
1

Design and Implementation Issues in a
Contemporary Remote Laboratory Architecture

M. F. Schulz1 andA. Rudd2
1 Centre for Educational Innovation & Technology, UQ, Brisbane, Australia

2 School of Information Technology & Electrical Engineering, UQ, Brisbane, Australia

Abstract—MIT has been developing the iLab Shared
Architecture (ISA) for remote laboratories since 1998. It
has been based around concepts and implementation issues
that were in vogue at the time. Recent developments in
network architectures and implementation techniques offer
opportunities to re-examine the original assumptions, and to
contemplate expanded objectives. This paper explores one
possible future being explored at The University of
Queensland for a remote laboratory architecture based
upon the original ideals of MIT’s ISA.

Index Terms—remote laboratories, REST, event driven
programming, real-time communication, platform
independent implementation.

I. INTRODUCTION

Many remote experiments have been built over the
years of the Internet, but very few of these designs have
been created with planet-wide (or even cross institutional)
engagement at the core of their design. The MIT iLab
Shared Architecture (ISA) is one such architecture which
has this level of engagement encompassed from its very
conception.

Researchers at The University of Queensland have
constructed a number of remote experiments (in control
engineering, power engineering, and physics) since 2006
which exploit the iLab architecture. As a consequence of
this experience, additional considerations about the
original architecture have evolved. This paper looks at the
original design considerations of the MIT iLab Shared
Architecture, the original implementation considerations,
and then proposes a number of changes to both these
aspects that are being considered in relation to
contemporary implementations methods as well as
extensions to the architecture that have arisen in the light
of development experience.

II. ILAB BACKGROUND
Many individuals and institutions have developed

remote laboratories of the past 40 years [1]. The aim of
the developer often has been to instrument hardware to
grant access to a user from a remote location. Frequently,
the issues of distributed access control, management and
allocation of lab resources, and data storage
administration were not issues that attracted deep
consideration. MIT iLab Shared Architecture was
designed with these considerations at the forefront.

MIT iLab project was initially formed with the aim of
defining a standard approach to the development of
remote laboratories, and providing software tools to
simplify the development of new experiments. This

approach led to the development of the iLab Shared
Architecture [2].

Figure 1. Topology of a batched experiment based on the iLab Shared
Architecture.

In general terms, the iLab Shared Architecture divides
any remote laboratory into three parts (refer to Figure 1):

• a lab client, which is the users lab specific interface
to the experiment; and
• a lab server, which connects to the hardware and
controls experiment execution; and
• a service broker, a middle ware layer that provides
functionality that is common to all experiments -
functionality such as user authentication and
authorization, and data storage.

The ISA provides a framework which uses web services
for a distributed deployment of experiments. Also, by
placing services brokers in different institutions, the
administration of users at each institution is handled at the
service broker located at that institution.

Three different types of remote experiments to be
supported by the ISA were initially identified:

• batch labs, where the experiment is completely
specified prior to execution, and the experiments runs
without intervention; and
• interactive labs, where the experiment or
observations requires some sort of real-time interaction;
and
• sensor labs, which run for extended periods of time
and during which the experiment takes some snapshot
of the entire period.
A feature of the batch lab is that the lab server and the

client use web services to communicate entirely via the
service broker. In fact, the experiment execution is
progressed in three phases. First, the experiment

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/43368528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

specification made on the lab client is validated at the
service broker (and not transmitted to the lab server) to
ensure that there will be no damage to the apparatus.
Second, the validated experiment specification is
submitted to the lab server for execution. Finally, the
results are retrieved from the service broker and relayed
back to the client. Each of these steps represent one
premise upon which the iLab server broker has been built.

Interactive experiments require control of the lab
hardware so that the user can set parameters and observe
the results. Thus, the hardware requires dedicated access
for a period of time (typically 15-20 minutes) and may
require scheduling. Note also that because of the need for
real-time control (and the potentially higher bandwidth
requirements between the lab client and the lab server) the
use of web services to route all communications between
the lab client and the lab server will not work effectively
in the case of this type of experiment (refer to Figure 2).

Experiment
Storage Service

User-side
Scheduling Service

Service BrokerLab Client Service Broker

Lab-side
Scheduling Service

Lab Server

Client-side
Campus

Lab-side
Campus

Figure 2. Topology of a interactive experiment based on the iLab
Shared Architecture.

Another main difference between interactive and
batched labs involves the role of the Service Broker.
Interactive experiments require real-time control and,
potentially, much greater bandwidth between the lab client
and the lab server. Because of this, the batched notion of a
Service Broker that uses web services to route all
communications between the lab client and lab server will
not work effectively in an interactive iLab.

