.org/10.1088/1367-2630/14/11/115031
http://dx.doi.org/10.1103/PhysRevB.39.11879
http://dx.doi.org/10.1103/PhysRevB.39.11879
http://dx.doi.org/10.1103/PhysRevB.39.11879
http://dx.doi.org/10.1103/PhysRevB.39.11879
http://dx.doi.org/10.1103/PhysRevB.45.12377
http://dx.doi.org/10.1103/PhysRevB.45.12377
http://dx.doi.org/10.1103/PhysRevB.45.12377
http://dx.doi.org/10.1103/PhysRevB.45.12377
http://dx.doi.org/10.1103/PhysRevLett.70.2641
http://dx.doi.org/10.1103/PhysRevLett.70.2641
http://dx.doi.org/10.1103/PhysRevLett.70.2641
http://dx.doi.org/10.1103/PhysRevLett.70.2641
http://dx.doi.org/10.1103/PhysRevLett.89.137202
http://dx.doi.org/10.1103/PhysRevLett.89.137202
http://dx.doi.org/10.1103/PhysRevLett.89.137202
http://dx.doi.org/10.1103/PhysRevLett.89.137202
http://dx.doi.org/10.1103/PhysRevB.74.174423
http://dx.doi.org/10.1103/PhysRevB.74.174423
http://dx.doi.org/10.1103/PhysRevB.74.174423
http://dx.doi.org/10.1103/PhysRevB.74.174423
http://dx.doi.org/10.1103/PhysRevB.75.184406
http://dx.doi.org/10.1103/PhysRevB.75.184406
http://dx.doi.org/10.1103/PhysRevB.75.184406
http://dx.doi.org/10.1103/PhysRevB.75.184406
http://dx.doi.org/10.1103/PhysRevLett.98.117205
http://dx.doi.org/10.1103/PhysRevLett.98.117205
http://dx.doi.org/10.1103/PhysRevLett.98.117205
http://dx.doi.org/10.1103/PhysRevLett.98.117205
http://dx.doi.org/10.1103/PhysRevB.77.224413
http://dx.doi.org/10.1103/PhysRevB.77.224413
http://dx.doi.org/10.1103/PhysRevB.77.224413
http://dx.doi.org/10.1103/PhysRevB.77.224413
http://dx.doi.org/10.1103/PhysRevLett.101.117203
http://dx.doi.org/10.1103/PhysRevLett.101.117203
http://dx.doi.org/10.1103/PhysRevLett.101.117203
http://dx.doi.org/10.1103/PhysRevLett.101.117203
http://dx.doi.org/10.1103/PhysRevB.84.020407
http://dx.doi.org/10.1103/PhysRevB.84.020407
http://dx.doi.org/10.1103/PhysRevB.84.020407
http://dx.doi.org/10.1103/PhysRevB.84.020407
http://dx.doi.org/10.1103/PhysRevB.83.224413
http://dx.doi.org/10.1103/PhysRevB.83.224413
http://dx.doi.org/10.1103/PhysRevB.83.224413
http://dx.doi.org/10.1103/PhysRevB.83.224413
http://dx.doi.org/10.1103/PhysRevB.84.094419
http://dx.doi.org/10.1103/PhysRevB.84.094419
http://dx.doi.org/10.1103/PhysRevB.84.094419
http://dx.doi.org/10.1103/PhysRevB.84.094419
http://dx.doi.org/10.1103/PhysRevLett.108.207204
http://dx.doi.org/10.1103/PhysRevLett.108.207204
http://dx.doi.org/10.1103/PhysRevLett.108.207204
http://dx.doi.org/10.1103/PhysRevLett.108.207204
http://dx.doi.org/10.1103/PhysRevLett.112.137202
http://dx.doi.org/10.1103/PhysRevLett.112.137202
http://dx.doi.org/10.1103/PhysRevLett.112.137202
http://dx.doi.org/10.1103/PhysRevLett.112.137202
http://dx.doi.org/10.1103/PhysRevB.89.075110
http://dx.doi.org/10.1103/PhysRevB.89.075110
http://dx.doi.org/10.1103/PhysRevB.89.075110
