Accepted Manuscript

Flupirtine: preliminary pharmacokinetics in the donkey

M. Giorgi, F. Laus, V. De Vito, H. Owen, A. Poapolathep, E. Paggi, C. Vullo

PII: S0737-0806(15)00062-3

DOI: 10.1016/j.jevs.2015.01.023

Reference: YJEVS 1846

To appear in: Journal of Equine Veterinary Science

Received Date: 15 December 2014

Revised Date: 26 January 2015

Accepted Date: 31 January 2015

Please cite this article as: Giorgi M, Laus F, De Vito V, Owen H, Poapolathep A, Paggi E, Vullo C, Flupirtine: preliminary pharmacokinetics in the donkey, *Journal of Equine Veterinary Science* (2015), doi: 10.1016/j.jevs.2015.01.023.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Original manuscript ACCEPTED MANUSCRIPT
1	Original manuscript
2	
3	
4	Flupirtine: preliminary pharmacokinetics in the donkey
5	
6	
7	M. Giorgi ^a , F. Laus ^b , V. De Vito ^c *, H. Owen ^d , A. Poapolathep ^e , E. Paggi ^b , C. Vullo ^f
8	
9	
10 11	^a Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), San Piero a Grado, Italy
12	^b School of Biosciences and Veterinary Medicine, University Camerino, Matelica, Macerata, Italy
13	^c Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, Italy
14 15	^d School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, Queensland 4343, Australia
16 17	^e Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
18	^f School of Pharmacy, University Camerino, Matelica, Macerata, Italy
19	
20	
21	
22	
23	* Corresponding author: Tel.: +39 5022 10145
24	E-mail address: virgidevit@libero.it (V. De Vito)
25	

27	Flupirtine (FLU) is a non-opioid analgesic drug with no antipyretic or antiphlogistic effects
28	labelled for humans. It does not induce the side effects associated with the classical drugs used as
29	pain relievers (NSAIDs and opioids) in human beings. The aim of this study was to evaluate the
30	pharmacokinetic profiles of FLU after IV and PO administration in healthy donkeys. Six Amiata
31	breed adult jennies were randomly assigned to two treatment groups using an open, 2 x 2 Latin-
32	square cross-over study design. Group 1 ($n = 3$) received a single dose of 1 mg/kg of FLU injected
33	IV into the jugular vein. Group 2 ($n = 3$) received FLU (5 mg/kg) via nasogastric tube. The wash
34	out period was 1-week. Blood samples (5 mL) were collected at 0.083, 0.25, 0.5, 0.75, 1, 1.5, 2, 4,
35	6, 8, 10, 24, 36 and 48 h and plasma was then analysed by a validated HPLC method. No adverse
36	effects were noticed in either administration group. After IV and PO administrations, FLU was
37	detectable in plasma for up to 24 h. The mean elimination half-life was longer after PO (10.81 h)
38	than after IV (0.90 h) administration. The clearance was fast and the AUC was small, findings
39	consistent with a low oral bioavailability of about 20%. The pharmacokinetic trend of FLU in
40	donkeys was different from those earlier reported in cats and dogs. Further studies are needed to
41	understand if this active ingredient may be used in donkeys.

