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Small RNA changes en route to distinct cellular
states of induced pluripotency
Jennifer L. Clancy1, Hardip R. Patel1,2, Samer M.I. Hussein3, Peter D. Tonge3, Nicole Cloonan4,w,

Andrew J. Corso3,5, Mira Li3, Dong-Sung Lee6,7,8, Jong-Yeon Shin6,9, Justin J.L. Wong10,11, Charles G. Bailey10,11,

Marco Benevento12,13, Javier Munoz12,13,w, Aaron Chuah2, David Wood4, John E.J. Rasko10,11,14,

Albert J.R. Heck12,13, Sean M. Grimmond4, Ian M. Rogers3,15,16, Jeong-Sun Seo6,7,8,9, Christine A. Wells17,18,

Mira C. Puri3,19, Andras Nagy3,5,15 & Thomas Preiss1,20

MicroRNAs (miRNAs) are critical to somatic cell reprogramming into induced pluripotent

stem cells (iPSCs), however, exactly how miRNA expression changes support the transition to

pluripotency requires further investigation. Here we use a murine secondary reprogramming

system to sample cellular trajectories towards iPSCs or a novel pluripotent ‘F-class’ state and

perform small RNA sequencing. We detect sweeping changes in an early and a late wave,

revealing that distinct miRNA milieus characterize alternate states of pluripotency. miRNA

isoform expression is common but surprisingly varies little between cell states. Referencing

other omic data sets generated in parallel, we find that miRNA expression is changed through

transcriptional and post-transcriptional mechanisms. miRNA transcription is commonly

regulated by dynamic histone modification, while DNA methylation/demethylation con-

solidates these changes at multiple loci. Importantly, our results suggest that a novel subset

of distinctly expressed miRNAs supports pluripotency in the F-class state, substituting for

miRNAs that serve such roles in iPSCs.
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R
eprogramming of somatic cells into induced pluripotent
stem cells (iPSCs), by forced expression of the transcription
factors Oct4, Sox2, Klf4 and c-Myc (OSKM), entails a

dramatic transformation of their gene expression programme and
a resetting of their epigenetic state1,2. iPSCs have transcriptome
and epigenome characteristics similar to embryonic stem cells
(ESCs), the ‘gold standard’ of pluripotency. Given the promise
that lies in applying iPSC-based approaches in drug discovery and
regenerative medicine there is great interest in more fully
understanding the molecular basis of, and the reprogramming
routes that lead to, pluripotency. Forming an international
alliance to address these issues we explored alternative outcomes
of somatic reprogramming and discovered an alternate stable
pluripotent state represented by a class of fuzzy colony forming
cell lines (F-class) that can arise when OSKM expression is
maintained at high level3. To model time-resolved molecular
trajectories of somatic cell reprogramming towards the F-class
and ESC-like states, we used doxycycline-inducible OSKM
expression in secondary murine embryonic fibroblasts
(2�MEFs)4. Multiple global data sets were acquired in parallel,
ranging from epigenomics to transcriptomics and proteomics,
each concordantly describing the progression of cells to either a
classic ESC-like state or the novel F-class state4–6. These data sets
are available through http://stemformatics.org7, and form a
unique resource to further pluripotency research.

The expression of multiple miRNAs is altered during
reprogramming8–10. miRNAs furthermore play a critical role in
the process, as transcription factor-driven reprogramming can be
enhanced or replaced by the expression of specific subsets of
miRNAs known to be highly expressed in iPSCs11,12. Here we use
next generation sequencing (NGS) to analyze small RNA
expression at nucleotide resolution as 2�MEFs transition
towards distinct pluripotent states. We observe widespread
changes, often characteristic of either the ESC-like or F-class
state. Gene ontology (GO) enrichment analysis of experimentally
validated targets of co-clustered miRNAs revealed complex
temporal regulation of cell growth, viability, morphology and
underlying molecular processes throughout reprogramming.
Drawing on the genome-wide epigenome and long RNA
transcriptome data sets acquired in parallel provides vistas into
intricate multi-level control of miRNA expression.