http://dx.doi.org/10.1103/PhysRevB.89.075110
http://dx.doi.org/10.1038/srep06317
http://dx.doi.org/10.1038/srep06317
http://dx.doi.org/10.1038/srep06317
http://dx.doi.org/10.1038/srep06317
http://arxiv.org/abs/arXiv:1410.4883
http://dx.doi.org/10.1038/ncomms6137
http://dx.doi.org/10.1038/ncomms6137
http://dx.doi.org/10.1038/ncomms6137
http://dx.doi.org/10.1038/ncomms6137
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1126/science.1201080
http://dx.doi.org/10.1126/science.1201080
http://dx.doi.org/10.1126/science.1201080
http://dx.doi.org/10.1126/science.1201080
http://dx.doi.org/10.1103/PhysRevLett.109.067201
http://dx.doi.org/10.1103/PhysRevLett.109.067201
http://dx.doi.org/10.1103/PhysRevLett.109.067201
http://dx.doi.org/10.1103/PhysRevLett.109.067201
http://dx.doi.org/10.1038/nphys2465
http://dx.doi.org/10.1038/nphys2465
http://dx.doi.org/10.1038/nphys2465
http://dx.doi.org/10.1038/nphys2465
http://dx.doi.org/10.1016/j.aop.2004.01.006
http://dx.doi.org/10.1016/j.aop.2004.01.006
http://dx.doi.org/10.1016/j.aop.2004.01.006
http://dx.doi.org/10.1016/j.aop.2004.01.006
http://dx.doi.org/10.1103/PhysRevB.71.045110
http://dx.doi.org/10.1103/PhysRevB.71.045110
http://dx.doi.org/10.1103/PhysRevB.71.045110
http://dx.doi.org/10.1103/PhysRevB.71.045110
http://dx.doi.org/10.1103/PhysRevB.86.014404
http://dx.doi.org/10.1103/PhysRevB.86.014404
http://dx.doi.org/10.1103/PhysRevB.86.014404
http://dx.doi.org/10.1103/PhysRevB.86.014404
http://dx.doi.org/10.1103/PhysRevB.86.115108
http://dx.doi.org/10.1103/PhysRevB.86.115108
http://dx.doi.org/10.1103/PhysRevB.86.115108
http://dx.doi.org/10.1103/PhysRevB.86.115108
http://dx.doi.org/10.1103/PhysRevLett.114.037201
http://dx.doi.org/10.1103/PhysRevLett.114.037201
http://dx.doi.org/10.1103/PhysRevLett.114.037201
http://dx.doi.org/10.1103/PhysRevLett.114.037201
http://arxiv.org/abs/arXiv:1406.6364
http://dx.doi.org/10.1103/PhysRevB.90.195148
http://dx.doi.org/10.1103/PhysRevB.90.195148
http://dx.doi.org/10.1103/PhysRevB.90.195148
http://dx.doi.org/10.1103/PhysRevB.90.195148
http://dx.doi.org/10.1103/PhysRevB.90.115129
http://dx.doi.org/10.1103/PhysRevB.90.115129
http://dx.doi.org/10.1103/PhysRevB.90.115129
http://dx.doi.org/10.1103/PhysRevB.90.115129
http://dx.doi.org/10.1103/PhysRevLett.114.077201
http://dx.doi.org/10.1103/PhysRevLett.114.077201
http://dx.doi.org/10.1103/PhysRevLett.114.077201
http://dx.doi.org/10.1103/PhysRevLett.114.077201
http://dx.doi.org/10.1103/PhysRevLett.68.855
http://dx.doi.org/10.1103/PhysRevLett.68.855
http://dx.doi.org/10.1103/PhysRevLett.68.855
http://dx.doi.org/10.1103/PhysRevLett.68.855
http://dx.doi.org/10.1103/PhysRevB.45.7536
http://dx.doi.org/10.1103/PhysRevB.45.7536
http://dx.doi.org/10.1103/PhysRevB.45.7536
http://dx.doi.org/10.1103/PhysRevB.45.7536