- 42
- 43

44 Key words: donkeys; flupirtine; intravenous; oral; pharmacokinetics

47

Flupirtine (FLU) is an aminopyridine drug (ethyl {2-amino-6-[(4-fluorobenzyl) amino] 48 pyridin- 3-yl}carbamate) approved in Europe in 1984 for treatment of a wide range of pain states in 49 human beings [1]. Flupirtine is a centrally acting analgesic with a mechanism of action unlike that 50 of opiates and NSAIDs. It is active with a favourable tolerability and with no antipyretic or 51 antiphlogistic effects in humans [2]. Flupirtine is the first drug to be recognised in the unique class 52 of 'Selective Neuronal Potassium Channel Openers' (SNEPCO) [3]. It interacts with the G-protein-53 regulated, Inwardly Rectifying K^+ channels (GIRKs), a novel family of K^+ channels distinct from 54 the voltage-dependent ones. They are regulated by neurotransmitters and are expressed in different 55 parts of the brain. Flupirtine activates GIRKs and stabilizes the membrane resting potential by 56 activating potassium channels KCNQ and thus generating a neuronal hyperpolarizing current (M-57 current). The increased M-current due to the action of FLU translates to decreased neuronal 58 excitability [4]. Moreover, FLU inhibits the NMDA receptor indirectly by acting as an oxidizing 59 agent at the redox site of the NMDA receptor, maintaining the Mg²⁺ block on the NMDA receptor 60 61 [2].

62

63 In line with its mechanism of action promoting neuronal rest, it has proven useful in conditions involving neuronal hyperexcitability such as chronic pain (non-malignant and 64 malignant), migraine and neurogenic pain [5-10]. Furthermore, its effect as a muscle relaxant 65 represents added value in painful conditions associated with increased muscle tension, such as 66 musculoskeletal back pain, myofascial pain and tension headaches [1,6,11-13]. Flupirtine has also 67 been shown as beneficial in the short-term treatment of acute to moderate pain such as 68 postoperative pain, trauma and dysmenorrhoea [14]. The approved indications of FLU differ 69 between countries but mainly include the clinical management of musculoskeletal pain, 70

postoperative pain, headache, dysmenorrhoea, neuralgia and neuritis, post-traumatic pain (trauma and chemical burns) and pain associated with cancer [15-16]. It has possibly not been used to its full potential as an analgesic in the first decade of the 21st century, but in recent years, there has been a resurgence in FLU use after discovery of its powerful-synergistic effects when used with opioids [4,17-18] in addition to its properties when used alone [19].

76

While there is a substantial body of evidence on the efficacy of FLU in humans, only a single
study on the analgesic effect of FLU in laboratory animals is present in the literature [20] and its
pharmacokinetic profiles in cats [21] and dogs [22] have been recently described. Advanced studies
(phase III) in dogs and horses are ongoing in the USA
(<u>http://www.kindredbio.com/#!pipeline/c1ktj</u>). As no data on the pharmacokinetic profiles of FLU
in donkeys exists, the aim of this study was to evaluate its pharmacokinetic after IV and PO
administration in this species.

84

85 2 Materials and methods

86 2.1 Chemical and reagents

Pure FLU maleate salt and the Internal Standard trazodone (IS) powders (both >99.0% purity) 87 were supplied by Sigma-Aldrich (St. Louis, MO, USA). HPLC grade acetonitrile (ACN), methanol 88 (MeOH), dichloromethane (CH_2Cl_2) and ethyl acetate (AcOEt) were purchased from Merck 89 (Darmstadt, Germany). Ammonium acetate (AcONH₄) was purchased from Carlo Erba (Milano, 90 Italy). Deionised water was produced by a Milli-Q Milli-pore Water System (Millipore, MA, USA). 91 92 All other reagents and materials were of analytical grade and supplied from commercial sources. The LC mobile phase was filtered through 0.2 µm cellulose acetate membrane filters (Sartorius 93 Stedim Biotech S.A., Aubagne Cedex, France) with a solvent filtration apparatus. 94

96 2.2 Animal and experimental design

97 The subjects were six Amiata jennies, aged 4 to 7 years and weighing 150 to 210 kg. The 98 jennies were determined to be clinically healthy on physical examination, serum chemistry and 99 haematological analyses. Animals were evaluated daily (for 1 week) for visible adverse effects by 100 specialized personnel. Animal care and handling was performed according to the provision of the 101 EC council Directive 86/609 EEC and also according to Institutional Animal Care and Use 102 directives issued by the Animal Welfare Committee of the University of Camerino, which approved 103 the study protocol.