Results
Time-resolved small RNA sequencing of 2�MEF reprogramming.
We used doxycycline-inducible OSKM expression in 2�MEFs4 to
establish cell cultures that transitioned to distinct pluripotent
states, by branching the doxycycline concentration in the media
at day 8. Keeping doxycycline level at 1,500 ng ml� 1 (high
OSKM) led to the F-class state, while decreasing it to 5 ng ml� 1

(low OSKM) led to the ESC-like state. We sampled the process at
the time points indicated in Fig. 1a (sample nomenclature, for
example, D8H: day 8, high OSKM), while 1�iPSCs, 2�iPSCs4 and
Rosa26-rtTA knock-in ESCs4 served as ESC-like controls (See
Methods and Supplementary Data 1 for details). Small RNA
library composition shifted away from miRNAs during
reprogramming, from B79% of tags representing miRNAs in
2�MEFs to a low of B42% in D16H; during low OSKM
reprogramming this proportion approached the level of B65%
observed in ESC-like controls (Fig. 1b, Supplementary Fig. 1a).
Nevertheless, quantitative PCR (qPCR) analyses demonstrated
that levels of a set of indicator miRNAs remained relatively steady
across samples (Fig. 1c). The proportion of tags mapping to the
nuclear genome outside annotated miRNA loci increased from
B20% in 2�MEFs to as high as B42% in D16H (Fig. 1b); these
tags displayed a range of lengths, expression patterns and mapped

to multiple distinct loci categories (Supplementary Fig. 1b,e). Tags
mapping to the mitochondrial (mt) genome also varied in length
(Supplementary Fig. 1c) and, interestingly, their proportion
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Figure 1 | Features of small RNA expression during secondary

reprogramming. (a) Outline of doxycycline-inducible secondary

reprogramming system (1B4 and sampling strategy. Samples (n¼ 1):

high OSKM (blue), low OSKM (red), ESC-like controls (black) and

(re)sequencing of early samples (green). #OSKM transgene expression was

partially silenced in D6L cells, but was almost completely abolished in D21L

and D21| cultures3. (b) Small RNA libraries were analyzed to an average

depth of B27 million genome-mapped tags per sample. Tags distributed

across diverse genomic loci, shown here for representative samples.

(c) Top: miR-191, -484, -16, -149 and -30e were chosen from NGS data

for their relatively stable expression across samples and validated by

qPCR (averaged expression of all five miRNAs is shown, bars represent

expression range). Bottom: expression of an abundant small RNA mapping

to an mt-DNA region 30 of mt-transfer RNA-V was measured by NGS and

qPCR. NGS data were normalized to mapped tags, qPCR results were first

normalized to total RNA input and then to average expression across all

samples.
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differed markedly between 2�MEFs (B1%), F-class cells (B16%
in D16H) and ESC-like controls (B4%) (Fig. 1b, Supplementary
Fig. 1e). mt-DNA-mapped tags were primarily associated with
certain transfer RNA genes but also the D-loop control region, as
reported13 (Supplementary Fig. 2). A locus immediately
downstream of mt-transfer RNA MT-TV accounted for much
of the change in library proportion, as validated by qPCR
(Fig. 1c). Other small RNA species derived from a variety of
nuclear and mt-DNA loci also increased in abundance,
particularly towards the F-class state, likely reflecting opening
of chromatin followed by consolidation into the distinct
epigenetic states of F-class and ESC-like cells4, as well as
changes in mitochondrial function and increased proliferation
during reprogramming5,14,15. Altogether, in a background of
dramatic small RNA changes, reprogramming cells retained
miRNA pools of similar size relative to total RNA content,
highlighting the importance of tight regulation of miRNA levels.

miRNA processing and expression dynamics. As expected,
miRNA-mapped tags had a sharp modal length of 22 nt
(Supplementary Fig. 1d), and a small number of abundant
miRNAs dominated the tag count (for example, the top
10 miRNAs represented B50% of tags; Supplementary Data 1).
miRNA processing variants can have alternative messenger RNA
(mRNA) targeting properties and their relative proportions have
been shown to alter between tissues and during development16.
miRNA processing diversity was evident throughout
reprogramming at proportions similar to other cell types17,18

