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Abstract 

In most mammals, extended inactivity or immobilisation of skeletal muscle (e.g. bed-

rest, limb-casting or hindlimb unloading) results in muscle disuse atrophy, a process which is 

characterised by the loss of skeletal muscle mass and function. In stark contrast, animals that 

experience natural bouts of prolonged muscle inactivity, such as hibernating mammals and 

aestivating frogs, consistently exhibit limited or no change in either skeletal muscle size or 

contractile performance. While many of the factors regulating skeletal muscle mass are 

known, little information exists as to what mechanisms protect against muscle atrophy in 

some species.  

Green-striped burrowing frogs (Cyclorana alboguttata) survive in arid environments 

by burrowing underground and entering into a deep, prolonged metabolic depression known 

as aestivation. Throughout aestivation, C. alboguttata is immobilised within a cast-like 

cocoon of shed skin and ceases feeding and moving. Remarkably, these frogs exhibit very 

little muscle atrophy despite extended disuse and fasting. The overall aim of the current 

research study was to gain a better understanding of the physiological, cellular and molecular 

basis underlying resistance to muscle disuse atrophy in C. alboguttata.  

The first aim of this study was to develop a genomic resource for C. alboguttata by 

sequencing and functionally characterising its skeletal muscle transcriptome, and to conduct 

gene expression profiling to identify transcriptional pathways associated with metabolic 

depression and maintenance of muscle function in aestivating burrowing frogs. A 

transcriptome was assembled using next-generation short read sequencing followed by a 

comparison of gene expression patterns between active and four-month aestivating C. 

alboguttata. This identified a complex suite of gene expression changes that occur in muscle 

during aestivation and provides evidence that aestivation in burrowing frogs involves 

transcriptional regulation of genes associated with cytoskeletal remodelling, avoidance of 

oxidative stress, energy metabolism, the cell stress response, cell death and survival and 

epigenetic modification. In particular, the expression levels of genes encoding cell cycle 

regulatory-, pro-survival and chromatin remodelling proteins, such as serine/threonine-protein 

kinase Chk1, cell division protein kinase 2, survivin, vesicular overexpressed in cancer 

prosurvival protein 1 and histone-binding protein RBBP4, were upregulated in aestivators.  

The second aim of this study was to examine the potential role of mitochondrial ROS 

in the regulation of muscle mass and function during aestivation in C. alboguttata. In 
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mammals, muscle disuse atrophy has been associated with oxidative damage due to increased 

mitochondrial ROS production. C. alboguttata reduced skeletal muscle mitochondrial 

respiration by approximately 50% following four months of aestivation, while mitochondrial 

ROS production was more than 80% lower in aestivating skeletal muscle relative to controls 

when mitochondrial substrates were present at physiologically-relevant concentrations. In 

contrast to skeletal muscle, cardiac muscle of aestivating frogs must remain relatively active 

to still maintain adequate perfusion of organs. Aestivating frogs maintained cardiac 

mitochondrial respiration and ROS production at levels similar to those of control animals. 

 Accelerated protein degradation in mammalian skeletal muscle has been linked to 

increased mitochondrial ROS production and oxidative stress. When ROS are in excess, a 

number of proteolytic pathways appear to play a pivotal role in the development of atrophy in 

inactive muscle fibres including the cytosolic calcium-dependent calpains. The aim of the 

final chapter was to determine if aestivating C. alboguttata are able to resist disuse-induced 

atrophy as a consequence of the downregulation of calpain proteases in skeletal muscle. The 

enzyme activity, protein abundance and gene expression levels of calpain isoforms were 

examined in skeletal muscle of aestivating and control C. alboguttata. There was no decrease 

in the protein abundances of calpain 1 or calpain 2 in aestivating C. alboguttata muscle 

relative to controls. Similarly, gene expression and enzyme activity levels of calpain 1 and 2 

were unaffected by aestivation. The protein abundance of ‘muscle-specific’ calpain 3, which 

is consistently downregulated during atrophic conditions, was also examined in aestivating 

muscle. Western blotting indicated that calpain 3 may be autolysed (and hence activated) in 

skeletal muscle of both active and aestivating frogs.  

Results from the current study suggest that the relative inhibition of muscle atrophy in 

aestivating C. alboguttata is multifactorial in origin. ATP-dependent chromatin remodelling 

appears to be an important mechanism to actively regulate gene expression throughout 

aestivation, while elevated expression of anti-apoptotic genes is likely to be critical in 

preventing premature apoptotic muscle fibre degradation. In addition, decreased rates of 

skeletal muscle mitochondrial respiration during aestivation allows energy savings to be 

maximised. Low levels of hydrogen peroxide production suggests that ROS can be 

suppressed in immobilised skeletal muscles of aestivating frogs, which in combination with 

bolstering antioxidant defences may protect against potential oxidative stress and preserve 

skeletal muscle structure during aestivation and during arousal. While it is difficult to 
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determine the specific function of calpain 3 in C. alboguttata muscle, the maintenance (rather 

than an increase) of pre-aestivation enzyme activity, protein and mRNA abundances of 

calpains is consistent with the protection of muscle against uncontrolled proteolysis 

throughout aestivation. 
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Chapter 1 

General Introduction  

 

Basic skeletal muscle physiology and anatomy 

Animal movement is dependent on the activity of voluntary skeletal muscle. Skeletal muscle 

is comprised of individual myocytes, otherwise known as ‘muscle fibres’ or myofibres. 

Muscle fibres are in turn composed of a large number of myofibrils, which vary in size (thick 

or thin filaments) but average about 1 µm in diameter, making up approximately 80% of the 

volume of a muscle fibre (Jones, 2004). Myofibrils largely consist of two contractile proteins, 

actin and myosin, which are repeated as a string of sarcomeres, the basic functional unit of 

muscle fibres (Jones, 2004). Actin and myosin constitute a large portion of the total protein in 

skeletal muscle, and their highly ordered arrangement in muscle fibres allows the controlled 

production of force and movement.  

 Muscle contraction is dependent upon a neural activation signal in a process known as 

excitation-contraction coupling (Lieber, 2010). Peripheral nerves at neuromuscular junctions 

contain packets of the neurotransmitter acetylcholine, which when released causes muscle 

fibre excitation. When fibres are stimulated, calcium ions bind to troponin, an actin regulatory 

protein, allowing interaction between actin and myosin. Muscle contraction takes place when 

myosin heads bond to actin and rotate to draw the thick and thin filaments past one another, 

and thus force generation and movement (Lieber, 2010). Muscle force is proportional to 

cross-sectional area of the muscle, and the speed at which muscle contracts is proportional to 

muscle fibre length.  

Mammalian skeletal muscle fibres can be broadly divided into three main categories: 

fast glycolytic fibres, fast oxidative fibres, and slow oxidative fibres (Table 1.1). Generally, 

slow oxidative fibres use oxygen more efficiently to produce ATP for continuous muscle 

contraction over prolonged periods, whereas fast glycolytic fibres contract very quickly and 

with great force in the absence of oxygen (Lieber, 2010). Fast oxidative fibres are a 

combination of slow oxidative and fast glycolytic fibres and use both aerobic and anaerobic 

metabolism to generate ATP.  
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Table 1.1 Characteristics of each of the three categories of slow and fast muscle fibre 

types  

Fibre type 

designation 

Characteristics Number of 

mitochondria 

Myosin 

ATPase 

Activity 

SDH 

Activity 

α–GPDH 

Activity 

Slow oxidative Contract and 

fatigue slowest, 

with least force 

High Low High Low 

Fast glycolytic Contract and 

fatigue fast, with 

great force 

Low High Low High 

Fast oxidative Contract 

moderately fast, 

fatigue slowly 

High High High High 

*Myosin ATPase activity is used to distinguish between fast- and slow-contracting muscle fibres; succinate 

dehydrogenase (SDH) activity is used to differentiate between oxidative and non-oxidative fibres; α-

glycerophosphate dehydrogenase (α-GPDH) is used to distinguish among fibres based on their relative glycolytic 

potential. Table modified from (Lieber, 2010; Mantle, 2007).   

 

 Like mammalian muscle, early studies categorised amphibian muscles into different 

fibre types, each with distinct contractile properties (see Gans and de Gueldre, 1992 for a 

review). The motor units (i.e. motor neuron and its innervated fibre) of amphibian hindlimb 

muscle are generally referred to as being ‘twitch’ (phasic, fast) or ‘tonic’ (slow). Frogs 

usually have four or five different categories of muscle fibres, comprised of three twitch 

(Types 1, 2, and 3) and one or two tonic (Types 4 and 5) types. The proportions of twitch and 

tonic fibres differ among the skeletal muscles of amphibians with distinctions in physiological 

properties having also been documented between the fibre types (e.g. contraction velocities). 

Studies of Rana and Xenopus fibre types indicated that Type 1 myofibres exhibit the lowest 

oxidative activity (inferred from succinate dehydrogenase (SDH) staining) whereas Type 3 

has the highest SDH activity. Furthermore, twitch Types 2 and 3 exhibited higher glycolytic 

activity than did Type 1 myofibres whereas tonic fibres showed low oxidative and glycolytic 

potential. The characterisation of amphibian muscle fibre types are roughly similar to the 

twitch type muscles of mammals (e.g. fast (Type II) and slow (Type I)). However, there are 

important differences between mammalian and frog fibres, such as the rarity of tonic fibres in 

mammals compared with anurans. Nevertheless, in the majority of hindlimb muscles of a 



3 

 

number of frog species, more than 80% of the muscle cross section is comprised of large 

twitch fibres, whereas tonic fibres rarely make up more than 10%. A recent comparison of 

hindlimb muscles of frogs with different locomotory behaviours suggested that the range of 

functional diversity within fibre types might be very broad, so that different species or 

muscles may achieve different functions using exactly the same fibre types (Crockett and 

Peters, 2008). 

  

Muscle disuse atrophy 

Skeletal muscle is one of the most plastic (i.e. changeable) tissues in an animal. Many 

structural aspects of skeletal muscle tissue have been shown to demonstrate plasticity, 

including fibre type distribution, fibre diameter, tendon length, mitochondrial distribution and 

myosin heavy chain profile (Lieber, 2010). The size of skeletal muscle is dependent on the 

pattern of muscular activity. Increased work by a muscle can lead to a large increase in size, 

such as during compensatory hypertrophy. In rodents, if the workload on a particular muscle 

is suddenly increased by surgical intervention on a synergistic muscle, the wet and dry mass 

of the loaded muscle may increase by 30-50% in less than a week (Goldberg, 1967). In 

contrast, long periods of disuse, such as lack of physical exercise, cast immobilisation, 

removal of weight bearing (unloading) or extended bed-rest lead to degenerative changes in 

skeletal muscle and the atrophy or ‘wasting’ of muscle tissue (Bloomfield, 1997; Musacchia 

et al., 1988). On a gross level these changes culminate in a loss of muscle mass and a 

reduction in the cross-sectional area of muscle fibres. Because the force production of muscle 

is related to its fibre cross-sectional area, atrophied muscles exhibit both decreased force 

production and fatigue resistance (Bruce et al., 1997). The degree of muscle disuse atrophy is 

variable and dependent on several factors such as age, physiological function of the muscle, 

the extent of unloading/inactivity, and muscle fibre type composition (Bodine, 2013a). For 

example, in dog quadriceps muscles immobilised for ten weeks, the magnitude of atrophy of 

distinct fibre types was shown to be muscle-specific (Lieber et al., 1988). Muscle types that 

are most susceptible to disuse atrophy include leg and postural muscles that are composed of 

a relatively large proportion of slow oxidative muscle fibres and cross a single joint (e.g. the 

soleus) (Leblanc et al., 1992; Lieber et al., 1988). In contrast, muscles least vulnerable to 

atrophy are those that are not used as postural muscles (i.e. phasic), that cross multiple joints 

and that are predominantly composed of fast fibres (e.g. extensor digitorum longus) (Lieber et 

al., 1988; Loughna et al., 1986).  
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The physiological stimuli that initiates muscle disuse atrophy includes an absence of 

weight bearing on muscle (unloading) combined with an absence of muscle contraction. The 

effects of prolonged muscle disuse appear to be common to the majority of vertebrates 

studied, and both human and laboratory animal models have been used to examine the 

physiology and mechanisms underpinning muscle disuse atrophy (Bodine, 2013a; Hudson 

and Franklin, 2002b; Powers et al., 2011). For example, human models of extended bed rest, 

limb immobilisation (casting) and unilateral lower limb suspension (e.g. immobilising a leg 

and using crutches to walk) studies have been performed to study disuse-induced skeletal 

muscle atrophy in humans (Brocca et al., 2012; Chen et al., 2007; Dalla Libera et al., 2009; 

Hather et al., 1992). Often these studies are complicated because of the invasive nature of 

muscle biopsy sampling, and as a result several rodent models have been designed to mimic 

the different forms of human muscle disuse atrophy. Mouse and rat models of limb 

immobilisation have been used to study the effect of muscle disuse on muscle fibre properties 

and cell signalling pathways (Sakakima et al., 2004; Talbert et al., 2013a; Vazeille et al., 

2008) whereas a tail suspension protocol, which effectively unloads hindlimb muscles of 

rodents, is usually employed to mimic human skeletal muscle atrophy that results from 

prolonged bed rest or microgravity (Alford et al., 1987; Leeuwenburgh et al., 2005). 

Comparative studies of muscle disuse atrophy in humans and rodents indicates that while 

there are many similarities, the major difference that has been observed is the rate of atrophy, 

with the loss of muscle mass in rodents occurring much more rapidly than in humans (Phillips 

et al., 2009).  

Apart from a reduction in cross-sectional area, atrophied muscle fibres as a result of 

disuse exhibit other structural changes including sarcomere dissolution and an increase in 

connective tissues around the muscle fibres (Lieber et al., 1988; Oki et al., 1995). Metabolic 

alterations that occur during muscle disuse atrophy include decreased capacity for fatty acid 

metabolism and a greater reliance on glucose as an energy source, while lipid appears to 

accumulate in disused muscle regardless of whether test subjects are in a positive or negative 

energy state (Stein and Wade, 2005). The maintenance of skeletal muscle mass is dependent 

on the balance between the rates of both protein synthesis and degradation.  In rodents, it has 

been well established that muscle disuse due to an absence of weight bearing leads to an early 

reduction in protein synthesis rates and an increase in the rate of protein degradation 

(Goldspink et al., 1986; Loughna et al., 1986; Thomason et al., 1989). However, there is 

continued debate as to the importance of protein degradation in human studies of muscle 
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disuse atrophy. It has been suggested that during muscle disuse the major process that 

changes leading to the loss of muscle mass is protein synthesis, with no elevation in the extent 

of protein degradation (Phillips et al., 2009). However, others have demonstrated an increase 

in the abundance of mRNA for proteases of the ubiquitin-proteasome system (UPS) (Jones et 

al., 2004), which has been associated with muscle atrophy in various clinical settings (Price, 

2003). Despite the apparent disparities among experimental disuse models, clearly there is an 

apparent shift in the balance of protein synthesis and/or degradation so that there is a net loss 

of muscle proteins.   

Although there is a decrease in total muscle protein during muscle disuse atrophy, less 

is known about the initiating triggers or the signalling proteins underlying the net loss of 

muscle protein during the atrophic process. Thus, the molecular and cellular pathways 

regulating muscle loss during disuse remain an active area of research.  

 

Molecular and cellular mechanisms involved in muscle disuse atrophy 

An array of triggers and signals are hypothesised to be important in the events leading 

to muscle disuse atrophy (Bodine, 2013a; Jackman and Kandarian, 2004; Pellegrino et al., 

2011; Powers et al., 2011). Numerous protein degradation pathways contribute to the 

proteolysis of muscle proteins, and evidence suggests that interactions among major protein 

degradation pathways (ubiquitin-proteasome system, Ca2+-dependent proteases (calpains), the 

autophagy-lysosome system and cysteine-aspartic proteases (caspases)) are involved in 

proteolysis during disuse atrophy (Talbert et al., 2013b). Reactive oxygen species (ROS) have 

been implicated as potential triggers leading to skeletal muscle atrophy under various disuse 

conditions (Jackman and Kandarian, 2004; Powers et al., 2011), while gene expression 

profiling of disused muscle has demonstrated both increases and decreases of numerous genes 

over time, indicating that a complex suite of biochemical changes act simultaneously to 

induce muscle atrophy (Chen et al., 2007; Stevenson et al., 2003). For example, genes 

encoding myostatin and insulin-like growth factor 1 (IGF-1) (important mediators of muscle 

growth and size in adult mammals) have been shown to change during prolonged muscle 

disuse (Awede et al., 1999; Reardon et al., 2001; Wehling et al., 2000), but their relative 

contributions to disuse-induced muscle atrophy remain poorly defined. The following sections 

provide a summary of the molecular triggers and signals hypothesised to play prominent roles 

in muscle disuse atrophy.  
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Reactive oxygen species and oxidative damage 

A large body of evidence suggests that ROS and oxidative stress are important in the 

events leading to muscle disuse atrophy (Powers et al., 2011). ROS or ‘free radicals’ refers to 

a number of chemically reactive species that are generated during normal aerobic metabolism, 

namely superoxide anion (O2¯), hydrogen peroxide (H2O2) and hydroxyl radicals (˙OH). The 

mitochondrion is known to be a major site of ROS production (Figure 1.1). Specifically, the 

electron transport chain (ETC) within mitochondria comprises a series of enzymes or 

complexes which participate in electron transfer via oxidation-reduction reactions. The final 

step of the ETC usually involves the reduction of oxygen to water; however, a small 

proportion of electrons leak out of the pathway to directly produce O2¯ (Turrens, 2003). 

Within the ETC, respiratory complex I (NADH: ubiquinone oxidoreductase) and respiratory 

complex III (cytochrome bc1) are deemed the two most significant sources of O2¯ production 

(Turrens, 2003). Although O2¯ is not in itself a powerful oxidant, it is the antecedent of other 

major ROS (H2O2, ˙OH) and is involved in the production of oxidative chain reactions 

(Turrens, 2003). Whereas minor fluctuations in ROS levels can promote positive intracellular 

signalling and regulate physiological processes (Barbieri and Sestili, 2012), large increases in 

ROS concentrations can attack the structure and function of nucleic acids, lipids and proteins 

which may lead to cell injury or death. However, the harmful effects of excessive ROS 

production are, to a large extent, limited by numerous antioxidants (e.g. superoxide 

dismutases, glutathione peroxidase).  
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Figure 1.1. Premature electron (e-) leakage occurs when the rate of electron entry into the mitochondrial electron 

transport chain does not equal the rate of electron transfer through the chain. As a result, superoxide (O2¯) 

production increases at complexes I and III as ubiquinone (Q) donates an electron to oxygen (O2). The formation 

of O2¯ leads to production of hydroxyl free radical (˙OH) or alternatively undergoes dismutation (via superoxide 

dismutase) to form hydrogen peroxide (H2O2). H2O2 is in turn rendered harmless by the action of glutathione 

peroxidase by reducing it to water (H2O). 

 

The link between oxidative stress and muscle disuse atrophy was suggested following 

observations that prolonged bed rest in humans, and both hindlimb immobilisation and 

hindlimb unloading in rats results in increased levels of a number of markers of oxidative 

damage (e.g. thiobarbituric acid-reactive substances, (TBARS), dichlorohydrofluorescein 

diacetate (DCFH-DA) oxidation and protein carbonylation (Dalla Libera et al., 2009; Kondo 

et al., 1991; Lawler et al., 2003). Oxidative stress in skeletal muscle during disuse appears to 

be related to an imbalance in cellular antioxidant defence systems, including suppression of 

superoxide dismutases, antioxidant scavenger status and thioredoxin-related proteins (Brocca 

et al., 2012; Lawler et al., 2003; Matsushima et al., 2006). Prolonged periods of muscle disuse 

have also been reported to induce higher production of mitochondrial ROS (e.g. O2¯, H2O2) in 

skeletal muscle fibres (Min et al., 2011, Talbert et al., 2013, Xu et al., 2010). Thus, it appears 

that oxidative stress occurs when the production of harmful mitochondrial ROS overwhelms 

the antioxidant capacity of the cell, leading to oxidative injury and the fibre damage that is 

characteristic of muscle disuse atrophy. 
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Reactive oxygen species: key regulators of protein degradation pathways 

Several protein degradation pathways are active during atrophy in skeletal muscle, 

including: 1) the ubiquitin-proteasome system (UPS) 2) the Ca2+-dependent proteases 

(calpains) 3) the autophagy-lysosome system , and 4) caspase-3 (a protease involved in 

apoptosis) (Jackman and Kandarian, 2004; Powers et al., 2007). The relative importance of 

each system in the progression of muscle disuse atrophy continues to be debated. 

Nevertheless, the UPS and the calpains have received the most experimental attention. The 

highly conserved UPS tags proteins for degradation via the protein ubiquitin. The process of 

tagging a protein with ubiquitin (ubiquitylation) involves multiple, complex steps resulting in a 

polyubiquitin chain, which provides a recognition signal for the 26S proteasome to degrade 

the tagged protein (Myung et al., 2001). Studies have indicated that the UPS is the 

predominant proteolytic pathway during disuse-induced atrophy as the UPS catabolises most 

sarcomeric proteins (e.g. myosin, actin, troponin) (Mitch and Goldberg, 1996). However, the 

UPS is unable to degrade myofibrils or multicomponent complexes of actin and myosin due 

to specific interactions between these proteins within muscle sarcomeres (Solomon and 

Goldberg, 1996). Thus, the UPS might not be the rate-limiting step during muscle disuse 

atrophy because myofilament release may be required before the UPS can degrade both actin 

and myosin. It has been suggested that the calpain proteases might assist the UPS in this 

process. Calpains can catabolise several muscle structural proteins which could lead to the 

release of myofilaments making them accessible to the UPS (Talbert et al., 2013a).  

Calpains are proteolytic enzymes found in all vertebrate cells and function in diverse 

cellular processes including cytoskeletal organisation, proteolysis of cell cycle proteins, signal 

transduction and apoptosis (Goll et al., 2003). Calpains are activated by a sustained increase 

in cytosolic Ca2+ concentrations and/or deactivated by the endogenous calpain inhibitor, 

calpastatin (Bartoli and Richard, 2005). Of the many existing calpain isoforms, calpain-1 and 

calpain-2 (the ubiquitous calpains) are the best-characterised in skeletal muscle (Goll et al., 

2003). Emerging evidence suggests that the production of ROS appears to be a necessary 

signal for both the UPS and calpains to participate in protein degradation during muscle 

disuse atrophy.  

Exposure of mouse myoblasts to ROS (H2O2) has been shown to increase the activity 

and expression of major elements of the UPS, including proteasome subunits (20S 

proteasome), ubiquitin-conjugating enzymes (E2 proteins) and ubiquitin ligases (specifically, 

the ligases MAFbx/atrogin-1 and MuRF1, two ‘atrogenes’ which are consistently upregulated 
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in different muscle atrophy models) (Gomes-Marcondes and Tisdale, 2002; Li et al., 2003). 

More recently, one week of hindlimb-casting in rats was shown to increase mitochondrial 

emission of ROS and correlate with significant increases in the mRNA abundance of both 

MAFbx/atrogin-1 and MuRF1 (Talbert et al., 2013b). Importantly, the disuse-induced 

activation of both MAFbx/atrogin-1 and MuRF1 in skeletal muscle was inhibited by treatment 

with a mitochondrial-targeted antioxidant (SS-31), suggesting that activation of the UPS 

during immobilisation-induced atrophy requires mitochondrial ROS production. 

Evidence that calpains 1 and 2 are important contributors to skeletal muscle disuse 

atrophy is largely based on examinations of gene expression, protein abundance or enzyme 

activity (Enns et al., 2007; Haddad et al., 2003; Min et al., 2011; Taillandier et al., 1996). 

However, it has been demonstrated that overexpression of calpastatin in 10-day unloaded 

mouse skeletal muscle eliminates calpain activity and decreases muscle atrophy by 30%, 

confirming that calpains are involved in muscle disuse atrophy (Tidball and Spencer, 2002). 

With respect to ROS, in vitro oxidation of myofibrillar proteins has been shown to increase 

their susceptibility to degradation by both calpain-1 and calpain-2 (Smuder et al., 2010). 

Exposure of human skeletal muscle satellite cells to H2O2 has been shown to lead to calcium 

imbalance and an upregulation of calpain gene expression and activity (and subsequent 

protein oxidation and programmed cell death) (Dargelos et al., 2010), while H2O2-induced 

skeletal muscle myotube oxidative damage and atrophy was shown to be dependent upon 

calpain 1 expression (McClung et al., 2009). Recently, fourteen days of hindlimb 

immobilisation in rodents was shown to increase mitochondrial ROS production and calpain 1 

activation (Min et al., 2011). Similar to the study of Talbert et al. (Talbert et al., 2013b), 

application of SS-31 abolished the disuse-induced activation of skeletal muscle calpain 1. 

These recent experiments provide strong evidence of a potential mechanistic link that 

connects oxidative stress with calpains and muscle disuse atrophy. 

 

Mitochondrial signalling and apoptosis 

It has become apparent that dysfunctional mitochondria and subsequent acceleration 

of apoptosis may be involved in muscle disuse atrophy (Marzetti et al., 2010; Powers et al., 

2012). Apoptosis, or programmed cell death, is a physiological mechanism involved in 

morphogenesis, changes in cell number, the eradication of abnormal cells, and can play a key 

role in pathophysiological muscle cell loss (Marzetti et al., 2010; Rossi and Gaidano, 2003). 

Apoptosis may be initiated via extracellular (extrinsic) or intracellular (intrinsic) pathways. 
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The extrinsic pathway is activated by specific death receptors (such as ligand-mediated 

activation via tumour necrosis factor α), while the intrinsic pathway originates within 

mitochondria (Rossi and Gaidano, 2003). However, mitochondria can be considered the major 

centre for the integration of apoptotic signalling and induction of apoptosis, because many of 

the extrinsic apoptotic stimuli activate pathways that also converge on the mitochondria to 

initiate cell death (Marzetti et al., 2010). 

 Limb immobilisation has been shown to induce a reduction in muscle fibre size but 

not the number of myocytes (Nicks et al., 1989). However, myonuclear apoptosis has been 

reported during muscle disuse atrophy following measurements of terminal deoxynucleotidyl 

transferase dUTP nick end-labelling (TUNEL) (Dupont-Versteegden et al., 2006). Sixteen 

days of muscle disuse in rats leads to a reduction in myonuclear number and domain size, as 

well as a decrease in satellite cell activity in muscle fibres, suggesting apoptosis is active 

during muscle disuse atrophy (Wang et al., 2006). Two recent studies promoted skeletal 

muscle atrophy by two weeks of hindlimb suspension in the soleus (Leeuwenburgh et al., 

2005) and the gastrocnemius (Siu et al., 2005) muscles of rats, and demonstrated that 

apoptosis was occurring in both types of the atrophied muscles (Leeuwenburgh et al., 2005; 

Siu et al., 2005). Mechanistically, elevated cytosolic levels of both apoptosis-inducing factor 

(an intrinsic regulator of apoptosis) and cytochrome c (often released from mitochondria 

during the early phase of apoptosis) also develop in the gastrocnemius muscle following 

hindlimb suspension (Siu et al., 2005), while caspase-3 proteolytic activity is key in the 

elimination of cells undergoing apoptosis in the disused soleus muscle of rats (Leeuwenburgh 

et al., 2005). 

Apoptotic signalling also occurs in the early phases of muscle disuse atrophy (Ferreira 

et al., 2008). Maximal apoptosis-inducing factor expression was found after one day of 

hindlimb suspension in the soleus muscle of mice, which overlapped temporally with the 

highest levels of apoptotic DNA fragmentation (Ferreira et al., 2008). Further confirmation 

for the role of mitochondria-mediated apoptosis during muscle disuse atrophy arises from a 

unilateral hindlimb immobilisation study (Vazeille et al., 2008). Signalling mechanisms 

within this pathway appear to be activated during atrophy, but are then decreased during the 

recovery period following immobilisation (Vazeille et al., 2008). Thus, muscle disuse atrophy 

in mammals appears to be associated with activation of the apoptotic program. 
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Hibernating mammals as models of muscle disuse atrophy 

Although there appears to be multiple molecular mechanisms potentially involved in 

the events leading to muscle disuse atrophy, the gross loss of skeletal muscle tissue appears to 

hold true for the majority of vertebrates studied thus far. Generally this includes a relatively 

limited variety of mammalian model systems, such as rodents and humans (but also cats, dogs 

and guinea pigs), which have been artificially immobilised in a laboratory setting (Musacchia 

et al., 1988). The deleterious effects of muscle disuse atrophy may be reversed upon the return 

of normal weight bearing (i.e. reloading) of the limbs (Bodine, 2013a; Booth and Seider, 

1979). However, currently there are no sound therapeutic options to treat muscle disuse 

atrophy, clearly due an incomplete understanding of the cellular and molecular mechanisms 

participating in the induction and maintenance of muscle wasting.  