104

Donkeys were randomly assigned to two treatment groups (six slips of paper marked with the 105 numbers 1 to 6 in a box), using an open, single-dose, two-treatment, two-phase, paired, cross-over 106 design (2 x 2 Latin-square). All subjects were fasted for 12 h overnight before each experiment. 107 In both periods, a jugular catheter was placed for the purpose of blood sample collection. In 108 addition, in the IV group, a second jugular catheter was placed in the contralateral jugular vein for 109 intravenous drug administration. Placement of the jugular catheter occurred approximately 12 h 110 prior to the start of the investigation. Donkeys were restrained by a handler during the process of 111 catheter placement. The area over the jugular vein was clipped and surgically prepared with 112 alternating scrubs of 70% isopropyl alcohol and povidone iodine. The catheter site was infiltrated 113 114 with 1 mL of 2.5% lidocaine/prilocain injection given subcutaneously (EMLA, AstraZeneca, Milan Italy). Using sterile technique, an 18 G x 55 mm intravenous catheter (Picco, Pulsion, Milan Italy) 115 with injection plug was inserted into the vein and sutured to the skin using #3 nylon suture 116 (Vetsuture, Sanitalia, Napoli, Italy). Catheter patency was maintained by flushing with 2 mL of a 117 heparin saline solution containing ten international units heparin sodium/mL saline (Heparin 118

Sodium Injection, Baxter, Pisa, Italy). The catheter port was disinfected with an alcohol swab prior
to sample collection.

121

122	During the first phase, each donkey in group 1 ($n = 3$) received a single dose of 1 mg/kg of					
123	FLU (Katadolon [®] 100 mg/3 mL vials, FLU D-gluconate AWD Pharma, Radebeul, Germany)					
124	injected IV at a flow rate of 3 mL/min. Group 2 ($n = 3$) received a dose of 5 mg/kg via the PO route					
125	(Efiret [®] 100 mg hard capsules, FLU maleate, Meda Pharma S.p.A. Milano, Italy). The oral					
126	formulation of FLU was given to all animals via nasogastric tube and consisted of capsules in 300					
127	mL of distilled water. After administration, the nasogastric tube was rinsed with 300 mL of distilled					
128	water to ensure complete delivery of the drug into the stomach. A 1-week wash out period was					
129	observed between the phases, then the groups were rotated and the experiment was repeated. Blood					
130	samples (5 mL) were collected at 0.083, 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 6, 8, 10, 24, 36 and 48 h after					
131	administration of FLU and placed in collection tubes containing lithium heparin. Samples were					
132	immediately centrifuged at 2000 g (10 min), and the harvested plasma was stored at -20 $^{\circ}$ C until					
133	use within 30 days from collection.					

134

135 2.3 High performance liquid chromatography

The analytical method was based on a previous method validated in dog plasma [22]. In brief, the HPLC system was an LC Jasco (Como, Italy) consisting of quaternary gradient system (PU 980) and an in line multilambda fluorescence detector (FP 1520). The chromatographic separation assay was performed with a Luna C18₍₂₎ analytical column (250 mm × 4.6 mm inner diameter, 5 μ particle size [Phenomenex, Bologna, Italy]) preceded by a security guard column with the same stationary phase (C18₍₂₎ [Phenomenex, Bologna, Italy]). The system was maintained at 25°C. The mobile phase consisted of ACN:AcONH₄ (20 mM) solution, pH 6.8 (60:40, v/v) at a flow rate of 1 mL/min. Excitation and emission wavelengths were set at 323 and 370 nm, respectively. The
 elution of the substances was carried out in isocratic mode.

145

146 2.3.1 Sample extraction

147	The procedure was performed in a 15 mL polypropylene vial. A 500 μ L aliquot of plasma was
148	added to 100 μ L of IS (100 μ g/mL) and vortexed for 60 sec. Four mL of AcOEt:CH ₂ Cl ₂ (7:3 v/v)
149	was added, then the sample was vortexed (30 sec), shaken (100 osc/min, 10 min) and centrifuged at
150	3000 g for 10 min at 10° C. Three mL of the supernatant was collected in a separate clean vial. The
151	organic phase was evaporated under a gentle stream of nitrogen at 40 °C and reconstituted with 500
152	μ L of the mobile phase. Twenty μ L of this latter solution was injected onto the HPLC-FL.

