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Spectral functions and time evolution from the Chebyshev recursion
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We link linear prediction of Chebyshev and Fourier expansions to analytic continuation. We push the resolution
in the Chebyshev-based computation of T = 0 many-body spectral functions to a much higher precision by
deriving a modified Chebyshev series expansion that allows to reduce the expansion order by a factor ∼ 1

6 . We
show that in a certain limit the Chebyshev technique becomes equivalent to computing spectral functions via
time evolution and subsequent Fourier transform. This introduces a novel recursive time-evolution algorithm
that instead of the group operator e−iH t only involves the action of the generator H . For quantum impurity
problems, we introduce an adapted discretization scheme for the bath spectral function. We discuss the relevance
of these results for matrix product state (MPS) based DMRG-type algorithms, and their use within the dynamical
mean-field theory (DMFT). We present strong evidence that the Chebyshev recursion extracts less spectral
information from H than time evolution algorithms when fixing a given amount of created entanglement.
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I. INTRODUCTION

Expanding the spectral density A(ω) of an operator H in
the monomes ωn via the moments

μmon
n =

∫
dω A(ω)ωn

is a tool that originates in the early days of quantum
mechanics [1]. Computing these moments iteratively though is
numerically unstable [2,3] and one replaced expansions in ωn

by expansions in such polynomials pn(ω) of degree n that can
be stably computed [4,5]. A prominent example for pn(ω)
are Chebyshev polynomials, whose associated three-term
recursion is stable as it does not admit a so-called minimal
[2] solution.

After the development of stable recursions, the next step
in the mid 1990s was the introduction of kernels that damp
the erroneous Gibbs oscillations of truncated polynomial
expansions of discontinuous functions [6–8], which lead to
the kernel polynomial approximation. It deals with redefined
series expansions that represent the convolution of the ex-
panded function with a broadening kernel, like a Gaussian
or Lorentzian. This technique has been reviewed in Ref. [1]
and more recently in Ref. [9] from a numerical linear algebra
perspective.

In this paper, we drop the idea of such broadening kernels
in frequency space or the equivalent damping or windowing
kernels in the associated Fourier or Chebyshev expansions.
Instead, we employ the fundamentally different technique of
linear prediction [10]. Linear prediction is a linear recursive
reformulation (Appendix C) of the nonlinear problem to fit
the surrogate function

g(t) =
∑

i

αie
iωi t , αi,ωi ∈ C,t ∈ R, (1)

to given numerical data {tn,gn}. Due to linearity, linear
prediction is able to treat superpositions of hundreds of
terms, and by that reliably extracts much information about
an underlying function from its local knowledge {tn,gn}. In

order for this to be meaningful, the underlying function, e.g.,
a Green’s function, must be compatible with (1).

In particular, we note that Eq. (1) can serve as an ansatz for
analytic continuation of a zero-temperature Green’s function

G(t) = −i〈ψ0|e−i(H−E0)t |ψ0〉, (2)

where |ψ0〉 is a single-particle excitation of the ground
state |E0〉 of H , for example, the creation of a fermion
|ψ0〉 = c†|E0〉. Note that in the case of fermions, Eq. (2)
describes only the t > 0 contribution [usually more precisely
denoted G>(t)] of the full fermionic Green’s function. G(t)
is analytic everywhere in the complex plane except for
t → i∞ and thereby allows for an analytic continuation
of G(t) from a local description {tn,G(tn)} to the domain
[t0,∞). This analytic continuation is highly different from
the ill-conditioned problem of continuing the frequency-space
represented Green’s function from a domain in the complex
plane (e.g., the imaginary-frequency axis or a parallel of the
real-frequency axis) to the real-frequency axis, where the
frequency-space Green’s function has poles.

In the context of Green’s functions, linear prediction has
for the first time been used to extrapolate the time evolution
of the spin structure factor in the one-dimensional Heisenberg
model [11,12]. While for the spin-1 model it was clear that
the ansatz (1) is justified as the time evolution is dominated
by a small number of magnons whose excitation energies
correspond directly to the frequencies ωi in Eq. (1) [11], this
was not the case for the spin- 1

2 model [12]. In the latter, spinons
dominate, which lead to a (infinitely) high number of poles on
the real-frequency axis, and the direct correspondence of pole
energies and frequencies ωi in Eq. (1) is lost. Still, the ansatz
works [12] in an approximate sense by extracting effective
frequencies.

For the computation of spectral functions, the use of linear
prediction for the time evolution of Green’s functions provides
a highly attractive alternative approach to the usual damping or
windowing in real-time or broadening in frequency space: an
approach that enhances resolution in frequency space. Up to
now, it is not entirely clear in which cases this is controlled. On
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the other hand, the approach of damping the truncated series
expansion cannot be considered controlled, too: although a
broadened function fη(ω), which is for Gaussian broadening
given by fη(ω) = 1

η
√

2π

∫
dω′e−(ω′−ω)2/2η2

f (ω′), converges
uniformly to the underlying original function f (ω) for η → 0,
extraction of information (deconvolution) from fη(ω) about
f (ω) is uncontrolled as it corresponds to the problem of
analytic continuation from a domain in the complex plane
to the real axis.

Recently, Ref. [13] suggested to extrapolate the Chebyshev
expansion of a spectral function using linear prediction, albeit
only justified by the empirical success. In the remainder of
this introduction, we place these results in the context of the
preceding discussion, and by that put this approach on more
firm grounds.

A. Chebyshev and Fourier transformation basics

The Chebyshev polynomials of the first kind

Tn(x) = cos(n arccos(x)) (3)

can be generated by the recursion

Tn(x) = 2xTn−1(x) − Tn−2(x), T1 = x, T0 = 1, (4)

which is numerically stable if |x| � 1. Chebyshev polynomials
are orthonormal with respect to the weighted inner product∫ 1

−1
dx wn(x)Tm(x)Tn(x) = δnm, (5a)

wn(x) = 2 − δn0

π
√

1 − x2
. (5b)

Any integrable function f (x)|x∈[−1,1] can be expanded in
Tn(x):

f (x) =
∞∑

n=0

wn(x)μnTn(x), (6a)

μn =
∫ 1

−1
dx Tn(x)f (x), (6b)

where the definition of the so-called Chebyshev moments μn

via the nonweighted inner product (6b) follows when applying∫ 1
−1 dx Tm(x) . . . to both sides of (6a).

Analogously, any integrable function f (ω)|ω∈[− a
2 , a

2 ], where
a ∈ R, can be expanded in a Fourier series:

f (ω) = 1

2aπ

∞∑
n=−∞

eiωtnf (tn), (7a)

f (tn) =
∫ a/2

−a/2
dω e−iωtnf (ω), tn = n

a
, (7b)

which represents a Fourier transform for a → ∞.

B. Expansion of a spectral function

Consider now the expansion of the spectral function A(ω)
of a Hamilton operator H with respect to a reference energy

Eref and a state |ψ0〉 as in Eq. (2):

A(ω) = 〈ψ0|δ(ω − (H − Eref))|ψ0〉. (8)

The spectral function is related to the Green’s function of (2)
via its Fourier transform: A(ω) = − 1

π
Im G(ω + i0+).

The coefficients of the Fourier expansion can be computed
by inserting an identity of eigenstates

∑
i |Ei〉〈Ei | in the

integral over the delta function δ(ω − (H − Eref)):

f (tn) =
∫ a/2

−a/2
dω e−iωtnA(ω) = 〈ψ0|ψ(tn)〉, (9a)

|ψ(tn)〉 = e−i(H−Eref)tn |ψ0〉, tn = n

a
. (9b)

In order for (9) to hold true, a must be chosen large enough so
that the support of A(ω) is contained in [− a

2 , a
2 ]. A sufficient

condition for that is spec(H − Eref) ⊂ [− a
2 , a

2 ], which is
possible as we consider operators H with bounded spectra.
Equation (9b) makes it obvious that a has the meaning of an
inverse time step.

To compute the coefficients for the Chebyshev expansion,
we need to consider a spectral function whose support is
contained in [−1,1]. For this, introduce a rescaled and shifted
version of H with appropriately chosen constants a and b:

Ha,b = H − Eref

a
+ b, x = ω

a
+ b, (10)

where a can again be considered an “inverse time step” and
H is dimensionless. Note that in Ref. [14], the definition of b

differed from the one here by a factor a. Then

Aa,b(x) = 〈ψ0|δ(x − Ha,b)|ψ0〉 (11)

yields the original spectral function via A(ω) = 1
a
A(ω

a
+ b),

where we omitted to specify the indices a,b, as in most of the
rest of this paper. The Chebyshev moments for A(x) can be
computed analogously to the Fourier coefficients (9):

μn =
∫ 1

−1
dx A(x)Tn(x) = 〈ψ0|ψn〉, (12a)

|ψn〉 = Tn(H)|ψ0〉. (12b)

Inserting the recursive definition (4) of Tn(H) in the
definition (12b) of |ψn〉, one obtains a practical calculation
scheme for the power series expansion of Tn(H), and by that
for the Chebyshev states |ψn〉 in Eq. (12):

|ψn〉 = 2H|ψn−1〉 − |ψn−2〉, |ψ1〉 = H|ψ0〉. (13)

C. Analytic continuation

A comparison of (9b) and (12b) clarifies why linear
prediction is an equally justified approach for Chebyshev and
Fourier expansions.