(Fig. 2; Supplementary Fig. 3; detailed views of these parameters,
generated with the miRSpring tool19 are provided in
Supplementary Data 3–15). Many pluripotency-related miRNAs
were expressed as multiple isoforms, which presents important
implications for their biological function and reliable detection.
For example, 19/24 miRNAs encoded by the miR-290-295 and
miR-302/367 loci co-expressed multiple isoforms (11 with 50

isomiRs, 14 with 30 isomiRs and 2 with non-templated addition),
and 5/12 hairpins had appreciable expression from both arms
(Supplementary Figs 4 and 5). Surprisingly, we saw little
directional isoform variation along reprogramming trajectories
(including non-templated additions) and thus widespread
changes in miRNA processing bias are not a feature of this
process (Supplementary Fig. 3). By contrast, even though bulk
miRNA levels remained stable, expression levels of most
individual miRNAs changed dramatically during reprogram-
ming and we confirmed these changes for 17 examples by qPCR
analyses (Supplementary Figs 6 and 7). Principal component

(Fig. 3a) and Pearson correlation analyses4 of miRNA expression
demonstrated that cells on the high OSKM trajectory
reprogrammed towards the stable F-class state, while those on
the low OSKM trajectory approached characteristics of ESC-like
controls.

An early and a late wave of pronounced change to epigenetic,
transcriptomic and proteomic profiles has been reported during
reprogramming1,4,8,15. We observed that miRNA expression
changes featured two distinct bursts, one within 48 h of
transgene expression (for example, 43/132 of appreciably
expressed miRNA change more than fourfold) and the second
burst beyond day 8, notably more pronounced in the low OSKM
trajectory (D11H/D8H: 14/135; D16L/D8H: 34/138; Fig. 3b).
Sampling the early stages of reprogramming (2�MEFE, D1HE,
D2HE, D3HE, D4HE) indicated that 20/134 appreciably expressed
miRNAs changed more than fourfold within the first 24 h
(Supplementary Fig. 8a,b and Supplementary Data 16–21).
Hierarchical clustering (Fig. 3c; Supplementary Figs 7a and 8c)
and GO enrichment analysis of experimentally validated targets
of co-clustered miRNAs (Supplementary Figs 7b and 8d) revealed
that processes important during reprogramming, such as cell
cycle/proliferation, apoptosis, cell morphology, development/
differentiation, signal transduction and gene regulation through
chromatin modification, transcription and RNA processing, were
all targeted by complex temporal patterns of miRNA change.
Notably, even though the majority of miRNA expression clusters
(Fig. 3c, clusters A-D, G-I, L, M) indicated pronounced
differences between the F-class and ESC-like state, these distinct
subsets of miRNAs targeted similar cellular processes throughout
both reprogramming trajectories.

Multi-level control of miRNA expression. Drawing on the
genome-wide epigenome and long RNA transcriptome data sets
acquired in parallel4–6 we annotated 71 loci (representing 128
mature miRNA) with available data for pri-miRNA expression, as
well as promoter DNA (CpG) methylation and histone lysine
trimethylation (activating H3K4me3 and repressing H3K27me3;
Supplementary Fig. 9). Overall, mature and pri-miRNA
expression levels were moderately well-correlated across
samples, with a higher correlation at early time points
indicative of strong transcriptional control of miRNAs in the
first few days after OSKM induction. Dividing miRNAs into those
derived from intragenic or intergenic loci revealed a better
correlation with pri-miRNA expression for the latter, highlighting
a need for uncoupling of intragenic miRNA regulation from host
gene expression (Fig. 4a, supported also by histone trimethylation
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shown in Fig. 4b,c). Fifteen, mostly intragenic miRNA loci with
the poorest miRNA/pri-miRNA correlation were selected for
closer inspection (Supplementary Fig. 10). Evidence of complex
or novel promoter usage explained this poor correlation for four
loci, while the remaining loci are strong candidates for regulation
at the post-transcriptional level (that is, through affecting miRNA
processing or stability).

