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Introduction 
John James authored two key papers on the theory of risk to relatives for binary disease traits 
and the relationship between parameter on the observed binary scale and an unobserved scale 
of liability (James 1971; Reich, James et al. 1972). These two papers are John James' most cited 
papers (198 and 328 citations, November 2014). They have been influential in human genetics 
and have recently gained renewed popularity because of their relevance to the estimation of 
quantitative genetics parameters for disease traits using SNP data. In this review, we summarize 
the two early papers and put them into context. We show recent extensions of the theory for 
ascertained case-control data and review recent application in human genetics. 
 
Historical context 
Quantitative genetics as a scientific field of research was firmly establish by the 1960’s, with 
theory broadly consistent with empirical data from selection experiments in model organisms 
and genetic improvement programs in animal and plant breeding. In particular, a polygenic 
model underlying quantitative trait genetic variation was widely accepted. For binary (0-1) traits, 
a threshold (liability) model had been proposed (Wright 1934) and applied (see for example, the 
literature reviewed in the introductions of Fraser (1976) and Dempster & Lerner(1950)), but this 
model was not widely adopted by human geneticists as a model for disease. There are 
exceptions to the prevalent paradigm at the time, in particular early landmark papers by 
(Gottesman and Shields 1967; Mcgue, Gottesman et al. 1983) which suggested that the 
threshold model was a good model for schizophrenia and provided empirical evidence that 
showed that the risk to relatives was consistent with such a model. 
 
For common diseases in humans, such as psychiatric disorders, heart disease and hypertension, 
the prevailing paradigm in the 1970s was Mendelian, i.e. that the cause of disease in an affected 
individual is due to a single factor, usually a single mutation or sometimes an environmental 
insult (e.g. a head injury leading to a brain disease). In fact, for some researchers working in 
human genetics this is still the paradigm today, despite strong empirical evidence against this 
model (as will be discussed later). 
 
Liability threshold model 
An unobserved liability threshold model to explain observations on discrete characters was first 
proposed by Sewell Wright in the context of the number of toes in guinea pigs (Wright 1934). 
The quantitative genetic theory that showed the correspondence between genetic parameters 
on a scale of liability and an observed binary scale was developed (Dempster and Lerner 1950), 
in particular in the appendix developed by Alan Robertson (in this day and age he would have 
been a formal co-author). The theory used a linear approximation (from a Taylor series 
expansion) to go from an additive scale of liability to a discrete scale. Assuming that the liability 
threshold model is a reasonable model to explain observations on a binary scale, the Dempster 
& Lerner paper had important implications for response to selection in populations undergoing 
(mass) selection. In particular, if genetic variation on the scale of liability is fully additive then 
genetic variation on a binary scale can be highly epistatic. This implies that the estimation of 
additive genetic variance on the observed scale from the resemblance between relatives is 
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biased upwards, the bias depending on whether close relatives (e.g. full-sibs) or more distant 
relatives (e.g. half-sibs) are used for estimation. In addition, predicted response to mass 
selection based upon narrow sense heritability on the 0-1 scale can be biased downwards or 
upwards, the bias being a function of heritability of liability, population prevalence and selection 
intensity. 
 
The linear transformation of heritability from the observed 0-1 scale to that of liability is, 
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with K the population lifetime prevalence and z the height of the normal curve at the truncation 
point pertaining to K  (Dempster and Lerner 1950). In livestock, this approximation is useful as 
extensive pedigrees with large half-sibship families allow reasonably unbiased estimation of 
narrow-sense heritability on the observed scale. In contrast, in human studies (of the pre-
genomics era) accurate estimates of narrow-sense heritability on the observed scale were not 
achievable as the sample sizes were limited and disease status could only recorded on close 
family members, for example identical or non-identical twin pairs. 
 