Rewriting the “evolution operators” that appear in Eq. (9b)
and (12b) as

exp(−inHa,b=0) and cos(n arccos(Ha,b)) (14)

makes it clear that we deal with analytic functions of n if we
consider n as a continuous complex variable. Using (9a) and
(12a), this makes the Fourier and the Chebyshev coefficients
f (tn) and μn analytic functions of n, too. In addition,
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Re exp(−inHa,b) = cos(nHa,b) shows that the real part of
the functional dependence of the time-evolution operator on n

is the same as for the “Chebyshev evolution operator,” when
neglecting a redefinition of oscillation frequencies. As this re-
definition can be accounted for by the fitting procedure, the par-
ticular form of the surrogate function g(t) in Eq. (1) is equally
suited to analytically continue both types of expansions. A
fundamental theorem from complex analysis then tells us that
if linear prediction provides us with a function g(t) that locally
agrees with f (tn) or μn, we know that this function globally
agrees with f (tn) or μn. Of course, in practice these arguments
are to be taken with care, as we will never numerically find a
function g(tn) that agrees exactly with the local data {gn,tn}.

D. Outline of the paper

We will first study the convergence properties of the
Chebyshev expansion of discontinuous (spectral) functions
in the thermodynamic limit. This allows to derive a new
scheme for a Chebyshev series definition that leads to an
exponential convergence and allows to reduce expansion
orders in practical calculations by a factor ∼ 1

6 (Sec. II).
We then apply these results to the computation of spectral
functions for finite systems (Sec. III), and discuss the relevance
for matrix product state (MPS) based computations (Sec. IV).
After that, we describe the approximate equivalence of the
Chebyshev recursion to time evolution and show how this leads
to a time-evolution algorithm (Sec. V). Finally, we conclude
the paper (Sec. VI).

II. SPECTRAL FUNCTIONS
IN THE THERMODYNAMIC LIMIT

A spectral function for a system of finite size L has
a finite-size peak structure due to an agglomeration of
eigenvalues that is not present in the thermodynamic limit.
In a weakly interacting system, this agglomeration happens
around the positions of the eigenvalues of the corresponding
noninteracting (single-particle) system. This argument gives
us the best, though still very rough, estimate Wsingle/L for
the spacing of finite-size peaks, where Wsingle is the single-
particle bandwidth. At a much smaller spacing than that,
spectral functions have an underlying delta-peak structure, as
is obvious from definition (8), which can be rewritten as

A(ω) =
∑

i

Wi δ(ω − (Ei − Eref)), (15)

with weights Wi = |〈ψ0|Ei〉|2. The delta-peak structure
merges to a (sectionwise) smooth function only in the
thermodynamic limit.

Expanding the spectral function of a finite-size system
in orthogonal polynomials is a very efficient way to not
resolve either finite-size peaks or the delta-peak structure, but
to extract only the smooth function of the thermodynamic
limit, as, e.g., discussed in Ref. [14]. It is this function of the
thermodynamic limit that we are interested in, and for which
we start our discussion.

A. Discontinuity of spectral functions

The state |ψ0〉 and the energy Eref in Eq. (15) are generally
associated to the ground state of a certain symmetry sector

N of H , which for fermions is typically a particle number.
The reference energy for |ψ0〉 = c†|E0〉 then is the Fermi
energy, which is the ground-state energy Eref = EN−1

0 of the
contiguous symmetry sector of |ψ0〉 (or Eref = EN+1

0 for a
hole excitation). The weights Wi = |〈ψ0|Ei〉|2 in the spectral
function (15) can be nonzero only for eigenstates |Ei〉 and
eigenvalues Ei from the sector N . The particular meaning of
Eref as a ground-state energy then implies that even if the
global spectral function

Aglobal(ω) =
∑

i

δ(ω − (Ei − Eref)) (16)

is smooth, the weights Wi generally introduce a discontinuity
at ω = 0 (we use the term global here, as |ψ0〉 usually is a
local excitation associated with a certain quantum number).

B. Convergence of Chebyshev series expansions

The convergence of the Chebyshev moments μn → 0 of
a function f (x) in the limit n → ∞ can be characterized by
the degree of differentiability of f (x), similar to a Fourier
expansion [15]. Let k denote the highest integer for which
the kth derivative of f (x) is integrable; if f (x) is smooth
(k = ∞), the envelope of μn converges exponentially to zero
with respect to n; if f (x) is a step function (k = 1), the
envelope converges algebraically with 1

n
; and if f (x) is a

delta function, the envelope remains constant. In general, the
order of convergence is at least 1

nk . Although in Ref. [15],
this is stated for moments computed with the weighted inner
product (5b), it also holds for moments computed using (6b)
(see Appendix A). In practice, we are not interested in the
limit n → ∞, but rather in intermediate values of n: but also
here, the degree of differentiability of A(ω) helps us to learn
something about the convergence of μn.

Consider a typical discontinuous spectral function A>(ω) as
shown in the top panel of Fig. 1. Its corresponding Chebyshev
moments μ>

n are computed by numerically integrating (6b) and
shown in the bottom panel of Fig. 1 as blue circles. The blue
line in the inset shows the envelope of μ>

n , which evidently
decreases algebraically to zero.

Now note that continuity of A>(ω) at ω = 0 can easily be
restored by defining

Ã>(ω) = A>(ω) − A>(0). (17)

The green crosses (lines) in the bottom panel of Fig. 1 show that
the Chebyshev moments μ̃>

n of Ã>(ω) converge exponentially
for the values of n considered in the plot, i.e., qualitatively
differently than μ>

n . This is observed although Ã>(ω) is not
smooth, but only once differentiable (kink in first derivative at
ω = 0).

While the construction of Ã>(ω) is completely general, for
the particular case of a fermionic spectral function, another
way of constructing a continuous function from A>(ω) has
been favored; in the appendix of Ref. [17], it was mentioned
that the Chebyshev expansion of the full spectral function

A(ω) = A>(ω) + A<(−ω),

A≷(ω) = 〈ψ≷
0 | δ(ω − (H − E0))|ψ≷

0 〉, (18)
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FIG. 1. (Color online) (Top) Typical example of a discontinuous
spectral function due to the restriction to a given symmetry sector.
In this case, this is the particle contribution of the spectral function
of the single-impurity Anderson model (SIAM) with semielliptic
bath density of states of half-bandwidth 2v and interaction U/v = 4
[16], taken from Ref. [14]. The spectral function is given by (8)
using |ψ0〉 = c†|E0〉, where |E0〉 denotes the half-filled ground state
and Eref is the Fermi energy E0. Here, only the shape of the scalar
function is of importance, therefore we postpone the model definition
to (30). The same spectral function is obtained for the local density
of states of the first site for spinless fermions hopping on a semi-
infinite chain with tunneling v and an interaction of U/v = 4 that
acts only on the first site. (Bottom) Comparison of convergence of
the Chebyshev moments of A>(ω) with its redefinitions Ã>(ω) and
A(ω), giving rise to moments μ>

n , μ̃>
n , and μn, respectively. The full

spectral function (18) for this example is A(ω) = A>(ω) + A>(−ω)
as here, A<(ω) = A>(ω) due to particle-hole symmetry. All of this is
for the setup b = 0 using a rescaling of a = 100v in Eq. (10).

obtained by summing over particle (>) and hole (<) con-
tributions, is much better suited for a Chebyshev expansion
than A≷(ω), as it lacks the discontinuity. In Ref. [13], it was
then pointed out that the full A(ω) is smooth and therefore,
Chebyshev moments should decrease exponentially, which
would allow us to use linear prediction. In general, it is not
true that A(ω) is smooth, due to the possibility of van Hove
singularities, as appear, e.g., for the U = 0 case of the spectral
function of the single impurity Anderson model (SIAM) (see
Appendix B, Fig. 11). Still, A(ω) is likely to be smooth, and for
the present example, it is. The bottom panel of Fig. 1 therefore
shows that the Chebyshev moments μn for A(ω) decrease
at the same exponential rate as the moments μ̃>

n of Ã>(ω).
The statements about the qualitatively different convergence
behaviors of A>(ω), Ã>(ω), and A(ω) are confirmed for further
typical examples in Appendix B.

C. Comparison of setups b = 0 and b � −1

In Ref. [14], we pointed out that the choice b = 0 in
Eq. (10) is computationally much less efficient than the choice
b � −1 (called “b � −a” in Ref. [14]). Whereas constructing
a Chebyshev expansion of the full spectral function A(ω)
requires choosing b = 0, this is not the case for Ã(ω). For
Ã(ω), we can therefore use the exponential rate of convergence
to quantify the amount of spectral information that the
Chebyshev recursion extracts from H in the setups b = 0 and
b � −1, and by that understand the observations of Ref. [14]
quantitatively.

The key observation to make is that the integral

μ>
n =

∫ 1

−1
dx A>

a,b(x)Tn(x) (19)

extracts a highly different amount of information about the
structure of A>(ω) depending on how a and b in Eq. (10) are
chosen when generating A>

a,b(x).
Throughout the whole paper, we keep a = 100v fixed to

guarantee the numerical stability of the Chebyshev recursion
for the typical system sizes of around L � 80 that are large
enough to display “thermodynamic limit behavior.” If we chose
a smaller, we could only stably compute “small” systems or
we would have to resort to the technique of energy truncation,
which is strongly prone to errors [17]. Furthermore, in the
MPS context, it is important to compare only computations in
which a is kept constant: constant a means constant effective
hopping energies v

a
in H, and by that a constant amount of

entanglement production in a single iteration step of (13). The
parameter b, by contrast, can be chosen freely without affecting
the numerical stability, and in principle, without affecting the
entanglement production in MPS computations.