While dynamic changes of epigenetic marks occurred at many
individual miRNA loci (Supplementary Fig. 9a), global density of
H3K4me3 and DNA methylation remained relatively steady over
time (Supplementary Fig. 9b,d). By contrast, we observed a global
reduction of H3K27me3 density during the first 8 days of high
OSKM expression, with a gradual recovery at later time points in
the trajectories to both the F-class and ESC-like state
(Supplementary Fig. 9c). To study the correlation of epigenetic
marks with miRNA expression we used the D8H sample,
embodying a transiently open chromatin state4, as a pivot-point
to reveal differences between early and late phases of
reprogramming. Averaging across all analyzed miRNA loci, we
saw an anti-correlation between H3K27me3 density and miRNA
expression at all times during reprogramming; this was strongest
in the early phase (Fig. 4c). H3K4me3 showed a positive
correlation with miRNA expression in all three branches of our
time course, while DNA methylation displayed an overall lack of
correlation (Fig. 4b,d). Altogether, these global patterns are

consistent with those observed in parallel for protein coding
genes4–6. They indicate an acute regulation of miRNA expression
by rapid and dynamic changes to histone modifications, especially
in early reprogramming, with H3K27me3 removal featuring
strongly in early transcriptional change. By contrast, DNA
methylation/demethylation less commonly regulates overall
miRNA expression, but instead consolidates the expression
change of specific miRNAs as cells approach pluripotency.

The intricate control of expression at different levels is
illustrated by the miR-17/92 group of miRNAs, which stimulate
cell proliferation and survival20. They fall into four different
sequence families, which are expressed from distinct
chromosomal loci (see schematic in Fig. 5a)20 and are induced
during reprogramming in a Myc-dependent manner21.
Overexpression of miR-106b or miR-93 was furthermore
reported to augment OSK-induced reprogramming21. Here
expression of miRNAs from the miR-92b, miR-106b/25 and
miR-17/92 loci was induced early in high OSKM, but receded
again upon shift to low OSKM (Fig. 5a). Expression of the miR-
92b pri-miRNA was extremely low, precluding further analysis.
The miR-106b/25 pri-miRNA level rose continuously and
was highest in ESC-like controls4, indicating prominent
transcriptional regulation of this locus towards the F-class state,
which is overridden by post-transcriptional controls operating in
the ESC-like state. For the miR-17/92 locus, we found multiple
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active promoters, with one showing selective activity in F-class
cells (Supplementary Fig. 11), and possibly giving rise to a pri-
miRNA that is more efficiently processed into mature miRNAs,
thus explaining the selective accumulation of miR-17/92 miRNAs
in this pluripotent state. By contrast, miRNAs from the
miR-106a/363 locus correlated well with pri-miRNA expression
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at all stages (Fig. 5a). Transcription at this locus was repressed
throughout high OSKM expression but activated as cells
progressed towards the ESC-like state. Early loss of H3K27me3

and a transient gain of H3K4me3 were counteracted by an
emerging DNA methylation barrier at this promoter, which
remained in place in F-class cells. The shift to low OSKM allowed
the removal of this barrier and expression of miR-106a/363 in the
ESC-like state (Supplementary Fig. 11). These observations shed
further light on the complex interplay between transcriptional
and post-transcriptional regulation of these loci22. Importantly,
these data demonstrate that F-class and ESC-like cells acquire
equivalent sets of the miR-17/92 group miRNAs, albeit by
enhancing the expression of different chromosomal loci.

To further explore the complex temporal coordination of
cellular processes throughout reprogramming, we analyzed
expression patterns of miRNAs involved in the transition between
mesenchymal and epithelial cell characteristics (mesenchymal to
epithelial transition or epithelial to mesenchymal transition (MET
or EMT)) (Fig. 5b). This revealed strong but transient increase in
pro-MET miRNAs (for example, from the miR-192/194 locus and
the miR-200 family), although pro-EMT miRNAs were also
induced (for example, from the miR-222/221 locus). The highest
expression of pro-MET miRNAs coincided with a peak in E- to
N-cadherin ratio and other mesenchymal markers5 at day 8.
Receding expression of pro-MET miRNAs correlated with re-
emergence of mesenchymal characteristics in both, high and
low OSKM conditions. Notably, F-class cells exhibit a more
mesenchymal morphology3. This correlated with a much higher
expression of the pro-mesenchymal miR-10b-5p23 and a reduced
expression of the pro-epithelial miR-200 family (Fig. 5b) and
miR-302 locus23,24 in the F-class state. Altogether, these findings
are consistent with an initial MET followed by a partial EMT
during reprogramming15,25 and they indicate that sequential and
pluripotency state-specific changes to the miRNA milieu are
involved in promoting these transitions.