153

154 2.4 Pharmacokinetic evaluation

Flupirtine plasma concentration vs. time curves were modeled for each subject using a monoor a two-compartment open model [23]. Comparison between competing models was made using the residual plots, visual inspection of the goodness of fit curves and the Akaike's information criterion. The pharmacokinetic calculations were carried out using WinNonLin v 5.3.1 (Pharsight). The PO bioavailability was calculated from the ratio of the areas under the plasma FLU concentration curve after PO and IV administration, respectively, indexed to their respective dose: $F(\%) = (AUC_{PO} \times Dose_{PO})/(AUC_{IV} \times Dose_{PO}) \times 100$

162

```
163 2.5 Statistical analysis
```

Pharmacokinetic variables were evaluated using the Student's t test to determine statistically significant differences between the treatment groups. Both pharmacokinetic parameters and FLU plasma concentrations are presented as means \pm standard deviation (normality tested by Shapiro-

- Wilk test). All analyses were conducted using GraphPad InStat (GraphPad Software). In all experiments, differences were considered significant if P < 0.05.
- 169

170 **3 Results**

The HPLC method was re-validated using donkey plasma. Briefly, FLU was linear ($r^2 > 0.99$) in the range 10-1500 ng/mL. Limit of detection and quantification were 3 and 10 ng/mL, respectively. When samples exceeded the upper limit of the range, they were re-analysed after appropriate dilution. The intraday repeatability was measured as coefficient of variation and was lower than 4.9 %, whereas accuracy, measured as closeness to the concentration added on the same replicates, was lower than 7.1 %.

177

No behavioral changes or alterations in health parameters were observed in the IV and PO
groups of animals during or after (up to 7 days) the drug administration. Physiological signs and
parameters were normal.

181

A bi-compartmental model best fitted the plasma concentrations after IV and PO 182 administrations in all the six donkeys. Two-compartment with bolus input and first-order output, 183 micro-constants as primary parameters was used for the IV administration while a first-order input, 184 first-order output, no lag time and micro-constants as primary parameters was used for the PO 185 administration. The average plasma concentration vs. time curves after both the administrations are 186 reported in Fig. 1. After IV administration the data at the first collection time point was extremely 187 variable (range 1508-13296 ng/mL). Flupirtine was detectable in plasma up to 24 h, then the drug 188 concentrations dropped down to the LOQ of the method (10 ng/mL). After oral administration (5 189 mg/kg), the FLU plasma concentrations were quite variable, and were detectable over the same 190

range of time. The average C_{max} (936 ng/mL) was shown at a T_{max} of 0.33 h. The oral
bioavailability (F%) was 19.75 ± 12.16 %. The half-life of elimination (Beta_HL) value was 10
times higher in the PO compared to the IV group. The complete pharmacokinetic parameters are
reported in Table 1.

195

196 **4 Discussion**

Flupirtine is a centrally acting, non-opioid analgesic that is available in a number of European 197 countries for the treatment of a variety of pain states [15]. The therapeutic benefits seen with FLU 198 relate to its unique pharmacological properties. Recently its potential for use in veterinary medicine 199 has been explored [24]. Preclinical studies showed that FLU was more effective than paracetamol 200 and as effective as pentazocine in the electrostimulated pain test in mice [25]. Flupirtine 201 significantly prolonged the latency of the tail-flick test in rats [26]. Flupirtine produced an efficacy 202 203 profile superior to that of tramadol for cancer-associated pain in rats and humans [4,5]. Flupirtine produced a significant increase in morphine antinociception when the two drugs were administered 204 in combination in different rat models of pain [17,18]. If the opioid sparing effect is also evident in 205 206 donkeys, this active ingredient could play an important role in combinatorial analgesic therapy in order to avoid moderately high regimens of opioids. Flupirtine might also be an attractive 207 alternative for patients with a history of adverse drug reaction to NSAIDs [27]. Indeed it does not 208 induce the gastrointestinal and renal side effects evoked by classical NSAIDs and COX-2 selective 209 inhibitors [28]. 210