The top panels of Fig. 2 show the convolution of A>
a,b(x)

with Chebyshev polynomials Tn(x) of different degree n for
the two setups b = 0 and b = −0.995 � −1. The highly
increased oscillation frequency that is evident in the setup
b = −0.995 can be understood by looking at the natural
stretching of the frequency scale of Chebyshev polynomials
close to the boundaries of [−1,1]. Expressing the integral (19)
by substituting x = cos θ

μ>
n = −

∫ 0

π

dθ A>
a,b(cos θ ) cos(nθ ) sin θ, (20)

one arrives at a convolution with the regularly oscillating
cos(nθ ). Consider now the interval of width 0.05 on [−1,1],
which corresponds to the (single-particle) support of A>

a,b(x)
in the example of Fig. 2. By computing the integral widths
under the map x = cos θ , one learns that placing the support
in the “boundary region” [−0.995,−0.95], as results for b =
−0.995, increases the resolution by a factor ∼6.4 compared
to placing it in the “center region” [0,0.05], as results for
b = 0. These effects are well-known boundary effects of the
Chebyshev polynomials that are exploited also in the solution
of differential equations [15].

The bottom panel of Fig. 2 shows the Chebyshev moments
obtained in the b = −0.995 setup, for A>(ω) (blue circles)
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FIG. 2. (Color online) (Top) Integrand for computation of mo-
ments for the spectral function shown in Fig. 1 in the two setups b = 0
(left) and b = −0.995 (right). (Bottom) Comparison of convergence
of moments computed with the integrands shown in the top panels.
In all of that, a = 100v.

and for Ã>(ω) (green pluses). As mentioned before, for this
setup, no Chebyshev expansion of the full spectral function
A(ω) is possible. Instead, we compare the b = −0.995 results
to the b = 0 results, depicted as red crosses. It is evident that
the Chebyshev expansion in the b = −0.995 setup converges
much faster than the one in the b = 0 setup. After n = 1000
iterations, the magnitude differs by more than 100.

This difference directly appears in the error of the Cheby-
shev series, as stated by the following general rule: the order
of the error ε of a Chebyshev (or Fourier) series representation
of a function that is truncated at n = N can be estimated by
(see Ref. [15, Chap. 2.12])

ε = O(μN ) if μn converges exponentially, (21a)

ε = O(NμN ) if μn converges algebraically. (21b)

D. Linear prediction for the Chebyshev expansion

The main motivation for studying the convergence of differ-
ent Chebyshev expansions in the previous sections lies in the
possibility to extrapolate exponentially decreasing sequences
with linear prediction. As discussed in the introduction, the
latter allows an extremely high gain in resolution, if its
application is justified. For details on linear prediction, see
Appendix C.

In what follows, we compare the known approach of using
linear prediction for the Chebyshev expansion of A(ω), as
suggested in Ref. [13], with the approach of extrapolating the
Chebyshev expansion of Ã>(ω).

We first compute the Chebyshev moments of the step
function that has the discontinuity of A>(ω) at ω = 0, which

transforms to x = −b for A>(x), as

μ
step
n =

∫ 1

−b

dx Tn(x)

= 1

2

{
cos[(n + 1) arccos x]

n + 1

− cos[(n − 1) arccos x]

n − 1

}∣∣∣∣1
−b

. (22)

The Chebyshev moments of Ã>(x) are then given by

μ̃>
n = μ>

n − A>(0)μstep
n (23)

and are accessible by linear prediction, as they decrease
exponentially.

The core problem in this new approach is that the value
A>(0) of the spectral function is, in general, unknown prior
to linear prediction. However, it fulfills the following self-
consistency problem, which can be iteratively solved; choosing
a start value A>

0 (0) for A>(0), we compute μ̃n, extrapolate the
sequence up to convergence, and then use the extrapolated
sequence to reconstruct A>(ω), which provides us with a new
value A>

1 (0). We repeat the procedure until the new and the
old version A>

i (0) and A>
i+1(0) agree. This procedure is found

to converge stably and quickly for all examples studied (see
also Appendix B).

Figure 3 compares the approach of reconstructing the full
spectral function A(ω) from A>(ω), using linear prediction for
the expansion of A(ω) in the b = 0 setup, with the approach
of using linear prediction of Ã(ω) in the b = −0.995 setup.
We take the function of Fig. 1 as input function that shall
be reconstructed. In the top panels of Fig. 3, we compare
both setups for N = 200 computed moments that are then
extrapolated to N � 1000 until they converge to a value
of 10−6. We choose this comparatively small number of
computed moments, as in MPS algorithms the number of
moments that can be computed in a controlled way is strongly
limited [14].

The upper left panel of Fig. 3 shows that already for
N = 200, our approach (dashed red line) allows a very good
reconstruction of the input function. In the upper right panel,
we show the error of this reconstruction, which becomes
maximal at the second peak of the input function and is of
order 10−2, i.e., a relative error of a few percent. The situation
is very different for the extrapolation scheme of the full A(ω)
that uses the b = 0 setup. For N = 200 computed moments,
large errors are observed in both top panels of Fig. 3.

In the bottom panel of Fig. 3, we plot the maximal error,
defined as maxω�0 |Areconst(ω) − Ainput(ω)|, versus different
values of the number of computed moments N . An orders of
magnitude reduction of the error is seen upon using our over
the previous approach. If one compares the expansion order
N for which an error of 5 × 10−3 is reached (N ∼ 250 in the
b � −1 setup, and N = 1200 in the b = 0 setup), one recovers
the factor ∼6 that has been derived in the previous section.

Only at very high expansion orders, which in practice
can often not be reached by MPS computations, the original
approach allows to reach smaller error levels for the presently
studied generic example. More examples are studied in
Appendix B.
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FIG. 3. (Color online) (Top) Input spectral function and recon-
structed spectral functions using linear prediction for N = 200
computed Chebyshev moments. We compare our proposal with the
original proposal [13], where for the b = 0 setup the expansion of
the full spectral function was extrapolated. (Left) In the first case, we
use the Chebyshev expansion of Ã>(ω) in the b = −0.995 setup (red
dashed lines), and in the second, we use the Chebyshev expansion
of the full spectral function A(ω) in the b = 0 setup (solid green
line). (Right) Error of these functions |Areconst(ω) − Ainput(ω)| for
both setups. (Bottom) The error maxω�0 |Areconst(ω) − Ainput(ω)| vs
number N of computed Chebyshev moments. Here, we also show
results for using the Chebyshev expansion of Ã>(ω) in the b = 0
setup (light green crossed line). This is different from using the full
spectral function A(ω) in the b = 0 setup. Lower error levels only
occur for much higher expansion orders than shown in the panel.

III. SPECTRAL FUNCTIONS FOR FINITE SYSTEMS

Let us now study the case of finite systems, where a
discretized representation of the spectral function is used
for reconstruction. The general previous arguments are still
valid, but several technical details have to be taken into
account. In particular, we suggest a new discretization scheme
suited for reconstruction with Chebyshev expansions. Such a
discretization scheme can be used for problems that allow to
manipulate the discretization of the spectral function. This is,
e.g., the case for impurity models, for which the discretization
of the input bath spectral function determines the discretization
of the spectral function. Still, the following discussion is
also relevant to, e.g., finite lattice models for which the
discretization is physically constrained.

To construct a discrete representation of a continuous
function A(ω), we employ the scheme that is used to discretize
the hybridization function of impurity models in the numerical
renormalization group [18]. This proceeds as follows. For
L given discretization intervals [ωl,ωl+1], l = 1, . . . ,L, we

compute discrete weights V 2
l and eigenvalue positions εl by

V 2
l =

∫ ωl+1

ωl

dω A(ω),

εl = 1

V 2
l

∫ ωl+1

ωl

dω ωA(ω). (24)

The first line associates a weight and the second line a
representative energy with an interval of energies [ωl,ωl+1].
For the energy, one could, e.g., take [9] the simple average
1
2 (ωl + ωl+1). Equation (24), by contrast, produces an average
using the weighting function 1

V 2
l

A(ω), which attributes more

weight to peaks of A(ω).
We choose the left boundary of the first interval ω1 and the

right boundary of the last interval ωL+1 such that the distance
ωL+1 − ω1 is minimized but [14]∫ ωL+1

ω1

dω A(ω) � 0.999
∫ ∞

−∞
dω A(ω), (25)

where the integrand is non-negative, which guarantees that
[ω1,ωL+1] contains almost the complete support of A>(ω),
but minimizes finite-size effects. The intermediate values of
the discretization intervals {ω2, . . . ,ωL} can be chosen using a
logarithmic discretization, as done in NRG [18]. However, if
an unbiased resolution is wanted, one usually chooses a linear
discretization [13,14]

ωl = (l − 1)�ω + ω1, l = 2, . . . ,L,

�ω = 1

L
(ωL+1 − ω1). (26)

As Chebyshev polynomials do not show an unbiased energy
resolution as they oscillate much quicker at the boundaries
of [−1,1] than in the center, the linear discretization will
first resolve the finite-size (discrete) structure close to the
boundaries of [−1,1]. We suggest to adapt the discretization
to account for the cosine mapping (20) of the energy scale that
is responsible for this phenomenon.

Let us study the case of even L (for odd L, see Appendix D)
and assume without loss of generality that we want as many
intervals {ωl,ωl+1} on the positive half-axis as on the negative
half-axis, which implies

ωL/2 = 0. (27)

As we already know ωL+1 from (25), we only have to fix the
intermediate interval boundaries {ωL/2+1, . . . ,ωL}. We define

ωL/2+l = a(cos(θL/2 + l�θ ) − b), l = 1, . . . ,L/2,

�θ = 2

L
(θL+1 − θL/2),

(28)
θL/2 = arccos b,

θL+1 = arccos

(
b + ωL+1

a

)
.

