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A fixed-point formulation and a simulation-based solution method were 
developed for modeling intermodal passenger tours in a dynamic trans-
portation network. The model proposed in this paper is a combined model 
of a dynamic traffic assignment, a schedule-based transit assignment, 
and a park-and-ride choice model, which assigns intermodal demand 
(i.e., passengers with drive-to-transit mode) to the optimal park-and-
ride station. The proposed model accounts for all segments of passen-
ger tours in the passengers’ daily travel, incorporates the constraint on 
returning to the same park-and-ride location in a tour, and models indi-
vidual passengers at a disaggregate level. The model has been applied 
in an integrated travel demand model in Sacramento, California, and 
feedback to the activity-based demand model is provided through separate 
time-dependent skim tables for auto, transit, and intermodal trips.

Modeling drive-to-transit trips has been a challenging problem in 
transportation network modeling for decades. As a part of multi-
modal modeling, intermodal travel is more complicated not only 
because two modes of transportation are involved in a trip but also 
because the choice of park-and-ride is included in the travel. The 
combination of mode choice, route choice, and mode-transfer choice  
is involved in modeling intermodal travel. In the literature, inter-
modal trips (one-way travel from an origin to a destination) have been 
frequently addressed, and many approaches have been proposed for 
modeling user behavior (1–5). However, additional complexity is 
added to the problem when the model deals with intermodal tours 
(round-trip travel between an origin and multiple destinations). The 
intermodal tour problem is more complex because of the constraint 
on the park-and-ride choice, meaning that travelers have to return 
to the same park-and-ride location they originally parked their cars. 
This constraint changes the problem from a general shortest path to 
a shortest-tour problem.

In the context of dynamic network modeling, the concept of time 
has an important role. Its importance relates to the congestion levels  
in the network, transit schedules, and departure and arrival time 

considerations and preferences. In other words, travelers in the 
drive-to-transit mode may consider the time of travel to avoid major 
congestion in the auto network, the possibility of missing the transit 
vehicle at the park-and-ride (or being too early at the park-and-ride), 
and preferable arrival times at their final destinations. Therefore, 
although modeling a dynamic intermodal tour is more realistic com-
pared with traditional static approaches, it is not a trivial problem.  
In this study, that problem is addressed, so that a more realistic 
model is developed for planning and operational purposes. In addi-
tion, one objective of the model is to integrate an activity-based travel 
demand model with a dynamic traffic assignment (DTA) model. 
Previous studies of such integration include CEMDAP-VISTA (6), 
TASHA-MATSim (7), and OpenAMOS-MALTA (8). Those models 
focused on how to integrate more temporally rich models of demand 
and supply. In this integration framework, there is more interest in 
the supply side, or in capturing dynamic traffic and transit network 
assignment and loading. For that purpose, it is assumed that the 
activities of each traveler are given.

Literature review

As one of the first studies in the area of multimodal assignment, 
Abdulaal and LeBlanc introduced two ways to combine mode choice 
and route choice models (9). In one approach, mode choice and route 
choice are performed sequentially, and in the other, they are performed 
simultaneously. Fernandez et al. further studied two major issues 
in multimodal transportation modeling: (a) how users choose their 
mode of the trip and then, depending on the answer, how the best 
route is chosen and (b) how the transfer point from the private to the 
public mode is selected (10). Fernandez et al. proposed the following 
three approaches to model intermodal trips in a static network:

1. Using the generalized cost of the combined mode, people choose 
their path to minimize the cost of their trip.

2. People choose their mode of travel while the combined mode 
is considered as a separate mode, and then the shortest path is found 
in the selected mode.

3. As an extension of the second model, people may also include 
the choice of transfer point as the submodel.

Modesti and Sciomachen proposed an algorithm for finding a multi-
objective shortest path in a multimodal transportation network (1). 
They introduced a utility function for weighting the links according 
to their cost and time and used the classical Dijkstra’s shortest-path 
algorithm to find the path with maximum utility. Ziliaskopoulos and 
Wardell developed an algorithm for finding the intermodal least-time 