Distinct miRNA milieus in alternate pluripotent states. Next,
to focus on differences between the pluripotent states, we com-
pared averaged data from D16H&D18H with 1�iPSCs and
2�iPSCs. This identified 67 miRNAs with greater than fourfold
difference between the two groups: 24 were higher in F-class and
43 were higher in ESC-like cells (Fig. 6a). Expression differences
for miR-378-3p, -205-5p, -10b-5p -21-5p, -302d-3p and -291a-3p
were validated by qPCR (Supplementary Fig. 6). We further
sequenced the small RNA population of an independently
generated F-class clonal cell line (clone 1 day 30 (ref. 3)), and
hierarchical clustering demonstrated that the high OSKM
trajectory closely resembled the F-class type in expression of
these miRNAs (Supplementary Fig. 12a), independently con-
firming analyses based on mRNA data3.

Many miRNAs with higher expression in the ESC-like state
have been shown to support pluripotency (Fig. 6b)11. miRNAs
from the imprinted Dlk1-Dio3 locus, which have context specific
cell-cycle, survival and pluripotency functions12,26, were rapidly
downregulated in high OSKM conditions but recovered
expression in the low OSKM trajectory and ESC-like controls
(Fig. 3c, cluster I). Expression from the miR-302/367 locus,
known to stimulate iPSC cell proliferation, survival, MET and
DNA demethylation, was only induced in the low OSKM
trajectory and ESC-like controls (Fig. 3c, cluster A). The ESC-
specific miR-290/295 locus, involved in stimulating cell
proliferation and survival11, gradually increased along both
trajectories, but reached its highest level in the fully established
ESC-like cell lines (Fig. 3c, cluster D). Altogether, 12 genomic loci
accounted for expression of the ESC-like identifier miRNAs.
Eleven of these loci had measurable levels of pri-miRNA
transcripts in long RNA-seq data4, which correlated well
with the expression of the mature miRNAs in seven cases
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(40.6 Pearson’s correlation, Supplementary Fig. 12b,c).
Common to both pluripotent states and consistent with an
early induction of proliferation during reprogramming1,5,
miRNA levels from the stem cell and placenta-specific miR-
466/467/699/297 locus, which promote growth and survival27,
rapidly rose (Fig. 3c, cluster E), while those from the anti-
reprogramming miR-143/145 locus12 rapidly declined (Fig. 3c,
cluster J and I). The 24 miRNAs with higher expression in the
F-class state were induced by day 2–8 during high OSKM
reprogramming, with the notable exception of some let-7 family
members (let-7b-5p, let-7-d-5p and let-7-c-5p/miR-99a-5p),
miR-196a-5p and 181a-5p, which were maintained at 2�MEF
expression level. The switch to low OSKM triggered their
downregulation (Supplementary Fig. 12a and Fig. 3c, cluster B).
These miRNAs were derived from 22 genomic loci, 17 of which
had measurable pri-miRNA expression. Of these, mature miRNA
and pri-miRNA levels were well-correlated for seven loci
(Supplementary Fig. 12b,c).

Analysis of histone and DNA methylation at promoters of
F-class and ESC-state identifier miRNAs was often consistent
with pri-miRNA expression (Supplementary Fig. 12b). Notably,
higher expression in the ESC-like state, of the Dlk1-Dio3,
mir-290/295, miR-106a/363 and miR-302/367 loci, together
accounting for 34 of the 43 ESC-like identifiers miRNAs,
correlated with loss of DNA methylation, as seen for many
ESC-related protein-coding genes4,6. Altogether, this suggested
that epigenetic/transcriptional regulation played a major role in
the expression of the ESC-like state identifier miRNAs, with DNA
demethylation removing a barrier to their expression late in
reprogramming. By contrast, F-class identifier miRNAs were
more overtly regulated at the post-transcriptional level. Notable
exceptions were miR-10b-5p and 205-5p, whose expression
strongly correlated with their respective pri-miRNAs.
Repression of these two loci in the ESC-like state appeared to
be primarily driven by increased DNA methylation
(Supplementary Fig. 12b).

To assess whether the miRNA milieu of F-class cells can
support pluripotency, we analyzed a set of experimentally verified
mRNA targets for the F-class identifier miRNAs. Five of the
24 F-class identifier miRNAs had insufficient target information
(miR-505, miR-361, miR-1983, miR-301b and miR-652), while
four were pro-differentiation let-7 members—let-7b-5p, let-7-d-
5p and let-7-c-5p/miR-99a-5p11. Nevertheless, other let-7 family
members (let-7e-5p, let-7f-5p and let-7g-5p) were downregulated
along the trajectories to both F-class and ESC-like states.
Remarkably, the targets of 15 F-class identifier miRNAs,
although less well-studied in this context, can be grouped into
an alternate pro-pluripotency regulatory network (Fig. 6c),
particularly through targeting self-renewal and cell-cycle
pathways (miR-10b-5p, -92b-3p, -296-5p, -298-5p, -138-5p,
-186-5p, -331-3p, -205-5p, -421-3p, -18a-5p and -378-3p
(through MAPK signalling)). miR-342-3p (ref. 28) targets DNA
methylation. miR-138-5p (ref. 29), miR-196a-5p (ref. 30), miR-
124-3p (ref. 31) and miR-10b-5p (ref. 32) are known to inhibit
differentiation; importantly miR-138 has recently been shown to
promote iPSC generation29. miR-181a-5p (ref. 33) and miR-18a-
5p (ref. 20) (also miR-17 and -20a) promote cell survival (Fig. 6c).
Thus, the deficiency of F-class cells in well-characterized
pluripotency-associated miRNAs can be compensated for by
higher expression of another functionally equivalent subset. In
further support of the relevance of both ESC-like and F-class
identifier miRNAs we found that their levels and those of proteins
encoded by their validated mRNA targets showed substantial
co-dependence during reprogramming (Supplementary Fig. 12d).
As expected, most cases exhibited inverse correlation.
Interestingly, in the F-class state, several targets showed positive

correlation with their corresponding miRNA. Co-regulation by
OSKM transcription factors, of miRNAs as well as targets,
suggests potential incoherent feed-forward relationships in these
cases34.

Altogether, we present here the most comprehensive small
RNA expression analysis of somatic cell reprogramming to date,
featuring high temporal resolution, as well as nucleotide level
precision to reveal complex patterns of regulated miRNA
biogenesis to support distinct states of cellular pluripotency.
Together with the concordant long RNA transcriptome, global
proteome and CpG methylation data4–6, this work provides a
unique resource to study dynamic genome expression during
iPSC generation.

Methods
Sample preparations for small RNA sequencing. Murine Rosa26-rtTA knock-in
ESCs35, 1�IPSCs, 2�IPSCs (1B system)36 and 2�MEFs were cultured as previously
described37. Reprograming of 2�MEFs was induced by exposure to doxycycline in
the media using methods described in the study by Hussein et al.4 Duration and
concentration of doxycycline treatments as well as the sampling strategy are
detailed in Fig. 1a, and cells were harvested for RNA extraction at the indicated
times. Specifically, 13 sequencing libraries were initially sequenced, derived from:
1�IPSCs, 2�IPSCs, ESCs, 2�MEFs; high-dox treated cells (1,500 ng ml� 1

doxycycline) at day 2, 5, 8, 16 and 18; low-dox treated cells (1,500 ng ml� 1 for 8
days, then 5 ng ml� 1)) at day 16 and 21 (D16L and D21L, red circles); and low-dox
treated cells (1,500 ng ml� 1 for 8 days, 5 ng ml� 1 doxycycline for 6 days and then
no doxycycline) at day 21 (D21|). To gain greater resolution of early changes, five
further libraries were subsequently sequenced from the same experiment: 2�MEFs
and high-dox treated cells (1,500 ng ml� 1 doxycycline) at days 1, 2, 3 and 4. For
comparison to the described F-class state3, a small RNA library was also created
from an independently generated F-class clone (clone 1, day 30). RNA was
extracted from cells using the mirVana miRNA isolation kit (Ambion) following
the manufacturer’s instructions. Small RNA libraries for NGS were prepared using
the small RNA preparation protocol of the SOLiD Total RNA-Seq kit as per the
manufacturer’s instructions. Specifically, size selection was performed to include
RNA between 18–38 nt in length. Library sequencing was either performed on a
SOLiD version 4 (samples of the high/low OSKM trajectories: 2�MEF, D2H, D5H,
D8H, D11H, D16H, D18H, D16L, D21L, D21|, 1�iPSC, 2�iPSC and ESC) or a
SOLiD 5500 NGS instrument (samples from the day 0–4 high OSKM time course:
2�MEFE, D1HE, D2HE, D3HE, D4HE and F-class clone 1, day 30).

Mapping of NGS data. We refer to an individual NGS read as a tag and the
number of times it occurred as a tag count. Prior to mapping, a custom Perl script
was used to trim adapters from the sequence tags and remove all tags with an
average quality value of o18 across the tag (Supplementary Software 1). In
addition, all tags containing ambiguous colour calls represented by ‘.’ were also
removed from further analysis. The remaining high quality tags were then mapped
to the male mouse genome reference (assembly version mm9, 18S rRNA
gi|374088232 and 28S rRNA gi|120444900) by using Bowtie software38, version
0.12.8, that supports colour-space data mapping (Supplementary Software 2).
Mapping parameters were chosen such that up to two colour-space mismatches
were allowed in the first 20-nt seed region, and alignment was extended to the
full-length of the tag if the sum of the quality values at mismatch positions did not
exceed 70. Full mapping details and miRNA variant analysis are described in the
Supplementary Methods and data found in Supplementary Data 1 and 2.
Individual miRNA variants for each sequenced sample can be visualized in
associated miRspring19 documents, Supplementary Data 3–21.

Clustering and differential expression analysis. For clustering and PCA, only
miRNAs in the 95th percentile of expression in at least one library were used, and
their expression was normalized to their average expression and log2 transformed.
Principal component analysis was performed using Multi Experiment Viewer v4.8
(http://mev-tm4.sourceforge.net/)39. For the core samples, clustering was
performed using Pearson’s correlation and complete linkage with 10,000 rounds of
boostrapping to generate approximate unbiased test scores. Scores above 60% were
considered significant and discrete clusters were generated from the first node
where this threshold was met (Supplementary Fig. 7). Other clustering was
performed using Pearsons correlation and complete linkage with 10,000 rounds of
bootstrapping without discrete clustering based on unbiased test scores using
Multiple Experiment Viewer v4.8 (Supplementary Figs 8 and 12). Pairwise
comparisons were restricted to miRNAs in the top 95% of tags in at least one of the
samples being compared with a fourfold threshold. The comparisons were run with
edgeR40.

miRNA target and GO analysis. Experimentally verified vertebrate targets of
all vertebrate miRNAs were downloaded from miRtarbase41. GO and pathway
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enrichment analysis were performed using DAVID42 with the total list of known
miRNA-targeted mRNAs as the background. Significant enrichment was defined as
Po0.01 for biological processes and Po0.05 for molecular function, cellular
component and KEGG pathways (Benjamini–Hochberg P-values corrected for
multiple testing).

Target predictions were made using customized TargetScan code43 to determine
all potential seven-mer and eight-mer seed sites (irrespective of conservation or
context scores) in Ensembl transcripts determined as expressed above the level of
background noise by the Alexa-seq44 analysis of RNA-seq data4.

For correlation of expression of known protein targets of miRNAs, log2-
transformed protein expression data were Pearson’s correlated with log2-
transformed miRNA expression data. To generate a random background of
miRNA:protein correlations, 410,000 random miRNA and protein combinations
were created using miRNAs expressed in the top 95th percentile of expression in at
least one sample analyzed and proteins with complete data for all samples analyzed.

Quantitative PCR. qPCR detection was based on methods published previously45

and primer sequences are listed in Supplementary Data 1. Reverse transcription
(RT) was carried out accordingly with the TaqMan miRNA Reverse Transcription
Kit (Life Technologies). For each PCR reaction: 2 ml of 10� diluted RT product
was added to 10ml of LuminoCt SYBR Green qPCR ReadyMix (Sigma) along with
10 pmol of each qPCR primer and ddH2O up to 20ml. miRNAs were quantified
using the CFX96 Real-Time Detection System (Bio-Rad); qPCR conditions were:
95 �C for 10 s, 58 �C for 8 s; � 40 cycles.

Validation of miR-292-3p target sites in Clock. miRNA target validation using
dual luciferase assay was performed as previously described46. Specifically, two
regions of the Clock 30 untranslated region (UTR) containing putative binding sites
of miR-292-3p (B500 bp each) were each amplified by PCR from C57Bl/6 mouse
genomic DNA using Platinum Taq polymerase (Life Technologies) and cloned into
the pGEM-T-Easy (Promega) ‘TA’-cloning vector for sequence verification. Mutant
plasmids were generated by amplifying the pGEM-T plasmids containing putative
mir-292-3p sequences using Phusion proof-reading Polymerase (Finnzyme). The
seed regions of the putative mir-292-3p miRNA binding sites were mutated using
primers incorporating SbfI restriction enzyme sites. This was done using by PCR
amplification of the whole template using 50-end phosphorylated primers and the
resultant PCR product ligated. Primer sequences are as follows: mCLOCK 30 UTR
Site 1 WT Forward (F), 50-AAC AAT GTG CTG CTG GGA AT-30 ; mCLOCK 30

UTR Site 1 WT Reverse (R), 50-TCA TGG GGA CTT GAG AAT GA-30 ; mCLOCK
30 UTR Site 1 WT F, 50-CAA GCC TTA GAA AGG ACC CTT AG-30 ; mCLOCK 30

UTR Site 1 WT R, 50-GCA GAA GGG GAG GGA ATT AG-30 ; mCLOCK 30UTR
Site1 mut F, 50-TTT TAA CAT TCT CAG AGG TGG GAA T-30; mCLOCK 30UTR
Site1 mut R, 50-CCT GCA GGT AAA ATG TTT TGT GTG CAA-30; mCLOCK
30UTR Site2 mut F, 50-GCC ATT TTC ATA GTG ATT GCA TAA AGA-30 ;
mCLOCK 30UTR Site2 mut R, 50-CCT GCA GGT TGT GCT GTT TCT TCA
CC-30 .

The sequence-confirmed wild-type and mutant 30 UTR sequences were each
excised from pGEM-T-Easy vector and inserted into the NotI site of pSiCHECK2
vector (Promega) downstream of the Renilla luciferase gene. This vector also
contains a firefly luciferase gene to normalize for transfection efficiency. Synthetic
miRNA mimics mouse miR-292-3p (Cat# C310472-05-00005), and negative
control (cel-miR-67, Cat# CN-001000-01-05) were purchased from ThermoFisher
Scientific, Lafayette, CO, USA.

NIH-3T3 cells were maintained in DMEM supplemented with 10% (v/v) foetal
calf serum and antibiotics. Cells were plated at 1� 104 cells per well in a 96-well
plate 1 day prior to transfection, at which point they had reached 80–90%
confluency. The cells were co-transfected with the pSiCHECK2 plasmid containing
the desired insert (100 ng) and the miRNA mimic (100 nM) using DharmaFECT
Duo Transfection Reagent (ThermoFisher Scientific). Firefly and Renilla luciferase
activity was measured consecutively using a Dual Luciferase Assay Kit (Promega)
24 h after transfection using a PolarStar luminometer and plate reader (BMG
Labtech).

Promoter histone and DNA methylation analysis. miRNA transcriptional start
sites (TSS) were annotated from the 50-ends of observed pri-miRNAs defined as a
continuous transcript overlapping the miRNA hairpin observed in the long RNA
sequencing4. H3K4me3, H3K27me3 and H3K36me3 read density around TSSs, as
well as percentage of DNA methylation, were measured from data described in refs
4,6. Specifically, histone trimethylation measurements were restricted to � 2
andþ 3 kb around TSS. DNA methylation measurements were restricted to � 1
and þ 1 kb. In addition, for the Dlk1-Dio3 locus we analyzed previously reported
IG-DMR coordinates47.

Correlation of mature miRNA expression with pri-miRNA and H3 methylation
was performed on log2-transformed RPKM/counts per million with Pearson’s
correlation. Pearson’s correlation of mature miRNA expression was performed
using arcsine-transformed percentage of DNA methylation and log2-transformed
miRNA expression (counts per million). P-values were determined using a
two-tailed, heteroscedastic t-test.

Long RNA sequencing was performed as described in the study by Hussein
et al.4 Histone methylation ChIP and DNA methylation sequencing was performed
as described in refs 4,6.
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