Falconer (Falconer 1965) (and (Crittenden 1961)) realised that the resemblance between 
relatives on discrete scales can be framed in the theory of response to truncation selection, and 
derived the estimation of heritability on the scale of liability directly from the lifetime 
prevalence (called ‘incidence’ by Falconer) in probands (ascertained individuals who have the 
trait/disease of interest) and their relatives. Falconer’s method to estimate heritability is a linear 
regression of mean liability of relatives of probands on mean liability of probands, both as a 
deviation from the population mean. This is analogous to a ratio of response to selection and 
selection differential and he showed that heritability of liability could be estimated from two 
measures, risk of disease in the population (K) and risk of disease in relatives of those affected 
(KR), 
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where aR is the additive genetic relationship between the relatives, T =  Φ−1(1 − 𝐾) and TR =  
Φ−1(1 − 𝐾𝑅) are the thresholds of the normal distribution that truncate proportions K and KR, 
respectively.  i is the mean liability of the diseased group in the population, calculated as i = z/K 
where 𝑧 =  𝜙(𝑇), as in [1]. Falconer provided an approximation to the sampling variance of the 
estimate of heritability (which he attributed to B.Woolf). Falconer recognized that his derivation 
assumed that the variance in liability amongst relatives of probands was the same as the 
variance in liability amongst probands, arguing that the reduction in variance was negligible. 
Edwards (Edwards 1969) and Smith (1970) showed that proper accounting for the reduction of 
variance increased estimates of heritability by ~10%. An important extension from Charlie Smith 
(who made major contributions to both human and livestock genetics) was the derivation of the 
expected disease concordance rate for monozygous (MZ) twin pairs under a liability threshold 
model and made the important observation that the expected concordance rate can be low 
even when the heritability of liability is high. Conversely, a low MZ concordance rate for a 
disease with prevalence of, say, 1% or less does not imply that genetic factors are unimportant 
(Smith 1970). To this day there is much confusion in human genetics about the relationship 
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between heritability and disease concordance in relatives. Smith expanded on this study by 
showing how a proband concordance rate can be used to estimate heritability of liability from a 
design including both dizygotic and monozygotic twin pairs (Smith 1974). 
 
James 1971 
In his landmark short paper from 1971, James addressed the question of the risk to relatives of 
probands. He showed that on the observed probability (or risk or disease) scale, the risk to 
relative with relationship R is simply  
 
KR = K + covR/K,          [3] 
 
with covR the phenotypic covariance between the proband and the relative on the observed 0-1 
scale. This equation is completely general and does not depend on assumptions about the 
sources of the phenotypic covariance. It can also be expressed as 
 

R -1 = covR / K2,          [4] 
 

with R the relative risk to relatives (KR/K) (Risch 1990). Equations [3] and [4] are sometimes 
referred to as the “James’ Identity” (Lynch and Walsh 1998). 
 
If we now assume a genetic model such that the only covariance between relatives is due to 
genetic factors, then the phenotypic covariance on the 0-1 scale can be decomposed into 
genetic variance components (James 1971), 
 

covR = ∑ ∑ 𝑟𝑘𝑢𝑙𝑉𝐴(𝑘)𝐷(𝑙)
∞
𝑙=0

∞
𝑘=0  ,  

 
where 𝑉𝐴(𝑘)𝐷(𝑙) denotes the genetic variance components with k A and l D terms, given an 

additive genetic relationship coefficient of r and a dominance coefficient of relationship of u. So 
for R  = monzygotic (MZ) twin, r = 1 and u = 1 then, 
           [5] 
covMZ     = 𝑉𝐴 + 𝑉𝐷 + 𝑉𝐴𝐴 + 𝑉𝐴𝐷 + 𝑉𝐷𝐷 + 𝑉𝐴𝐴𝐷 + 𝑉𝐴𝐴𝐴 + ⋯ = 𝑉𝐺. 
 
Likewise for R=full-sibs (FS), where r = ½  and u = ¼  
then, 
           [6] 
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Despite being less than 3 pages in length, the importance of James (1971) is that this 
formulation provides a framework to test the observed frequencies (or relative risks) in relatives 
against single locus vs multiple locus models. A single locus model for human disease – the 
prevailing view at that time - does not give rise to epistatic variance and hence gives different 
predictions of risk across different classes of relatives than multi-locus models (James 1971). 
Therefore, it provides a strategy, in principle (if data sets are sufficiently large and if there are 
multiple classes of relatives), to test the validity of a single locus model compared to a multi-
locus model from observable data. A particular multi-locus model is the threshold model that 
Falconer (1965) developed, and James cites this paper. He also cites Dempster and Lerner (1950) 
since they showed that epistatic variance on the observed scale may be high when narrow sense 
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heritability of liability is high and the proportion of the population with the affect trait is close to 
zero, consistent with the epidemiology of many human diseases. 
 
Reich, James & Morris, 1972 
Several papers of the 1970’s era point, often obliquely, to the controversy of the liability 
threshold model, see for example the discussion of Curnow & Smith’s ‘Multifactorial models for 
familial diseases in man’ (Curnow and Smith 1975) after presentation at the Royal Statistical 
Society. In trying to set the record straight, Fraser (Fraser 1976) in “The multifactorial/threshold 
concept – uses/misuses” openly acknowledges the controversy, in which some considered the 
model as the “first (and perhaps only) rational explanation for the familial patterns shown by 
various relatively common human malformations and other disorders”, whilst others (citing 
(Melnick and Shields 1976)) had referred to it as “as tautological, based on grandiose 
assumptions, having no experimental support, and providing no testable hypotheses.” It was 
into this melee that Reich, James & Morris (1972) made an important contribution.  