http://dx.doi.org/10.1103/PhysRevB.47.15342
http://dx.doi.org/10.1103/PhysRevB.47.15342
http://dx.doi.org/10.1103/PhysRevB.47.15342
http://dx.doi.org/10.1103/PhysRevB.47.15342
http://dx.doi.org/10.1103/PhysRevB.83.184401
http://dx.doi.org/10.1103/PhysRevB.83.184401
http://dx.doi.org/10.1103/PhysRevB.83.184401
http://dx.doi.org/10.1103/PhysRevB.83.184401
http://dx.doi.org/10.1103/PhysRevB.84.020413
http://dx.doi.org/10.1103/PhysRevB.84.020413
http://dx.doi.org/10.1103/PhysRevB.84.020413
http://dx.doi.org/10.1103/PhysRevB.84.020413
http://dx.doi.org/10.1103/PhysRevB.86.054440
http://dx.doi.org/10.1103/PhysRevB.86.054440
http://dx.doi.org/10.1103/PhysRevB.86.054440
http://dx.doi.org/10.1103/PhysRevB.86.054440
http://dx.doi.org/10.1103/PhysRevLett.110.077201
http://dx.doi.org/10.1103/PhysRevLett.110.077201
http://dx.doi.org/10.1103/PhysRevLett.110.077201
http://dx.doi.org/10.1103/PhysRevLett.110.077201
http://dx.doi.org/10.1103/PhysRevB.45.2899
http://dx.doi.org/10.1103/PhysRevB.45.2899
http://dx.doi.org/10.1103/PhysRevB.45.2899
http://dx.doi.org/10.1103/PhysRevB.45.2899
http://dx.doi.org/10.1103/PhysRevB.56.2521
http://dx.doi.org/10.1103/PhysRevB.56.2521
http://dx.doi.org/10.1103/PhysRevB.56.2521
http://dx.doi.org/10.1103/PhysRevB.56.2521
http://dx.doi.org/10.1103/PhysRevB.89.020408
http://dx.doi.org/10.1103/PhysRevB.89.020408
http://dx.doi.org/10.1103/PhysRevB.89.020408
http://dx.doi.org/10.1103/PhysRevB.89.020408
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://arxiv.org/abs/arXiv:1112.5166
http://dx.doi.org/10.1103/PhysRevLett.110.260403
http://dx.doi.org/10.1103/PhysRevLett.110.260403
http://dx.doi.org/10.1103/PhysRevLett.110.260403
http://dx.doi.org/10.1103/PhysRevLett.110.260403
http://dx.doi.org/10.1103/PhysRevB.88.144426
http://dx.doi.org/10.1103/PhysRevB.88.144426
http://dx.doi.org/10.1103/PhysRevB.88.144426
http://dx.doi.org/10.1103/PhysRevB.88.144426
http://dx.doi.org/10.1063/1.3518900
http://dx.doi.org/10.1063/1.3518900
http://dx.doi.org/10.1063/1.3518900
http://dx.doi.org/10.1063/1.3518900
http://dx.doi.org/10.1016/S0370-1573(02)00219-3
http://dx.doi.org/10.1016/S0370-1573(02)00219-3
http://dx.doi.org/10.1016/S0370-1573(02)00219-3
http://dx.doi.org/10.1016/S0370-1573(02)00219-3
http://dx.doi.org/10.1103/PhysRevB.85.134407
http://dx.doi.org/10.1103/PhysRevB.85.134407
http://dx.doi.org/10.1103/PhysRevB.85.134407
http://dx.doi.org/10.1103/PhysRevB.85.134407
http://dx.doi.org/10.1103/PhysRevB.91.075112
http://dx.doi.org/10.1103/PhysRevB.91.075112
http://dx.doi.org/10.1103/PhysRevB.91.075112
http://dx.doi.org/10.1103/PhysRevB.91.075112
http://dx.doi.org/10.1103/PhysRevB.91.020402
http://dx.doi.org/10.1103/PhysRevB.91.020402
http://dx.doi.org/10.1103/PhysRevB.91.020402
http://dx.doi.org/10.1103/PhysRevB.91.020402