Using these definitions, a discrete representation Adiscr(ω)
of A(ω) [in the sense that Adiscr(ω) → A(ω) for L → ∞] is
given by

Adiscr(ω) = 〈ψ0|δ(ω − H )|ψ0〉,
Hll′ = εlδll′ , l,l′ = 1, . . . ,L, (29)

|ψ0〉l = Vl,
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FIG. 4. (Color online) Reconstruction of the spectral function
of Fig. 1 represented by the discrete Hamiltonian (29). (Top left)
Input function and reconstructed functions using L = 80, N = 200,
a = 100v, b = −0.995. We compare the linear discretization (26)
with the cosine (28) discretization. (Top right) Difference of input
and reconstructed functions of the top left panel. (Bottom left)
The error maxω�0 |Areconst(ω) − Ainput(ω)| vs number N of computed
Chebyshev moments using a cosine discretization. (Bottom right)
Error for linear discretization.

where H ∈ RL×L and |ψ0〉 ∈ RL, and the parameters εl and
Vl are given in Eq. (24). This is consistent with definition (8)
if we realize that this is a single-particle Hamiltonian for a
particle that is in any of the εl energy states with probability
V 2

l . The reference energy would be the ground-state energy of
the vacuum Eref = 0. To obtain the step function behavior of
A>(ω), we project out the positive energy contributions from
the initial state |ψ0〉.

In Fig. 4, we show the reconstruction of spectral functions
based on the linear prediction of the moments computed
for Ã>

discr(ω) using the operator-valued Chebyshev expansion
presented in Sec. I B for the “Hamiltonian” defined in Eq. (29).
This is analogous to the top left panel of Fig. 3, which treated
the thermodynamic limit.

For the finite-size system, the specific choice of discretiza-
tion is important and we compare the linear and the cosine
discretization in the top panels of Fig. 4 for the expansion
order N = 200 and a system size L = 80. From the large
error at ω = 0 for the linear discretization (red dashed line)
seen in the right top panel of Fig. 4, which was not present
in the thermodynamic limit (red dashed line in right top
panel of Fig. 3), we conclude that the linear discretization
starts resolving finite-size features close to ω = 0 already
for N = 200. The lower panels then show how the error

behaves as a function of the number of computed moments
for different system sizes L. While the cosine discretization
follows the error of the thermodynamic limit quite closely
for low values of N and lattice sizes of L � 80, it almost
saturates in a plateau for higher expansion orders, and only
starts increasing slightly for very high expansion orders. For
the linear discretization, neither the close correspondence
with the thermodynamic limit is observed, nor does the error
only moderately depends on the expansion order: instead,
the error increases exponentially for high values of N , as
then, finite-size features are inhomogeneously resolved. Both
features make it difficult to determine the value of N for which
the computation of Chebyshev moments should be stopped in
order to obtain a minimal error.

IV. IMPLICATIONS FOR MPS REPRESENTATIONS

What is the relevance of the previous results for matrix
product state (MPS) based computations of the spectral
function for a given matrix product operator (MPO) H [19]?
Repeated MPO operations on MPS create entanglement, which
eventually makes manipulating and storing MPS computa-
tionally very costly. Manipulations, such as applying H to
states |tn〉 in the recursion (13), or performing subsequent
time-evolution steps e−iH�t , can therefore only be carried out
up to a certain recursion order n or time t , before hitting
an exponential wall in computation cost. For time-evolution
algorithms, this has long been known [20,21], but this also
limits computations using the Chebyshev recursion [14].

In the following, we show that the method introduced in
the previous sections outperforms the previous approach [13]:
it extracts more spectral information from H when creating
the same amount of entanglement or, which is equivalent up to
technical details of the algorithm, using the same computation
time.

As an example, we compute the spectral function of the
single impurity Anderson model (SIAM), which serves as a
common benchmark [13,14,16,22,23] and is highly relevant
as it is at the core of dynamical mean-field theory (DMFT)
[24–27].

The Hamiltonian of the SIAM is given as

H SIAM = Himp + Hbath + Hhyb,

Himp = U

(
n0↑ − 1

2

)(
n0↓ − 1

2

)
,

Hbath =
Lb∑
l=1

∑
σ

εlc
†
lσ clσ ,

Hhyb =
Lb∑
l=1

∑
σ

(Vlc
†
0σ clσ + H.c.). (30)

By a unitary transform effected by Lanczos tridiagonalization,
this can be mapped on the so-called chain geometry. However,
as this leads to higher entanglement, we simply order bath
states by their potential energy, which directly gives a one-
dimensional array that can be treated with MPS [23]. We solve
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the model for the semielliptic bath density of states

− 1

π
Im(ω) = 1

2vπ

√
4 −

(
ω

v

)2

, (31)

which is discretized according to the procedure discussed in
Sec. III, and then yields the parameters εl and Vl . It is important
to realize that here, we discretize the bath hybridization
function whereas in Sec. III, we discretized the spectral
function. While Sec. III did this to illustrate the effect of
discretization for a toy model for which the spectral function
was known from the beginning, in the present case, a true
many-body computation is involved. In the present case, the
relevant discretization parameter is the bath size Lb = L − 1,
and no longer the system size [14].

We compute the spectral function (18) of the impurity
Green’s function, where the initial states are single-particle
excitations of the ground state: |ψ>

0σ 〉 = c
†
0σ |E0〉 and |ψ<

0σ 〉 =
c0σ |E0〉. As we consider the particle-hole and spin-symmetric
case of (30), we only need to compute one Chebyshev
recursion; to be precise, |ψ0〉 = c

†
0↑|E0〉. We compare our

results with the dynamic DMRG results from Ref. [16], which
are believed to be highly reliable. In particular, we compare
computations in the formerly suggested setup [13,17] that uses
the Chebyshev recursion for b = 0 in Eq. (10) and reconstructs
the full spectral function A(ω) using linear prediction [13], and
the one suggested here that uses b = −0.995 and reconstructs
the shifted spectral function Ã(ω) using linear prediction.

In the top left panel of Fig. 5, we show computations of
the spectral function of the SIAM for L = 80 for N = 260 in
the b = −0.995 setup, and N = 900 in the b = 0 setup and
compare it with the result of Ref. [16]. We choose these two
expansion orders, as they lead to a comparable maximum error,
as shown in the top right panel of Fig. 5. In the b = −0.995
setup, this maximum error is slightly smaller. Around ω = 0,
by contrast, the error in the b = −0.995 setup is much smaller.
If we compare the computation time that is needed to reach this
precision (max|Areconst(ω) − Ainput| � 0.015/v), we find that
the b = −0.995 setup required ∼145 min whereas the b = 0
setup required ∼434 min. If one makes this comparison for
a slightly larger error (max|Areconst(ω) − Ainput| � 0.025/v),
realized for expansion order N = 120 for the b = −0.995
setup, and for expansion order N = 200 for the b = 0 setup,
the comparison in computation times reads ∼12 min versus
∼160 min.

When studying the convergence of the maximum error
with respect to expansion order N in the lower left panel
of Fig. 5, we see that this is, after a sharp decrease for
low expansion orders, not monotonously decreasing. The
previously mentioned choices, N = 260 in the b = −0.995
setup and N = 900 in the b = 0 setup, both correspond to a
minimum in the oscillations, as seen when inspecting the green
solid (dashed) lines for the b = −0.995 (b = 0) setup. The
nonmonotonicity makes general comparisons for the speedup
difficult. But the lower right panel of Fig. 5 still shows that
with only a few exceptions, the solid (b = −0.995) lines are
always clearly below the dashed (b = 0) lines. The logarithmic
abscissa therefore indicates a high speedup.

FIG. 5. (Color online) Comparison of MPS computed spectral
functions in the two setups studied in the previous sections, with
data by Raas et al. [16]. Solid lines refer to the method that uses
Ã(ω), dashed lines refer to the method that uses the full spectral
function A(ω). (Top left) For L = 80 and two exemplary expansion
orders. (Top right) Errors of comparison in top left panel. (Bottom
left) Plot of the maximum error vs expansion order N . (Bottom right)
Plot of the maximum error vs computer time.

V. COMPARISON TO TIME EVOLUTION

It is interesting to compare the efficiency of the available
MPS algorithms to extract spectral information from H .
The candidates are, aside from the dynamic DMRG [28],
which is believed to be computationally highly costly, time-
evolution and recursive algorithms. The latter are, in particular,
expansions in Chebyshev polynomials [17] and the Lanczos
algorithm [29,30]. Lanczos is numerically unstable as the
basis that it spans looses its orthogonality for high numbers
of iterations [31]. This seems to disqualify Lanczos as a
high-performing candidate. Therefore the main question is
whether the Chebyshev recursion can more efficiently extract
spectral information from H than time-evolution algorithms.

To answer this question, in the following, we exploit the fact
that for b = 0 in the limit a → ∞, the Chebyshev expansion
becomes a Fourier expansion, and the Chebyshev states
directly describe the time evolved system. This is different
from the procedure of computing the time dependence of
a Green’s function via a Fourier transform of its spectral
function [17,32–34]. For comparison, we summarize the latter
technique in Appendix E.