In Reich, James & Morris (1972), the liability threshold model developed by Falconer (1965) is 
expanded to a two- or more- threshold model. Under this extension it is recognized that many 
diseases (their examples were diabetes, schizophrenia and centrencephalic epilepsy) can be 
viewed as semi-continuous traits, so that affected individuals manifest variable severity 9or sub-
forms). The subdivision of a disease category together with the hypothesis that the severity of 
disease is inherited allows differentiation of alternative genetic models in a way not possible 
with a simple all-or-none classification. The multi-threshold model has particular relevance if the 
less severe disease phenotype is considerably more common than the severe disease 
phenotype. Hence, the study quantifies under what circumstances it may be possible to 
differentiate between single gene and liability threshold models and proposes goodness-of-fit 
statistics to evaluate the model that best fits the observed data. They show that monozygotic 
(MZ) twins are particularly useful to differentiate between models because they share all non-
additive effects. James co-authored a second paper with Reich, which is a more general 
formulation of the 1972 paper, that allows different ascertainment for, and different 
environmental variables contributing to, disease sub-forms.  

Reich, James & Morris (1972) is also important because it provided a neat formulation based on 
normal distribution theory for the reduction in variance in relatives of affected probands to 
generate a more accurate estimate of the heritability of liability (Falconer 1967; Edwards 1969; 
Smith 1970), such that equation [2] becomes 
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This more complex formulation still requires only two measures, the risks of disease in the 
population and in relatives of those affected, i.e. K and KR.  
 
Personal context 
We first met John James when he visited the University of Edinburgh in the late 1980’s when we 
were PhD students. This was his second (of three) long visits to Edinburgh. The two papers that 
have contributed to human genetics resulted from his first visit to Edinburgh, a year-long 
sabbatical in the early 1970s. Although we studied in Edinburgh, and regularly chatted with 
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Douglas Falconer and Charlie Smith, the importance of the liability threshold model theory 
seemed to pass us by. It was one of the last chapters in Falconer’s text book (now Falconer & 
Mackay) and hence one of the last lectures of the year in the MSc course of Quantitative 
Genetics (so maybe PMV wasn’t paying attention - although he does remember a very useful 
tutorial by Chris Haley in which the lecture was explained!). It is only after moving into human 
disease genetics that we have fully appreciated the contributions from Edinburgh to this field in 
the 1950s-1970s. Why was this theory deemed so unimportant in 1980s Edinburgh? Firstly, even 
by the time of Falconer’s 1965 publication, the liability threshold model was rather standard 
fare, at least in the non-human genetics circles (Bill Hill, personal communication – but this also 
can be detected in the introduction of Falconer, 1965). In fact, in a Perspectives article published 
by Falconer in 1993 entitled ‘Quantitative Genetics in Edinburgh 1947-1980’ he fails to mention 
the liability threshold model (although he does say that he introduced the concept of realized 
heritability as a way of describing selection response, and perhaps he considered his work on 
the threshold model as a small aside to this work). Secondly, at that time, livestock genetics was 
the focus of the Edinburgh School, and in livestock the binary traits of economic interest 
compared to human disease traits have higher prevalences and little, if any, ascertainment 
biases. Moreover, the large sibships possible in cattle and poultry allowed approximate 
estimation of narrow-sense heritability on the observed scale for direct application of equation 
[1] (see (Gianola 1982)for applications of the liability threshold model in livestock). In contrast, 
the human genetics of the 1980’s was limited; it was the pre-genomics era and the large 
national Scandinavian data resources, that more recently have heavily utilized liability threshold 
theory e.g., (Lichtenstein, Yip et al. 2009), were in their infancy. It is only in the last decades that 
the empirical data has really met its match with the theory laid down in the 1950s-1970s. In 
moving our research focus from livestock to humans as the genomic era evolved we have 
revisited the liability threshold model papers and have been humbled by the nuance of 
understanding conveyed in the detail of those texts. We have focused much of our disease-
related research to psychiatric disorders, and it is, therefore, of particular interest to us to 
realize that John co-authored an important contribution to human genetics with Theodore (Ted) 
Reich, a prominent psychiatrist from the Washington University in St Louis, who also spent a 
sabbatical year of his early career in Edinburgh in the early 1970s. We are told (personally, PMV 
met Ted Reich in the late 1990s) that he chose Edinburgh for his sabbatical because of the 
growing support for a polygenic genetic architecture for psychiatric disorders such as 
schizophrenia. The third author of the paper was then-PhD student Chris Morris, with whom Ted 
Reich shared an office during this time, and who undertook the calculations for the paper (Frank 
Nicholas, personal communication). We are told (Bill Hill, personal communication) that Ted 
stimulated many discussions about human disease genetics, not least in the famous Alan 
Robertson coffee sessions (as described in (Falconer 1993)). It is only in the last five years that 
the empirical data have provided unequivocal support for this hypothesis, and we are proud to 
have contributed to analyses that demonstrate this (Purcell, Wray et al. 2009; Lee, DeCandia et 
al. 2012). The steady stream of citations to James (1971) and Reich, James and Morris (1972) 
demonstrate that these papers continue to be of relevance in the genomics era. 
 