Formal specifications for the sensor labs have not been
completed at this stage.

III. ILAB WEB SERVICES

In the design of the service broker those tasks that were
common to or desired by most labs were termed “domain
independent”. The five high-level mechanism that were
deemed to be desirable for most Internet-accessible labs
were:

1. An experiment-storage mechanism to store all
specifications pertaining to an experiment type or run,
and all results returned by an experiment.

2. An authentication/security mechanism to both
establish the identity of the user and to set up a secure
web-connection with the remote lab.

3. An authorization mechanism to specify the
privileges on the lab server and database for each
user of a remote lab.

4. A reservation mechanism to allocate time slots for
experiments, on both the client side and on the lab
server side.

5. An administrative mechanism to manage user
subscriptions, accounts, and group memberships.

The infrastructure created performs two central
operations:

1. facilitates the tasks that are common to Internet-
accessible labs (referred to as the internal
architecture), and

2. allows for the exchange of messages between this
infrastructure and the lab components (referred to as
the external architecture).

Web services were chosen to implement the external
architecture, as this allows clients and servers to
communicate and yet to be run on different architectures
and platforms. The choice of the time was XML over
SOAP to implement a remote procedural call. It was
recognized that this choice restricted data transfers to be
text-based and so sacrifice some data transfer speed, but it
was felt that the interoperability advantage gained with a
web service implementation far outweighed its
disadvantages [3].

IV. CURRENT RESTRICTIONS
There exist a number of shortcoming in the existing

ISA and in its implementation. We propose a number of
extensions and enhancements which are detailed in this
section. We look at implementation issues first.

The original implementation of the Service Broker was
made using a Microsoft environment. The server is
coded in Microsoft C#, .NET (and ASP.NET), Microsoft
SQLserver. In fact, as we have discovered over time, the
tool chain is highly dependent upon particular versions of
each software package. In order to maintain backwards
compatibility with those experiments developed at the
time of the initial specification of the APIs, it has proved
very difficult to move off this original code base. But it
is the fragility of the tool chain that causes most concern
with recently trained graduates in software engineering.

 The choice of C# as the programming language has
also restricted the operating systems upon which this
software can be run. Any move to change the code to a
new operating system is stymied as C# is only available
on a Microsoft Windows platform; in fact, to Microsoft
Windows 2003 Server Enterprise.

If we want to draw upon a large pool of developers to
aid with the evolution of the iLab system we need to work
with languages with large active developer bases. C#
does not appear to fit this need.

It has been observed that problems occur when it is
proposed to move the database from the Microsoft SQL
Server to an open source SQL database such as MySQL or
Postgres. Again, users are restricted to Microsoft SQL
Server 2000 or 2005.

In order to work with the code base, users are restricted
to Microsoft Visual Studio.NET 2005 Professional and
Library. This means that many existing software tools are
precluded from use.

Finally, there is no defined protocol for interactive labs
to use to communicate between the lab client and the lab
server. From one point of view this is an advantage, as
this allows experiments to utilize existing communications

3

links with commercially available instruments where there
is little or no access to the underlying protocol stack.
Unfortunately, there are also very few packages available
that enable users to develop their own interactive lab from
scratch. Many engineers have resorted to using
LabVIEW from National Instruments [4]. This software
allows the creation of rich and powerful user interfaces in
the lab client. However, the software is a commercial
package and incurs a cost that some institutions may find
prohibitive. LabVIEW is a graphical programming
language that requires a reasonable period of
familiarization. It use tends to be restricted to scientists
and engineers, and is daunting for software developers to
learn and retain. It would be useful if there was available
a simpler and freely available toolkit to develop and tinker
with user interfaces in a lab client.

In the development of lab clients, there is no preferred,
defined or specified development environment.
ASP.NET has been used extensively in the Service Broker.
Clients have been written in a range of languages, but
Java seems to have had a lead in this area. This is a run-
anywhere language but it does require yet another
language to be in the developers toolkit, along with the C#
and ASDP.NET already mentioned. Also, the Java applets
are dynamically loaded and it has been our experience that
many of these applets tend to be large unless specific
attention is paid to keeping the applet small. This often
requires a redesign of the user interface to enable this to
occur, e.g., in the redesign of the MIT Microelectronic
[5].

In the case of interactive labs that have used LabVIEW,
the machine where the client runs is required to have a
LabVIEW application installed. This is difficult to
achieve in some locations, and impossible when using
publicly accessible machines outside the institution where
the client is normally expected to be run.