It is well known that negligible or no loss of skeletal muscle mass occurs in a variety 

of hibernating mammals despite the fact they experience repressed neural activity and natural 

periods of chronic muscle disuse (Bodine, 2013b; Harlow et al., 2001; Shavlakadze and 

Grounds, 2006). Hibernation is a survival strategy used by many mammals (e.g. bears, bats, 

squirrels, lemurs, hedgehogs and tenrecs) to cope with very low environmental temperatures 

and/or scarcity of food supplies. Winter hibernators typically retreat during cold, 

unfavourable conditions into sheltered sites called hibernacula, relying on lipid stores 

accumulated during a short pre-hibernation period to survive. The thirteen-lined ground 

squirrel (Spermophilus tridecemlineatus) hibernates for up to seven months during which time 

it enters into a deep torpor (days to weeks) interspersed with short arousal periods (less than 

24 h). Six months of hibernation (i.e. immobility) in this species has been shown to have no 

effect on the muscle fibre size or morphology of the quadriceps or tibialis anterior (Andres-

Mateos et al., 2013). However, the amount of muscle tissue loss can vary in hibernating 

squirrels depending on the type of muscle examined. James et al. (James et al., 2013) reported 

no loss of mass or tension in soleus muscle of S. tridecemlineatus following three months of 

hibernation, whereas a 14% loss was found in the gastrocnemius and 43% loss in the 

semitendinous muscles of the golden-mantled ground squirrel (Spermophilus lateralis) 

(Wickler et al., 1991). Muscle atrophy develops early on in hibernating S. lateralis but does 

not advance in the final 3 months (Nowell et al., 2011), a result which is similar to that which 

occurs during prolonged bed rest in humans (Adams et al., 2003; Phillips et al., 2009). 

Hibernating bears also retain most of their muscle mass despite prolonged inactivity 

and food deprivation during winter. A recent study examined the biceps femoris muscle of 
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summer active and winter hibernating brown bears (Ursus arctos) (Hershey et al., 2008). 

After five months of hibernation, the average cross-sectional areas of fast and slow fibres 

remained unchanged from summer to winter, while muscle protein concentration decreased 

by only 8% (Hershey et al., 2008). Like squirrels, the magnitude of muscle wasting in bears is 

dependent on the type of muscle studied. In black bears (U. americanus), loss of muscle 

protein content is much greater in biceps femoris compared with the gastrocnemius (Tinker et 

al., 1998). The apparent retention of muscle integrity and locomotor function is not restricted 

to squirrels and bears, as other studies have shown that hibernating mammals such as prairie 

dogs (Harlow and Menkens, 1986), hamsters (Wickler et al., 1987), and bats (Yacoe, 1983) 

experience either limited losses in muscle size, protein, or strength. 

 Resistance to muscle disuse atrophy during hibernation does not appear to be 

associated with the degree to which core body temperature is reduced. Whereas hibernating 

U. americanus lower their body temperature by only 2-5°C (Lohuis et al., 2007b), ground 

squirrels in deep torpor reduce core temperature to near ambient (approximately 4°C), yet 

both species show minimal muscle atrophy despite months of inactivity. Furthermore, a study 

examining two species of prairie dogs found no difference in the extent of muscle or strength 

loss between the two despite differences in their hibernation strategies (one experiencing 

normal torpor cycles with very low core temperatures, the other being facultative hibernators 

that use sporadic, moderate-temperature torpor cycles) (Cotton and Harlow, 2010). 

Regardless of the muscle type, core body temperature or species studied the loss of muscle 

mass and strength in hibernators is significantly less than what occurs in humans and 

laboratory rodents during extended muscle disuse. For example, black bears lose 29% of their 

tibialis anterior muscle peak force production over 110 days of hibernation without food or 

water (Lohuis et al., 2007b). In comparison, humans subjected to bed rest for 3 months 

exhibit between 51-60% decrease in the maximum voluntary contraction of both knee 

extensors and plantar flexor muscles (Alkner and Tesch, 2004). 

Investigations of the cellular and molecular mechanisms that may underpin inhibition 

of muscle atrophy in hibernators have been limited. Although mechanistic links between ROS 

and both proteolysis and protein synthesis have been demonstrated in clinical models of 

muscle disuse atrophy (Powers et al., 2011), almost nothing is known about the effects of 

ROS signalling during dormancy. However, one study did report an increase in antioxidant 

capacity in hibernating muscle which might protect cells by scavenging ROS (James et al., 

2013). This is important given that throughout dormancy the capacity to replace ROS-
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damaged molecules is compromised as a consequence of drastically reduced rates of 

transcription and translation (Storey et al., 2010). It has been shown that rates of both protein 

degradation and synthesis can be reduced by up to 70% in skeletal muscle of hibernating 

bears (Lohuis et al., 2007a). Curiously, a more recent study found increased gene expression 

of mRNAs largely involved in protein biosynthesis in muscles of hibernating U. americanus 

relative to summer active animals, suggesting that induction of translation could be enhanced 

during dormancy (Fedorov et al., 2009). These contradictory results may be explained by the 

fact that protein translation can be modulated by reversible phosphorylation of initiation and 

elongation factors (Storey et al., 2010). 

In regard to programmed cell death, studies of differential gene expression in arctic 

ground squirrels (Spermophilus parryii) found that mRNA profiles of genes involved in 

apoptosis increased significantly in skeletal muscle during arousal phases of the torpor-

arousal cycle (Yan et al., 2008). In skeletal muscle of S. tridecemlineatus however, the protein 

expression of X-linked inhibitor of apoptosis (belonging to the inhibitor of apoptosis family 

of proteins) increased significantly when animals were undergoing torpor (Rouble et al., 

2013). 

Due to its involvement in regulation of muscle growth and mass, myostatin has also 

received experimental attention in hibernators. Brooks and coworkers demonstrated that 

myostatin protein levels in mixed hindlimb muscle of S. tridecemlineatus were largely 

constant throughout torpor relative to controls, but increased significantly during arousal 

(Brooks et al., 2011) while in hibernating S. lateralis, a significant reduction in myostatin 

gene expression was found in soleus and diaphragm muscles, but not in limb muscles with 

fast-type fibres (Nowell et al., 2011). Many of the above molecular changes may represent 

key mechanisms for reducing atrophy during hibernation, although clearly there is still much 

to learn. 

 While hibernating mammals have been widely used as ‘natural analogs’ to which 

clinical disuse models such as bed rest and cast immobilisation may be compared, another 

group of organisms that experience extended muscle disuse during dormancy includes 

aestivating (burrowing) frogs. Aestivation in amphibians represents a relatively novel, natural 

model system to study mechanisms that increase the resistance of skeletal muscle to atrophy 

and dysfunction following prolonged periods of inactivity. Furthermore, because aestivation 

occurs at relatively higher ambient temperatures than hibernation, the inherent relationship 

between environmental temperature and rates of biochemical reactions in ectotherms means 
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that metabolic suppression might be more prone to perturbations. Temperature-induced 

elevations in metabolic rate during prolonged inactivity and fasting could therefore lead to 

accelerated losses in muscle mass and protein. Thus, studies on aestivating animals can 

expand our knowledge of how patterns of dormancy/arousal affect organismal and organ 

function. 

 

Dormancy and metabolic depression 

The common feature among animals that exhibit minimal muscle disuse atrophy 

relative to typical clinical models is that all undergo lengthy periods of dormancy. This is 

because these organisms inhabit extreme environments which are often incompatible with 

sustaining the fundamentals of life (e.g. feeding and reproduction). Dormancy is an 

advantageous strategy as it prolongs the amount of time an organism may survive on internal 

fuel stores. Substantial energy savings may be made simply by reducing both locomotor 

activity and digestion, however dormancy typically lasts for many months, if not years. Under 

such circumstances, animals undergo a strong metabolic depression in addition to inactivity 

(Carey et al., 2003; Storey and Storey, 1990). Since the metabolic rate of an animal converts 

directly into its energy requirements, metabolic depression, otherwise known as 

hypometabolism, allows animals to significantly decrease the rate of consumption of their 

endogenous fuel supplies (Guppy and Withers, 1999; Storey and Storey, 1990). 

Dormancy is widespread among animal phyla and can occur in response to a range of 

conditions, including extreme environmental temperatures, food deprivation, desiccation, and 

anoxia (Carey et al., 2003; Guppy and Withers, 1999; Storey and Storey, 1990). The most 

well-known example of dormancy is hibernation, which entails a decrease in core body 

temperature (Tb), bradycardia, reduced blood flow and a metabolic rate that can be less than 

5% of normal (Carey et al., 2003). The strategies adopted by hibernators are variable and 

range from regular, extended bouts of torpor with a low Tb near ambient levels, to irregular, 

brief torpor bouts with moderately reduced Tb (Geiser and Ruf, 1995). Nevertheless, torpor 

bouts are usually interrupted by periodic arousals where the animal returns to normothermia. 

By depressing whole-animal metabolic rate and letting Tb drop, animals can preserve almost 

90% of the energy that would be required to sustain activity at a typical endothermic Tb 

(Wang, 1979). Other examples of dormancy coinciding with metabolic depression include 

diapause in insects, cryptobiosis in crustaceans and aestivation in molluscs, fish, reptiles and 

amphibians (Guppy and Withers, 1999).  
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Regardless of the type of metabolic depression, all share a common set of behavioural, 

physiological and biochemical characteristics. Before entering dormancy, animals either 

accrue body lipid stores or stockpile food (e.g. hibernators) (Brenner and Lyle, 1975; Buck 

and Barnes, 1999) before seeking shelter for physical protection from predators and to limit 

environmental perturbations, such as changes in temperature and humidity. Physiological 

adjustments accompanying metabolic depression include hypoventilation, bradycardia, 

hypophagia (cessation of feeding) and strongly suppressed renal function (Delaney et al., 

1974; Rizzatti and Romero, 2001; Storey et al., 2010; Zatzman, 1984). Suppression of cell 

metabolism is achieved via the coordinated downregulation of the rate of cellular ATP 

turnover (e.g. decreasing ion pump activity, macromolecular synthesis and macromolecular 

turnover) (Ramnanan et al., 2009; Ramnanan and Storey, 2006), while there may also be 

declines in extra- and intracellular pH, changes in protein phosphorylation status, alterations 

in patterns of fuel use (lipid becomes the primary fuel) and changes in gene expression (Carey 

et al., 2003; Pedler et al., 1996; Storey and Storey, 2010; Van Beurden, 1980). Despite these 

common themes shared by dormant animals, there are numerous important differences 

between endothermic (e.g. hibernating mammals) and ectothermic (aestivating amphibians) 

dormancy. Firstly, endotherms undergoing metabolic depression may spend days or weeks 

with a core Tb that is often near to 0°C. This is followed by spontaneous rewarming against a 

large thermal gradient during episodic arousals without any external environmental cues 

(Cannon and Nedergaard, 2004). Another important feature of endothermic dormancy is the 

brown adipose tissue highly specialised for non-shivering thermogenesis and the elevation of 

Tb during arousal (Cannon and Nedergaard, 2004). In contrast, metabolic depression in 

ectotherms can occur at relatively high environmental temperatures, when for most 

ectotherms, metabolism is positively correlated with ambient temperature (Young et al., 

2011).  

 

The physiology of aestivating amphibians 

Aestivation is usually defined as a dry season or summer dormancy. The common 

triggers for aestivation are food and water deprivation associated with arid conditions, which 

are often (but not always) accompanied by high environmental temperatures. Numerous 

species of amphibians inhabit arid and semi-arid regions of the world that are subject to 

sporadic and seasonal rainfall events, and dry periods may last from many months to several 

years. Such arid-zone amphibians normally avoid exposure to dry conditions and cease 
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activity throughout these periods because they rapidly lose water via evaporation through the 

integument. Consequently, aestivation in amphibians typically involves the excavation of a 

burrow, the adoption of a water-conserving posture, and in some species the formation of an 

impermeable cocoon around the body (Loveridge and Withers, 1981; Tracy et al., 2007; 

Withers, 1995). However, little is known about the conditions that cue burrow formation, the 

timing of emergence, cocoon formation, or microclimates of natural burrows (Seymour, 

1973b). Burrow depth varies remarkably between species of aestivating amphibians, although 

cocoon-forming species appear to excavate shallower burrows than non-cocoon-forming 

species (Tracy et al., 2007).  

The whole-animal metabolism of aestivating frogs is usually suppressed to 20-30% of 

their normal resting rate, and tends to occur four to five weeks after the onset of aestivation 

(Kayes et al., 2009a; Withers, 1993). In general, aestivation is considered a ‘moderate’ type of 

dormancy, as the physiological changes that occur can be quickly reversed to initiate arousal 

(Whitwam and Storey, 1990). The suppression of whole-animal metabolic rate in aestivating 

frogs is accompanied by a reduction in the metabolic rate of skeletal muscle. In vitro skeletal 

muscle preparations have shown metabolic rate to be reduced anywhere between 25-70%, and 

occur without the manipulation of external factors such as oxygen tension or temperature 

(Flanigan and Guppy, 1997; Flanigan et al., 1991; Kayes et al., 2009a). This indicates that the 

mechanisms underpinning metabolic depression are endogenous and must exist within the 

tissue itself (Flanigan et al., 1991). 

The reduction in the metabolic rate of all tissues, but in particular that of muscle, can 

account for a major proportion of the metabolic depression seen at the whole-animal level in 

aestivating frogs (Flanigan and Guppy, 1997; Flanigan et al., 1991). This is because muscle 

mass constitutes a fairly large percentage of whole body mass in anurans. During aestivation 

the rate of energy expenditure determines the rate of depletion of endogenous fuel stores 

because there is no external food supply. Seymour (Seymour, 1973a) estimated on theoretical 

grounds that aestivating spadefoot toads (Scaphiopus couchii) could survive at least two years 

of drought on endogenous fat stores, thereby deferring the onset of starvation.  

 The reductions in both whole-animal and tissue metabolism during aestivation are also 

reflected at other levels of biological organisation. Given that mitochondrial function 

underpins not only cellular but also tissue and whole animal aerobic metabolic rate, a 

decrease in mitochondrial energy expenditure (oxygen consumption) would result in 

substantial energy savings during metabolic depression. Indeed, in the green-striped 
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burrowing frog (Cyclorana alboguttata) the rate of skeletal muscle mitochondrial oxygen 

consumption has been shown to be reduced by more than 80% following seven months of 

aestivation (Kayes et al., 2009b). Furthermore, aestivating C. alboguttata were shown to 

increase mitochondrial coupling efficiency (i.e. the ratio of ATP synthesis to proton leak) 

which is likely to be associated with an increase in energy savings (Kayes et al., 2009b). 

Consistent with the reduction in mitochondrial oxygen consumption, significant decreases in 

transcription of mitochondrial components including NADH ubiquinone oxidoreductase 

subunit 1 (71% downregulated) and ATP synthase (67% downregulated) occurred after six 

months in aestivating muscle (Hudson et al., 2006). 

During aestivation it has been demonstrated that reversible protein phosphorylation is 

an important physiological process to change the activity states of enzymes and functional 

proteins (Storey and Storey, 2010). In particular, the phosphorylation of pyruvate kinase and 

phosphofructokinase appears to be important in controlling glycolysis throughout the 

aestivating period. Using isoelectric focusing, Cowan and Storey (Cowan and Storey, 1999) 

showed that the proportions of the high and low phosphate forms of these enzymes exhibited 

distinct kinetic properties in skeletal muscle of aestivating S. couchii toads. The quantities of 

low phosphate pyruvate kinase and phosphofructokinase were elevated during aestivation, 

while kinetic analysis indicated that these were the less active forms. Two months of 

aestivation in this species also results in reduced activity levels of enzymes involved in fatty 

acid synthesis and ketone body metabolism (Cowan et al., 2000). Activity levels of other 

metabolic enzymes change during aestivation (Mantle et al., 2010), including cytochrome c 

oxidase (CCO), lactate dehydrogenase (LDH) and citrate synthase (CS) which function in the 

ETC, anaerobic glycolysis and the citric acid cycle, respectively. In 9-month aestivating C. 

alboguttata, LDH and CS activities were significantly lower in both sartorius and iliofibularis 

muscles, whereas CCO was decreased in the gastrocnemius (Mantle et al., 2010). However, 

metabolic enzyme activities were maintained at control levels in the cruralis, a powerful 

muscle involved in jumping. The predominant metabolic substrate in aestivating amphibians 

is likely to be lipid, with large reserves of triglycerides deposited as ‘fat bodies’ within the 

abdomen (Van Beurden, 1980). 

 Because dehydration is a major threat for frogs inhabiting arid environments, frogs 

possess a sizeable bladder and can utilise their urine volume as a water reserve which can be 

released during aestivation. Indeed, the metabolic rate of the kidneys in aestivating frogs can 

increase following months of dormancy (Kayes et al., 2009a). In addition, in many species the 
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‘waterproof’ cocoon formed from shed skin surrounds the entire body surface except for the 

narial openings (Figure 1.2A). As the external environment dries, the cocoon becomes a thick, 

opaque and tough layer consisting of multiple sheets of epidermal cells (Withers, 1995).   

 

 

Figure 1.2. The ‘waterproof’ cocoon formed from shed epidermis of C. alboguttata after 1 year of aestivation 

(A) Cyclorana alboguttata encased within a clay soil chamber (B). Photographs by Doctor Sara Kayes. 

 

Aestivating frogs as natural muscle disuse systems  

The green striped burrowing frog (Cyclorana alboguttata) is an abundant species of 

burrowing frog inhabiting arid to semi-arid regions of Queensland, the Northern Territory and 

Northern New South Wales. C. alboguttata is both nocturnal and fossorial, spending most of 

its life in aestivation. Aestivating frogs remain inactive in their burrows and are encased 

within the cocoon for many months, and perhaps years (Figure 1.2B). As a consequence the 

hindlimb skeletal muscles are rendered immobile; a state which has been likened to the 

hindlimb casting seen in laboratory muscle disuse models (Hudson and Franklin, 2002b). The 

structural alterations associated with muscle wasting negatively affect skeletal muscle 

function and ultimately locomotor performance of the animal. For aestivating/hibernating 

animals any degenerative changes to skeletal muscle would be disadvantageous during the 

transition from a dormant to an active state. This is particularly true for aestivating frogs that 

only have a narrow window of opportunity to feed and breed before the highly ephemeral 

waters retreat.  

The long period of skeletal muscle disuse typical of aestivating C. alboguttata, 

combined with the constricting effect of forming a cocoon, and ability to depress metabolism 

at relatively high temperatures, makes them one of the most remarkable muscle disuse models 



19 

 

among vertebrates. As a result C. alboguttata has become a model organism for studying the 

effects of aestivation on skeletal muscle and associated physiological processes which may 

confer resistance to muscle disuse atrophy. In regard to muscle morphology, 6-9 months of 

aestivation had no effect on muscle mass, water content, or myofibre number in 

gastrocnemius or cruralis muscles in C. alboguttata (Mantle et al., 2009). Similarly, six 

months of aestivation had no effect on the total cross-sectional area of cruralis muscle 

(Hudson et al., 2006; Mantle et al., 2009). However, aestivation had different effects on 

muscle fibre cross-sectional area in distinct muscles, with 6-9 months of aestivation leading to 

significant reductions in cross-sectional area of both oxidative and glycolytic fibres in cruralis 

and iliofibularis muscles (Hudson et al., 2006; Mantle et al., 2009; Symonds et al., 2007). 

Extended immobilisation during aestivation can lead to some atrophy of skeletal muscle in 

burrowing frogs, although this generally appears to be correlated with muscle locomotor 

function, with smaller non-jumping muscles (e.g. sartorius, iliofibularis) atrophying before 

larger jumping muscles (e.g. cruralis, gastrocnemius) (Mantle et al., 2009). The effect of 

aestivation on the properties of neuromuscular junctions has also been examined in C. 

alboguttata. Hudson et al. (Hudson et al., 2005) found there were no differences in 

neuromuscular junction structure, miniature endplate potential frequency and amplitude, or 

resting membrane potentials of iliofibularis fibres following six months of dormancy. 

Extended limb immobilisation in mammals may lead to loss of capillary tortuosity, resulting 

in haemorrhaging of skeletal muscle if rapid remobilisation occurs. Hudson and Franklin 

(Hudson and Franklin, 2003) reported no effect of aestivation on the three-dimensional 

capillary structure in the semimembranosus muscle of 4-month aestivating C. alboguttata 

compared with active frogs, indicating preservation of capillary tortuosity.  

Prolonged aestivation has been shown to cause minimal changes to the in vitro 

skeletal muscle mechanics of burrowing frogs (Hudson and Franklin, 2002a; Hudson et al., 

2006; Symonds et al., 2007). The isometric twitch (e.g. force production, rise and relaxation 

times, and latency period) and tetanic characteristics (maximal force production and tetanic-

to-twitch ratio) of aestivating gastrocnemius muscle was shown to be maintained at control 

levels, despite the muscle disuse associated with extended aestivation (three or nine months) 

(Hudson and Franklin, 2002a; Hudson et al., 2006). However, following nine months of 

aestivation twitch activation and relaxation times were substantially slower in iliofibularis 

muscle when compared with controls (Symonds et al., 2007). Isometric assessment of 

muscular function has demonstrated that fatigue resistance of the gastrocnemius was 
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unaffected by three months of aestivation (Hudson and Franklin, 2002a). Indeed, frogs that 

had recently aroused from aestivation were shown to maintain burst swimming performance 

at a level similar to that of control frogs (Hudson and Franklin, 2002a). However, after nine 

months of aestivation a decrease in fatigue resistance of this muscle has been observed 

(Hudson et al., 2006). Overall, the relative maintenance of skeletal muscle mechanics 

throughout aestivation is clearly beneficial and allows C. alboguttata to rise from their 

burrows and immediately feed and breed. 

Because muscle disuse atrophy in mammalian models has been linked to an 

accumulation of ROS, it has been proposed that hibernators and aestivators might regulate 

endogenous antioxidant levels in skeletal muscle as a potential means of inhibiting muscle 

wasting (Hudson and Franklin, 2002b). Consistent with this hypothesis is the finding that 

levels of antioxidants (catalase and glutathione peroxidase 4) were maintained at control 

levels in aestivating muscle of C. alboguttata, whilst the total antioxidant capacity increases 

(when standardised to the oxygen consumption rate of the animal or tissue) (Hudson et al., 

2006; Mantle et al., 2009; Young et al., 2013). There is some evidence that oxidative damage 

occurs in muscle during aestivation, but this appears to be confined to the iliofibularis muscle 

(Young et al., 2013). The modulation of antioxidants is unlikely to constitute the entire 

‘strategy’ by which C. alboguttata inhibits muscle disuse atrophy because other mechanisms 

(e.g. protein turnover), as yet not measured in this species, are probably regulated. For 

example, recent studies have emphasised the importance of maintaining protein synthesis in 

hibernating muscle via activation of the mammalian target of rapamycin (mTOR) signalling 

cascade (e.g. Andres-Mateos et al., 2013; Fedorov et al., 2014; Lee et al., 2010; Nowell et al., 

2011). The mTOR is a major effector of cell growth and proliferation via the regulation of 

protein synthesis through a multitude of downstream targets. S. lateralis squirrels decrease 

myostatin expression (an mTOR inhibitor) in skeletal muscles that are resistant to winter 

atrophy, potentially facilitating mTOR signalling by suppressing this inhibition (Nowell et al., 

2011), while periodic arousals from winter hibernation in bats appears to be associated with 

oscillations in the activation of mTOR (Lee et al., 2010).  

The induction of heat shock proteins may also play an important role in countering 

muscle wasting during hibernation and aestivation (Lee et al., 2008; Young et al., 2013), 

especially given that heat shock protein overexpression improves structural and functional 

recovery of skeletal muscle following immobilisation-induced atrophy in mice (Miyabara et 

al., 2012). Despite such advances in understanding the biochemical regulation associated with 
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dormancy, overall little is known about the modulation of cell mechanisms (e.g. gene/protein 

expression changes) that could be responsible for inhibition of skeletal muscle atrophy and 

dysfunction following prolonged periods of inactivity in aestivating frogs. Preservation of 

muscle performance is paramount for reproductive success and survival upon arousal in 

dormant animals. Studying skeletal muscle adaptation in C. alboguttata will lead to a better 

understanding of both the common principles and the diversity of mechanisms that facilitate 

inhibition of muscle disuse atrophy in different hypometabolic systems. In addition, 

furthering our understanding of the regulation of muscle function that occurs in aestivating C. 

alboguttata may one day offer significant insights for understanding muscle disuse atrophy in 

other systems.  

 

Aims of research 

The aim of this study was to examine the cellular and molecular mechanisms that may 

inhibit muscle disuse atrophy in C. alboguttata. Specifically, the first aim of this study was to 

examine the effect of 4-months of aestivation (disuse) on global gene expression changes in 

skeletal muscle using next generation sequencing (RNA-Seq; Chapter 2). RNA-Seq is a 

relatively new technology that has a number of significant advantages in gene expression 

profiling experiments. For example, RNA-Seq does not require species- or transcript-specific 

probes, and is thus highly suitable for studies on non-model animals such as aestivating frogs. 

RNA Seq enables unbiased detection of novel transcripts and other changes, such as single 

nucleotide polymorphisms, while also offering a broader dynamic range by quantifying 

discrete, digital sequencing read counts. Additionally, deep sequencing coverage can allow 

detection of rare transcripts or weakly expressed genes. By measuring the expression levels of 

thousands of genes simultaneously, RNA-Seq could provide insights into novel functional 

pathways and regulatory mechanisms involved in muscle remodelling in aestivating C. 

alboguttata.  

 The modulation of ROS and antioxidants are important for cell homeostasis. In 

addition to generating ATP, mitochondria are also a major site of ROS production in cells. It 

follows then that mitochondrial metabolic suppression might have consequences for 

mitochondrial ROS production and oxidative stress. Suppression of mitochondrial respiration 

is a prominent feature of hibernating mammals and amphibians, and aestivating frogs. To date 

however, little work has been conducted to understand how changes in oxidative 

phosphorylation affect mitochondrial ROS production, particularly alterations resulting from 
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natural effectors, such as metabolic depression. This is because measurements of ROS 

themselves are usually not without significant analytical challenges, let alone simultaneous 

evaluations of changes in ROS production and oxidative phosphorylation. Consequently, most 

studies have concentrated on measurements of antioxidant levels and/or the severity of 

oxidative damage. The second aim of this study was to measure ROS production and 

mitochondrial respiration simultaneously in skeletal and cardiac muscles of C. alboguttata.  

 While protein turnover is substantially suppressed during metabolic depression, the 

mechanisms that reduce protein synthesis and degradation, and their relationship with 

regulation of muscle mass during dormancy are not entirely clear. The aim of the third 

experiment (Chapter 4) was to determine if downregulation of the calpain proteolytic pathway 

might contribute to inhibition of muscle disuse atrophy in 4-month aestivating C. alboguttata. 

This was achieved by measuring the enzyme activity, protein abundance and gene expression 

levels of calpain isoforms in gastrocnemius muscle of aestivating and control C. alboguttata. 

The final chapter of this thesis (Chapter 5) concludes by integrating the data collected 

throughout all experimental chapters and broadly discussing the mechanisms and cellular 

pathways that may regulate muscle integrity during metabolic depression. Chapter 5 also 

raises important questions generated as a result of the current study and specific areas where 

future research should focus, and concludes with a discussion about how aestivating C. 

alboguttata may be utilised as a model organism in biomedical research. 

 

Structure of thesis 

This thesis is comprised of three experimental chapters, a general introduction and a 

general discussion. These chapters have been written in the format of papers which have been 

published in leading international journals. The first experimental chapter uses RNA Seq 

technology to generate a burrowing frog skeletal muscle transcriptome, and conduct 

comparative gene expression profiling between active and four-month aestivating C. 

alboguttata. The second experimental chapter investigates mitochondrial respiration and ROS 

production within permeabilised cardiac and skeletal muscle fibres of 4-month aestivating C. 

alboguttata. The third experimental chapter examines the potential of the calpain proteolytic 

pathway in modulating muscle protein degradation during aestivation. The final chapter of 

this thesis concludes by discussing the cellular mechanisms by which C. alboguttata may 

regulate skeletal muscle homeostasis during aestivation, and future directions for research. 
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Chapter 2 

Frogs and aestivation: transcriptional insights into metabolism and cell survival in a 

natural model of extended muscle disuse 

INTRODUCTION 

Under adverse environmental conditions many organisms enter dormancy, a period of 

inactivity that prolongs the amount of time an animal can survive on endogenous fuel 

reserves. Dormancy involves strong suppression of both locomotor activity and metabolic 

rate, and is a common factor of various survival strategies including hibernation, torpor, 

anhydrobiosis and diapause (Storey and Storey, 1990). Under circumstances of food and 

water deprivation associated with xeric conditions, numerous animals (invertebrates, fish, 

frogs, reptiles) become dormant by entering into a metabolically depressed state known as 

aestivation. Whole animal metabolism during aestivation may be depressed by as much as 

80% and can sustain viability for an entire dry season, if not years (Kayes et al., 2009a; Van 

Beurden, 1980).  

Despite the adaptive value of the dormant phenotype, dormancy in vertebrates may 

expose cells to diverse stressors, including fluctuations in temperature or oxygen levels, 

acidosis and oxidative damage (van Breukelen et al., 2010). Moreover, because dormancy 

entails prolonged periods of inactivity and fasting, an expected outcome arising from organ 

and tissue disuse is cellular atrophy and the potential for compromised performance upon 

arousal. In typical models (humans, mice, rats), prolonged inactivity or immobilisation of 

skeletal muscle (e.g. cast immobilisation or extended bed-rest) results in muscle disuse 

atrophy, a condition which is characterized by the ‘wasting’ or loss of muscle mass and 

strength (Bloomfield, 1997). Such losses can often be accompanied by accelerated apoptosis 

(Marzetti et al., 2010), a genetically-programmed form of cell death that may be initiated by 

cell death receptors or via mitochondrial pathways (Rossi and Gaidano, 2003). In muscle 

tissue apoptosis may contribute to atrophy by leading to loss of myofibres (hypoplasia) or loss 

of myofibre segments (hypotrophy), and is likely to be related to dysfunction of mitochondria 

(Marzetti et al., 2010). 