James 1971 and Reich, James and Morris 1972 in the genomics era 
Genome-wide association studies (GWAS) and exome or whole genome sequencing studies are 
used in human (medical) genetics to discover genes and gene variants that are associated with 
risk to disease. But data from genome-wide coverage with genetic markers can also be used to 
estimate genetic parameters. For example, one parameter of interest is the proportion of 
variation that is captured with SNP arrays (sometimes called the ‘SNP-heritability’) (Yang, 
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Benyamin et al. 2010; Lee, Wray et al. 2011). By contrasting genetic variation estimated from 
pedigree data with that associated with a SNP array, the proportion of ‘missing’ heritability can 
be quantified. If most genetic variation is captured by a SNP array then larger experimental 
sample size will allow the discovery of additional variants, genes and biological pathways that 
contribute to genetic variation. If, in contrast, only a small proportion of overall genetic variation 
is captured due to LD with SNPs on the array, consistent with rare variants contributing to 
disease risk, then a different experimental design (based upon sequencing) may be required to 
discover those variants.  
 
Analyses to estimate SNP-heritability are usually performed on the observed 0-1 scale using 
regression or REML and then transformed to a scale of liability (Lee, Wray et al. 2011). Most 
disease studies in humans are based on case-control studies in which cases are heavily over-
sampled relative to the prevalence of disease in the population. This creates a non-normal 
distribution of liability in the sample and the ascertainment needs to be taken into account 
when transforming the parameters on the observed 0-1 to that of liability. Lee et al. (2011) 
derived a generalization of the Dempster & Lerner (1950) transformation as, 
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with P the proportion of cases in the case-control sample (usually P ~ ½). For a random sample 
P = K and the expression is identical to [1]. Note that expression [7] is an approximation and 
can result in bias when ascertainment is extreme and heritability on the liability scale is high. 
When P = ½ and K small so that (1-K) ~ 1 and expressing “heritability in the case-control 

sample” as a function of liability in the population, ho
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predicts a heritability on the 0-1 scale in a case-control population > 1. The constant factor in 
equation [5] is 1.0 when K ~ 0.085, so at this prevalence the heritability on the two scales are 
the same. The reason for this apparent inflation of heritability on the 0-1 scale is that the 
ascertainment has created much more genetic variation in the case-control sample than exists 
in the population, so that the ratio Vg/Vp on the 0-1 scale is larger than 1. However, in practice 
the proportion of variation in liability captured by SNP arrays is usually < ½ and estimating 
variance components on the 0-1 scale by REML without constraining heritability to be between 
0 and 1 can give estimates with little bias (Lee, Wray et al. 2011; Speed, Hemani et al. 2012; 
Zaitlen and Kraft 2012; Gusev, Bhatia et al. 2013). Hence for most practical applications the 
procedure of a linear analysis on the 0-1 scale followed by a transformation to liability that 
accounts for over-sampling of cases is a reasonable and useful exercise. 
 
Conclusion 
The two papers from John James in human genetics have been important contributions to that 
field, because they laid theoretical foundations about polygenic models underlying liability to 
disease and their relationship with observations on risk to relatives. They are vital links between 
quantitative genetics and epidemiology. It is only in the last 5-10 years that the tools have 
become available to dissect genetic variation for common diseases into contributions from 
specific variants. The empirical data from the last 10 years is consistent with highly polygenic 
model for most common diseases. With the caveat that all models are wrong but some may be 
useful, the liability threshold model continues to be very useful and John James has made a 
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lasting contribution to the theory underlying this model. 
 
Acknowledgments 
We acknowledge fellowship funding from the Australian National Health and Medical Research 
Council 613601 and 613602. We thank Bill Hill for his usual insightful and witty comments. 
 