The approximate equivalence of the Chebyshev recursion
to time evolution can be used as a novel time-evolution
algorithm. This is interesting as for long-range interacting
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Hamiltonians H , the MPO representation of e−iH t is not
available, or only approximately [35]. Although it is possible
to use the so-called Krylov algorithms for such problems,
this requires some programming effort, and is in general
believed to be numerically rather inefficient as compared
to other time-evolution algorithms. Long-range interacting
problems appear, e.g., if mapping a two-dimensional system
on a one-dimensional chain, or in the solution of a SIAM using
a star geometry [23] as in Eq. (30).

A. Statement of approximate equivalence

The time evolution of a state |ψ0〉
|ψ(t)〉 = exp(−iH t)|ψ0〉, (32)

can be approximately linked to the sequence of Chebyshev
vectors generated by starting from |ψ0〉 as follows.

Choose a reference energy Eref in Eq. (10) that is character-
istic for the initial state of the time evolution and the Chebyshev
recursion. When computing the time evolution of the Green’s
function with |ψ0〉 = c†|E0〉, one chooses Eref = E0, if |ψ0〉
is not an eigenstate, we choose Eref = 〈ψ0|H |ψ0〉.

Then define |φ(t)〉 = exp(iEreft)|ψ(t)〉 and H = (H −
Eref)/a as in Eq. (10) in the b = 0 setup. Here, a has the
meaning of an inverse time step of unit energy. With these
definitions, (32) reads as

|φ(t)〉 = exp(−iaHt)|ψ0〉
= (cos(aHt) − i sin(aHt))|ψ0〉
≡ |φcos(t)〉 − i|φsin(t)〉. (33)

Let us discretize time by defining tn = n
a

, then

|φcos(tn)〉 = cos(nH)|ψ0〉, (34a)

|φsin(tn)〉 = sin(nH)|ψ0〉. (34b)

We now want to compute the action of cos(nH)|ψ0〉 on |ψ0〉
using a recursion that only involves the action of H. This is not
possible with the standard recursion for the cosine function, as
shown in Appendix F 1.

Let us instead consider the action of the Chebyshev
polynomials

Tn(H) = cos(n arccos(H)) (35)

on |ψ0〉. This action approximately reproduces the action of
the plane cosine function, if we consider every fourth iteration,
i.e., introduce the new index n′ = 4n, n ∈ N:

Tn′(H)|ψ0〉 = cos

[
n′
(

π

2
− H

)]
|ψ0〉 + ε(n′)|ψ0〉

= cos(n′H)|ψ0〉 + ε(n′)|ψ0〉.n′ = 0,4,8, . . .

(36)

In the first line, we used the Taylor expansion arccos(H) =
π
2 − H + 1

6H3 + · · · , that leads to the error function ε(n′)
(Appendix F 5), and in the second line, we used n′ π

2 = 2πn,
n ∈ N, which obviously drops out of the argument of the cosine
(also see Appendix F 2).

The error ε(n′) is bounded by (F16)

|ε(tn′)| = t

terr
if t < terr,

terr = a2

σ 3
, (37)

where σ is the spectral width of the initial state |ψ0〉 ≡ |ψ0〉
around Eref,

σ = max
|Ek〉∈|ψ0〉

|Ek − Eref|, (38)

where “|Ek〉 ∈ |ψ0〉” refers to the decomposition of the initial
state in eigenstates |Ek〉 of H

|ψ0〉 =
∑

k

ck|Ek〉. (39)

The “spectral width” σ is usually small compared to reason-
ably high values of the inverse time step a. If one is unsure of
whether a was chosen large enough, one reruns a calculation
with a higher value of a and checks convergence.

We can now compute the time evolution

|φcos(tn′)〉 = |φcheb(tn′)〉 + ε(tn′)|ψ0〉,
|φcheb(tn′)〉 = Tn′(H)|ψ0〉, n′ = 0,4,8, . . . (40)

via the recursion (13):

|φcheb(tn)〉 = 2H|φcheb(tn−1)〉 − |φcheb(tn−2)〉,
|φcheb(t1)〉 = H|ψ0〉, n = 0,1,2, . . . . (41)

B. Numerical examples

1. Single-particle computation for SIAM

Figure 6 shows the numerically exact time evolution of a
single particle created on the first site |ψ0〉 = c

†
0|E0〉 of a chain

of 100 lattice sites. The spectral width therefore is σ = 2v.
The left panel of Fig. 6 plots the Chebyshev moments μn =
〈ψ0|tn〉 obtained with a = 100v and the time evolution of the
corresponding Green’s function iG>(t) = eiE0t 〈ψ0|ψ(t)〉 for
the time step 4

a
. Every fourth Chebyshev moment agrees with

a value of the Green’s function. In the right panel, we show the
long-time behavior of G>(t) and the difference G>(4n/a) −
μ4n. The difference is seen to be clearly below the conservative
upper bound (37), it remains of the order of σ 3/a2 = 8 × 10−4

up to very high times that correspond to 100 hopping processes
(t = 100/v).

2. MPS computation for SIAM

We now study the time evolution of the SIAM (7) in the star
geometry [23] for the single-particle excitation |ψ0〉 = c

†
0↑|E0〉

of the half-filled ground state |E0〉. The left panel shows
the time evolution of the corresponding Green’s function,
computed with an MPS Krylov algorithm that imposes the
error bound:

‖|ψ(t + �t)〉 − exp(−iH�t)|ψ(t)〉‖ < εkry,

for a time step of �t = 4
a

. An error bound of εkry = 5 × 10−4

suffices to reliably compute times up to 15/v.
In the MPS implementation of the Chebyshev recursion, we

fix the global truncation error per iteration step, as discussed
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FIG. 6. (Color online) (Left) Time evolution of a particle created
on the first site of a chain of length L = 100 with hopping v = 1,
that is, |ψ0〉 = c

†
0|vac〉. We compare the time evolution of the Green’s

function iG>(t) = eiE0t 〈ψ0|ψ(t)〉 (shown as blue crosses) with the
Chebyshev moments μn = 〈ψ0|ψn〉 (shown as green dots) obtained
when computing the recursion |ψn〉 = 2H/a|ψn−1〉 − |ψn − 2〉. Hop-
ping amplitudes vl are obtained from the discretization of the spectral
function of Fig. 1. A qualitatively equivalent behavior is obtained
for a chain with homogeneous hopping vl = v. (Right) Long-time
evolution of the Green’s function (blue crosses), and difference of
the Green’s function and the Chebyshev moments (red dots). The
horizontal dashed line marks the prefactor of the error estimate (37),
which is computed as σ 3/a2 = 8 × 10−4.

in Ref. [14]:

‖|tn〉 − (2H|tn−1〉 − |tn−2〉)‖ < εche. (42)

To achieve this, two options are available. If during the varia-
tional compression of (2H|tn−1〉 − |tn−2〉), the truncation error
exceeds εche, even when choosing a better and better guess
state, one can either directly increase the bond dimension,
or reduce the truncated weight per bond, which indirectly
increases the bond dimension. While for the setup in Ref. [14],
there were reasons to choose the former option, here we choose
the latter as our Krylov algorithm uses a similar adaption.

We compare the results of the Krylov algorithm with the
Chebyshev algorithm (40). In the top left panel of Fig. 7,
we plot the Green’s function iG>(t) = eiE0t 〈ψ0|ψ(t)〉. If
imposing the same error tolerance εche = εkry, we obtain
agreement of both algorithms only for short times. Only a much
smaller tolerance for the Chebyshev algorithm εche = 1

10εkry

leads to agreement also for long times. We conclude that
error accumulation in the Chebyshev recursion is much worse
conditioned than in the time-evolution algorithm, and even
worse than what could be expected from the four “auxiliary
steps” made in Eq. (41) between each “physical time step:”
imposing a tolerance εche = 1

4εkry for the Chebyshev recursion
is not sufficient to produce comparable results.

The reduced error tolerance εche = 1
10εkry for the Chebyshev

recursion comes at the price of an order of magnitude increase
in the bond dimension compared to the Krylov algorithm, as
shown in the top right panel of Fig. 7. However, for εche = εkry,
the Chebyshev recursion needs higher bond dimensions than
the Krylov algorithm. The lower left panel compares the
overlap of the Chebyshev-evolved and the Krylov-evolved
states by plotting |1 − 〈ψcheb|ψkry〉/〈ψcheb|ψcheb〉|. With only
few exceptions, this quantity is bounded by the theoretical

FIG. 7. (Color online) Time evolution of the single-particle ex-
citation c

†
0↑|E0〉 in the half-filled single-impurity Anderson model

(30) with semielliptic density of states of half-bandwidth 2v and
interaction U/v = 4 for L = 40. Computations using an MPS Krylov
algorithm with error tolerance εkry = 5 × 10−4 and the Chebyshev
recursion (40) for different error tolerances εche = 5 × 10−4 and
εche = 5 × 10−5. (Top left) Time evolution of Greens’s function.
Both algorithms produce the same result upon using the smaller
error tolerance for the Chebyshev algorithm. The legend is found in
the top right panel. (Top right) Maximal bond dimension, located
at the central bond. The Krylov time evolution leads to a much
smaller maximal bond dimension, as its computation produces a
faithful result already with the relatively high error tolerance of
εkry = 5 × 10−4, for which the Chebyshev algorithm shows strong
errors in the Green’s function. (Bottom left) Difference of overlap of
Chebyshev and Krylov evolved states, comparing the εche = 5 × 10−5

with the εkry = 5 × 10−4 computation. The difference of overlap
is bounded by the analytical prediction of (37), except for few
exceptions that lie above it. These exceptions are of purely numerical
origin as they are not visible in any other quantity. For the highest
times shown, truncation errors have accumulated so much that the
analytical prediction starts to fail. (Bottom right) Bond entanglement
entropy at center bond.

prediction of (37), when setting σ = 4v = U . The exceptions
are artifacts of the detailed implementation of the algorithms as
the key observable G>(t) is correctly computed, but still their
existence suggest that the implementation can be improved.
Ignoring these exceptions, we see that the normalized overlap
〈ψcheb|ψkry〉 deviates from one only by a few percent even for
long times. However, these few percent come with a consider-
able growth of the entanglement entropy, as can be concluded
by inspecting the lower right panel of Fig. 7. There, already
the εche = εkry case shows a considerably increased entropy.
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Aside from the two preceding fundamental reasons (dif-
ferent error accumulation, small difference of states), the
increased bond dimensions in the Chebyshev algorithm can
also be related to a purely technical question: the variational
compression [19] in each Chebyshev iteration produces a
state that fulfills (42), but might be a state with unnecessarily
high bond dimension m. Similarly to the DMRG ground-state
optimization algorithm, also variational compression can get
stuck in local minima. Currently, we use White’s mixing factor
[36] to avoid this. A recent publication suggests an even better
strategy and explains these problems concisely [37].