Research on muscle disuse atrophy has primarily focused on mammals, and the 

deleterious effects of atrophy appear to be common to most species studied (Hudson and 

Franklin, 2002b). However, recent investigations have examined the structure, function and 

plasticity of muscles in organisms that experience natural periods of muscle disuse or 
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immobilisation, such as aestivating frogs and hibernating mammals (Cotton and Harlow, 

2010; Harlow et al., 2001; Hudson and Franklin, 2002a; Mantle et al., 2009; Nowell et al., 

2011; Symonds et al., 2007; Young et al., 2011). These studies have shown that animals 

which undertake extended bouts of natural immobility (i.e. dormancy) consistently 

demonstrate less of an atrophic response than that experienced by the usual mammalian 

models immobilised for considerably less time. Dormancy is characterized by a complex suite 

of highly coordinated biochemical changes, however very little is known about the 

physiological or molecular underpinnings of processes to mitigate atrophy or apoptosis in 

dormant animals such as mammalian hibernators and aestivating frogs.   

The green-striped burrowing frog (Cyclorana alboguttata) is found in hot, arid regions 

of eastern Australia and spends the majority of its life in aestivation. Studies have shown that 

throughout aestivation, burrowing frogs experience extended periods (up to 9 months) of 

inactivity and fasting without suffering any substantial skeletal muscle atrophy and are able to 

resume locomotor ability immediately upon arousal, indicating preservation of muscle 

functional capacity throughout the aestivation period (Hudson and Franklin, 2002a; Hudson et 

al., 2006; Mantle et al., 2009; Symonds et al., 2007). Thus, C. alboguttata is an intriguing 

model for investigating the physiological and molecular mechanisms underlying metabolic 

suppression, atrophy and apoptosis. The preservation of muscle in C. alboguttata is likely to 

be a complicated process involving multiple cellular pathways operating in parallel to mediate 

inhibition of muscle wastage. Such complexity requires a more global approach to 

investigating the biochemical changes that occur throughout aestivation to maintain cell 

viability. 

The development of high throughput sequencing technologies has enabled the rapid 

generation of large-scale sequencing data at a level which was previously unfeasible. High 

throughput RNA sequencing (RNA Seq; sequencing of steady-state RNA in a sample) has 

proven to be an invaluable tool used in a variety of applications in non-model organisms that 

lack existing genomic information, for example transcriptome characterisation, gene 

expression profiling and detection of allele-specific expression (Ekblom and Galindo, 2011). 

The aim of this study was to use RNA Seq technology to generate a burrowing frog skeletal 

muscle transcriptome, and conduct comparative expression profiling between active and four-

month aestivating C. alboguttata to gain insight into genes and pathways underlying the 

aestivating phenotype. In particular, we were interested in transcriptional pathways which 

may mediate inhibition of muscle atrophy in C. alboguttata.  
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MATERIALS AND METHODS 

Experimental animals 

Green-striped burrowing frogs, Cyclorana alboguttata (13-44 g body mass) were 

collected from the districts of Dalby and Theodore, Queensland, Australia (Scientific 

Purposes Permit WISP10060511). Frogs were transported back to the laboratory and were 

kept in plastic containers with wet paper towels and fed weekly on crickets. Frogs were 

randomly assigned to one of two treatment groups (4-month aestivators and controls) and all 

animals were fed six days before commencing the experiment. During experimentation 

control frogs were maintained under a 12:12 h light: dark regime to simulate conditions of 

active, awake frogs, whereas aestivating frogs were kept in 24 h darkness. All experiments 

were conducted with the approval of the University of Queensland Animal Ethics Committee 

(permit number: SBS/238/11/ARC).  

Whole animal metabolic rate 

Respirometry was conducted to verify metabolic depression during aestivation in 

burrowing frogs. Frogs required to aestivate were placed into 500 mL glass respirometry 

chambers with wet paper pellets (Breeders Choice Cat Litter, FibreCycle Pty Ltd, Yatala, 

Australia) and the water allowed to slowly dry out. Frogs rapidly burrowed into the paper and 

entered into aestivation. While aestivators remained in their chambers for the entire 

experimental period, control animals were weighed and placed into their chambers 24 h prior 

to sampling and removed immediately following final oxygen consumption measurements. 

Control frogs were then fed and placed into a 12:12 h light:dark regime. Respirometry 

chambers (both control and aestivating frogs) were kept in a dark, constant temperature (24.3 

± 0.2°C) room during the experimental period. During non-sampling periods chambers were 

covered with mesh to allow air flow. Rates of oxygen consumption (VO2) were measured 

using closed-system respirometry in frogs from each treatment group (controls N = 10; 

aestivators N = 9). At the start of a sampling period chambers were sealed with a rubber bung 

and a fiber optic oxygen transmitter with oxygen-sensitive spots (Precision Sensing GmbH, 

Regensburg, Germany) was used to measure the partial pressure of oxygen (as a percentage of 

air saturation) within the chamber. This method allows oxygen partial pressures to be 

measured non-invasively through the wall of the respirometer. Oxygen measurements were 

taken several hours later, depending on the treatment group (i.e. longer for aestivators), and 

on multiple occasions to calculate repeated rates of oxygen consumption. The lowest rate in 
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the analysis was used before oxygen consumption and CO2 production were determined 

according to the formula of Vleck (Vleck, 1987).  

Muscle sampling and morphometrics 

In the current study the gastrocnemius muscle was selected for analysis because in 

anurans this muscle produces the force necessary for jumping. After four months of 

aestivation, frogs were removed from their chambers and immediately euthanized by cranial 

and spinal pithing. Control frogs were fasted for 5 days before euthanasia. Body mass and 

snout-vent length (SVL) were measured. The right gastrocnemius muscle was then rapidly 

excised, weighed and placed immediately into RNAlater® (Ambion). Tissue samples were 

stored at 4°C overnight and then transferred to -80°C until processed. The contralateral 

gastrocnemius muscle was pinned to a small piece of dental wax while it was still attached to 

the bone to maintain muscle length. Once pinned, the muscle was then separated from the 

bone, weighed and placed into 10% neutral-buffered formalin (NBF) and kept at 4°C for 

subsequent morphometric analysis. Fixed gastrocnemius muscles were removed from NBF 

and cross-sectional slices of approximately 3-5 mm were taken from the midsection. 

Specimens were mounted in embedding medium (Tissue-Tek® OCTTM Compound, 

ProSciTech), frozen in isopentane cooled to the temperature of liquid nitrogen, and stored dry 

at -80°C for later sectioning. Frozen muscle blocks were sectioned into 16 µm thick slices 

with a Leica 3050n cryostat at - 20°C. The sections were melted onto glass slides and air dried 

before sections were viewed with an Olympus SZ61 stereomicroscope and images were 

captured with a Micropublisher 3.3 Real-Time Viewing camera (QImaging). For each animal, 

two cross-sections were selected and images were analyzed with SigmaScan (SPSS Inc.) to 

determine whole muscle cross-sectional area. 

Total RNA isolation  

Total RNA was isolated from approximately 80-100 mg of preserved gastrocnemius 

muscle tissue. Muscle samples were thawed in 1 mL of PureZOL (BioRad) and homogenized 

with stainless steel beads using a TissueLyser II (Qiagen). The homogenates were centrifuged 

at 12 000 g, at 4°C for 10 min to remove any insoluble cell debris. Cell lysates were combined 

with chloroform and centrifuged (12000 g, 4°C, 15 min) to separate aqueous and organic 

phases. The aqueous phase containing RNA was then isolated using a PureLink® RNA Mini 

Kit (Life Technologies). An on-column  PureLink® DNase treatment protocol (Life 

Technologies) was conducted to obtain DNA-free total RNA before RNA quality assessment 

was performed using a RNA 6000 Nano Kit (Agilent Technologies) on an Agilent 
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Bioanalyser. Total RNA from eight male frogs (controls N=4; aestivators N=4; 13-26 g body 

mass) were prepared for subsequent high-throughput sequencing; all RNA samples had an 

RNA integrity number ≥ 8.5. 

mRNA library preparation and Illumina sequencing  

The following poly(A)+ selection, mRNA library construction, cluster generation and 

sequencing was conducted by Macrogen Inc., Seoul, Korea. RNA samples were prepared for 

sequencing using a TruSeq RNA Sample Preparation Kit (Illumina) according to the 

manufacturer’s instructions. mRNA was purified from total RNA by way of poly (A)+ 

selection before samples were fragmented and reverse transcribed to cDNA using random 

hexamer priming. Following fragment end-repair, individual frog cDNA libraries were tagged 

by ligation of unique indexing adapters to cDNA ends in preparation for hybridization onto a 

flow cell. PCR was then used to enrich for adapter-containing cDNAs followed by quality 

control analysis of each sample library and quantification of the DNA library templates. Prior 

to sequencing, DNA templates were bridge-amplified to produce clonal clusters on the 

surface of the flow cell. Sequencing was then carried out using an Illumina HiSeq 2000.  

Bioinformatics 

De novo assembly, annotation and RNA Seq  

To reconstruct C. albogutatta contiguous nucleotide sequences (contigs), paired-end 

reads up to 100 bp in length were assembled and aligned using CLC Genomics Workbench 5 

(CLC Bio, Aarhus, Denmark). CLC Bio’s de novo assembly algorithm works by using De 

Bruijn graphs. The minimum acceptable contig length was 200 bp, and scaffolding was 

performed by using paired-end read-information to ascertain both distances between, and 

orientation of the contigs. The contigs were then searched against the non-redundant NCBI 

protein database (BLASTx) with an expectation value of 0.001 using Blast2GO (B2G) 

(Conesa et al., 2005). B2G was then used to retrieve associated gene ontology (GO) terms 

describing biological processes, molecular functions, and cellular components. The following 

criteria were adopted when reads were mapped back against the C. alboguttata reference 

transcriptome, 1) at least 90% of a given read was required to have at least 80% identity with 

the reference in order to be included in the final mapping; and 2) up to 10 alignments to the 

reference were allowed for a given read. 
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Identifying differential gene expression  

Putative transcripts from control (N = 4) and aestivating (N = 4) frog gastrocnemius 

samples were tested for differential expression using the Bioconductor 

(http://www.bioconductor.org/) package EdgeR (Robinson et al., 2010). EdgeR fits a negative 

binomial model to read count data and uses empirical Bayes methods to moderate the degree 

of overdispersion (i.e. large variability) across genes, which is typical of RNA Seq read 

counts. Furthermore, EdgeR uses a normalisation method (trimmed mean of M-values, see 

reference (Robinson and Oshlack, 2010)) which estimates scaling factors between libraries 

before being incorporated directly into the model used to test for differential expression. In 

the present study, genes with very low counts were removed before testing for changes in 

gene expression. Genes were retained only if they were expressed in at least one control or 

aestivating frog, and if they attained one count per million for at least four individual libraries. 

Following library normalisation and dispersion estimates of genes, exact tests were conducted 

to calculate differences in the means of each gene between control and aestivating frogs. 

Genes were selected for further analysis if they met a minimum fold change threshold of 1.5 

on a log2 scale. The significance threshold was set at P ≤ 0.05, and Benjamini and 

Hochberg’s algorithm (Benjamini and Hochberg, 1995) was used to control the false 

discovery rate (< 0.05).  

Ingenuity pathways analysis  

To perform gene functional analysis differentially expressed C. alboguttata genes 

were analysed using Ingenuity Pathways Analysis (IPA) software (Ingenuity Systems, 

http://www.ingenuity.com). IPA uses a human-curated knowledge base to analyse expression 

data in the framework of known biological response pathways and regulatory networks. IPA 

analysis was used to identify canonical pathways and molecular/cellular functions that were 

most significantly overrepresented for the entire set of differentially expressed C. alboguttata 

genes, and also separately among the up- and downregulated genes. For all analyses, 

statistical significance of gene/pathway groups was determined using a Fisher's exact test. 

 

 

 

 

 

http://www.bioconductor.org/
http://www.ingenuity.com/
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Statistical analysis of whole animal metabolic rate and muscle data  

A one-way covariance analysis (ANCOVA) was used with SVL as the covariate to 

examine the effect of aestivation on muscle mass and muscle cross-sectional area. Oxygen 

consumption and whole body mass were analysed using one-way ANOVA. All data were 

assessed for normality and constancy of variance and log transformed where appropriate. 

 

RESULTS 

Whole animal metabolic rate and muscle size 

At the end of the 4-month treatment period, the mean rate of oxygen consumption 

(VO2) of control frogs was 57.3 ul O2 
• g-1 • h-1

 whereas in aestivating animals the mean VO2 

was significantly lower at 17.2 ul O2 
• g-1 • h-1 (P<0.001; Table 2.1). Thus, immediately prior 

to muscle tissue sampling, the VO2 of aestivating C. alboguttata was depressed by 

approximately 70% relative to control animals.  Aestivation resulted in a decrease in whole 

body mass, by approximately 27% (P<0.01; Table 2.1). The wet mass of gastrocnemius 

muscle from aestivating frogs (mean = 244.9 mg; SD = 59.5) was approximately 23% less 

that of control animals (mean = 317.2 mg; SD = 109.5), although the effect of aestivation on 

gastrocnemius wet mass was not significant once adjusted for the difference in snout-vent 

length (SVL) between the groups (ANCOVA: full model, P = 0.15; treatment, P = 0.78; 

relationship to SVL, P<0.001). Similarly, whole cross-sectional area of gastrocnemius muscle 

was less in aestivators (~ 35%; mean = 14.8 mm2; SD = 4.1) relative to controls (mean = 22.8 

mm2; SD = 5.8), but was not significant after accounting for SVL (ANCOVA: full model, P = 

0.92; treatment, P = 0.70; relationship to SVL, P<0.001). 
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Table 2.1. Whole animal metabolic rates and body masses for control and four-month 

aestivating Cyclorana alboguttata 

  

VO2 (ul O2 • g
-1 • h-1) 

Body mass (g) 

Initial Final 

    

Control 57.3 ± 38.0 (10) 22.6 ± 7.8 (10)        22.3 ± 7.0 (10) 

Aestivation   17.2 ± 2.8 (9)* 23.2 ± 3.3 (9)           17.0 ± 3.6 (9)† 

Values represent means ± SD; numbers in parentheses represent number of animals. *p= <0.001, significant 

difference between control and aestivating animals. †p= <0.01, significantly different from initial body mass.  

 

Table 2.2. Summary of Cyclorana alboguttata transcriptome assembly 

Total number of reads 400,032,568 

Total number of contigs 68,947 

Maximum contig length 37,233 

Average contig length 861 

N50 1,586 

Total number of bases 59,345,855 

 

De novo assembly and annotation 

Eight separate cDNA libraries were generated from gastrocnemius muscle of male 

frogs. These libraries were tagged and sequenced simultaneously on a single lane of a flow 

cell by Illumina HiSeq technology to produce approximately 400 million reads (available at 

NCBI Sequence Read Archive (SRA) under Accession SRA061647, Bioproject: 

PRJNA177363). Sequenced samples from both control and aestivating frogs were used in the 

de novo transcriptome assembly to maximize representation of expressed genes. A summary 

of the de novo assembly is presented in Table 2.2. There was a large range in contig size and 

as expected, the overall quantity of contigs decreased with increasing contig length (Figure 

2.1). The C. alboguttata contigs were annotated by searching the NCBI non-redundant protein 

databases using BLASTx. Approximately 33%, or 22,695 of the 68,947 total constructed 

contigs were related to proteins in NCBI’s non-redundant database with an E value of <1e-3. 
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Taxa with the most matches were the Western clawed frog (Silurana tropicalis) and African 

clawed frog (Xenopus laevis) (12,162 and 3,531 matches, respectively) where matches 

correspond to the BLAST top hit for each sequence (Figure 2.2A). The majority of the contigs 

showed ≥50% similarity with each sequences’ respective closest BLAST match (Figure 

2.2B). The functional classification based on biological process, molecular function and 

cellular component is shown in Figure 2.3. Among the biological process GO terms, a 

significant percentage of genes were categorized into cellular (23.5%) and metabolic (18.8%) 

processes, whereas many genes were assigned to protein binding (29.6%) and ion binding 

(18.0%) for the molecular functions class. Cell part (35.8%) and membrane-bounded 

organelle (21.8%) represented a large proportion of cellular components. 
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Figure 2.1. Summary of the lengths of Cyclorana alboguttata skeletal muscle contiguous nucleotide sequences 

(contigs). De novo assembly of RNA-seq data using CLC Genomics Workbench generated contigs between 200 

and 37 250 bp in length. 

 

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042605#pone-0042605-g003
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Figure 2.2. Summary of BLAST hit species distribution and similarity of C. alboguttata contigs using a cutoff 

E-value <1e−3 A: Silurana tropicalis and Xenopus laevis, the two best-annotated amphibians, exhibited the most 

matches against C. alboguttata contigs, where matches correspond to the BLAST top hit for each sequence. B: 

summary of the percent sequence similarity of C. alboguttata contigs with NCBI nr protein database. 
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Figure 2.3. Distribution of the GO categories assigned to the C. alboguttata skeletal muscle transcriptome. The 

data from InterPro terms and enzyme classification codes were merged with GO terms using Blast2GO software. 

22, 695 sequences were annotated into three categories: biological process (GO level 4) (A), molecular functions 

(GO level 3) (B) and cellular components (GO level 3) (C). MP, metabolic process; BP, biosynthetic process; 

Comp., compound. 
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RNA Seq Analysis and Differential Gene Expression 

We used the CLC Genomics Workbench RNA Seq tool to map the short sequence 

reads to our C. alboguttata reference transcriptome assembly. Fifty-four percent of reads from 

control animals mapped back to the C. alboguttata reference transcriptome. In the aestivating 

frogs, 62% of reads mapped onto the reference transcriptome. Across all samples the mean 

percentage of reads that mapped non-uniquely was less than 0.2%. We compared expression 

patterns of the annotated contigs (genes) between 4-month aestivating frogs (N = 4) with 

those of control animals (N = 4).  

Before conducting exact tests, read counts were normalised using scaling factors for the 

different library sizes in edgeR. Following normalisation, count distributions for the 8 

libraries were similar in composition (Figure 2.4). With a false discovery rate-adjusted p-

value of 0.05, we found that the expression levels of 533 genes changed significantly between 

aestivating and control frogs, the majority of which were downregulated in aestivators (342 

genes). More than half (54%) of all the differentially-expressed genes demonstrated 

expression changes exceeding fourfold. When considering both p-value and fold change, the 

gene most upregulated in aestivating frogs was a sodium-dependent nucleoside cotransporter 

(slc28a3-like), which plays a role in maintaining cellular nucleoside homeostasis (increased 

150-fold; p = 2.9E-23). Muscle-specific enolase (eno3), which functions in glycolysis and 

also muscle development, was the gene most downregulated (~ 200-fold; p = 3.8E-19). The 

full set of differentially expressed genes is provided in Supplemental Table S1 

(http://physiolgenomics.physiology.org/content/45/10/377.figures-only).  

To gain insight into the signalling pathways and molecular functions that may be 

activated/deactivated in skeletal muscle of C. alboguttata during aestivation, we used IPA to 

perform functional analysis of genes that were differentially expressed during aestivation as 

determined by EdgeR. Analysis of the entire set of these genes showed that the most 

significantly overrepresented canonical pathways were glycolysis/gluconeogenesis, adherens 

junction signalling and remodelling, and nuclear factor E2-related factor 2 (NRF2)- mediated 

oxidative stress response (Figure 2.5). A subset of these genes is presented in Table 2.3, and 

several of these have previously been shown to be differentially regulated during muscle 

remodelling. Skeletal muscle exhibits highly specialized subsarcolemmal adherens junctions, 

such as myotendinous and neuromuscular junctions, and also costameres which couple 

myofibrils with the sarcolemma. Genes coding for the muscle contractile proteins actin and 

myosin were suppressed during aestivation, as were vinculin and alpha actinin which bind to 

http://physiolgenomics.physiology.org/content/45/10/377.figures-only
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and cross-link with actin filaments. In contrast, components of the microtubule cytoskeleton 

(tubulin isoforms) were upregulated. Nrf2 is a transcription factor which binds to the 

antioxidant response element to initiate transcription of target genes involved in antioxidant 

defence systems, including superoxide dismutase, catalase, peroxiredoxins, and genes 

participating in glutathione synthesis and function (Hur and Gray, 2011). Several genes 

associated with the Nrf2 oxidative stress response were induced in aestivating muscle, 

including MafK transcription factor and kelch-like ECH-associated protein 1, both of which 

directly interact with Nrf2 (Table 2.3). The regulatory subunit of glutamate cysteine ligase, 

glutathione S-transferase omega 2, peroxiredoxin 1, DnaJ/heat shock protein 40, transitional 

endoplasmic reticulum ATPase and ferritin showed increased expression. However, 

glutathione S-transferase P1 and another DnaJ/heat shock protein 40 (subfamily B, member 5) 

were found to be suppressed.  

When IPA was used to solely analyse all the downregulated genes (Figure 2.6) the 

molecular functions significantly overrepresented during aestivation were amino acid 

metabolism, small molecule biochemistry, carbohydrate metabolism and lipid metabolism. 

Given the overrepresentation of the energy metabolism categories, all energy metabolism 

genes that were identified by IPA are shown in Table 2.4. Although not detected by IPA, we 

also identified two genes that were downregulated in aestivating muscle and are known to be 

involved in myogenesis and muscle growth. These were insulin-like growth factor binding 

protein-like 1 (igfbpl1) and myostatin (also known as growth-differentiation factor 8; mstn) 

(Table 2.4). 

Among the upregulated genes detected using IPA (Figure 2.6) nucleic acid 

metabolism, small molecule biochemistry, cell death and survival and DNA replication, 

recombination and repair were found to be overrepresented. A summary of the genes 

implicated in these processes have been provided in Table 2.5. Genes associated with pro-

apoptotic signalling included tumor necrosis factor receptor superfamily member 6 precursor 

(also known as Fas receptor; fas), ras association (RalGDS/AF-6) domain family member 1 

(rassf1), apoptosis-inducing factor 2 (aifm2) and apoptosis-enhancing nuclease (aen). There 

was elevated expression of genes with cytoprotective functions, such as vesicular over-

expressed in cancer prosurvival protein 1 (vopp1), survivin (birc5.2-b), heat shock 70 kDa 

protein 5 (hspa5; aka 78 kDa glucose-regulated protein), heat shock protein 90kDa beta 

member 1 (hsp90ab1; 94 kDa glucose-regulated protein) and small heat shock protein (family 

B) member 11 (hspb11). Serine/threonine protein kinase Chk1 (chek1), which is chiefly 
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responsible for cell cycle arrest in response to DNA damage or replication stress, and Cdk2, 

another gene critical in controlling the cell cycle, were upregulated during aestivation. Also of 

interest was the increased expression of genes coding for DNA repair proteins, tonsoku-like 

protein (tonsl), DNA mismatch repair protein MSH6 (msh6), nei endonuclease VIII-like 3 

(neil3), and genes that play a role in remodelling of chromatin (rbbp4; smarca4; smarca5).  

 

 

Figure 2.4. Boxplots of the number of RNA Seq reads obtained from each C. alboguttata cDNA library. A: The 

raw total number of read counts (on a log2 scale) before normalisation; B: number of read counts (on a log2 

scale) following TMM normalisation in EdgeR. Shaded boxes are aestivating animals whereas open boxes 

represent control frogs. 
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Figure 2.5. Canonical pathways found to be overrepresented in skeletal muscle in aestivating C. alboguttata as 

determined by Ingenuity Pathways Analysis (IPA). The y axis represents the –log of the P value given during the 

analysis; thus, larger values equate to more significant regulation of a pathway. 
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Table 2.3. Log2 fold-changes of differentially expressed genes associated with adherens junction signalling 

and remodelling, and the Nrf2-mediated oxidative stress response in gastrocnemius muscle of burrowing 

frogs (C. alboguttata). 

 Symbol Top Hit 

Accession No. 

% Similarity P value Log2 fold 

change 

Adherens junction signalling 

 

Actin, alpha cardiac muscle 1-

like isoform 2 

LOC100566451 XP_003228734 99 3.0E-07 -4.3  

Actin, aortic smooth muscle 

isoform 2 

acta2 XP_003363513 100 1.9E-06 -4.2 

Alpha-muscle actin, partial actc1 AAA29846 100 1.3E-06 -3.8 

Beta-actin, partial actb ABK88258 97 7.6E-06 -2.8 

Myosin heavy chain IIa myh3 NP_001006915 94 1.0E-06 -5.1 

Myosin 4-like LOC100492956 XP_002937039 92 6.5E-07 -5.0 

Myosin, light chain 1, alkali; 

skeletal, fast 

myl1 NP_988954 98 1.4E-05 -3.7 

Actinin, alpha 2 actn2 NP_001005053 96 6.3E-05 -2.1 

Actinin, alpha 3 actn3 NP_001135513 98 6.1E-06 -2.7 

Vinculin vcl Q04615 92 9.6E-04 -2.0 

Tubulin alpha-1C chain-like, 

partial 

LOC100701978 XP_003460440 100 3.7E-05 2.4 

Tubulin subunit alpha LOC100135051 AAW30622 100 5.8E-06 2.4 

Tubulin beta-5 chain tubb6 NP_001026183 99 2.3E-03 1.9 

 

Nrf2 oxidative stress response 

 

Transcription factor MafK-

like 

LOC100488557 XP_002934281 97 1.6E-03 1.5 

Kelch-like ECH-associated 

protein 1a 

keap1a NP_878284 78 4.9E-04 2.1 

Glutamate-cysteine ligase 

regulatory subunit 

gclm ACO52032 89 1.2E-04 2.0 

Glutathione S-transferase 

omega 2 

gsto2 NP_001005086 77 5.0E-04 1.9 

Similar to peroxiredoxin 1 srxn1 XP_002193267 88 4.2E-04 1.9 
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DnaJ (Hsp40) homolog, 

subfamily A, member 4, gene 

1 

dnaja4.1 NP_001072848 89 1.7E-04 2.3 

Ferritin, heavy polypeptide 1 fth1 NP_989008 87 1.4E-05 2.9 

Transitional endoplasmic 

reticulum  ATPase  

vcp NP_001005677 99 2.8E-05 2.2 

Glutathione S-transferase P 1 gstp1 P81942 91 1.0E-03 -1.7 

DnaJ (Hsp40) homolog, 

subfamily B, member 5 

dnajb5 NP_001088287 95 1.4E-03 -1.6 

Negative fold changes indicate downregulation of genes in frogs aestivating for 4-month relative to controls, 

whereas positive fold changes indicate upregulation of genes.  
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Figure 2.6. Molecular/cellular functions found to be significantly overrepresented during aestivation as 

determined by Ingenuity Pathways Analysis (IPA). A: Among the genes that were upregulated in muscle of 

aestivating frogs, those involved in nucleic acid metabolism, small molecule biochemistry, cell death and 

survival, and DNA replication, recombination and repair were overrepresented. B: Among the downregulated 

genes, those implicated in amino acid metabolism, small molecule biochemistry, carbohydrate metabolism and 

lipid metabolism were found to be overrepresented. Data are plotted as the –log of the P value given during the 

analysis, meaning larger values correspond to more significant activation/deactivation of a cellular functional 

group. 
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Table 2.4. Log2 fold-changes of differentially expressed genes involved in both energy metabolism and 

regulation of muscle size/growth in gastrocnemius muscle of burrowing frogs (C. alboguttata).  

 Symbol Top Hit Accession 

No. 