211

Allometric scaling is an approach for dosage selection that can be used in the absence of either species-specific pharmacokinetic data or prior drug experience in the target species [29]. In the present study, an evidence-based approach rather than an allometric calculation of the dose was

preferred. Both the approaches share the assumption that species differences in pharmacodynamics 215 are clinically negligible. The oral dose administered in the present study (5 mg/kg) was about 3 216 times higher than the minimum dose reported in human clinical practice (100 mg/subject/day). 217 218 However, it was still within the recommended human clinical range (100-400 mg/subject/day) [15]. The rationale for oral dose selection of 5 mg/kg was based on earlier preclinical studies in dogs and 219 cats. The ED₅₀ of FLU after oral administration in the electrical tooth pulp stimulation test in dogs 220 and cats was 3.5 mg/kg [25] and 3 mg/kg [20], respectively. Additionally, recent pharmacokinetic 221 studies carried out with this dose regimen did not show any adverse effects after oral administration 222 [21,22]. A recent study also indicated that the theoretical effective oral dose of FLU in horses is 2.6 223 mg/kg [30]. However, as according to earlier studies donkeys require higher drug dose than horses 224 [31-35], a 5 mg/kg oral dose was preferred. 225

226

In variance to the PO route, 5 mg/kg of FLU administrated IV produced some adverse effects in dogs [22]. In the present study the IV dose was reduced to 1 mg/kg to minimise potential adverse effects. No side effects were visible in donkeys even though the highest plasma concentrations were higher than those detected in horses administered with the same IV dose (1mg/kg), where only some mild and transient adverse effects were visible [30]. However, FLU as an analgesic drug is expected to be administered in multiple doses. Toxicity might be potential at multiple dose regimen and should be tested in further studies.

234

No experimental information about the minimal effective concentration in humans or animal species is available for FLU. A recent study has calculated *in silico* that the theoretical plasma effective concentration of FLU in horses is 178 ng/mL [30]. If this data also holds true in donkeys, 238 FLU is not maintained in excess of that plasma level for long. Indeed in both the drug

administrations, FLU plasma concentrations are below that value after 1.5 hours.

240

241	Flupirtine is a water-soluble compound in the form of maleate salt (pKa 5.3) that is rapidly
242	absorbed from the human gastro intestinal tract [36]. The T_{max} found in this study (0.33 h) was
243	shorter than the T_{max} reported for dogs (1.42 h), humans (range 1.6-1.8 h), and cats (2.78 h)
244	showing a faster rate of absorption of the drug in donkeys. A number of factors may be responsible
245	for this difference: the large variation in this parameter in the donkey, different absorption, gastric
246	emptying, transit time or other species-specific factors
247	
248	Following PO administration of FLU, donkeys showed mean terminal plasma elimination
249	half-lives in between those reported in cats (13.6 h) and dogs (7.1 h) [21-22]. The average clearance
250	value in donkeys was much larger than those reported in dogs (604 mL/h/kg) and in cats (195
251	mL/h/kg) [21-22]. Interestingly, oral bioavailability (F%) in donkeys has also been shown as half of
252	that reported for cats and dogs. This difference might be due to both larger clearance and rapid drug
253	metabolism. Large differences in F% between humans and animals and between animals
254	(carnivorous vs. herbivorous) have previously been demonstrated, indicating that F% values derived
255	in an animal species cannot always be extrapolated to humans or other animal species [37].
256	Remarkably, a recent study has shown an oral F% of about 70% in horses [30]; this difference
257	between the equine species is in line with earlier studies reporting a significantly reduced drug oral
258	F% in donkeys compared to horses [31-35].

259

261 Conclusion

This is the first study on FLU in donkeys. The pharmacokinetic profiles of FLU in donkeys were different compared to FLU disposition in humans, cats and dogs. Donkeys have shown a large clearance and a low oral bioavailability, which are consistent with relatively low plasma drug concentration profiles if compared to other animal species. Further studies need to be undertaken to confirm the pharmacokinetic profile and to evaluate the analgesic effect in this animal species.

267

268 **Conflict of interest statement**

269 None of the authors of this paper does have a financial or personal relationship with other

270 people or organizations that could inappropriately influence or bias the content of the paper.

271

272 Acknowledgements

- The study was equally carried out by funds from the University of Camerino and University
 of Pisa (Athenaeum ex 60%). Any external funding did not support the preparation of manuscript.
- 275

ACCEPTED MANUSCRIPT

278	
279	[1] Kumar R, Keshri UP, Sharma J. Flupirtine: A mini review. J Drug Deliv Therap 2013;3:113-6.
280	
281	[2] Singal R, Gupta P, Jain N, Gupta S. Role of flupirtine in the treatment of pain - chemistry and
282	its effects. Mædica J Clin Med 2012;7;163-6.
283	
284	[3] Kornhuber J, Maler M, Wiltfang J, Bleich S, Degner D, Rüther E. Neuronal potassium cannel
285	opening with flupirtine. Fortschr Neurol Psychiatr 1999;67:466-75.
286	
287	[4] Kolosov A, Goodchild CS, Williams ED, Cooke I. Flupirtine enhances the anti-hyperalgesic
288	effects of morphine in a rat model of prostate bone metastasis. Pain Med 2012;13:1444–56.
289	
290	[5] Luben V, Muller H, Lobisch M, Wörz R. Treatment of tumor pain with flupirtine: results of a
291	double-blind study versus tramadol. Fortschr Med 1994;112:282-6.
292	
293	[6] Wörz R, Bolten W, Heller B, Krainick JU, Pergande G. Flupirtine in comparison with
294	chlormezanone in chronic musculoskeletal back pain: results of a multicenter randomized
295	double-blind study. Fortschr Med 1996;114:500-4.
296	
297	[7] Mueller-Schwefe G. Flupirtine in acute and chronic pain associated with muscle tenseness:
298	results of a postmarket surveillance study. Fortschr Med Orig 2003;121:11-8.
299	
300	[8] Ringe JD, Miethe D, Pittrow D, Wegscheider KAnalgesic efficacy of flupirtine in primary care
301	of patients with osteoporosis related pain: a multivariate analysis. Arzneimittelforschung
302	2003;53:496-502.
303	
304	[9] Li C, Ni J, Wang Z, Li M, Gasparic M, Terhaag B, Uberall MA. Analgesic efficacy and
305	tolerability of flupirtine vs. tramadol in patients with subacute low back pain: a double-blind
306	multicentre trial. Cur Med Res Opin 2008;24:3523-30.
307	
308	[10] Szelenyi I. Flupirtine, a re-discovered drug, revisited. Inflam Res 2013;62:251-8.
309	
310	[11] Worz R. Flupirtine in chronic myofascial pain conditions. Fortschr Med 1991;109:158-60.
311	
312	[12] Wörz R, Lobisch M, Schwittmann B, Gessler M, Grotemeyer KH, Langohr HD, Lüben V,
313	May A, Nehrdich D, Schabet M. Effectiveness of flupirtine in chronic tension headache:
314	results of a double-blind study versus placebo. Fortschr Med 1995;113:463-8.
315	
316	[13] Banerjee M, Bhattacharyya K, Sarkar RN, Ghosh B. Comparative study of efficacy and
317	tolerability of flupirtine versus tramadol in non-steroidal anti-inflammatory drug intolerant
318	mechanical low back pain. Indian J Rheumatol 2012;7:135-40.
319	
320	[14] Heusinger JH. Efficacy and tolerance of flupirtine and pentazocine in two multicentre trials.
321	Postgrad Med J 1987;63:71-9.
322	
323	[15] Devulder J. Flupirtine in Pain Management. CNS Drugs 2010;24:867-81.
324	
325	[16] Harish S, Bhuvana K, Girish M, Bengalorkar-Kumar TN. Flupirtine: Clinical Pharmacology. J
326	Anaest Clin Pharmacol 2012;28:172-7.