In general, the subspace of the Hilbert space that is needed to
be faithfully described in order to measure the spectral function
can be spanned using different basis states. In principle, the
most efficient spanning would be provided by the Lanczos
algorithm, as the latter provides orthogonal states. However,
it is impractical due to numerical instability. The basis states
provided by time evolution or the Chebyshev recursion are
not orthogonal to each other, but can be stably generated.
The numerical evidence discussed in the previous paragraphs
indicates that the Chebyshev recursion generates a much
more entangled basis of this subspace than a time-evolution
algorithm: it extracts less spectral information when fixing
a maximal entanglement entropy. However, these arguments
directly hold only for the “b = 0 setup” of the Chebyshev
recursion, in which it is transparently comparable with a time-
evolution algorithm as there is a one-to-one correspondence
of time-evolution steps and iterations of the recursion.

Sections II–IV of this paper showed that the b = 0 setup
is the computationally least favorable setup of the Chebyshev
recursion, and a b � −1 setup much better. Still, the gains in
computation time of the b � −1 setup over the b = 0 setup
shown in the bottom right panel of Fig. 5 seem not to be
sufficient to compensate the clear inferiority of the Chebyshev
method shown in the upper right panel of Fig. 7. A definitive
statement is difficult due to the nonmonotonic behavior of the
error in Fig. 5 and due to the fact that such a comparison is
strongly affected by the details of the implementation of the al-
gorithms, and not only by the principle nature of how strongly
entangled its resulting basis states are. For this reason, the
discussion on the most efficient method for computing spectral
functions using MPS cannot be generally considered settled.

3. Expansion in Hubbard model

Finally, we study the time evolution of the one-dimensional
Hubbard model

H Hubbard = U
∑

l

(
nl↑ − 1

2

)(
nl↓ − 1

2

)
− v

∑
lσ

(c†lσ cl+1σ + H.c.), (43)

starting from a product state with doubly occupied sites in
the center of the system, and evolving this state at interaction
U/v = 4, as shown in Fig. 8. We obtain very good agreement
of the Krylov and the Chebyshev algorithm, although there is
no rigorous a priori reason, for which the initial product state
should have a narrow spectral width, i.e., small σ in the sense
of (38), as was the case for the single-particle excited initial
state. On the other hand, for example, in the many studies

FIG. 8. (Color online) Time evolution of a one-dimensional
fermionic Hubbard model on L = 90 sites, with an interaction of
U/v = 4 and nearest-neighbor hopping v starting from a product state
(double occupation in the center of the system). (Left) Chebyshev
computation using εche = 0.0001. (Right) Krylov computation using
εkry = εche. (Bottom) Detailed comparison for the occupation of
specific sites. Chebyshev results are shown as dashed lines, Krylov
results are shown as solid lines. Deviations are smaller than 1%.

on the eigenstate thermalization hypothesis [38,39], it is a
frequently met assumption that for typical initial states the
energy distribution around its mean value is extremely narrow,
with a width of the order of the single-particle energy scale
(see, e.g., Ref. [40] Fig. 3(b)).

VI. CONCLUSION

We started by linking linear prediction to analytic
continuation, which explains why linear prediction is a
reasonable method to extrapolate both Fourier and Chebyshev
expansions of spectral functions. In order to apply linear
prediction, we introduced a new method to avoid the algebraic
convergence of Chebyshev moments (expansion coefficients)
of generic steplike spectral functions. This amounts to a
particular redefinition of the series expansion that is based on
a subtraction of the Chebyshev moments of a self-consistently
determined step function.

We then showed that this allows to reduce the expansion
order by a factor 1

6 as compared to the existing method [13]. For
linearly scaling algorithms, as in exact diagonalization [1,9],
this means a reduction of computation time of the same factor.
Also for matrix product state computations high speedups
are obtained. Furthermore, we showed how to adapt the
discretization of hybridization functions of impurity models
to the Chebyshev method.
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Finally, we showed the approximate equivalence of the
Chebyshev recursion to time evolution in a certain limit. This
led to a novel time-evolution algorithm and allowed to trans-
parently compare standard time evolution and the Chebyshev
recursion in how efficient they extract spectral information
from an operator H . For exact representations, the Chebyshev
recursion is superior to time evolution as the latter is equivalent
to the least favorable setup of the Chebyshev expansion, which
can be improved by the previously mentioned factor 1

6 . For
matrix product state representations, our results indicate that
the Chebyshev expansion is inferior: we observe a much higher
entanglement production in the Chebyshev recursion than
in standard time evolution. We identify as the main reason
for this an unfavorable error accumulation in the Chebyshev
recursion that requires computations at higher accuracy. So
while in the history of the solution of differential equations
for non-periodic problems, Chebyshev expansions replaced
Fourier expansions in the course of time [15], in the matrix
product state context, such a transition now seems unlikely.
Still, the Chebyshev recursion provides an easy-to-implement
and straightforward way to compute spectral functions.

Relevant applications of the results of this paper are
the computation of conductivities [41], the computation of
time evolution of long-range interacting systems [35], and in
particular, the challenging solution of dynamical mean-field
theory [13,14]. For example, the latter can usually not be
accessed by combining analytical and numeric techniques as
recently done for the Hubbard model in Ref. [42].
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APPENDIX A: CONVERGENCE SPEED

Analogously to Ref. [15, Chap. 2.9], we give the argument
for the speed of convergence of the Chebyshev sequence,
computed with the nonweighted inner product of (6b)

μn =
∫ 1

−1
dxf (x)Tn(x)

=
∫ π

0
dθf (cos θ ) cos(nθ ) sin θ

= Re
∫ π

0
dθf̃ (cos θ )einθ , (A1)

where f̃ (θ ) = f (cos θ ) sin θ . We can then do k partial integra-
tions, if f̃ (θ ) is k times differentiable,

μn = Re

⎧⎨⎩−
k∑

j=1

[(
i

n

)j

einθ f̃ (j−1)(θ )

∣∣∣∣π
0

]

+
(

i

n

)k ∫ π

0
dθf̃ (k)(θ )einθ

⎫⎬⎭ , (A2)

where f̃ (j )(θ ) denotes the j th derivative of f̃ (θ ). If f̃ (j )(0) =
f̃ (j )(π ) = 0 for j = 0, . . . ,k − 1, which is fulfilled for typical
single-particle spectral functions as in Fig. 2, and if f̃ (k)(θ )
is integrable, (A2) constitutes an upper bound O( 1

nk ) for the
sequence μn.

APPENDIX B: EXAMPLES FOR LINEAR PREDICTION
OF CHEBYSHEV EXPANSIONS

In Sec. II, we compared the reconstruction of a spectral
functions using its extrapolated (linearly predicted) Chebyshev
expansion. We focused on a typical example for this discus-
sion, given by the U/v = 4 spectral function of the half-filled
SIAM with semielliptic bath density of states, which is shown
in the top panel of Fig. 1.

In this Appendix, we support the arguments of Sec. II by
showing further generic examples. Starting from a steplike
input function A>(ω), we again compare the two reconstruc-
tions based on (i) linearly predicting the “subtracted” spectral
function Ã>(ω) of (17) and (ii) linearly predicting the “full”

FIG. 9. (Color online) (Top) Test function consisting of two
Lorentzians (B1). (Center) Corresponding Chebyshev moments in
the three different setups μ>, μ̃>, and μ, analogously to the bottom
panel of Fig. 2. (Bottom) Error of reconstructed spectral function,
analogously to the bottom panel of Fig. 3. All of this is for a = 100.
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FIG. 10. (Color online) (Top) Test function consisting of two
Gaussians (B1). (Center) Corresponding Chebyshev moments in the
three different setups μ>, μ̃>, and μ, analogously to the bottom
panel of Fig. 2. (Bottom) Error of reconstructed spectral function,
analogously to the bottom panel of Fig. 3. All of this is for a = 100.

(summed particle and hole contributions) spectral function
A(ω) of (18).

To consider generic cases, we study functions that show
“features” at ω = 0 and at some distance, of order of the single-
particle bandwidth, away from it. The most natural choice
for constructing such functions are superpositions of (non-
normalized) Lorentzians and Gaussians

f >(ω) =
{

0 for ω < 0∑
ω0∈{0,4} h(ω,ω0) else,

hl(ω,ω0) = η2

(ω − ω0)2 + η2
, (B1)

hg(ω,ω0) = e
− (ω−ω0)2

2η2 .