% Similarity P-value Log2 fold 

change 

Carbohydrate metabolism (glycolysis) 

Phosphoglucomutase 1 pgm1 NP_001080172 96 7.8E-09 -2.9 

Glucose-6-phosphate 

isomerase-like 

gpi CAC83783 98 2.8E-07 -3.5 

6-phosphofructokinase, 

muscle type 

pfkm AAI68800 95 4.1E-06 -2.3 

Aldolase A, fructose-

bisphosphate 

aldoa AAF60276 63 5.2E-06 -2.4 

Fructose-1,6-bisphosphatase 2 fbp2 NP_001167494 97 2.6E-09 -3.2 

Triosephosphate isomerase tpi1 NP_001080476 96 6.5E-12 -4.4 

Phosphoglycerate kinase 1 pgk1 NP_001016545 97 2.6E-04 -1.7 

Phosphoglycerate mutase 2 

(muscle) 

pgam2 NP_001080086 96 3.1E-11 -4.1 

Pyruvate kinase, muscle 

isoform 1 

pkm2 NP_001016470 97 1.0E-07 -2.6 

L-lactate dehydrogenase A 

chain 

ldhb-b NP_001081050 82 1.9E-07 -2.9 

Enolase 3 eno3 NP_001080346 97 3.8E-19 -7.7 

 

Lipid metabolism 

Peroxisome proliferator-

activated receptor gamma 

coactivator 1-alpha-like 

LOC100491667 XP_002936759 90 5.6E-05 -2.5 

Peroxisome proliferator-

activated receptor delta 

ppard NP_001081310 85 2.4E-03 -1.6 

Protein kinase, AMP-

activated, alpha 2 catalytic 

subunit 

prkaa2 NP_001135554 96 5.8E-04 -1.9 

Lipase, hormone-sensitive lipe NP_001124413 85 5.8E-04 -2.6 

Adiponectin, C1Q and 

collagen domain containing 

precursor 

adipoq NP_001005793 83 3.7E-08 -2.8 

Alcohol dehydrogenase 1 adh1b P22797 93 1.8E-04 -2.6 

Aldehyde dehydrogenase 

class 1 

aldh1a1 BAA76411 93 5.5E-04 -1.8 
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Aldehyde oxidase-like LOC100495429 XP_002937768 91 4.3E-06 -2.4 

Aldo-keto reductase family 1, 

member C1  

akr1c1 NP_001087453 87 3.6E-11 -4.0 

Glutaryl-CoA dehydrogenase gcdh NP_001016289 94 6.3E-04 -1.5 

 

Amino acid metabolism 

Branched chain amino-acid 

transaminase, cytosolic-like 

bcat1 XP_003202557 82 5.9E-06 -3.3 

Branched chain amino-acid 

transaminase 2, mitochondrial 

bcat2 NP_001006740 89 1.7E-07 -2.7 

Branched chain keto 

acid dehydrogenase 

E1, beta polypeptide 

bckdhb NP_001108310 93 8.4E-04 -1.6 

Isovaleryl-CoA 

dehydrogenase 

ivd NP_001011380 93 4.8E-04 -1.6 

Methylcrotonoyl-CoA 

carboxylase 2 (beta) 

mccc2 NP_001025656 96 7.8E-04 -1.5 

3-hydroxyisobutyrate 

dehydrogenase 

hibadh NP_001025604 99 8.0E-05 -1.8 

Aldehyde dehydrogenase 6 

family, member A1 

aldh6a1 NP_001089889 96 6.6E-04 -1.5 

3-oxoacid CoA transferase 1 oxct1 NP_001083240 93 5.9E-04 -1.6 

Aminoadipate-semialdehyde 

synthase 

aass NP_001011437 95 1.2E-06 -2.7 

α-aminoadipic semialdehyde 

dehydrogenase 

aldh7a1 NP_001087698 98 4.7E-04 -1.8 

Proline dehydrogenase 

(oxidase) 1 

prodh NP_001089485 96 5.7E-09 -4.8 

Delta-1-pyrroline-5-

carboxylate dehydrogenase, 

mitochondrial 

aldh4a1 NP_001096184 93 1.2E-05 -2.1 

 

Ornithine aminotransferase  oat NP_001086690 97 2.0E-08 -3.7 

Betaine--homocysteine S-

methyltransferase 1 

bhmt NP_001088416 97 1.2E-05 -2.9 

Cystathionine-beta-synthase cbs NP_001008171 95 1.1E-03 -1.5 

Dimethylglycine 

dehydrogenase, 

mitochondrial-like 

dmgdh XP_002940239 92 8.9E-07 -2.8 

Uncharacterized protein 

LOC394486 

MGC75760 NP_988891 82 1.9E-04 -2.2 

Parvalbumin beta pvalb ACF23534 95 2.0E-06 -5.1 
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Muscle creatine kinase ckm NP_001080073 80 4.0E-05 -3.0 

Glycine amidinotransferase, 

mitochondrial 

gatm NP_988971 98 2.0E-02 -2.1 

Glutamine synthetase glul AAH64190 96 8.6E-07 -4.2 

Aspartate aminotransferase 1 got1 BAM10994 98 3.5E-04 -2.2 

Aspartate aminotransferase, 

mitochondrial precursor 

got2 NP_001016933 96 6.2E-04 -1.6 

 

Amino acid transport 

Multidrug resistance-

associated protein 1-like 

LOC100493037 XP_002932264 89 4.1E-05 -2.3 

Solute carrier family 3 

(activators of dibasic and 

neutral amino acid transport), 

member 2 

slc3a2 NP_001079446 72 2.3E-06 -3.3 

Solute carrier family 7 (amino 

acid transporter light chain, L 

system), member 8 

slc7a8 NP_988983 98 1.1E-04 -2.5 

Solute carrier family 25 

(mitochondrial carrier; 

adenine nucleotide 

translocator), member 4 

slc25a4 NP_988909 96 9.6E-04 -1.6 

Solute carrier family 25, 

member 12 

slc25a12 NP_001016920 97 3.4E-04 -1.6 

Large neutral amino acids 

transporter small subunit 3 

slc43a1 NP_001186840 89 6.1E-06 -2.9 

Low affinity cationic amino 

acid transporter 2-like 

LOC100485546 XP_002940493 91 6.2E-09 -3.2 

 

Regulation of muscle size/growth (not detected by IPA) 

Insulin-like growth factor 

binding protein-like 1 

igfbpl1 ACO51872 90 7.5E-12 -4.7 

Myostatin mstn XP_002931568 91 4.0E-06 -2.9 

Negative fold changes indicate downregulation of genes in frogs aestivating for 4-month relative to controls. 
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Table 2.5. Log2 fold-changes of differentially expressed genes implicated in cell death and/or survival, and 

DNA replication, recombination and repair in gastrocnemius muscle of burrowing frogs (C. alboguttata).  

 Symbol Top Hit 

Accession No. 

% Similarity P-value Log2 fold 

change 

Cell death and survival 

Tumor necrosis factor 

receptor superfamily member 

6 precursor 

fas NP_001009314 56 2.4E-04 1.9 

Ras association (RalGDS/AF-

6) domain family member 1 

rassf1 NP_001090617 92 1.6E-04 2.0 

Apoptosis-inducing factor 2 aifm2 NP_001135491 88 2.5E-05 2.6 

Apoptosis-enhancing nuclease aen NP_001072399 70 6.2E-04 1.9 

Baculoviral IAP repeat-

containing protein 5.2-B 

birc5.2-b NP_001082412 56 8.7E-08 3.7 

Vesicular overexpressed in 

cancer prosurvival protein 1 

vopp1 NP_001088316 88 6.9E-05 2.5 

78 kDa glucose-regulated 

protein-like 

hspa5 XP_002941690 97 6.3E-05 2.0 

Heat shock protein 90kDa 

beta (Grp94), member 1 

precursor 

hsp90ab1 NP_001039228 96 6.6E-05 1.9 

Heat shock protein family B 

(small), member 11 

hspb11 NP_001037976 85 1.5E-03 1.6 

Heat shock 105kDa/110kDa 

protein 1 

hsph1 ABE65386 89 1.9E-06 2.8 

Fatty acid synthase fasn AAA82106 87 2.0E-05 3.0 

HIV-1 Tat interactive protein 

2, 30kDa 

htatip2 NP_001089518 93 2.3E-04 1.9 

Suppressor of cytokine 

signalling 3 

socs3 NP_001005696 93 3.2E-02 1.6 

 

DNA replication, recombination & repair 

Serine/threonine protein 

kinase Chk1 

chek1 Q6DE87 92 1.1E-08 4.0 

Cell division protein kinase 2 cdk2 ACO51934 98 1.2E-07 2.8 

Tonsoku-like protein tonsl XP_002944768 76 8.2E-04 2.0 

DNA mismatch repair protein 

Msh6 

msh6 NP_001089247 94 2.6E-03 1.6 

Nei endonuclease VIII-like 3 neil3 NP_001017201 75 9.3E-05 2.0 
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Remodelling of chromatin 

Similar to retinoblastoma-

binding protein 4 

RBBP4 AAH15123 79 9.1E-05 2.1 

Smarca4 protein  smarca4 AAH23186 96 1.2E-04 2.3 

Smarca5 protein smarca5 AAH21922 98 2.3E-04 2.2 

Positive fold changes indicate upregulation of genes in frogs aestivating for 4-month relative to controls.  

 

DISCUSSION 

Throughout aestivation C. alboguttata are immobilised within a cocoon of shed skin, 

and do not eat, drink or show any signs of activity. The inhibition of muscle atrophy in C. 

alboguttata is likely to be due to a number of factors including increased antioxidant defences 

relative to oxidant production (Hudson et al., 2006), maintenance of ‘random’ acetylcholine 

release at neuromuscular junctions (Hudson et al., 2005), and metabolic depression at the 

tissue and whole animal level (Hudson and Franklin, 2002b; Young et al., 2011). Despite the 

results of these and other studies, the molecular and cellular mechanisms responsible for the 

inhibition of skeletal muscle disuse atrophy in natural models have not been fully 

characterised. Transcriptome profiling of animals that experience natural periods of muscle 

immobilisation or inactivity (i.e. aestivators and hibernators) helps to provide a better 

molecular- and systems-level understanding of how these organisms resist cellular 

degenerative changes and retain locomotor performance upon arousal. In the following 

discussion, particular emphasis is placed on how the observed gene expression changes 

observed in our RNA Seq study pertain to the inhibition of skeletal muscle atrophy that is 

characteristic of aestivating C. alboguttata.  

Adherens junction remodelling   

We chose to analyse gene expression in gastrocnemius muscle of 4-month aestivating 

burrowing frogs, as previous analyses demonstrated a lack of muscle atrophy in the force-

producing hindlimb muscles until 6-9 months of aestivation (Hudson et al., 2006; Mantle et 

al., 2009). In the current study genes encoding myosin and actin isoforms, as well as α-actinin 

and vinculin were significantly downregulated in muscle of aestivating animals. Myosin 

heavy chain and actin proteins are among the most important determinants of muscle force 

transduction, whereas α-actinin and vinculin regulate organization of the actin cytoskeleton. 
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Transcription of actin and myosin isoforms appears to not be required for the maintenance of 

muscle contractile function when C. alboguttata emerges from aestivation. It is conceivable 

that burrowing frogs might remodel and preserve existing muscle contractile proteins in the 

early stages of aestivation, precluding the requirement to transcribe actin and myosin genes in 

the middle and latter stages of dormancy. These findings are consistent with other studies of 

various species’ of hibernating mammal which have shown that myosin heavy chain protein 

expression is often maintained despite prolonged muscle inactivity (Rourke et al., 2006; 

Rourke et al., 2004). While muscle contractile activity ceases during dormancy, skeletal 

muscle is also challenged to retain structural integrity despite disuse and starvation. 

Aestivating muscle exhibited increased expression of alpha and beta tubulin transcripts, 

suggesting that the reinforcement of cellular and organelle integrity is of increased importance 

in the gastrocnemius during aestivation. Upregulation of tubulin isoforms is in stark contrast 

to the situation during mammalian disuse remodelling (Sakurai et al., 2005), further 

supporting the unusual muscle inactivity response seen in C. alboguttata.  

Nrf2-mediated oxidative defence     

Muscle disuse atrophy in mammalian models has been linked to an accumulation of 

reactive oxygen species (ROS), which causes oxidative stress and damage to skeletal muscle 

tissue (Powers et al., 2007). The accrual of ROS-induced oxidation products is positively 

correlated with oxygen consumption in a range of species (Foksinski et al., 2004). As a result, 

the metabolic depression characteristic of dormant animals has been proposed to lead to a 

lower rate of ROS production and, in conjunction with a relative increase in antioxidant 

levels, protect the muscles of hypometabolic animals from significantly atrophying (Hudson 

and Franklin, 2002b). IPA analysis identified several differentially expressed genes related to 

the Nrf2-mediated oxidative stress response. Nrf2 activity is sensitive to the intracellular 

concentration of ROS and its induction is significant in protecting cells against oxidative 

stress. The upregulation of genes under Nrf2 control (gclm, gsto2, srxn1, dnaja4.1, fth1) 

suggests persistent bolstering of antioxidant defences in skeletal muscle of C. alboguttata 

throughout aestivation, which represents a potential means of reducing muscle wasting. Our 

expression data are supported by previous studies of C. alboguttata which have shown that 

transcription of antioxidant enzymes (catalase and glutathione peroxidase 4) and total 

antioxidant capacity are maintained at control levels in skeletal muscle during aestivation 

(Hudson et al., 2006; Mantle et al., 2009). Similar results have been found in aestivating toads 

(Scaphiopus couchii) indicating that endogenous regulation of antioxidants may reduce the 
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susceptibility of muscle tissue to the effects of oxidative damage (Grundy and Storey, 1998). 

In typical mammalian muscle disuse models the opposite trend has been observed, with a 

number of studies having documented skeletal muscle wasting despite the induction of 

defense mechanisms against oxidative stress (including increased Nrf2 trancription) (Brocca 

et al., 2012; Derbre et al., 2012; Lawler et al., 2003). However, a more definitive 

understanding of the role for the Nrf2-regulated antioxidant response in aestivating C. 

alboguttata will require additional research, as we found other cytoprotective genes (gstp1, 

dnajb5) regulated by Nrf2 to be suppressed. Moreover, keap1a, a negative regulator of Nrf2-

dependent transcription, showed increased expression in aestivating muscle.  

Energy metabolism  

The pronounced depression of metabolism in muscle tissue of aestivating frogs 

(Flanigan et al., 1991; Kayes et al., 2009a) would necessitate suppression of both glycolytic 

and aerobic energy pathways.  Our data indicate that downregulation of glycolysis in 

aestivating C. alboguttata is achieved via suppression of transcription. Previous studies on a 

variety of dormant animals have demonstrated that intrinsic control of carbohydrate 

metabolism is often coordinated via post-translational modification (Storey and Storey, 2010), 

and it is possible that such mechanisms are also at play in aestivating burrowing frogs. 

Several genes (ppard, prkaa2, lipe, adipoq, adh1b, aldh1a1, akr1c1, gcdh, aox1) implicated 

in the oxidation of lipids were found to be underexpressed in aestivators. The downregulation 

of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) is particularly 

noteworthy, as it plays a vital role in metabolic reprogramming in response to nutrient supply. 

PGC-1α regulates mitochondrial biogenesis, and its induction leads to enhanced capacity for 

fatty-acid β-oxidation and mitochondrial oxidative metabolism. Enhanced expression of PGC-

1α also occurs during muscular exercise (Pilegaard et al., 2003). Although downregulation of 

PGC-1α might be expected during muscle disuse, the overall suppression of genes implicated 

in oxidation of lipids is somewhat surprising, as fatty acid β oxidation is enhanced in the 

skeletal muscle transcriptome and proteome of hibernating mammals (Hindle et al., 2011; 

Williams et al., 2005). Lipids are still likely to be an essential fuel source during periods of 

aestivation and/or fasting in C. alboguttata, although the liver and fat bodies are the most 

likely organs contributing to fatty acid metabolism, rather than skeletal muscle (Jones, 1980). 

Dramatic downregulation of energy metabolism pathways have been documented in clinical 

models of muscle disuse (Brocca et al., 2012; Chen et al., 2007). Evidence suggests there is a 

shift in fuel metabolism away from fat oxidation towards an increased reliance on glucose, 



46 

 

and that fat accumulates in atrophied muscles in place of muscle protein (Stein and Wade, 

2005). In these models these changes are likely to negatively affect fatigue resistance, the 

recovery process and locomotor performance.  

Transcriptional suppression of energy metabolism in muscle of aestivating C. 

alboguttata is clearly related to conservation of energy and body fuel, and appears to have no 

significant impact on locomotor condition (Hudson and Franklin, 2002a).  Rather, metabolic 

depression at the whole-animal, tissue and molecular levels is beneficial for aestivating frogs, 

as hypometabolism extends endogenous lipid stores and postpones the need to catabolise 

muscle protein. Although skeletal muscle is a potential energy source, protein degradation 

must be avoided so that aestivating frogs can preserve skeletal muscle structure and strength 

in preparation for arousal. This is supported in our study by the downregulation of an 

abundance of genes functioning in amino acid metabolism (particularly catabolism) and 

transport, and in a previous examination which showed that skeletal muscle protein content is 

maintained in burrowing frogs despite prolonged aestivation (Mantle et al., 2010). These 

results are in agreement with previous work on black bears, which showed that both protein 

synthesis and degradation are reduced in the disused muscles of hibernating animals (Lohuis 

et al., 2007a). In contrast to aestivators and hibernators, the loss of muscle protein associated 

with typical models of muscle disuse atrophy is known to be due to a concurrent decline in 

the rate of protein synthesis and increase in the rate of protein degradation (Jackman and 

Kandarian, 2004). 

Myogenesis and muscle growth 

 Throughout aestivation it is important that cells repress and reprioritise ATP-

expensive processes, such as cell growth and proliferation (Storey and Storey, 2010), since 

burrowing frogs must sustain life for indefinite periods using endogenous fuel reserves alone. 

Although not detected by IPA, we noted that the gene for insulin-like growth factor binding 

protein-like 1 (igfbpl1) was significantly downregulated in aestivating frog muscle. In blood 

and tissues, IGF-binding proteins play an important role in the binding of IGF-1, a peptide 

which stimulates growth and target cell proliferation. Circulating levels of IGF-binding 

protein-1 are, in part, thought to regulate the bioavailability of IGF-1 (Lee et al., 1997). 

Furthermore, resistance exercise/increased loading in skeletal muscle stimulates the 

expression of IGF-1 (Devol et al., 1990). The signal transduction pathway induced by IGF-1 

results in skeletal muscle growth and hypertrophy by activating the phosphatidylinositol 3-

kinase/protein kinase-B pathway, which subsequently stimulates downstream signalling 
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pathways involved in translation and protein synthesis (Rommel et al., 2001). The 

downregulation of igfbpl1 in muscle of C. alboguttata suggests that pathways promoting cell 

growth and proliferation are suppressed during aestivation. Though they have received little 

attention during aestivation, IGF-1 and IGF-binding proteins have been examined in sera of 

hibernating mammals throughout winter hibernation (Blumenthal et al., 2011; Schmidt and 

Kelley, 2001). Both studies demonstrated that serum levels of IGF-1 and IGF-binding protein 

3 were substantially reduced in winter hibernating animals compared with euthermic controls. 

These investigations combined with our data indicate that the inhibition of pathways 

promoting tissue growth is a vital, conserved feature of dormancy.  

Myostatin (also known as growth-differentiation factor 8; mstn), which is known to 

suppress muscle growth by inhibiting myocyte proliferation and differentiation (Elliott et al., 

2012), was also downregulated during aestivation. Blocking of the myostatin pathway using 

various techniques has been shown to lead to muscle hyperplasia and hypertrophy 

(McPherron et al., 1997; Zhu et al., 2000). Myostatin is suspected as having a role in muscle 

atrophy during disuse with some studies demonstrating elevated myostatin mRNA and protein 

abundances in disused muscles (Reardon et al., 2001; Wehling et al., 2000). In addition, 

experimental inhibition of myostatin in 14-day unloaded mouse skeletal muscles significantly 

decreases the extent of muscle atrophy (Murphy et al., 2011). In the current study myostatin 

gene expression was decreased almost threefold in gastrocnemius of aestivating frogs and 

may be an important regulatory mechanism for preserving muscle mass, despite extended 

inactivity and fasting. In support of these findings, soleus and diaphragm muscles of 

hibernating ground squirrels were shown to be resistant to disuse atrophy, and coincided with 

a 50% reduction in myostatin gene expression (Nowell et al., 2011). However, additional 

work is required to define the actual role that myostatin plays in hibernating models of 

starvation and muscle disuse, since myostatin mRNA and protein abundance has been shown 

to increase, decrease, or remain unchanged depending on the species, muscle type and/or 

stage of dormancy examined (Brooks et al., 2011; Nowell et al., 2011). 

Cell death and survival 

The coordinated induction of genes associated with cell death and survival is a 

prominent feature of the transcriptome of aestivating C. alboguttata. Apoptosis, or 

programmed cell death, can be induced via extracellular (extrinsic) or intracellular (intrinsic) 

pathways. The extrinsic pathway is activated by specific death receptors, whereas the intrinsic 

pathway involves the release of cytochrome c from mitochondria in response to stressors 
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including DNA damage and nutrient or energy depletion (Rossi and Gaidano, 2003). Both the 

extrinsic and intrinsic pathways of apoptosis converge into a common pathway causing 

activation of the executioner proteases known as caspases. Caspases subsequently degrade 

various cell substrates, leading to DNA fragmentation, chromatin condensation, cell shrinkage 

and cell death (Rossi and Gaidano, 2003). Apart from their role in the intrinsic pathway of 

apoptosis, mitochondria also function in a pathway of caspase-independent apoptosis, which 

may be effected by apoptosis-inducing factor and related pro-apoptotic proteins (Susin et al., 

1999; Wu et al., 2002; Xie et al., 2005). However, caspase-independent apoptosis in vivo has 

only been documented in neurons, for example during transient cerebral ischemia and 

traumatic brain injury (Cao et al., 2003; Zhang et al., 2002).  

Increased expression of genes involved in both the intrinsic and extrinsic  pro-

apoptotic pathways in skeletal muscle of aestivating frogs suggests that the events leading to 

cell death are occurring, which would result in cellular degradation and ultimately manifest as 

atrophy. However, increased expression of pro-apoptotic genes during aestivation was 

paralleled by induction of a number of anti-apoptotic mechanisms. Two of these genes, 

survivin (birc5) and vesicular over-expressed in cancer prosurvival protein 1 (vopp1), are of 

particular interest as both are overexpressed in many human tumours and as a consequence 

are associated with conferring a prosurvival cellular phenotype (Baras and Moskaluk, 2010; 

Sah et al., 2006). Survivin belongs to the family of inhibitor of apoptosis proteins (IAP) and is 

widely expressed during embryonic development (when apoptosis is widespread) but has 

been reported to be low in most terminally differentiated tissues (Sah et al., 2006; Song et al., 

2003). In human systems interference of both survivin and VOPP1 function results in an 

increase in apoptosis and suppression of tumour growth (Baras et al., 2011; Sah et al., 2006). 

Similar to our study, cellular actions that would suppress pro-apoptotic signalling have been 

demonstrated in dormant snails (Ramnanan et al., 2007). The Bcl-2-associated death promoter 

(BAD) is a pro-apoptotic protein in its dephosphorylated form, but when phosphorylated at 

serine 136 BAD is prevented from forming a pro-apoptotic interaction with another Bcl-2 

family member, Bcl-XL thereby promoting cell survival (Datta et al., 2000). Ramnanan et al. 

(Ramnanan et al., 2007) reported an almost two-fold increase in levels of phospho-BAD in 

foot muscle of the aestivating snails. A role of apoptosis in mammalian models of muscle 

disuse is evidenced by the observation that pro-apoptotic mechanisms are activated during 

hindlimb immobilisation in rats, but then subside during the muscle recovery period (Vazeille 

http://en.wikipedia.org/wiki/Apoptosis
http://en.wikipedia.org/wiki/Protein
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et al., 2008). Thus, survivin and VOPP1 may represent key mechanisms that limit apoptosis 

and aid in the long term preservation of muscle tissue during aestivation in C. alboguttata.  

Several stressors, including changes in redox status and glucose starvation, can result 

in the accrual of misfolded and/or unfolded proteins within cells. Cells respond via initiation 

of molecular chaperones (e.g., heat shock proteins) that assist in the reassembly and 

stabilization of macromolecular structures, thereby preventing aggregation of denatured 

proteins during cell stress (Malhotra and Kaufman, 2007). Aestivating muscle of C. 

alboguttata exhibited increased expression of a number of genes encoding various heat shock 

proteins. Consistent with our gene expression data, a recent study demonstrated an increase in 

levels of heat shock 70 kDa protein (HSP70) in the gastrocnemius of C. alboguttata during 

aestivation (Young et al., 2013). Interestingly, there is a decline in expression of various HSPs 

in atrophied muscles of rats subjected to hindlimb unloading, which is predicted to be 

associated with impairment of muscle mass recovery (Lawler et al., 2006; Sakurai et al., 

2005; Stevenson et al., 2003). Furthermore, a recent study demonstrated that overexpression 

of HSP70 in mouse skeletal muscle immobilised for 7 days resulted in improved contractile 

performance during the recovery period relative to wild-type controls, indicating that HSP70 

improved recovery of skeletal muscle following disuse atrophy (Miyabara et al., 2012). In C. 

alboguttata the upregulation of genes involved in refolding and stabilising proteins in 

gastrocnemius muscle may be important regulatory mechanisms contributing to the 

preservation of muscle contractile performance upon emergence from aestivation. 

DNA replication, recombination and repair 

DNA damage may occur during muscle atrophy, as levels of DNA fragmentation (a 

marker for apoptosis) were found to be elevated in skeletal muscles of rats subjected to 

hindlimb suspension (Leeuwenburgh et al., 2005). Cells exposed to DNA stressors induce 

defensive pathways by activating multiple genes involved in processes such as homologous 

recombination (HR), nucleotide excision repair (NER), nucleotide mismatch repair (MMR), 

and cell cycle checkpoint control. DNA damage and apoptosis are intimately linked, as 

widespread and irreversible DNA damage often leads to cell suicide. Very little research has 

been done on the mechanisms that may maintain genomic stability in hypometabolic animals. 

In the current study, we found increased expression of genes associated with the NER, MMR 

and cell cycle checkpoint control in muscle of aestivating frogs, which suggests that 

transcriptional regulation of DNA repair plays a critical role in the dormant state. Increased 
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tolerance to DNA damage during aestivation would presumably lead to increased rates of cell 

survival.  

Chromatin influences access to DNA, and a number of genes implicated in chromatin 

remodelling showed increased mRNA levels in aestivating muscle. These results are in 

accordance with the requirement to tightly control transcription of specific genes during 

dormancy. In addition, recent evidence suggests that chromatin remodelling plays important 

roles during NER and HR (Lans et al., 2012). For example, chromatin frequently serves as a 

docking or signalling site for DNA repair and signalling proteins. The induction of genes 

functioning in cell cycle control and growth arrest, and DNA and chromatin remodelling and 

repair is consistent with the ubiquitously conserved cellular stress response (Kultz, 2005), and 

might be important for maintaining genome integrity during aestivation. 

Conclusions 

The green-striped burrowing frog, C.alboguttata, exhibits an atypical atrophic 

response to extended immobilisation and fasting during aestivation. In the present study we 

identified a number of transcriptional mechanisms that may contribute towards the relative 

inhibition of skeletal muscle atrophy in aestivating C. alboguttata. Our results suggest that 

cytoskeletal remodelling and induction of antioxidant defence genes are important for the 

maintenance of muscle integrity. The suppression of energy metabolism in immobilised 

muscle of aestivating frogs indicates utilisation of whole body, rather than local, fuel stores 

throughout aestivation. In particular, avoidance of amino acid catabolism is consistent with 

the preservation of muscle protein and function. Proapoptotic and antiapoptotic factors are 

coexpressed and would appear to compete for promotion or inhibition of apoptotic muscle 

fiber degradation. A novel finding of this study was the induction of prosurvival genes, 

birc5.2-b and vopp1. Such anti-apoptotic mechanisms are likely to be important in countering 

pro-apoptotic machinery and preventing muscle fibre apoptosis. Combined with upregulation 

of molecular chaperones and DNA repair mechanisms, aestivating burrowing frogs appear to 

possess the appropriate gene expression responses with which to inhibit atrophy and maintain 

tissue viability. Such modulation of gene expression is likely to be important in contributing 

to the preservation of muscle mass and integrity during aestivation, and the ability of C. 

alboguttata to quickly emerge from their subterranean burrows upon summer rainfall. The 

associations among various gene expression patterns shown here using RNA Seq will provide 

new directions for future studies of the regulation of atrophy in both natural and clinical 

models of muscle disuse. 
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Chapter 3 

Decreased hydrogen peroxide production and mitochondrial respiration in skeletal 

muscle but not cardiac muscle of the green-striped burrowing frog, a natural model of 

muscle disuse  

INTRODUCTION 

Aestivation is a state of dormancy that enables numerous animals (invertebrates, fish, 

frogs and reptiles) to survive under desiccating conditions for extended periods of time. In 

arid and semi-arid environments where food and water are often limiting, aestivating animals 

promote survival by coordinately suppressing a suite of physiological and biochemical 

processes (e.g. hypophagia, hypoventilation, hypometabolism), decreasing locomotor activity, 

and persisting solely on endogenous energy stores (Storey and Storey, 1990). Green-striped 

burrowing frogs (Cyclorana alboguttata) survive in drought-affected areas of Australia by 

burrowing underground, shedding a waterproof cocoon, and aestivating for extended periods 

(months to years). Although the cocoon limits evaporative water loss, it also secondarily 

hinders skeletal muscle movement as the hindlimbs are completely immobilised. Despite this 

prolonged muscle inactivity, skeletal muscle atrophy has been shown to be minimal and 

muscle functional capacity maintained in frogs following aestivation (Hudson and Franklin, 

2002a; Mantle et al., 2009; Symonds et al., 2007). C. alboguttata aestivating for nine months 

show no loss in myofibre cross-sectional area (CSA; a marker of muscle atrophy) in the 

gastrocnemius, an important muscle which produces power necessary for jumping (Mantle et 

al., 2009). In contrast, hindlimb immobilisation in conventional experimental models, such as 

rats, can result in a significant (up to 32%) loss in gastrocnemius myofibre CSA in as little as 

two weeks (Sakakima et al., 2004). Disuse-induced skeletal muscle atrophy has been linked to 

increased reactive oxygen species (ROS) production in muscle fibres, leading to oxidative 

stress and muscle tissue damage (Powers et al., 2011). For example, prolonged bed rest in 

humans can result in increased carbonylation of muscle proteins and an apparent weakening 

of antioxidant defence systems (Brocca et al., 2012; Dalla Libera et al., 2009).   

ROS are formed as by-products of normal aerobic cellular metabolism. A number of 

comparative studies suggest that species with higher mass-specific metabolic rates have 

elevated ROS production (Adelman et al., 1988; Foksinski et al., 2004; Lopez-Torres et al., 

1993). Consequently, it has been hypothesised that metabolic suppression during dormancy 

leads to a decrease in ROS production in muscle fibres, which may be a potential means of 
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reducing the effects of muscle disuse atrophy in natural models of muscle disuse (i.e. 

aestivating frogs and hibernating mammals) (Hudson and Franklin, 2002b). While skeletal 

muscle is effectively dormant throughout aestivation (Kayes et al., 2009a; Kayes et al., 

2009b), cardiac muscle must remain active to ensure adequate perfusion of organs. For 

example, the mass of the heart and the number of apoptotic nuclei in cardiac muscle does not 

change between aestivating and awake conditions (Amelio et al., 2013; Secor and Lignot, 

2010) while molecular mechanisms implicated in the control of redox balance and cardio-

circulatory homeostasis (e.g. endothelial nitric oxide synthase; eNOS, which synthesises the 

free radical nitrc oxide) are also bolstered during aestivation (Amelio et al., 2013). In contrast, 

increased levels of apoptosis and phospho-eNOS/eNOS protein have been documented in 

aestivating skeletal muscle (Amelio et al., 2013).  