At the time of the original development of the ISA, the
choice of SOAP and remote procedural calls using XML
would have been obvious. However, we have
encountered problems caused by passing authorization
information in the SOAP header and not in the payload.
For example, one can consider that a remote lab is but a
part of a larger experimental workflow. The workflow
could be that the experimental parameters could be
selected from a database subject to some selection criteria.
This data is then passed to the remote lab for execution.
Data is returned from the remote lab and then could be
passed to a statistics package such as R which is also
available as a service. This package may then be loaded
with the data and a script which analyzes the data and
displays outputs in the form of graphs and charts. Such
workflow engines already exist, are open source, and are
quite common in the area of bioinformatics and scientific
analysis, for instance [6][7]. In its current form, an iLab
cannot be incorporated into the workflow because of the
need to manually log into the Service Broker directly. It
would be more convenient if the workflow engine could
request this information and have the user complete this
process as a normal part of the data handling in the normal
flow.

V. DESIGN DECISIONS
We will address several topics here: the choice of

service architecture, the choice of programming language,
the extension to real-time communication, and the need to
develop a new collaboration model between multiple lab
clients supported via intercommunication between the lab
clients.

A. Browser-based Lab Clients

The first step in the design decisions was that to move
lab clients to be fully browser-based, thus removing the
requirement to utilized any installed software components,
including Java interpreters. This choice means that lab
clients must be written in HTML and CSS, and can also
make use of JavaScript as all modern browsers now
support this language. There is a rich set of community
developed, freely available packages which permits the
development of powerful applications running in the
browser.

Having made this decision, we now have access to a
much wider pool of developers than had previously been
the case. One of the problems we have always faced is
the design and development of appropriate GUIs in the lab
client. We can now draw on a huge community of
developers who can produce new designs, or modify and
extend existing designs. Also, with the advent of the new
graphical interface that we have seen with the work by
Zornig and his team [8], we expect that the need for
JavaScript programming will be significantly reduced. It
is our hope that end-users will soon be able to customize
the lab client GUI, especially teachers of school children.

The effect of this choice profoundly affects many of the
other decisions we then make, as seen below.

B. Migration to a RESTful interafce
The concept of REpresentational State Transfer (REST)

ful APIs has gained popularity as an architectural style
between web apps and HTTP servers since the
publication of the thesis by Fielding [9]. Using this
approach greatly simplifies the design of servers and
applications that call upon those services provided. Zornig
[8] has already run some tests on using this architecture
for the server with promising results, so this appears to be
a straightforward decision.

Along with the development of RESTful architectures
has been the move away from the data representation
format of the eXtensible Markup Language (XML) to the
JavaScript Object Notation (JSON) [10]. We find that
support for JSON comes with the JavaScript engine in the
browser, further simplifying the development of new
software applications.

This choice of a RESTful architecture of itself does not
have great impact on the original ISA design, as we could
still pass the original XML (converted into JSON format
for ease of processing) as the payload to and from the
Uniform Resource Identifiers (URIs) of the Service
Broker. However, the choice of programming language
will have a profound effect on the eventual compatibility
with the ISA architecture.
C. Web Service Programming Language Choice
 The distributed ISA code base for the Service Broker
and for the representative lab client is entirely based upon
Microsoft products. This has proven problematic for
some institutions around the world where the cost of this
products is prohibitive. For some time there has been
discussion about the move to a “run anywhere” platform
that might be able to run under the common operating
systems (Linux, MAC OS X, Microsoft). A prominent
proposal has always to develop this code in Java.

However, the last few years has seen a push for the
development of server-side JavaScript. This has the
advantage that the server code is now open to all the

4

JavaScript developers that come from client-side
development - a not insignificant population. The
learning curve for code development is considerably
reduced. Also, software development environments
support JavaScript development and debugging are widely
available, often as open source code.

Note that Javascript in the browser is event driven, and
an event driven programming style is both resource
efficient and has high performance in servers. This move
from a remote procedure call model used in SOAP
(basically a blocking paradigm) to an event driven
paradigm is perhaps the most significant change.
Interoperability with existing ISA software may be
profoundly compromised. This aspect is the subject of
ongoing research within our centre.