References 
 

Crittenden, L. (1961). "An Interpretation of Familial Aggregation Based on Multiple 
Genetic and Environmental Factors." Annals of the New York Academy of 
Sciences 91(3): 769-&. 

Curnow, R. N. and C. Smith (1975). "Multifactorial Models for Familial Diseases in 
Man." Journal of the Royal Statistical Society Series a-Statistics in Society 
138: 131-169. 

Dempster, E. R. and I. M. Lerner (1950). "Heritability of Threshold Characters." 
Genetics 35(2): 212-236. 

Edwards, J. H. (1969). "Familial Predisposition in Man." British Medical Bulletin 
25(1): 58-&. 

Falconer, D. (1965). "The inheritance of liability to certain diseases, estimates from 
the incidence among relatives." Annals of Human Genetics 29: 51-76. 

Falconer, D. (1993). "Quantitative Genetics in Edinburgh - 1947-1980." Genetics 
133(2): 137-142. 

Falconer, D. S. (1967). "Inheritance of Liability to Diseases with Variable Age of 
Onset with Particular Reference to Diabetes Mellitus." Ann Hum Genet 31: 1-
&. 

Fraser, F. C. (1976). "Multifactorial-Threshold Concept - Uses and Misuses." 
Teratology 14(3): 267-280. 

Gianola, D. (1982). "Theory and Analysis of Threshold Characters." Journal of Animal 
Science 54(5): 1079-1096. 

Gottesman, II and J. Shields (1967). "A polygenic theory of schizophrenia." Proc Natl 
Acad Sci U S A 58(1): 199-205. 

Gusev, A., G. Bhatia, et al. (2013). "Quantifying missing heritability at known GWAS 
loci." Plos Genetics 9(12): e1003993. 

James, J. W. (1971). "Frequency in relatives for an all-or-none trait." Ann Hum Genet 
35(1): 47-49. 

Lee, S. H., T. R. DeCandia, et al. (2012). "Estimating the proportion of variation in 
susceptibility to schizophrenia captured by common SNPs." Nat Genet 44(3): 
247-250. 

Lee, S. H., N. R. Wray, et al. (2011). "Estimating missing heritability for disease from 
genome-wide association studies." Am. J. Hum. Genet. 88(3): 294-305. 

Lichtenstein, P., B. H. Yip, et al. (2009). "Common genetic determinants of 
schizophrenia and bipolar disorder in Swedish families: a population-based 
study." Lancet 373(9659): 234-239. 

Lynch, M. and B. Walsh (1998). Genetics and Analysis of Quantitative Traits. 
Massachusetts, USA, Sinauer Associates. 



 8 

Mcgue, M., I. I. Gottesman, et al. (1983). "The Transmission of Schizophrenia under a 
Multifactorial Threshold-Model." Am. J. Hum. Genet. 35(6): 1161-1178. 

Melnick, M. and E. D. Shields (1976). "Allelic Restriction - Biologic Alternative to 
Multifactorial Threshold Inheritance." Lancet 1(7952): 176-179. 

Purcell, S. M., N. R. Wray, et al. (2009). "Common polygenic variation contributes to 
risk of schizophrenia and bipolar disorder." Nature 460(7256): 748-752. 

Reich, T., J. W. James, et al. (1972). "Use of Multiple Thresholds in Determining Mode 
of Transmission of Semi-Continuous Traits." Annals of Human Genetics 
36(Nov): 163-&. 

Risch, N. (1990). "Linkage Strategies for Genetically Complex Traits .1. Multilocus 
Models." Am. J. Hum. Genet. 46(2): 222-228. 

Smith, C. (1970). "Heritability of liability and concordance in monozygous twins." 
Annals of Human Genetics 34(1): 85-91. 

Smith, C. (1974). "Concordance in Twins - Methods and Interpretation." Am. J. Hum. 
Genet. 26(4): 454-466. 

Speed, D., G. Hemani, et al. (2012). "Improved heritability estimation from genome-
wide SNPs." Am J Hum Genet 91(6): 1011-1021. 

Wright, S. (1934). "An analysis of variability in number of digits in an inbred strain 
of guinea pigs." Genetics 19(6): 0506-0536. 

Yang, J., B. Benyamin, et al. (2010). "Common SNPs explain a large proportion of the 
heritability for human height." Nat Genet 42(7): 565-569. 

Zaitlen, N. and P. Kraft (2012). "Heritability in the genome-wide association era." 
Hum Genet 131(10): 1655-1664. 

 
 