The maintenance of cardiac muscle activity during aestivation would be particularly 

important for cocoon-forming aestivating frogs, such as C. alboguttata, which have an 

increased reliance on pulmonary gas exchange and pulmonary circulation relative to non-

cocoon-forming species (Loveridge and Withers, 1981).  In the mammalian heart ROS are an 

important determinant of cardiomyocyte homeostasis and proper contractile function. 

Whereas low concentrations can stimulate signal transduction processes, high concentrations 

may lead to cardiomyocyte injury (Seddon et al., 2007; Suzuki and Ford, 1999).  Little is 

understood about ROS production and signalling during metabolic depression, therefore it is 

of interest to explore ROS in distinct tissues that respond differently throughout the dormant 

phase. 

Oxidative stress occurs only when ROS overwhelm the detoxifying capacity of cells. 

One way cells can protect themselves from potentially lethal oxidative damage is to increase 

the synthesis and/or activity of intracellular antioxidant enzymes. Numerous studies have 

demonstrated the induction of antioxidant defences during dormancy (including aestivation), 

suggesting that enhanced oxidative stress resistance is an integral component of metabolic 

suppression (see Carey et al., 2003; Ferreira-Cravo et al., 2010 for reviews).  In C. 

alboguttata, aestivation for four months resulted in the induction of mRNA transcripts 

associated with skeletal muscle nuclear factor erythroid 2-related factor 2 (Nrf2), a regulator 

of the oxidative stress response (Reilly et al., 2013) (Chapter 2). Furthermore, water-soluble 

and membrane-bound antioxidants and gene expression levels of muscle catalase and 

glutathione peroxidase were shown to be maintained at control levels in muscles of dormant 

frogs (Hudson et al., 2006). These studies indicate that modulation of antioxidants in 
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aestivating muscle might decrease the susceptibility of muscle fibres to the atrophic effects of 

oxidative stress. As direct measurements of ROS are complicated and often exposed to errors, 

redox balance during dormancy has been typically studied indirectly by examination of lipid 

peroxidation and/or protein carbonylation (Grundy and Storey, 1998; Young et al., 2013). In 

one of the few studies that measured ROS production directly, there was generally no 

difference observed in mitochondrial ROS production in skeletal muscle of dormant vs. 

interbout euthermic ground squirrels (Brown et al., 2012). However, this is perhaps 

unsurprising as measurements are typically conducted at saturating substrate concentrations 

(e.g. 5 -10 mM succinate), whereas substrate inputs to mitochondria are likely substantially 

depressed in vivo. Moreover, substrates used in assays are often chosen to maximise net ROS 

production and succinate (Armstrong and Staples, 2010; Bishop and Brand, 2000; Gallagher 

and Staples, 2013; St-Pierre et al., 2000), whereas in vivo substrates will be a composite of 

electron inputs to complexes I and II. 

In the current study we examined mitochondrial respiration and ROS production 

within permeabilised cardiac and skeletal muscle fibres of 4-month aestivating C. alboguttata. 

A major aim in the present study was to add mitochondrial substrates together in proportions 

which are likely to reflect substrates present in vivo, and to understand the response of 

mitochondria in the aestivating condition when substrate supply and oxidation should be 

suppressed. Furthermore, we aimed to answer the following questions: 1) are ROS produced 

at a lower rate in skeletal and cardiac muscle of aestivating C. alboguttata compared with 

active awake animals? 2) how does substrate concentration reflect electron inputs and ROS 

leakage in different physiological states? We hypothesised that mitochondrial respiration in 

skeletal and cardiac muscle would be suppressed in aestivating C. alboguttata, and that they 

would generate less ROS during distinct respiratory states (e.g. without adenylates vs. during 

ATP production) with substrate inputs that reflect depressed blood glucose. To test our 

hypothesis, we used high resolution respirometry in conjunction with custom-made 

fluorometers that concurrently measured mitochondrial respiration and ROS production in 

permeabilised cardiac and skeletal muscle fibres. 
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MATERIALS AND METHODS 

Experimental animals and whole animal metabolic rate 

The following experiments were approved by the University of Queensland Animal 

Ethics Committee (Approval Number: SBS/238/11/ARC). Green-striped burrowing frogs 

(Cyclorana alboguttata) were collected after summer rainfall from roadsides in the Darling 

Downs region of Queensland, Australia under Scientific Purposes Permit WISP10060511. 

Frogs were housed in the laboratory in individual plastic boxes containing wet paper 

towelling and were watered and fed live crickets ad libitum. Frogs were allocated to their 

treatment groups (controls or 4-month aestivators), with treatments matched as closely as 

possible for body mass and sex. To induce aestivation, frogs were placed into individual 500 

mL glass chambers filled with wet paper pellets (Breeders Choice Cat Litter) that was allowed 

to dry out naturally over a period of several weeks. Animals burrowed into the paper pellets 

as the chambers dried out and adopted a water-conserving posture. All frogs were maintained 

in a temperature-controlled room (23°C) with a 12:12 h light/dark regime. Aestivating frogs 

were kept in cardboard boxes to reduce the effects of light disturbance. Throughout the 

experiment, whole animal metabolism was measured in aestivating (N = 12) and control frogs 

(N = 10) as previously described (Reilly et al., 2013) (Chapter 2). Briefly, aestivators 

remained in their chambers for the entire experimental period whereas control animals were 

weighed and placed into their chambers 24 h prior to sampling and removed immediately 

following final oxygen consumption measurements. Control frogs were then fed. Rates of 

oxygen consumption (VO2) were measured using closed-system respirometry using a fibre 

optic oxygen transmitter with oxygen-sensitive spots (Precision Sensing GmbH, Regensburg, 

Germany), which measure the partial pressure of oxygen (as a percentage of air saturation) 

within the chamber. Oxygen measurements were taken several hours later, depending on the 

treatment group (i.e. longer for aestivators), and on multiple occasions to calculate repeated 

rates of oxygen consumption. After four months, all aestivating animals had formed thin 

cocoons around their bodies. 

Preparation of permeabilised muscle fibres  

The permeabilised skeletal and cardiac muscle fibre preparations were performed 

using methods following Hickey et al. (Hickey et al., 2012), which avoids problems 

associated with traditional mitochondrial isolation methods (Picard et al., 2011). All frogs 

were sacrificed by cranial and spinal pithing. Immediately following pithing, blood glucose of 

individual frogs was measured using an Accu-Chek® Performa Blood Glucose Meter and test 
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strips (Roche, Castle Hill, NSW, Australia). Both the heart and the left gastrocnemius muscle 

were dissected, weighed and placed immediately into ice cold muscle relaxant buffer 

containing 10 mM Ca-EGTA buffer, 20 mM imidazole, 20 mM taurine, 50 mM K-MES, 0.5 

mM DTT, 6.56 mM MgCl2, 5.77 mM ATP, 15 mM phosphocreatine and leupeptin at pH 6.8. 

Skeletal and cardiac muscle samples were then teased apart into individual fibre bundles 

using sharp forceps and placed into 1 ml of fresh relaxant buffer with 0.05 mg of saponin. 

Fibres were gently shaken at 4°C for 30 min and were then transferred into ice cold 

respiration assay medium (0.5 mM EGTA, 3 mM MgCl2, 60 mM K-lactobionate, 700 mM 

sucrose, 20 mM taurine, 10 mM KH2PO4, and 1 mg mL-1 BSA in 20 mM HEPES, pH 7.1) 

and mixed gently at 4°C for 5 min (x 3) to wash out saponin and ATP. Muscle fibre 

preparations were then blotted dry on kimwipes (Kimtech) and weighed for use in 

mitochondrial respiration assays. 

Mitochondrial respiration and ROS (H2O2) production 

 Mitochondrial respiration was measured in control (heart, N = 5; skeletal muscle, N 

= 5) and 4-month aestivating (heart, N = 7; skeletal muscle, N = 6) animals. Respiration rates 

of cardiac and skeletal muscle mitochondria were measured using two OROBOROS O2K 

Oxygraphs (Anton Paar, Graz, Austria) with custom-made fluorometers as previously 

described (Hickey et al., 2012). This method allows H2O2 signal amplification and integration 

with both oxygen concentration and flux signals in DATLAB 4.3 software. All respiratory 

measurements of permeabilised muscle fibres were conducted at 23°C in a 2 ml chamber 

containing respiration assay medium at air saturation. ROS production was determined by 

measuring H2O2 production using a horseradish peroxidase-linked Amplex Ultra Red 

fluorometric assay (Life Technologies, Mulgrave, Victoria, Australia). Superoxide dismutase 

(10 U), horseradish peroxidase (10 U), and Amplex Ultra Red (12.5 µM final concentration) 

were added to each chamber. To calibrate the fluorometer, 0.94 nmol of H2O2 was added to 

each chamber before each assay.  

 Substrates were titrated into each respiration chamber using an integrated controlled 

injection pump (TIP Oroboros Instruments, Schöpfstrasse, Innsbruck, Austria). A substrate 

cocktail was used to mimic the flow of substrates in vivo. However, we note that there are no 

data regarding mitochondrial substrate levels for C. alboguttata and we cannot rule out that a 

particular substrate/s are used preferentially as an energy source in aestivating skeletal 

muscle. Whereas respiratory quotient data suggest fatty acids are the preferred substrate for 

aestivating frogs (Van Beurden, 1980), other studies on aestivating animals show that energy 
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may be derived from other sources (carbohydrates, ketone bodies) (Frick et al., 2008a; Frick 

et al., 2008b).  

 The cocktail consisted of Complex I-NADH linked substrates (pyruvate 400 µM and 

malate 200 µM) which were added in conjunction with the complex II substrate succinate 

(400 µM). Substrates were titrated in stepwise additions of 5 x 0.5 µl, 5 x 1 µl and 5 x 3 µl 

injections with a 2 minute delay between injections (15 injections total). This initiated non-

phosphorylating, ‘resting’ mitochondrial respiration (LEAKN). Initial concentrations were 

0.05 mM (malate) and 0.1 mM (pyruvate and succinate), while the final concentrations were 

2.25 mM (malate) and 4.5 mM (pyruvate and succinate). Following the titration protocol with 

malate, pyruvate and succinate, excess ADP was then added to the chamber to initiate 

oxidative phosphorylation (OXPHOS). Finally, the complex III inhibitor antimycin A was 

added to the chamber to inhibit mitochondrial respiration and determine background 

respiratory flux. Rates of steady state H2O2 production were traced using DATLAB 4.3. The 

average background rate of H2O2 across experiments before introduction of tissue to the 

chamber was 0.04 nmol/s (± 0.01 s.e.m). Rates were corrected for tissue mass and background 

activity prior to analysis. We also divided the amount of H2O2 formed by O2 to provide an 

indication of the % ROS of O2 (i.e. % of efficiency). 

Statistics 

Snout-vent length (SVL), blood glucose concentration, whole animal metabolic rate 

and mitochondrial respiration during OXPHOS were analysed by one-way analysis of 

variance (ANOVA). The mass of gastrocnemius muscle was analysed using analysis of 

covariance (ANCOVA), with SVL as the covariate. Mitochondrial respiration was fitted with 

a Michaelis-Menten model in GraphPad Prism. Maximal respiratory flux (Vmax) and Km (the 

substrate concentration at which respiratory flux was half Vmax) values were compared 

between 4-month aestivating and control frogs using an extra sum-of-squares F test. Because 

H2O2 production did not closely follow a Michaelis-Menten model during LEAKN, H2O2 

production was tested for significance using individual t-tests at each separate mitochondrial 

substrate injection point (data sets were assessed for normality and constancy of variance). 

H2O2 production data during OXPHOS were non-normally distributed and analysed using a 

Wilcoxon Rank Sum Test. The % H2O2 of O2 was also analysed using individual t-tests. All 

statistical tests were performed with the statistical programs R (www.r-project.org) and/or 

GraphPad Prism with P = <0.05 deemed statistically significant. Data are means ± s.e.m. 

unless stated otherwise. 

http://www.r-project.org/
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RESULTS 

Muscle mass and blood glucose 

There was no significant difference in body size (SVL) of aestivating C. alboguttata 

(6.13 ± 0.93 cm) compared with controls (6.21 ± 1.32 cm; P = 0.66). Four months of 

aestivation resulted in an 8% reduction in the wet mass of gastrocnemius muscle of 

aestivating C. alboguttata (359.59 ± 17.35 mg) relative to control frogs (390.03 ± 21.34 mg). 

The effect of aestivation on gastrocnemius wet mass was not significant when the SVL of 

frogs was accounted for (ANCOVA: full model, P = 0.69; treatment, P = 0.34; relationship to 

SVL, P = <0.05). The blood glucose of aestivating frogs (0.96 ± 0.06 mM) was significantly 

lower compared with control frogs (1.66 ± 0.08 mM; P = <0.001). 

Whole animal metabolic rate and muscle mitochondrial respiration 

The whole animal O2 consumption of C. alboguttata decreased by approximately 

70%, from 66.2 ± 7.5 ul O2 
• g-1 • h-1 for control individuals to 20.3 ± 3.2 ul O2 

• g-1 • h-1 for 

individuals after 4 months of aestivation (P= <0.001; Figure 3.1). Given that substrates used 

to measure mitochondrial respiration were mixed we simplified the substrate concentrations 

to their respective electron inputs assuming that pyruvate (in vitro) oxidation results in 3 

NADH + H+, malate 1 NADH + H+, and succinate 1 FADH2. Multiplication of each 

substrate’s concentration by the electron contribution and then by Avogadro’s constant (6.02 

x 1023) provides an approximation of the number of electrons that can be donated to the 

electron transport system. Mitochondrial respiratory flux rates in both skeletal and cardiac 

muscles obeyed typical Michaelis–Menten kinetics with increasing substrate concentrations 

(i.e. LEAKN; respiration without adenylates present; Figure 3.2A, C). In skeletal muscle the 

maximal respiratory flux (Vmax) decreased from 3.10 ± 0.10 pmols O2 (s.mg wet mass)-1 in 

controls to 1.79 ± 0.15 pmols O2 (s.mg wet mass)-1 in aestivators, equating to a 42% decrease 

in oxygen consumption (P= <0.0001; Table 3.1). By contrast, the apparent Km (the substrate 

concentration at which respiratory flux was half of Vmax) was not significantly different 

between control and aestivating frogs (P= 0.80; Table 3.1). Respiratory flux in skeletal 

muscle fibres during oxidative phosphorylation (OXPHOS) decreased by 46%, with a 

decrease from 9.86 ± 1.31 pmols O2 (s.mg wet mass)-1 in controls to 5.31 ± 0.94 pmols O2 

(s.mg wet mass)-1 in aestivating frogs (P= <0.05, Figure 3.2B). Both the Vmax and Km of 

aestivating cardiac muscle were maintained at levels similar to that of control animals during 

LEAKN (P = 0.16 and 0.33, respectively; Table 3.1). Similarly, mitochondrial respiratory flux 

in the heart during OXPHOS was unaffected by aestivation (P = 0.63; Figure 3.2D).   



58 

 

 

Control Aestivation
0

20

40

60

80

*
V

O
2

(
 l
 O

2
.  g

-1
.  h

-1
)

 

Figure 3.1. Whole-animal oxygen consumption (VO2, µl O2
·g-1·h-1) of Cyclorana alboguttata at rest (Control, 

N= 10) and after 4 months of aestivation (N= 12). Data were analysed using one-way ANOVA and are presented 

as means ± s.e.m., *P <0.001. 
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Figure 3.2. Mitochondrial respiratory flux (pmol O2·s-1·mg-1 wet mass) in permeabilised skeletal and cardiac 

muscle fibres of C. alboguttata. (A, B) Skeletal muscle: control, N = 5; aestivation, N = 6; (C, D) cardiac muscle: 

control, N = 5; aestivation, N = 7. Respiratory flux in muscle is shown in the presence of mitochondrial 

substrates malate, succinate and pyruvate only (LEAKN; A, C), and the rate of respiratory flux in muscle is 

shown during maximum oxidative phosphorylation (OXPHOS; B, D). In A and C, the x-axis is presented as an 

approximation of the number of electrons that can be donated by malate, succinate and pyruvate to the electron 

transport system. Vmax and Km values during LEAKN were compared between 4-month aestivating and control 

frogs and tested for significance using an extra sum-of-squares F test. Mitochondrial respiration during 

OXPHOS was analysed by one-way ANOVA. Data are means ± s.e.m., *P <0.05 
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Table 3.1. Mitochondrial respiratory flux followed a Michaelis-Menten model in permeabilised 

skeletal and cardiac muscle fibres of C. alboguttata 

 Mitochondrial respiratory flux  

Vmax 

(pmol O2
·s-1·mg-1) 

Km 

(e- (x 10^19) 

Skeletal muscle  

Control (N=5) 3.10 ± 0.10 0.28 ± 0.04 

Aestivation (N=6) 1.79 ± 0.15 *** 0.25 ± 0.10 

Heart 

Control (N=5) 8.57 ± 1.11 1.71 ± 0.51 

Aestivation (N=7) 10.89 ± 1.19 2.44 ± 0.54 

 

 

Hydrogen peroxide production in permeabilised cardiac and skeletal muscle fibres 

In skeletal and cardiac muscle H2O2 production could not be distinguished from 

background levels until the fifth cocktail injection, when cumulative substrate concentrations 

of pyruvate, succinate and malate were 0.5 mM, 0.5 mM and 0.25 mM, respectively. Because 

H2O2 production did not strictly follow a Michaelis-Menten model during LEAKN we 

determined whether H2O2 production differed between control and aestivating frogs at 

individual substrate concentrations. At low cumulative substrate concentrations H2O2 

production was significantly lower in skeletal muscle of aestivating frogs (Figure 3.3A, P = 

0.04 and P = 0.02, respectively), as was the amount of H2O2 formed per O2 (an indication of 

the % ROS of O2; Figure 3.4A, P = 0.04). H2O2 production was approximately 12% that of 

control frogs when cumulative substrate concentrations of pyruvate, succinate and malate 

were 1.3 mM, 1.3 mM and 0.65 mM, respectively, while H2O2 formed per O2 was 

approximately 6% that of control frogs at similar concentrations. However, as mitochondrial 

substrate concentrations were increased in the medium H2O2 production did not differ 

significantly between aestivators and controls, due to a large variation among control animals 

(Figure 3.3A). Both H2O2 production and % ROS of O2 from aestivating cardiac muscle fibres 

were similar to that of controls all throughout LEAKN (Figure 3.3C; 3.4C). During OXPHOS 

H2O2 production and % ROS of O2 in skeletal and cardiac muscle were not significantly 
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different between aestivators and controls (H2O2 production wilcox tests, P = 0.18 and P = 

0.76, respectively; % ROS of O2, P = 0.07 and P = 0.49, respectively; Figure 3.3B, D; 3.4B, 

D). In general, ROS production was more tightly regulated (i.e. less variable) in aestivating 

frogs compared with control animals.  

 

Figure 3.3. Hydrogen peroxide (H2O2) production (nmol H2O2·s-1·mg-1) in permeabilised skeletal and cardiac 

muscle fibres of C. alboguttata. (A, B) Skeletal muscle: control, N = 5; aestivation, N = 6; (C, D) cardiac 

muscle: control, N = 5, aestivation, N = 7. H2O2 production was achieved by the addition of superoxide 

dismutase to the oxygraph chamber and determined in different respiration states (LEAKN, A, C; and OXPHOS, 

B, D) as outlined in Materials and methods. In skeletal muscle, H2O2 production tended to be lower in 

aestivating animals during LEAKN, whereas in cardiac muscle H2O2 production remained similar in control and 

aestivating frogs. There was no significant difference in skeletal or heart muscle H2O2 production between 

controls and aestivators during OXPHOS. In A and C the x-axis is presented as an approximation of the number 

of electrons that can be donated by malate, succinate and pyruvate to the electron transport system. During 

LEAKN, H2O2 production was tested for significance using individual t-tests at each separate mitochondrial 

substrate injection point, whereas H2O2 production during OXPHOS were analysed using a Wilcoxon Rank Sum 

Test. Data are means ± s.e.m., *P <0.05 
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Figure 3.4. H2O2 production/mitochondrial respiratory flux in permeabilised skeletal and cardiac muscle fibres 

of Cyclorana alboguttata. (A, B) Skeletal muscle: control, N = 5; aestivation, N = 6; (C, D) cardiac muscle: 

control, N = 5; aestivation, N = 7. H2O2 production was divided by mitochondrial respiratory flux in different 

respiration states (LEAKN, A, C; and OXPHOS, B, D) to provide an indication of H2O2 produced per O2 turned 

over (%ROS of O2). In skeletal muscle, %ROS of O2 was significantly lower in aestivating animals during 

LEAKN at low substrate concentrations, whereas in cardiac muscle, %ROS of O2 remained similar in control and 

aestivating frogs. There was no significant difference in skeletal or heart muscle %ROS of O2 between controls 

and aestivators during OXPHOS. In A and C the x-axis is presented as an approximation of the number of 

electrons that can be donated by malate, succinate and pyruvate to the electron transport system. Individual t-

tests were used to assess significance. Data are means ± s.e.m., *P <0.05 
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DISCUSSION 

In humans and most other mammals prolonged skeletal muscle disuse leads to a loss 

of muscle protein and fibre atrophy. It has been shown that long periods of limb 

immobilisation stimulate increased ROS production in disused fibres (Min et al., 2011). 

Though many studies have investigated muscle antioxidant levels during dormancy and/or 

arousal in aestivators and hibernators (Allan and Storey, 2012; Hudson et al., 2006; James et 

al., 2013; Ramos-Vasconcelos and Hermes-Lima, 2003; Young et al., 2013), little is known 

about changes in mitochondrial ROS production and this has only recently received 

experimental attention in natural models of muscle disuse (Brown et al., 2012). Additionally, 

relatively few physiological studies examine mitochondrial function using permeabilised 

fibres, tissues or cells. In the current study we have verified the use of saponin-permeabilised 

muscle fibres (Kuznetsov et al., 2008), an approach which is more likely to resemble 

conditions in living cells than analyses using isolated mitochondria preparations. We have 

shown that aestivating C. alboguttata are capable of selectively suppressing or maintaining 

rates of mitochondrial respiration within distinct muscle tissue types and our study is the first 

to measure net mitochondrial ROS production (i.e. the sum of H2O2 production that escapes 

the mitochondrial antioxidant system) during aestivation using a combination of 

mitochondrial substrates, which better reflects physiological conditions. We have also 

demonstrated that C. alboguttata are able to suppress ROS production in disused skeletal 

muscle at low substrate concentrations. Unlike skeletal muscle, ROS production in 

permeabilised cardiac muscle fibres appeared unaffected by aestivation. Overall, the current 

study enhances our understanding of the control of mitochondrial respiration and ROS 

production in aestivating animals. 

Mitochondrial respiration  

Mitochondria are the principal sites of skeletal muscle fuel metabolism and ATP 

production. It follows then that mitochondrial metabolism should be suppressed in disused 

skeletal muscles of aestivating or hibernating animals. Following four months of aestivation, 

C. alboguttata had depressed skeletal muscle mitochondrial respiratory flux by approximately 

45% and whole-animal metabolic rate by almost 70%. The suppression of skeletal muscle 

mitochondrial- and whole-animal respiration clearly maximises energy savings for aestivating 

frogs. These results are in agreement with previous work on C. alboguttata, which 

demonstrated suppression of skeletal muscle mitochondrial and whole-animal respiration 
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during aestivation by more than 80% (Kayes et al., 2009b). The greater magnitude of 

metabolic depression in that study may be related to a longer period of aestivation and/or 

differences in the preparation of isolated mitochondria. Previous studies on aestivating frogs 

have recorded metabolic depression in tissues other than skeletal muscle, such as liver and 

skin (Flanigan et al., 1993; Kayes et al., 2009). In addition, the magnitude of metabolic rate 

depression of different skeletal muscle types has been shown to vary in aestivating muscle 

dependent on the size and/or type of muscle (Flanigan et al., 1993; Young et al., 2011). The 

gastrocnemius muscle has been estimated to account for only 8% of the entire muscle mass in 

C. alboguttata (Kayes et al., 2009), thus metabolic depression within other muscle types (and 

organs) would contribute to the 70% whole-animal metabolic suppression in frogs. 

Whereas both resting and active mitochondrial respiration were significantly 

depressed in skeletal muscle of aestivators, cardiac muscle mitochondrial respiration 

remained similar between aestivating and control frogs across all respiratory states. In 

amphibians, the response of the heart during aestivation varies depending on the species. 

Heart rate has been shown to decrease (Gehlbach et al., 1973; Glass et al., 1997; Seymour, 

1973b) or remain unchanged (Loveridge and Withers, 1981) in aestivators when compared 

with their awake conspecifics. While the coordinated downregulation of many organ and cell 

functions is a key priority during dormancy (e.g. transport across cell membranes, 

transcription, protein synthesis), aestivators must also reprioritise the use of ATP to support 

critical functions. The maintenance of mitochondrial respiration in aestivating C. alboguttata 

cardiac muscle at control levels suggests that aestivators continue to produce ATP in the heart 

for important functions such as contraction and relaxation, and membrane transport systems 

(e.g. Na+/K+ -ATPase). This is consistent with the requirement to continue adequate delivery 

of blood and oxygen to the tissues, whilst ensuring the cardiovascular system is ready to 

sustain sudden activity upon arousal from aestivation. Our heart data are supported by recent 

studies examining mitochondrial respiration of cardiac muscles in hamsters (Phodopus 

sungorus) and squirrels (S. tridecemlineatus) (Gallagher and Staples, 2013; Kutschke et al., 

2013). In both these studies, torpid animals were shown to maintain their rate of cardiac 

mitochondrial oxygen consumption at levels similar to that of control (i.e. interbout 

euthermic) animals across a range of respiratory states.  
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ROS (H2O2) production 

In the current study we hypothesised that aestivating C. alboguttata would produce 

less ROS from permeabilised muscle fibres relative to awake frogs. Skeletal muscle ROS 

production during LEAKN tended to be lower in aestivating animals, and was significantly 

decreased at sub-saturating substrate concentrations. Furthermore, aestivating frogs also 

produced less ROS per O2 turned over (Fig. 4A), which suggests that aestivators can modulate 

the handling of electrons in the electron transport system independently of simply suppressing 

electron flow. We note there was particularly high variation in ROS production among control 

frogs at higher, saturating substrate concentrations, precluding a statistically-significant 

difference between aestivators and controls in this latter part of the experiment. In a recent 

study, Brown et al (Brown et al., 2013) suggested that sub-saturating mitochondrial substrate 

(succinate) concentrations are more physiologically-relevant in vivo. Indeed, the concentration 

of succinate in many mammalian tissues is considered to be low, in the 0.2–0.5 mM range 

(Starkov, 2008). Succinate (or malate or pyruvate) concentration data is not presented as these 

metabolites change rapidly (Zoccarato et al., 2009). However, blood glucose concentrations 

were much lower in aestivators than active C. alboguttata (this present study) and aestivators 

are likely to have a decreased reliance on carbohydrate metabolism in skeletal muscle (Reilly 

et al., 2013; Storey and Storey, 2010). While lipid-based substrates may dominate 

carbohydrates in aestivating animals, fatty acids can uncouple mitochondria, further 

suppressing ROS production in aestivators.  

Previous studies have shown that aestivating C. alboguttata sustains hindlimb muscle 

mass until 6-9 months of aestivation (Hudson et al., 2006; Mantle et al., 2009). We suggest 

that decreased ROS production in four-month aestivating skeletal muscle may represent a 

mechanism by which dormant C. alboguttata limit muscle fibre atrophy. Indeed, a recent 

study found no evidence of lipid or protein oxidation (indices of ROS-induced oxidative 

damage) in the gastrocnemius muscle of C. alboguttata following 6 months aestivation 

(Young et al., 2013). Previous studies have also emphasised the protective effects of increased 

muscle antioxidant production in dormant burrowing frogs (Hudson and Franklin, 2002b; 

Hudson et al., 2006; Reilly et al., 2013). Together these experimental data suggest C. 

alboguttata maintain an appropriate ratio of antioxidants to pro-oxidants, and this should 

prevent oxidative stress and premature skeletal muscle fibre atrophy. Decreased production of 

ROS in C. alboguttata skeletal muscle is in contrast to what has been observed during 

immobilisation-induced muscle atrophy in mammalian models (Min et al., 2011). Two weeks 
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of cast immobilisation in mice resulted in both increased rates of mitochondrial H2O2 release 

from permeabilised skeletal muscle fibres and higher levels of muscle lipid peroxidation, 

while administration of a mitochondrial-targeted antioxidant to mice also inhibited the 

increase in muscle mitochondrial H2O2 production and attenuated myofibre atrophy.  