The Javascript server framework we have adopted (for
the time being) is Node.js [11]. It has an extensive range
of user-contributed support libraries that, at this stage,
seem to meet the needs of the project.
D. Real-Time Communications Support

The existing ISA architecture does not supply and
support real-time data communication. In the case of
interactive experiments, this is outside the specifications.
A reference interface has been developed to enable
LabVIEW support of real-time interactivity, but this is not
the only case of real-time communications that needs
considering. We also have an interest in have the lab
server and the Service Broker supply data detailing their
operational status, data that needs to be supplied in real
time.

At the moment the ISA architecture supplies two ways
for a lab client to know the its execution status. The lab
server can be polled continuously to ask about jobs in the
execution queue, or the client interface can wait for a
notification from the Service Broker that the job has
completed and results are available for collection. This is
large grained status.

We are interested in finer granularity of this result.
Consider the case of two different status queues that have
been requested by one developer in the lab client GUI for
a batch experiment. First, a job queue which lists all the
jobs pending execution, with information detailing their
estimated execution time and thus the waiting time in the
queue. Second, an execution queue which exposes exactly
what is happening during the execution of the experiment.
Both of these queues need to be updated in real-time to
provide the required feedback to the lab client user. (refer
to Figure 3.)

Figure 3. Views of a job queue and an execution queue displayed in
a batch experiment GUI.

E. Lab Client Intercommunication
Almost every remote lab emphasizes the remote access

to laboratory equipment as the primary outcome.

However, it is becoming equally important to the learning
outcomes of the students that they collaborate over the
choices made before, during, and after the execution of the
experiment. The DIESEL system [12] achieved
collaboration by coordinating links to multiple remote
desktops which link to a central experiment-controlling
desktop. This is very expensive for bandwidth and does
not scale well with the number of users.

We are investigating distributed collaboration in a more
direct manner. Given that the JavaScript running in each
lab client is event driven, it is worthwhile to consider if
events generated in one lab client can be propagated to all
other clients, i.e., an event generated in one Javascript-
based client can be injected into other JavaScript-based
clients.

To this end, we are examining the efficacy of using a
topic-based publish/subscribe paradigm [13]. In this
model, events that originate in one lab client are published
to a topic on a message server. The message server then
passes that message to all lab clients that are subscribed to
that topic. This is an extremely efficient mechanism for
distributing the events, it scales well as these message
servers are optimized for message throughput, and there
are a number of suitable server available in the open
source community [14] [15].

Adopting real-time communication in a batch
experiment will now break the original assumption that
the lab client only communicates with the lab server via
the Service Broker. This aspect will need further research
as implementation of the Service Broker is pursued.
F. ISA Service Oriented Architecture Support

Implied in all of this is that the new architecture
continue support for the same basic services identified in
the initial ISA model specification. Work is in progress on
an implementation of these services in the new
architecture.

One model being actively researched is the design of a
bridge between the existing MIT ISA and the new
architecture. Given the disparity in the underlying models
(RPC vs event driven), this work is progressing more
slowly.

In this early phase of the project we are not
implementing an underlying security model. We are
following the normal practice of determining the new
APIs before we look at the most appropriate security
model.

VI. CONCLUSION
This paper outlines progress to date on a redesign of the

the original MIT iLab Shared Architecture. Work has
commenced on a batch lab version of the time-of-day
reference design. The research team is work on a number
of aspects simultaneously in a bid to rapidly progress a
working pilot system. We will be looking to the remote
lab community for feedback as work progresses.

ACKNOWLEDGMENT

The authors wish to thank the staff members and
students who work at the Centre for Educational
Innovation and Technology for their continuing
conversations on this topic, in particular John Zorning
who has provided the push for the use of Javascript in
both the client and the server. John leads the work in the
development of the new client framework for the
proposed iLab architecture.

REFERENCES

5

[1] J. Ma and J. V. Nickerson, “Hands-on, simulated, and remote
laboratories: A comparative literative review,” ACM Comput.
Surv., vol. 38, no. 3, Sep. 2006.

[2] J. Harward,J. A. del Alamo, V. S. Choudary, K. DeLong, J. L.
Hardison, et al., “iLabs: A Scalable Architecture for Sharing
Online Laboratories”, presented at the International Conference on
Engineering Education 2004, Gainesville, Florida, October 16-21,
2004.

[3] K. Y. Yehia, “The iLab Service Broker: a Software Infrastructure
Providing Common Services in Support of Internet Accessible
Laboratories”, M. Sc. MIT, 2002.

[4] J. Travis and J. Kring, “LabVIEW for Everyone,” Upper Saddle
River, NJ:Prentice-Hall, 2004.