The function f >(ω) is plotted for both choices in the top panels
of Figs. 9 and 10 for η = 0.2.

Based on the same argument as is the basis for Sec. V in
this paper (approximate equivalence of Fourier and Chebyshev
expansion), Ref. [14] showed the decrease of Chebyshev
moments for superpositions of Lorentzians and Gaussians, to

FIG. 11. (Color online) (Top) Particle spectral function of half-
filled noninteracting SIAM. (Center) Corresponding Chebyshev
moments in the three different setups μ>, μ̃>, and μ, analogously to
the bottom panel of Fig. 2. (Bottom) Error of reconstructed spectral
function, analogously to the bottom panel of Fig. 3.

be approximately exponential and ∝e−αn2
, respectively. This

behavior is observed in both center panels of Figs. 9 and 10. For
high values of n, in Fig. 10, the decrease ∝e−αn2

transitions
into an exponential decrease, which is not in contradiction
with the result of Ref. [14]. In Sec. V, we discuss intermediate
values of n.

In the bottom panels of Figs. 9 and 10, we then show the
error obtained for the different methods of reconstruction.
Linearly predicting Ã>(ω) yields considerably lower errors
than linearly predicting the “full” spectral function A(ω). Only
in the case of Lorentzians (lower panel of Fig. 9), using A(ω)
leads to lower errors for values of n.

Finally, in Fig. 11, we show results for the spectral function
of the half-filled noninteracting SIAM with semielliptic bath
density of states, which itself is semielliptic,

A>(ω) =

⎧⎪⎨⎪⎩
0 for ω < 0,

0 for ω > 2v,

1
2vπ

√
4 − (

ω
v

)2
else.

(B2)
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A>(ω) has a kink at ω = 2v, as can be seen in the top panel
of Fig. 11. Therefore the Chebyshev moments decrease only
algebraically, as seen in the center panel of Fig. 11.

If we consider the error of the linear-prediction-based
reconstructed A>(ω), shown in the bottom panel of Fig. 11,
we see that this yields much better results than the estimate
(21) gives for a plain truncation of an algebraically decreasing
series. Concerning the comparison between the two methods
of reconstructing Ã>(ω) and the full A(ω), we observe that
Ã>(ω) yields to smaller errors throughout.

We finally note that studying the spectral function of the
noninteracting SIAM with a constant bath density of states as
in Refs. [17,13], does not constitute a more general case. The
analytic expression for this is very close to a single Lorentzian.

APPENDIX C: LINEAR PREDICTION

In the context of time-evolution, linear prediction has been
long established in the DMRG community [11,12], but it has
only recently been applied to the computation of Chebyshev
moments [13,14]. The optimization problem for the sequence
μn becomes linear, if the sequence can be defined recursively:

μ̃n = −
p∑

i=1

aiμn−i , (C1)

which is easily found to be equivalent to (1) [12]. The strategy
is then as follows. Compute Nc Chebyshev moments, and
predict moments for higher values of n using (C1).

The coefficients ai are optimized by minimizing the least-
square error

∑
n∈Nfit

|μ̃n − μn|2 for a subset Nfit = {Nc −
nfit, . . . ,Nc − 1,Nc} of the computed data. We confirmed
nfit = Nc/4 to be a robust choice, (i) small enough to
go beyond complicated low-order (short-time) behavior and
(ii) large enough to have a good statistics for the fit. Earlier
[14], we chose nfit = Nc/2, which leads to a better statistics
for the fit. However, this improvement is not important, as we
do not deal with stochastic data. Minimization yields

Ra = −r, a = −R−1r,

Rji =
∑
n∈Nfit

μ∗
n−jμn−i , (C2)

rj =
∑
n∈Nfit

μ∗
n−jμn.

Linear prediction is more prone to overfitting if choosing p

to be very high. Therefore one should restrict the number of
coefficients to p = min(nfit/2,100). Furthermore, one adds a
small constant δ = 10−6 to the diagonal of R in order to enable
the inversion of the singular matrix R. Defining [12]

M =

⎛⎜⎜⎜⎜⎝
−a1 −a2 −a3 . . . −ap

1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 1 0

⎞⎟⎟⎟⎟⎠ ,

one obtains the predicted moments μ̃Nc+n = (MnμNc
), where

μNc
= (μNc−1 μNc−2 . . . μNc−p)T . The matrix M might have

eigenvalues with absolute value larger than 1, either due to
numerical inaccuracies or due to the fact that linear prediction

cannot be applied as μn rather increases than decreases on the
training subset Nfit. In order to obtain a convergent prediction,
we set the weights that correspond to these eigenvalues to
zero measuring the ratio of the associated discarded weight
compared to the total weight. If this ratio is higher than a few
percent, we conclude that linear prediction cannot be applied.
One can then restart the computation to increase the number
of computed moments Nc, and try applying linear prediction
for a higher number of moments.

APPENDIX D: DISCRETIZATION FOR ODD L

In the case of odd L we cannot equate the central interval
boundary with 0 as in Eq. (27). Instead we have to choose
the correct width for the “central interval” by choosing the
neighboring boundaries ω(L+1)/2 and ω(L+1)/2+1 correctly.
This is achieved by subtracting an offset �w from each of
the positive boundaries defined in Eq. (28), such that for
l = 1,2, . . .

ω(L+1)/2+l = a(cos(θ(L+1)/2+1 + l�θ ) − b − �ω),

�θ = 2

L
(θL+1 − θ(L+1)/2+1),

θ(L+1)/2+1 = arccos b,

θL+1 = arccos

(
b + ωL+1

a

)
,

�ω = 1

2
(cos(θ(L+1)/2+1 + �θ ) − b). (D1)

For negative boundaries, �ω has to be added instead of
subtracted.

APPENDIX E: TIME EVOLUTION
BY FOURIER TRANSFORM

Given the Chebyshev expansion in frequency space,

A>(ω) = 1

a
A>

(
ω

a
+ b

)
,

A>(x) =
∑

n

wn(x)μnTn(x), (E1)

we can obtain the time evolution of a single Green function,
but not for the whole system state, by Fourier transforming

G>(t) =
∫ ∞

−∞
dω A>(ω)eiωt

= 1

a

∫ ∞

−∞
dωA>

(
ω

a
+ b

)
eiωt

=
∫ ∞

−∞
dx A>(x)eia(x−b)t

=
∫ ∞

−∞
dx

∑
n

wn(x)μnTn(x)eia(x−b)t

=
∑

n

μn

∫ ∞

−∞
dx wn(x)Tn(x)eia(x−b)t

= e−iabt
∑

n

(2 − δn0)(−i)nμnJn(at), (E2)
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where the last step (interchanging sum and integral) is only
possible if the sum is absolutely convergent, or finite. The
Fourier transform can be looked up in a handbook on integrals,∫ ∞

−∞
dx wn(x)Tn(x)eia(x−b)t

= (2 − δn0)e−iabt

∫ ∞

−∞
dx

Tn(x)eiaxt

π
√

1 − x2

= (−i)n(2 − δn0)e−iabtJn(at). (E3)

APPENDIX F: COMPARISON TO TIME EVOLUTION

1. Standard recursion for cosine

As usual for a vector space of orthogonal polynomials, the
space of cosine functions {cos(nx)}, where n ∈ N,x ∈ R, can
be generated using a three-term recursion formula:

cos(nx) = 2 cos(x) cos((n − 1)x) − cos((n − 2)x), (F1)

which can be proven using addition theorems.
Rewriting this in the operator-valued form for the argument

H, and acting on |ψ0〉 yields for the definition of |φcos(tn)〉 in
Eq. (34),

|φcos(tn)〉 = 2 cosH|φcos(tn−1)〉 − |φcos(tn−2)〉. (F2)

However, this provides no solution for our problem as the
action of cosH on |φcos(tn−1)〉 is not known.

2. Shifted cosine

Using an addition theorem

cos

(
n

(
π

2
− α

))
= cos

(
n
π

2

)
cos(nα) + sin

(
n
π

2

)
sin(nα)

=

⎧⎪⎨⎪⎩
cos(nα) if n

4 ∈ N

sin(nα) if n+2
4 ∈ N

1√
2
(cos(nα) + sin(nα)) else

. (F3)

Equation (36) follows if setting α = H.

3. Sine term

Changing the initial conditions of (F4a) generates the
polynomials T ′

n = sin(n arccos(x))

T ′
n(x) = 2xT ′

n−1(x) − T ′
n−2(x), (F4a)

T ′
1(x) =

√
1 − x2, T ′

0(x) = 0, (F4b)

which approximates the sine function, in the same way as (36)
approximates the cosine

T ′
n(H) � sin(nH) if n/4 ∈ N. (F5)

4. Bound for Arccos

Bounding the Arccos works as follows:

arccos(x) = π

2
−

∞∑
n=0

(2n

n

)
x2n+1

4n(2n + 1)

= π

2
− x − r(x)

r(x) = x3

[
1

6
+
∣∣∣∣∣

∞∑
n=2

(2n

n

)
x2n−2

4n(2n + 1)

∣∣∣∣∣
]

. (F6)

Using arcsin(1) = ∑∞
n=0

(2n

n )
4n(2n+1) = π

2 we can bound

|r(x)| = |x3|
[

1

6
+
∣∣∣∣∣

∞∑
n=2

(2n

n

)
x2n−2

4n(2n + 1)

∣∣∣∣∣
]

< |x3|
[

1

6
+
∣∣∣∣∣

∞∑
n=2

(2n

n

)
4n(2n + 1)

∣∣∣∣∣
]

= |x3|
(

1

6
+ π

2
− 1 − 1

6

)
= |x3|

(
π

2
− 1

)
<

2

3
|x3|. (F7)

5. Error computation

The approximation in Eq. (36) is based on the Taylor
expansion

arccos(H) = π

2
− H + 1

6
H3 + O(H5),

H = H − Eref

a
, (F8)

which reflects the fact that the arcus cosine is well approxi-
mated already by the leading linear term around x = 0.

The approximation of |φ(tn)〉 that has been generated in
this way, is good if a is large enough and becomes exact
for a → ∞. However, how large does one have to choose a

in practice in order for ε(tn′) to be bounded by the wished
accuracy?

Consider the decomposition of the initial state in eigenstates
|En〉 of H

|ψ0〉 =
∑

k

ck|Ek〉, (F9)

and, defining ωk = Ek−Eref
a

, therefore

Tn(H)|ψ0〉 =
∑

k

ckTn(ωk)|Ek〉. (F10)

We are now only interested in indices n′ that are multiples
of 4n, as only those have the interpretation of a time-evolved
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state. Therefore

Tn′(ωk) = cos(n′ arccos(ωk))

= cos(n′ωk − n′rk) as n′ = 4n, see Eq. (F3),

= cos(n′ωk) cos(n′rk) + sin(n′ωk) sin(mrk)

= cos(n′ωk) + εk(n′),

εk(n′) = cos(n′ωk) (cos(mrk) − 1)

+ sin(n′ωk) sin(mrk).

Up to here everything was exact.
Now we can strictly bound the absolute value of the error

term using | sin(rk)| < |rk| and | cos(rk) − 1| <
r2
k

2 and trivially
bounding cos(n′ωk) and sin(n′ωk) by one,

|εk(n′)| < 1
2n′2r2

k + n′|rk|. (F11)

Let us now define the energy eigenvector |Emax〉 for which the
error εk becomes maximal, which is the one for which ωmax is
maximal, i.e.,

ωmax = max
|Ek〉∈|ψ0〉

ωk (F12)

with which we compute rmax and εmax. We can then simplify
further∑

k

ckεk(n′)|Ek〉 < εmax(n′)
∑

k

ck|Ek〉 = εmax(n′)|ψ0〉.

We therefore arrive at

Tn′ (H)|ψ0〉 = cos(n′H)|ψ0〉 + ε(n′)|ψ0〉 (F13)

The value of ωmax is determined by the cutoff of the distribution
of eigenvectors |Ek〉 in |ψ0〉. This can be a strict cutoff or a few
standard deviations of Gaussian distribution, beyond which
no contributions with numerically measurable weight occur.
Let denote this cutoff or width σ and define it analogously

to ωmax, i.e.,

σ = max
|Ek〉∈|ψ0〉

|Ek − Eref| ⇒ ωmax = σ

a
. (F14)

If, e.g., |ψ0〉 is constructed by applying a single-particle
operator to an eigenstate (e.g., the ground state) of H , σ is
the single-particle bandwidth Wsingle times a small factor of
order 1.

Finally, we need to bound the error term rk (Appendix F 4)

rk = 1
6ω3

k + O
(
ω5

k

)
, |rk| < 2

3

∣∣ω3
k

∣∣. (F15)

Using the definition of σ , let us now bound ε(n′):

|ε(n′)| < |εmax(n′)|
<

1

2
n′2r2

max + n′|rmax|

<
1

2
n′2
(

2

3

)2

ω6
max + n′ 2

3

∣∣ω3
max

∣∣
= 1

2
n′2
(

2

3

)2(
σ

a

)6

+ n′ 2
3

(
σ

a

)3

<
3

2
n′ 2

3

(
σ

a

)3

if n′ < n′
ref

= n′

n′
ref

, n′
ref =

(
a

σ

)3

.

Or expressing this in units of time,

|ε(tn′)| = t

terr
if t < terr,

terr = a2

σ 3
. (F16)

Inserting typical values, where v is a hopping energy
for a single-particle process: σ = 2v, a = 100v, one finds
terr = 1250

v
. The accumulated error ε(tn′) therefore remains

smaller than 10−2 if t < 12.5 1
v
.
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Phys. Rev. B 90, 115124 (2014).

[15] J. B. Boyd, Chebyshev and Fourier Spectral Methods (Dover
Publications, Mineola, New York, 2001).

[16] C. Raas, G. S. Uhrig, and F. B. Anders, Phys. Rev. B 69, 041102
(2004).

[17] A. Holzner, A. Weichselbaum, I. P. McCulloch, U. Schollwöck,
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90, 235131 (2014).
[24] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

115144-16

http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1137/1009002
http://dx.doi.org/10.1137/1009002
http://dx.doi.org/10.1137/1009002
http://dx.doi.org/10.1137/1009002
http://dx.doi.org/10.1090/S0025-5718-1968-0228171-0
http://dx.doi.org/10.1090/S0025-5718-1968-0228171-0
http://dx.doi.org/10.1090/S0025-5718-1968-0228171-0
http://dx.doi.org/10.1090/S0025-5718-1968-0228171-0
http://dx.doi.org/10.1090/S0025-5718-1970-0285117-6
http://dx.doi.org/10.1090/S0025-5718-1970-0285117-6
http://dx.doi.org/10.1090/S0025-5718-1970-0285117-6
http://dx.doi.org/10.1090/S0025-5718-1970-0285117-6
http://dx.doi.org/10.1007/BF01406683
http://dx.doi.org/10.1007/BF01406683
http://dx.doi.org/10.1007/BF01406683
http://dx.doi.org/10.1007/BF01406683
http://dx.doi.org/10.1142/S0129183194000842
http://dx.doi.org/10.1142/S0129183194000842
http://dx.doi.org/10.1142/S0129183194000842
http://dx.doi.org/10.1142/S0129183194000842
http://dx.doi.org/10.1103/PhysRevB.49.10154
http://dx.doi.org/10.1103/PhysRevB.49.10154
http://dx.doi.org/10.1103/PhysRevB.49.10154
http://dx.doi.org/10.1103/PhysRevB.49.10154
http://dx.doi.org/10.1103/PhysRevLett.73.1039
http://dx.doi.org/10.1103/PhysRevLett.73.1039
http://dx.doi.org/10.1103/PhysRevLett.73.1039
http://dx.doi.org/10.1103/PhysRevLett.73.1039
http://arxiv.org/abs/arXiv:1308.5467
http://dx.doi.org/10.1103/PhysRevB.77.134437
http://dx.doi.org/10.1103/PhysRevB.77.134437
http://dx.doi.org/10.1103/PhysRevB.77.134437
http://dx.doi.org/10.1103/PhysRevB.77.134437
http://dx.doi.org/10.1103/PhysRevB.79.245101
http://dx.doi.org/10.1103/PhysRevB.79.245101
http://dx.doi.org/10.1103/PhysRevB.79.245101
http://dx.doi.org/10.1103/PhysRevB.79.245101
http://dx.doi.org/10.1103/PhysRevB.90.045144
http://dx.doi.org/10.1103/PhysRevB.90.045144
http://dx.doi.org/10.1103/PhysRevB.90.045144
http://dx.doi.org/10.1103/PhysRevB.90.045144
http://dx.doi.org/10.1103/PhysRevB.90.115124
http://dx.doi.org/10.1103/PhysRevB.90.115124
http://dx.doi.org/10.1103/PhysRevB.90.115124
http://dx.doi.org/10.1103/PhysRevB.90.115124
http://dx.doi.org/10.1103/PhysRevB.69.041102
http://dx.doi.org/10.1103/PhysRevB.69.041102
http://dx.doi.org/10.1103/PhysRevB.69.041102
http://dx.doi.org/10.1103/PhysRevB.69.041102
http://dx.doi.org/10.1103/PhysRevB.83.195115
http://dx.doi.org/10.1103/PhysRevB.83.195115
http://dx.doi.org/10.1103/PhysRevB.83.195115
http://dx.doi.org/10.1103/PhysRevB.83.195115
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevE.71.036102
http://dx.doi.org/10.1103/PhysRevE.71.036102
http://dx.doi.org/10.1103/PhysRevE.71.036102
http://dx.doi.org/10.1103/PhysRevE.71.036102
http://dx.doi.org/10.1103/PhysRevLett.97.150404
http://dx.doi.org/10.1103/PhysRevLett.97.150404
http://dx.doi.org/10.1103/PhysRevLett.97.150404
http://dx.doi.org/10.1103/PhysRevLett.97.150404
http://arxiv.org/abs/arXiv:1405.6728
http://dx.doi.org/10.1103/PhysRevB.90.235131
http://dx.doi.org/10.1103/PhysRevB.90.235131
http://dx.doi.org/10.1103/PhysRevB.90.235131
http://dx.doi.org/10.1103/PhysRevB.90.235131
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324


SPECTRAL FUNCTIONS AND TIME EVOLUTION FROM . . . PHYSICAL REVIEW B 91, 115144 (2015)

[25] A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).
[26] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,

Rev. Mod. Phys. 68, 13 (1996).
[27] G. Kotliar, S. Savrasov, K. Haule, V. Oudovenko, O. Parcollet,

and C. Marianetti, Rev. Mod. Phys. 78, 865 (2006).
[28] E. Jeckelmann, Phys. Rev. B 66, 045114 (2002).
[29] D. J. Garcı́a, K. Hallberg, and M. J. Rozenberg, Phys. Rev. Lett.

93, 246403 (2004).
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