327	[17] Goodchild CS, Kolosov A, Tucker AP, Cooke I. Combination therapy with flupirtine and
327	opioid: studies in rat pain models. Pain Med 2008;9;928-38.
	opioid. studies in rat pain models. Pain Med 2008,9,928-58.
329 330	[18] Capuano A, De Corato A, Treglia M, Tringali G, Navarra P. Flupirtine antinociception in the
	rat orofacial formalin test: an analysis of combination therapies with morphine and
331	tramadol. Pharmacol Biochem Behav 2011;97:544-50.
332	tramadol. Pharmacol Blochem Benav 2011;97:344-30.
333	
334	[19] Wilhelmi E. Flupirtine retard - Recommended by the German Society for Pain Management
335	practice guideline on low back pain. Journal fur Pharmakologie und Therapie 2013;22:72-3.
336	
337	[20] Gordon R, Sofia RD, Diamantis W. Effect of flupirtine maleate on the nociceptive pathway,
338	EEG, evoked potentials and polysynaptic reflexes in laboratory animals. Postgrad Med J
339	1987;63:49-55.
340	
341	[21] De Vito V, Łebkowska-Wieruszewska B, Owen H. Kowaski, CJ, Giorgi M. Pharmacokinetic
342	profiles of the analgesic drug flupirtine in cats. Vet J 2014a;202:309-13.
343	
344	[22] De Vito V, Łebkowska-Wieruszewska B, Shaban A, Lisowski A, Kowaski CJ, Giorgi M.
345	Pharmacokinetic profiles of the analgesic flupirtine in dogs after the administration of four
346	pharmaceutical formulations. Vet Anaest Analg 2014b. doi:10.1111/vaa.12235, in press
347	
348	[23] Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. New York: Dekker; 1982.
349	
350	[24] Giorgi M, Owen H. Flupirtine: A human drug with potential for use in the veterinary field. Am
351	J Anim Vet Sci 2012;7:213-7.
352	
353	[25] Nickel B. The antinociceptive activity of flupirtine: a structurally new analgesic. Postgrad Med
354	J 1987;63:19-28.
355	
356	[26] Szelenyi I, Nickel B, Borbe HO, Brune K. Mode of antinociceptive action of flupirtine in the
357	rat. Br J Pharmacol 1989;97:835-42.
358	
359	[27] Sanchez LC, Robertson SA. Pain control in horses: what do we really know? Equine Vet J
360	2014;46:517-23.
361	
362	[28] Papich MG. An update on nonsteroidal anti-inflammatory drugs (NSAIDs) in small animals.
363	Vet Clin North Am Small Anim Pract 2008;38:1243-66.
364	
365	[29] Hunter RP. Interspecies Allometric Scaling. In: Cunningham F, Elliott J, Lees P. editors.
366	Comparative and Veterinary Pharmacology, London: Springer; 2010, p. 140-55.
367	
368	[30] Giorgi M, De Vito V, Poapolathep A, Rychshanova R, Sgorbini M, Owen H. Analgesic drug
369	flupirtine: pharmacokinetics and disposition in the horse. Vet J 2015 submitted.
370	
371	[31] Lizarraga I, Sumano H, Brumbaugh GW. Pharmacological and pharmacokinetic differences
372	between donkeys and horses. Equine Vet Ed 2004;16:102-12.
373	
374	[32] Kim TW, della Rocca G, Di Salvo A, Owen H, Sgorbini M, Giorgi M. Pharmacokinetics of the
375	Novel Cyclooxygenase 2 Inhibitor Cimicoxib in Donkeys. J Equine Vet Sci 2014;34:923–5.
376	

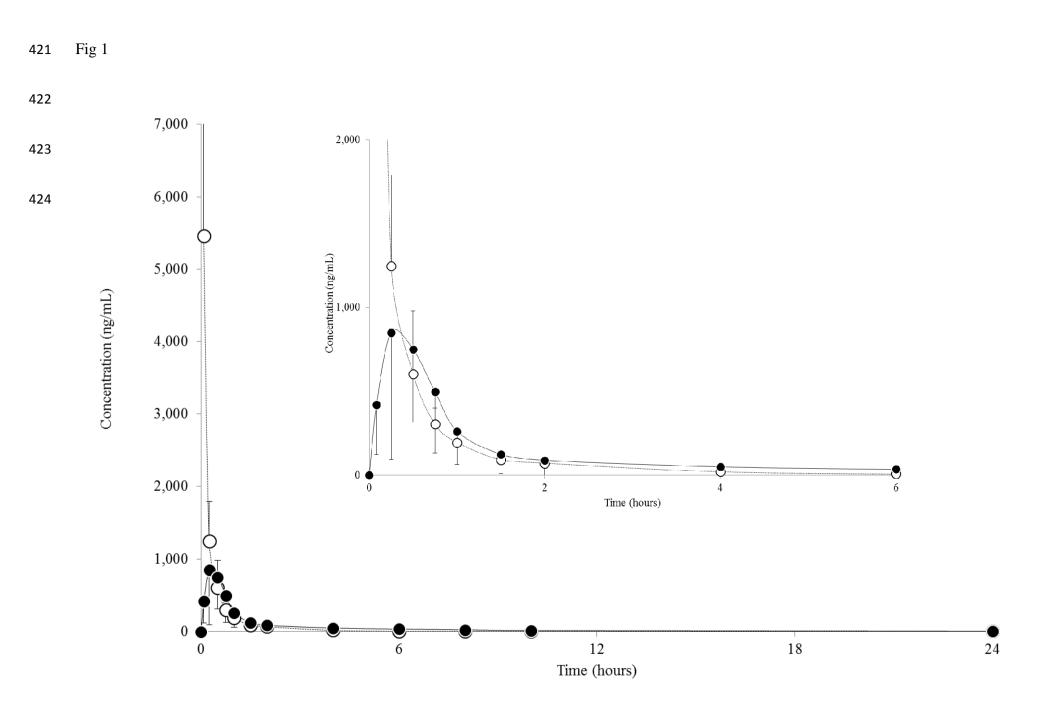
277	1221 Kim TW dolla Dagan C. D. ACCEPTED MANUSCRIPT
377	[33] Kim TW, della Rocca G, Di Salvo A, Ryschanova R, Micaela S, Giorgi M. Evaluation of
378	pharmacokinetic and pharmacodynamic properties of cimicoxib in fasted and fed horses. N
379	Z Vet J 2014;10.1080/00480169.2014.950355 in press
380	
381	[34] Giorgi M, Ozdemir M, Camillo F, Panzani D. Pharmacokinetics of sulpiride after intravenous,
382	intramuscular, and oral single-dose administration in nurse mares. J Equine Vet Sci 2013;
383	33:533–8.
384	
385	[35] Giorgi M, Vullo C, De Vito V, Catone G, Faillace V, Laus F. Pharmacokinetic evaluations of
386	sulpiride after intravenous, intramuscular, and oral single-dose administration in jennies
387	(Equus asinus). J Equine Vet Sci 2015;doi: 10.1016/j.jevs.2014.10.003 in press
388	
389	[36] Klawe C, Maschke M. Flupirtine: pharmacology and clinical applications of a nonopioid
390	analgesic and potentially neuroprotective compound. