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A new network flow solution method is designed to determine optimal 
traffic routing efficiently for the evacuation of networks with several 
threat zones and with nonuniform threat levels across zones. The objec-
tive is to minimize total exposure (as duration and severity) to the threat 
for all evacuees during the evacuation. The problem is formulated as 
a minimum cost dynamic flow problem coupled with traffic dynamic 
constraints. The traffic flow dynamic constraints are enforced by the 
well-known point queue and spatial queue models in a time-expanded 
network presentation. The key to the efficiency of the proposed method  
is that, for any feasible solution, the algorithm can find and can cancel 
multiple negative cycles (including the cycle with the largest negative 
cost) with a single shortest path calculation made possible by applying 
a proposed transformation to the original problem. A cost transforma-
tion function and a multisource shortest path algorithm are proposed to 
facilitate the efficient detection and cancelation of negative cycles. Zone 
by zone, negative cycles are canceled at the border links of the zones. The 
solution method is proved to be optimal. The algorithm is implemented, 
tested, and verified to be optimal for a midsized example problem.

Over the past few decades, many human-caused and natural disasters 
(e.g., hurricanes, building fires, bomb threats, and chemical spills) 
have occurred. The increasing number and intensity of emergen-
cies raise interest in the optimal preparation of an evacuation plan 
before an emergency arises. Evacuation problems have been studied 
extensively by many researchers in various modeling paradigms, 
with different selections of decision variables, objective functions, 
and constraint sets; moreover, the solution methods have generated a 
wide spectrum of approaches suitable for problem-specific purposes, 
contexts, capabilities, and performances.

Evacuation management policies can be modeled, enhanced, 
and optimized with mathematical optimization techniques. Tacti-
cal decisions that provide the scope and context of the evacuation 
plan are made in various ways depending on the evacuation control 
tools available to the decision makers. Common decisions selected 

for optimization focus on generating evacuation advisory informa-
tion, including departure times, evacuation routes, and destination 
choices for evacuees (1–5). Additional tactical decisions may entail 
optimizing traffic control and reconfiguring the network to take 
advantage of flexibilities in the network and create a more efficient 
evacuation plan (6–9).

Without considering the fine details of traffic flow dynamics on 
roadways, an evacuation can be formulated as a general dynamic 
network flow problem, which optimizes the evacuation objective as 
a network flow problem on a dynamic network. Minimizing the net-
work clearance time is one of the common objectives in the evacu-
ation literature; its dynamic flow model counterpart is known as the 
quickest flow problem (10–13). Another evacuation optimization 
objective is to minimize the total travel time spent by all evacuees 
in the evacuation process; such a model is formulated as the mini-
mum cost dynamic flow (MCDF) problem. Whereas solutions to the 
quickest flow problem minimize the time horizon, the earliest arrival 
flow problem aims to optimize the evacuation process (i.e., maximiz-
ing the number of evacuees reaching safety), not only at the ultimate 
moment of clearance time but also at every intermediate time point 
(14, 15). Therefore, the earliest arrival flow problem is a multidimen-
sional optimization problem on top of the quickest flow problem, 
exploited in several evacuation studies over the past decade (16, 17). 
All of these dynamic flow models are presented in a single-destination 
structure; however, this structure does not restrict the evacuation 
problem because multiple destinations could be connected to a vir-
tual supersink so that a single destination network structure applies. A 
thorough survey on modeling dynamic network flow for evacuation 
studies is available elsewhere (18).

Network flow algorithms are powerful, efficient methods for mod-
eling and solving evacuation problems. However, the details of real-
world traffic flow dynamics are not easy (or even possible) to model 
in a network structure. Modeling traffic flow dynamics captures 
important traffic flow characteristics, such as the queuing discipline 
and the formation and spread of congestion. In the literature, sev-
eral traffic dynamic models have been proposed and encompassed  
in single-destination, system-optimal, dynamic traffic assignment 
(SODTA) models, such as models based on exit flow function (19–22) 
or delay function (23), the point queue (PQ) model (24–26), the 
spatial queue (SQ) model (27, 28), and the kinematic wave and cell 
transmission models (29–31).

In general, the method used to model traffic dynamics substan-
tially affects the properties of the solution and the solution algorithms. 
Incorporating sophisticated traffic flow dynamics into the constraint 
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set generally destroys the problem’s graph structure and makes 
the problem harder to solve (32, 33). As a result, most analyti-
cal evacuation models that are solved by network flow algorithms 
either lack detailed dynamic flow features or use simple ones such 
as queue models.

In this research, two simple traffic flow models (PQ and SQ) 
that can be embedded in a network structure are adapted as the 
traffic flow propagation models to take advantage of the efficiency 
of network flow algorithms. The PQ and SQ models can be mod-
eled in a time-expanded network structure with simple network 
transformations (26, 27).

Another feature of the optimization problem in this research is 
the incorporation of threat levels into the optimal routing strategy. 
Researchers in different contexts recently have incorporated safety 
aspects in evacuation routing problems. These approaches aim to 
optimize not only the experienced delay but also some safety mea-
sures for the evacuation plan. Opasanon and Miller-Hooks proposed 
a pseudo polynomial network flow algorithm (SEscape) that finds 
the set of paths and volumes that maximizes the minimum chance of 
escape for all the evacuees (34). Liu et al. applied a SODTA model 
to minimize the weighted travel time among all evacuees in the net-
work (35). Yao et al. developed a robust linear programming model to 
minimize the weighted travel times (36). Kimms and Maassen incor-
porated nonuniform threat levels into their integrated routing and 
intersection control evacuation model (37). They proposed a mixed-
integer SODTA formulation based on a cell transmission model that 
minimizes the weighted travel times while prohibiting intersection 
movement conflicts.

With an objective function similar to that of this research, Nassir 
et al. formulated and solved an optimal routing problem that mini-
mizes the traffic exposure to threat in a real-sized network chlorine 
spill scenario by modeling the problem as a minimum cost flow 
(MCF) problem and solving it to optimality with CPLEX (28). In 
this paper, the same problem formulation is tackled by developing a 
new network flow solution algorithm that benefits from the special 
pattern of link costs in the problem.

The remainder of the paper is organized as follows. First, the prob-
lem statement is presented. Then, the proposed cost transformation 
and cycle-canceling algorithm are illustrated. Numerical studies 
are described to verify the results for a midsized network example. 
Finally, the conclusions from this work are provided.

Problem Specification

Overview

The objective of this research is to design an optimal routing for traffic 
evacuation that minimizes total risk exposure during an evacuation. 
The exposure of an evacuee on each link in a certain threat zone is 
defined as the product of the dynamic travel time and the threat level of 
that zone. The decision variables for the optimization problem are the 
departure times, routes, and destinations of the evacuees.

What differentiates this optimization problem from typical evacu-
ation models, which usually optimize the clearance time or system 
travel time, is the consideration of threat levels (or exposure severity) 
on different links in the network. This feature not only introduces 
new parameters to the model but also changes the objective function 
and the solution method required to solve the problem. The single-
destination-SODTA approaches, which are the most commonly used 
for evacuation problems, are no longer applicable to the specified 
problem because of the difference in the objective function.

The formulation of the minimum exposure evacuation problem in 
this paper is similar to that of the MCDF problem, with additional con-
straints to include traffic flow dynamics. The two traffic flow models 
selected for this research, PQ and SQ, were chosen for their popularity 
in measuring queuing effects (formation and dissipation) in the evolu-
tion of traffic dynamics. The PQ and SQ models also can be embedded 
in the constraints without destroying the model’s graph structure.

The PQ model, first proposed by Vickrey, assumes that traffic 
flow traverses at the free-flow speed on the entire link until its end, at 
which point a queue may develop (25). The flow can exit the queue 
(or the link) with a limited capacity called bottleneck capacity, which 
is equal to the maximum number of vehicles that can traverse a link 
during one time interval. The queue can hold the excess flow with a 
finite or infinite capacity. The SQ model is similar to the PQ model, 
except that queue length is bounded by the maximum number of  
vehicles that the link can physically accommodate under jam condi-
tions. In the PQ model, flow entering a link is not bounded, which 
means that the queue never spills over to its upstream links. However, 
in the SQ model, queue spillover may occur; when the queue length 
reaches its capacity, no vehicles are allowed to enter the link.

The link travel times in the PQ and SQ models depend on the 
amount of flow on the link, and therefore, travel times are dynamic 
and flow dependent.

Mathematical Formulation

Consider a network G(N, A), where N is the set of nodes and A is the 
set of links. Network G is divided into a set of mutually exclusive 
and collectively exhaustive subsets {G1, G2, . . . , GK} (i.e., G = G1 ∪ 
G2 ∪ . . . ∪ GK and Gα ∩ Gβ = ∅, ∀α = 1, 2, . . . , K, β = 1, 2, . . . , K, 
α ≠ β). Subnetwork Gk (Nk, Ak) for k = 1, 2, . . . , K is a subnetwork 
that includes the node subset located in the threat zone k, denoted 
by Nk, and the link subset including the links whose tail nodes are in 
the threat zone k, denoted by Ak. A threat zone k is associated with a 
hazard level hk. For simplicity, the set of risk zones {Gk} are ordered 
in decreasing hk (i.e., h1 ≥ h2 ≥ . . . ≥ hK). The safe area outside the 
disaster threat zones is zone K, and its hazard level hK is equal to 0.

Notation

	 τ, t	=	 indexes for discrete time step,
	 T	=	 time horizon,
	 hi	=	 threat level at node i,
	 xτ

i,j	=	number of vehicles in link (i, j) during τ,
	 uτ

i,j	=	� number of vehicles that flow into link (i, j) during τ,
	 vτ

i,j	=	� number of vehicles that flow out of link (i, j) during τ,
	 Γ−1

i	 =	set of all predecessors to node i,
	 Γi	=	set of all successors from node i,
	 bτ

i	=	� time-dependent demand in source node i during τ,
	 θi,j	=	 free-flow travel time of link (i, j),
	 bi	=	�total demand in source node i for entire horizon (i.e.,  

bi = Στ∈[0,T]b
τ
i ), and

	 Ci,j	=	bottleneck capacity of link (i, j).

The evacuation problem in this study can be modeled as P:

P:

min (1)
,:0

,iZ h xk

i j Ak G GT

i j

kk

∑∑∑=
( )∈⊂≤τ≤

τ
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The objective function in model P is to minimize the sum of the 
flow being exposed to the defined threat on each link. The sum is over 
all links, in all threat zones, and for all time intervals. The equalities 
in Equations 2 and 3 are the conservation of flow at links and nodes, 
respectively. Equation 4 guarantees the legitimate propagation of 
flow on the links, with sufficient travel time from entrance to exit on 
a link; specifically, this inequality states that the number of vehicles 
leaving a link at a particular time cannot exceed the total number 
of vehicles on that link at that time, minus the number of vehicles 
on that link that have not been on the link long enough to reach the 
downstream node, under free-flow conditions.

The inequalities in Equations 5, 6, and 8 are demand, bottleneck 
capacity, and nonnegativity constraints, respectively. Equation 7 
specifies that the evacuation flow for all the links at the start time 
is zero.

Whereas the traffic flow constraints in model P are written to 
comply with the PQ model, adding the inequality in Equation 9 to 
the constraint set adjusts P to the SQ model. The storage capacity 
constraint is

, ; 0 (9), ,x S i j A Ti j i j ( )≤ ∀ ∈ ∀ ≤ τ ≤τ

where Si,j is capacity of the storage on the link (i, j).
In both the PQ and SQ models, model P is an MCDF problem 

because the terms in the objective function of P are directly asso-
ciated with the flow on the links and the constraint set in P has a 
graph structure. To solve P, the problem is transformed into an MCF 
problem in a time-expanded representation. The primary factor to 
consider is that in such a transformation, the PQ and SQ constraints 
(Equations 6 and 9) must be reflected in the network structure. More 
detailed discussion about this transformation (link transformation) 
is provided in the next section.

Method

In the method proposed in this paper, instead of solving P as a linear 
optimization problem, the problem is transformed into a special MCF 
problem in a time-expanded network that has a set of specially 
defined turnstile costs at the borders of the threat zones. A link trans-

formation (LT) and a cost transformation (CT) are applied to the 
base roadway network in problem P to do this.

Link Transformation

To model the SQ (or PQ) traffic flow constraints in the evacua-
tion problem, an LT originally proposed by Drissi-Kaaitouni and 
Hameda-Benchekroun is adopted (27).

Figure 1 shows the LT transformation for a simple example network 
with one source node, two sink nodes, and two links. In the trans-
formed network, for all time intervals and at each time copy of the 
network, a dummy node (shaded squares in Figure 1) is generated for 
each link in the base network, which represents the queue on the link. 
The flow exiting the source node to the links can either proceed to the 
sink nodes or stay in the queue (hold over) for another time interval, 
depending on the congestion state on the link. The flow moving to the 
sink has a capacity equal to Ci,j, and the holdover flow in the queue has 
the capacity equal to Si,j.

The PQ and SQ models can be modeled by assigning the appro-
priate flow capacity on holdover arcs (Si,j). In the former case, link 
holdover capacities are infinite; in the latter case, holdover capacities 
are set to the physical capacity of storage at the link. Therefore, the 
rest of the solution procedures in this paper are on the LT-transformed 
network and are the same for the PQ and SQ models.

Cost Transformation

The CT function proposed in this paper is inspired by the turnstile 
cost first introduced by Hamacher and Tufekci (38). The proposed 
turnstile cost function for link (i, j) at time τ ( f τ

i,j) is presented in this 
section, and the problem of finding the minimum turnstile cost flow 
P′ is proved equivalent to the original problem P.

Denote the sets of boundary (interzonal) links (that cross between 
two different threat zones) as Bα,β = {(i, j)|i ∈ Gα, j ∈ Gβ, α ≠ β}, 
where node i belongs to risk zone α, node j belongs to risk zone β, 
and α ≠ β. Let hα and hβ be the severity of threat associated with 
zones α and β, respectively. The proposed turnstile cost function for 
link (i, j) at time τ is

, ; 0 (10),f h h i j A Ti j ( ) ( )= τ × − ∀ ∈ ≤ τ <τ
α β

Link-Transformed Network

Bottleneck Capacity, Ci,j

Storage Capacity, Si,j

(a)

(b)

Base Network

FIGURE 1    Examples of link transformation: (a) base  
network and (b) link-transformed network.
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where node i belongs to risk zone i ∈ Nα and node j belongs to risk 
zone j ∈ Nβ. The resulting f τ

i,j is equal to the differential threat level 
at the two ends of the link, multiplied by the time index τ. Therefore,  
f τ

i,j is equal to 0 for all the links that have equal threat levels at the 
two ends or simply the links lying inside the zones. Such links may 
be called intrazonal links as opposed to interzonal (or boundary) 
links, which have nonzero transformed costs.

The mathematical formulation of the transformed cost (min-turn-
stile-cost) problem is

P′:

∑∑=
( )

τ τ

∈≤τ≤

iZ f xi j i j

i j AT

min (11), ,

,0

subject to Equations 2 through 9.

Theorem 1. The problem P is equivalent to the min-turnstile-cost 
problem P′.

Proof. The only difference between the two problems is in the objec-
tive functions, and the objective functions are proved equivalent.

Rewrite the objective function of P as

∑∑ ∑∑∑ ( )=
( ) ( )

τ

∈≤τ≤ ∈

τ

⊂≤τ≤

i ih x h xi i j

i j AT

a

i j A

i j

a G GT aa

(12),

,0 ,

,

:0

The last term on the right-hand side of Equation 12 is the total 
time spent in threat zone a, where Aa is the set of links whose tail 
nodes are located in threat zone a. It can be rewritten as

∑∑∑ ∑∑ ∑( ) ( ) ( )= τ − τ − τ
( )( ) ( )

τ τ

∈⊂∈

τ

∈⊂

τ

∈

i i ix x x bi j i j

i j Bb G Gi j A

k i

k i Bb G G

i

i Na bba b ab a

(13)

, ,

,:,

,

,:, ,

The last term on the right-hand side of Equation 13 is related 
to the evacuation demand bτ

i at zone a. Therefore, it is constant 
and can be eliminated. Using Equation 13, the right-hand side of 
Equation 12 can be rewritten as

∑∑∑∑∑∑ ( )( ) ( )τ − τ
( )( )

τ τ

∈⊂∈⊂⊂≤τ≤

i i i ih x h xa i j a k i

k i Bb G Gi j Bb G Ga G GT b aba bba

(14), ,

,:,::0 ,,

which can be rewritten again as

∑∑∑∑ ∑∑

∑∑

( ) ( )− τ = − τ

=

( )

( )

τ

∈⊂⊂≤τ≤

τ
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i
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Because the right-hand side of Equation 15 is the objective function 
of P′, the proof is concluded.

Figure 2 shows how the CT transformation is applied. What makes 
P′ easier to solve is that in the network representation of P′ (the CT-
transformed network), the links with nonzero costs (bold arrows in 
Figure 2) are restricted to only interzonal links, whereas in the original 
case, all the links with positive travel times had positive arc costs.

Solution Method

Overview

The solution method in this paper is a type of negative cycle–
canceling algorithm for solving the MCF problem. The typical neg-
ative cycle–canceling algorithm starts with a feasible solution of 
flow from the origins to the destinations and continuously improves 
the solution by canceling the negative cycles of flow in the residual 

1
ha hb

22 3 t

1 1–2

1 1–2

1 1–2

1 1–2

1 1–2

1 1–2

3 3–t

3 3–t

3 3–t

3 3–t

3 3–t

3 3–t

2 2–3

2 2–3

2 2–3

2 2–3

2 2–3

2 2–3

t

(a)

(b)

FIGURE 2    Examples of CT transformation: (a) original network with two threat zones,  
and (b) LT-transformed network.

(continued)
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network. The optimal solution is generated when no negative cycles 
remain in the residual network. More information about the residual 
network transformation, the negative cycle–canceling algorithm, 
and other network flow algorithms to solve the MCF problem are 
available elsewhere (39).

In this paper, an efficient way to identify the greatest negative cost 
cycle on the transformed network is proposed in taking advantage of 
the special structure of the turnstile cost.

The solution method has multiple stages, the number of which is 
equal to the number of threat zones in the evacuation. The solution 

process starts with the innermost threat zone (which contains no other 
threat zones), sets it as the study subnetwork, and isolates it from 
the rest of the network (denoted by the red dotted line in Figure 3b). 
Isolating a subnetwork means temporarily removing the links that 
connect the subnetwork to the rest of the network.

Then, for the first study subnetwork (SS1), a feasible flow is 
generated to evacuate all the demand from SS1. Next, a proposed 
negative cycle detection (NCD) algorithm iteratively finds the nega-
tive cycles and cancels them until no negative cycles remain in SS1. 
Then, the study subset moves one threat zone out to the second study 

FIGURE 2 (continued)    Examples of CT transformation: (c) LT- and CT-transformed 
network (bold arrows denote nonzero arc costs).
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FIGURE 3    Examples of (a) original network with two threat zones and (b) SS1 and 
SS2 in LT- and CT-transformed network.
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subnetwork (SS2). The same steps are repeated for SS2, except that 
the feasible flow to begin this stage evacuates all the demand in SS2 
plus all the flow from SS1 at Stage 1. The algorithm continues until 
the last stage (k), in which SSk is the whole evacuation area. Figure 
3 illustrates an example CT-transformed network and the associated 
study subnetworks in the solution algorithm.

NCD and Cancellation

The NCD algorithm proposed in this research is based on a multi-
source shortest path (MSP) algorithm running on the residual network 
to find the negative cycles. The MSP algorithm is an efficient tool for 
solving optimal tour or walk problems in intermodal networks (40). 
The MSP algorithm is similar to typical label-setting shortest path 
algorithms except that the labeling process in MSP starts with more 
than one node: the sources or the roots of the shortest path tree. This 
way, when an MSP algorithm terminates, the final calculated label at 
each node is the distance (or shortest travel time, or other parameter) 
of that node measured from the whole set of sources (i.e., whichever 
source node is closest to the labeled node).

At each iteration, the NCD algorithm finds a label and a path for all 
the border nodes i of the subnetwork, where border nodes of the SS 
are the nodes outside the SS that are connected to at least one node in 
the SS. The associated path to node i is the optimal path that has the 
largest negative flow cost to i from another node j (which is the opti-
mal node among all candidate nodes on that border). The optimal 
path to i determines the optimal upstream node j, too. The label of i 
equals the total cost associated with the path from j to i.

In NCD, at each iteration, the labels and paths for all the border 
nodes are calculated in a single MSP run by setting the initial labels 
of all the border nodes to zero and running the MSP algorithm with 
all those nodes as sources. After all the nodes are labeled by MSP, the 
NCD algorithm searches for the node with the largest negative label 
and augments the maximum possible flow to the path that is associ-
ated with that largest negative label or node. In this way, the largest 
negative cycle among all possible cycles from all the border nodes is 
detected and canceled.

The NCD algorithm detects not exactly negative cycles but, more 
precisely, negative paths. This process is called cycle cancellation in 
this paper so readers can relate it to the well-known cycle-cancellation 
network flow optimization method that has similar algorithmic steps.

The main advantage of the NCD algorithm over existing cycle-
canceling algorithms is that at each iteration, the NCD algorithm 
detects and cancels the cycle that has the largest negative cycle cost. 
This feature avoids redundant flow cancellations with incremental 
improvements, decreases the number of NCD iterations, and leads 
to faster optimization. Another advantage of the NCD algorithm 
is that at least one cycle is detected in each iteration. Experiments 
reveal that, in practical applications, in each MSP run at every NCD 
iteration, multiple cycles can be detected and canceled, including 
the cycle with the largest negative cost.

The NCD algorithm for the SSi in the residual network is as follows.

Step 0.  Start with a feasible flow to evacuate the SSi in the LT- 
transformed subnetwork and update the residual network accordingly.

Step 1.  Label all the SSi border nodes as zero.
Step 2.  Run the MSP algorithm with all SSi border node copies, 

at all the time intervals, as the set of sources.
Step 3.  The border node with the smallest label is the downstream 

node of an augmenting path, representing the cycle with the greatest 

negative cost. Find the augmenting path and the upstream node by 
backtracking the sequence of predecessors.

Step 4.  Augment all of the border nodes with negative labels 
(because they correspond to negative cycles) to the largest possible 
flow along the associated path, in an increasing order of labels.

Step 5.  i := i + 1; go back to Step 0.

Negative cycles never exist in the study subnetworks, even at the 
beginning of stage i because all possible negative cycles that could 
have existed in SSi are canceled in stage (i − 1), on the borders of the 
SSi–1. Otherwise, if a negative cycle remained in the study subnetwork, 
the NCD algorithm would fall into an infinite loop during the shortest 
path run.

Again, all the flows that are augmented in the NCD algorithm are 
augmented along negative cost paths in the study subnetwork and 
not along negative cost cycles.

Figure 4 illustrates a simple NCD iteration for an example sub-
network with three nodes (Nodes 1 through 3) and a single border 
node (Node 4). Figure 4a shows a feasible flow in SSi, and Figure 4b 
shows the residual network and the NCD iteration. The iteration starts 
by setting the labels (L) to zero for the copies of Node 4 in all time 
intervals; then, after an MSP calculation, the labels are updated. 
The smallest label is −4, which belongs to the node that is selected 
as the downstream node of the augmented flow. Figure 4c is the aug-
mented flow path, and Figure 4d is the optimal solution—that is, the 
result after augmentation.

The solution algorithm is effective only under the condition that 
all arc costs in the threat zones are zero; this condition is achieved 
by the proposed CT. By isolating the study subsets from the rest of 
network, the solution algorithm traces the negative cost cycles at 
the borders. After all the cycles at the first border are removed, the 
algorithm moves to the outer subnetwork. Therefore, negative cycles 
never exist in study subnetworks, and all the cancellations take place 
at the borders of the threat zone.

After one NCD run on study subnetwork i (SSi) in the LT-
transformed network, the number of detected cycles is, at most, 
equal to the product of the number of time intervals in the horizon 
and the number of SSi border nodes. The negative cycle with the 
greatest negative cost is among the detected negative cycles. The 
negative cycles detected by NCD are augmented to their capacity 
limit, one by one, starting with the greatest negative cycle and 
proceeding in decreasing order. However, the residual network 
must be updated after each augmentation, and some or all of the  
remaining negative cycles (with zero remaining capacity) may 
disappear after an update because of possible overlaps between the 
canceled cycle and the remaining cycles. Cancellation continues 
until all of the detected cycles either are canceled or disappear; 
then, another NCD iteration is run. The same canceling and NCD 
iterations continue until the NCD algorithm detects no negative cost 
cycles. The resulting flow is optimal for the SSi evacuation. The next 
step moves to SSi+1.

Proof of Optimality

Theorem 2 (negative cycle optimality condition). A feasible solution x* 
is an optimal solution to an MCF problem if and only if the residual 
network Gr(x*) has no negative cycles.

Proof. Ahuja et al. provide the proof (41, p. 98, Theorem 5.1). ◾

The problem P′ is an MCF problem. If it is proved that the proposed 
algorithm generates a solution in a residual network with no negative 
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cost cycles, then the optimality of the solution is proved according to 
Theorem 2.

Because this proof is based on mathematical induction, two 
propositions must be proved:

Proposition 1. No negative cost cycles exist in the residual net-
work of SS1.

Proof. According to the definition of turnstile cost in the CT trans-
formation, no arcs with a negative (or nonzero) arc cost exist in SS1; 
therefore, no negative cycles exist in the residual network of SS1. ◾

Proposition 2. If no negative cycles exist in the residual network 
of SSi, then no negative cycles exist in the residual network of SSi+1 
at the end of stage i.

Proof. Because no negative cycles exist in the residual network of 
SSi, if a negative cycle exists in the residual network of SSi+1, then it 
must cross the SSi border on at least two arcs (because nonzero arcs 
can appear only at the borders) and generates a negative path in SSi 

from one arc to another. However, it is a contradiction, because all 
of the possible negative paths inside SSi are removed at the end of 
stage i of the algorithm. Therefore, at the end of stage i, no negative 
cycles exist in the residual network. ◾

Given Propositions 1 and 2 and by using mathematical induction, 
one can infer that at the end of the last stage of the algorithm, no 
negative cycles exist in the residual network of the entire evacuation 
area. Thus concludes the proof.

Implementation and Verification

The solution algorithm in this paper was coded in C++ and applied 
to an example network, and the solution quality was verified for 
several scenarios. Because of the computational limitations of the 
proposed algorithm, the network chosen for this test is a midsized 
example network. For a realistic scenario with the same model char-
acteristics as in this paper, see elsewhere (28). When implementing 
the solution algorithm, to generate a feasible solution to start each 
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FIGURE 4    Examples of NCD iteration: (a) one feasible flow, (b) multisource residual network shortest path run (MSP run),  
(c) augmented flow, and (d ) optimal solution (f 5 transformed cost, as defined in Equation 10).
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stage, an all-or-nothing traffic assignment is performed on the road-
way network for evacuation demand in the study subnetwork and 
inflow from the previous stage.

The test network is a grid with 100 nodes and 360 links. Three 
threat zones with threat levels h1, h2, and h3 are defined for the test 
network, which have threat values equal to 3, 2, and 1, respectively 
(Figure 5). In the test network, the threat level outside Zone 3 (which 
represents the safe area) is set to zero.

All links in the network are two-way streets with two lanes in 
each direction and a free-flow travel time equal to 1 min. The stor-
age capacity for the links is calculated on the basis of 30 ft of space 
occupied by each vehicle in the queue. The time resolution is 1 min, 
and the number of time intervals is set to 50. Ten scenarios were 
designed with randomly generated patterns for total demand, which 
ranged from 7,127 to 32,927 vehicles.

For verification purposes, the original MCF problem for each 
scenario was coded and solved with the CPLEX commercial opti-
mization software package (IBM ILOG CPLEX Optimization) 
(42). For all of the generated scenarios, the optimality of solutions 
was confirmed: the objective values found by the proposed solution 
method were equal to those found by CPLEX when solving the 
original MCF, for all of the generated scenarios. The results for the 
10 scenarios are listed in Table 1.

Results indicate that as evacuation demand increases from 7,127 
to 32,927, the total number of MSP runs required to detect and cancel 
the negative cycles increases from 27 to 290. As a result, computation 
time also increases from 7 s to 282 s. From the reported total number 
of MSP runs and total number of canceled cycles (Table 1), the aver-
age number of cycles detected in one MSP run can be inferred as 
5.1 to 6.5 cycles across different scenarios.

TABLE 1    Test Results for PQ and SQ Models

Scenario Total Demand
Total Number 
of MSP Runs

Total Number of 
Canceled Cycles

Optimal Objective 
Value

Computational 
Time (s)

Optimal Objective 
Value of SQ Model

1   7,127   27 161   26,979 7   26,979

2   7,927   33 184   35,504 7   35,504

3 10,327   41 267   53,402 15   53,402

4 13,927   72 429   85,131 32   85,131

5 14,427   82 478   83,723 39   83,723

6 18,027 131 702 117,940 62 117,940

7 18,927 119 744 138,723 49 138,723

8 20,827 154 792 170,450 110 170,450

9 21,927 195 1,006 223,631 172 223,631

10 32,927 290 1,772 456,868 282 456,868

h1 h2 h3

FIGURE 5    Test network with three threat zones.
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An intuitive interpretation of the results demonstrates the increase 
(degradation) of the optimal objective value as demand increases, 
which can be justified with two main reasons. First, when the network 
is more crowded, the average delay in the threat area increases, which 
increases the total exposure to the threat and consequently degrades 
the objective value. Second, when the number of evacuees is higher, 
total exposure increases, which is again equivalent to degradation of 
the objective value.

For all 10 scenarios in the test application, the problem formula-
tion based on the PQ model had the same optimal objective value 
as that of the problem formulations based on the SQ model. This 
observation may not always hold true, because the feasible set in the 
SQ formulation is a subset of that for the PQ formulation. However, 
in this example with high demand levels, the explicit representa-
tion of physical queues on the links does not lead to an increase in 
total exposure. The representation provides greater confidence in the 
evacuation plan because it performs optimally with a more realistic 
traffic flow model.

Conclusions

The solution method proposed in this research finds the optimal 
routing of traffic to evacuate a network with several threat zones, 
where the threat level may depend on the exposure or risk in each 
zone. However, this method can be applied to all zone-based optimal 
routing problems in which the arc costs are proportional to arc travel 
times.

The CT proposed to exploit the special arc cost pattern in this 
study does not require any assumption about the shapes, locations, 
and amounts of threat associated with the threat zones. The solution 
algorithm is presented and tested in the context of concentric threat 
zones but easily can be extended to threat zones with arbitrary shapes 
and desired threat levels.

The proposed algorithm always finds the optimal solution 
and is implemented and tested for a midsized grid test network. 
The solution quality is verified to be optimal. The authors have 
demonstrated the use of this model under reasonable traffic flow 
dynamics by using constraints that reflect the PQ and SQ traffic 
flow models. The PQ and SQ models produce two similar optimal 
flow solutions with equal objective function values for all scenarios 
tested; however, this result is not necessarily true for arbitrary 
scenarios in general.
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