Given that mitochondrial respiration in C. alboguttata permeabilised cardiac muscle 

fibres was not different between controls and aestivators, it is perhaps not surprising that 

mitochondrial ROS production from the heart was also unchanged. Due to its high energetic 

demand and abundance of mitochondria the heart is presumably very sensitive to oxidative 

damage. Data on the production of mitochondrial ROS from heart tissue and their role in cell 

signalling during dormancy are lacking in the literature. However, there is little evidence for 

oxidative damage occurring in cardiac muscle during aestivation, while protein and enzyme 

activity levels of antioxidants within heart have been shown to increase, decrease or remain 

unchanged depending on the species, duration of aestivation and specific antioxidant 

measured (Grundy and Storey, 1998; Page et al., 2010; Salway et al., 2010). It is difficult to 

draw conclusions about the effects of ROS production in aestivating C. alboguttata cardiac 

muscle. It is conceivable that aestivating C. alboguttata may modulate antioxidants in the 

heart to protect macromolecules from potentially lethal stress-induced damage. On the other 

hand, ROS have been shown to significantly contribute as regulators of cell signalling 

pathways in model organisms (Burgoyne et al., 2012), and ROS are likely to have similar 

roles in cardiomyocytes of other vertebrates as well. Clearly, additional well-designed 

experiments are needed to determine the relative importance of ROS in cell signalling and/or 

oxidative stress in heart tissue during dormancy.  

Concluding remarks 

We have shown that C. alboguttata heart and skeletal muscle tissue respond 

differently during aestivation with respect to mitochondrial respiration and ROS production. 

This is of particular interest, as it exemplifies C. alboguttata’s capacity to independently 

regulate distinct organs throughout dormancy. The downregulation of mitochondrial 

respiration in gastrocnemius muscle is consistent with markedly reduced muscle contraction 

throughout the aestivating period, allowing significant energy savings for dormant frogs. 

Muscle is a highly excitable tissue and its metabolic rate can increase rapidly within a very 

brief period of time. Thus, it is likely that skeletal muscle mitochondrial respiration is quickly 

restored to normal levels to facilitate muscle contraction when aestivating C. alboguttata 

arouse. Whereas skeletal muscle essentially ceases function but can contract upon arousal, it 
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is imperative that the burrowing frog heart maintain its morphology and contractile activity 

during aestivation. Maintenance of mitochondrial respiration in C. alboguttata cardiac muscle 

would allow the slow, but sustained supply of ATP for critical heart functions. ROS 

production generally reflected mitochondrial respiration in the different muscles. At low 

mitochondrial substrate concentrations, ROS production was significantly lower in the 

gastrocnemius muscle fibres of aestivating burrowing frogs, which may represent a 

mechanism contributing to the limited muscle atrophy observed in this species despite 

extended hindlimb disuse. Production of ROS in cardiac muscle fibres did not change during 

aestivation, and further research is required to determine the roles of mitochondrial ROS in 

cardiomyocyte signalling and homeostasis during metabolic depression.  
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Chapter 4 

Activity, abundance and expression of Ca2+-activated proteases in skeletal muscle of the 

aestivating frog, Cyclorana alboguttata 

INTRODUCTION 

During extreme environmental conditions many animals enter into dormancy, a period 

of inactivity that prolongs the amount of time an organism may survive on endogenous fuel 

reserves (Storey and Storey, 1990). Many Australian terrestrial frogs such as the Green-

striped burrowing frog, Cyclorana alboguttata inhabit arid environments and avoid 

desiccation by burrowing beneath the ground and entering a prolonged metabolic suppression 

called aestivation. Aestivating C. alboguttata also form a cocoon made by the accumulation 

of shed epidermis, which functions as a barrier to water loss. In this capacity, aestivating frogs 

are immobile in their burrows for months or even years at a time (Withers, 1993; Withers, 

1995). Aestivating burrowing frogs do not arouse intermittently during dormancy to eat or 

drink, and long-term viability is likely to depend upon lipid reserves laid down prior to 

aestivation (Van Beurden, 1980). Like many hibernating mammals, aestivating C. alboguttata 

have been shown to be remarkably resistant to skeletal muscle atrophy despite extended 

periods of chronic muscle inactivity and fasting (Hudson and Franklin, 2002a; Hudson et al., 

2006; Mantle et al., 2009; Symonds et al., 2007). Such resistance to muscle atrophy would be 

beneficial as upon heavy rainfall, frogs can arouse from aestivation with the capacity to 

immediately feed and breed before the highly ephemeral waters retreat. 

Atrophy in skeletal muscles during conditions of prolonged disuse (e.g. cast 

immobilisation, extended bed rest, muscle unloading) and/or fasting, has debilitating effects 

in most mammalian species (Hudson and Franklin, 2002b). Disuse-induced muscle atrophy is 

characterised by a decrease in muscle mass and strength, which is related to an imbalance in 

muscle protein synthesis and degradation (Thomason et al., 1989). Although the molecular 

and cellular mechanisms that regulate these processes are complicated, evidence indicates that 

reactive oxygen species (ROS) regulate cell signalling pathways that control both protein 

synthesis and protein degradation in skeletal muscle (Powers et al., 2011).  Specifically, ROS 

have been shown to increase the expression and activity of the calpain proteases in skeletal 

muscle. Calpains are Ca2+-dependent cysteine proteases found in all vertebrate cells and are 

primarily regulated by intracellular Ca2+ concentrations and activity of the endogenous calpain 

inhibitor, calpastatin (Goll et al., 2003). The ubiquitous calpains, isoforms 1 and 2, or µ- and 



69 

 

m-type, respectively, are thought to be the initiators of myofibrillar protein degradation during 

muscle atrophy (Bartoli and Richard, 2005). With respect to ROS, treatment of human 

skeletal muscle satellite cells with hydrogen peroxide (H2O2) was shown to increase the 

expression of both calpain 1 and 2 genes (Dargelos et al., 2010), whereas exposure of mouse 

myoblast cells to H2O2 elevated calpain 1 activity and led to myotube atrophy (McClung et 

al., 2009). 

Other studies have indicated that calpain activation might be an early, necessary stage 

in the development of disuse-induced muscle atrophy, but results have been mixed and 

controversial (Bartoli and Richard, 2005; Enns et al., 2007; Jones et al., 2004; Maes et al., 

2007; Taillandier et al., 1996). However, experiments have also demonstrated that 

pharmacological inhibition of calpain results in prevention of skeletal muscle atrophy 

imposed by both hindlimb casting and hindlimb suspension (Talbert et al., 2013a; Tischler et 

al., 1990). It is thought that calpains might degrade several muscle structural proteins during 

atrophy, thus releasing actin and myosin from sarcomeres allowing them to be targeted for 

degradation by another major proteolytic pathway, the ubiquitin-proteasome system (UPS) 

(Mitch and Goldberg, 1996; Talbert et al., 2013a). 

Calpain 3 (p94) is another calpain isoform which is largely expressed in skeletal 

muscle. Calpain 3 is found within sarcomeres where it specifically binds to the giant protein 

titin, which is critical for the contraction of striated muscle tissue (Duguez et al., 2006). Gene 

mutations in calpain 3 cause limb girdle muscular dystrophy type 2A, while calpain 3 

deficiency leads to irregular sarcomeres and impairment of muscle contractile capacity 

(Duguez et al., 2006). In contrast to calpains 1 and 2, which can exhibit a positive correlation 

with tissue degradation during muscle disuse, calpain 3 mRNA has been shown to be 

downregulated during the atrophic phase seen in denervation and limb immobilisation models 

(Chen et al., 2007; Jones et al., 2004; Stockholm et al., 2001). 

For dormant animals such as aestivators or hibernators, energy (or energetically) 

expensive processes such as proteolysis must be tightly regulated to ensure enzyme/protein 

concentrations are stabilised over what could be a prolonged period of metabolic suppression 

(Storey and Storey, 2010). In hibernating mammals there is evidence that proteolytic activity 

is downregulated at low temperatures during dormancy, but recommences during periodic 

arousals (van Breukelen and Carey, 2002; Velickovska et al., 2005; Velickovska and van 

Breukelen, 2007). Evidence also suggests that protein degradation is strongly suppressed in 

different tissues of aestivating snails (Ramnanan et al., 2009). Given that C. albogutatta 
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demonstrate appreciably little muscle wasting during extended periods of aestivation, the 

mechanisms of proteolytic control in skeletal muscle remain an interesting and unexplored 

avenue. In a recent study ROS production was found be suppressed in the disused skeletal 

muscle of aestivating frogs, which was suggested to possibly protect against potential 

oxidative damage and preserve skeletal muscle mass during aestivation (Reilly et al., 2014) 

(Chapter 3).  

Given the mechanistic links between ROS and calpains in mammalian models of 

muscle disuse atrophy, the aim of the present study was to examine the biochemical activity 

of calpains 1 and 2 in aestivating versus control C. alboguttata skeletal muscle to better 

understand the role calpains might play in the relative preservation of aestivating skeletal 

muscle structure and function. Additionally, we sought to identify putative C. alboguttata 

homologs of calpains 1, 2 and 3 and measure their relative protein levels and messenger RNA 

(mRNA) transcript abundance in control versus aestivating frog skeletal muscle using western 

blotting and quantitative real-time polymerase chain reaction (qPCR), respectively. We 

hypothesised that calpain activity and expression are suppressed in muscle of aestivating frogs 

relative to awake, control frogs, which may contribute to a decrease in skeletal muscle 

proteolysis and preservation of muscle mass during extended periods of immobility.   

 

MATERIALS AND METHODS 

Study animals and experimental treatments 

Active C. alboguttata were collected after heavy summer rains from the districts of 

Dalby and Theodore, Queensland, Australia (Scientific Purposes Permit WISP10060511). 

Frogs were transported in individual plastic bags to the University of Queensland. Frogs were 

split into two treatment groups. Control frogs were active and were fed live food (crickets and 

cockroaches) weekly, whereas the treatment group consisted of frogs that had been aestivating 

for four months. The latter group was induced into aestivation by placing them into glass jars 

with water and paper pellets (Breeders Choice Cat Litter) until the water slowly evaporated. 

During experimentation, control frogs were maintained under a 12:12 h light-dark regime, 

while aestivating frogs were kept in 24 h darkness. Resting rates of oxygen consumption were 

measured using closed-system respirometry as previously described (Reilly et al., 2013). 

Frogs were removed from their aestivation chambers at the end of the 4-month treatment 

period and were immediately sacrificed by cranial and spinal pithing. The body mass and 
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snout-vent length (SVL) were measured for each individual before muscle dissection. All 

experiments were conducted with the approval of the University of Queensland Animal Ethics 

Committee (permit number: SBS/238/11/ARC). In the present study the gastrocnemius 

muscle was selected for analysis because this muscle produces the force necessary for 

jumping, and in C. alboguttata has been shown to be less sensitive to atrophy compared with 

the smaller non-jumping muscles (e.g. sartorius, iliofibularis) (Mantle et al., 2009). For 

practical reasons, the exact same frogs were not used in the enzyme activity, protein 

abundance and gene expression studies. Frogs in the current experiment were used for 

enzyme activity and western blot studies (hereinafter Group 1), whereas frogs used in gene 

expression analyses were sourced from the RNA Seq experiment (Chapter 2; Reilly et al. 

2013; hereinafter Group 2). Despite this, gastrocnemius muscles were dissected out and 

weighed using the same protocol in both experimental groups.  

 

Enzyme activity 

To test the effect of aestivation on muscle calpain activity, gastrocnemius muscle 

tissue was extracted from aestivating (N = 8) and control (N = 8) frogs immediately after 

pithing and was snap frozen in an airtight cryotube. Muscles were then stored at -80°C until 

analysis. Prior to analysis, frozen muscle tissue was double wrapped in industrial strength 

aluminium foil and pulverised with a hammer on a metal plate over dry ice. Samples were 

homogenised with an Ultra-turrax homogeniser (IKA T10 Basic, Labtek, Brisbane, 

Queensland, Australia) in ice cold Passive Lysis Buffer (E1941; Promega, Madison, WI, 

USA). Muscle extracts were separated from debris by centrifugation at 10,000 g for 10 min at 

4°C (Beckman Coulter Allegra 25R bench-top centrifuge, Gladesville, NSW). Calpain 1 and 

calpain 2 activities was measured simultaneously using a luminogenic succinyl calpain 

substrate ((Suc-LLVY-aminoluciferin) Calpain-Glo; Promega). Muscle extract (50 µl) was 

added to a microtiter plate well, and Calpain-Glo reagent supplemented with Suc-LLVY-

aminoluciferin and 2.5 mM CaCl2 was added to bring the total volume to 100 µl. The plate 

was incubated at 25°C and the luminescence signal monitored every 5 min for 45 min using a 

Beckman Coulter DTX880 multimode detector (Beckman Coulter Aust. P/L, Gladesville, 

NSW, Australia). Control assays were performed under identical conditions, except that 

CaCl2 was omitted and 10 mM EDTA and 10 mM EGTA was added to the assay. Calpain 

activity was calculated as the difference between activity measured in the presence of 2.5 mM 

calcium and the activity measured in the absence of CaCl2 and the presence of 10 mM 
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EDTA/10 mM EGTA. Protein concentration was determined by the Coomassie Plus 

(Bradford) Assay (ThermoScientific) with BSA as a standard. All assays were performed in 

triplicate and calpain activity was expressed in arbitrary units (AU) per µg of protein. 

 

Semi-quantitative western blotting 

Protein abundance of calpains 1, 2 and 3 was determined in gastrocnemius muscle 

samples via Western blot analysis. Muscle tissue was collected from animals at the time of 

pithing, snap frozen in an airtight cryotube and stored at -80°C until analysis. Frozen muscle 

tissue was prepared as above, except that samples were homogenized in ice cold passive lysis 

buffer supplemented with 50 mmol l–1 EGTA, and centrifuged at 3,000 g for 10 min at 4°C. 

After collection of the resulting supernatant muscle protein content was determined. Protein 

samples (20 or 30 µg) were heated to 70°C for 10min and then loaded into 4–12% Bolt Bis-

Tris Plus gels (Life Technologies, Mulgrave, VIC, Australia) and run at 155 V for 

approximately 45 minutes. Following electrophoresis, the proteins were transferred to PVDF 

membranes (Westran® Clear Signal; 25 V, 90 min). Membranes were then rinsed with 

distilled water, air dried and stored at -80°C until stained.  

Membranes were briefly rewet in methanol and exposed at 4°C overnight to either 

rabbit anti-calpain 1 (N3C2), rabbit anti-calpain 2 (N2C1-2) or rabbit anti-calpain 3 (C1C3) 

primary antibodies (1:2000). Membranes were then incubated in a goat anti-rabbit secondary 

antibody (1:2000) followed by visualisation using a colourmetric horseradish peroxidase-3’3’ 

diaminobenzidine system. All primary antibodies were purchased from Genetex, Inc., Irvine, 

CA, USA. Blots were converted into digital images using a Canoscan colour image scanner 

(Canon) and analysed using ImageJ software (National Institutes of Health, Bethesda, MD, 

USA). Protein abundance of calpains 1, 2 and 3 was determined by comparing the density of 

bands from aestivating frog muscle homogenate (N = 7) relative to those of control frogs (N = 

7). The density of each calpain band was normalized by a respective ~42 kDa band present on 

each membrane, which was likely to represent alpha-actin. For each blot an equal amount of 

active human calpain 1 (Biovision, Milpitas, CA, USA) and mouse gastrocnemius muscle 

tissue were loaded to facilitate interpretation of antibody binding to C. alboguttata protein.  
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RNA extraction, reverse transcription and sequencing 

A portion of gastrocnemius muscle was immediately excised and placed into 

RNAlater® (Ambion). Muscle samples were stored at 4°C overnight and then transferred to -

80°C until processed. Total RNA was extracted from frozen tissue using a commercially 

available kit (PureLink RNA Mini Kit, Invitrogen, Mount Waverley, VIC, Australia) as 

previously described (Reilly et al., 2013) (Chapter 2). 

 

cDNA synthesis and cross-species primer design 

First-strand cDNA was synthesised from 2 µg of RNA using an iScript cDNA 

synthesis kit (Biorad) with oligo (dT) and random primers. The samples were purified and 

eluted using a High Pure PCR Product Purification Kit (Roche, Castle Hill, NSW, Australia). 

Contaminating RNA was eliminated by incubating the samples with 0.5 μl RNase H 

(Invitrogen) for 20 min at 37°C. Degenerate primer pairs were designed both manually and 

using CODEHOP (Staheli et al., 2011) to amplify cpn1 (calpain mu-type), cpn2 (calpain M-

type), and cpn3 (calpain p94) genes in burrowing frog muscle (Table 4.1). Known protein 

sequences from other vertebrates were obtained from the National Center for Biotechnology 

Information database (www.ncbi.nlm.nih.gov/) using the basic local alignment search tool 

(BLAST). Protein sequences were aligned using the program ClustalW 

(www.genome.jp/tools/clustalw/) and degenerate primers were designed from highly 

conserved regions of amino acid sequence within the alignment. 

Selecting an appropriate reference gene for normalisation of quantitative gene 

expression (qRT-PCR) data is crucial for obtaining biologically-meaningful results. This is 

particularly significant in regard to studies examining gene expression in hypometabolic 

organisms, which may experience dramatic physiological and/or morphological changes 

during experimentation. Thus, we also used primer pairs to amplify a selection of candidate 

reference genes, including glyceraldehyde-3-phosphate dehydrogenase (gapdh), histidine triad 

nucleotide binding protein 1 (hint1), methylmalonyl CoA mutase (mut) and SH3 and cysteine 

rich domain containing protein 3 (stac3) (Table 4.1). Normfinder software (Andersen et al., 

2004) was used to determine the most stable, least variable, reference gene from our candidate 

set. We found mut to be the most stable reference gene in gastrocnemius of control and 

aestivating frogs (data not shown).  

 

http://www.ncbi.nlm.nih.gov/
http://www.genome.jp/tools/clustalw/
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Table 4.1. Degenerate and specific primers used in standard and qRT-PCR experiments 

Gene Assay Orientation Primer Sequence 

(5’ to 3’) 

Target genes    

capn1 Initial RT-PCR Sense 

Antisense 

AAYTWYCCWGCCACHTTYTGG* 

HGTAKCKSRKRATGATSAGCT* 

capn2 Initial RT-PCR Sense 

Antisense 

ATCTGCCAAGGAGCCCTGGGNGAYTGYTGG† 

GGATCCGTTCAGTTTGGCRTANGCYTTYTC† 

capn3 Initial RT-PCR Sense 

Antisense 

CTGGAATCTTCCATTTYCARTTYTG† 

TCTTTCCTCCGGTYYTTYTGCATNA† 

Candidate 

reference genes 

   

gapdh Initial RT-PCR Sense 

Antisense 

CTGGCTCCTCTTGCAAAGGT** 

GTGTATCCCAGGATTCCCTTC ** 

hint1 Initial RT-PCR Sense 

Antisense 

GGGAAAATTATCCGCAAAGARATHCCNGC † 

AGGTGAAGGTGGTACACNGAYTGNCCNC † 

mut Initial RT-PCR Sense 

Antisense 

AACGCTGTTTGGCTGCAATC †† 

ATCGCTGGCTTTGTGTTCAC †† 

stac3 Initial RT-PCR Sense 

Antisense 

CCAAAACAGGAGGAAGGAAAGC †† 

TTCTCCAGCGCTTTGAAACG †† 

Target & 

reference genes 

   

capn1 qRT-PCR Sense 

Antisense 

GAGAGGCGGTTTGGAAAGGA 

CACGTTTAAGGTGCACAGCC 

capn2 qRT-PCR Sense 

Antisense 

CGGACCAGAGTTTCCAGGAG 

AACCACGTCCACCCATTCTC 

capn3 qRT-PCR Sense 

Antisense 

ATGATTCAGGGTGTGGGTGAC 

AACTGTGCAGGGACAATTGC 

mut qRT-PCR Sense 

Antisense 

As above 

As above 

 

*Modified from primers presented in (Macqueen et al., 2010); **primers designed by (Kumano et al., 2008); 

†Primers designed using CODEHOP (Staheli et al., 2011); †† Species-specific primers used. 

 

 

 

 



75 

 

Gene amplification, sequencing and qRT-PCR 

The C. alboguttata cDNAs were amplified using touchdown PCR reactions before 

amplicons were size-separated by agarose gel electrophoresis. Extracted amplicons were 

purified and concentrated using a PureLink® PCR Micro Kit (Life Technologies). The 

cleaned amplicons were directly sequenced by the Australian Genome Research Facility 

(AGRF) using capillary separation (Purified DNA service). We designed qRT-PCR primers 

(to amplify targets of 80-170 bp) based on the C. alboguttata sequences returned from AGRF 

using Primer3Plus (Untergasser et al., 2007); Table 4.1). qRT-PCR reactions were performed 

in duplicate using iTaq Universal SYBR Green Supermix (Biorad) on a MiniOpticon 

detection system (Biorad). Each reaction contained 4.3 µl of diluted cDNA (1:10) and 300 

nmol l-1 of each primer in a total reaction volume of 10 µl. Cycle parameters were: 95°C for 

60 s, followed by 40 cycles of 95°C for 15s, 59°C for 15s and 72°C for 30s. Each assay 

included a no-reverse transcriptase and a no template control, as well as melt curve analysis to 

verify amplification of only a single product in the reaction. All PCR efficiencies were ≥85% 

and the expression of each gene was quantified using the ∆Ct method with mut as the 

endogenous reference gene.  

 

Transcriptomic analysis of calpains 

A de novo C.alboguttata muscle transcriptome assembly (Reilly et al., 2013) (Chapter 

2) was used to identify different calpain isoforms. Candidate isoforms were searched against 

the nonredundant National Center for Biotechnology Information (NCBI) protein database 

(BLASTx) with an expectation value of 0.001. Identified calpain isoforms were then 

examined for differential gene expression using the Bioconductor package EdgeR as 

previously described (Reilly et al., 2013) (Chapter 2), and compared with qRT-PCR results to 

validate each method. 

Statistics 

The enzyme activity, protein abundance and qRT-PCR expression data were 

visualised using Q-Q plots and tested for normality using the Shapiro-Wilk Test. A one-way 

ANCOVA was used with SVL as the covariate to examine the effect of aestivation on muscle 

wet mass. Data sets with non-normal error distribution were analysed using a Wilcoxon rank-

sum test whereas parametric data were analysed using ANOVA. All data were examined for 

constancy of variance and statistical tests were performed in R. In all tests α was set at 0.05. 
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RESULTS 

There was no significant difference in body size (SVL) of C. alboguttata individuals 

from Group 1 (mean ± s.e.m. 54.69 ± 0.95 mm) compared with frogs from Group 2 (55.42 ± 

0.91 mm; P=0.59). Consequently, muscle mass data from the two groups were combined to 

test the effect of aestivation on gastrocnemius wet mass. The effect of aestivation on 

gastrocnemius wet mass was not significant, however muscle mass was significantly related 

to body size (ANCOVA: full model, P=0.11; treatment, P=0.33; relationship to SVL, 

P<0.001; Table 4.2). Similarly, aestivating gastrocnemius muscle exhibited no significant 

reduction in muscle protein concentration or cross-sectional area during aestivation (P = 0.27 

and 0.70, respectively, Table 4.2). However, muscles from aestivating frogs from Group 2 

exhibited a much greater loss in wet mass (~ 23%) compared with Group 1 aestivators (~ 

12%), despite having similar body sizes and both groups experiencing four months of 

dormancy (data not shown).  

 

Table 4.2. Measurements of wet mass, total protein content and whole muscle cross-

sectional area of Cyclorana alboguttata gastrocnemius muscles 

 Control Aestivation 

Wet mass (mg) † 268.78 ± 22.08 (19) 219.14 ± 13.74 (17) 

Total protein content (mg g-1 wet mass) 40.56 ± 3.76 (8) 45.98 ± 2.78 (8) 

Muscle cross-sectional area (mm2) †† 22.79 ± 2.06 (8) 14.83 ± 1.36 (9) 

Values represent means ± s.e.m.; numbers in parentheses represent number of animals. † Muscle wet masses of 

frogs used in the current study (Group 1) were combined with those sourced from Chapter 2 (Group 2; Reilly et 

al. 2013). There was no significant effect of aestivation on body size-adjusted muscle wet mass or muscle protein 

content. †† Similarly, our previous study indicated aestivation had no significant effect on body size-adjusted 

whole muscle cross-sectional area. (Chapter 2; Reilly et al. 2013).  

 

Calpain activity 

In the present study the activity levels of calpains 1 and 2 were approximately 44% 

lower in gastrocnemius muscle of aestivating frogs relative to those of active C. alboguttata 

(P = 0.28, Fig. 4.1). The absence of a significant difference may be due to the high level of 

variation in control frogs (Fig. 4.1). When activity was normalized to tissue rather than 
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protein (activity/g-1 wet mass), the activity levels of calpains 1/2 were approximately 10% 

lower in muscle of aestivators compared with active C. alboguttata (data not shown).  

 

 

Figure 4.1. Effect of four months of aestivation on the enzyme activity levels of calpain 1 and calpain 2 in the 

gastrocnemius muscle of Cyclorana alboguttata. Calpain activity was determined by calpain cleavage of the 

substrate Suc-LLVY-aminoluciferin in the presence of 2.5 mM CaCl2, or the absence of CaCl2 and the presence 

of 10 mM EDTA/10 mM EGTA. Data are presented as mean ± s.e.m in arbitrary units (AU); N = 8 for both 

aestivating and control frogs. 

 

Calpain protein abundance  

Western blots were used to ascertain whether calpain 1, 2 and 3 were present in C. 

alboguttata muscle homogenate. Firstly, the human amino acid sequences used by Genetex to 

produce the calpain antibodies (amino acids (AA) 317-493 for calpain 1; AA 317-374 for 

calpain 2 and AA 528-741 for calpain 3) were aligned against the calpain isoform nucleotide 

sequences (i.e. translated using C. alboguttata contigs using blastx; Table 4.3) generated from 

the C. alboguttata transcriptome to determine the degree of similarity between the species. 

Homologies between the two species in these regions were 72%, 81% and 77% for calpains 1, 

2 and 3, respectively (Fig. 4.2). However, the C. alboguttata calpain 2 predicted sequence was 

not entirely full-length, thus the exact percent similarity with the human epitope region is 

unknown. Secondly, the C. alboguttata predicted protein sequences were imported into 

ProtParam (http://web.expasy.org/protparam/) to obtain predicted molecular weights (MW) 

for the different frog calpain isoforms. The predicted MW and length of C. alboguttata 

calpain 1 was 80 kDa; 705 AA, whereas calpain 3 was 92.5 kDa and 808 AA. These results 

are consistent with data from other species. Because C. alboguttata calpain 2 was a partial 

http://web.expasy.org/protparam/
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sequence, its predicted MW was 74 kDa. It is likely however, that full length C. alboguttata 

calpain 2 has a MW of 80 kDa.  

 

 

 

 

Table 4.3. Log2 fold-changes of calpain genes in gastrocnemius muscle of C. alboguttata 

as determined by RNA Seq (CLC Genomics Workbench) and exact tests conducted in 

EdgeR 

 Symbol Top Hit 

Accession No. 

% Similarity P value Log2 fold 

change 

Calpain 1, large subunit capn1 NP_001013631 88 0.43 0.33  

Calpain 2 capn2.2 NP_001005446 80 0.27 -0.62 

PREDICTED: calpain 3-like 

isoform X2 

LOC100497532 XP_004917296 81 0.80 0.10 

Calpastatin, putative cast CAB62094.2 63 0.94 -0.03 
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Figure 4.2. Human amino acid sequences used to produce the epitope for calpain (A) 1, (B) calpain 2 and (C) 

calpain 3 antibodies (AA317-493 for calpain 1; AA317-374 for calpain 2 and AA528-741 for calpain 3; 

Genetex, Inc.) aligned against corresponding region of C. alboguttata calpain proteins. Homologies between the 

two species in these regions were 72%, 81% and 77% for calpains 1, 2 and 3, respectively. Note that C. 

alboguttata calpain 2 is only a partial sequence whereas calpains 1 and 3 are full length in the epitope region. 
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As calpains have not previously been reported in burrowing frog muscle, we 

compared protein bands identified using the anti-calpain antibodies in both mouse and C. 

alboguttata gastrocnemius muscle (Fig. 4.3). In mammalian muscle calpain 1 (80-82 kDa) is 

usually an inactive proenzyme. Its activation involves autolysis to a 78-kDa and then to a 76-

kDa protein, both of which are proteolytically active calpain 1 isoforms (Baki et al., 1996). 

Similarly, autolysis of full-length calpain 2 (80 kDa) results in a 78-kDa proteolytically active 

protein (Edmunds et al., 1991). Both calpain 1 and calpain 2 were detected in mouse and frog 

muscle samples at the expected MW (75-80 kDa), although there appeared to be a difference  

in mobility between the mouse/frog samples and the active human calpain 1 enzyme, with 

calpain 1 appearing marginally smaller in Mus and Cyclorana (Fig. 4.3A, B). Although 

autolysed calpains are often observed as the cleaved, shorter products during western blot 

experiments (Murphy et al., 2006), there was little to no evidence of autolysis of calpain 1 or 

calpain 2 in aestivating or active C. alboguttata muscle (Fig. 4.3A, B). In mouse however, 

autolysis of calpain 2 may be seen as the appearance of a very faint, second smaller band (Fig. 