[5] J. L. Hardison, D. Zych, J. A. del Alamo, V. J. Harward, S. R. Lerman,
S. M. Wang, K. Yehia, and C. Varadharajan, “The microelectronics
WebLab 6.0: An implementation using web services and the iLab
shared architecture,” presented at the Int. Conf. Eng. Educ. Res. 2005,
Tainan, Taiwan, R.O.C., Mar. 1–5, 2005.

[6] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li,
and T. Oinn, “Taverna: a tool for building and running workflows
of services.,” Nucleic Acids Research, vol. 34, iss. Web Server
issue, pp. 729-732, 2006

[7] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K.
Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord,
M. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe,
“Taverna: lessons in creating a workflow environment for the life
sciences,” Concurrency and Computation: Practice and
Experience, vol. 18, iss. 10, pp. 1067-1100, 2006.

[8] J. Zornig, S. Chen, and O.Al Kylaney, “A REST API Architecture
for Remote Labs.”, submitted to REV2011.

[9] R. Fielding, “Architectural Styles and a Design of Network-based
Sofatware Architectures,” PhD Thesis, University of California,
Irvine, USA, 2000.

[10] D. Crockford, “The application/json Media Type for JavaScript
Object Notation (JSON),” IETF Request Form Comments: 4627,
July 2006. Available at http://tools.ietf.org/html/rfc4627.

[11] Mode.js, http://nodejs.org.
[12] M.J. Callaghan, J. Harkin, E. McColgan, T.M. McGinnity and L.P.

Maguire, “Client–server architecture for collaborative remote
experimentation,” Journal of Network and Computer Applications,
Volume 30, Issue 4, Pages 1295-1308, November 2007.

[13] P. T. Eugster, P. A. Felber, R. Guerraoui, A. Kermarrec, “The
Many Faces of Publish/Subscribe,” ACM Computing Surveys,
Vol. 35, Issue 2, pp. 1-22, March 2003.

[14] Peter Millard, Peter Saint-Andre, Ralph Meijer, “XEP-0060:
Publish-Subscribe,” XMPP Standards Foundation, 2010. Available
at http://http://xmpp.org/extensions/xep-0060.html

[15] IBM, “MQ Telemetry Transport (MQTT) Version 3.1 Protocol
Specification,” Available at http://public.dhe.ibm.com/software/
dw/webservices/ws-mqtt/mqtt-v3r1.html.

AUTHORS

M. F. Schulz is with The University of Queensland,
where he is the Associate Director of the Centre for
Educational Innovation and Technology, Brisbane,
Australia (e-mail: m.schulz@ uq.edu.au).

A. Rudd is with the University of Queensland, where
he is completing a Bachelor of Engineering (Software) in
the School of Information Technology and Electrical
Engineering (e-mail: adam.rudd@uqconnect.uq.edu.au).

http://www.mygrid.org.uk/outreach/publications/hull2006/
http://www.mygrid.org.uk/outreach/publications/hull2006/
http://www.mygrid.org.uk/outreach/publications/hull2006/
http://www.mygrid.org.uk/outreach/publications/hull2006/
http://www.mygrid.org.uk/outreach/publications/hull2006/
http://www.mygrid.org.uk/outreach/publications/hull2006/
http://www.mygrid.org.uk/outreach/publications/hull2006/
http://www.mygrid.org.uk/outreach/publications/hull2006/
http://www.mygrid.org.uk/outreach/publications/oinn2006/
http://www.mygrid.org.uk/outreach/publications/oinn2006/
http://www.mygrid.org.uk/outreach/publications/oinn2006/
http://www.mygrid.org.uk/outreach/publications/oinn2006/
http://www.mygrid.org.uk/outreach/publications/oinn2006/
http://www.mygrid.org.uk/outreach/publications/oinn2006/
http://www.mygrid.org.uk/outreach/publications/oinn2006/
http://www.mygrid.org.uk/outreach/publications/oinn2006/
http://www.mygrid.org.uk/outreach/publications/oinn2006/
http://www.mygrid.org.uk/outreach/publications/oinn2006/
http://www.mygrid.org.uk/outreach/publications/oinn2006/
http://www.mygrid.org.uk/outreach/publications/oinn2006/
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://nodejs.org
http://nodejs.org
http://www.sciencedirect.com/science/journal/10848045
http://www.sciencedirect.com/science/journal/10848045
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236902%232007%23999699995%23666090%23FLA%23&_cdi=6902&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c7ab65268350c0b41ca5bf3855325f27
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236902%232007%23999699995%23666090%23FLA%23&_cdi=6902&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c7ab65268350c0b41ca5bf3855325f27
http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0060.html
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html

