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Abstract

Optimization problems occur widely in various domains and are of great practical importance. Bet-
ter solutions to optimization problems translate into increased production or efficiency, or less waste
or error. As a result, the development of optimization algorithms is a large and active area of re-
search. Although there is a large amount of theory and techniques for solving optimization problems,
there are also many open issues and questions in understanding the relationship between optimization
algorithms and the problems that they are applied to.

In any optimization problem, the influence of each solution variable on the objective function, as
well as the interactions between variables are very important. For example, if the variables in a prob-
lem are independent, then it might be efficiently solved by decomposition. If important dependencies
exist between variables, an algorithm that is able to capture these dependencies may be able to exploit
them to find good solutions. Alternatively, if a variable has a strong influence on the objective func-
tion, then an algorithm may be better off focusing its search on this variable, compared with another
variable that has very little influence on the objective function.

Estimation of Distribution Algorithms (EDAs) are a class of black-box optimization algorithms
that learn and sample from a probabilistic model over the solution variables to carry out the search
process. The explicit model in an EDA clearly specifies how the algorithm handles problem variables
during the search process. A major focus in EDA research has been the incorporation of dependency
modeling using models of varying complexity (e.g. probabilistic graphical models). The intuition
behind this work is that if the algorithm model is capable and successful at capturing the structure of
the problem, it will produce good performance on that problem. Experimental results have confirmed
this intuition, for example EDAs that model dependency information have outperformed EDAs that
do not model dependencies on certain problems.

While EDAs have shown good performance results, little work has analyzed the dynamics of
EDA models in practice. In fact, it is not clear what kind of problem structure EDAs can successfully
model, or to what extent it is necessary to successfully model problem structure in order to achieve
good performance. To provide insight into these issues, a more detailed analysis of EDAs applied to
specific problems is needed.

In this thesis, an experimental methodology is proposed to analyze the features of variables in
continuous optimization problems and continuous EDAs. The approach is based on sampling points
from the problem fitness landscape and/or the history of points visited by an EDA during the search
process. These samples are then analyzed in three different ways, to identify key structural variables,
variable dependencies and important variables. The techniques are used to analyze a variety of test
problems and EDAs optimizing the same problem set. The results confirm that the interaction between
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variables is complex, varies across problems and gives useful insights into the performance of EDAs
on these problems. The results are categorized into different problem/algorithm behavior types.

In continuous EDAs, a Gaussian distribution over continuous variables is commonly used, with
several different covariance matrix structures ranging from diagonal, i.e. Univariate Marginal Distri-
bution Algorithm (UMDAc) to full, i.e. Estimation of Multivariate Normal Algorithm (EMNAglobal).
The modeling of key structural variables and correlations are already captured in standard EDAs. In
contrast, so-called important variables are not identified by an EDA. In the final part of the thesis, a
modified screening EDA (sEDA) is presented which identifies important variables and uses these to
control the degree of covariance modeling in the Gaussian EDA model. Compared to EMNAglobal,
the algorithm provides improved numerical stability and can use a smaller selected population. Ex-
perimental results are presented to evaluate and compare the performance of the proposed algorithm
to UMDAc and EMNAglobal. In its first formulation, sEDA requires a large number of function eval-
uations for high dimensional problems. To address this issue, a modified version of (sEDA-lite) is
also proposed. Experimental results on a large set of high dimensional artificial and real-world rep-
resentative problems evaluate the performance of the new algorithm and compare it with the sEDA
and EDA-MCC (EDA framework with Model Complexity Control), a related, recently proposed al-
gorithm.
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Chapter 1

Introduction

1.1 Overview

Optimization is ubiquitous. Optimization is necessary in every aspect of our daily life because it leads
us to obtain an optimal solution from a limited amount of resources.

The wide application of optimization in various domains leads to a significant research topic in
modern times. For example, optimization plays a significant role in economics and business, since it
mainly deals with minimizing cost and maximizing profit from a specific amount of resources [34].
Network communication needs optimization for the efficient delivery of communication from one
place to another through different media, hence it requires the optimal use of physical media, such
as wire, fiber optics etc. in different locations [114]. Optimization also underpins the planning
section [16], the time tabling [138], the transportation network [106], the evacuation plans during
natural disaster [158] and many more.

In general, for all types of optimization problems, a number of different decision alternatives (vari-
ables), with specified available constraints are used to maximize or minimize the evaluation criteria
of the objective function. The input variables are used for solving the objective function which re-
turns either a single value, termed as the single objective function, or the function which solves more
than one objective simultaneously, which is termed as multi objective function. Depending upon the
type of variables involved, the optimization problems are categorized as combinatorial (for discrete
variables) or continuous (for continuous variables).

There exists a number of algorithms to solve the optimization task. Among these, evolutionary
computation has gain the interest of the researchers over the last few decades. Evolutionary algo-
rithms (EA) are nature inspired, that is they deal with population based methods at each iteration
with a set of candidate solutions. At each iteration, the algorithm chooses the individuals having best
fitness values and these are used for generating the set of population for the next generation using
some genetic operators (crossover or mutation) or some probability distribution. The Evolutionary
algorithms have many more categories, one of which is the genetic algorithm which was initiated by
Holland [82]. In Genetic algorithms, the best selected population is used to generate the set of the
next population using the recombination operators or the Mutation operators. Choosing this operator
is a strenuous task to do. In the last decade, researchers tried to control the limitations of the ge-

1



CHAPTER 1. INTRODUCTION 2

netic operators by introducing Estimation of Distribution Algorithms (EDAs), the essence of which
is based on probability theory. The discussion of EDAs is presented in Section 2.6 of Chapter 2.

1.2 Research Gap, Methodology and Justification

The aim of this dissertation is to develop an understanding and to analyze the properties of optimiza-
tion problem variables and how these variables are modeled in Estimation of Distribution algorithms
(EDA). The difficulty of an optimization problem clearly relates to the problem variables, their inter-
actions and the resulting sensitivity of the objective function. If a problem contains a variable that
has little or no effect on the objective function value, then it may be inefficient to include this variable
in the search. Alternatively, if the variables in a problem are independent, then a high dimensional
problem may be more efficiently solved by decomposing it. Hence the performance of an algorithm
will be related to the understanding of problem variables, and if their important properties can be
captured efficiently and effectively.

EDAs are a class of black-box optimization algorithms that learn and sample from a probabilis-
tic model over the solution variables to carry out the search process. The explicit model in an EDA
specifies how the algorithm handles problem variables during the search process. A major focus in
EDA research has been the incorporation of dependency modeling using models of varying complex-
ity (e.g. probabilistic graphical models). The intuition behind this work is that if the algorithm model
is capable and successful at capturing the structure of the problem, it will produce good performance
on that problem.

While EDAs have shown good performance results, little work has analyzed the dynamics of
EDA models in practice. In fact, it is not clear what kind of problem structure EDAs can successfully
model, or to what extent it is necessary to successfully model problem structure in order to achieve
good performance. To provide insight into these issues, a more detailed analysis of EDAs applied to
specific problems is needed.

A unified, data-driven approach based is used in this thesis for understanding and analyzing the
variables in problems as well as algorithms. Here, three main types of methodologies are investi-
gated: firstly, for identifying dependent variables, secondly, for analyzing the structure of the popula-
tion/selected sample points and finally for determining which variables the objective function is most
sensitive to. These methodologies reveal the characteristics of the variables in optimization prob-
lems and algorithms, which leads to insight into which EDA model produces the best algorithm for a
given problem. Furthermore, by comparing the results based on data sampled from the problem and
data produced by the EDA, the analysis shows whether or not the EDA captures the same structure
found from sampling the problem. Overall, the thesis makes a significant contribution to the un-
derstanding of Gaussian EDAs and provides a general framework for understanding the relationship
between optimization problems and algorithms that could be extended and applied to other problems
and algorithms in the future.
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1.3 Blueprint of the Thesis

The blueprint of the remainder of the thesis is as follows. Chapter 2 introduces the continuous op-
timization problems and discusses different types of examples of continuous optimization problems.
The Estimation of Distribution Algorithms and their different types are discussed here. This chapter
emphasizes on the continuous Gaussian based EDAs and points out the issues related to them. It also
discusses on various remedies to overcome these issues. Finally it explores the research gap found in
EDAs. Chapter 3 is mainly concerned with the explanation of methodologies considered in the thesis.
It examines correlation coefficients, eigenanalysis and the Morris method for identifying and analyz-
ing correlated variables, Key structural variables and important variables in Continuous optimization
problems and EDAs. In Chapter 4, the methodologies studied in Chapter 3 are applied to different
continuous optimization problems to analyze and understand the nature of variables. Different cate-
gories are made based on the analysis and examples have been set for each category. In Chapter 5, the
methodologies studied in Chapter 3 are applied to the examples of each category developed in Chap-
ter 4 and analyzed with regard to whether EDA is capturing the right information about the nature of
variables or not. Chapter 6 develops an algorithmic framework and its modified form which control
the covariance modeling of EDAs. The Comparison of the newly developed framework with different
EDAs is also covered in this chapter, while Chapter 7 concludes the work of the thesis.

1.4 Scope and Limitation

The main contribution of this thesis is a framework that can be used for the data-driven analysis of
variables in blackbox optimization problems and in particular EDAs. A second contribution is two
modified EDAs which incorporate part of the analysis framework and apply it to address issues re-
garding covariance modeling in EDAs for high dimensional problems. The analysis is applicable to
any continuous black-box optimization problem. It is particularly applicable to Gaussian-based con-
tinuous EDAs and to some extent, to other black-box optimization algorithms. This thesis examines
a range of continuous optimization problems and Gaussian-EDAs.

The framework focuses on measuring three general features: variable dependencies, key structural
variables and variable importance. Each of these factors could be investigated with a variety of data
analysis techniques from machine learning and statistics; however this thesis focuses on the use of
one relatively simple, standard technique to analyze each factor. Nevertheless, these techniques are
well-suited to the data produced by problem sampling and Gaussian EDAs.

The main focus of this thesis is not on trying to demonstrate the superior performance of any
algorithm on any specific problem, but rather to develop analysis to better understand the relationship
between optimization problem and algorithm instances. Reasonable, but not exhaustive effort is spent
on tuning algorithm parameters. These are used to implement and evaluate the proposed analysis
framework (Chapters 4 and 5) and proposed modified EDAs in Chapter 6. For the new algorithms,
results are compared with those from the literature to evaluate the relative performance.
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1.5 Original Contributions

The main novel contributions of this thesis are:

1. The development of a new methodological framework for analyzing the nature of variables in
black-box optimization problems and algorithms. The framework and techniques are based
on sample data and are generally applicable, however they are particularly well-suited to the
analysis of continuous, Gaussian-based EDAs. The framework incorporates three ideas:

• An approach to identify key structural variables using eigenanalysis in optimization prob-
lems and EDAs.

• Visualization of the correlation graph to determine correlation between variables in opti-
mization problems and EDAs.

• Using an existing sensitivity analysis method to determine the important variables in op-
timization problems and EDAs.

2. A comparative experimental study of artificial and real-world representative optimization prob-
lems and EDAs applied to these problems. This study evaluates the proposed framework and
illustrates it’s utility and application.

3. Two variants of a modified Gaussian EDA, incorporating the screening technique from the
proposed methodological framework. The algorithm incorporates knowledge of the objective
function value and uses it to control dependency modeling, providing a new way of resolving
issues associated with estimating the full covariance matrix in EMNAglobal.



Chapter 2

Continuous Black-Box Optimization,
Example Problems and Estimation of
Distribution Algorithms

2.1 Overview

This chapter presents a brief review of black-box optimization problems, particularly continuous op-
timization problems and defines a number of artificial test problems and real world problems that
will be studied in this thesis. In addition to this, Estimation of Distribution Algorithms (EDAs) are
reviewed and discussed. The key research issues related to Gaussian-based EDAs and the existing
methods for solving these issues are described. A particular focus of the chapter is the analysis of the
nature and management of variables and their interactions, in problems and in EDAs.

2.2 Continuous Optimization Problems

The “practical” goal of (global) optimization can be defined as “There exists a goal (e.g. to find as

small a value of f() as possible), there exist resources (e.g. some number of trials), and the problem is

how to use these resources in an optimal way” [150].

The global optimization problem is to find x∗ such that

f (x∗)≤ f (x),∀x ∈ S,

where S is the set of feasible solutions. If S⊆Rn, then it is a continuous optimization problem, where
n is the dimensionality of the problem, f (x) is the fitness or objective function and x = (x1, . . . ,xn)

is an individual or candidate solution vector. If S is an n dimensional box-constrained subset of Rn

then the domains of variables are defined by their lower and upper rectangular cartesian bounds, i.e.
lb(i)≤ xi ≤ ub(i), where lb is the lower bound, ub is the upper bound and the value of i ranges from 1
to n. Optimization problems can also involve some additional constraints [113, 52, 83]. The problem
is stated above as a minimization problem, which can easily be turned into a maximization problem

5
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by negating the objective function.

Continuous optimization problems require finding a vector of variables, subject to a set of con-
straints or boundary values. The constraints depend upon the system of the problem, which may be
physical, societal, legal etc. Test optimization problems that are used in research often have sim-
ple or no constraints, but in real world problems, constraints are often present and are defined very
specifically with respect to a problem. A solution vector is feasible if it obeys all the constraints else
considered as infeasible. The goal of optimization is to maximize or minimize the objective function
using all the evaluation criteria and produce the best possible solution.

In a convex optimization problem, the objective and constraint functions are convex. Solving a
convex optimization problem is very simple and effective. But recognizing a problem as convex is
very difficult. A number of technologies are exist for transforming problems into convex form [25].

If optimization problems are convex, then the single local optimum is the global one, but when
it is non-convex, and have a number of local optima, it is very difficult to obtain the global optimum
values. Hence, optimization problems having larger local optima are generally hard to solve. It is also
difficult to solve in high dimensions. Incorporating all constraints while solving the problem is also a
challenging task.

The main mathematical approach for optimizing a continuous function is gradient-based. It may
be gradient ascent or gradient descent, depending upon the solution type. Algorithms such as steep-
est descent, Newton and quasi-Newton variants, require the objective function to be once or twice
differentiable. These are local optimization algorithms [141, 127].

Although gradient-based techniques are useful for solving many optimization problems, there
are many other problems where gradient information is not available and/or the objective function
contains local optima, etc. global optimization and metaheuristic.

2.3 Test Problems

Given that optimization problems occur in so many different fields, it is not surprising that a large
number of different algorithms have been developed to solve them. According to the “no free lunch
concept” [156, 38], no algorithm is superior to any other algorithm when averaged over the set of
all possible problems, provided they are all performing well in all of the problems. The practical
implication of this result is that the performance of algorithms is problem dependent. That is, the
performance of an algorithm strongly depends upon the problem it is applied to. Therefore to evaluate
the general performance of an algorithm, it is important to evaluate it on a wide variety of different
test problems [45, 110, 47].

A large number of benchmark problems and problem instances have been used in the optimization
literature for the experimental evaluation of algorithms. Based on the properties of the problems, the
test cases have been categorized by various researchers.

The artificial test functions are mathematical formulations, constructed artificially to have certain
properties. For example, some problems are defined so that they are unimodal and have smoothness
in their structure, where other functions have features such as multimodality, ridges, symmetry, noise
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Figure 2.1: 3D Landscape Sphere Function
http://en.wikipedia.org/wiki/Test_functions_for_optimization

etc. The locations and values of local and global optima for these functions are typically known, which
is useful in examining the performance of the algorithms. These problems are also often scalable in
dimensionality. In evolutionary computation, many researchers have used the test functions which
were introduced in the so-called De Jong test suite [94]. These problems are popular, since they are
easy to implement and the results are easy to interpret. Successively, a number of researchers have
introduced a large number of different test instances [50, 53, 157, 79].

A 3D landscape figure of Sphere function has been shown in Figure 2.1.

Problem instance generators provide an alternative source of test functions. Typically due to
randomization, problem generators can produce a large number of problem instances, which avoids
algorithms being tuned to some specific problems during experimentation. For continuous problems,
one example is the Max-set of Gaussians (MSG) generator [59]. A list of test problem generators
can be found on the MSG generator webpage: http://staff.itee.uq.edu.au/marcusg/
msg.html.

Another class of problems used in research are based on real world problems. Typically less is
known about real-world problems instances (e.g. landscape structure, number of local optima, value
of global optimum) and they can be complex (e.g. incorporating nonlinear constraints) and difficult
to implement (e.g. requiring domain expert knowledge). On the other hand, there are advantages
in using real world problems. Most importantly, they indicate how an algorithm might perform in
practice, since the eventual goal is to solve real optimization problems. They also often have features
that make them difficult to solve for many algorithms, e.g. the fitness functions are not differentiable
and non-convex. In larger dimensions some real-world problems have proven to be difficult for many

http://en.wikipedia.org/wiki/Test_functions_for_optimization
http://staff.itee.uq.edu.au/marcusg/msg.html
http://staff.itee.uq.edu.au/marcusg/msg.html
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Table 2.1: Artificial Test Problems used in the Thesis

Problems Formulation Domain Global Opt-
imum Value

Sphere f (x) = ∑
n
i=1 x2

i [−600,600]n 0.0

Ackley f (x) =−20.exp
(
−0.2

√
1
n ∑

n
i=1 x2

i

)
[−600,600]n 0.0

−exp
(1

n ∑
n
i=1 cos(2πxi)

)
+20+ e

Rastrigin f (x) = ∑
n
i=1[x

2
i −10cos(2πxi)+10] [−5.12,5.12]n 0.0

Rosenbrock f (x) = ∑
n−1
i=1 [100(xi+1− x2

i )
2 [−10,10]n 0.0

+(xi−1)2]

Griewangk f (x) = 1/4000∑
n
i=1 x2

i [−600,600]n 0.0

−∏
n
i=1 cos

(
xi√

i

)
+1

Rotated Ellipsoid f (x) = ∑
n
i=1

(
∑

i
j=1 x j

)2
[−10,10]n 0.0

2D Elliptical f (x) = x2
1 +10x2

2 [−5,5]2 0.0
SumCan f (x) = 1/

(
10−5 +∑

n
i=1 |xi|

)
[−0.16,0.16]n 100000

Schwefel f (x) =−∑
k
i=1 xisin

(√
|xi|
)

[−500,500]n -418.9829
Problem 2.26

algorithms to find a good solution.

A number of researchers are providing guidelines for framing test suites to meet the goals of EA
research [154, 9, 13, 66, 89]

2.4 Problems used in the Thesis

In this thesis, both artificial and real world problems are considered. The artificial test functions are
widely used in various optimization research and since their shape is known, they lend themselves
easy for analysis.

Additionally, real world problems are also considered to show how the analysis can be used in real
problems. The circles in a square packing problems and location-allocation problems are discussed
in Sections 2.4.2 and 2.4.3 respectively.

2.4.1 Artificial Test problems

A set of artificial test functions used in the various parts of the thesis are tabulated in Table 2.1. The
Sphere and Ellipse functions are continuous convex, unimodal and additively separable unconstrained
minimization test functions. These two functions are simple and used in analyzing and comparing
the efficiency of the algorithms. The Ackley, Rastrigin, Griewangk and Rosenbrock functions are
multimodal with a large number of local minima. The multimodal nature reflects the characteristics
of real world problems as well. The Rosenbrock function is also known as a banana function. The
global optimum is inside a long, narrow, parabolic-shaped flat valley. To find the valley is trivial;
however, convergence to the global optimum is difficult and hence the problem has been repeatedly
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Figure 2.2: Example of 15 equal sized circles packing in a unit square
http://en.wikipedia.org/wiki/File:Circles_packed_in_square_15.svg

used in assessing the performance of optimization algorithms. Rotated Ellipsoid function is a non-
separable function. All the functions are minimization problems except the SumCan function.

The problems defined in Table 2.1 is used throughout the thesis. In addition to this, another set of
problems, the Real-Parameter Black-Box Optimization Benchmarking (BBOB) experiment set [76]
are used in Chapter 6 to findout the model parameters for 2 different proposed algorithm (sEDA and
sEDA-lite). In addition to these sets of problems, another set of problems from [41] has been used in
Chapter 6 to compare different algorithms.

2.4.2 Circles in a Square Packing Problems

Packing problems are a class of optimization problems which involve packing objects together (often
inside a container), as densely as possible. Circle packing has received a considerable amount of
attention in the mathematics and operation research literature. A survey of circle and sphere packing
problems has been found in [81].

For the Circles in a Square (CiaS) problem, a unit square is defined in a 2D Euclidean space and
a pre-specified number nc of equal-sized circles are given. The objective of the problem is to find an
optimum solution for packing, i.e. to position the circles and compute the radius of the circles such
that the circles occupy the maximum possible area within the square. The circles should not overlap
each other and should not cross the boundary of the unit square.

Pictorially, an example of 15 equal sized circles in a unit square is shown in Figure 2.2.

Mathematically, the problem can be stated, as follows:

Let, zi = (xi,yi) ∈ R2 be the center of circle i and C(zi,rad) the circle with center zi and radius
rad, then the problem is

radn = max rad (2.1)

http://en.wikipedia.org/wiki/File:Circles_packed_in_square_15.svg
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C(zi,rad)⊆ D i = 1, ...,n (2.2)

Cint(zi,rad)∩Cint(z j,rad) =∅;∀i 6= j (2.3)

where Cint denotes the interior of a circle [1, 28].

Alternatively, the problem can be reformulated as finding the positions of nc points inside the unit
square such that their minimum pairwise distances are maximized. In this case the problem (and
constraints) can be restated as :

dn = max min
i 6= j

∥∥wi−w j∥∥
2 , (2.4)

wi ∈ [0,1]2 , i = 1, · · · ,nc (2.5)

This problem cannot be solved using analytical approaches or via gradient-based mathematical
optimization. It is a specific class of geometric packing problems.

It is known that a solution to (2.4) can be transformed into a solution to (2.1) using the following
relation:

radn =
dn

2(dn +1)
(2.6)

The second formulation (2.4) is convenient for evaluating algorithms because generating feasible
candidate solutions simply requires placing a set of n points within the unit square. The optimization
problems are over 2nc continuous variables (the coordinates of each point wi in the unit square).

The research on Circle in a Square packing problem was initiated in 1967 by Kravitz, who first
proposed the optimal solutions for nc = 1-19 [98]. Since then, a number of researchers have used
different types of solution strategies and have tried to determine the optimal solutions for an increasing
number of circles [149, 122, 108, 18, 105, 146].

A solution strategy based on simulated annealing for the optimal packing of arbitrary-shaped poly-
gons has been validated against existing analytical results for packing circles in a square. A constant
penalty for equal circles in a square and variable penalty method in packing arbitrary polygons has
been also introduced to improve the solution quality [149].

In addition to this, some rules which improved the efficiency of the Simulated annealing solution
strategy have also been introduced. An iterative solution strategy based on some energy function for
finding the optimal solution of circles ranging from 20 to 50 is introduced in [122]. The packing of
uniform-sized circles inside a circular container and a solution strategy based on a billiards simulation
algorithm has also been proposed [108]. Graham et al. in 1998 used two solution strategies, which
were based on strategies proposed by [122] and [108] to improve the solution quality of circles
ranging from 20-50, but later they proved that the strategy proposed in [108] was more effective.

Later in 2000, Boll et al. improved the solution quality for nc = 32, 37, 48 and 50 by using a
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2-phase solution strategy [18].

Additionally, some researchers used branch and bound solution strategy to exploit the special
structure of the problem and the properties fulfilled by some of its solutions. Raber et. al. included
a combination of strategies such as, a special partitioning strategy, symmetry avoiding strategy, the
corner edge rules and the volume reduction strategy, to get optimal solutions for the problems nc ≤35,
nc = 38 and nc = 39 and their results proved to be optimal within the given tolerance [105].

Szabo et al. who conducted the survey on the uniform-sized circle packing problem inside a square
provided a theoretical and computational approach to this problem, and have produced approximate
results up to nc = 200 [146].

CiaS problem contains a large number of local optima, which was proved by Grosso et al., who
solved the equal circles in a circular container and estimated the number of a local optima by using
local optimizer. By using a traditional method, at least 4000 local optima for nc = 25 and more than
16000 local optima for nc = 40 have been determined [71].

Castillo discussed several circle packing problems with some industrial applications, such as cir-
cular cutting, container loading, cylinder packing, facility dispersion and communication networks
as well as facility and dashboard layout [28]. The CiaS packing problem can be considered to be a
simplified version of such real world problems.

Gallagher in 2009 analyzed the landscape properties of the CiaS problem and provided some
guidelines to the characteristics and difficulty of the problems [56].

In the CiaS problem, there is a high degree of symmetry and most of the algorithms find it difficult
to get the optimal solution. Research also has introduced some symmetry breaking constraints to the
CiaS problem and produced good results for low dimensional cases [36].

For larger values of nc, finding the optimal solution is generally difficult as well as time consum-
ing. A large list of optimal packings of circles which ranges from 2 up to 10000, along with references
and other related resources has been maintained by http://www.packomania.com/.

CiaS problems have a number of properties which are identified to be useful for evaluating algo-
rithms ( [154, 56]).

2.4.3 Location-Allocation Problems

Location allocation problems are a general class of optimization problems that are found in many real-
world domains and which have been widely studied in operation research [132, 115, 148, 147]. A
continuous location-allocation problem is also known as the Multisource Weber Problem (MWP). The
location-allocation framework mainly consists of three essential components, which are as follows:

• Facilities - the type of goods and services used for the allocation.

• Locations - placing of facilities based on the territorial space, taking into account the user
requirements and geographical sites.

• Customers - who are distributed in a geographical area, where the demands for goods and
services are originated.

http://www.packomania.com/
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The objective of this problem is to place the facilities in such locations that the demand of each
customer is satisfied by the facilities at minimum cost. There are a number of applications of this
location-allocation problem, such as, location of warehouses, distribution centers, communication
centers, production facilities, disaster management etc. [4, 112, 2].

The mathematical formulation of the location-allocation problem is as follows: the location of p

facilities in continuous space in order to serve customers at m fixed points as well as the allocation
of each customer to the facilities so that total transportation costs are minimized [137, 26]. Let us
assume that there is no restriction on the capacity of the facilities. The location-allocation model is
formulated as follows:

Minimize
m

∑
j=1

min
i

d j
(
Xi,A j

)
where i = 1 · · · p, X is the vector containing the 2D coordinates of the facilities. For the p facil-

ities problem, there are 2p number of variables. Hence, for Xith facility the coordinates values are
(xi,xp+i).

A is the vector consisting of the known coordinates of the customers in the problem. For A jth

customer and Xi facility, the coordinate values are represented as (a1 j,a2 j) and (xi,xp+i) respectively.
d
(
Xi,A j

)
is an appropriate distance metric, such as the Euclidean distance from the location of facility

Xi to the location of a customer at fixed point A j. In general, location-allocation is a difficult global
optimization problem which has been shown to be NP-hard [111].

Due to its practical applicability a number of algorithms have been used to solve the problem.

In 1963, Cooper solved certain classes of location-allocation problems by using both exact ex-
ternal equations and heuristic methods [35]. Since exact methods are limited to small problems and
takes a significant amount of calculation time for larger problems, he used heuristic methods for larger
problems. An important extension of the location-allocation problem was the introduction of weights
on the customers. For example, let the suburbs of a city represent the customers and the population
of each suburbs be the weights of the customer. Hence the placing of a facility (e.g. a shopping mall)
in the suburbs depends upon the weights of the customer. This has became an interest among the
researchers [72] because, the larger weights of the customers have the greater possibility of using the
facility than the smaller one. Later on, a number of different location-allocation models are presented
by various researchers [11, 137].

The Branch and bound algorithm is implemented for the problem size of the order of 25 fixed
points and 1 to 5 facilities which provide an exact solution to the problem [99]. The main diffi-
culty with continuous space location-allocation problems is the excessive run time for obtaining the
required results. A number of algorithms have been developed to increase the efficiency of the prob-
lems [123].

Algorithms have been developed which are used to solve multi-source Weber problems using
rectangular distance between facilities [107]. It consists of two steps. The first step is a set reduction
method, that is equivalent to the p-median of a weighted connected graph. In the second stage a
technique for solving the p-median problem has been used for obtaining the optimal locations and
allocations.
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Table 2.2: 51 Customer Problem

x coord. y coord. Wts.
depot

1.3300 8.8900 1
1.8900 0.7700 1
9.2700 1.4900 1
9.4600 9.3600 1
9.2000 8.6900 1
7.4300 1.6100 1
6.0800 1.3400 1
5.5700 4.6000 1
6.7000 2.7700 1
8.9900 2.4500 1
8.9300 7.0000 1
8.6000 0.5300 1
4.0100 0.3100 1
3.3400 4.0100 1
6.7500 5.5700 1
7.3600 4.0300 1

x coord. y coord. Wts.
1.2400 6.6900 1
3.1300 1.9200 1
8.8600 8.7400 1
4.1800 3.7400 1
2.2200 4.3500 1
0.8800 7.0200 1
8.5300 7.0400 1
6.4900 6.2200 1
4.5300 7.8700 1
4.4600 7.9100 1
2.8300 9.8800 1
3.3900 5.6500 1
0.7500 4.9800 1
7.5500 5.7900 1
8.4500 0.6900 1
3.3300 5.7800 1
6.2700 3.6600 1

x coord. y coord. Wts.
7.3100 1.6100 1
6.3700 7.0200 1
7.2300 7.0500 1
1.6800 6.4500 1
3.5400 7.0600 1
7.6700 4.1700 1
2.2000 1.1200 1
3.5700 1.9900 1
7.3400 1.3800 1
6.5800 4.4900 1
5.0000 9.0000 1
6.6300 5.2300 1
5.8900 8.0600 1
1.1300 5.2500 1
1.9000 8.3500 1
1.7400 1.3700 1
9.3900 6.4400 1

Methods based on the dynamic changing of the demand have also proposed [44]. A dynamic p-
median problem is formulated where new facilities are built according to change in demand. Drezner
put forward a new algorithm for the problem of two new facilities and Euclidean distance. This has
proved to be a very good solution for a number of real world problems such as hospitals, schools and
restaurant etc.

Location allocation problems can also be solved by using artificial neural network [64]. The main
idea was to reduce the solution space by introducing some of the constraints explicitly in the calcu-
lation of the partition function. This algorithm has been tested on real size problems with excellent
results.

A lot of work in this location-allocation process has been contributed by [61, 132, 62, 26] .

The genetic algorithm for continuous location-allocation problems was first used in 1996 [84].
Houck et al. implemented the problem by using the floating point (real numbers) representation. The
facilities are represented by (x, y) pairs. The upper and lower bounds of x and y values are used to
direct the search to possible values of x and y, respectively. Hence the individuals consists of p(x, y)
pairs representing the locations of the facilities.

Individual→ (x1,y1,x2,y2, · · · ,xp,yp).

These individuals are created randomly and evaluated using an evaluation function to determine
their fitness. Crossover and mutation has been done to produce its offspring. It has shown promising
and efficient solutions for larger problems.

The same idea has been used in this thesis with continuous Estimation of Distribution Algorithms.
A probabilistic model has been used using the individuals to estimate the next generation.

In this thesis the widely used 51-Customer problem with a unit weight value for all the customers
is considered. The 51-customer data values are shown in Table 2.2. The data Ai for the 51-Customers
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has been found in [48]. The best solutions for the 51-Customer problems listed in the PhD thesis of
Krau are also known as global solutions to this problem [97].

For the comparison purposes of different heuristic methods in multisource Weber problem, 51
Customer problem has been used in [26, 30, 132]. This dataset has also been used as a test problem in
vehicle routing problems, the coordination of production and distribution planning centers and other
related problems [51, 29, 14].

2.5 Metaheuristics

In general, finding an exact global solution to an optimization problem is intractable. Therefore,
many optimization algorithms have been developed that aim to provide good solutions in a reasonable
amount of time.

Approximate algorithms are widely used to solve optimization problems. Approximate algorithms
aim to find a good solution in a limited computation time without any guarantee of “efficiency” or
“goodness” in the solutions [17]. Due to this, the use of approximate methods to solve optimization
problems has received more and more attention in the last few decades.

Metaheuristics are a general class of approximate optimization algorithms, that typically make few
assumptions about the problem and are generally and widely applicable [63, 17, 49, 109]. A meta-
heuristic is a way of solving very general computational problems by combining several heuristic
techniques. Well-known examples of metaheuristics include evolutionary algorithms, other nature-
inspired techniques (e.g. ant colony optimization and particle swarm optimization), simulated anneal-
ing and tabu search.

A Metaheuristic has the following characteristics [17]:

• Strategies guide the search space.

• Goal is to efficiently explore the search process.

• Adaptable to a wide range of problems.

• Easy to incorporate domain specific knowledge.

• Many metaheuristics contain some element of randomness.

• Easy to implement.

Metaheuristics are often applied to problems when :

• there is limited knowledge of the fitness function which means it is difficult to evaluate the
gradient or higher derivative information.

• the fitness function may be discontinuous or noisy.

• the fitness function is suspected to contain any nasty feature e.g. many local minima, plateaus,
ravines etc.
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• the search space is high dimensional.

Evolutionary algorithms are a type of population-based metaheuristic. Population-based meta-
heuristics perform search processes which describe the evolution of a set of points in the search space
[39]. Evolutionary algorithms are inspired by the natural evolution of species. In the natural world,
the evolution of species is carried out by means of selection, recombination and random changes.
Computers can use these criteria to optimize a function. The basic components of the algorithm
are a population of individuals, a set of random operators to modify the individuals and a selection
procedure over the individuals [102].

Evolutionary algorithms have been widely used and have shown impressive performance on many
challenging problems. However, there are also challenges involved in their application. For exam-
ple, evolutionary algorithms depend on the careful choice of several parameters (e.g. crossover and
mutation operators and probabilities, selection operators, size of the population) to achieve good per-
formance. Parameter selection is a very challenging problem (e.g. see [69, 104]).

Examples of evolutionary algorithms are the Genetic Algorithm, Genetic Programming, Evolu-
tionary Programming, Evolution Strategy etc. [7, 10]. Among all these, Evolution Strategy (ES) is
specifically designed for continuous optimization problems [8, 94]. The main components of ES
include the coding, which is the representation of the individuals, fitness function, parent selection
mechanism, definition of operators, selection and other algorithm parameters. It mainly uses self-
adaptive mutation rates. Mutation is carried out by a random vector drawn from a Gaussian distri-
bution. Covariance matrix adaptation is an example of evolution strategy (CMA-ES). It is a very
efficient optimizer which adapts the covariance matrix of the search distribution in response to points
sampled during search to try and achieve rapid progress in finding improved solutions over previ-
ously found solutions. In the CMA-ES, a set of new population is generated through the multi-variate
normal distribution. It uses the mean of the selected population. The covariance matrix is built by
considering how the mean of the population has shifted the previous generation. This information
in addition to the cumulation shifts of the earlier generations obtain the evolution path. CMA-ES is
factorized into the multiplication of a covariance matrix and is called global step size, which is also
computed on the basis of the evolution path. The adjustment of the step size is based on a different
adaptation principle. This path length helps in improving the convergence speed and global search
capabilities at the same time [73, 74].

2.6 Estimation of Distribution Algorithms

EDAs are a recent development in the field of evolutionary algorithms, which is a population-based
paradigm [102, 121]. In EDAs a population is approximated with a probability distribution and new
candidate solutions are obtained by sampling this distribution. The aim is to avoid the use of arbitrary
operators (such as mutation and crossover) in favor of explicitly modeling and exploiting the distribu-
tion of promising individuals. EDAs have been developed for both discrete and continuous problems.
Reviews of EDAs can be found in [102, 125, 129]. The thesis focuses on continuous EDAs.

The general pseudo code framework for an EDA is presented in Algorithm 2.1.
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Algorithm 2.1 General pseudocode framework for an EDA
1: Initialization: set t = 0, Generate initial population uniformly in search space
2: Evaluate f (x) for each individual x in the current population
3: Select promising individuals
4: Build probabilistic model p(x) based on selected individuals
5: Generate new population by sampling from p(x)
6: t = t +1
7: Goto step 2 until a stopping criterion is met

The main components of EDAs are described as follows:

1. Population and its size

In EDAs the initial population is typically generated randomly in the search space using uni-
form distribution within a pre-specified interval. The range of the interval is in a continuous
rectangular space. The size of the population plays an important role in solving a problem
with EDAs. If the population size is not large enough for some types of EDAs, the solutions
found may not be of high quality. In addition, numerical issues may arise (discussed further in
Section 2.7).

Except for the initial generation, the population of the successive generation is generated using
the probability density estimation model.

2. Fitness function

The sample (population) of individuals on each generation of the algorithm is evaluated using
the objective function.

3. Selection

The main operator in EDAs is the population selection operator. The selection operator is used
for selecting the best individuals from the population set. It is believed that the best fitness value
is always achieved through selection. The general purpose of selection is to allow the search to
progress in the direction of the better solutions in the current population.

There are a number of selection operators like tournament selection, roulette wheel selection,
truncation selection etc. Another approach is the Elitism selection, where the population of the
next generation consists of more promising individuals of the current generation. Truncation
selection is usually used in EDAs and is used in this thesis.

Selection pressure plays an important role in achieving the best fitness values. If the selection
ratio is very greedy, then fewer number of individuals are selected, which makes the search
process more difficult and can lead to premature convergence. On the other hand, if the selection
pressure is very low, then the individuals are spanned more widely, exploring across the search
space, which in turn can take lots of time to achieve the desired result.

4. Probability Distribution
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A probability density estimator is used to model the promising regions of the search space. The
parameters of the model are typically estimated using maximum likelihood estimation, which
is subsequently used for generating the candidate solutions for the next generation. The family
and structure of the model used in an EDA is typically fixed (e.g. a set of Bernoulli distributions
to generate the bit strings in the PBIL algorithm [12], or a factorized Gaussian distribution over
a continuous search space in the UMDAc algorithm [102]).

5. Stopping Rule

Stopping rule depends upon a number of criteria. An EDA stopped when,

• it evaluates all the given number of function evaluations.

• it reaches its global optimum.

• the difference between the global optimum value and the evaluated fitness value is very
small.

• the model parameters are not showing any significant changes over a large number of
generations.

Finding a good setting of the parameter values is important for getting an optimal solution, but
defining the optimal values for the parameters is very difficult. The values of parameters of EDAs
depend upon the optimization problems as well as type of algorithms involved. Considerable research
has been done on the selection of different parameter values used in EDAs [57, 160].

It is possible to categorize continuous EDAs into three different types depending on the density
estimation model used. One is based on parametric estimation, e.g. Gaussian distribution, which is
the most widely used model [102, 43, 22]. Other models considered include semi-parametric, e.g.
mixture models [58] and non-parametric, e.g. histograms and kernel density estimators [55, 159, 40,
23].

A Gaussian distribution over the variables is most commonly used in continuous EDAs, with
several different covariance matrix structures ranging from diagonal (e.g. in the Univariate Marginal
Distribution Algorithm (UMDAc)) to full (e.g. Estimation of Multivariate Normal Density Algorithm
(EMNAglobal)).

The thesis focuses mainly on two simple EDAs, UMDAc and EMNAglobal, although the contribu-
tions are likely to be expendable to other models. In addition to this, two new Gaussian based EDAs
are developed and implemented in Chapter 6.

A number of advanced Gaussian based EDAs have been developed for enhancing the performance
of the EDAs. For example the EDA framework with Model Complexity Control (EDA-MCC) [41]
was proposed, which uses EMNAglobal for each subset of the variables, to perform well in high di-
mensional problems. A number of advanced Gaussian based EDAs like Adaptive-Variance scaling,
Standard-Deviation Ratio triggering, Anticipated Mean Shift, which results in AMaLGAM uses the
maximum likelihood estimates of EDAs [20]. These algorithms are further discussed in Section 2.7.



CHAPTER 2. CONTINUOUS OP AND EDA 18

Table 2.3: Step 4 of UMDAc

Step 4:

Build probabilistic model p(x)← (σ t ,µ t)

Although these advanced Gaussian based EDAs are performing better than the traditional EDAs,
at a fundamental level the probabilistic model used is the same as in UMDAc/ EMNAglobal. Therefore
the contribution of the thesis is relevant and applicable to these algorithms as well.

2.6.1 Univariate Marginal Distribution Algorithm

One type of parametric estimation based on Gaussian distributions is the Univariate Marginal Dis-
tribution Algorithm (UMDAc). UMDAc in continuous domain which was introduced by Larrañaga
et al. [101], is an example of a univariate algorithm where all the variables are independent of each
other. It uses diagonal covariance matrix for estimating the population for the next generation. In
UMDAc new individuals or candidate solutions are generated using a univariate Gaussian (Normal)
Distribution. Here truncation selection has been used to retain the best individuals. These best se-
lected individuals are used for calculating the mean and the standard deviation, which is defined in
equation (2.7) and (2.8) respectively. These model parameters are used for estimating a new set of
population for the next generation (see Table 2.3).

For continuous problems, UMDAc uses a product of Gaussian (Normal) distributions:

p(x) =
n

∏
i=1

p(xi); p(xi|µi,σ
2
i ) =

1√
2πσi

e−
1
2 (

xi−µi
σi

)2

The two parameters to be estimated at each generation and for each variable are the mean, µi, and the
standard deviation, σi [101]. Their respective likelihood estimates are:

µ̂i = X̄i =
1
N

N

∑
j=1

xi, j (2.7)

σ̂i =

√√√√ 1
N

N

∑
j=1

(xi, j− X̄i)2 (2.8)

where i = 1, . . . ,n and N is the size of the selected population.

The pseudo code of UMDAc is same as the general pseudo code for EDA (Algorithm 2.1) except
for step 4, where UMDAc builds the univariate probabilistic model.

UMDAc is one of the earliest and simplest EDAs. The only user-parameters to be specified are the
population size and selection threshold. The algorithm has been studied theoretically [67, 68, 162,
163] as well as experimentally [102, 60, 116, 117]. The updates to the factorized model parameters
are efficient and implementation is straightforward. However, the factorized model, by definition,
makes no attempt to model dependencies between problem variables.
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Table 2.4: Step 4 of EMNAglobal

Step 4:

Build probabilistic model p(x)← (Σt ,µ t)

2.6.2 Estimation of Multivariate Normal Algorithm

Estimation of Multivariate Normal Algorithm (EMNAglobal) is a Gaussian-based, where all the vari-
ables are dependent on each other. In EMNAglobal, the mean and covariance matrix are computed by
maximum likelihood estimates [100]. At each generation, the vector of means, µ = (µ1, ...,µn),
and the variance-covariance matrix, Σ, whose elements are denoted by σ2

ik are estimated, where
i,k = 1, . . . ,n. Their maximum likelihood estimates are calculated in the following way:

µ̂i = X̄i =
1
N

N

∑
j=1

xi, j i=1,...,n (2.9)

σ̂
2
i =

1
N

N

∑
j=1

(xi, j− X̄i)
2 i=1,...,n (2.10)

σ̂
2
ik =

1
N

N

∑
j=1

(xi, j− X̄ i)(xk, j− X̄k) i , k=1,...,n i 6= k (2.11)

The pseudo code for EMNAglobal is the same as UMDAc, except for step 4, which is replaced by
the covariance matrix Σ, defined in equation (2.11) (see Table 2.4).

It is clear that the EMNAglobal model is more flexible than the UMDAc model (which it includes
as a special case). Specifically, variable dependencies can be captured via pairwise covariance param-
eters. Experimentally, EMNAglobal has been shown to give improved performance over UMDAc on at
least some specific problems where significant dependencies are known to exist [102, 60, 116, 117].
However, these results also show that the relative success of EMNAglobal is related to several fac-
tors, such as the “nature” of the dependencies between variables as well as the algorithm parameters
chosen.

The main limitations of EMNAglobal are that, since it has more covariance parameters to estimate
from the selected population, the computational cost is O(n2) which is higher than the computational
cost for UMDAc i.e., O(n). It also needs more storage space. Estimation of the full Σ matrix from the
selected population can also lead to instabilities [43] (see below).

2.7 Issues Related to EDAs and their Remedies

EDAs have successfully solved many optimization problems which include various domains such as
Artificial Intelligence [86, 87], Networking [164], Bioinformatics [5, 136, 6], Planning and Schedul-
ing [165, 152, 31, 90], Industrial Design and Management [145, 91], Biology [134, 135, 130], Soft-
ware [131] and Composite Materials [70]. However, researchers have also identified a number of
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issues in EDAs that sometimes cause difficulties.

In general, the success of an EDAs depends on how effective the model is at representing where
the promising regions are in the search space to explore in subsequent generations. Another way to
think of this is in terms of the direction in which the model should evolve to generate better individuals
with higher probability. If this direction is not well-represented by the selected population, progress
can be poor. In some landscapes, EDAs do not perform very well due to the premature shrinking of
the variance at an exponential rate. For example, in slope-like regions of the search space, and on
elliptical landscapes, premature convergence is likely to occur. In these cases, the selected solutions
do not lead to the correct direction of descent in terms of sampling from the EDA model. Research
has been conducted on these issues [20, 74, 19, 161, 129].

Another approach is the Variance scaling which stops the premature convergence of EDAs. This
principle has already been proved to be very effective [19, 161]. If the variance of the estimated
probability distribution is small, the EDA will not explore more, hence enlargement of variance leads
to good exploration of EDAs in their search space [19]. According to Yuan and Gallagher, the
variance obtained from the normal probability distribution of a continuous Gaussian EDA is scaled
by a factor of 1.5 [161], which is used for finding an optimal solution for the Rosenbrock function.
Although the results for the Rosenbrock function is satisfactory but the scaling factor cannot be used
universally for all the problems. It requires further investigation on the nature of problems.

A simple and effective Adaptive-Variance-Scaling (AVS) is proposed for the use of an EDA by
Bosman et al. [19]. Here the covariance matrix of the model at each generation is multiplied by a
scaling factor. The best value obtained from the current generation is compared with the previous
generation. If it improves, the current size of the variance allows for progress. In this way an enlarge-
ment of the variance may lead to better solutions in the next generation. It also leads to an increase in
scaling factor. If the best fitness does not improve, it is assumed that search is “around an optimum”.
To facilitate convergence, the scaling factor becomes less than 2, allowing the variance of the search
distribution to be reduced [24]. Correlation triggered also known as Standard Deviation Ratio (SDR)
is done which is a test based on correlation between density and fitness to distinguish the situation
where variance scaling is required and where variance scaling is not required. In later stages, it takes
into account the mean shift for shifting the sampled solution. The direction which the solutions are
moved to obtain better fitness is determined by the difference of the means in two subsequent gen-
erations. This is known as mean shift. This mean shift with a certain fraction of value is used for
moving the new sampled solution of the current generation. This process is known as Anticipated
Mean Shift (AMS) [19]. The combination of AVS, SDR and AMS leads to a technique known as
AMaLGaM [21]. AMaLGaM uses the schemes of all three where it adaptively changes both the co-
variance matrix and the mean-shift, which leads to the prevention of premature convergence of the
model.

Generally in practice, numerical issues can arise with the EDA model estimation problem [42].
The covariance matrix, which is estimated by using maximum likelihood in EMNAglobal is positive
semi-definite by its definition. But in practice this is not guaranteed because of finite precision compu-
tation. There will be computation error or numerical issues arising when the sample used to estimate
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the model does not adequately span all dimensions of the search space, which is especially likely
when the sample size is relatively small compared to the problem dimensionality.

Various methods and techniques have been proposed in order to avoid the ill-conditioned of the
covariance matrix [42, 43]. Covariance Matrix Repairing (CMR) method was proposed by Dong et al.
in 2007, where a positive value is added to the diagonal of the covariance matrix (Σ). The chosen value
is the absolute value of the minimum eigenvalue (<0 if Σ is ill-conditioned) of Σ. Eigenanalysis has
been done for repairing the ill-conditioned covariance matrix in various Multivariate Gaussian-based
EDAs. A unified approach called Eigen Decomposition of EDAs (ED-EDA) has been proposed which
uses different eigenvalue tuning strategies, to avoid the ill-conditioned of the covariance matrix [43].
One approach is the uniform eigenvalue scaling, where the covariance matrix is scaled by a certain
value. This method expands or shrinks the covariance matrix. The AVS technique uses this approach.
Another approach is non-uniform eigenvalue scaling. The first strategy of this approach is used in the
eigenspace EDA (EEDA) algorithm by resetting the minimum eigenvalue. Hence, only one selective
eigenvalue is enlarged while the others remain unchanged. Thus the shape of the distribution changes
mostly in the direction of the smallest eigenvector. Another strategy is using minimum eigenvalues
for shifting the covariance matrix as in the CMR technique. The experimental results in the literature
also show that the values from different covariance repairing methods avoid the numerical difficulties
and give good results with respect to best solution found as well as using a smaller sized population
as compared to classical EDAs [42, 43].

For enhancing the performance of EDAs and overcoming the issues of ill-conditioned covariance
matrix in high dimensional problems, different types of statistical methods have been adopted. For
example, more recently, Dong et al.[41] proposed the EDA Model Complexity Control (EDA-MCC)
to scale up continuous EDAs using a sparse covariance matrix, which is used for solving high di-
mensional problems very efficiently with less computational cost as well as less population sizes.
EDA-MCC uses EMNAglobal for each subset of the variables. A set of artificial test problems were
used for comparing EDA-MCC with UMDAc, EMNAglobal and EEDA [151]. EDA-MCC is not per-
forming better than the traditional EDAs in low dimensional problems where it has enough population
size. EDA-MCC shows significantly good results in high dimensional problems. Other existing sta-
tistical methods have also been applied to control the amount of covariance/dependency modeling in
EDAs. In [93], regularization techniques were adopted into EDAs. The resulting algorithm shows the
ability to solve high dimensional problems with a comparable quality of solutions using much smaller
populations. Both these algorithms are incomparable; authors of these algorithms use different set of
problems with different bounds for comparison purposes.

A strong competitor of EDA in continuous optimization is CMA-ES. The review of relationship
between EDAs and CMA-ES has been given in [129, 78, 77].
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2.8 Why understanding and analyzing variables is important for
optimization problems and EDAs

The difficulty of an optimization problem clearly relates to the sensitivity of the objective function
and the interactions between problem variables. If a problem contains a variable that has little or no
effect on the objective function value, then it may be inefficient to include this variable in the search.
Alternatively, if the variables in a problem are independent, then a high dimensional problem may be
more efficiently solved by decomposing it. Hence the performance of an algorithm will be related to
how it handles the dependencies and importance of variables in optimization problems.

Fitness landscape analysis is an area of research that has developed theory and practical techniques
for describing fitness landscapes ( refer to [126, 140, 143, 49]) for recent reviews). A major theme in
this work is the development of landscape features with the aim of characterizing landscapes in terms
of these features. This could lead to insights into algorithm performance and behavior. For example,
if a machine learning model can be used predict the performance of an algorithm from landscape
features. While this work is interesting, it is largely algorithm-independent. The main focus in this
thesis is to develop problem analysis techniques that are particularly relevant for the modeling in
Gaussian EDAs.

EDAs focus on explicitly modeling dependencies between solution variables. The aim is to pro-
vide good solutions by possibly trying to capture dependency information between variables, using a
probability density estimator over the search space. While they have shown promising experimental
performance [75, 21], there is a lack of understanding about the relationship between the EDA de-
pendency modeling and the nature of the underlying dependencies in an optimization problem. It is
not clear whether a dependence between variables in a fitness function always leads to features in the
landscape structure that can be captured and exploited by an EDA (e.g. elliptical basin of attraction).

In addition, as discussed in the previous section, there are also specific examples where basic
EDAs do not perform well. If the full covariance matrix is estimated, numerical issues arise with the
implementation of the algorithm, particularly in high dimensional problems. Hence, it is important
to understand the impact of variable dependencies, their influence on the fitness function and its
structure, as well as the relationship this has with the EDA model and performance.

2.9 Summary

This chapter has reviewed continuous black-box optimization, including different types of problems
used in algorithm evaluation. Continuous Gaussian EDAs have also been introduced and several
key issues identified that are relevant to this thesis. The chapter also highlighted the importance of
understanding and analyzing variables for optimization problems and EDAs. The main contributions
of the thesis are in the development and application of data-driven techniques to provide an improved
understanding of the relationship between problem variables and EDAs. The next chapter develops
the framework for this analysis.



Chapter 3

Methodology

3.1 Overview

This chapter presents the core methodology and techniques used in this thesis for analyzing the prop-
erties of the variables in continuous optimization problems and continuous EDAs. The different types
of data-driven analysis for variables in optimization problems and Gaussian EDAs that are considered
in this thesis are discussed here. Methods from different domains are unified to describe the properties
of variables. As an example, correlation coefficients are used for calculating the correlation between
the variables, whereas eigenanalysis is used for analyzing the key structural variables to the prob-
lem/model, and lastly, the Morris method is used for identifying important variables to the objective
function.

3.2 Properties of Variables

As discussed in Chapter 2, to better understand the performance of EDAs, it is important to understand
the interaction between the variables in a given optimization problem and the way that variables
are handled and modeled in EDAs. It is proposed that three general variable properties need to be
considered:

1. Variable dependencies. This is the interaction between subsets of variables given an optimiza-
tion problem. As discussed in Chapter 2, this property has received a large amount of attention
in the EDA literature. EDAs have different models for solving different problems which can
capture different dependency structures. For example, EMNAglobal uses a full covariance matrix
for modeling dependent variables, whereas UMDAc assumes each variable is independent (as
per the reviews of EDAs discussed in Section 2.6 of Chapter 2). A number of algorithms have
been developed, which perform modeling based mainly on the degree of correlations between
the variables [41].

2. Key structural variables. This is intuitively defined as the subset of problem variables that
together capture a significant part of the shape of some given distribution of interest over the
search space. For example, if the EDA model distribution is to be studied, the key structural

23
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variables are the variables that are most important in determining the directions in which the
search will proceed when a sample is drawn from the model distribution.

3. Important variables. The aim is to determine, which problem variables have the most in-
fluence over the value of the objective function. Alternatively, for which variables is f most
sensitive to changes in values?

Note that for each of the above property types, the intuitive notions used need to be defined precisely
to produce a practical method of analysis. Furthermore, various techniques may be applied to study
these properties. Each technique will involve different assumptions and offer different advantages and
disadvantages. The techniques implemented to analyze these properties in this thesis are described in
detail in the following subsections.

3.3 Data Sampling and Requirements

The methodology and analysis techniques developed here have the general assumption that a reason-
ably large sample of candidate solutions together with their corresponding objective function values
is available or can be obtained with a reasonable amount of time or other resources. When analyzing
problems (discussed in Chapter 4), the experiments here use a uniformly generated sample of points
with truncation selection applied. Uniform Random Sampling is the standard approach in the Black
Box optimization for analyzing problems and algorithms [47]. When analyzing EDAs, the sam-
ple is the selected population, often analyzed repeatedly over several generations of the algorithm.
The methodology can be applied by other researchers to different data samples from optimization
problems depending on the goal of the work. For example, if there is interest in the behavior (e.g.
convergence) of an algorithm on a given problem in a specific, localized region of the search space,
then sampling could be restricted to only points from this region. Alternatively, Markov Chain Monte
Carlo algorithms can be used when sampling is desired from some probability distribution of interest
over the search space [65]. Generally, it has been suggested, how MCMC can be used, but doing this
is out of scope of the thesis.

All experiments in this thesis are executed on Windows General Purpose computation server (PE
R720 and PE 2950) using MATLAB 2012 and MATLAB 2013. Statistical toolboxes have been used
in the algorithms.

3.4 Sample Correlation Coefficients

Correlation is a standard statistical measure of the degree of linear dependency between variables.
While there are many possible ways of estimating correlation from a data sample, Pearson’s cor-
relation coefficient is the most popular choice. For a set of data obtained from sampling or a set of
population generated from EDA, the correlation coefficient for (xi,xk), i = 1, . . . , n and k = 1, . . . , n,
is calculated as:
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rik =
N(∑N

j=1 xi, jxk, j)− (∑N
j=1 xi, j)(∑

N
j=1 xk, j)√

[N ∑
N
j=1 xi, j2− (∑N

j=1 xi, j)2][N ∑
N
j=1 xk, j

2− (∑N
j=1 xk, j)2]

where n is the dimensionality of the problem and N is the set of data obtained from sampling or a set
of population generated from EDA.

The rik has a value ranging between -1 and 1. If rik has a positive value, then it shows that xi and
xk tend to increase and decrease together, and if it has a negative value then xi and xk tend to move in
opposite directions [80].

3.4.1 Use of Correlation Coefficient in Problems and EDAs

Since the correlation always finds the linear dependency between a pair of variables, the absolute
value of the correlation coefficient is examined and this quantifies how one variable is dependent on
the other variable. The correlation coefficient between two variables is always a single number, but
for larger values of n, the correlation coefficient can be calculated and presented in a matrix format,
with each rik being the correlation coefficient between two consecutive variables. The correlation
coefficient between variables form a symmetric matrix [3].

A threshold value must be chosen to set the variables correlated and non-correlated. A threshold
value of 0.3 has been set here for measuring the high correlation between variables [41]. In a 2-
dimensional problem, the correlation between two variables has been determined by checking the
correlation coefficient values. The variables x1 and x2 are correlated to each other if the correlation
coefficient is greater than 0.3 otherwise they are non-correlated. For the dimension greater than two,
the correlation is found by visualizing the correlation coefficient matrix, which is represented in the
form of a color image. Although the correlation is calculated for pairwise variables, the correlation
among more than two variables can also be established, when some blocks in the image have colors
with high intensity (above the threshold value).

Figure 3.1 shows the visualization of correlation between variables in a 10D Rosenbrock func-
tion. 300000 sample points are generated using the uniform random sampling (detailed discussion in
section 4.2 of Chapter 4). A selection ratio 0.01 is set. The set of selected sample points are used for
measuring correlation between variables. Figure 3.1 shows that 1st and 2nd variable are correlated to
each other because the intensity of the color (yellow and green) shown in the figure is greater then
0.3 as well as correlated to all other variables in the problem because the intensity of the color varies
from green to light blue, which can be seen by examining the intensity of colors in the figure. But for
rest of the variables, there is not so strong correlation between variables because the intensity of the
color is less than 0.3.

3.5 Eigenanalysis

Eigenanalysis is a fundamental technique based on linear algebra [85]. It deals with the under-
standing of problems and finding a solution based on the coordinate system. This is also known
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Figure 3.1: Visualization of correlation between variables in a 10D Rosenbrock Function
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as “the method o f simpli f ying coordinates”. Eigenanalysis is a well known technique which has
already been used in various research fields [153, 119, 96]. The eigenanalysis has been conducted on
a symmetric matrix. Hence a set of data has been used for calculating the covariance matrix, which
in turn is used for performing eigenanalysis.

To illustrate the computation of eigenanalysis, let us consider a matrix X consisting of a set of
selected sample points, of size N×n.

The entries of the covariance matrix (Σ) of X is calculated as follows,

Σi,k =
1
N ∑

N
j=1
(
xi, j− X̄i

)(
xk, j− X̄k

)
where Σi,k is the covariance value between variable xi and x j, and

X̄i =
1
N ∑

N
j=1 xi, j, where i = 1 to n and j = 1, . . . , N and X̄k =

1
N ∑

N
j=1 xk, j, where k = 1 to n and

j = 1, . . . , N.

The Σ can be defined as

Σ =


Σ1,1 Σ1,2 · · · Σ1,n

Σ2,1 Σ2,2 · · · Σ2,n
...

...
...

...
Σn,1 Σn,2 · · · Σn,n


The covariance matrix Σ, is used to calculate the eigenvectors and eigenvalues, i.e. Σv = Dv,

where D is a n×n matrix, whose diagonal element contains the eigenvalues of the covariance matrix
Σ, denoted as λ1, . . . , λn, where λ1 > λ2 > .. . > λn. v is a n× n matrix which contains n column
vectors, each having n elements. Each vector (for example vi) is known as an eigenvector and each
vi of the covariance matrix (Σ) is associated with its corresponding eigenvalue (for example λi). Each
eigenvector has n number of vector coefficients.

While performing eigenanalysis, a new coordinate system has been formed, such that the greatest
variance of the data lies on the first eigenvector, the second greatest variance on the second eigen-
vector, which is orthogonal to the first one and so on. Hence λ1 captures most of the variability of
the data. λ1 is the first eigenvalue, also known as dominant eigenvalue since the variance is greater
than all other eigenvalues. The eigenvector associated with λ1 is known as first eigenvector or with
dominant eigenvector.

If there is equal spread between λ ’s, then, not 1 axis is dominant in this case. Hence the first
eigenvalue will not give much adequate information about the key structural variables. If there is
much difference between the λ1 and λ2, then λ1 is considered as the first eigenvalue which captures
most of the variability in data. The first eigenvector is placed in a new coordinate system which has
the greatest variance of data. The length of the eigenvectors is of no consequence but its direction is
important. Hence to keep eigenvectors standard, the length of the eigenvector is set to 1. The first
eigenvector is defined as follows: v1 = (c1x1,c2x2, . . . ,cnxn), where c1,c2, . . . ,cn are the coefficients
of first eigenvector along x1,x2, . . . ,xn axis respectively.

For example, the Figure 3.2 shows the eigenanalysis on a 2D Rotated Ellipsoid function. v1 and
v2 are the two eigenvectors, which are shown in Figure 3.2. λ1 associated with v1 captures most of
the variance of data. Hence, λ1 is the dominant eigenvalue. For this example (refer Figure 3.2), the
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values of the components of v1 are c1 = 0.5277 and c2 = 0.8494.
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Figure 3.2: Explanation of Eigenanalysis, using 2D Rotated Ellipsoid function

One of the main application of eigenanalysis is principal component analysis (PCA). PCA is
utilized to find out the subspace on which to project the data that captures most of the information
about the structure of the problem [124]. This is used in dimensionality reduction in multivariate
analysis and its application includes image processing, visualization, pattern recognition etc. [120,
32, 103]. PCA can be achieved through the eigendecomposition of the covariance matrix, which
results in eigenvalues and its associated eigenvectors called as principal components ([92, 155, 88]).

3.5.1 Calculation of Key Structural Variables using Eigenanalysis in Problems
and EDAs

The key structural variables of a problem can be calculated using the coefficients of v1, which can be
represented as (c1, . . . ,cn). If ci = 1, where i is any value between 1 and n, and the other c j’s j 6= i,
must be close to zero, then the vector is aligned/parallel to the xi direction in the original space, which
captures most of the relevant information about the structure of the problem. Hence, xi is the key
structural variable to the problem.

But in most of the cases, the value of ci is not equal to 1. Therefore a set of larger vector co-
efficients has been chosen, whose associated variables mainly contain the key information about the
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structure of the problem, hence referred to key structural variables.

Therefore to calculate a threshold value for the vector coefficients for identifying key structural
variables in problems and EDAs, the unit eigenvector has been analyzed. The explanation is as fol-
lows:

The coefficients of the unit eigenvector are perpendicular to each other. For an n-dimensional
problem, the equation is stated as follows:

c2
1 + c2

2 + . . .+ c2
n = 1 (3.1)

where ci are the coefficients of the vector. When all the coefficients are sharing similar values, equa-
tion 3.1 becomes,

1 = n× c2
i (3.2)

where ci are the coefficients of the vector. Thus, the value of ci is equal to 1√
n . Therefore, the variables

associated with the coefficients which are greater than or equal to 1√
n , where n is the dimensionality

of the problem, are the key structural variables to the problem.

Hence, the threshold value for the 2D Rotated Ellipsoid function, shown in Figure 3.2, is 1√
2

which is used for identifying key structural variables. From the figure, the value of c1 is greater than
the threshold value, therefore the first eigenvector is pointing more towards the x2 axis than the x1

axis. Hence, x2 is the key structural variable to the 2D Rotated Ellipsoid function. Techniques have
been mentioned in section 2.7, for example, EEDA.

3.6 Morris Method

Input variables which are providing considerable impact to the objective function are termed as im-
portant variables. This process can be easily achieved through the screening techniques. A number
of techniques for identifying variable importance have been developed and applied in the field of ex-
perimental design and particularly in model-based engineering design. A simple technique proposed
by Morris in 1991 [118] is based on measuring the mean and standard deviation of perturbations of
individual variables for a given problem, calculated via so-called elementary effect terms.

The elementary effect for the ith variable, Ei(x), is defined as follows. Let ∆ be a pre-determined
amount to perturb each variable. For a given x

Ei(x) =
f (x1,x2, ...,xi−1,xi +∆,xi+1, ....,xn)− f (x)

∆
(3.3)

where x = (x1,x2, ....,xn) is a given starting or “baseline” vector in the solution space. The perturba-
tions, ∆ are by default assumed to come from a set of points over a given parameter/variable space
obtained using a full factorial sampling grid of some fixed resolution or increment size. In other
words, for each variable xi, over some fixed range and increment size, the value of xi is changed and
f is recalculated, producing a sample or set of values of Ei(x) [54].
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Given a set of elementary effect values, the mean, E i(x), and standard deviation, std(Ei(x)) over
the sample can be calculated. It has been predicted that, in some cases there may exist cancellation
effects of the ith variables, legacy of calculating the mean of the elementary effect, which ultimately
provides a null effect to the objective function. Hence, a new version, i.e. the mean of the absolute
value of the elementary effect term defined as E∗i (x), where

E∗i (x) = abs(
f (x1,x2, ...,xi−1,xi +∆,xi+1, ....,xn)− f (x)

∆
) (3.4)

[27]. This is the enhanced version of the Morris method and has proved to be very effective in very
high dimensional problems [95]. A high value of E∗i (x)

(
where,E∗i (x) = 1

n ∑
n
i E∗i

)
then indicates a

variable that has a large average influence on the value of f . A high value of std(Ei(x)) indicates that
the variable xi has a fluctuating influence on the value of f [118]. Either or both may be important.
In engineering design, these values typically are examined manually to inform decisions, e.g. about
which variables to include in a model [54].

A wide variety of applications in various domains use the Morris method for screening tech-
niques [128, 33]. Due to its wide application, considerable research has been done in this field to
enhance the original Morris method [27, 37, 139].

3.6.1 Calculating Elementary Effect using Mean of the Selected Sample Points
and Identifying the Important Variables to the Problems and EDAs Model

For calculating the elementary effect, the value of ∆ has to be specified, such that the value of xi±∆

is in search space S. One possibility of the value of ∆ is the mean of the selected sample size,
which is calculated for each dimension xi. The total sample points are then generated by creating
new solution vectors where the mean value is substituted in turn for each problem variable (e.g.
xi = xi, . . . ,xi−1,mi,xi+1, . . . , xn), which are again evaluated using the fitness function f . This fitness
function is used for calculating the Elementary effect, that is the perturb of fitness function before
and after substituting the mean value. In general, for a set of N selected sample points from a n

dimensional problem, the method is generating n number of N sample points. The fitness function of
the ith number of N sample points is subtracted from the original fitness function for calculating the
elementary effect of xi, where the value of i = 1, . . . , n.

Mean and standard deviation of the elementary effect are calculated. This screening of important
variables can be done manually by plotting the values of the mean and standard deviation of the
elementary effect in E∗i (x) and std(Ei(x)) plane. A high value of mean indicates the variable has
high importance to the objective function whereas a high value of standard deviation indicates that
the variable is involved in interaction or curvature effects. Therefore, the variable which is most
influential or important to the objective function has a high value of mean as well as a high value of
standard deviation of the elementary effect. It should be noted that using mean and standard deviation
of the elementary effects provides only a coarse summary of the (possibly complex) relationship
between the variables and objective function in a given problem. When the Morris method has been
previously used [54], only a general interpretation of this relationship is attempted.
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Figure 3.3: Depiction for Calculating the Elementary Effect in 2D Ellipsoid Function

The main goal of this screening exercise is to rank the factors in order of importance, and to
identify the subset of the most important. However, the main limitation of this method is that the in-
dividual interactions among factors cannot be estimated. This method can provide whole interactions
but is unable to give any specific information about how much they are interacted [133].

Figure 3.3 explains the calculation of elementary effect in a 2D Ellipsoid function. The mean of
the selected population is calculated. The value at each variable is replaced with their corresponding
mean values. For example, x is the point in the selected population, and the mean of the selected
population along x1 axis is x′. The difference between the fitness function which involved x and
x′ is the elementary effect for the point x in the x1 direction in the search space. Similarly, the
elementary effect of the sample point is calculated along the x2 direction. Hence for a single sample
point there are 2 set of elementary effect values, one along the x1 axis and another along the x2 axis.
A similar procedure has been performed for each sample point in the search space for evaluating the
elementary effect values. The elementary effect values are arranged according to the axes and are also
arranged in a matrix format. The estimated mean and standard deviation of the elementary effect have
been calculated which when combined give information about the important variable to the objective
function.
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3.6.2 Example for Determining Important Variables

Table 3.1: Selected population

x1 x2 x3 x4 x5 x6 Fitness
0.7793 0.3630 0.8382 0.0313 0.0894 0.0504 1.4532
0.3371 0.8022 0.0745 0.7597 0.2858 0.3576 1.5494
0.1385 0.5326 0.6615 0.4538 0.1956 0.8678 1.7377
0.9253 0.8166 0.1832 0.3396 0.0450 0.4432 1.8704
0.9102 0.0815 0.1560 0.2427 0.9190 0.5384 2.0528

Let us take a matrix of selected population X of size 5×6. The X is represented in Table 3.1 with
its fitness values (here the Sphere function has been taken). The mean, m, of the selected population is
as follows: mean(x1) = 0.6181, mean(x2) = 0.5192, mean(x3) = 0.3827, mean(x4) = 0.3654, mean(x5)

= 0.3070, mean(x6) = 0.4515.
This mean vector is used for expanding the population. Table 3.2 shows the expanded population.

The mean value is substituted for each problem variable xi, which is again evaluated using the fitness
function. The fitness values of this expanded population are shown in Table 3.3. Finally, in Table 3.4,
the fitness values found from Table 3.3 for each section of perturbed values of variables are subtracted
from the fitness values found from Table 3.1. This is called the Elementary effect values. The esti-
mated mean (E i(x)) and standard deviation (std(Ei(x))) of the elementary effect values are listed in
Table 3.5. In this table the enhanced version of mean of elementary effect E∗i (x) is also listed.

3.7 Summary and Further Work

In this chapter, three different but complementary methods have been proposed to analyze and un-
derstand three fundamental properties of variables in black-box optimization problems and EDAs:
dependencies; key structural variables and variable importance to f . For analyzing the interdepen-
dency between the variables, correlation coefficients will be considered. Eigenanalysis will be used
for determining the key structural variables of both the optimization problems and algorithms. Fi-
nally, the Morris method from sensitivity analysis will be used for identifying important variables for
the objective function. These methods address the research gap discussed in Section 2.8 of Chapter 2.

Discussion of the implementation of these methods on optimization problems and EDAs is given
in Chapters 4 and 5, together with experimental results and analysis. A graphical summary of the
framework, analysis and contributions of subsequent Chapters (4-6) of the thesis is shown in Fig-
ure 3.4.
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Table 3.2: Expand population using mean (m)

x1 x2 x3 x4 x5 x6
0.6181 0.3630 0.8382 0.0313 0.0894 0.0504
0.6181 0.8022 0.0745 0.7597 0.2858 0.3576
0.6181 0.5326 0.6615 0.4538 0.1956 0.8678
0.6181 0.8166 0.1832 0.3396 0.0450 0.4432
0.6181 0.0815 0.1560 0.2427 0.9190 0.5384
0.7793 0.5192 0.8382 0.0313 0.0894 0.0504
0.3371 0.5192 0.0745 0.7597 0.2858 0.3576
0.1385 0.5192 0.6615 0.4538 0.1956 0.8678
0.9253 0.5192 0.1832 0.3396 0.0450 0.4432
0.9102 0.5192 0.1560 0.2427 0.9190 0.5384
0.7793 0.3630 0.3827 0.0313 0.0894 0.0504
0.3371 0.8022 0.3827 0.7597 0.2858 0.3576
0.1385 0.5326 0.3827 0.4538 0.1956 0.8678
0.9253 0.8166 0.3827 0.3396 0.0450 0.4432
0.9102 0.0815 0.3827 0.2427 0.9190 0.5384
0.7793 0.3630 0.8382 0.3654 0.0894 0.0504
0.3371 0.8022 0.0745 0.3654 0.2858 0.3576
0.1385 0.5326 0.6615 0.3654 0.1956 0.8678
0.9253 0.8166 0.1832 0.3654 0.0450 0.4432
0.9102 0.0815 0.1560 0.3654 0.9190 0.5384
0.7793 0.3630 0.8382 0.0313 0.3070 0.0504
0.3371 0.8022 0.0745 0.7597 0.3070 0.3576
0.1385 0.5326 0.6615 0.4538 0.3070 0.8678
0.9253 0.8166 0.1832 0.3396 0.3070 0.4432
0.9102 0.0815 0.1560 0.2427 0.3070 0.5384
0.7793 0.3630 0.8382 0.0313 0.0894 0.4515
0.3371 0.8022 0.0745 0.7597 0.2858 0.4515
0.1385 0.5326 0.6615 0.4538 0.1956 0.4515
0.9253 0.8166 0.1832 0.3396 0.0450 0.4515
0.9102 0.0815 0.1560 0.2427 0.9190 0.4515
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Table 3.3: Calculate fitness values

x1 x2 x3 x4 x5 x6 Fitness

Perturbed for x1

0.6181 0.3630 0.8382 0.0313 0.0894 0.0504 1.2279
0.6181 0.8022 0.0745 0.7597 0.2858 0.3576 1.8178
0.6181 0.5326 0.6615 0.4538 0.1956 0.8678 2.1005
0.6181 0.8166 0.1832 0.3396 0.0450 0.4432 1.3962
0.6181 0.0815 0.1560 0.2427 0.9190 0.5384 1.6063

Perturbed for x2

0.7793 0.5192 0.8382 0.0313 0.0894 0.0504 1.5909
0.3371 0.5192 0.0745 0.7597 0.2858 0.3576 1.1754
0.1385 0.5192 0.6615 0.4538 0.1956 0.8678 1.7236
0.9253 0.5192 0.1832 0.3396 0.0450 0.4432 1.4731
0.9102 0.5192 0.1560 0.2427 0.9190 0.5384 2.3157

Perturbed for x3

0.7793 0.3630 0.3827 0.0313 0.0894 0.0504 0.8970
0.3371 0.8022 0.3827 0.7597 0.2858 0.3576 1.6903
0.1385 0.5326 0.3827 0.4538 0.1956 0.8678 1.4466
0.9253 0.8166 0.3827 0.3396 0.0450 0.4432 1.9832
0.9102 0.0815 0.3827 0.2427 0.9190 0.5384 2.1749

Perturbed for x4

0.7793 0.3630 0.8382 0.3654 0.0894 0.0504 1.5857
0.3371 0.8022 0.0745 0.3654 0.2858 0.3576 1.1058
0.1385 0.5326 0.6615 0.3654 0.1956 0.8678 1.6653
0.9253 0.8166 0.1832 0.3654 0.0450 0.4432 1.8886
0.9102 0.0815 0.1560 0.3654 0.9190 0.5384 2.1274

Perturbed for x5

0.7793 0.3630 0.8382 0.0313 0.3070 0.0504 1.5394
0.3371 0.8022 0.0745 0.7597 0.3070 0.3576 1.5620
0.1385 0.5326 0.6615 0.4538 0.3070 0.8678 1.7937
0.9253 0.8166 0.1832 0.3396 0.3070 0.4432 1.9626
0.9102 0.0815 0.1560 0.2427 0.3070 0.5384 1.3024

Perturbed for x6

0.7793 0.3630 0.8382 0.0313 0.0894 0.4515 1.6545
0.3371 0.8022 0.0745 0.7597 0.2858 0.4515 1.6254
0.1385 0.5326 0.6615 0.4538 0.1956 0.4515 1.1885
0.9253 0.8166 0.1832 0.3396 0.0450 0.4515 1.8778
0.9102 0.0815 0.1560 0.2427 0.9190 0.4515 1.9667

Table 3.4: Elementary Effects Ei(x)=Perturbed Fitness - Original Fitness

x1 x2 x3 x4 x5 x6
-0.2253 0.1378 -0.5561 0.1326 0.0862 0.2013
0.2684 -0.3740 0.1409 -0.4436 0.0125 0.0760
0.3628 -0.0141 -0.2911 -0.0724 0.0560 -0.5492

-0.4742 -0.3973 0.1129 0.0182 0.0922 0.0074
-0.4464 0.2629 0.1221 0.0746 -0.7503 -0.0860

Table 3.5: Estimated Mean and Standard Deviation of the Elementary effect

x1 x2 x3 x4 x5 x6
E i(x) -0.1029 -0.0769 -0.0943 -0.0581 -0.1007 -0.0701
E∗i (x) 0.3554 0.2372 0.2446 0.1483 0.1994 0.1840
std(Ei(x)) 0.3955 0.2985 0.3151 0.2284 0.3645 0.2876
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Chapter 4

Variable Analysis in Continuous
Optimization Problems

4.1 Overview

In order to understand an optimization problem, in particular how the properties of a problem relate
to algorithm performance, understanding and analyzing the properties of the variables is important.
In the previous chapter, it was proposed that three types of analysis can be used for analyzing Op-
timization problems and Gaussian based EDAs, namely dependencies, key structural variables and
important variables. In this current chapter, analysis of variables on a set of optimization problems
using these three techniques have been done. Different classifications have been completed based on
these properties and problems are placed under these classifications, which will be used further for
comparison purposes with EDAs in Chapter 5. Experiments and analyses have been done on both
artificial and real world problems.

4.2 Uniform Random Sampling

The analysis proposed in Chapter 3 uses a sample of candidate solutions and their fitness values. In
this chapter, the fitness landscape of a number of optimization problems have been analyzed directly
via uniform random sampling. For the problems considered, boundaries are specified and the points
are randomly generated within the bounds. For the solution vectors, variable values are generated
independently.

For an n dimensional problem, the set of M points is represented as follows:
(x1, x2, . . . , xM), where xi = (x1, x2, . . . , xn).

The fitness values are then calculated for each set of sample points. Let τ be the selection ratio.
Let N = (M ∗ τ)1 set of best points have been selected based on the fitness function and stored in
matrix X , where X= (x1, x2, . . . , xN), and xi = (x1, x2, . . . , xn).

This set of selected points arranged in a matrix format (X) is used for analyzing different properties
of the continuous optimization problems using different methodologies.

1Round if (M ∗ τ) is not an integer.

36
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4.3 Optimization Problems and Parameter Settings

In these experiments, a set of artificial test problems as well as real world problems was used, which
has discussed in Chapter 2. The set of Artificial test problems consists of 10D Sphere function, 2D
Elliptical function, 10D Rosenbrock function and 10D Rotated Ellipsoid function. These functions are
described in Section 2.4.1. The analysis of other problems from the list are discussed in section 5.8.1.

In addition to this, Circle in a Square packing (CiaS) problems with nc equal to 5 and 25 have
been analyzed. This problem has been defined in Section 2.4.2. Furthermore, CiaS are constrained
optimization problems with a hard box-bound, that is the feasible solution must be inside and includ-
ing the boundary of the unit square. Therefore, while implementing CiaS problems, the values of wi

of Equation 2.5 have been modified. That is, ∀ wi = (w1, w2), i = 1, . . . , nc, if w1 < 0, then set
w1 = 0 or if w1 > 1, then set w1 = 1, where nc is the number of circles in the unit square. This process
has been repeated for w2 also.

Finally, 51-customer location-allocation problems having the number of facilities 5 and 25 were
analyzed here (see Section 2.4.3 for more details of location-allocation problems).

For any n dimensional problem, 10000×n number of sample points were generated using uniform
random sampling. All sample points were evaluating the fitness function and the best selected sample
points with the selection ratio (τ) = 0.01 were chosen for analyzing the properties of the variables in
continuous optimization problems.

These selected sample points were used for analyzing the correlation between variables, and key
structural variables as well as important variables to the objective function in continuous optimization
problems.

4.4 Correlation between Variables in Continuous Optimization
Problems

The selected sample points are used for calculating correlation coefficients between the variables
in the optimization problems discussed in Section 2.4. The correlation and the implementation of
correlation in problems have been discussed in Section 3.4. The classification of problems is based
on the values of the estimated correlation coefficients (r). Problems can be classified into two types,
that is, problems having:

• weak correlations between variables

• correlations between variables.

This classification is clearly dependent on the threshold value used (here abs(r)=0.3, refer to sec-
tion 3.4). Correlation values are also visualized directly using matrix plots.
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4.4.1 Weak Correlations between Variables

Problem variables which have all correlation coefficient values less than 0.3 (threshold value of the
correlation coefficient discussed in Section 3.4.1) are considered as non-correlated variables. Exam-
ples of non-correlated variables in problems are as follows:

• 2D Elliptical function

For the 2D Elliptical function, the correlation coefficient between variables is 0.0146, which
indicates that there is weak correlation between the variables (r12 < 0.3). This is to be expected
since, from the definition of the function, the variables are independent. In the limit of a large
sample, the estimated value will approach 0.

• 10D Sphere function

Figure 4.1 shows the correlation graph for the 10D Sphere function. The plot is a color repre-
sentation of the values in the correlation matrix. As can be seen, the matrix is symmetric, and
the values on the diagonal will always be equal to 1 (correlation of a variable with itself). The
plot shows that all of the r values are less than 0.3, which suggests that there is weak correlation
between the variables.

The Sphere function can be used as a baseline/reference problem, since it is known that the true
correlation matrix (in the limit of a large sample) will be the identity matrix.

4.4.2 Correlations between Variables

In some problems, there exists some correlation between variables. Out of these, some problems do
not show any correlated patterns between them while in some cases, a correlation pattern has been
formed between the variables.

• 10D Rosenbrock Function

The correlation between variables for the 10D Rosenbrock function is visualized in Figure 4.2.
Overall there is no strong correlation between any variables. The plot is similar to the 10D
Sphere function; however there are some subtle differences, namely there is some correlation
between x2 and x3, and a little more correlation between other variables.

• 10D Rotated Ellipsoid Function

Figure 4.3 shows the correlation graph for the 10D Rotated Ellipsoid function, which indicates
that there exists a correlation between the variables and in addition to this, the correlation be-
tween consecutive variables forms a pattern, where xi is in correlation with xi+1, where i≤ n−1.
The structure follows from the definition of this fitness function. The result shows that sam-
pling, selection and analysis has recovered this structure to a good approximation.
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Figure 4.1: Correlation Graph for the 10D Sphere Function.
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Figure 4.2: Correlation Graph for the 10D Rosenbrock Function.
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Figure 4.3: Correlation Graph for the 10D Rotated Ellipsoid Function.
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Figure 4.4: Correlation Graph for the 10D CiaS Problem.
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Figure 4.5: Correlation between variables in CiaS Problem ((4.5a) Correlation Graph for the 50D
CiaS Problem showing less correlation between variables, (4.5b) Correlation Graph for the 50D CiaS
Problem showing little bit of more correlation between variables (30000000 number of sample points
with selection ratio 0.001)).
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Figure 4.6: Correlation between variables in location-allocation Problem ((4.6a) Correlation Graph
for the 10D location-allocation Problem, (4.6b) Correlation Graph for the 50D location-allocation
Problem).
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• 10D and 50D CiaS Problems

Figures 4.4 and 4.5a show the correlation graphs for 10D and 50D CiaS problems respectively.
Figure 4.4 illustrates that all the x coordinates of the circles in the square show correlation
to each other, and all the y coordinate of the circles are correlated to each other, but there is
negligible correlation to be found between (x, y) pairs of the variables.

Figure 4.5a shows the correlation pattern of the 50D CiaS problem. The correlations between
many pairs of x variables (top-left quadrant) and pairs of y variables (bottom-right quadrant)
still appears but is weaker. This is likely to be due to the increased dimensionality of the prob-
lem relative to the sample size used. Figure 4.5b shows the correlation graph for the 50D CiaS
problem with 30000000 number of sample points with selection ratio 0.001, which indicates
that, if a large number of sample points are supplied and the selection ratio is much more greedy,
then, some off diagonal correlation between variables can be found.

• 10D and 50D Location-Allocation Problems

Figures 4.6a and 4.6b show the correlation graphs for 10D (5 facilities) and 50D (25 facilities)
location-allocation problems. Figure 4.6a shows that there is an interesting pattern of correla-
tion among the x and y variable pairs for each facility in the customer space. For example, let us
take the 3rd facility, where x3 and x8 are the x and y coordinates of the 3rd facility respectively.
From the figure, it shows that x3 and x8 are correlated to each other. This is true for each facil-
ity of the problem. The same pattern of correlation is also observed in the higher dimensional
instance of the problem (Figure 4.6b).

4.5 Key Structural Variables in Continuous Optimization Prob-
lems

As described in Section 3.5, eigenanalysis is used here to analyze the key structural variables for each
problem. The selected sample points from the problems are used to calculate the covariance matrix
which in turn is used in eigenanalysis. The eigenvalues calculated from the covariance matrix are
plotted in a scree plot, which gives a visual indication of the dominant eigenvalues.

If the largest eigenvalue, λ1 is significantly larger than all other λ s, then the first eigenvector
describes a significant amount of the variance in the sample. In this case, the larger coefficients of the
first eigenvector are the key structural variables to the function (use of eigenanalysis for determining
key structural variables and the threshold value for choosing the key structural variables have been
discussed in Section 3.5.1). In other words, the first eigenvector is pointing more towards the key
structural variables. Hence there are specific key structural variables of the problem.

Depending upon the information about the key structural variables obtained from the eigenanaly-
sis, the problems may be roughly classified into the following types:

• problems having specific key structural variables.

• problems without any specific key structural variables.
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4.5.1 Problems having Specific Key Structural Variables

• 2D Elliptical Function

The 2D Elliptical function is useful to illustrate the analysis, since by definition the contours of
this objective function are stretched more (by a factor of 10) along the x2 axis than along the
x1 axis. The eigenvalues of the selected sample points on the 2D Elliptical function are λ1 =
90.85 and λ2 = 9.145. The first eigenvalue (λ1) captures most of the variance, hence λ1 gives
information about the key structural variables of the problem. The vector coefficients of the first
eigenvector are c1 ≈ 1 and c2 ≈ 0. In this case the first eigenvector is closely aligned with the
x1 axis, showing that the data varies more with respect to x1 than x2. Therefore x1 is classified
as a key structural variable in the 2D Elliptical function.

• 10D Rosenbrock Function

The analysis of the key structural variables in the 10D Rosenbrock function is shown in Fig-
ures 4.7a and 4.7b. The scree plot of the 10D Rosenbrock function is shown in Figure 4.7a,
which shows that the first eigenvalue captures most of the variance, in the selected sample.
Thereafter, the coefficients of the first eigenvector are plotted in Figure 4.7b, which illustrates
that c10 has the largest value, showing that the first eigenvector is closely aligned to the x10 axis.
Hence, x10 is identified as a key structural variable for the 10D Rosenbrock function.

4.5.2 No Specific Key Structural Variables

• 10D Sphere Function

The scree plot for the 10D Sphere function (Figure 4.8) shows that the λ s have approximately
equal values, which indicates that the selected sample points are spherical in shape. Here the
first eigenvector does not capture significantly more variance in the selected data than any other
direction in the search space. Therefore, no key structural variables are identified.

• 10D Rotated Ellipsoid Function

The scree plot for the 10D Rotated Ellipsoid function (Figure 4.9) shows that the eigenvalues
gradually decrease from around 19 percent of the variance to zero percent. Although some
directions capture more variance than others, no single direction is dominant. Hence, there are
no specific key structural variables in the selected data. However, the spread of the eigenvalues
is distinctive, e.g. compared to the 10D Sphere function (see Figure 4.8), and is indicative of a
particular elliptical structure.

• 10D and 50D CiaS Problem

The scree plots for the 10D and 50D CiaS problems are plotted in Figures 4.10 and 4.11 respec-
tively. The larger spread of eigenvalues for the 10D and 50D CiaS problem signifies that the
problem is elliptical in shape. Scree plots for both the cases show that there are equal distances
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Figure 4.7: Specific Key Structural Variables ((4.7a) Scree plot for the 10D Rosenbrock Function,
(4.7b) Key structural Variables in the 10D Rosenbrock Function).
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Figure 4.8: Scree plot for the 10D Sphere Function.
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Figure 4.9: Scree plot for the 10D Rotated Ellipsoid Function.
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Figure 4.10: Scree plot for the 10D CiaS Problem.
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Figure 4.11: Scree plot for the 50D CiaS Problem.
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between the eigenvalues from λ1 to λ(n−2), where n is the dimensionality of the problem, which
indicates that λ1 is not able to provide enough information about the key structural variables to
the problem.

• 10D and 50D Location-Allocation Problem

Figures 4.12 and 4.13 are the scree plots for the 10D and 50D location-allocation problems
respectively. Figure 4.12 and 4.13 show that there is a large spread of the eigenvalues, hence
indicating that both the problems are elliptical in shape. Both the scree plots show that the first
((n/2)− 1) eigenvalues are sharing equal amount of variances in data, where n is the dimen-
sionality of the problem. Therefore it is very difficult to interpret the key structural variables
from the first eigenvector.
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Figure 4.12: Scree plot for the 10D location-allocation Problem.

In summary, a varied distribution of eigenvalues have been observed, and in some cases, the first
eigenvalues capture most of the variances.

4.6 Important Variables in Optimization Problems

The methodology for identifying “important” variables is described in Section 3.6. In this section, the
technique is applied to the problem set using the selected sample points as were used for correlation
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Figure 4.13: Scree plot for the 50D location-allocation Problem.
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plots and key structural variables in Sections 4.4 and 4.5 above.
The estimated mean (E∗i (x)) and standard deviation (std(Ei(x)) of the elementary effect values are

plotted in the (E∗i (x) ∼ std(Ei(x)) plane. Since the sample points generation are random in nature,
each function is calculating the mean and standard deviation of the elementary effect for 10 different
runs in order to know the exact “important variables” to the objective function.

Therefore each function consists of two figures, showing the important variables. The first figure
shows the mean and standard deviation of the single run, which gives an idea about the distribution
of variables in the (E∗i (x)∼ std(Ei(x)) plane. The second figure gives an idea about the proper order
of important variables in a problem. The figures are representing the estimated values of E∗i (x) and
std(Ei(x) for a single run and 10 runs respectively. The scale on the axes of the plots is a direct
measure of the amount of variation in the objective function with respect to perturbations of each
variable within the selected sample.

In this section, the classification of problems is based on the analysis of the order of E∗i (x) and
std(Ei(x)) in the (E∗i (x)∼ std(Ei(x))) plane.

Based on the results, the test problems can be roughly categorized as follows:

• All/Some variables are important without any specific ordering among the variables.

• Variables are important with some specific ordering among the variables.

4.6.1 All/some Variables are Important without any order

• 10D Sphere Function

In the 10D Sphere function, the estimated E∗i (x) and std(Ei(x)) for all the variables are expected
to be similar following from the definition of the problem. The results of the analysis are shown
in Figure 4.14a. It shows that the E∗i (x) and std(Ei(x)) calculated for each variable are placed
close to each other in a very small range in the (E i(x∗) ∼ std(Ei(x))) plane, which indicates
that the objective function has a similar sensitivity to all of the problem variables. This implies
that none of the input factors that affect the output have a purely linear effect [133].

In addition to this, to make a generalization, the values of E∗i (x) and std(Ei(x)) of the elemen-
tary effect values for 10 different runs are plotted in Figure 4.14b. It illustrates that, the variables
are equally important to the problem for multiple runs as well, but no specific order has been
found in the distribution of variables in the (E i(x∗)∼ std(Ei(x))) plane over the different runs.

• 10D and 50D CiaS Problem

The estimated values of E∗i (x) and std(Ei(x)) calculated for the 10D CiaS problem for a single
run are plotted in Figure 4.15a. In this case, E∗i (x)� std(Ei(x)). Hence, variables are not pro-
viding any overall importance to the objective function. But some of the variables are involved
in interaction and/or curvature effects due to the high value of std(Ei(x)) (only 1 or 2 variables
have higher std(Ei(x)) values in this case). Therefore, the 10D CiaS problem is sensitive to the
variables which have larger values of std(Ei(x)).
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Figure 4.14: (4.14a) Important Variables in the 10D Sphere Function for a single run, (4.14b) Impor-
tant Variables in the 10D Sphere Function for 10 different runs.
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Figure 4.15: (4.15a) Important Variables in the 5 Circles in a CiaS Problem in a single run, (4.15b)
Important Variables in the 5 Circles in a CiaS Problem in 10 different runs.
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Figure 4.16: (4.16a) Important Variables in the 25 Circles in a CiaS Problem in a single run, (4.16b)
Important Variables in the 25 Circles in a CiaS Problem in 10 different runs.
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To examine the order of variables which are sensitive to the objective function, E∗i (x) and
std(Ei(x)) of the elementary effect for 10 different runs are plotted in Figure 4.15b. Fig-
ure 4.15b shows the same distribution of variables as in the case of the 10D CiaS problem
for a single run, in the (E∗i (x) ∼ std(Ei(x))) plane. From the 10 different runs, it shows that
there is no specific order of important variables found in the 10D CiaS problem.

Furthermore, the trend of distribution of variables in the 50D CiaS problem is the same as the
10D CiaS problem. The results of the analysis are shown in Figures 4.16a and 4.16b for single
run and 10 runs respectively. It shows that E∗i (x)� std(Ei(x)) in the (E∗i (x) ∼ std(Ei(x)))
plane. Hence it shows that the variables are important which have higher std(Ei(x)). They also
do not show any order of the important variables in (E∗i (x)∼ std(Ei(x))) plane.

• 10D and 50D Location Allocation Problem

Figure 4.17a shows that all the variables are lying at the E∗i (x)≈ 0 zone.

The analysis of important variables in the location-allocation problem is the same as the CiaS
problem. In this case also, the E∗i (x) of the variables are approximately equal to 0. The analysis
only considers the std(Ei(x)) of the elementary effect values to measure the important vari-
ables, which only involves the interaction or curvature of the objective function. The results
for 10D and 50D location-allocation problems for single run and 10 runs are shown in Figures
4.17a, 4.17b, 4.18a and 4.18b.

4.6.2 Variables are Important in some order

• 2D Elliptical Function

Given the definition of this function, we know that the objective function is more sensitive to
perturbations of x2 and x1. The results of the analysis are shown in Figures 4.19a and 4.19b.
Figure 4.19a plots the values of E∗i (x) and std(Ei(x)) for a single run, which shows that one
variable has higher value of mean and standard deviations than the other. To examine the order
of importance, the mean and standard deviations of the elementary effects for 10 different runs
are plotted in Figure 4.19b. Figure 4.19b shows that for each run x2 has the largest E∗i (x) and
std(Ei(x)) than x1. Hence the order of importance is, x2 is always more important than x1 in
the 2D Elliptical function.

• 10D Rotated Ellipsoid Function

The analysis of the results for this problem is shown in Figures 4.20a and 4.20b. Figure 4.20a
plots the mean and standard deviation of the elementary effects for a single run, which shows
that each variable having a high value of the estimated mean also has a high value of estimated
standard deviation of elementary effect, i.e. all the points lie close to the diagonal on the
(E∗i (x)∼ std(Ei(x))) plane, which implies that variables have a non linear effect to the objective
function. Thus a variable which is important in the objective function (high E∗i (x)) is also
involved in curvature/interaction effects (high std(Ei(x))) and vice versa.
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Figure 4.17: (4.17a) Important Variables in 5 Facilities in a location-allocation Problem in a single
run, (4.17b) Important Variables in 5 Facilities in a location-allocation Problem in 10 different runs.
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Figure 4.18: (4.18a) Important Variables in 25 Facilities in a location-allocation Problem in a single
run, (4.18b) Important Variables in 25 Facilities in a location-allocation Problem in 10 different runs.
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Figure 4.19: (4.19a) Important Variables in the 2D Elliptical Function in a single run, (4.19b) Impor-
tant Variables in the 2D Elliptical Function for 10 different runs.
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Figure 4.20: (4.20a) Important Variables in the 10D Rotated Ellipsoid Function for a single run,
(4.20b) Important Variables in the Rotated Ellipsoid Function for 10 runs.
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Figure 4.21: (4.21a) Important Variables in the 10D Rosenbrock Function for a single run, (4.21b)
Important Variables in the 10D Rosenbrock Function for 10 different runs.
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Figure 4.20b illustrates the order of important variables in the problem. Figure 4.20b shows
that, in the 10D Rotated Ellipsoid function, the important variables are in order as follows: x2 is
more important than x3, x3 is more important than x1, x1 is more important than x4, x4 is more
important than x5 and so on.

• 10D Rosenbrock Function

The (E∗i (x) ∼ std(Ei(x))) graph in Figure 4.21a shows that a group of variables, having high
E∗i (x) and std(Ei(x)), are clustered away with larger values of mean and standard deviations
from the rest of the variables. Hence these clustered variables are more important to the problem
than the rest.

To examine the order of importance between the variables, 10 different runs are considered.
The E∗i (x) and std(Ei(x)) of the elementary effect values for 10 different runs are plotted in
Figure 4.21b. Figure 4.21b shows that x2 . . .x8 are placed in a cluster having high values of
E∗i (x) and std(Ei(x)). Although x1 is placed near to the cluster variables, the spread and central
tendency is less. x10 is the least important variable to the problem.

Hence the order of important variables is, x2, . . . , x9 which are the most important, whereas x10

is the least important and x1 the second least important variable in the problem.

Explanation: From the Table 2.1, the definition of Rosenbrock function is defined as f (x) =
∑

n−1
i=1 [100(xi+1− x2

i )
2 + (xi− 1)2], can further be deduced to f (x) = [100(x2− x2

1)
2 + (x1−

1)2]+ [100(x3−x2
2)

2 +(x2−1)2]+ . . .+[100(xn−x2
n−1)

2 +(xn−1−1)2], which shows that the
x1 variable is comes in the first term only i.e. 100 times x4

1 and one time x2
1, where as the terms

from x2 to xn−1 comes more than one term in the definition, where as xn comes in the last
term with only 100 times x2

n. Since Morris method is based on the sensibility of the objective
function, it can be deduced that xn is the least important variable where as x1 is less important
than x2, . . . ,xn−1.

4.7 Categorization of Problems Based on the Analysis

The analysis of variables for the different continuous optimization problems in Sections 4.4, 4.5 and
4.6 are summarized in Table 4.1. The summary shows that, although the Sphere and Elliptical func-
tions have negligible correlation between variables, they have different key structural and important
variables. Hence these functions are in different categories. In addition to this, the Rotated Ellipsoid
function has a higher correlation coefficient but no specific key structural variables as well as some
specific important variables. In some respect, it is different from the Ellipse function because, the
Ellipse has no correlation, and specific key structural variables as well as specific important variables.
The Rosenbrock function has a higher correlation coefficient than the Elliptical function, with some
specific order of important variables.

The characteristics of variables in the CiaS and location-allocation problems are similar in all 3
properties that have been analyzed here, but the CiaS and location-allocation problems follow differ-
ent types of correlation patterns between variables.
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Table 4.1: Summary of the Analysis.

Properties Functions
A B C D E F G H

Correlation
Weak Correlation × ×
Correlation × × × × × ×

Key structural
Non Specific × × × × × ×
Specific × ×

Important
Non Specific × × × × ×
Specific × × ×

A 10D Sphere Function, B 2D Elliptical Function, C 10D Rotated Ellipsoid Function
D 10D Rosenbrock Function, E 10D CiaS, F 50D CiaS
G 10D Location-Allocation, H 50D Location-Allocation

It is possible to have 8 different categories, but using the examples discussed in the thesis, this
analysis can be divided into 5 different possible categories:

• Category 1: Weak Correlation, No specific key structural variables and no specific order of
important variables, (e.g. Sphere function)

• Category 2: Weak Correlation, Specific key structural variables and specific order of important
variables, (e.g. Ellipse function)

• Category 3: Correlation, No specific key structural variables and specific order of important
variables, (e.g. Rotated Ellipsoid function)

• Category 4: Correlation, Specific key structural variables and specific order of important vari-
ables, (e.g. Rosenbrock function)

• Category 5: Correlation, No specific key structural variables and No specific order of important
variables, (e.g. CiaS and Location-Allocation problems)

Here the main motivation for characterizing these problems of forming categories is to determine
whether the EDA model, while implemented on a problem captures the same properties identified in
the categories or not. The hypothesis is that, the problem is easy, if the EDA model exiting while
implementing a problem achieves the same category as the problem does. These concepts can also be
used to develop new EDA algorithms for getting good optimal results.

4.8 Summary

This chapter has implemented the proposed framework for analyzing the properties of the variables
of optimization problems. Specifically, correlation coefficients, eigenanalysis and variable screening
were applied to samples of candidate solutions from artificial and real-world representative problems.

These techniques allow us to visualize and analyze the nature of the variables in the optimization
problems. It has been shown that although some problems are similar in some properties, clear
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differences are also revealed by the analysis. Hence for simplification, 5 different categories, which
are based on the combination of these 3 variable properties have been defined. These categories are
further used for comparison purposes of the nature of variables for problems and for EDAs in Chapter
5.



Chapter 5

Variable Analysis and Comparison: EDAs

Fundamentally, the idea of using a probabilistic model to capture dependency information between
problem variables and/or to search parts of the space containing high-quality solutions underlies all
of the variants of Gaussian EDAs. However, relatively few studies have examined the behavior of
the model experimentally. For example, the performance of an algorithm does not indicate whether
or not dependency modeling was valuable (and at what points during the search), or which problem
variables are important to the model during evolution. In order to understand whether or not an
EDA is capturing and exploiting information regarding the influence of each variable and variable
dependencies in problems, more detailed experimental analysis must be carried out.

In this chapter, the methods developed in Chapter 3 to analyze correlation, key structural variables
and important variables (i.e. correlation, eigenanalysis and sensitivity analysis) are used to analyze
EDA models. These same techniques were used in Chapter 4 to analyze a set of optimization test
problems and these same problems are used in this Chapter for evaluating the EDAs. This allows a
direct comparison to be made between the results in Chapter 4 and those in this Chapter. Since the
EDA models are Gaussian, the analysis techniques are well-suited to analyzing the selected population
data generated by the algorithms during execution. The results are for EMNAglobal, but the methods
are applicable to any continuous EDA.

5.1 General Consideration

The general aim of this work is to develop techniques to better understand and evaluate the relation-
ships between problem variables and the optimization algorithm that is applied to a given problem.
In practice, the performance of all metaheuristic optimization algorithms can be analyzed by look-
ing at the solutions and the corresponding fitness values evaluated during the search. In EDAs, the
model parameters provide a useful summary of the search. Figure 5.1 shows a diagram illustrating the
main components of data used in the analysis for Gaussian EDAs (mean and covariance matrix model
parameters). Previously, the mean vector of the model and the solution values (e.g. the best-so-far
values) have been typically used to describe the performance of the EDA model [59]. The mean vec-
tor tracks the center of the search distribution, recording progress of the model over the search space.
The covariance matrix (Σ) represents the variability of the search around the mean and determines

67
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the direction of future search progress. Σ also controls the scale of search in the space and captures
pairwise dependencies. However, there has been little effort to explicitly analyze the dynamics of the
covariance matrix during EDA experiments.

Covariance 
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Figure 5.1: Illustrating the analysis in EDAs using current methodology.

The main advantage of using this comparison is that the best model has been chosen for a par-
ticular problem. This analysis also helps to choose the model selection parameter values of different
EDA algorithms, where it chooses a sparse matrix for the modeling purposes. In this way it fulfills
the research gap which has been discussed in Section 2.8.

5.2 Correlation between Variables in EDAs

EMNAglobal uses the multivariate Normal distribution as a probability distribution. For a multivariate
Normal distribution, the Pearson’s correlation coefficient is an appropriate choice for measuring the
dependence between the variables. The calculation of correlated variables and the visualization of
correlation in a heat map have already been discussed in Section 3.4.

For the analysis of the EDA, a correlation graph can be generated for the selected population at
each generation. For display purposes, correlation graphs are presented as snapshots at using specific
generations selected at important stages in the evolution.

If the same general trends of correlation have been followed by every generation, one correla-
tion graph is sufficient. Multiple correlation graphs are used to show different trends of correlation
throughout the generation.
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5.3 Eigenanalysis for Examining Key Structural Variables in
EMNAglobal

The example of a multivariate Normal distribution is EMNAglobal. The maximum likelihood esti-
mates of EMNAglobal are the mean and the covariance. Eigenanalysis has been conducted with the
covariance matrix of the EMNAglobal.

The equal density contours of a non-singular multivariate normal distribution are ellipsoids cen-
tered at the mean. The directions of the principal axes of these ellipsoids are given by the eigenvectors
of the covariance matrix ∑ [74]. The squared relative lengths of the principal axes are given by the
corresponding eigenvalues. If the mean is zero, the eigenvectors provide a rotation of the coordinate
system such that the new axes (i.e. with the eigenvectors as basis vectors) lie along the principal
axes of the ellipsoids. Hence, the range of search points generated by the EDA is in proportion to the
eigenvalues. This provides a complete description of the Gaussian model covariance at any generation
of the EDA.

In general, the eigenvectors and eigenvalues of Σ for an EDA describe the shape of the (ellipsoid)
search distribution. If the distribution is approximately spherical, the eigenvalues will all be approxi-
mately equal, with the eigenvectors indicating no specific direction to the distribution. In contrast, if
the distribution has high eccentricity in some directions, this will be reflected in one or more propor-
tionally large eigenvalues. The corresponding eigenvectors indicate the directions of greatest variance
in the model. In the next generation, the population is sampled from this model and therefore will be
more widely distributed in these directions. It is a time series.

In a Gaussian EDA, the population at any given generation is sampled from a Gaussian distribu-
tion. Therefore, the population and to some extent the selected population should be well-described
by a Gaussian distribution. This makes the data well suited to analysis using PCA (Section 3.5).

5.4 Identifying Important Variables in EMNAglobal using the Mor-
ris Method

The Morris method for the identification of important variables is discussed in Section 3.6 and used
in Chapter 4 to analyze solution samples from problems. An EDA samples and evaluates candidate
solutions from a different distribution at each generation of the algorithm. Therefore, it may be the
case that a different set of variables (having high estimated values of the mean (E∗i (x)) and standard
deviation (std(Ei(x))) of the elementary effect) are identified at each generation. Sensitivity analysis
can still be carried out using the Morris method, however in this case the results data is larger and
more complex.

The concepts of dominance and Pareto optimality from multi-objective optimization (see, e.g.
Chapter 9 of [46]) have been utilized to determine the important variables in EDAs, since it is diffi-
cult to analyze the mean and standard deviation of all generations in a single figure. The mean and
standard deviation of elementary effects as two different (aka decision-making) criteria are consid-
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ered. One solution is said to dominate the other if its score is at least as high for all objectives, and is
strictly better for at least one. Let da and db have n objectives as a n-dimensional vector d. Using the
� symbol to indicate domination, A� B is defined as:

da � db⇔∀i ∈ {1, ...,n}ai ≥ bi,

and ∃i ∈ {1, ...,n} ,ai > bi.

All non-dominated solutions possess the attribute that their quality cannot be increased with respect
to any of the objective functions without detrimentally affecting one of the others. In the presence of
constraints, such solutions usually lie on the edge of the feasible regions of the search space. The set
of all non-dominated solutions is called the Pareto set or the Pareto front. The remaining variables
(which are not included in the Pareto front) are selected based on the minimum (Euclidean) distance
to the Pareto front.

5.5 Correlation between Variables, Key Structural and Impor-
tant Variables in an EDA based on Artificial Test Functions

EMNAglobal is implemented on the artificial test problems (2D Elliptical function, 10D Sphere func-
tion, 10D Rotated Ellipsoid function and 10D Rosenbrock function), that were considered in Chap-
ter 4. EMNAglobal is run over 200 generations, with a population size of 2000 and 0.5 as its selection
ratio for these test functions.

EMNAglobal model converges when the absolute difference between the maximum mean of the
two consecutive generations is less than or equal to 1e-06 or terminate when it exceeds the maximum
number of generations (i.e. 200 generations in this analysis). Note that the focus here is on studying
the dynamics of the EDA model in the stages of the search when it changes significantly, rather than
when the model is converging towards a point (as will be the case towards the end of a run with a larger
number of generations). Here the analysis is a “representative” or “typical” run for the algorithm on
each problem. The algorithm’s behavior will vary from run to run and by looking at a number of runs,
the analysis is based on a typical run.

5.5.1 2D Elliptical Function

In Section 4.7, 2D Elliptical function falls into category 2, where there are no correlated variables,
but some specific key structural and important variables in the problem landscape.

EMNAglobal effectively converges at the 19th generation, i.e., the absolute difference between the
maximum mean of the two consecutive generations is less than or equal to 1e-06. Hence the analysis
is represented for the first 19 generations. The mean graph is shown in Figure 5.2a. In this case,
Gaussian model has degenerated and converged. The mean graph ( Figure 5.2a) confirms that the
model cannot make progress in x2 direction.

The correlation coefficient r12 at any of the 19 generations for this experiment is very close to zero
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Figure 5.2: Results are based over 19 generations of EMNAglobal for the 2D Elliptical Function, (5.2a)
Mean of EMNAglobal, (5.2b) Eigenvalues Analysis.
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Figure 5.3: Results are based over 19 generations of EMNAglobal for the 2D Elliptical Function, (5.3a)
Key Structural Variables for the First Eigenvalue, (5.3b) Important Variables to the 2D Elliptical
Function captured by EMNAglobal.
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(i.e. � our threshold value 0.3), confirming that there is weak correlation between the variables in
the EDA model.

The results for EMNAglobal for analyzing key structural variables are shown in Figures 5.2b
and 5.3a. The eigenvalues of the EMNAglobal model (Figure 5.2b), show that the first eigenvalue
captures almost 90 percent of the total variance (given by λ1). The first eigenvector coefficients are
plotted generation-wise in Figure 5.3a. The value of coefficient c1 is close to 1, indicating that over
the run, the first eigenvector points in a direction that is almost parallel to the x1 coordinate axis. This
is because the selected individuals (on which the EDA model is built) are distributed according to the
contours of constant height (i.e. ellipsoids) for this objective function. In this sense, x1 is the key
structural variable to the EDA model. This is in contrast to the fact that f is 10 times more “sensitive”
to the value of x2 than x1.

Finally, the important variables of 2D Elliptical function for all 19 generations are plotted in
Figure 5.3b. The blue color histogram (designated as imp1) shows that x2 has high values of standard
deviation and mean of the elementary effects. The red color histogram (designated as imp2) shows
that x1 is second most important variable. Hence, it depicts that x2 is the most important variable and
x1 is the least important variable.

Therefore, for a 2D Elliptical function while implementing EMNAglobal, the model did not find any
correlated variables, and found a specific key structural (x1) and an important (x2) variable throughout
the generations.

Comparing these results to the results from Chapter 4, the EDA model captures the same proper-
ties as the problem appears to have been based on sampling.

Since the analysis found approximately zero correlation between the variables, UMDAc could be
expected to perform well in this function.

5.5.2 10D Sphere Function

The perfect example of a category 1 problem as defined in Section 4.7 is the Sphere function. Category
1 describes problems which have negligible correlation, no specific key structural variables and no
specific order of important variables.

While implementing EMNAglobal on the 10D Sphere function, the model has typically converged
after the 70th generation (according to the criteria defined above). Therefore, all the analysis has been
done for 70 generations only.

Regarding the correlation in the 10D Sphere function, the result is shown in Figure 5.4a. Fig-
ure 5.4a shows the correlation (i.e. correlation coefficients) between the variables for this function at
the 70th generation. The picture was similar across all generations, also indicating that there is very
scant correlation between the variables, because the correlation coefficients over all generations are
very close to zero (i.e. � our threshold value 0.3).

The results of the analysis for EMNAglobal on the 10D Sphere function for analyzing key structural
variables are shown in Figures 5.4b and 5.5a. Figure 5.4b plots the eigenvalues over 70 generations,
which shows that there is not so much difference between the eigenvalues (capturing between 8 and
12% of the total variance). This is to be expected, since if the data was perfectly spherical (as the
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Figure 5.4: Results are based over 70 generations of EMNAglobal for the 10D Sphere Function, (5.4a)
Correlation between Variables at the 70th generation, (5.4b) Eigenvalue Analysis for 70 generations.
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Figure 5.5: Results are based over 70 generations of EMNAglobal for the 10D Sphere Function, (5.5a)
Key Structural Variables for the First Eigenvalue, (5.5b) Important Variables to the 10D Sphere Func-
tion captured by EMNAglobal.
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sample size grows), the most important direction in the search space is arbitrary. The values of the
coefficients (c1 to c10) for the first eigenvector (Figure 5.5a) are examined; no clear structure or trend
is observable. This happens due to the properties of the Sphere function, where the EDA modeling
process based on selected data does not drive the model variance to be larger in any particular direc-
tion. Hence, the key structure of variables are random in nature. Essentially, the results tell that there
is no specific key structural variables to EMNAglobal in the Sphere function. However, these results
provide a useful “baseline” in the sense that results on other functions can be visually compared to
this case.

The spread shown in Figure 5.4b is taken as a standard for deciding the type of 10D functions.
If the spread of eigenvalues of the function is the same as the Sphere function, then the function is
considered as a Sphere type (the data of the selected population is spherical); otherwise, the function
is an Elliptical type (the data of the selected population is elliptical).

Finally, the identification of important variables in the 10D Sphere function is shown in Fig-
ure 5.5b. The histogram shows that, for each variable, the number of times the variables are important
is represented in different color formats. The results show that, no particular variable is important
throughout the 70 generations. It also shows that the number of occurrences of important variables
for each variable is similar. Although, x1 is the most important for about 38 times, it does not show
that x1 is most important throughout the 70 generations. Hence, no variables are specifically important
to the model.

To summarize the analysis of 10D Sphere function, while implementing EMNAglobal, there is
weak correlation, no specific key structural variables and the model does not identify any specific
important variables to the objective function. Therefore the model agrees with the properties of prob-
lems of type category 1. Literature shows that UMDAc is performing better in this type of function
([43, 41], Chapter 8 of [15]).

5.5.3 10D Rotated Ellipsoid Function

The 10D Rotated Ellipsoid is a category 3 type function (discussed in Section 4.7). While EMNAglobal

is implemented on this function, the model typically converges at the 95th generation.

The correlation coefficients at any generation for this experiment (Figure 5.6a) follow a specific
pattern, which shows that x1 is dependent on x2, x2 is dependent on x1 and x3, x3 is dependent on x2

and x4 and so on.

The eigenvalues of the EMNAglobal model over all 95 generations (Figure 5.6b) show a range of
values, but this range is larger than it is for the Sphere function (Figure 5.4b) suggesting that the
Rotated Ellipsoid Function is elliptical in shape. However, the first eigenvalue here does not account
for a dominating amount of variability and therefore will not give strong information about the key
structural variables to the EDA model.

For identifying the important variables to the objective function captured by the EDA model, the
values are plotted in the form of a histogram (Figure 5.7b). Examining the number of occurrences of
important variables for each variable, the results show that x2 is typically the most important variable,
with x3 typically the second most important. Following this, x1 and x4 are next in importance to the
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Figure 5.6: Results are based over 95 generations of EMNAglobal for the 10D Rotated Ellipsoid Func-
tion, (5.6a) Correlation between Variables at the 95th generation, (5.6b) Eigenvalue Analysis.
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Figure 5.7: Results are based over 95 generations of EMNAglobal for the 10D Rotated Ellipsoid func-
tion, (5.7a) Key Structural Variables for the First Eigenvalue, (5.7b) Important Variables to the the
10D Rotated Ellipsoid Function captured by EMNAglobal.



79 CHAPTER 5. VARIABLE ANALYSIS AND COMPARISON: EDAS

model. Finally, the importance of variables from x5, . . . , x10 are consistently ordered over the 95
generations.

These results show that the EMNAglobal model captures the properties of category 3. Here, the
properties of the problem variables are well matched with the model variables, for example, the
correlation graph of the Rotated Ellipsoid function presented in Figure 4.3 is similar to the correlation
graph (Figure 5.6a) captured by the EDA model. The key structural variables for both the problems
and the EDA model are not specific. In addition, the variables follow the same order of importance
as the objective function specification. An EDA with full covariance matrix will perform better than
UMDAc as EMNAglobal is well-suited in this case. Given these analysis results, it would be expected
that the features of the EMNAglobal result in good performance on the 10D Rotated Ellipsoid function.

5.5.4 10D Rosenbrock Function

The Rosenbrock function is known to be a hard problem for many black box optimization algorithms.
It is a category 4 type function (see Section 4.7). The following experimental analysis will give some
understanding about the correlation, key structural variables and important variables on EDA model
in the 10D Rosenbrock function.

EMNAglobal converges after the 141th generation, i.e., the difference between the maximum mean
between two consecutive generations is less than or equal to 1e-06. Figure 5.8a shows the dynamics
of the EDA model mean vector, which indicates that the algorithm converges; however, Figure 5.8b
shows that the model does not achieve the value nearest to its global optimum (global optimum =
0.0).

Firstly, the correlation between variables has been examined. Here, the correlation between vari-
ables changes over generations and settles on some pattern after about 45 generations. But this corre-
lation structure does not produce further improvements in solution quality, because the variance and
covariance of the Gaussian has shrunk towards zero (Figures 5.9a and 5.9b).

Furthermore, Figure 5.10a shows that the first eigenvalue (as indicated by the eigenvalue λ1)
captures most of the variance. The range of λ values is larger here. Examining the coefficients of
the first eigenvector indicates that c10 is greater than all the other coefficients in first 10 generations,
after that c1, c2 and c3 are larger than the others (shown in Figure 5.10b), which suggests that the first
eigenvector points in a direction that is nearly parallel to x10 in first 10 generations, after that it points
to x1, x2 and x3 axis. Hence, x1, x2 and x3 are the key structural variables to the EDA model after the
10th generation, but before that x10 is the key structural variable to the model. The analysis gives us
information about the progress of EMNAglobal on 10D Rosenbrock that may help in understanding
the behavior of the algorithm. That is, the main direction of variance and associated coefficient values
change significantly in the first 50 generations and then change very little.

Finally, Figure 5.11 shows the important variables captured by the EDA model. It shows, out of
141 occurrences/generations, that x2 is the most important variable 122 times. x1 is the second most
important variable and x6 is the least important variable, whereas x10 is the second least important
variable captured by the model during the run.

However, the analysis of variables on 10D Rosenbrock function from Chapter 4 showed that there
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Figure 5.8: Results are based over 141 generations of EMNAglobal for the 10D Rosenbrock Function,
(5.8a) Mean of EMNAglobal, (5.8b) Best Values reached so far.
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Figure 5.9: Results are based over 141 generations of EMNAglobal for the 10D Rosenbrock Function,
(5.9a) Correlation between Variables at the 17th generation, (5.9b) Correlation between Variables at
the 45th generation.
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Figure 5.10: Results are based over 141 generations of EMNAglobal for the 10D Rosenbrock Function,
(5.10a) Eigenvalue Analysis, (5.10b) Key Structural Variables for the First Eigenvalue.
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is a very weak correlation between variables. In addition to this, although the problem has x10 as its
specific key structural variables, but while analyzing EDAs, only for the first few generations x10 ia
the structural variable, but after that, it has been changed to x1, x2 and x3. Regarding, the order of
important variables for the problems are x2, . . . , x9, where as, x2 is the most important variable and
x1 is the second most important variables.

In summary, the results of the analysis of the EDA model on the 10D Rosenbrock function is
contrary to the analysis found for the category 4 problem variables (see Section 4.7). Literature
shows that EDAs do not perform well in this function ( [43, 41], Chapter 8 of [15]).

5.6 Variable Analysis on Real World Problems

5.6.1 Circles in a Square (CiaS) Packing Problem

The analysis was applied to the Circles in a Square Packing problem, with nc = 5, i.e. a 10D opti-
mization problem. This was categorized in Section 4.7 with Category 5.

The constraints of the CiaS problem involve box-bounding, as mentioned in Section 4.3. Since
Gaussian EDA models can generate component solutions values in the range of [−∞,+∞], infeasible
solutions may be generated. To address this issue, a constraint handling technique called “Boundary
Repair” has been used. It is a simple way to repair the infeasible solutions using the information
given from the problem (see Equation 2.5). While running the algorithms, a set of candidate solutions
for each generation is generated. The candidate solutions are examined and values lying outside the
feasible region are reset to the boundary value. That is, ∀ wi = (w1,w2), i = 1, . . . ,nc, if w1 < 0, then
set w1 = 0 or if w1 > 1, then set w1 = 1, with identical conditions for w2.

EMNAglobal was applied to the 5-circle CiaS problem (i.e. 10D), with a population size of 2000
and a selection ratio of 0.2, running over 200 generations. The algorithm is set to terminate when the
absolute difference between any components of the model mean of two successive generations is 1e-
06 or it attains all the 200 generations. The global optimum value for this problem is -0.7071 [142]. In
the present case, the EDA model converges at the 170th generation. Example performance and mean
results for EMNAglobal are presented in Figures 5.12a and 5.12b. Note that this is from a typical
run of the algorithm; over 25 trials the average best fitness was -0.6590 with a standard deviation
of 0.0297. In this run the algorithm found a solution with a relatively high fitness value (shown in
Figure 5.14a) converging on the global optimum [142]. UMDAc and EMNAglobal were able to obtain
reasonable performance (i.e., within 10 percent of the global optimum value for 5 circles in a CiaS
problem) [57]. Note however that some small further improvement is possible for this solution (the
4th circle can be expanded slightly to touch the boundary of the unit square). The model mean values
in Figure 5.12a show that, in the first 30 generations, the model moves rapidly, with slower progress
until the last generation, towards the solution vector where points are positioned at each corner of the
unit square and at (0.5, 0.5).

The correlated variables in the EDA model change significantly over generations. In the 20th gen-
eration, where the EDA model is moving and changing rapidly, the correlation figure (Figure 5.13a)
shows that there are no strong correlations between variables at this stage. However, at the 170th



85 CHAPTER 5. VARIABLE ANALYSIS AND COMPARISON: EDAS

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Generation

M
ea

n 
V

al
ue

s

Mean Values over Generation

 

 
µx1

µx2

µx3

µx4

µx5

µx6

µx7

µx8

µx9

µx10

(a)

0 20 40 60 80 100 120 140 160

−10
−0.3

−10
−0.2

Number of Generation

B
es

t V
al

ue
s

Best Values over Generation

(b)

Figure 5.12: Results are based over 170 generations of EMNAglobal for the 10D CiaS Problem, (5.12a)
Mean of EMNAglobal, (5.12b) Best Values reached so far.
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Figure 5.13: Results are based over 170 generations of EMNAglobal for the 10D CiaS Problem, (5.13a)
Correlation between Variables at 20th generation, (5.13b) Correlation between Variables at the 170th
generation.
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Figure 5.14: Results are based over the 170 generations of EMNAglobal for the 10D CiaS problem,
(5.14a) Plotting of 5 equal circles in a unit square at the 170th generation, (5.14b) Eigenvalues Anal-
ysis.
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Figure 5.15: Results are based over 170 generations of EMNAglobal for the 10D CiaS problem, (5.15a)
Key Structural Variables for the First Eigenvalue, (5.15b) Important Variables to the 10D CiaS Prob-
lem captured by EMNAglobal.
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generation (Figure 5.13b), the second variable (i.e. the x-axis position of the second circle) is the only
variable that still has weak correlation with all other variables. Other correlation values are all larger,
but after 170 number of generations, the model variance has converged significantly so this structure
is likely to reflect the highly local sample produced by the model.

Furthermore in this analysis, Figure 5.14b shows that the first eigenvalue captures a large amount
of the variance, over most generations, hence the range of eigenvalues is larger when compared to
the Sphere function, which indicates that the 5-circles CiaS problem is somewhat elliptical in shape.
Over the generations, when the first eigenvalue decreases, the other eigenvalues increase smoothly,
which is a visualization of the dynamics of the EDA model through the search space.

The coefficients of the first eigenvector are shown in Figure 5.15a. In the first 120 generations the
values of the coefficients all change rapidly. For the remainder of the run, the values are more stable,
with c4 and c9 having the highest values, indicating that x4 and x9 are key structural variables to the
model in these generations. These variables correspond to the coordinates of the fourth circle in the
packing solution (Figure 5.14a), showing that the EDA model was aligned towards these variables
and suggesting that improvement in solution quality could be found in this direction.

The prediction of important variables can be identified by analyzing Figure 5.15b. It shows that
x10 is the most important and least important variables most of the time, whereas, x1 is the second most
important variables to the model and x9 is the least important and second least important variables to
the model. However, in general, it can be said that the order of important variables is difficult to
analyze in this case.

The analysis drawn from Chapter 4 for the 10D CiaS problem illustrates that the problem has
correlation between variables, does not contain specific key structural variables throughout the run,
and does not identify any specific order of important variables. This indicates that the problem is a
type of category 5, but the analysis for the EDA model is different.

The model variables and problem variables show different patterns of correlation. While the prob-
lem variables show a pattern of correlation between variables (see Figure 4.4), the model variables
do not show any pattern during the EDA run. In addition to this, λ1 does not give any strong infor-
mation about the key structural variables during the analysis of problem variables (see Figure 4.10);
however, the analysis of model variables gives an indication that λ1 is the dominant eigenvalue in
most of the generations but is unable to provide specific key structural variables throughout the 170
generations. Both the model analysis and the problem analysis do not provide any specific order of
important variables.

5.6.2 EDAs implemented on 25 Circles in a Square Problem

50D CiaS is a category 5 type problem (see Section 4.7). EMNAglobal was implemented on 25 circles
in a square packing problem, with population of 5000 having 0.2 as its selection ratio for 500 gener-
ations. The threshold for identifying key structural variables is 1√

50
=0.1414. The algorithm will stop

when the absolute difference between the mean of two successive generations is 1e-06 or after it has
completed the 500 generations.

The EDA model converges after the 375th generation. The mean of the model is shown in Fig-
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Figure 5.16: Results are based over 375 generations of EMNAglobal for the 50D CiaS Problem, (5.16a)
Mean Values, (5.16b) Correlation Between Variables at the 180th generation.
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Figure 5.17: Results are based over 375 generations of EMNAglobal for the 50D CiaS Problem, (5.17a)
Correlation between Variables at the 375th generation, (5.17b) Eigenvalue Analysis.
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Figure 5.18: Results are based over 375 generations of EMNAglobal for the 50D CiaS problem, (5.18a)
Key Structural Variables for the First Eigenvalue, (5.18b) 10 Important Variables to the 50D CiaS
Problem captured by EMNAglobal.
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ure 5.16a. The correlation between variables changes over generations. Figure 5.16b shows that the
correlations between all variables at the 180th generation are relatively small. However, 5.17a shows
that this changes considerably by the 375th generation. The results of the analysis of key structural
variables captured by the model are shown in Figure 5.17b. It shows that the first eigenvalue dom-
inates the other eigenvalues in most of the generations. Drawing the vector coefficients of the first
eigenvector into the Figure 5.18a does not provide any significant information of the key structural
variables. Hence, it can be said that, EDA has no specific key structural variables in this case.

Finally, for identifying important variables from among the 50 variables in this case, only the
first 10 most important variables are shown in Figure 5.18b. It shows that, the first most important
variables are distributed among x2 and x16. The rest of the order is x1,x3,x4,x5,x6,x7,x8 and x9.

The analysis shows that the implementation of 10D CiaS in an EDA is not a category 5 type
problem. 50D CiaS is showing very negligible correlation between variables, whereas the correlation
analysis by the EDA model shows very strong correlation between variables. In the EDA for this
problem, λ1� λ2 whereas during problem analysis, λ1 ≈ λ2. However, both analyses do not show
any specific key structural variables.

There are no specific important variables found from the problem analysis, whereas from model
analysis, it shows an order of important variables.

From this analysis, it can be predicted that a Gaussian EDA algorithm having greater amount of
covariance parameter modeling will work better.

5.6.3 EDAs implemented on 5 Facilities in a 51-Customer Location Allocation
Problem

The 51-customer problem on 5 facilities is a category 5 type problem. EMNAglobal was applied to the
51-customer problem on 5 facilities (i.e. 10D), with a population size of 2000, and a selection ratio
of 0.2 running over 200 generations. The algorithm stops when the absolute difference between the
mean of the two consecutive generations is less than or equal to 1e-06, or it evaluates 200 generations.
The threshold for measuring the key structural variables is 1√

10
≈ 0.3. The global optimum value for

this problem is 72.2369 [26].

In this case, the algorithm converges at the 63rd generation. The mean values and the best values
of the EDA reached so far are shown in the Figures 5.19a and 5.19b respectively. The model mean
values move rapidly until about the 40th generation and then makes little progress, which suggests
that the model is converged. Figure 5.19b illustrates about the best so far curve, which does not show
any progress after 40th generation. However, the result is based on a typical run; the average best
value over 10 runs is 74.9590 and the standard deviation is 2.7544. In this experiment the model
reaches near to the global optimum with a value of 72.2470 (Figure 5.19b).

Firstly, the correlation captured by the model in this problem shows that, in the early generations,
no persistent trends or patterns of variable dependency exist. At the 63rd generation, some structure
appears (Figure 5.20b), which indicates that the EDA model has a lack of correlation between most
of the variables.

Figures 5.19a and 5.19b indicate that around the 15th generation, the model moves rapidly and a
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Figure 5.19: Results are based over 63 generations of EMNAglobal for the 10D Location Allocation
Problem, (5.19a) Mean of EMNAglobal, (5.19b) Best Values reached so far.



95 CHAPTER 5. VARIABLE ANALYSIS AND COMPARISON: EDAS

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

 

 
Cust
fac1
fac2
fac3
fac4
fac5

(a)

 

 

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 5.20: Results are based over 63 generations of EMNAglobal for the 10D Location Allocation
Problem, (5.20a) Plotting of 5 Facilities in 51 Customer space at the 63rd generation, (5.20b) Corre-
lation between Variables at the 63rd generation.
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Figure 5.21: Results are based over 63 generations of the EMNAglobal for the 10D Location Allocation
Problem, (5.21a) Eigenvalue Analysis, (5.21b) Key Structural Variables for the First Eigenvalue.
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Figure 5.22: Important Variables to the 10D Location Allocation Problem captured by EMNAglobal.
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much better solution is found. Furthermore, Figure 5.21a shows there is some spread in eigenvalues,
but the first one is somewhat larger after the 15th generation, indicating that the problem is somewhat
elliptical in shape. Overall, there is a lot of rapid change of coefficient values (Figure 5.21b); however,
in the first 38 generations, predicting the key structural variables in the search model is difficult, but
after that, c2 and c7 have the higher values than the rest. So the first eigenvector points strongly in the
directions of the x2 and x7 axis, which is the x and y coordinate of the 2nd facility in the problem (the
blue dot in the Figure 5.20a represents the placing of second facility in the 51-Customer space).

Finally, Figure 5.22 shows the important variables in the form of a histogram. It shows that, for
more than 40 generations, x6 is the most important variable, and x1 is the 3rd important variable.
For more than 45 times, x10 is the least important variable. According to the figure, the order of
importance is as follows: x6,x9,x1,x2,x4,x3,x7,x8,x5,x10.

From the analysis, it has been deduced that the model does not capture the properties of category
5. The figures obtained from the EDA model and the problem are different from each other. The
problem variables form a pattern of correlation between them, where as the model does not capture
any pattern of correlation during its run nor does it reveal any strong correlation between the variables.

During the analysis of the key structural variables of the model, λ1 is the dominant eigenvalue,
whereas during the problem analysis λ1 ≈ λ2. The EDA model is able to analyze the key structural
variables, but in this case no specific variables are key structural variables throughout the run (al-
though, in this case the key structural variables is x10 for the last couple of runs) whereas variable
analysis on problems cannot give such information.

EDA analysis gives an order of important variables (for this run the three most important variables
are x6,x9 and x1, but the problem analysis did not show any type of important variables.

Hence, the conclusion of this analysis shows that the EDA has a weak correlation among most
of the variables, has no specific key structural variables and has an order of important variables.
Therefore the 10D location-allocation problem can be solved using any Gaussian EDA which has the
covariance model control parameter.

5.6.4 EDAs implemented on 25 Facilities in a 51-Customer Location Alloca-
tion Problem

50D Location allocation is a category 5 type problem (refer Table 4.1). EMNAglobal was implemented
on 25 facilities of a 51-customer location allocation problem, with 5000 population having 0.2 as its
selection ratio for 500 generations. Since, this is a 50D, the threshold for identifying key structural
variables is 1√

50
=0.1414. The algorithm stopped when the absolute difference between the mean of

two successive generation is 1e-06 or it attained all the 500 generations.

The algorithm stopped at 296 generations. The mean of the selected population over 296 gen-
erations are plotted in Figure 5.23a. It shows that the model is converged. The correlation between
variables for this problem is shown in Figure 5.23b, and displays the correlation between x and y pairs
of each facility, while the problem is implemented on EMNAglobal.

Furthermore, the results of the eigenanalysis are plotted in Figure 5.24a and 5.24b. Figure 5.24a
shows that the λ1 relatively captures more variance than the rest of the λ ′s. Hence the first eigenvalue
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Figure 5.23: Results are based over 296 generations of EMNAglobal for the 50D Location Allocation
Problem, (5.23a) Mean Values, (5.23b) Correlation between Variables.
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Figure 5.24: Results are based over 296 generations of EMNAglobal for the 50D Location Allocation
Problem, (5.24a) Eigenvalue Analysis, (5.24b) Key Structural Variables for the First Eigenvalue.
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Figure 5.25: Important Variables to the 50D Location Allocation Problem captured by the
EMNAglobal.
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gives an idea about the key structural variables to the model. Figure 5.24b shows that some of the
variables are above threshold values (i.e., 0.1414) in most of the generations, indicating the existence
of some specific key structural variables captured by the model.

Lastly, Figure 5.25 identifies the important variable to the objective function captured by the EDA
model. Figure 5.25 shows that the blue bars are the most important variables and the red bars are
the least important to the model. It shows that x18, x37 and x42 are important variables, since these
variables are important in most of the generations.

Comparing the analysis found by the model in this problem and the analysis found from the prob-
lem, it is clear that, the correlation between variables captured by the EDA model and the problem
variables are exactly same. Regarding the eigenanalysis, the first eigenvalue gives information about
the key structural variables, whereas the first eigenvalue found from the problem analysis is not sug-
gesting any key structural variables.

Finally, there are some specific variables which are important in most of the generations, but the
problem analysis did not find any specific key structural variables.

Therefore, the EDA model does not capture exact properties of problem variables, Hence, any
Gaussian based EDA with covariance model control parameter may work better in this problem.

5.7 Summary of the Analysis and Comparison

This chapter has extended the framework proposed in Chapter 3 to analyze data produced by EDAs
during search (i.e. the selected population and corresponding objective function values). EMNAglobal

was applied to the set of test problems analyzed in Chapter 4 and the data generated from the algo-
rithm experiments was analyzed. From the results, it can be concluded that for some problems, the
properties of problem variables appear similar for both problem and algorithm data analysis, and in
some cases, the properties are different. In some cases, the EDA model variable properties do not
match well the problem variable properties.

The intention here is to show in principle how the analysis might be used as a component in ad-
dressing the algorithm selection problem (either manually or as part of an automated meta-algorithm).
The results in this Chapter and the following Chapter also provide some insight into whether or not
the suggested algorithm is a good choice. However, the primary focus of this thesis is in the develop-
ment of a general-purpose analysis framework rather than attempting to demonstrate state-of-the-art
performance for specific problems.
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Figure 5.26: Comparision of the properties of Problem Variables and the Model Variables in a 10D
Ackley Function
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Figure 5.27: Comparision of the properties of Problem Variables and the Model Variables in a 10D
Rastrigin Function.
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Figure 5.28: Comparision of the properties of Problem Variables and the Model Variables in a 10D
Griewangk Function.
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Figure 5.29: Comparision of the properties of Problem Variables and the Model Variables in a 10D
F9 Function.
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5.8 Further Analysis

5.8.1 Further Analysis on Problem and EDA Model Variables in
10D Ackley Function, 10D Rastrigin Function, 10D
Griewangk Function and F9 Function

In this section, analysis of problem variables and EDA variables for the 10D Ackley, Rastrigin,
Griewangk and F9 functions, showing a graphical representation of the results. All the parameters
for the problem and EDA analysis are set according to Chapters 4 and 5. Figures 5.26, 5.27, 5.28
and 5.29 show the graphical representation of the analysis on problems and EDAs of 10D Ackley,
10D Rastrigin, 10D Griewangk function and 10D F9 function respectively. It can be seen from the
comparison tables that 10D Ackley, Rastrigin and Griewangk problems are approximately similar to
Sphere function. But the notable is the Griewangk function, while implemented on EDA. The Prob-
lem analysis shows that there are no specific important variables (refer Figure 5.28e) but the EDA
implementation on this problem (refer Figure 5.28f) shows that it has specific important variables. It
shows that EDA is not able to capture the right information of important variables for the Griewangk
function.

F9 function, (whose global optimum is not at origin) is shown in Figure 5.29. Figure shows the
problem is similar to Sphere function, but while implementing the problem in an EDA, the variable
properties are quite different. Figure (5.29b) shows a correlation between variables. In addition to
this, figure (5.29d), indicates that the first eigenvalue has the largest variance relatively compared with
other eigenvalues. hence the first eigenvalue gives information about the “Key Structural variable”
captured by the EDA. Again, in figure (5.29f) shows that the first and second variables are more
important than any other variable.

These results are included here for completeness.

5.8.2 Sensitivity of the Analysis on different values of τ

To examine EDA variables with different τ values, 10D Rastrigin function has been taken into con-
sideration. How the nature of model variable changes with different value of selection parameter has
been done here. EMNAglobal has been implemented on 10D Rastrigin function, with 2000 population
for 200 generations with a number of different values of τ = 0.1, 0.3, 0.5 and 0.9. The algorithm will
stop when the absolute difference between the maximum mean of the two consecutive generations
is less than or equal to 1e-06 or it attains its maximum number of generations supplied (here 200
generations).

Figures 5.30a, 5.30b, 5.31a and 5.31b shows the correlation between variables when τ = .1, .3, .5
and .9 respectively. It shows that there is no significant correlation found between the variables in all
these cases.

Again, Figures 5.30c, 5.30d, 5.31c and 5.31d shows the eigenanalysis when τ = .1, .3, .5 and
.9 respectively. It shows that all the figures follow the same pattern of distribution of eigenvalues,
but when τ=0.1, the first eigenvalue gains maximum variance at 25th generation, where as when
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τ=0.3, the first eigenvalue gains the maximum variance at 40th generation, and when τ=0.5, the first
eigenvalue gains the maximum variance at 60th generation, but when τ=0.9, the first eigenvalue gets
the maximum variance at 200th generation.

Further, Figures 5.30e, 5.30f, 5.31e and 5.31f shows the important model variables when τ = .1,
.3, .5 and .9 respectively. It shows that, all the variables are more or less likely to be important through
out the generation.
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(a) Correlation on model variables at τ = 0.1
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(c) Eigenanalysis on model variables at τ = 0.1
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(d) Eigenanalysis on model variables at τ = 0.3
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(e) Morris Method on model variables at τ = 0.1
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(f) Morris Method on model variables at τ = 0.3

Figure 5.30: Comparision of the properties of EDA model variables in a 10D Rastrigin Function at
τ=0.1 and 0.3.
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(a) Correlation on model variables at τ = 0.5
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(b) Correlation on model variables at τ = 0.9
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(c) Eigenanalysis on model variables at τ = 0.5
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(d) Eigenanalysis on model variables at τ = 0.9
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(e) Morris Method on model variables at τ = 0.5
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(f) Morris Method on model variables at τ = 0.9

Figure 5.31: Comparision of the properties of EDA model variables in a 10D Rastrigin Function at
τ=0.5 and 0.9.



Chapter 6

Screening Estimation of Distribution
Algorithms

6.1 Overview

In this chapter, a modified Gaussian-based continuous EDA is proposed, called Screening EDA
(sEDA). It provides a mechanism to control the percentage of covariance parameters estimated within
the Gaussian model. To achieve this, a simple variable screening technique which has already been
discussed in Chapter 3 called the Morris method has been used. This technique has been used in
Chapter 4 and Chapter 5 for analyzing important variables in problems and EDAs respectively. Now,
in this chapter, the screening technique is incorporated into the EDA itself to try and improve the
modeling. Compared to EMNAglobal, the algorithm provides improvement on ill-conditioned covari-
ance matrix and can use a smaller selected population. Experimental results are presented to evaluate
and compare the performance of the proposed algorithm to UMDAc and EMNAglobal.

Analysis and experimental evaluation of the basic sEDA implementation reveals that it does not
scale well to high-dimensional problems because it requires a large number of additional fitness func-
tion evaluations per generation. Consequently, a modified version of the sEDA algorithm is also
proposed, called sEDA-lite. It requires no additional fitness function evaluations for sensitivity anal-
ysis and therefore is applicable to larger problems. Experimental results on a large set of artificial and
real-world representative problems evaluate the performance of sEDA-lite and compare it with sEDA
and EDA-MCC (EDA framework with Model Complexity Control), a related, recently proposed al-
gorithm [41].

This chapter is structured in the following way. In Section 6.2, a modification to the EDA al-
gorithm is proposed, the Screening EDA (sEDA). The implementation of the sEDA and parameter
values is described in detail in Section 6.3. In Section 6.4 experimental results on various artifi-
cial problems are presented evaluating the sEDA and comparing it with UMDAc and EMNAglobal.
Section 6.5 presents some unique behavior of sEDA. The issues arising in sEDA are discussed in
Section 6.6. In Section 6.7, a modified Gaussian-based sEDA called sEDA-lite is proposed to address
the issues of high dimensional problems in sEDA. In Section 6.8, comparison of the solutions of
sEDA-lite with solutions of UMDAc, EEDA (eigenspace EDA) and EDA-MCC on a set of artificial
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test problems have been done. In addition to this, the solution of sEDA-lite is also compared with
UMDAc, EMNAglobal, sEDA on a couple of real world problems. The conclusion of this chapter is
drawn in Section 6.10.

6.2 Introducing Variable Screening into an EDA

Two of the three analysis techniques used in this thesis (dependency modeling and key structural
variables) come directly from the Gaussian EDA model (i.e. the covariance matrix). As discussed
in Section 2.7, when a full covariance matrix is used such as in EMNAglobal, numerical issues create
practical difficulties, particularly when high-dimensional problems are to be solved. Several tech-
niques (as discussed in Section 2.7) have been proposed to control the degree of dependency model-
ing as a trade-off between the UMDAc model and the EMNAglobal model. In this chapter, the third
analysis technique, namely variable screening, is introduced into the EDA and used to control the
degree of dependency modeling. The general idea is that variables that are important (to the fitness
function) may benefit from dependency modeling while other variables do not need this.

6.2.1 Measuring the Strength or Importance of Dependencies Between the
Variables Using Elementary Effects

The Morris method, discussed in Section 3.6, is used here for identifying variable interactions and
importance. As discussed earlier, the Morris method is based on measuring the mean and standard
deviation of perturbations of individual variables for a given problem, calculated via so-called elemen-
tary effects terms. In these experiments, measurement has been done on the strength or importance
of dependencies between the variables using the elementary effect terms.

6.2.2 Incorporating Variable Screening (Morris method) in an EDA

To incorporate elementary effect values (Ei(x)) into an EDA, two main decisions must be made.
The first is how to calculate the Ei(x) values themselves, which will happen on each generation
of the sEDA. In theory, a sampling plan such as a full factorial design could be considered, how-
ever this requires the specification of a grid of equally spaced points in the search spaced points in
the search space, of some predetermined resolution, perturbing each xi along vertices in the grid
and evaluating f at these points. Since this would not be practical inside an EDA, an alternative,
based on the selected population size Msel has been proposed. Specifically, the mean of the selected
population (m) is calculated for each dimension xi.The population, Ptot is then formed by creating
new solution vectors where the mean value is substituted in turn for each problem variable (e.g.
xi = xi, . . . , xi−1, mi, xi+1, . . . , xn). This produces nMsel new solutions, which are evaluated using
f .

Given the elementary effect values and their means and standard deviations, the second decision
to be made is how to use them to determine the covariance matrix structure to be used in the sEDA
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model. To do this, the concepts of dominance and Pareto optimality from multi-objective optimization
(see Section 5.4) have been utilized.

In the sEDA, a fixed fraction η of the variables need to be selected for covariance modeling.
Variables that belong to the Pareto set are selected first. If more variables are required, then those
which have the minimum (Euclidean) distance to the Pareto front are selected. On the other hand,
if the number of variables on the Pareto front is greater than required, then a random subset of these
variables is selected.

The complete framework of sEDA is summarized in Algorithm 6.1. The critical steps of the
algorithm are as described above. Three algorithm parameters must be specified for implementation:
the population size M, the selection parameter τ and the variable screening/selection parameter η .
sEDA uses truncation selection: a fraction τ of the population with the best objective function values
are retained for building/adapting the search model1. The mean (m) of the selected population is
then calculated for expanding the population. This expanded population is then used to calculate
elementary effects values (E(x)) and their mean (E∗i (x)) and standard deviation (std(Ei(x))) (for
more details refer to Section 3.6). After selecting variables with respect to the Pareto set of the
mean and standard deviation of E(x), the covariance matrix for the EDA model is formed as a sparse
matrix, with non-zero covariance terms for selected variables. This is used in combination with the
EDA mean vector (estimated from the selected expanded population) and the model is then used to
generate the new population as in a standard EDA. Within each generation, the variables which are
used for generating the population for the next generation are indexed. The process is repeated until
some stopping criterion is met.

One possible intuition for the sEDA algorithm is that, it is similar to hybrid (memetic) algorithm
which combines an evolutionary algorithm with a local search implementation step.

6.3 Experimental Design

In this section, the effect of varying the truncation selection parameter (τ) and the model selection
parameter (η) have been investigated for sEDA. In addition to this, the number of population used
and the number of generations used during the implementation of the algorithms have been discussed.

6.3.1 Selection Parameter Settings for sEDA

sEDA contains two selection parameters, τ and η . Setting these values is important for experimental
results. In this set of experiments, different combinations tried for τ and η are ((0.3, 0.1),(0.3, 0.3),
(0.3, 0.5), (0.3,0.7), (0.3, 1.0), (0.5, 0.1), (0.5, 0.3), (0.5, 0.5), (0.5, 0.7), (0.5,1.0)). With these values,
sEDA is tested using 6 different 10D benchmarking functions, which are also the functions from
the Real-Parameter Black-Box Optimization Benchmarking (BBOB) experiment set [76]. sEDA is
implemented with a population size of 500 having 300000 function evaluations. The algorithm is
terminated when a difference between the best fitness value found and the global optimum is less than

1Rounding if M× τ is not an integer.
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Algorithm 6.1 sEDA Algorithm.
1: Given: Population size M, dimensionality n, selection parameter 0 < τ < 1, model selection

parameter 0 < η < 1.
2: Begin (set t = 0)

Initialize population P by generating M individuals uniformly in S.
3: while stopping criteria not met do
4: Evaluate f for population P.
5: Truncation selection: Psel = Msel best individuals from P;Msel = Rnd(M · τ) .
6: Calculate sample mean (m) of Psel .
7: Calculate Ptot by expanding Psel , successively replacing variable 1, . . . ,n with mi to produce

Mtot number of population.
8: Evaluate f for new individuals in Ptot population.
9: Selection: Ptot = Msel

tot best individuals; Msel
tot = Rnd(n ·Msel · τ) individuals from Ptot .

10: Calculate Elementary Effect (E(x)) of the fitness function of Psel
tot .

11: Calculate the mean µt of the Psel
tot .

12: Calculate mean (E∗i (x)) and standard deviation (std(Ei(x))) of E(x).
13: Determine the Pareto optimal solutions po using E∗i (x) and std(Ei(x)) as two objective func-

tions.
14: Let B = Round(n ·η).
15: If po > B, randomly choose B variables from po.
16: If po < B, select/add the next B− po variables nearest to the Pareto front.
17: Build Σt using covariance terms for the B selected variables and variance terms only for the

remaining n−B variables
18: p(x)← (µt,Σt).
19: Generate P new population by sampling from p(x).
20: end while
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or equal to 1e-08, otherwise when the algorithm attains the maximum allowed number of function
evaluations.

Table 6.1 lists the mean and standard deviation of the best fitness values found over 100 runs for
different combination of τ and η .

Best results with minimal mean value are represented in bold font. It is discovered from Table 6.1
that, out of 6 functions, 3 functions are better when τ = 0.3 and η = 0.3.

These results suggest that the performance is not highly sensitive to the values tested for these
parameters. Hence the value of τ and η have been set to 0.3 and 0.3 respectively for sEDA for further
experiments in Section 6.4.

6.3.2 Evaluation of sEDA and Comparisons

Experiments were conducted on the 10D and 50D versions of the artificial test functions. The popula-
tion size of all the algorithms was set to 2000, to ensure comparability with previous results from the
literature ( Chapter 8 of [102]), with the exception of sEDA, since it uses far more function evalua-
tions per generation. For the 10D and 50D functions the selection parameter is set to 0.5 for UMDAc

and EMNAglobal.

For comparison with previous results on the 10D functions, 301850 function evaluations were set.
But when it comes to 50D functions, 10 times more function evaluations are used. Algorithms are
terminated when the difference between the absolute value of the best fitness found and the known
global optimum is less than or equal to 1e-08 or it exceeds the given number of function evaluations.
For each single test, the result is averaged over 100 independent runs.

The number of function evaluations within each generation is different for different algorithms.
In UMDAc and EMNAglobal the number of function evaluations at each generation is equal to the
population size whereas in sEDA the number of function evaluations at each generation is a func-
tion of population size, selection parameter and dimension of the problem. The number of function
evaluations at each generation for sEDA is M+(M× τ×n), where M is the population size, n is the
dimensionality of the problem and τ is the standard truncation ratio. Therefore the maximum number
of generations used by sEDA for 10D functions with 301850 function evaluations and 50D functions
with 3000000 function evaluations are 150 and 188 respectively.

Using this formula, for a given fixed number of function evaluations, sEDA will always have
fewer generations compared to UMDAc and EMNAglobal. Hence to make the number of generations
approximately the same for all the algorithms, a lesser number of population was used for sEDA. For
10D and 50D functions, 500 and 1000 populations are used respectively by sEDA.

The parameter values for the 10D and 50D experiments for different algorithms are presented in
Table 6.2.

6.4 Results

Table 6.3 and Table 6.4 summarizes the results on 10D and 50D functions using UMDAc, EMNAglobal

and sEDA algorithms. Best fitness values found and the number of evaluations required to reach the
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Table 6.1: Solution quality comparison having different values of τ and η with 10D 6 different
function from BBOB in sEDA.

Function (τ , η) Best fitness values

f un1

(0.3,0.1) 4.1859e-10±1.9377e-10

(0.3,0.3) 4.0747e-10±2.1534e-10
(0.3,0.5) 4.4503e-10±1.8162e-10

(0.3,0.7) 4.5039e-10± 1.7320e-10

(0.3,1.0) 4.4686e-10±1.5717e-10

(0.5,0.1) 6.9786e-10± 2.7656e-10

(0.5,0.3) 7.8054e-10± 2.6987e-10

(0.5,0.5) 7.2316e-10± 3.0482e-10

(0.5,0.7) 7.6307e-10±2.8930e-10

(0.5,1.0) 7.5919e-10±2.5931e-10

f un2

(0.3,0.1) 3.9609e-10 ±1.7273e-10

(0.3,0.3) 1.9899e-10±1.4000e-01
(0.3,0.5) 4.2146e-10± 1.9201e-10

(0.3,0.7) 4.9748e-02±2.1794e-01

(0.3,1.0) 6.6241e-02±2.4107e-01

(0.5,0.1) 7.5311e-10 ± 2.7304e-10

(0.5,0.3) 1.7040e-06±1.7033e-05

(0.5,0.5) 7.3522e-10±2.7501e-10

(0.5,0.7) 7.4852e-10±2.8924e-10

(0.5,1.0) 7.4683e-10 ±2.4104e-10

f un3

(0.3,0.1) 4.2197e-10±1.8961e-10

(0.3,0.3) 4.1811e-10±1.8736e-10

(0.3,0.5) 7.3961e-05±7.3960e-04

(0.3,0.7) 3.9370e-10±1.4854e-10
(0.3,1.0) 8.7162e-06±8.4289e-05

(0.5,0.1) 7.5749e-10± 2.6752e-10

(0.5,0.3) 7.7859e-10±2.4938e-10

(0.5,0.5) 7.8415e-10±2.8021e-10

(0.5,0.7) 7.6587e-10±2.7093e-10

(0.5,1.0) 7.1325e-10±2.5283e-10

Function (τ , η) Best fitness values

f un4

(0.3,0.1) 7.8814e+00±1.2229e-01

(0.3,0.3) 7.6111e+00±2.4945e-01
(0.3,0.5) 7.6258e+00±2.6868e-01

(0.3,0.7) 7.6505e+00±2.9905e-01

(0.3,1.0) 7.5280e+00±4.3890e-01

(0.5,0.1) 8.1424e+00±6.2824e-02

(0.5,0.3) 8.0293e+00±1.4390e-01

(0.5,0.5) 8.0092e+00± 1.3398e-01

(0.5,0.7) 7.9782e+00±1.5023e-01

(0.5,1.0) 7.9046e+00±2.8372e-01

f un5

(0.3,0.1) 3.7458e-09±8.2402e-10

(0.3,0.3) 3.8316e-09±7.4032e-10

(0.3,0.5) 3.5363e-09±7.4431e-10

(0.3,0.7) 3.7028e-09±8.9438e-10

(0.3,1.0) 3.4978e-09±7.7805e-10
(0.5,0.1) 6.4005e-09±1.1508e-09

(0.5,0.3) 6.2027e-09±1.1695e-09

(0.5,0.5) 6.1331e-09±1.2245e-09

(0.5,0.7) 5.9026e-09±1.0768e-09

(0.5,1.0) 6.2874e-09 ±1.1587e-09

f un6

(0.3,0.1) 1.603e-02±2.5277e-02

(0.3,0.3) 4.4690e-03±5.6286e-03

(0.3,0.5) 1.9019e-03±2.7286e-03

(0.3,0.7) 1.9154e-04±3.3700e-04

(0.3,1.0) 5.3204e-10±2.8298e-10
(0.5,0.1) 8.1264e-02±9.9892e-02

(0.5,0.3) 3.2813e-02±3.9157e-02

(0.5,0.5) 1.3922e-02±1.7797e-02

(0.5,0.7) 4.4019e-03±9.0104e-03

(0.5,1.0) 1.2561e-09±4.9750e-10
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Table 6.2: Parameter values for different Algorithms.

Algorithm Dim Population No. of Gens. No. of Func. Eval

UMDAc

10
2000 150 301850

EMNAglobal 2000 150 301850

sEDA 500 150 301850

UMDAc

50
2000 1500 3000000

EMNAglobal 2000 1500 3000000

sEDA 1000 188 3000000

final solution are recorded for each of the experiments. The best result with the minimum mean value
with respect to fitness as well as number of function evaluations are highlighted in bold font. A t-test
has been done between best values found by sEDA and 2 other EDAs, (with null hypothesis being that
each set of experimental results is drawn from distributions with equal mean (and assumed unequal
variances)).

6.4.1 Discussion for 10D and 50D Artificial Test Functions

Tables 6.3 and 6.4 show the comparison of the 3 algorithms using 6 different functions.

Sphere f unction : In Sphere function, all the variables are independent to each other and equally
important to the problem (Sphere function is an example of category 1, discussed in Section 4.7).
Although it always facilitates univariate model-based EDAs in solving the problems (proved in Sec-
tion 5.5.2) Tables 6.3 and 6.4 show that the performance of UMDAc, EMNAglobal and sEDA are
similar in both 10D and 50D dimensions. In terms of the the number of the function evaluations,
for 10D Sphere, sEDA requires lesser number of function evaluations whereas the requirements of
function evaluations are more when dimension increases as compared to 2 other EDAs.

Griewangk f unction : This is a multimodal and non-separable function. For the 10D and 50D
version, sEDA, UMDAc and EMNAglobal are performing similar in terms of best fitness values found.
In terms of the number of function evaluations, sEDA requires less number of function evaluations as
compare to UMDAc and EMNAglobal for 10D version, but in 50D sEDA is using significantly larger
number of function evaluations than the other 2 EDAs.

Ackely f unction : Ackely has several local minima, hence it can be difficult to optimize. The
performance of sEDA compared to UMDAc and EMNAglobal are similar in terms of minimum av-
erage best fitness values.But it has been concluded that sEDA is better in 10D because it requires a
lesser number of function evaluations as compared to the other 2 algorithms. For 50D Ackely, sEDA
requires significantly more function evaluations.

Rosenbrock f unction : The results of Section 5.5.4 give some insight into why the Rosenbrock
function is a very hard problem for EDAs. The comparison of problem variables and EDA model
variables suggests that any EDA having control over the covariance parameter will work better in
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Table 6.3: Solution quality comparison for 10D problem. Bold font represents the best result.

Function Alg. Best Fitness No. of Evaluations

Sphere
Uc 6.91E-09±1.8E-09(-) 1.5E+05±1.4E+03(+)

Eg 7.67E-09±1.6E-09(+) 1.4E+05±1.8E+03(+)

s 6.98E-09±1.9E-09 5.5E+04±9.7E+02

Griewangk
Uc 7.78E-09±1.6E-09(+) 1.4E+05±1.7E+03(+)

Eg 7.32E-09±1.5E-09(+) 1.4E+05±1.5E+03(+)

s 6.82E-09±1.8E-09 6.0E+04±3.2E+03

Ackely
Uc 8.50E-09±1.1E-09(-) 2.0E+05±1.4E+03(+)

Eg 8.40E-09±1.1E-09(-) 2.1E+05±1.4E+03(+)

s 8.27E-09±1.2E-09 7.8E+04±9.2E+02

Rosenbrock
Uc 8.21E+00±2.3E-02(+) 3.0E+05±0.0E+00

Eg 7.80E+00±1.5E-01(+) 3.0E+05±0.0E+00

s 7.51E+00±2.6E-01 3.0E+05±0.0E+00

Rastrigin
Uc 7.32E-09±1.8E-09(+) 2.2E+05±5.4E+03(+)

Eg 6.91E-09±1.8E-09(+) 2.2E+05±4.6E+03(+)

s 1.99E-02±1.4E-01 7.8E+04±3.2E+03

Rotated Ellipsoid
Uc 3.72E+00±3.5E+00(+) 3.0E+05±0.0E+00

Eg 7.51E-09±2.1E-09(+) 1.3E+04±1.5E+03(+)
s 6.87E-01±1.0E+00 3.0E+05±0.0E+00

Uc stands for UMDAc, Eg stands for EMNAglobal, s stands for sEDA.
+ sign, the value of t-test (2 tailed)>0.05, indicates statistically significant difference when compared with sEDA.
- sign, the value of t-test (2 tailed)<0.05, indicates no statistically significant difference when compared with sEDA.
No marker indicated, when the results are same.

this function. sEDA is an example of such an EDA, and while it does not converge towards the
global optimum, it outperforms UMDAc and EMNAglobal with significantly better solutions. These 3
algorithms use the same number of function evaluations to achieve best fitness values.

Rastrigin f unction : Rastrigin function which is a multimodal and separable problem shows that
the performance of sEDA is degraded significantly as compared to UMDAc and EMNAglobal. For
the 10D version of the function, both UMDAc and EMNAglobal performs better (since an adequate
population is supplied), while for the 50D version, UMDAc performs better. Further examination on
the best results of sEDA in 10D Rastrigin function shows that, out of 100 runs, the best results are
within 10e-8 for 95 different runs, where as rest of the runs are getting the best result in the range
10e-2. While taking the average, the best value is in the range 10e-2. Taking average results in poor
performance, hence considering this results shows the wrong interpretation of experimental results.
Rotated Ellipsoid f unction : For the 10D and 50D Rotated Ellipsoid functions, the performance
of EMNAglobal surpasses sEDA and UMDAc. In this case, the comparison of model variables and
EDA model variables are matched exactly the same (found from Section 5.5.3). The comparison also
suggests that, EMNAglobal will perform better in this function.

To approximately set the value of η for 10D Griewangk, 10D Ackley and 10D Rastrigin functions,
refer to Section 5.8.1.



119 CHAPTER 6. SCREENING ESTIMATION OF DISTRIBUTION ALGORITHMS

Table 6.4: Solution quality comparison for 50D problem. Bold font represents the best result.

Function Alg. Best Fitness No. of Evaluations

Sphere
Uc 8.88E-09±8.5E-10(-) 3.9E+05±1.7E+03(+)

Eg 2.65E-08±1.8E-07(+) 3.9E+05±2.6E+05(+)
s 8.81E-09±9.1E-10 1.3E+06±7.8E+03

Griewangk
Uc 8.87E-09±8.7E-10(-) 3.5E+05±1.6E+03(+)
Eg 1.42E-08±3.6E-08(-) 4.6E+05±5.9E+05(+)

s 8.58E-09±7.2E+10 1.1E+06±6.9E+03

Ackely
Uc 4.38E-08±1.8E-07(-) 7.2E+05±7.3E+05(+)

Eg 9.41E-09±4.4E-10(-) 5.3E+05±1.8E+03(+)
s 9.35E-09±4.5E+10 1.7E+06±8.2E+03

Rosenbrock
Uc 5.25E+01±1.8E+00(+) 3.0E+06±0.0E+00

Eg 4.78E+01±2.8E-02(+) 3.0E+06±0.0E+00

s 4.73E+01±3.6E-01 3.0E+06±0.0E+00

Rastrigin
Uc 8.84E-09±8.1E-10(+) 5.7E+05±9.2E+03(+)
Eg 7.05E+00±5.0E+00(+) 3.0E+06±0.0E+00

s 3.18E-01±5.0E-01 3.0E+06±0.0E+00

Rotated Ellipsoid
Uc 7.22E+02±2.2E+01(+) 3.0E+06±0.0E+00

Eg 9.52E-09±6.6E-09(+) 3.5E+05±2.6E+05(+)
s 2.09E+02±7.5E+01 3.0E+06±0.0E+00

Uc stands for UMDAc, Eg stands for EMNAglobal, s stands for sEDA.
+ sign, the value of t-test (2 tailed)>0.05, indicates statistically significant difference when compared
with sEDA.
- sign, the value of t-test (2 tailed)<0.05, indicates no statistically significant difference when com-
pared with sEDA.
No marker indicated, when the results are same.

6.5 Examination of sEDA Behavior

6.5.1 No ill-conditioned Matrix

From a stability point of view, sEDA is much more stable than EMNAglobal. If the population size is
not large as compared to the problem dimensionality, EMNAglobal produces an ill-conditioned matrix,
which is a major issue. Although sEDA uses some characteristics of EMNAglobal, it does not produce
any ill-conditioned matrix because there are far fewer covariance parameters to be estimated from the
data. This can be experimentally shown by plotting the eigenvalues of the Σ of EMNAglobal and Σt

of sEDA. EMNAglobal uses 0.5 as its selection ratio, while sEDA uses selection parameter (τ) and
model selection parameter (η) as 0.3 and 0.3 respectively. Both algorithms are implemented on the
10D Rosenbrock test function with 200 number of generations and 100 population.
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Figure 6.1: Eigenvalues of the Covariance Matrix over generations, (6.1a) EMNAglobal on 10D Rosen-
brock Function, (6.1b) sEDA on 10D Rosenbrock Function.
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Figure 6.1a shows a representative run of the performance of EMNAglobal where the ellipse in
the figure represents the existence of a ill-conditioned covariance matrix. Figure 6.1b compares this
with a run of sEDA, which shows that sEDA doesn’t have any ill-conditioned matrix, even though
the population size is small. The estimation of many parameters in EMNAglobal means that it is likely
that one or more eigenvalues will become very small, making the covariance matrix ill-conditioned.

Previous techniques for repairing ill-conditioned covariance matrices are described in [42, 43]
(for more discussion see Section 2.7). A comparison table is discussed in [43]. The methods include
CMR, ECMR (Extended CMR) and ECMR0 (Extended CMR-zero) which is implemented on differ-
ent artificial test functions. The explanations of algorithms and parameter details are mentioned in
[43].

In the next experiments, the sEDA algorithm is compared with the 3 algorithms discussed in [43]
using Rosenbrock, SumCan and Schwefel’s Problem 2.26 functions (described in Table 2.1). These
algorithms are covariance matrix repairing algorithms. Since these algorithms are implemented on
the set of problems in [43], it has been easy to make a comparison between sEDA and the different
covariance matrix repairing algorithms. This is fairly a small set of problems, here the main motive
is to show that, sEDA is also comparable to these covariance matrix repairing algorithms.

Except Sumcan, the other 2 functions are minimization functions. sEDA uses same population
size and number of function evaluations as described in [43], with τ=0.3 and η=0.3 as selection
ratios. The comparison values shown in Table 6.5 with the average performance of 100 independent
runs of each algorithm. Table 6.5 as well as discussion from [43] revealed that CMR, ECMR and
ECMR0 have approximately identical performances. From Table 6.5, it can be concluded that, the
performance of sEDA is better than the other 3 algorithms in terms of the best fitness values in all
these functions, but sEDA requires a greater number of function evaluations in each case.

6.5.2 Role of η

As discussed in Section 6.2.2, the value of η in sEDA determines the number of variables to be se-
lected for covariance modeling. When the value of η = 1, sEDA model becomes the full covariance
matrix, whereas, when η = 0, sEDA model becomes a diagonal covariance matrix. However, the algo-
rithm is not similar to EMNAglobal and UMDAc. sEDA generates a different larger population at each
generation because of the elementary effect calculation, which differentiate sEDA from EMNAglobal

and UMDAc. The performance comparison of sEDA while η = 0 and η = 1 is discussed here.

Hence the value of η depends on the problem to be solved and some experimentation is expected
to be required to find the optimal value in any given application. The results and comparison of model
variables and problem variables for various problems have been analyzed in Chapter 5.

The three problems described in Chapter 5, where the properties of model variables are exactly
matched to the problem variables are 10D Sphere, 2D Elliptical and the 10D Rotated Ellipsoid func-
tions.

sEDA is implemented on these 3 functions. The population size, number of generations as well
as the number of function evaluations are the same as described in Table 6.2 for 10D problems. The
selection ratio (τ) for UMDAc and EMNAglobal is set to 0.5. For sEDA, the selection ratio (τ) is
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Table 6.5: Comparision of sEDA, CMR, ECMR and ECMR0. Bold font represents the best result.

Function Alg. Best fitness No. of Evaluations

Rosenbrock

sEDA 7.52E+00±3.3E-01 3.0E+05±0.0E+00

CMR 2.35E+02±1.2E+02(+) 3.4E+04±2.7E+04(+)
ECMR 2.26E+02±9.9E+01(+) 3.9E+04±4.6E+04(+)

ECMR0 2.16E+02±8.5E+01(+) 4.5E+04±5.9E+04(+)

Sumcan

sEDA 8.64E+02±1.1E+03 3.0E+05±0.0E+00

CMR 9.88E+04±7.9E+03(+) 4.9E+04±4.1E+04(+)

ECMR 9.73E+04±1.4E+04(+) 5.2E+04±4.7E+04(+)

ECMR0 9.85E+04±9.7E+03(+) 4.9E+04±4.1E+04(+)
sEDA -1.81E+04±2.1E+04 3.0E+05±0.0E+00

Schwefel CMR -4.93E+03±6.8E+02(+) 5.9E+04±6.2E+04(+)

Problem 2.26 ECMR -4.91E+03±7.0E+02(+) 5.9E+04±6.2E+04(+)

ECMR0 -5.02E+03±6.8E+01(+) 5.6E+04±5.7E+04(+)

+ sign, the value of t-test (2 tailed)>0.05, indicates statistically significant difference when compared
with sEDA.
- sign, the value of t-test (2 tailed)<0.05, indicates no statistically significant difference when
compared with sEDA.

Table 6.6: Solution Quality Comparison for the 10D Sphere and 2D Elliptical Functions when η =
0.0. Bold font represents the best result.

Function Alg. Best Fitness No. of Evaluations

10D Sphere
Uc 6.91E-09±1.8E-09(-) 1.5E+05±1.4E+03(+)

s 6.90E-09±2.0E-09 2.7E+01±4.6E-01

2D Elliptical
Uc 2.91E-09±1.8E-09(-) 1.5E+01±1.0E+00(+)

s 2.72E-09±2.8E-09 5.5E+00±6.1E-01

Uc stands for UMDAc, s stands for sEDA.
+ sign, the value of t-test (2 tailed)>0.05, indicates statistically significant difference when compared
with sEDA.
- sign, the value of t-test (2 tailed)<0.05, indicates no statistically significant difference when
compared with sEDA.



123 CHAPTER 6. SCREENING ESTIMATION OF DISTRIBUTION ALGORITHMS

Table 6.7: Solution Quality Comparison for the 10D Rotated Ellipsoid Function when η = 1.0. Bold
font represents the best result.

Function Alg. Best Fitness No. of Evaluations

10D Rotated Ellipsoid
Eg 7.51E-09±1.7E-09(-) 1.3E+04±1.5E+03(+)
s 7.42E-09±1.8E-09 5.9E+04±1.0E+03

Eg stands for EMNAglobal, s stands for sEDA
+ sign, the value of t-test (2 tailed)>0.05, indicates statistically significant difference when compared
with sEDA.
- sign, the value of t-test (2 tailed)<0.05, indicates no statistically significant difference when
compared with sEDA.

set to 0.3, whereas the model selection ratio (η) depends upon the type of the problem, since η is
problem-dependent.

For the 10D Sphere and 2D Elliptical functions, the value of η for sEDA is set to 0.0 whereas
for the 10D Rotated Ellipsoid function, the value of η is set to 1.0. The results are based on 100
independent runs.

Table 6.6 illustrates the results of the 10D Sphere and 2D Elliptical functions, when the value of η

for sEDA is set to 0.0. It shows that for both the functions, the results of best fitness values achieved
by sEDA and UMDAc are similar, where as the number of function evaluations attained by sEDA is
better than UMDAc.

Table 6.7 shows the comparison between EMNAglobal and sEDA when η = 1 in a 10D Rotated
Ellipsoid function. The performance of sEDA is similar to EMNAglobal with respect to the best fitness
values but it requires more number of function evaluations than EMNAglobal to achieve the solution.

6.6 Scaling sEDA to High-Dimensional Problems

Due to the nature of the algorithm, sEDA as described above will require a relatively large number
of function evaluations when applied to high-dimensional problems. This is due to the fact that, for
each generation the population size is directly proportional to the dimension of the problem. Hence,
the number of function evaluations per generation is O(nM).

6.7 Modified sEDA for Solving High Dimensional Problems
(sEDA-lite)

To address the issue of population size, a modified version of sEDA, called sEDA-lite is also proposed
here. The algorithm uses the same principles as sEDA but differs in the calculation of the elementary
effect values. As discussed in Section 6.2.2, using the mean of the selected population to calculate
elementary effect values in sEDA, results in a significant increase in the number of fitness function
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evaluations required per generation. In sEDA-lite, the median of each dimension in the selected
population is used instead to calculate elementary effects. The mechanics of the calculations in sEDA-
lite are the same as those in sEDA apart from the use of the median of the elementary effects values in
place of the mean. Like the mean, the median is representative of the center of the selected population.
However, the median is by definition located at an individual. Hence, all calculations in Equation (3.3)
only use individuals in the selected population (their fitness values have already been evaluated). It
follows that, for each generation of sEDA-lite, the number of function evaluations is reduced from
M+(M×n× τ) to M.

The pseudocode for sEDA-lite is presented in Algorithm 6.2. Truncation selection is used with
parameter τ . The median m̃ of the selected population is used to calculate elementary effect values.

Firstly, the median of the selected population has been calculated dimension-wise. Let for a n

dimensional problem, the median values are denoted as m̃1, m̃2, . . . , m̃n, where m̃n belongs to one of
the value of xi, where i = 1, . . . , n. Suppose m̃i belonging to the kth value of xi (ie. m̃i=xk

i ),
where k ∈ {1, . . . , length(M ∗ τ)}. The fitness function f (xk) belongs to the kth candidate is used for
calculating the elementary effect for xi. Hence the formula for calculating the elementary effect for xi

is,

Exi j =
f (xk)− f (xj)

xk
i − xi j

(6.1)

where j = 1, . . . , length(M ∗ τ); i = 1, . . . , n and i 6= k as well as j 6= k. Set Ekk = 0.
sEDA-lite uses the same Pareto optimal concept as used in sEDA, to select the important and

dependent variables in the problem. After selection, the covariance matrix for the EDA model is
formed as a sparse matrix, with non-zero covariance terms for selected variables. This is used in
combination with the EDA mean vector (estimated from the selected expanded population) and the
model is then used to generate the new population as in a standard EDA. The process is repeated until
some stopping criterion is met.

Table 6.8: Complexity of sEDA and sEDA-lite.

sEDA sEDA-lite
Model estimation O((nη)2M(1∗n)) O((n)2M)

+O(nM) +O(nM)

Solution Sampling O(n2M(1+n)) O(n2M)

The complexities of sEDA and sEDA-lite are shown in Table 6.8. Although both the algorithms
are in-between UMDAc and EMNAglobal , From Table 6.8 shows that, sEDA-lite uses a less number of
function evaluations than sEDA. For the Model estimation, sEDA requires more n number of function
evaluations than sEDA-lite. For the Solution Sampling, sEDA requires (1+ n) times more function
evaluations than sEDA-lite.

6.8 Experimental Design

To more generally and thoroughly evaluate and compare the performance of the algorithms, exper-
iments have been carried out on 3 different sets of problems. The first are artificial test functions.
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Algorithm 6.2 Pseudo code for sEDA-lite
1: Given: Population size M, dimensionality n, selection parameter 0 < τ < 1, model selection

parameter 0 < η < 1.
2: Begin (set t = 0)

Initialize population P by generating M individuals uniformly in S.
3: while stopping criteria not met do
4: Evaluate f for population P.
5: Truncation selection: Psel = Msel best individuals from P;Msel = Rnd(M · τ) .
6: Calculate mean, ~µ and median, ~̃m of Psel
7: Calculate m̃ = median(Psel), where m̃ = m̃1, · · · , m̃n.
8: for i = 1 to n do
9: for j = 1 to Msel do

10: Calculate Exi j using Eqn.6.1, where m̃ is the baseline point and the perturbation value is
given by jth individual

11: end for
12: end for
13: Calculate mean (E∗i (x)) and standard deviation (std(Ei(x))) of E(x).
14: Determine the Pareto optimal solutions using E∗i (x) and std(Ei(x)). Let this number of vari-

ables be po .
15: Let B = Round(n ·η).
16: If po > B, randomly choose B variables from po.
17: If po < B, select/add the next B− po variables nearest to the Pareto front.
18: Build Σt using covariance terms for the B selected variables and variance terms only for the

remaining n−B variables
19: p(x)← (~µ,Σt).
20: Generate P new population by sampling from p(x).
21: end while
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The second set of problems are Circles in a Square (CiaS) packing problems and the third set are
the 51 customer location-allocation problems with different numbers of facilities. Both artificial and
real world problems are considered because the artificial test functions are widely used in various
optimization research and since their shape is known, they are very easy for comparison. In addi-
tion to this, there are a number of advantages in using real world problems, since the results are
application-oriented. The real world problems used are all scalable in terms of dimensionality. They
are also known to have features that make them difficult to solve for many algorithms, e.g. the fitness
functions are not differentiable and they contain a large number of local optima.

6.8.1 Selection Parameter Settings for sEDA-lite

Like sEDA, sEDA-lite also contains two selection parameters, τ and η . A different combinations
of τ and η has been tested in 6 different 50D benchmarking functions (refer to section 6.3.1 for the
different combinations of τ and η and the black-box functions). sEDA-lite is implemented with a
population size of 2000 having 300000 function evaluations. The algorithm is terminated when the
a difference between best fitness value and the global optimum is less than equal to 1e-08 or the
algorithm attains the maximum allowed number of function evaluations.

Table 6.9 lists the mean and standard deviation of the best fitness values found over 100 runs for
different combination of τ and η . It has been found out that, out of 6 functions, 3 function attains the
best fitness value when τ=0.3 and η=0.1.

6.8.2 Artificial Test Problems

The commonly used artificial test problems listed in Table 6.10 are taken from Dong et. al. [41].
The problems can be categorized into separable unimodal (F1 and F2), non-separable (F3, . . . ,F10) and
multimodal (F11,F12,F13) problems. For these test functions, an offset value is added to the functions
to move the global optimum away from the origin. The offset values used in the test functions are the
same as described in [41] except for F4 and F6. For these 2 functions, the offset values are generated
randomly, because [41] also generates the offset value randomly. Due to the random nature of
the offset values of these problems, only the algorithms whose pseudo code are available to us are
implemented. The experiments on these functions are not comparable.

Again, the offset values used in [41] for these problems are different since the offset data is not
available for these problems, hence the offset value is generated using the same formula as described
in [41].

The problem sizes were 50D and 100D for each artificial test function discussed. The number of
function evaluations was chosen as 10000× n. sEDA-lite was implemented on these test functions.
The population sizes in [41] were tested for sEDA-lite (i.e., 200, 500, 1000 and 2000). The selection
parameter τ equal to 0.5 and 0.3 was taken since 0.5 is the selection ratio which is used in most of
the literature [102] and 0.3 is the selection ratio used for evaluating the results for sEDA. The model
selection parameter (τ) was set to 0.1 because it has been seen that UMDAc is performing better
than EMNAglobal in all the artificial test functions discussed in [41]. The parameter values while
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Table 6.9: Solution quality comparison having different values of τ and η with 50D 6 different
function from BBOB in sEDA-lite.

Function (τ , η) Best fitness values

f un1

(0.3,0.1) 8.6140e-09±9.2037e-10
(0.3,0.3) 8.8520e-09±8.1285e-10

(0.3,0.5) 8.6975e-09±9.0483e-10

(0.3,0.7) 8.6210e-09±9.9506e-10

(0.3,1.0) 2.9679e-05±2.2210e-04

(0.5,0.1) 2.0836e-05±2.3387e-06

(0.5,0.3) 1.9642e-05±1.9041e-06

(0.5,0.5) 1.7086e-05±1.7491e-06

(0.5,0.7) 1.3047e-05±1.4664e-06

(0.5,1.0) 2.9791e-06±4.2177e-07

f un2

(0.3,0.1) 1.6662e-03±1.4682e-03

(0.3,0.3) 2.4410e-03±2.7017e-03

(0.3,0.5) 9.3648e-04±9.7742e-04

(0.3,0.7) 2.6012e-04±3.1926e-04
(0.3,1.0) 1.0063e+01±4.4448e+00

(0.5,0.1) 5.7978e+01±2.1955e+01

(0.5,0.3) 5.3092e+01±1.8768e+01

(0.5,0.5) 4.9049e+01±2.1461e+01

(0.5,0.7) 3.1959e+01±1.7041e+01

(0.5,1.0) 7.8826e+00±5.1523e+00

f un3

(0.3,0.1) 8.2984e-09±9.2698e-10
(0.3,0.3) 8.5845e-09±9.2434e-10

(0.3,0.5) 8.4970e-09±8.5480e-10

(0.3,0.7) 8.5974e-09±1.0399e-09

(0.3,1.0) 3.4861e-05±3.1290e-04

(0.5,0.1) 7.0779e-07±7.6088e-08

(0.5,0.3) 6.7771e-07±7.2366e-08

(0.5,0.5) 5.8874e-07±5.4882e-08

(0.5,0.7) 4.4554e-07 ±4.1413e-08

(0.5,1.0) 1.0216e-07±2.0426e-08

Function (τ , η) Best fitness values

f un4

(0.3,0.1) 4.7737e+01±3.1981e-02

(0.3,0.3) 4.7747e+01±3.2180e-02

(0.3,0.5) 4.7727e+01±3.3758e-02
(0.3,0.7) 4.7727e+01±4.4864e-02

(0.3,1.0) 5.1778e+01±2.3597e+00

(0.5,0.1) 4.7805e+01±2.3610e-02

(0.5,0.3) 4.7806e+01±2.9921e-02

(0.5,0.5) 4.7797e+01±2.6589e-02

(0.5,0.7) 4.7791e+01±3.2135e-02

(0.5,1.0) 5.2609e+01±2.0212e+00

f un5

(0.3,0.1) 3.0595e-07±2.9621e-08
(0.3,0.3) 5.2288e-07±2.9591e-08

(0.3,0.5) 4.2262e-07±2.4349e-08

(0.3,0.7) 3.1976e-07±1.8835e-08

(0.3,1.0) 5.4330e-05±1.5653e-04

(0.5,0.1) 1.8043e-04±1.0338e-05

(0.5,0.3) 1.7469e-04±1.0118e-05

(0.5,0.5) 1.6290e-04±9.0224e-06

(0.5,0.7) 1.4100e-04±8.6207e-06

(0.5,1.0) 6.6504e-05±7.3875e-06

f un6

(0.3,0.1) 9.2559e+00±2.3440e+00

(0.3,0.3) 9.1217e+00±1.9427e+000

(0.3,0.5) 8.1087e+00±1.6505e+00

(0.3,0.7) 5.7582e+00±1.3445e+00

(0.3,1.0) 2.5785e-07±1.6893e-06

(0.5,0.1) 2.7403e+01±4.2109e+00

(0.5,0.3) 2.7837e+01±4.0958e+00

(0.5,0.5) 2.7658e+01±4.1012e+00

(0.5,0.7) 2.5255e+01±3.9227e+00

(0.5,1.0) 8.7761e-09±8.0969e-10
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Table 6.10: A set of Artificial Problems obtained from [41].

Description Expression Domain
F1 Sphere F (~x) = ∑

n
i=1 x2

i [−100,100]n

F2 Shifted Sphere F (~x) = ∑
n
i=1 z2

i + fbias1,~z =~x−~o [−100,100]n

F3 Schwefel’s Problem 2.21 F (~x) = maxi {|xi|,1≤ i≤ n} [−100,100]n

F4 Shifted F3 F (~x) = maxi {|zi|,1≤ i≤ n} , [−100,100]n

~z =~x−~o
F5 Schwefel F (~x) = ∑

n
i=1[
(
x1− x2

i
)2

+(xi−1)2] [−10,10]n

F6 Shifted F5 F (~x) = ∑
n
i=1[
(
z1− z2

i
)2

+(zi−1)2], [−10,10]n

~z =~x−~o
F7 Rosenbrock ∑

n−1
i=1 [100(xi+1− x2

i )
2 +(xi−1)2] [−100,100]n

F8 Shifted Rosenbrock ∑
n−1
i=1 [100(zi+1− z2

i )
2 +(zi−1)2] [−100,100]n

+ fbias6,~z =~x−~o+~1
F9 Shifted Rotated High F (~x) = ∑

n
i=1
(
106) i−1

n−1 z2
i + fbias3 [−100,100]n

Conditioned Elliptic ~z = (~x−~o).M
F10 Schwefel 2.6 with Global F (~x) = max{|Ai~x−Bi|}+ fbias5 [−100,100]n

Optimum on Bounds i = 1, . . . ,n.
F11 Rastrigin ∑

n
i=1[x

2
i −10cos(2πxi)+10] [−5,5]n

F12 Shifted Rotated Rastrigin ∑
n
i=1[z

2
i −10cos(2πzi)+10] [−5,5]n

+ fbias10,~z = (~x−~o).M
F13 Shifted Expanded see the details in [144] [−3,1]n

Griewangk plus Rosenbrock
The shifted global optima are generated following the same way of [144]. Here M is the

transformation matrix.

implementing sEDA-lite on the artificial test functions are as follows: for most of the functions the
best population size was 2000 with the selection ratio 0.3 except F1 and F2, where the population size
was 200 and selection ratio was 0.5. The algorithm stopped when the difference between the global
optimum and the optimal values obtained from the algorithm was 1E-12 or it attained the maximum
number of function evaluations. The results were reported based on 25 repeated trials.

6.8.3 Real World Problems

The Circle in a Square packing and location-allocation problems are used again in this section. These
problems have already been discussed in Section 2.4.2 and 2.4.3 respectively.

For the (CiaS) problems, experiments were conducted on the number of circles (nc), ranging from
2, . . . , 50. The problem dimensionality n is equal to 2×nc. UMDAc, EMNAglobal, sEDA and sEDA-
lite were implemented on this problem. After a number of trials, the value of τ is set to 0.2 for all the
algorithms.

The value of η for sEDA and sEDA-lite is somewhat problem-dependent, but an approximate
value can be chosen by examining the nature of the variables. Hence, the value of η was set to 0.2.
The algorithm stopped after 2E+06 number of function evaluations or if the difference between the
best fitness value and the global optimum was 1E-04. The population size of all the algorithms was
set to 2000 except sEDA, where the population was the 50 times multiple of the dimensionality of the
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problem. Here the main idea for using the number of population size equals to 50 times multiple of
the dimensionality of the problem is to keep approximately same number of function evaluations for
sEDA with a fair amount of number of generations. The results were computed based on 25 different
trials.

The 51-Customer location-allocation problem is described in Section 2.4.3. For the 51-Customer
problems, experiments were conducted where the number of facilities equaled 5, 10, 15, 20, 25 and
35. UMDAc, EMNAglobal, sEDA and sEDA-lite were compared on these problems. The algorithms
stopped after 10000×n number of function evaluations. The population size of all the algorithms was
set to 2000 except sEDA, where the population was 50 times the dimension of the problem. The value
of τ for all the algorithms was 0.3, whereas the value of η was 0.1 and 0.1 for sEDA and sEDA-lite
respectively, since the correlation between problem variables was small here (refer to Table 4.1). The
results were based on 25 repeated trials.

6.9 Results

6.9.1 Artificial Test Problems

In the present research, the results of sEDA-lite are compared with the values of UMDAc, EEDA and
EDA-MCC which are taken from [41]. The results of EMNAglobal are not considered, since it has
been seen that, the performance of EMNAglobal is not performing better than the other 3 algorithms in
the test problems. The comparative results between UMDAc, EEDA, EDA-MCC and sEDA-lite are
listed in Table 6.11.

In this comparison of solution quality, sEDA is not considered because a prohibitive number of
function evaluations are required with the increase in dimension. However, a restricted number of
function evaluations in high dimensional problems has been used, and it has already proved that the
performance of sEDA is not satisfactory.

The results of the experiments for separable problems (F1 and F2), show that the performance of
all the algorithms for 50D and 100D are similar but EEDA is not as good as the rest of the algorithms
in 100D F2 function.

Functions from F3 . . . F10 are non-separable problems with only a few local optima. The per-
formance of UMDAc is relatively poor in these type of functions, which have already been shown
in the Table 6.11. The performance of EDA-MCC is significantly better than the rest of the algo-
rithms on problems F3 and F5. Since the offset values are generated randomly, the solutions of F4 and
F6 for EEDA and EDA-MCC are not considered here because of the unavailability of the code for
these functions. The results of UMDAc have been computed on these functions and compared with
sEDA-lite for the same offset values. It is observed that sEDA-lite is performing better than UMDAc.
The results of EDA-MCC and sEDA-lite are performing better than the UMDAc in 50D F7 and F8

functions. The solution comparison Table 6.11 shows that EEDA is performing better in 50D F10

function.
Overall, from functions F3 to F10, the performance of UMDAc is not satisfactory. In addition,

sEDA-lite is performing better than UMDAc, and in some cases, the performance of sEDA-lite is
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similar to the EDA-MCC.
Functions from F11 to F13 are multimodal functions. In these functions EDA-MCC and EEDA

are not performing well. The performance of UMDAc and sEDA-lite are similar for function F11;
however, in the functions F12 and F13, the performance of sEDA-lite exceeds UMDAc.

The above discussion may be summarized as follows, the performance of sEDA-lite for separable
problems is similar to all other algorithms and it is even better than EEDA in the 100D F2 function.
In non-separable functions, the performance of EDA-MCC exceeds that of sEDA-lite. sEDA-lite
performs better than UMDAc and EEDA in some cases of non-separable functions. For multimodal
problems, the performance of sEDA-lite is much better than the other algorithms in this experiment.
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Table 6.11: Solution Quality Comparison. Each cell contains the Mean and Standard Deviation of the difference between the best fitness value and the
global optimum. Bold font represents the best result.

Prob. Dim UMDAc EEDA EDA-MCC sEDA-lite
F1 50 0±0 0±0 0±0 0±0

100 0±0 0±0 0±0 0±0
F2 50 0±0 0±0 0±0 0±0

100 0±0 5.3e-10±1.4e-09(-) 0±0 0±0
F3 50 2.6e-04±1.5e-05(+) 1.8e-08±2.4e-09(+) 0±0(+) 4.2e-07±2.7e-08

100 2.6e-02±8.3e-02(-) 1.5e-03±8.5e-04(+) 0±0(+) 2.5e-06±4.2e-06
F4 50 4.1e+01±2.3e+00(+) 1.4e-05±6.8e-05* 0±0* 3.6e+01±2.1e+00

100 5.3e+01±2.5e+00(+) 8.1e+00±1.4e+00* 0±0* 4.8e+01±2.8e+00
F5 50 1.5e+01±4.1e+00(+) 2.4e-02±3.7e-03(+) 0±0(+) 1.0e+01±4.0e+00

100 1.3e+02±2.7e+01(-) 3.8e-01±4.7e-02(+) 0±0(+) 1.2e+02±2.1e+01
F6 50 6.5e+01±1.4e+01(+) 1.0e-01±1.2e-02* 0±0* 3.8e+01±1.1e+01

100 1.1e+03±1.6e+02(+) 7.2e+00±7.9e-01* 0±0* 8.6e+02±1.6e+02
F7 50 4.8e+01±3.4e-02(+) 5.0e+01±9.2e+00(+) 4.7e+01±2.1e-01(-) 4.7e+01±2.4e-02

100 9.7e+01±6.4e-02(-) 9.7e+01±3.7e-01(-) 9.6e+01±7.5e-02(+) 9.7e+01±3.1e-02
F8 50 4.1e+02±9.1e+02(+) 5.2e+02±1.0e+03(+) 4.8e+01±1.5e-01(-) 4.8e+01±1.4e+00

100 9.3e+02±3.1e+03(-) 4.4e+04±4.4e+04(+) 9.6e+01±1.3e-01(+) 1.1e+02±2.8e+01
F9 50 4.3e+07±4.1e+06(+) 4.1e+06±1.4e+06(+) 3.6e+06±1.5e+06(+) 4.0e+08±4.6e+07

100 4.3e+07±3.1e+06(+) 2.2e+07±3.7e+06(+) 9.6e+06±2.5e+06(+) 2.5e+09±3.7e+08
F10 50 4.9e+03±1.8e+02(+) 2.0e+03±2.0e+03(+) 3.1e+03±3.4e+02(+) 4.5e+03±1.6e+02

100 5.9e+03±4.3e+02(+) 4.4e+03±6.0e+02(+) 1.9e+03±3.6e+02(+) 5.3e+03±3.4e+02
F11 50 0±0(-) 3.1e+02±1.3e+01(+) 2.9e+02±1.4e+01(+) 0±0

100 0±0(-) 7.3e+02±1.5e+01(+) 7.5e+02±1.6e+01(+) 0±0
F12 50 2.1e+00±9.5e-01(+) 3.1e+02±1.7e+01(+) 3.0e+02±1.4e+01(+) 1.5e+00±9.9e-01

100 8.6e+00±2.1e+00(+) 7.3e+02±2.5e+01(+) 7.4e+02±2.3e+01(+) 0±0
F13 50 7.8e+00±8.3e-01(+) 2.7e+01±1.1e+00(+) 2.6e+01±9.2e-01(+) 5.9e+00±5.4e-01

100 1.5e+01±2.0e+00(+) 3.8e+01±2.6e+01(+) 6.5e+01±1.6e+00(+) 1.1e+01±7.3e-01

+ sign, the value of t-test (2 tailed)>0.05, indicates statistically significant difference when compared with sEDA-lite.
- sign, the value of t-test (2 tailed)<0.05, indicates no statistically significant difference when compared with sEDA-lite.

Values with ”*”: These values are directly quoted from [41] and it is incomparable to the other algorithms due to the random values of the offset
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6.9.2 Results for Circle in a Square (CiaS) Problems

Here UMDAc, EMNAglobal, sEDA and sEDA-lite are compared with the number of circles ranging
from 2, . . . , 50, over a fixed number of function evaluations.

The performance of the algorithms on the CiaS problems is presented in Figure (6.2a). The x-axis
denotes the problem size (nc) while the y-axis is a performance ratio given by dn/ f (xn), where dn is
the known global optimum and f (xn) is the solution found by the algorithm.

The performance of sEDA, sEDA-lite and UMDAc are difficult to distinguish in this figure be-
cause the lines are very close to each other. Hence to clearly visualize the performance, the zoomed
version of the figure is considered, where the y-axis of the figure is scaled in between 0.9 to 1.5
presented in Figure (6.2b).

In Figure (6.2a) clearly shows that, EMNAglobal is not performing better than UMDAc and sEDA-
lite. Figure (6.2b) shows that up to nc=23, sEDA is performing better but when the value of nc

increases, the performance of sEDA drops dramatically. The shape of the curve is a reflection of the
fixed budget for functions evaluations imposed in the experiments. It is likely that the algorithm is
no longer being given enough time to converge. The algorithm would be expected to perform better
on larger problems if more function evaluations were given. In contrast, sEDA-lite seems to perform
much better than sEDA, when nc is greater than 23, with a smaller budget of function evaluations. In
addition to this, sEDA-lite is performing slightly better than UMDAc.

Now, from the analysis coming from Chapter 5, it suggests that, with limited covariance matrix,
the modeling parameter used in sEDA helps in the better performance in CiaS problem, and here
the experiments proved that, sEDA in low dimensional problems and sEDA-lite in high dimensional
problems are performing better than standard Gaussian EDAs.

6.9.3 Results for 51-Customer Location-Allocation Problem

Table 6.12 shows the best performance results of UMDAc, EMNAglobal, sEDA and sEDA-lite on a
fixed number of function evaluations over 25 runs. In low dimensional problems (e.g., when the
number of facilities equals 5), the performance of sEDA is better than the rest of the algorithms
(except sEDA-lite). However, the results of UMDAc is better when the number of facilities equals 10.
When the number of facilities in the problem increases, sEDA-lite is performing better than the other
algorithms.

Hence, in the 51 Customer problem, sEDA-lite is performing better when the number of facilities
increases. The performance of EMNAglobal is inferior across these problems.

In this section of experiments on location-allocation problem, proved that sEDA in low-dimensional
and sEDA-lite in high-dimensional problem are performing better .
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Figure 6.2: (6.2a): Median Performance of UMDAc, EMNAglobal, sEDA and sEDA-lite on the CiaS
problem. (6.2b): Median Performance of UMDAc, EMNAglobal, sEDA and sEDA-lite on the CiaS
problem over the range in between 0.9 to 1.5 in the y-axis.



CHAPTER 6. SCREENING ESTIMATION OF DISTRIBUTION ALGORITHMS 134

Table 6.12: Solution quality comparison for the 51 Customer Location-Allocation Problem. Bold
font represents the best result.

Facilities Algorithms Best Values

5

UMDAc 72.6875±0.5509(+)
EMNAglobal 77.4537±3.6498(+)
sEDA 72.5598 ±0.5910
sEDA-lite 72.5416±0.5430(-)

10

UMDAc 43.4009±0.8228
EMNAglobal 52.5391±2.7525(+)
sEDA 47.9302±3.8087(+)
sEDA-lite 43.6140±0.7635(+)

15

UMDAc 29.2951±0.9477(+)
EMNAglobal 42.9912±3.1708(+)
sEDA 49.3763±3.2235(+)
sEDA-lite 28.9517±1.0797

20

UMDAc 21.1353±0.4938(+)
EMNAglobal 36.2924±2.5589(+)
sEDA 48.5540±9.1548(+)
sEDA-lite 20.8893±0.3211

25

UMDAc 14.6532±0.7051(-)
EMNAglobal 34.4017±2.7721(+)
sEDA 50.0931 ±16.5150(+)
sEDA-lite 14.2182±0.4920

30

UMDAc 10.1039±0.9703(+)
EMNAglobal 31.2373±2.1729(+)
sEDA 49.7958±20.0151(+)
sEDA-lite 9.5921±0.5381

35

UMDAc 7.3644±0.6049(-)
EMNAglobal 29.9169±2.2931(+)
sEDA 47.7707±20.7167(+)
sEDA-lite 7.2460±0.7566

+ sign, the value of t-test (2 tailed)>critical values of t(.05), indicates statistically significant
difference when compared with best results
- sign, the value of t-test (2 tailed)<critical values of t(.05), indicates no statistically significant
difference when compared with best results
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6.10 Summary

This Chapter analyzed classical EDAs over continuous variables in terms of dependency of variables
and modeling and presented numerical issues as well as common difficulties with respect to perfor-
mance of the model. Using different techniques and theoretical analysis, a Gaussian-based continuous
EDA, called sEDA, was proposed, using a mechanism to control the amount of covariance parame-
ters estimated within the Gaussian model, which clearly gives an idea about the number of dependent
variables and importance of these variables in a problem. By adopting a simple variable screening
technique from experimental design and an idea inspired by the Pareto-front in multi-objective op-
timization, sEDA screens out the important-dependent variables, and unimportant-independent vari-
ables. A simple implementation of this framework, sEDA, has been experimentally compared with
UMDAc and EMNAglobal. While considering artificial test functions, sEDA showed significantly bet-
ter performance in most of the cases. Most of the results are better primarily due to better selection of
variables for covariance modeling. The role of η is significant if the nature of variables in a problem
is known beforehand. The main advantage of sEDA is not only finding a good solution with a lesser
number of population, but it also gives an idea of variable dependency and the importance of the
problem. Moreover, it doesnot show ill-conditioned covariance matrix while modeling.

In addition to this, sEDA used a large number of function evaluations in high dimensional prob-
lems. To overcome this issue, sEDA-lite was proposed in this paper. A simple implementation of
this framework, sEDA-lite, has been experimentally compared with UMDAc, EEDA, EDA-MCC,
EMNAglobal and sEDA in various problems. In artificial multimodal test problems, the performance
of sEDA-lite is better than UMDAc, EEDA, EDA-MCC, whereas for real world high dimensional
problems, its performance is generally better than UMDAc, EMNAglobal and sEDA. The main pur-
pose of these experiments was to demonstrate that a screening mechanism can be effectively incor-
porated into an EDA and used to control the covariance modeling, providing results competitive with
existing techniques. Now, it has been seen that, the experiments on this chapter supports the analysis
of Chapter 5.
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Conclusion

The focus of the thesis has been analyzing and understanding the properties of continuous optimiza-
tion problems and Estimation of Distribution Algorithms (EDA) model variables. The correlation
coefficient, the eigenanalysis and the Morris method have been used to analyze and better understand
the correlation, key structural and important variables of the problem and the model variables; these
adopted methodologies also being adaptable to a wider range of problems. A part of this investiga-
tion has resulted in the development of a new type of EDA framework called screening Estimation of
Distribution Algorithm (sEDA) and its modified form for solving high dimensional problems, called
sEDA-lite.

Chapter 2 provided the background of continuous optimization problems and Estimation of Dis-
tribution Algorithms (EDAs). The type of EDAs and the issues related to EDAs have been discussed.
Researches undertaken for solving the EDAs’ issues have been discussed. It has been shown that a
number of major challenges still exist in EDAs while solving continuous optimization problems. The
prior knowledge and assumption about the problem is a fundamental concept in solving a problem
by any algorithm. Although a number of advanced Gaussian-based EDAs have been proposed, there
has been little previous examination or attempt to analyze the behaviour of the EDA models and the
relationship to the structure of the problems to which these algorithms are applied. Although general
guidelines are there for adapting algorithms, it is difficult to prefer an algorithm in a given specific
situation, since the preference is mainly problem dependent.

In Chapter 3, an experimental methodology is proposed to analyze the features of variables in
continuous optimization problems and continuous EDAs. The first technique used is the correlation
coefficient, which has been adopted from the sensitivity analysis to determine correlated variables.
The second is the eigenanalysis technique where the larger vector coefficients of the first eigenvector
are used for analyzing the key structural variables. The third technique is the use of the sensitivity
analysis technique, namely the Morris method, for identifying the important variables to the objective
function captured by the problem and the model. The results of these techniques have been pre-
sented in graphical format. These techniques are potentially very useful techniques for analyzing and
comparing different continuous optimization problems and algorithms.

Chapter 4 provides the analysis of continuous optimization problems based on correlated, key
structural and important variables. This helps to visualize the properties of the problems. Although
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some problems seem to be similar but they are different in other aspects. Five different categories
have been formed based on the analysis and set an example of continuous optimization problem to
this category. From the given number of problems, only 5 different categories have been formed,
however, in this case 3 more categories are unexplored due to the limited number of functions used in
the thesis. These categories have been further used by EDAs to analyze and compare to the problems.

Chapter 5 considered EMNAglobal and implemented all the categories of the problems which had
already been discussed in Chapter 4. The analysis of model variables based on correlated, key struc-
tural and important variables has been done for each category. On some problems, the EDA modeled
the structure correctly and performed well, for example, the Sphere and Rotated Ellipsoid function,
whereas in some cases, it has been found that the analysis of EDA did not match with the analysis of
problem, and the performance is also not satisfactory as for example, Rosenbrock function. However
on some problems, it didn’t model the structure correctly but still performed well, for example, in
the Circle in a Square packing problem and the location-allocation problem. This shows that looking
at the performance or best fitness curve doesn’t indicate the behavior of the EDA model and how it
works. In some problem classes (e.g., CiaS problem), a clear change is seen in the correlation, the key
structural and important variables as the dimensionality increases, whereas for others, no significant
change is observed.

In this chapter, the compatibility of EDAs with the problems has been analyzed and assigned the
type of EDAs which better suits the problems.

Chapter 6 put forth a new type of Gaussian based EDAs called sEDA, which uses a mechanism
to control the amount of covariance parameters estimated within the Gaussian model, which clearly
gives an idea about the number of dependent variables and important of these variables in a problem.
By adopting a simple variable screening technique from experimental design and an idea inspired
by the Pareto-front in multi-objective optimization, sEDA screens out the important and dependent
variables, and unimportant and independent variables. sEDA has been experimentally compared with
different traditional EDAs. Although sEDA uses a smaller population, but it does not show any ill-
conditioned covariance matrix while modeling. Choosing of this model parameters can be done by
using the results which had discussed in Chapters 4 and 5. The main issues of sEDA is that, it
uses a greater number of function evaluations in high dimensional problems. Hence, in order to solve
this, a modified form of sEDA called sEDA-lite has been proposed, which requires less number of
function evaluations than sEDA in high dimensional problems. The sEDA-lite has been compared
with different EDAs. It has been seen that, the performance of sEDA is better in low dimensional
problems where as the performance of sEDA-lite is significant in high dimensional problems. The
main advantage of sEDA and sEDA-lite is not only finding a good solution but also gives an idea of
variable dependency and importance of the problem.

Overall, these chapters give an idea about understanding and analyzing of variables in Black-Box
optimization problems and Estimation of Distribution algorithms. As discussed above, Chapter 3
describes the methodologies used in this research. Although these methodologies have already been
used in various statistical domain, but, it is the first time that they have been used simultaneously for
problems and EDAs for analyzing different key properties of variables. In Chapter 4, these method-
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ologies are used for identifying different properties of variables in black box optimization problems,
which can be used to understand and to guide selection of the algorithm. Although, while categorizing
the problems by different researchers, some problems fall in the same category. However this research
shows that, with the addition of the existing categories, the problems can be further sub-categorized.
For example, the Sphere and 10D Elliptical function is a unimodal and separable problem, but in
this research, it shows that these two problems have different key structural and important variables.
Hence, this research shows an in-depth understanding of variables in black box optimization prob-
lems.

In addition to this, it has always been an added advantage to know how model variables work in
a given optimization problem. Therefore, methodologies described in Chapter 3 have been used in
Chapter 5 for analyzing and understanding variables in EDAs.

The research shows that, if an EDA works perfectly well in a problem, why it did so. Is it actually
capturing the right information of the problem variables during its implementation or are there other
reasons not yet identified? This research, to some extend shows that, if the model variables capture
the right information about a given problem, then it performs well.

Again, this research shows a possible method of solving problems where variables have medium
correlation between them, as well as when it has been difficult to predict the number of key structural
and important variables involved in a problem. This is reflected in Chapter 6, which uses the results
of the nature of variables in both problems and EDAs, to figure out the model selection parameter.
The analysis on previous chapters are useful in EDAs to choose the variables for modeling in between
UMDAc and EMNAglobal. This is an important outcome of this thesis, since this helps in choosing
the value of the selection parameter for the algorithm to some extend. This is manifested in the form
of sEDA and sEDA-lite in this thesis.

The future work of the thesis will be to verify the universal scope of these methodologies, which
has been accomplished by implementing these methodologies on a large set of problems, as well as
in some other algorithms. In addition to this, it has been used in different types of Gaussian EDAs,
which has the model selection parameter.
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