4.3B). The relative protein abundance of calpain 1 and calpain 2 was not significantly 

different between control and aestivating animals (P = 0.47 and  0.09, respectively; Fig. 4.4A, 

B). 
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Figure 4.3. Calpain isoforms during aestivation and while active (control) in skeletal muscle of Cyclorana 

alboguttata. Representative Western blots for calpain 1 (A), calpain 2 (B) and calpain 3 (C) in mouse (Mus) and 

C. alboguttata gastrocnemius muscles are shown. The same samples were used in each Western blot and lanes 

contained equivalent amounts of protein from muscle extracts prepared from individual animals. All muscles 

were homogenized in lysis buffer containing 50 mM EGTA. Full-length calpain 1 (~80 kDa) is evident in mouse 

and burrowing frog samples; autolysed fragments (~78 and 76 kDa) are not seen. Similarly, full-length calpain 2 

can be seen in mouse and frog homogenates with an absence of smaller autolysed bands. Full-length calpain-3 at 

~94 kDa is clear in mouse, with only faint bands apparent in C. alboguttata samples. In contrast, lysed calpain-3 

bands at ~60-56 kDa are strong in frog but absent in mouse. The bands at ~75-80 kDa in the lanes containing the 

mouse and frog homogenates have previously been observed in homogenates from rat and toad skeletal muscle 

(Verburg et al., 2005) (see RESULTS). Equal amounts of active human calpain 1 enzyme (aH-CAPN1) were 

loaded in each blot. Note the intensity of staining of aH-CAPN1 in panel A, and the lighter background and 

absence of staining when using calpain 2 and 3 antibodies (B, C). Molecular masses are shown at left. 
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Figure 4.4. Protein abundance of (A), calpain 1, (B) calpain 2 and (C) calpain 3 during aestivation and while 

active (control) in gastrocnemius muscle tissue of Cyclorana alboguttata. Total protein was extracted from 

muscle of aestivators (N = 7) and while frogs were awake and active (control; N = 7). Lanes contained equivalent 

amounts of protein from individual animals and were analysed using Western blot analysis (see Fig. 2). The 

density of putative calpain bands were calculated as the density of each band normalised to relative to the density 

of a ~42 kDa band visible in each blot likely representing alpha-actin. Data are presented as mean ± s.e.m. In all 

cases one-way ANOVA indicated that the total protein abundance of calpains did not change significantly during 

aestivation. P = >0.05. 

 

The autolysis of calpain 3 (94-kDa), results in the formation of 60-, 58-, and 56-kDa 

proteins (Taveau et al., 2003). In contrast to humans, previous characterisation of calpain 3 

protein expression has shown that in addition to protein bands at ~ 94 and 58 kDa, 

immunoblotting of muscle from rat, mouse, hamster, chicken and toad detects a strong band 

at ~ 82 kDa (Anderson et al., 1998; Kramerova et al., 2004; Verburg et al., 2005). This 82 

kDa protein is unlikely to be calpain 3 given that it was reported to be Ca2+ insensitive 

(Murphy et al., 2006; Verburg et al., 2005). Consistent with these studies, we also observed 

two bands of approximately 94 and 75-82 kDa in both mouse and frog gastrocnemius 

homogenate (Fig. 4.3C). However, the 94 kDa bands were relatively faint in C. alboguttata 

compared with mouse (Fig. 4.3C). A band of approximately 56-60 kDa was consistently 

observed in frog homogenates and may represent autolysed calpain 3 (Fig. 4.3C). The 

intensity of this 56-60 kDa band did not increase in aestivating animals. Like calpain 1 and 2, 

relative endogenous protein levels of calpain 3 (i.e. density of the 94 and 60 kDa bands 

combined) were not significantly different in the gastrocnemius of aestivators compared with 

controls (P = 0.09; Fig. 4.4C).  

 

Calpain gene expression 

The putative protein sequences of C. alboguttata calpain genes sequenced in the 

present study for qPCR experiments usually showed the highest similarity to calpain 
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sequences of Xenopus and Silurana, the two best annotated amphibians (Table 4.4). Calpain 

gene expression levels (capn1, capn2 and capn3) were analysed relative to the expression of 

the reference gene mut. There was no effect of aestivation on the gene expression levels of 

capn1, capn2 or capn3 in frog gastrocnemius muscle (P = 0.99, 0.22 and 0.14, respectively; 

Fig. 4.5). Because the cross-species primer design, PCR and sequencing were conducted 

before the transcriptome assembly data (Reilly et al., 2013) was generated, we thought it 

interesting to examine the C. alboguttata muscle transcriptome for candidate calpain genes. 

Fourteen of the constructed contigs were related to calpain proteins in NCBI’s non-redundant 

database with an E value of <1e-3. These included capn1, capn2, capn3, capn 5, capn 7, capn 

9, capn 10 and the endogenous calpain inhibitor, calpastatin (cast). The expression patterns of 

the putative capn1, capn2, capn3 and cast genes were compared between 4-month aestivating 

frogs (N = 4) with those of control animals (N = 4) using EdgeR. In agreement with results of 

qRT-PCR the expression levels of capn1, capn2, capn3 were unchanged between aestivators 

and controls, as was the mRNA abundance of cast (Table 4.3).  

 

Table 4.4. Identity and functional homology of C.alboguttata sequence 

Gene Putative protein sequence (Highest Annotated BLAST Hit) 

gapdh 
Glyceraldehyde-3-phosphate dehydrogenase, Hoplobatrachus tigerinus, ACN79578.1 (85%, 185, 1e-

57) 

hint1 Histidine triad nucleotide-binding protein 1, Ficedula albicollis XP_005061075.1 (78%, 128, 4e-36) 

mut 
Methylmalonyl CoA mutase, mitochondrial isoform X2, Silurana tropicalis XP_004915007.1 (91%, 

1422, 0.0) 

stac3 
SH3 and cysteine-rich domain-containing protein 3 isoform X1, Latimeria chalumnae XP_005986321.1 

(85%, 474, 8e-154) 

capn1 Calpain-1 large subunit, Xenopus laevis NP_001080485.1 (85%, 462, 8e-156) 

capn2 Calpain-2,  Xenopus (Silurana) tropicalis NP001005446.1 (85%, 146,  3e-39) 

capn3 Calpain-3-like isoform X2, Xenopus (Silurana) tropicalis XP_004917296.1 (78%, 159, 1e-152) 

 

Numbers in parentheses represent identity (%), score (bits) and E-value, respectively. 
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Figure 4.5. Effect of four months of aestivation on the gene expression levels of (A) calpain 1 (capn1), (B) 

calpain 2 (capn2) and (C) calpain 3 (capn3) in the gastrocnemius muscle of Cyclorana alboguttata. Whisker-box 

plots show the median value and expression variation for each gene after normalisation to the reference gene, 

methylmalonyl CoA mutase (mut); N = 7 for both aestivating and control frogs. 

 

 

DISCUSSION 

Suppression of metabolism during aestivation limits ATP use so as to extend total 

survival time, which can be achieved by minimising the activity of energy expensive 

processes. Because protein synthesis is greatly minimised during aestivation (Fuery et al., 

1998; Pakay et al., 2002), protein degradation is usually suppressed to a similar level to delay 

entry into a state of negative protein balance (Ramnanan et al., 2009). This is particularly 

important in tissue such as skeletal muscle which must maintain its protein content and 

contractile capacity for when animals emerge from the aestivating state. Overall, aestivating 

C. alboguttata exhibited no significant loss in gastrocnemius muscle wet mass (~18% 

reduction). Because the water content of aestivating C. alboguttata gastrocnemius muscle has 

been reported to be unchanged from that of control animals (Hudson and Franklin, 2002a; 

Mantle et al. 2009, Mantle et al. 2010) muscle wet masses are reliable indicators of muscle 

size. Additionally, total protein content does not change appreciably in the gastrocnemius of 

aestivating frogs (current study; Mantle et al. 2009, Mantle et al. 2010). Together these data 

indicate attenuation of protein catabolism in the gastrocnemius and an absence of atrophy 

following four months of aestivation. However, it is interesting to note that muscles from 

aestivating frogs in Group 2 exhibited a greater loss in wet mass (~ 23%) compared with 

aestivators from Group 1 (~ 12%), despite no differences in SVL or duration of the 

experiment. Differences in the proportion of muscle mass lost in the two different 

experimental groups of frogs may be related to the fact that in amphibians, fat bodies undergo 
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annual or seasonal changes in size (Girish and Saidapur, 2000), and/or different diets are 

known to affect the lipid composition of skeletal muscle in C. alboguttata (Berner et al. 

2009). Thus, the availability of lipids as an energy source may not have been the same 

between studies, and such circumstances might force some individual frogs to start using 

muscle protein as a fuel supply during aestivation.  

Nevertheless, losses of muscle wet mass in aestivating C. alboguttata are modest 

compared with conventional experimental models. In rats, skeletal muscle disuse can result in 

an almost 60% loss of gastrocnemius muscle wet mass and a 50% reduction in whole-muscle 

cross sectional area after just 1 month of hindlimb immobilisation (Spector et al., 1982; 

Zarzhevsky et al., 1999). In the current study, we have shown that C. alboguttata muscle 

expresses various calpain protease isoforms, including the ubiquitous calpains 1 and 2 and the 

muscle-specific calpain 3. While there were no changes in calpain activity, total protein or 

gene expression levels, there is some evidence that calpain 3 might be autolysed (and 

potentially active) in C. alboguttata muscle.  

The proteolytic activities of calpain 1 and 2 were estimated simultaneously in skeletal 

muscle of C. alboguttata using the calpain substrate Suc-LLVY-aminoluciferin. To our 

knowledge, our study is the first to measure calpain activity in muscle during aestivation. 

Contrary to our hypothesis, there was no change in enzyme activity between aestivating and 

control frogs despite a more than 40% reduction in aestivators. Although this may be due to 

the high level of variation in active frogs, it appears that the aestivating condition does not 

require suppression of calpain 1 and 2 proteolytic activity. It is important to note that the 

activity assay used in our study does not differentiate between the two calpain isoforms, and 

may also include contributions from other Ca2+-sensitive proteases such as cathepsins. 

Nevertheless, our enzyme activity data are supported by the observation that the activities of 

calpain 1 and 2 were also maintained in the soleus muscle of hibernating Daurian ground 

squirrels (Spermophilus dauricus) (Yang et al., 2014). In contrast to aestivators and 

hibernators, enzyme activity levels of calpain 1 and 2 have been shown to be increased during 

hindlimb suspension in rodents (Enns et al., 2007; Taillandier et al., 1996; Yang et al., 2014). 

Calpain activation in skeletal muscle appears to occur early during hindlimb suspension and 

can show a progressive increase in activity over time (Enns et al., 2007; Ma et al., 2011). 

Such disuse-induced activation has been suggested to be due to an early rise in intracellular 

[Ca2+] (Enns et al., 2007).  
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In the present study three isoforms of calpain were quantified at the protein and 

transcript level. Immunoblots of whole muscle extracts showed that muscle calpain 1 and 

calpain 2 total protein levels were unaffected by aestivation. Additionally, calpains 1 and 2 

appeared to be in their full-length form suggesting that autolysis does not occur in muscle 

following 4 months of aestivation. The absence of any increase in calpain 1 and 2 protein 

abundance or their autolysed forms in aestivating C. alboguttata muscle could represent a 

mechanism by which aestivating frogs limit proteolysis in skeletal muscle. In agreement with 

our study, Lee et al. (Lee et al., 2010) found no difference in the protein abundance of calpain 

1 in pectoralis muscles of summer-active and 3-month hibernating Murina leucogaster bats, a 

species which also undergoes minimal loss in muscle mass despite inactivity during 

dormancy. Protein levels of both calpain 1 and 2 were also recently found to be unaffected by 

hibernation in squirrels (Yang et al., 2014). Cast immobilisation in typical rodent models has 

been shown to be associated  with increased autolysis of calpain 1 and calpain 2 (Min et al., 

2011; Talbert et al., 2013a; Talbert et al., 2013b; Vermaelen et al., 2007), highlighting the 

different response of C. alboguttata muscle to extended disuse. 

Calpain 3 appeared to be present in its autolysed form in both control and aestivating 

frogs. This is an interesting result given that calpain 3 has been shown to downregulated 

under different atrophic scenarios and aestivating C. alboguttata show evidence of only 

minimal skeletal muscle atrophy at 6-9 months aestivation (Chen et al., 2007; Jones et al., 

2004; Mantle et al., 2009). Although the physiological function(s) of calpain 3 are obscure, it 

has been proposed that the protease is important in the regulation of maintenance of muscle 

integrity, myogenesis, and apoptosis (Murphy, 2010). Additionally, calpain 3 activity has 

been shown to initiate cleavage of a number of cytoskeletal proteins (e.g. actin-binding 

proteins) and is localised in costameres and myotendinous junctions, which are known sites of 

muscle force transmission (Taveau et al., 2003). Thus, it has been suggested that calpain 3 

likely plays a role in regulating the cytoskeleton of myocytes during force production, 

adaptation to exercise or stretching or protection during fibre contraction (Taveau et al., 

2003). Murphy et al. (Murphy et al., 2007) demonstrated calpain 3 activation in vivo 

following eccentric exercise, whereas in vitro data indicate calpain 3 activation may result 

from a small but chronic increase in cytoplasmic [Ca2+] following eccentric exercise but not 

due to the lengthening contractions performed (Murphy and Lamb, 2009). 

 It is difficult to predict the specific function of the apparent autolysed calpain 3 

isoform in C. alboguttata gastrocnemius muscle. However, given that 1) aestivating frogs 
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have their hindlimbs rendered immobile and have no need to produce force until arousal from 

aestivation, and 2) that in most frogs the gastrocnemius is a primarily glycolytic muscle used 

for powerful, short bursts of activity necessary for prey capture and escape, it is plausible that 

C. alboguttata calpain 3 may play a role in adaptation to movement/exercise or cytoskeletal 

regulation, as it does in mammals. Four months of aestivation in C. alboguttata has 

previously been shown to lead to changes in gene expression of components of myotendinous 

junctions and the cytoskeleton, including actin-binding proteins (e.g. LIM domain and actin-

binding protein 1, filamin-binding LIM protein 1) (Reilly et al., 2013). Clearly remodelling of 

cytoskeletal elements is important in aestivating muscle, but further work is required to 

ascertain the function of calpain 3 and the mechanisms by which it is activated in C. 

alboguttata muscle. 

In the current study the gene expression levels (as measured by qRT-PCR) of calpains 

1, 2 and 3 remained at control levels during aestivation in C. alboguttata muscle. These data 

were supported by results of our transcriptomic analysis which also demonstrated no changes 

in expression levels of calpains or the specifc endogenous calpain inhibitor, calpastatin (Table 

4.3). As gene transcription represents an energy cost to an organism, one would predict that if 

a protein is not critical for survival during aestivation then the transcription of the encoding 

gene will be suppressed. Indeed, the overall rates of transcription (and translation) are 

downregulated in all systems of hypometabolism (Storey and Storey, 2010). Because calpain 

activation can lead to unregulated proteolysis of cellular proteins, calpains are highly 

regulated and are considered to be in an inactive state most of the time (Bartoli and Richard, 

2005). Indeed, both fasting and disuse lead to an increase in calpain (1 and 2) mRNA 

abundance in mammalian muscle and correlate with the loss of muscle tissue 

(Andrianjafiniony et al., 2010; Ilian and Forsberg, 1992; Servais et al., 2007). The 

maintenance of pre-aestivation gene transcript levels of calpains in aestivating C. alboguttata 

muscle is consistent with the protection of muscle against unregulated proteolysis throughout 

aestivation. 

The absence of a change in calpain 1 and 2 enzyme activity, autolysis and gene 

expression levels observed in the gastrocnemius muscle from aestivating frogs provides 

evidence that the ubiquitous calpains are inactive during aestivation, but is different to our 

hypothesis that their enzyme activity and protein and mRNA levels would be suppressed. The 

enzyme activity and gene expression levels of calpains 1 and 2 could be affected by changes 

in calpastatin activity, which were not measured in this study. However, calpastatin mRNA 
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was unaffected by 4 months of aestivation (Table 4.3) suggesting it too is inactive during this 

time. Yang et al. found that calpastatin protein abundance increased almost 200% in 

hibernating squirrels compared with control animals (Yang et al., 2014) and suggested this to 

be the most likely mechanism underpinning inhibition of disuse atrophy in dormant S. 

dauricus. In contrast to calpains 1 and 2, calpain 3 is apparently not inhibited endogenously 

by calpastatin (Murphy, 2010). 

Given that in vivo calpain 1 and 2 activity is elevated by a sustained increase in 

cytosolic calcium levels and/or a reduction in calpastatin, it is likely that C. alboguttata are 

able to maintain intracellular calcium homeostasis in skeletal muscle during aestivation, 

which would prevent activation of calpain. Indeed, activity levels of Ca2+ channels from the 

cell membranes of hibernators tend to be suppressed relative to non-hibernating cells, helping 

to prevent excessive Ca2+ influx (Wang et al., 2002). In mammalian models of disuse atrophy, 

it has been suggested that excessive ROS production in cells could lead to disruption of 

calcium homeostasis leading to calpain activation and fibre degradation (Powers et al., 2007). 

The suppression of ROS production and the lack of oxidative damage previously observed in 

the disused skeletal muscle of aestivating frogs is consistent with this hypothesis (Reilly et al., 

2014; Young et al., 2013).  

In summary, we have characterised calpains in C. alboguttata skeletal muscle and 

suggest that prevention of autolysis of calpains 1 and 2 in aestivators may be important in 

retaining muscle integrity during prolonged dormancy. However, it is unclear as to the 

physiological function of calpain 3 in burrowing frogs, and whether its autolysis contributes 

to resistance to disuse atrophy in this species. The absence of any increase in calpains during 

aestivation is probably due to the maintenance of calcium balance in myocytes, although we 

cannot rule out any upregulation of calpastatin activity. Much more research is needed with 

respect to proteolysis in aestivating C. alboguttata muscle, starting with the determination of 

the relative roles of the UPS and autophagy-lysosome systems in regulation of protein 

degradation during the aestivating state, in addition to calpains. Based on the results of this 

study, it appears that aestivators can tightly regulate muscle calpains and thus exert control of 

this proteolytic pathway during metabolic suppression. 
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Chapter 5 

General Discussion  

 

The overall aim of this thesis was to enhance our understanding of the effect of 

extended aestivation on skeletal muscle of C. alboguttata by exploring the possible cellular 

and molecular mechanisms associated with the inhibition of muscle disuse atrophy. In chapter 

2, C. alboguttata depressed whole-animal metabolic rate by approximately 70% following 

four months of aestivation and exhibited no significant changes in whole muscle cross-

sectional area or wet mass. Next generation RNA sequencing (RNA-Seq) technology was 

used to determine the influence of aestivation on global gene expression patterns in skeletal 

muscle. Comparison of the transcriptional profiles of the gastrocnemius muscle from active 

(control) and aestivating frogs showed that the majority of genes examined were 

downregulated during aestivation (64%). Among the downregulated genes, those implicated 

in energy metabolism were found to be overrepresented, as were mRNAs involved in muscle 

contraction (actin, myosin). The coordinated upregulation of genes associated with nucleic 

acid metabolism, cell death and survival and DNA replication, recombination and repair was 

also a prominent feature of the transcriptome of aestivating C. alboguttata. In addition, the 

modulation of genes involved in cytoskeletal organisation (vinculin, actinin, tubulin) and the 

NRF2-mediated oxidative stress response is likely to be critical in the maintenance of muscle 

integrity in aestivating C. alboguttata. 

In chapter 3, mitochondrial respiration and ROS (H2O2) production was investigated 

in permeabilised skeletal and cardiac muscle fibres of C. alboguttata. After four months of 

aestivation, C. alboguttata reduced oxygen consumption of skeletal muscle mitochondria by 

almost 50% when malate, succinate and pyruvate were present in concentrations likely to 

reflect those in vivo, while mitochondrial H2O2 production showed up to an 88% reduction in 

aestivating skeletal muscle during leak respiration (i.e. respiration without adenylates 

present). However, mitochondrial respiration and H2O2 production in permeabilised cardiac 

muscle fibres were found to be unchanged between control and aestivating C. alboguttata.  

In chapter 4, calpain proteases were assayed in C. alboguttata gastrocnemius muscle 

to gain a better understanding of the role calpains may play in the relative maintenance of 

aestivating skeletal muscle mass and integrity. While there were no changes in calpain 

enzyme activity or gene expression levels, western blot experiments indicated that calpain 3 

may be autolysed (active) in burrowing frog gastrocnemius muscle. However, the relative 
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protein abundance of all three calpains was unchanged during aestivation. The maintenance of 

total protein content in the gastrocnemius combined with the lack of any increase in 

expression or activity of calpains suggests that aestivators exert tight control over muscle 

proteolytic pathways, despite prolonged disuse and fasting. 

In this final chapter, I will synthesise the findings from each experiment conducted 

during this thesis, and discuss the findings in the broader context of muscle disuse atrophy in 

clinical and non-clinical models. The discussion will focus on the potential mechanisms 

employed by organisms that enter seasonal dormancy that enables them to maintain basic 

physiological functions in muscle during an unknown period of dormancy while ensuring a 

rapid and successful return to normal activity upon arousal during the summer rainfall events. 

Based on questions that have been generated as a result of my research, I will address key 

areas for future investigations on the effects of prolonged aestivation in C. alboguttata 

muscles.   

 

Hibernators vs. aestivators as natural models of disuse 

 Hibernating mammals and aestivating frogs are very interesting models in which to 

examine mechanisms of skeletal muscle atrophy because both enter a hypometabolic state that 

entails chronic inactivity as well as hypophagia. Prolonged hibernation (greater than six 

months) is usually associated with mammals which inhabit temperate, high-latitude and/or 

highly seasonal cold environments (Carey et al., 2003). The winter survival strategies used by 

these ‘typical’ hibernators are highly variable (e.g. regulation of Tb, frequency of arousals, 

food storage vs. fat accumulation). Although hibernation is often considered to be a specific 

adaptation of species inhabiting highly seasonal cold environments, it is also used by many 

diverse species from all climate zones, including the tropics (Geiser, 2013). Known 

hibernators include various mammals from all three mammalian subclasses (Monotremes, 

Marsupials, Placentals), and also a species of bird (the common poorwill, Phalaenoptilus 

nuttallii) (Geiser, 2013).  

Despite the fact that many hibernators undergo a pattern of periodic arousals in winter 

followed by foraging and reproduction in the warmer months, this strategy is not universal. 

For example, marsupial pygmy-possums (Cercartetus spp.) are relatively flexible with their 

torpor/activity patterns and are able to forage during warmer periods in winter but resume 

multi-day torpor when the environmental temperature drops (Geiser, 2013). In contrast, 
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hibernation in reproductive echidnas (Tachyglossus aculeatus) is often terminated in the 

middle of winter for breeding (Morrow and Nicol, 2009). In addition, not all hibernators 

rewarm periodically. Tenrecs (Tenrec ecaudatus) were found to undergo nine months of 

hibernation with no evidence of any periodic interbout arousals (Tb during hibernation never 

decreased below 22°C) (Lovegrove et al., 2014).  

While prolonged inactivity contributes to energy conservation during dormancy, some 

species such as the black bear (U. americanus) are far from being completely immobile and 

instead periodically arouse and move during hibernation (Toien et al., 2011). In hibernators it 

has actually been hypothesised that routine neural activation of muscles (shivering) could 

occur and help offset the negative effects of muscle wasting (Harlow et al., 2004). Other 

hibernating animals often consume food during dormancy, thereby replenishing fuel reserves 

and abating the threat of starvation (Humphries et al., 2001). Because hibernation strategies 

and behaviours are extremely diverse, it is difficult to draw broad conclusions about the 

physiological responses of skeletal muscle in hibernating species. Consequently, hibernators 

are not necessarily a good model of natural muscle disuse. 

Aestivating amphibians are an intriguing, alternative model for examining muscle 

disuse atrophy. In general, aestivators enter dormancy at relatively high environmental 

temperatures (Young et al., 2011), and because of the high risk of dehydration aestivators are 

often confined within a cocoon inside a subterranean burrow. Although the cocoon 

significantly hinders evaporative water loss, it also secondarily inhibits movement of the 

limbs and can be considered analogous to a cast or splint. As aestivators are completely 

restrained during their dormancy, they do not experience periodic arousals and are completely 

dependent on energy stores accumulated before entering aestivation (Van Beurden, 1980). 

Starvation is a real survival threat for aestivators and it is feasible that, should lipid reserves 

be exhausted, muscle protein could be used as a fuel source, potentially contributing to 

muscle disuse atrophy (Mantle et al., 2009). Thus, physiological and molecular studies of C. 

alboguttata skeletal muscle can reveal information about both the similarities and diversity of 

mechanisms potentially used to attenuate the rate of muscle disuse atrophy during dormancy.  
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Gene expression signatures in C. alboguttata skeletal muscle: evidence for inhibition of 

apoptosis and chromatin remodelling 

A major achievement of the current research was the de novo construction of a C. 

alboguttata skeletal muscle transcriptome, providing for the first time a genomic resource for 

this unusual species. Moreover, this work has revealed novel information regarding global 

gene expression patterns during aestivation. To date, only a small number of studies have 

used gene expression profiling to identify and characterise key functional proteins and 

pathways involved in hypometabolism (Hampton et al., 2011; Schwartz et al., 2013; Storey et 

al., 1999; Yan et al., 2008). Widespread suppression of gene transcription is an essential 

component of metabolic depression exploited by all dormant organisms (Storey and Storey, 

2010). However, it is important to note that while an array of transcripts may be suppressed 

during dormancy, the majority of genes show only moderate reductions in expression levels 

(Fedorov et al., 2014). Given that aestivators are reliant solely on their endogenous fuel 

supplies, it is perhaps not surprising that genes found to be strongly downregulated in C. 

alboguttata muscle were those functioning in catabolic pathways (e.g. glycolysis). The 

maintenance of intrinsic control of carbohydrate metabolism during aestivation is achieved 

not only via suppression of gene expression (current study), but also by post-translational 

modifications such as reversible protein phosphorylation (Cowan and Storey, 1999; Whitwam 

and Storey, 1990). While protein phosphorylation appears to be an important regulator of 

select metabolic processes during aestivation, recent work from hibernators suggests that 

widespread coordination of phosphorylation is not a major feature in orchestrating cellular 

changes throughout metabolic depression (Hindle et al., 2014). 

Despite an overall downregulation of transcription and translation during hibernation 

and aestivation, increased expression of selected genes and the proteins that they encode does 

occur during metabolic depression (Storey et al., 1999; Storey and Storey, 2010). The current 

study has greatly contributed to our knowledge of genetic mechanisms that need to be 

enhanced throughout dormancy phenomena. The key gene functional groups found to be 

upregulated in C. alboguttata gastrocnemius muscle were cell death and survival, DNA 

replication, recombination and repair and chromatin remodelling. A multitude of extra- and 

intra-cellular stimuli induce apoptosis including alterations in temperature and osmolarity, 

ROS (i.e. H2O2), deprivation of nutrients, oxygen or growth factors and organ disuse 

(Marzetti et al., 2010; Portt et al., 2011). These are all stressful conditions which either can or 

do accompany the aestivating state. Upregulation of pro-apoptotic genes in aestivating C. 
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alboguttata muscle may serve to eliminate individual myocytes (and intracellular 

macromolecules) that are defective, damaged or otherwise a potential threat to the integrity of 

the whole animal. However, in response to potential apoptotic signals aestivating cells would 

need to avoid triggering premature or excessive apoptosis, which can be accomplished by 

balancing the ratio of pro- and anti-apoptotic mechanisms. This was reflected in our 

transcriptomic data by the enhanced expression of genes with reported anti-apoptotic 

functions (e.g. the IAP survivin, or BIRC5). Like C. alboguttata, members of the IAP protein 

family also appear to be regulated during hibernation (Rouble et al., 2013), with an increase in 

xIAP (a.k.a BIRC4) protein levels reported in muscle of hibernating S. tridecemlineatus. This 

indicates the possibility that inhibition of caspase activity via increased IAP expression may 

be a critical regulatory mechanism which enhances survival of myocytes in dormant species 

that are resistant to disuse atrophy.  

Other cell protective mechanisms that were upregulated in aestivating C. alboguttata 

muscle included genes functioning in cell-cycle control (growth arrest through checkpoint 

control), DNA and chromatin stabilisation and repair, and expression of heat shock proteins to 

fold/refold and stabilise proteins. These are all important mechanisms that are part of the 

broadly conserved cell stress response (Kultz, 2005), and likely contribute to the preservation 

of muscle tissue during aestivation.  

The modulation of myogenesis/muscle growth might also contribute to the lack of 

muscle atrophy in aestivating frogs. Although not detected by IPA, myostatin mRNA was 

markedly suppressed in aestivating frog gastrocnemius muscle, which is consistent with the 

reduction in myostatin gene expression in soleus and diaphragm muscles of hibernating 

ground squirrels, two muscle types also known to be resistant to disuse atrophy (Nowell et al., 

2011). Myostatin signalling can activate MAFbx/atrogin-1 and MuRF1 (Elliot et al., 2012), 

the two genes known to be consistently upregulated in different muscle atrophy models 

(Gomes-Marcondes and Tisdale, 2002; Li et al., 2003). Furthermore, binding of myostatin to 

its receptor can activate the common SMAD signalling pathway leading to inhibition of 

MyoD production, which plays a key role in regulating muscle differentiation (Elliot et al., 

2012). Alternatively, myostatin inhibits activation of the Akt/mTOR protein synthesis 

pathway (Trendelenburg et al., 2009), therefore decreased myostatin gene expression may 

facilitate mTOR signalling by reducing this inhibition. 