Modeling Transit and Intermodal Tours  
in a Dynamic Multimodal Network

Alireza Khani, Brenda Bustillos, Hyunsoo Noh, Yi-Chang Chiu,  
and Mark Hickman

A. Khani, Center for Transportation Research, University of Texas at Austin, 
1616 Guadalupe Street, Suite 4.202, Austin, TX 78701. B. Bustillos and  
Y.-C. Chiu, Civil Engineering and Engineering Mechanics, University of Arizona, 
1209 East 2nd Street, P.O. Box 210072, Tucson, AZ 85721-0072. H. Noh, 
Pima Association of Governments, 1 East Broadway Boulevard, Suite 401, Tucson, 
AZ 85701. M. Hickman, School of Civil Engineering, University of Queensland, 
Saint Lucia, Queensland 4072, Australia. Corresponding author: A. Khani, akhani@
email.arizona.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/43367897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


22 Transportation Research Record 2467

path in a multimodal network with time-dependent link travel times 
and turning delays (2). Their label-correcting algorithm is designed 
for all time intervals, and its complexity is independent of the number 
of modes. Abdelghany proposed a dynamic assignment and simula-
tion framework for different modes of transportation, incorporating 
a multiobjective time-dependent shortest path in the DYNASMART 
traffic assignment and simulation model (3).

Lozano and Storchi also applied a label-correcting algorithm 
to find the shortest viable hyperpath with a predefined maximum 
number of modal transfers (11). The approach is useful when there 
is no exact schedule for the transit system (i.e., the transit network is 
frequency based). Because their algorithm considers more than one 
criterion, the result of the algorithm is not necessarily optimal, and 
the user can choose the best hyperpath(s) from among the output, 
according to their preferences.

A multimodal assignment formulation was proposed by Garcia  
and Marin in the form of a variational inequality considering the 
combined modes (12). They used a nested logit model, solved by 
simplicial decomposition, in capturing the choice of mode, the transfer 
point between modes, and the route. Compared with Fernandez et al., 
they formulated the problem in a hyperpath space and performed 
stochastic assignment with elastic demand. Zhou et al. developed an 
integrated framework to model choices of departure time, mode, and 
path in a multimodal transportation system (4). As a part of the model, 
a time-dependent least-cost path algorithm based on Ziliaskopoulos 
and Wardell was used to generate intermodal paths. Khani et al. 
(5) and Nassir et al. (13) proposed algorithms for the intermodal path 
and tour problems, taking into account the scheduled service in the 
transit network.

From this review, there may be a more efficient and flexible algo-
rithm for intermodal path generation that can be used in the assign-
ment model. Moreover, incorporating a dynamic multimodal system, 
including the interaction of the auto and transit networks, a transit 
schedule in the transit path choice model, and a park-and-ride con-
straint in the intermodal tours, provides the motivation to pursue 
a more advanced multimodal assignment and simulation model. 
Therefore, algorithms with more efficient computation time that are 
appropriate for modeling intermodal trips and tours are developed 
in this study. The combination of the path models with a dynamic 
multimodal simulation and assignment tool including a DTA model 
is proposed to facilitate a comprehensive multimodal transportation 
network model.

The paper is divided into four sections beginning with the litera-
ture review. The proposed methodology is described in the next sec-
tion, which contains four subsections dedicated to the mathematical 
model, intermodal shortest path algorithm, park-and-ride model, 
and multimodal simulation model. The application of the model in 
a real network is then described, and concluding remarks appear in 
the final section.

Dynamic intermoDaL tour  
assignment moDeL

Fixed-Point Formulation for Dynamic multimodal 
assignment Problem

The intermodal tour assignment must be modeled as part of an 
integrated dynamic traffic and transit assignment model. The inter-
modal demand is defined as a separate class of travelers, different 
from auto and transit users, but the interaction of the intermodal 

demand with other travelers is captured in the integrated model. The 
proposed model is formulated as a fixed-point problem, while the 
equilibrium for each group of passengers is modeled by variational 
inequalities. The notations follow.

Notations in the DTA Model

 Qa = auto demand (dynamic trip table),
 D = vector of transit dwell times,
 Pa = vector of auto paths (DTA solution),
 Ca = vector of auto path costs resulting from Pa,
 ca(Pa, D) =  auto path costs as result of simulating auto paths Pa 

and transit vehicles with dwell times D, and
 s(Pa, D) =  transit vehicle trajectories as result of simulating auto 

paths Pa and transit vehicles with dwell times D.

Notations in the Schedule-Based Transit 
Assignment Model

 Qt = transit demand (dynamic passenger table),
 S = vector of transit vehicle trajectories (transit schedule),
 Pt = vector of transit paths (transit assignment solution),
 Ct = vector of transit path costs resulting from Pt,
 ct(Pt, S) =  transit path costs as result of simulating transit paths Pt 

on transit network with vehicle schedules S, and
 d(Pt, S) =  transit dwell times as a result of simulating transit 

paths Pt on transit network with schedule S.

The integrated auto and transit assignment model (without inter-
modal tours) can be modeled as the following system of equations:

Dynamic traffic equilibrium:

P D P Pc Qa
T

a aa a*, * 0[ ] [ ]( ) − ≥ ∀

Dynamic transit equilibrium:

P S P Pc Qt
T

t tt t*, * 0[ ] [ ]( ) − ≥ ∀

Integration model:

D P P Dd st a, ,( )( )=

The first set of equations above explains the dynamic equilibrium 
in the auto network with the variational inequalities (VIs). In the 
equilibrium state, travelers with the same origin, destination, and 
departure time have equal travel time. The second set of equations 
shows a similar VI formulation for equilibrium in the schedule-based 
transit network. In the transit equilibrium solution, each passenger 
takes the available path with minimum travel time. The third equation 
is a fixed-point formulation to model the interaction between the 
auto and the transit networks. In the fixed-point problem, given the 
transit dwell times and the current auto and transit assignment solu-
tion from the equilibrium models, new dwell times are calculated by 
simulation. In this model, the effect of auto and transit passengers’ 
decisions is taken into account when a multimodal equilibrium solution 
is found.
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With the inclusion of the intermodal tours, the multimodal 
assignment model is extended to the following:

Dynamic traffic equilibrium:

P D I P Pc Q Qa
T

a a ia a*, , * 0[ ] [ ]( ) − ≥ ∀ ∪

Dynamic transit equilibrium:

P S I P Pc Q Qt
T

t t it t[ ] [ ]( ) − ≥ ∀ ∪*, , * 0

Intermodal tour equilibrium:

p pI C C I Ic Qi a t
T

i[ ] [ ]( ) − ≥ ∀, , 0

Integration model:

, ,D P P Dd st a )( )(=

Notations in the Dynamic Intermodal Tour 
Assignment Model

 Qi = intermodal demand (dynamic tours),
 I =  vector of optimal park-and-ride locations (inter-

modal assignment solution),
 Pa and Ca =  extended to include auto part of intermodal paths 

and costs,
 Pt and Ct =  extended to include transit part of intermodal paths 

and costs, and
 ci(I, Ca, Ct) =  intermodal path costs resulting from park-and-ride 

solution I given auto path cost Ca and transit path 
costs Ct.

In the extended set of equations, the first two VI formulations use I  
as an input, meaning that the unimodal (i.e., auto-only or transit-only) 
trips of the intermodal tours are modeled in the equilibrium models. 
The unimodal trips are optimized for the best paths, given the trips’ 
origins and destinations, fixed in the intermodal equilibrium model 
(i.e., in the vector I). The third equation is the one in which the trips’ 
origins and destinations are determined for the intermodal tours by 
assigning the optimal park-and-ride location to each tour. This equi-
librium is also modeled by a VI, taking auto and transit path costs as 
input. Finally, the integration of the three models is established by 
using the fixed-point formulation in the fourth equation. Similar to 
the previous integrated models for auto and transit, the equilibrium 
in the multimodal system is measured by transit dwell time.

intermodal Dynamic shortest Path algorithm

The intermodal shortest path model with a time-dependent auto 
network and a schedule-based transit network was developed by 
Khani et al. (5). To model a multimodal transportation network and 
complete a trip chain in a tour, a high-resolution network represen-
tation was adapted, moving toward a more realistic behavioral rep-
resentation of the path in the vicinity of each park-and-ride location. 
Accessing the park-and-ride location by car, searching for a parking 
spot, parking the car, and walking to the transit stop or station are 
modeled explicitly to estimate the total mode transfer delay, excluding 
the waiting time for a transit vehicle.

The intermodal path algorithm finds the optimal path between an 
origin and a destination with a preferred arrival time (PAT) at the 
destination while all available transportation modes are considered. 
The best path through a park-and-ride location is defined by meet-
ing the traveler’s desire to arrive at the destination at or before the 
PAT with the minimum total travel time. The algorithm developed 
in Khani et al. (5) is the sequential run of a trip-based shortest path 
(TBSP) algorithm in the transit network and a multisource time-
dependent shortest path (MTDSP) algorithm in the auto network 
(14). Proper settings in the algorithm are required for incorporating 
the mode transfer and for ensuring a multimodal path. As a result, 
a transit shortest path tree is found connecting the park-and-ride 
locations to the destination, and a set of auto shortest path trees are 
found from the origin to the park-and-ride locations (Figure 1). The 
algorithm’s main input data are general transit feed specification 
(GTFS) data for the transit network, a network with time-dependent 
link travel times for the auto network (a typical DTA network), and 
the set of access, egress, and mode transfer links connecting the auto 
network to the transit network (15).

The multisource shortest path algorithm (i.e., adding multiple 
nodes to the scan-eligible list at the beginning of the algorithm), 
introduced by Klein, can be used in reverse from the possible park-
and-ride locations back to the origin, for a given traveler (16). Initially, 
the TBSP algorithm is applied from the ultimate destination back 
to the set of possible park-and-ride lots. The multisource approach 
then finds the best source node (park-and-ride location) to the target 
node (the origin) by automatically comparing the travel time from 
the destination to each source node. Because the initial labels of 
the source nodes (the park-and-ride locations) are set by the TBSP 
algorithm, the MTDSP also takes into account the transit travel time 
to the destination to select the best park-and-ride location. The 
complexity of the intermodal path algorithm is O(S2 + P + N 2), 
where O(() represents the worst-case complexity of the model in 
the O notation, S is the number of transit stops, P is the number of 
park-and-ride locations, and N is the number of nodes in the auto 
network. In general, if S and N are comparable, searching for the 

transit path

Destination

Origin

auto path
park-and-ride

FIGURE 1  Set of intermodal paths to destination through park-and-ride locations.
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optimal transit path dominates the complexity of the algorithm. The 
complexity of the typical schedule-based transit shortest path algo-
rithm is O(S2), but using a hierarchical trip-based network in the 
TBSP algorithm decreases the average run time of the algorithm 
notably (5).

modeling Park-and-ride choice  
in intermodal tours

The intermodal shortest path algorithm introduced in the previous 
subsection is appropriate for one-way trips and results in the optimal 
path for the initial auto-to-transit trip only. However, if daily travel is 
modeled in the form of complete tours (departing from and returning 
to home), it is important to consider the park-and-ride location and 
the constraint of returning to the same park-and-ride later in the tour, 
for the transit-to-auto trip. To deal with this problem, the intermodal 
shortest path algorithm can be extended to an intermodal shortest 
tour algorithm and to the dynamic assignment and simulation of the 
intermodal tours.

The solution to the intermodal optimal tour problem is based on the 
same model elements introduced before (TBSP algorithm, MTDSP 
algorithm, and park-and-ride choice model). However, instead the 
origin and destination with PAT being used as the inputs to the algo-
rithm, a complete tour (origin–home, the set of destinations visited 
in the given time window and with a given sequence, and the return 
home) forms the input. Then, the optimal park-and-ride location is 
found with the minimum travel cost for the entire tour. In general, if 
a park-and-ride location is optimal in a multimodal trip, there is no 
guarantee that it is also optimal for a subsequent multimodal trip, 
especially in a dynamic network. Therefore, an algorithm is devel-
oped to enumerate all the possible park-and-ride locations and to 
find the location with minimum tour cost. Obviously, this enumera-
tion will be a computationally expensive procedure, with linearly 
higher computational time with a higher number of park-and-ride 
locations. The complexity of the problem will be even higher when 
there are multiple destinations in the tour. There have been some 
efforts in the past to model this problem [e.g., Nassir et al. (13)]. The 
proposed algorithm in this study uses some simplifying but logical 
assumptions that make the problem much less computationally 

demanding while maintaining optimal results. These assumptions 
are as follows:

1. There is one primary destination in each tour considered as 
an anchor activity. This anchor activity, with a given start time and 
duration, along with the home activity, defines the primary locations 
visited in the intermodal tour.

2. The intermodal trips are used to travel to and from the primary 
destination, and the secondary destinations are visited by either auto 
or transit.

The input destinations and time windows are reviewed in the pre-
processing stage, and the potential intermodal trips for the tour are 
selected to make new trip chains for the park-and-ride assignment. 
The resulting (simplified) tour contains the preferred departure 
time (PDT) from the origin and the PAT to the primary destination 
in the first half-tour, and the PDT from the primary destination 
and the PAT to the next destination in the second half-tour. A simpli-
fied tour representation, forming the input to the algorithm, is shown 
in Figure 2.

The park-and-ride assignment model is a combination of two inter-
modal shortest path algorithms at the trip level, with some modifi-
cations to account for the constraints on the park-and-ride location 
introduced in the tour. The algorithm finds the travel cost associated 
with each park-and-ride location in the first half-tour while removing 
the infeasible park-and-ride facilities from the choice set according 
to the available time windows. That is, if a path through a specific 
park-and-ride is so long that its travel time exceeds the available 
time window, the park-and-ride is removed from the choice set  
(e.g., Park-and-Ride Location 1 in Figure 2). From a similar pro-
cedure for the second half-tour, and combining the two half-tours, the 
feasible park-and-ride locations are sorted by total tour cost, and the 
optimal park-and-ride location can be assigned to the tour. The steps 
of the algorithm are as follows:

Step 1. The forward auto shortest path tree is found from the 
PDT at the origin, T1, and the label l1 is set for each park-and-ride 
showing the auto travel cost.

Step 2. The backward transit shortest path tree is found at the PAT 
at the anchor activity, T2, and the label l2 is set for each park-and-ride 
showing the transit travel cost.

FIGURE 2  Typical intermodal tour with feasible paths through park-and-rides.
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Step 3. Co = l1 + l2 is calculated as the travel cost from the origin 
to the primary destination through each park-and-ride location if the 
intermodal trip is feasible; the total travel time is less than or equal 
to the time window T2 − T1.

Step 4. The forward transit shortest path tree is found, beginning 
at the PDT from the primary destination, T3, and the label l3 is set for 
each park-and-ride location showing the transit travel cost.

Step 5. The backward auto shortest path tree is found at PAT to 
the next destination, T4, and the label l4 is set for each park-and-ride 
location showing the auto travel cost.

Step 6. Ci = l3 + l4 is the travel cost from the primary destination to 
the next destination through each park-and-ride location if the inter-
modal travel is feasible; the total travel time is less than or equal to 
the time window T4 − T3.

Step 7. The sum of the intermodal travel costs, Ct = Co + Ci, is 
the total tour travel cost through each park-and-ride. Therefore, the 
optimal park-and-ride location with minimum value of Ct is assigned 
to the tour.

The result of this algorithm is the optimal park-and-ride location. 
Moreover, the auto and transit parts of the tour are determined. The 
proposed model is a combination of four shortest path algorithms, 
and its complexity is 2 × O(N 2) + 2 × O(S 2) + O(P) where P is the 
number of park-and-ride locations. In fact, because of the greater 
complexity of the transit networks, the overall complexity of the 
algorithm is O(S 2), where S is the number of stops in the transit 
network. Moreover, the average run time is significantly lower with 
the transit network hierarchy and trip-based structure (14). Consid-
ering that the intermodal tour problem is a challenging problem, the 
proposed model is computationally efficient.

Dynamic simulation of transit  
and intermodal tours

The results of the park-and-ride choice model are used in a simulation-
assignment framework to evaluate the experience of passengers in a 
dynamic multimodal network. The transit vehicle simulation is part 
of the DynusT (17) DTA model, and the transit passenger simula-
tion is part of the dynamic transit simulation and assignment model, 
FAST-TrIPs (flexible assignment and simulation tool for transit and 
intermodal passengers) (18). In fact, the auto trips of the intermodal 
tours are given to the DTA model, the transit trips are given to the 
transit passenger simulation model, and a software interface is used 
to integrate the two models.

After the park-and-ride assignment is run, the next step of the 
model is to simulate the auto trips in the DTA model, so that all auto 
trips (single-occupancy vehicle, high-occupancy vehicle, trucks, etc.)  
and the auto parts of the intermodal tours are assigned in the con-
gested network. This process is traditionally in the scope of the DTA 
models, and more information can be found in the related references. 
The part that is important for the intermodal model is the simulation 
of the drive-to-transit trips, so that the actual arrival time at the park-
and-ride location is estimated under appropriate roadway congestion. 
This information is critical in the passenger assignment since the 
transit path assignment is sensitive to the passenger arrival time at the 
park-and-ride location.

The third step of the model is to reassign a proper transit path  
to the intermodal passengers according to their actual arrival times 
at the park-and-ride locations. A transit path algorithm similar to that 

for the intermodal assignment is used for this purpose, with slight 
modifications in regard to the departure time; that is, the TBSP algo-
rithm is used starting with the actual arrival time at the park-and-ride 
(14). After this path reassignment step for the intermodal passengers, 
the whole transit network is simulated, including the simulation of 
transit-only and intermodal passengers. In the simulation model, 
many factors are considered, such as passenger arrival time at the 
transit stop, transit vehicle arrival time at the stop, and capacity con-
straints in the transit vehicles. Therefore, any inconvenience during 
the trip, such as missing a transit vehicle trip, is captured, and the path 
can be adjusted in an iterative process (described in the next section).

One important property of the transit model is the simulation 
of the transit vehicles along with the other vehicles in a congested 
traffic network in the DTA model. This approach allows consider-
ation of possible delays resulting from transit vehicles’ interaction 
with other vehicles. To make this mechanism possible, a new set of 
arrival and departure times to and from each stop is estimated in the 
DTA model. These arrival and departure times in turn are given to 
the transit model (FAST-TrIPs) for more accurate assignment and 
simulation of transit passenger movements. This adjustment takes 
into account the fact that the transit schedule does not necessarily 
represent the actual transit vehicle arrival at the stops, and informed 
users’ behavior is based on their actual experience with the transit  
operations, not just on the schedule. The simulation model also pro-
duces high-resolution outputs, such as the trajectory of the passengers, 
boarding and alighting activities for every transit vehicle at each  
stop, and other measures by market segment such as transit and inter-
modal or bus and rail transit ridership. It also produces time-dependent 
transit and intermodal skims for feedback to the activity-based travel 
demand model.

aPPLication in integrateD Dynamic 
traFFic anD transit assignment moDeL

integrated model Framework

The transit and intermodal tour assignment and simulation model 
has been implemented in three modules and was applied in a real 
case study as part of the SHRP 2 C10-B project. The project goal was 
to develop an integrated dynamic travel model in a high-resolution 
multimodal transportation network. As part of this project, an activity- 
based travel demand model (DaySim) was used to model daily travel 
activities and produce tour-based demand data for the network model. 
The multimodal network consists of DynusT as the DTA model and 
FAST-TrIPs as the transit and intermodal assignment model. The 
demand and network models are integrated, meaning that auto, transit, 
and intermodal skim tables from DynusT and FAST-TrIPs are fed back 
to the demand model (DaySim). However, only the network models 
are explained in this paper.

In the dynamic multimodal network, there is an iterative process 
of running DynusT and FAST-TrIPs with feedback to each other, 
until the multimodal network conditions converge. The structure of 
the model is shown in Figure 3, in which the tours are given to the 
intermodal assignment model, and after the tours are split into auto 
and transit trips, these parts of the tours are given to the appropriate 
model (DynusT or FAST-TrIPs) for further processing. After each 
model is run, required information is provided for the next iteration;  
the equilibrium travel times (“dwell times” in Figure 3) for transit  
vehicles are passed from the DTA model into FAST-TrIPs, and 
updated dwell times for every transit vehicle at each stop are fed 
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from FAST-TrIPs back to DynusT for the next round of simulating 
transit vehicles. In addition, new time-dependent link travel times and 
transit vehicle trajectories (“updated auto and transit travel times” in 
Figure 3) are fed back to the intermodal assignment model for (re)-
assigning tours into park-and-ride locations. Thus, if the chosen park-
and-ride does not result in a satisfactory experience (minimum time 
or cost), the passenger may decide to choose a new park-and-ride 
location.

The convergence of the multimodal assignment model is mea-
sured by the relative gap (Gi) on the dwell time of transit vehicles, 
defined by

G

d d

d
i

i
r s

i
r s

r s

i
r s

,
1

,

,

1
,

∑( )
=

− −

−

where di
r,s is the dwell time of transit vehicle r at stop s in iteration i. 

The gap is defined as being consistent with the fixed-point problem 
proposed previously. When the transit solution does not change 
during an iteration, meaning that transit passengers find their best 
paths and continue using them, the dwell times will not change signifi-
cantly. Therefore, the impact of the transit vehicles on the auto network 
is essentially fixed, and the next set of transit vehicle trajectories will 
be very similar to the existing ones. That is how the system reaches a 
converged solution and the effect of the auto and transit networks on 
each other becomes negligible.

results of case study

The proposed model was applied to the Sacramento, California, 
regional transportation network. For the network preparation, GTFS 
(15) files were used to build the schedule-based transit network in 
the hierarchical trip-based format (14). In fact, for this application, 
more than one set of GTFS files were used because the transit routes 
of five different agencies were combined to produce a regional tran-
sit network. The regional network contains 3,797 stops, 110 routes, 

and 2,954 vehicle trips. In addition to the transit network, the inter-
modal network containing 23 park-and-ride locations was modeled 
and the mode transfer delays were estimated. Walking links were also 
generated by using the estimated distance to a stop, considering the 
size of each traffic analysis zone (TAZ); transit stops that were either 
in the TAZ or within 0.5 mi of the TAZ centroid were selected as 
accessible stops, and a walking time was estimated for those stops. 
The transfer links were generated by using a 0.25-mi distance criterion 
between pairs of stops.

Two iterations of the multimodal assignment model were run for 
the 24-h period. Each iteration included a 30-iteration DynusT run to  
achieve equilibrium in the auto network. In total, the transit and inter-
modal assignment took about 4 h for each of the two iterations on a 
computer with Intel Core i5 CPU and 16 GB of RAM. After two itera-
tions the model was terminated (by reaching the maximum number of 
set iterations), and the dwell time gap reached the value of 0.16.

The main transit measures of effectiveness (MOEs) produced by 
the model are shown in Tables 1 and 2. These results were obtained by 
using a model without calibration, and therefore one should not expect 
very realistic numbers. However, with the default model parameters, 

N

Y

FIGURE 3  High-level structure of dynamic multimodal network model.

TABLE 1  Transit Vehicle Simulation Results in  
Sacramento Case Study

MOE Total Value
Average 
Value

Number of transit vehicle trips 2,955 na

Travel distance (vehicle miles, per vehicle trip) 30,893 10.46

Operating time (vehicle hours, per vehicle trip) 115,797 0.65

Speed (mph) na 15.25

Ridership (unlinked passenger trips, per  
 vehicle trip)

88,667 30.02 

Average load along the route (persons) na 7.35

Average dwell time at each stop (s) na 6.81

Note: na = not applicable.
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are provided by FAST-TrIPs and investigated to show how the pro-
posed model can be used as a planning tool for scenario analyses. 
Figure 4 compares the transit vehicles’ travel time in the simulation 
model and in the GTFS schedule. The simulated travel time is in 
fact the result of the DTA model and includes the effect of traffic 
delay. However, transit dwell time as a part of the total travel time 
is estimated in the transit assignment on the basis of the passengers’ 
boarding and alighting activities. The graph shows that travel times 
are in general consistent with the GTFS schedule.

Figure 5 depicts the average number of onboard passengers along 
the route for the inbound and outbound trips of the light rail [light 
rail transit (LRT)] lines. For the Gold Line, results are consistent 
with the expectations: a higher morning peak is seen in the inbound 
trips while a moderate afternoon peak is seen in the outbound trips. 
For the Blue Line, because it passes through the downtown area, 
there are two peaks for both inbound and outbound travel, each 
representing either the a.m. or the p.m. peak period. Figure 6 shows 
the number of onboard passengers along the route for the Blue Line. 
In the inbound direction toward the downtown area, the vehicle load 
increases and then decreases quickly. This pattern is consistent with 

TABLE 3  Intermodal Passenger Measures in Sacramento  
Case Study

MOE Average Value

Drive access time (min) 37.4

Transit in-vehicle distance (mi) 4.6

Number of transfers within transit network 0.5

Mode change delay at park-and-ride locations (min) 11.1

Transit in-vehicle time (min) 11.3

Transit transfer time (min) 1.5

Walk egress time (min) 1.4

Transit travel time (min) 25.3

Intermodal travel time (min) 62.7

TABLE 2  Transit Passenger Simulation Results in Sacramento 
Case Study

MOE Total Value Average Value

Number of passenger-linked trips 42,803 na

In-vehicle distance (passenger miles) 257,795 6.02

In-vehicle time (passenger minutes) 954,119 22.29

Waiting time (passenger minutes) 371,823 8.69

Walking time (passenger minutes) 355,330 8.30

Number of transfers 58,872 1.38

Transfer time (passenger minutes) 218,593 5.11

Total travel time (passenger minutes) 1.66 × 10+6 38.79

y = 1.01x + 0.24
R2 = .97
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FIGURE 4  Transit vehicle travel times.

the results were satisfactory in most cases. For example, as shown 
in Table 1, the transit vehicle simulation indicates the average opera-
tional speed of 15.25 mph and an average ridership of 30 passengers 
per vehicle trip. These numbers are intuitive considering that all tran-
sit vehicle trips, including those in peak and off-peak, are simulated. 
However, as shown in Table 2, the average travel time in the transit 
network is 38.79 min, with 22.29 min of in-vehicle time.

Table 3 shows the intermodal trip characteristics, including the 
travel time in different parts of these trips. According to the table, the 
average auto travel time to access park-and-ride locations is 37.4 min 
in the network, and the average transit travel time is 25.3 min for 
trips from the park-and-ride locations to the destination. The higher 
drive access time implies that travelers preferred to use auto in a 
larger proportion of their trips and to access park-and-rides closer to 
their destinations (or with better transit service to their destinations). 
Results also show that people spent about 11 min to park their cars, 
walk to transit stops, wait for a transit vehicle, and board a transit 
vehicle at the park-and-ride locations.

While the aggregate-level transit results are good enough for the 
initial tests of the model, some disaggregate sets of transit outputs 
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FIGURE 5  Average number of onboard passengers on LRT lines: (a) 507 Gold, inbound; (b) 507 Gold, outbound; (c) 533 Blue, inbound; and 
(d) 533 Blue, outbound.
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FIGURE 6  Average number of onboard passengers on LRT Blue Line: (a) inbound and (b) outbound.
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the fact that people use the LRT system to access the downtown area 
for work trips. In the outbound direction, the vehicle load is high 
at locations closer to the downtown area and starts to decrease, but 
there is another peak farther down along the route. The two peaks 
are still lower than that for the inbound trips, representing temporal 
dispersion in the transit use in the afternoon.

With the results shown in this section, it can be concluded that 
the proposed model is an appropriate tool for modeling transit and 
intermodal tours, taking into account the impact of traffic conges-
tion on the transit network. Evidence showed that the model without 
calibration produced results that are close to expectations. However, 
further validation of the results is required before the models are 
used for decision-making purposes.

concLusions

A practical model was developed in this study for the comprehen-
sive modeling of transit and intermodal tours as well as auto trips 
in a dynamic multimodal network. The model has the advantage of 
representing user behavior more realistically through (a) modeling a 
schedule-based transit network, (b) integrating a dynamic congested 
auto network, and (c) including preferred arrival and departure times 
of passengers in the outbound and inbound half-tours. The proposed 
model also takes into account the park-and-ride location constraint 
in the intermodal tours. The computational efficiency of the model 
is suitable for planning purposes although further improvements in 
the model efficiency remain an ongoing point of research. The model 
was applied in the Sacramento regional model, and the general results 
are promising. The outputs are provided in a disaggregate form, giving 
the opportunity for planners to analyze different aspects of the system 
in more detail.

The transit and intermodal assignment models are parts of a model 
called FAST-TrIPs, developed at the University of Arizona (18). 
The model has undergone several improvements by the authors as a 
result of its application in the past 3 years. Among such improvements 
and considered as future work are applying a logit route choice model 
for improved behavioral modeling (18–21), incorporating capacity 
constraints in the transit assignment model (18, 20, 21), and modeling 
transit system reliability. In addition, validation of the results is an 
essential future work before the model is used for decision making 
or scenario analyses.
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