 Gene expression profiling of aestivating C. albogutatta muscle also revealed new 

information about specific mechanisms that control transcription during aestivation, in 
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particular ATP-dependent chromatin remodelling (smarca4, smarca5 and RBBP4). The main 

characteristic of ATP-dependent chromatin remodelling enzymes is their capacity to remodel 

chromatin by modifying the DNA-histone contacts within an individual nucleosome, resulting 

in either localised interruption of the histone–DNA contacts or shifting of the nucleosomes on 

the chromatin fibre. Importantly, these enzyme complexes exhibit striking specificity in 

selecting their genomic targets and may positively or negatively regulate transcription to 

modulate numerous cellular processes, such as skeletal muscle differentiation (Albini and 

Puri, 2010). Interestingly, smarca4 (also known as brg1) was shown to have a vital role in 

modulating cardiac muscle growth, differentiation and gene expression (Hang et al., 2010). 

Smarca4 is normally switched off in adult cardiomyocytes, but is activated during cardiac 

stress such as hypertrophic cardiomyopathy, and induces a shift in myosin heavy chain 

isoforms (Hang et al., 2010). Inhibition of smarca4 expression reduces cardiac hypertrophy 

and reverses the isoform switch (Hang et al., 2010). SMARCA gene family members and 

their encoded proteins appear to be a fundamental component of the transcriptional 

reprogramming (enforced expression of key transcription factors and co-regulatory proteins) 

that occurs in aestivating C. alboguttata muscle, and are likely be involved in regulating 

myocyte growth, differentiation and perhaps muscle protein isoforms.  

 Rbbp4 is a histone-binding subunit and a core component of complexes that control 

chromatin metabolic processes, such as chromatin assembly following DNA replication and 

repair and transcriptional suppression. Surprisingly, a previous study found no change in gene 

expression levels of cruralis muscle rbbp4 between aestivating and control C. alboguttata 

(Hudson et al., 2008).  However, in support of the current study, other genes with established 

roles in gene silencing (SIN3A co-repressor and DNA cytosine-5-methyltransferase 1) were 

upregulated 160 and 350%, respectively. Morin and Storey (Morin and Storey, 2006) showed 

that hibernating S. tridecemlineatus muscle exhibited almost 2-fold higher histone deacetylase 

activity than control animals, indicating that mammalian hibernation and amphibian 

aestivation share common mechanisms of epigenetic modification related to histone 

deacetylation. Given the widespread suppression of gene expression during dormancy, the 

upregulation of rbbp4, smarca4 and smarca5 in C. alboguttata muscle is noteworthy. 

Moreover, this is the first time SMARCA genes have been linked to dormancy and thus 

provides novel information about specific epigenetic modifications at play during metabolic 

depression. 
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Effect of aestivation on ROS production and calpains in C. alboguttata muscle 

As metabolic depression involves all levels of biological organisation it is likely that 

multiple systems must interact to control a coordinated and reversible cessation of both ATP-

producing and consuming processes. Consequently, mitochondrial function was also studied 

in aestivating gastrocnemius muscle by investigating mitochondrial oxygen consumption and 

associated ROS production. The study of mitochondrial ROS production is relevant to 

hypometabolic systems for at least two reasons. As discussed, disuse-induced skeletal muscle 

atrophy has been linked to increased ROS production in muscle fibres, leading to oxidative 

stress and muscle tissue damage (Powers et al., 2011). Secondly, because the rate of 

mitochondrial superoxide production in many biological systems is proportional to oxygen 

tension, it is thought that physiological oxidative stress occurs in animals that arouse from 

dormancy due to a rapid return to the active state and a ‘normal’ rate of oxygen consumption, 

in a manner similar to that which occurs during reperfusion injury (Ferreira-Cravo et al., 

2010).  

In the present study, gastrocnemius muscle mitochondrial oxygen consumption 

decreased by approximately 50% during four months of aestivation in C. alboguttata, which 

was accompanied by a decrease in mitochondrial H2O2 production. The reduction in 

gastrocnemius mitochondrial respiration is consistent with previous work on C. alboguttata 

(Kayes et al., 2009b) and correlates well with the ~70% reduction in whole animal oxygen 

consumption measured in the current study. The reduction in skeletal muscle mitochondrial 

H2O2 production is important given the paucity of information about rates of free radical 

production during metabolic depression. The reduction in H2O2 production observed in 

aestivators compared with controls may be a consequence of the ETC operating at a slower 

rate, simply resulting in less electrons being mismanaged or lost during electron transfer. 

Alternatively, ROS production may be attenuated by mild uncoupling of mitochondria (i.e. H+ 

re-enter the mitochondrial matrix without contributing to ATP synthesis), as H+ leak has been 

shown to decrease ROS generation (Brookes, 2005). Though this would be energetically 

costly during hypometabolism, it is conceivable that such a strategy could be protective 

throughout dormancy and upon arousal. However, evidence obtained from both aestivating 

and hibernating animals do not support the hypothesis that increased rates of proton leak 

occur during metabolic depression (Bishop and Brand, 2000; Bishop et al., 2002; Boutilier 

and St Pierre, 2002).  
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The decrease in ROS production recorded in aestivating C. alboguttata muscle 

mitochondria may be due to enhanced antioxidant capacities relative to control animals 

(potentially a combination of both enzymatic and endogenous, non-enzymatic). Indeed, the 

gene expression of ferritin (fth1), glutamate cysteine ligase (gclm), glutathione S-transferase 

(gsto2) and sulfiredoxin 1 (srxn1), all of which have antioxidant properties, were significantly 

increased in C. alboguttata muscle (Chapter 2). These expression data are supported by 

previous studies of C. alboguttata which have shown that transcription of antioxidant 

enzymes and total antioxidant capacity are maintained at control levels in skeletal muscle 

during aestivation (Hudson et al., 2006; Mantle et al., 2009). In addition, levels of lipid and 

protein oxidation (indices of ROS-induced oxidative damage) were unchanged in the 

gastrocnemius muscle of C. alboguttata following 6 months aestivation (Young et al., 2013). 

Similar to aestivating C. alboguttata, total antioxidant capacity was found to be elevated in 

the gastrocnemius muscle of torpid thirteen-lined ground squirrels relative to active animals 

(James et al., 2013). These results demonstrate that increases in skeletal muscle antioxidants 

occur during metabolic depression, which could explain decreased rates of mitochondrial 

ROS production. Thus, elevated levels of antioxidants are likely to contribute to 

cytoprotection during dormancy by providing greater protection of macromolecules and 

reducing the susceptibility of muscle tissue to the effects of oxidative damage.  

 It is still unknown as to why prolonged skeletal muscle inactivity results in increased 

mitochondrial ROS production in human and rodent models of muscle disuse atrophy. 

However, there are four potential pathways through which increases in mitochondrial ROS 

production may occur: 1) disturbed calcium handling and elevated levels of cytosolic and 

mitochondrial calcium within the disused muscle fibres, 2) an increase in mitochondrial levels 

of fatty acid hydroperoxides, 3) hindrance of protein transport into mitochondria leading to 

impairment of mitochondrial function and 4) an increase in mitochondrial fission in inactive 

skeletal muscles (Powers et al., 2012). The modulation of these potential processes and 

mechanisms remains an interesting and unexplored avenue in aestivators and hibernators, and 

could represent ways by which they reduce mitochondrial ROS production in their inactive 

skeletal muscles.  

Elevated ROS production during chronic muscle inactivity can lead to accelerated 

protein degradation, atrophy and reductions in contractile performance (Powers et al., 2007). 

Recently, Talbert et al. demonstrated that mitochondrial ROS production is necessary for 

activation of key proteolytic pathways in inactive muscle fibres, including the calpains 
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(Talbert et al., 2013b). With respect to the role of calpains in muscle disuse atrophy, it is 

known that extended inactivity of skeletal muscle fibres is associated with higher levels of 

cytosolic calcium and calpain activity (Powers et al., 2007). Impairment of calcium balance 

has been suggested to promote mitochondrial ROS production (see above). However, the 

production of ROS themselves could also exacerbate disturbances in calcium homeostasis 

leading to calcium overload (Powers et al., 2007). To this end, reactive aldehydes formed as a 

result of oxidative stress have been shown to inhibit Ca2+ -ATPase, which in turn would 

suppress Ca2+ removal from the cell (Siems et al., 2003). Thus, it has been hypothesised that 

an intracellular Ca2+ overload produced via this mechanism could induce calpain activation 

(Powers et al., 2007).  

 Results from the final experimental chapter showed that there was no significant 

decrease in the enzyme activity levels or the relative protein abundances of calpain 1 and 

calpain 2 in aestivating C. alboguttata muscle. Similarly, gene expression assays 

demonstrated that transcription of calpains was unaffected by aestivation. Western blotting of 

‘muscle-specific’ calpain 3, which is consistently downregulated during atrophic conditions, 

indicated that this isoform is present in burrowing frog muscle where it appears to be in its 

autolysed state. The absence of any increase in enzyme activity, protein and mRNA 

abundance of calpains in aestivators is consistent with the protection of gastrocnemius muscle 

against uncontrolled proteolysis throughout aestivation. 

 At this time, it is unknown which specific mechanisms might prevent accelerated 

calpain 1 and 2 activation in aestivating muscle, but it is reasonable to suggest that the 

endogenous calpain inhibitor, calpastatin, may play a role. Overexpression of calpastatin can 

decrease skeletal muscle atrophy by 30% during just 10 days of hindlimb unloading in mice 

(Tidball and Spencer, 2002). Moreover, calpastatin protein expression was almost 200% 

higher in muscle of hibernating S. dauricus compared with control squirrels (Yang et al., 

2014), indicating that this could be an important mechanism contributing to inhibition of 

disuse atrophy throughout dormancy. Aestivating C. alboguttata are also likely to have the 

capacity to tightly regulate cellular calcium homeostasis, which would prevent unwanted 

calpain proteolytic activity. Considering the data from biomedical disuse models, this idea is 

consistent with both the very low H2O2 production observed in aestivating gastrocnemius 

muscle, and the lack of any increase in calpain 1 and 2. 
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Future directions 

There are several important questions that have arisen as a result of this research. 

Despite the scale and novelty of information generated using RNA-Seq, hypothesis-driven 

studies that test predictions at the whole animal, tissue, cellular and molecular level, will be 

critical for future investigations of the mechanisms of aestivation in C. alboguttata.  

The most important trait that makes C. alboguttata an excellent model for studying 

muscle disuse atrophy during aestivation is the formation of the waterproof cocoon because it 

acts like a cast and immobilises the frog. Furthermore, the hardened clay soil burrow prevents 

the frog from being able to make significant movements throughout aestivation. While we can 

be confident that C. alboguttata is inactive and immobile once the cocoon of shed skin has 

been formed during deep aestivation, it cannot be ruled out that regular neural activation of 

muscles might be utilised to protect the musculoskeletal system against disuse-induced 

atrophy. However, hibernating bears were reported to be unusually resistant to the atrophic 

effects of denervation, indicating that neural activation and/or neural-associated trophic 

factors may not play a significant role in maintaining muscle architecture during hibernation 

(Lin et al., 2012). A similar type of response to loss of neuromuscular communication might 

be envisioned for aestivating frogs, given that the quantity of acetylcholine neurotransmitter 

‘packages’ (i.e. quanta) released per synapse was reduced in six-month aestivating C. 

alboguttata (Hudson et al., 2005). 

 Among the possible factors predicted to prevent muscle disuse atrophy, muscle stretch 

may be an important player. Limb immobilisation experiments in mammals, such as rats and 

rabbits, have shown that immobilisation of a muscle in a stretched (or lengthened) position 

can increase muscle mass, RNA content and IGF-1 gene expression, thus reducing the extent 

of atrophy (Loughna et al., 1986; Yang et al., 1997). The water-conserving pose adopted by 

C. alboguttata throughout aestivation may place vital locomotory muscles (e.g. cruralis and 

gastrocnemius) in a stretched position that could delay the onset of fibre atrophy. 

Unfortunately there are no current data to suggest this may be the case. If true however, this 

may also explain the preferential atrophy of smaller, non-jumping muscles in this species 

during prolonged aestivation bouts (Mantle et al., 2009). Following on from this idea, it is 

important that future investigations examine the effect of experimental immobilisation on 

skeletal muscles of both non-aestivating and aestivating C. alboguttata. If the ability to enter 

dormancy is a vital mechanism in protecting muscle against disuse atrophy, artificially-
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immobilised muscles of aestivators should be less prone to atrophy than immobilised muscles 

from non-aestivating frogs.  

Comparisons of muscle disuse atrophy data from different species are somewhat 

confounded by factors such as age, different time periods of muscle disuse, different limb 

immobilisation methods and different muscle (and fibre) types. This can make it difficult to 

compare data from natural disuse models (e.g. aestivating Cyclorana alboguttata in a water 

conserving posture) with skeletal muscle atrophy models such as hindlimb unloading or 

prolonged human bed rest. Although skeletal muscles are roughly similar among vertebrates, 

specific differences between frog and mammalian skeletal muscle may affect the responses of 

their myofibres to disuse. For example, differential expression of myosin heavy chain 

isoforms drastically influences the mechanical and energetic properties of skeletal muscle 

fibre types. A comparison of myosin heavy chain isoforms between mammals, amphibians 

and birds showed that the specific myosin molecular isoforms evolved separately among these 

groups and that their variants are not evolutionarily homologous (Lutz et al., 1998). These 

differences alone might alter the susceptibility of frog vs. mammalian fibres to atrophic 

signals. Indeed, mammalian skeletal muscle slow oxidative (Type I) fibres seem more prone 

to atrophy induced by denervation, microgravity, and limb immobilisation, whereas fast 

glycolytic fibre (Type II)-specific atrophy is typically observed during sarcopenia and disease 

states (e.g. cachexia) (Wang and Pessin, 2013). In contrast, the proportions of fibre types do 

not change following extended fasting and disuse in aestivating C. alboguttata (Symonds, et 

al., 2007). Data regarding the rates of muscle atrophy from artificially-immobilised C. 

alboguttata would still be useful to compare with those of the usual mammalian disuse 

models.  

It is interesting to note that frog skeletal muscle possesses two isoforms (α and β) of 

the ryanodine receptor (i.e. calcium channel in muscle) in equal proportions, with each 

exhibiting distinct intracellular calcium signals in muscle tissue (Kashiyama et al., 2010). In 

contrast, mammals primarily express the RyR1 (α) in muscle with only small amount of RyR3 

(β) in the diaphragm and soleus. While it is completely unknown how α and β ryanodine 

receptors might respond to inactivity and fasting in aestivating frogs, it is interesting to 

contemplate given that RyR1 and RyR3 receptor expression was shown to be altered 

following muscle disuse in rats and humans (Bastide et al., 2000; Chopard et al., 2009). 

 The current study helped to greatly advance our knowledge regarding the 

transcriptional changes that occur during deep aestivation. While it is beyond the scope of this 
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thesis to discuss the potential functions of all of the differentially-expressed genes in C. 

alboguttata muscle, the transcriptome analysis has provided an array of candidate genes for 

future gene or protein expression studies of dormant animals. The interpretation of the gene 

expression data thus far is based on the assumption that observed mRNA levels correlate with 

protein abundance and carry over to a phenotypic response. However, it is probably true that 

in aestivating C. alboguttata muscle mRNA and protein abundances do not correlate that well 

all of the time, due to regulation at different levels (e.g. post-transcriptional, post-

translational). Other high-throughput or ‘omics’ methods, such as proteomic and metabolomic 

measurements would be useful in providing a more comprehensive assessment of the sub-

cellular changes that occur in aestivating C. alboguttata muscle. For example, although 

expression of the birc5 gene (survivin) was significantly increased during aestivation, it is 

known that survivin protein expression is regulated by a number of distinct posttranscriptional 

mechanisms (Zhang et al., 2006). Importantly, mammalian cell studies have demonstrated 

that phosphorylation of survivin at threonine sites is critical for its functions in both mitosis 

and cell survival (Barrett et al., 2011; O Connor et al., 2000). Given the importance of 

reversible protein phosphorylation in controlling energy metabolism during aestivation, it 

would be interesting to examine the extent of protein phosphorylation in frog gastrocnemius 

muscle, particularly in those proteins implicated in cell death and survival. Future use of high-

throughput techniques would also be invaluable for determining the molecular changes that 

occur during the both transition from the active state into aestivation, and during arousal. 

Given the paucity of studies verifying the use of the saponin-permeabilisation 

technique for studying mitochondrial metabolism, the data presented in experimental chapter 

3 are important. To deliver electrons to the mitochondrial ETC in aestivating muscle, 

pyruvate, succinate and malate were used together at low concentrations likely to reflect those 

in vivo. However, it is currently unknown exactly what those concentrations are in active and 

aestivating C. alboguttata. Data of such metabolites are scanty in the literature, but the 

concentration of pyruvate in the gastrocnemius of Rana temporaria was reported to be 0.12 

µmol/g (Beis and Newsholme, 1975). Given that aestivating C. alboguttata are deprived of 

food for so long, it is highly likely that fatty acids serve as a key substrate throughout 

dormancy (Van Beurden, 1980). However, other metabolic pathways, such as ketone body 

metabolism, may also contribute to the overall energy budget during aestivation (Frick et al., 

2008b). In any case, future studies of mitochondrial function in dormant animals would 

benefit by measuring tissue metabolite concentrations, and by using substrates such as 
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palmitic acid or palmitoylcarnitine to fuel mitochondrial respiration. This would lead to a 

better understanding of the relationship between fatty acid degradation and mitochondrial 

function during metabolic depression. In a similar vein, it is difficult to ascertain the in vivo 

levels of ATP/ADP in C. alboguttata muscle, but it is likely they are seldom zero or fully 

saturating (the conditions measured in the current study). To gain further insight into the 

effect of aestivation on mitochondrial ROS production, it would be valuable to use an 

oxygraph titration protocol to gradually increase ADP levels into permeabilised C. 

albuguttata myocytes.  

 The gastrocnemius muscle was selected for analyses in the current experiments 

because in frogs this (glycolytic) muscle contributes to the power necessary for jumping. In 

contrast, muscle such as the iliofibularis and sartorius are not involved in producing power 

during locomotion, and are considered to be more oxidative than the gastrocnemius. There is 

some evidence that smaller, non-jumping hindlimb muscles of C. alboguttata could be 

preferentially used as a protein source during aestivation over larger muscles like the 

gastrocnemius (Mantle et al., 2009). Consequently, there are several important questions that 

remain unanswered and should to be explored in aestivating muscle. For example, how do the 

gene expression changes observed in C. alboguttata gastrocnemius muscle differ in a muscle 

that is more susceptible to atrophy, such as the iliofibularis? Are pro-apoptotic pathways 

expressed earlier on during aestivation and do their effects result in atrophy of fibres in 

‘susceptible’ muscle types? Similarly, are Nrf2-mediated oxidative defences impaired, or 

show a different response in smaller non-jumping muscles? Young et al. (Young et al., 2013) 

found that protein oxidation increases in the iliofibularis during aestivation (and is higher than 

in the gastrocnemius), which is consistent with the greater level of atrophy of this muscle type 

in C. alboguttata. It is also unknown how mitochondrial respiration and ROS production 

might differ in alternative muscle types, such as forearm, rib or sartorius muscles. Given the 

different mitochondrial responses between C. alboguttata cardiac and gastrocnemius muscle, 

it is possible that other muscle types might exhibit increased rates of mitochondrial ROS 

production relative to the gastrocnemius. Similar questions may be asked in regard to 

activation of key proteolytic pathways (i.e calpain, UPS, autophagy, caspases) in distinct C. 

alboguttata muscle types.  

 Finally, there are a number of recent findings from mammalian hibernator muscle 

disuse models that deserve comparative attention in the C. alboguttata disuse model. Recent 

work from hibernating S. tridecemlineatus suggests that the serum and glucocorticoid-
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regulated kinase, SGK1, plays a key role in regulating muscle mass throughout hibernation 

(Andres-Mateos et al., 2013). SGK1, like protein kinase-B/Akt, is a downstream target of 

IGF-1/phosphatidylinositol 3-kinase signalling. Although the active form of Akt was found to 

be suppressed in skeletal muscle of hibernating S. tridecemlineatus, SGK1 was increased in 

quadriceps of hibernating squirrels relative to active animals, where it appears to play a role in 

inhibition of muscle disuse atrophy via concomitant suppression of proteolysis and autophagy 

and elevated protein synthesis (Andres-Mateos et al., 2013). In that same study, SGK1-null 

mice exhibited a loss in the mass of tibialis anterior muscles without a reduction in whole-

body mass, as well as decreased muscle fibre size in tibialis anterior, gastrocnemius and 

soleus muscles (Andres-Mateos et al., 2013). The muscle atrophic response in SGK1-null 

mice was exacerbated following both limb immobilisation and fasting.  

 In another study on hibernating S. tridecemlineatus squirrels, PGC-1α and its 

associated upstream and downstream signalling molecules were examined to determine their 

importance in retention of muscle mass during dormancy (Xu et al., 2013). PGC-1α was 

chosen for examination because it is a transcriptional coactivator involved in the regulation of 

a variety of biological processes including fat metabolism, mitochondrial biogenesis, 

angiogenesis, formation of muscle fibre types and antioxidant defences. Xu et al. found a 

significant increase in the percentage of slow type muscle fibres in skeletal muscle of 

hibernating squirrels as well as increases in PGC-1α mRNA and protein. There was also an 

increase in mitochondrial biogenesis, oxidative capacity, and antioxidant capacity in 

hibernating animals. Although PGC-1α requires further study in C. alboguttata, the fact that 

its gene expression was downregulated in aestivating gastrocnemius (Chapter 2), and that C. 

alboguttata does not undergo torpor-arousal cycles like hibernating squirrels, suggests that 

modulation of PGC-1α and/or its targets may be different between aestivating and hibernating 

tissues.  

 

Could C. alboguttata be developed into a novel model organism for biomedical research?  

To further the understanding of human pathophysiologies, and for the development 

and authentication of new therapies, the use of suitable animal models continues to be of 

utmost importance. While aestivating C. alboguttata may provide insights into the 

mechanisms underpinning inhibition of muscle disuse atrophy, they could also be studied to 

facilitate our understanding of the cellular pathways associated with other disordered 
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physiological processes, such as disuse-induced osteoporosis, ischaemia/reperfusion injury or 

even dormancy in cancer cells. 

 

Disuse-induced osteoporosis 

Like skeletal muscle, bone is a highly plastic tissue that undergoes remodelling in 

response to increased or decreased usage. Whereas an increase in bone usage tends to result in 

bigger, stronger bones, bone disuse following limb immobilisation, hindlimb unloading or 

microgravity may result in bone demineralisation, compromised bone architecture and a loss 

of strength, increasing the risk of bone fracture. Interestingly, C. alboguttata appears resistant 

to osteoporosis induced by disuse (Hudson et al., 2004). Frogs aestivated for both three and 

nine months exhibited no significant changes in long bone size, anatomy or bending strength 

when compared with active, control animals. It is feasible that the metabolic depression and 

associated metabolic recycling that is fundamental to dormancy may help defend skeletal 

tissues from the effects of disuse. Early studies suggested that small hibernating mammals 

such as bats, ground squirrels and hamsters might experience bone loss during hibernation 

(Kayser and Frank, 1963; Mayer and Bernick, 1959; Whalen et al., 1972). However, more 

recent data from hibernating S. lateralis squirrels indicate that bone strength and stiffness are 

unaffected by winter inactivity (Utz et al., 2009). Interestingly, summer (i.e. awake) squirrels 

that experienced restricted mobility exhibited reduced flexural modulus (stiffness) of the 

femur when compared with active summer squirrels (Utz et al., 2009). 

Because many hypometabolic organisms are still relatively quiescent when not 

dormant, it is conceivable that prior to chronic inactivity during dormancy their bones have 

only a moderate loading history. If the extent of bone remodelling is dependent on the degree 

of unloading, bone of relatively inactive animals, like amphibians, should be intrinsically 

more resilient to disuse-induced osteoporosis than more metabolically-active animals (such as 

mammals) as the change in stimulus is much less. Thus, it could be argued that C. alboguttata 

are set to withstand prolonged periods of disuse without losing bone mass, and their value as a 

model system for biomedical studies of disuse-induced osteoporosis is decreased. However, 

periods of disuse in mammals produce a rather rapid response involving bone loss, and there 

could be compensatory molecular mechanisms at play in aestivating frogs to maintain bone 

architecture, as has been demonstrated in their skeletal muscle tissue.  
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Ischaemia/reperfusion injury 

Aestivating burrowing frogs may represent an interesting natural model for potential 

adaptive responses to the harmful effects of low tissue perfusion and the restoration of blood 

supply following ischaemia. ROS generation increases during both ischaemia and reperfusion 

in most mammals, and plays a fundamental role in subsequent deleterious events like 

myocardial injury. In aestivating amphibians, rates of lung ventilation completely cease and 

heart rate can decrease by 30-50% (Gehlbach et al., 1973; Glass et al., 1997; Seymour, 1973b; 

Word, 2007). In addition, mean arterial blood pressure decreases from ~25 mmHg to ~ 

15mmHg in aestivating lungfish after one month of aestivation (Delaney et al., 1974).  Thus, 

aestivation could increase the potential for ischaemia in some organs (e.g. the intestine) as 

presumably blood flow is preferentially delivered to critical organs such as the brain and 

heart.  

Upon arousal from aestivation, metabolic activity in cells is restored to normal rates, 

and oxygenated blood reperfuses the tissues. Examinations of intracellular antioxidant 

enzyme activities throughout aestivation suggest a widespread upregulation in numerous 

tissues, which may provide protection against ischemia–reperfusion events associated with 

aestivation to arousal transitions (Ferreira-Cravo et al., 2010). Results from the current study 

showed that rates of ROS generation from cardiac muscle of aestivating C. alboguttata were 

not significantly different from control animals. Thus, it is conceivable that C. alboguttata 

could experience a ‘burst’ of ROS in cardiomyocytes as they return to normal rates of oxygen 

consumption during the transition from the aestivating to the awakened state. There is recent 

evidence that aestivators increase antioxidant enzyme levels and/or activities in heart and 

brain during aestivation and arousal (Page et al., 2010; Salway et al., 2010). These tissues are 

highly sensitive to oxidative damage in most animal species, therefore it appears that 

upregulation of intracellular antioxidant capacity could function in oxidative stress resistance 

during arousal in aestivators. Although it is still not clear whether tissues of aestivators 

undergo true ischaemia and/or reperfusion during aestivation and arousal, continued study of 

ROS, antioxidants and other potential cytoprotective mechanisms during dormancy may help 

define ischaemia and reperfusion in more susceptible species.  
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Dormancy in cancer cells 

In cancer biology it has been established that residual tumour cells can enter a state of 

dormancy and elude conventional therapies (Sosa et al., 2014). This is an important, active 

area of research because it appears that the biology of residual disseminated (i.e. spread 

throughout the organ of body) tumour cells is highly divergent from that of primary tumours 

(Klein, 2013), such as their capacity to remain clinically asymptomatic. Because dormant 

tumour cells are hypothesised to be a significant source of tumour recurrence, understanding 

the molecular mechanisms of disseminated cancer cell dormancy is critical.  

Althought this field is in its infancy, it has been established that stress signalling 

pathways stimulated by exogenous stressors, intrinsic damage or microenvironmental cues 

can trigger tumour cell dormancy. Specifically, the balance between extracellular-signal-

regulated kinase (ERK) and p38 mitogen-activated protein kinase signalling has been shown 

to regulate dormancy versus proliferation decisions in distinct cancer models (Sosa et al., 

2014). At this point, it could be asked how cancer dormancy is related to aestivation. 

Although ERKs are involved in many different cell functions, activation of the ERK cascade 

was shown in different tissues of aestivating X. laevis, where it is likely to be involved in 

coordinating the appropriate responses to ameliorate cell stress, for example dehydration 

(Malik and Storey, 2009). Additonally, there was a large increase in gene expression of an 

MLT-like mitogen-activated protein kinase kinase kinase in aestivating frog muscle (Reilly et 

al., 2013) (Chapter 2). MLT (a.k.a. MLK7 or MLTK; zak gene) is a stress-activated protein 

functioning in signal transduction and has been shown to regulate the p38 and c-Jun N-

terminal kinase (JNK) pathways (Gotoh et al., 2001). Interestingly, overexpression of MLT 

was shown to suppress lung cancer cell proliferation concomitant with elevated 

phosphorylated levels of ERK and JNK (Yang et al., 2010). Moreover, MLT significantly 

supressed tumor growth in vivo. It has also been shown that other mitogen-activated 

signalling kinases such as MKK4 (also known as MAPKK4) can also activate JNKs and 

induce dormancy in other cancer cell models (Griend et al., 2005; Hickson et al., 2006).    

 Consequently, the pathways that induce dormancy in natural systems (aestivators, 

hibernators) appear not unlike those in tumour cells, and future in-depth examinations of both 

the similarities and differences between specific mechanisms that induce cell dormancy in 

aestivators and cancer cell lines could provide unexpected insights for biomedicine. However, 

to develop the burrowing frog into a novel model organism for biomedical research, a greater 

understanding of the C. alboguttata biological ‘toolbox’ is required. This includes the 
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construction of a C. alboguttata genome, an extensive catalogue of the genes and genetic 

variation in burrowing frogs, characterisation of C. alboguttata proteomes and transcriptomes, 

as well as the development of tissue cell lines. 

Aestivating frogs are a fascinating study system that can provide useful insights into 

the regulation of muscle disuse, starvation and possibly other pathphysiologies, by furthering 

our understanding of both their basic underlying controls and their responses to specific 

challenges. The common molecular features and variety of pathways at play during 

aestivation in C. alboguttata will hopefully provide new directions for future studies of 

metabolic suppression and, more broadly, metabolic regulation. 
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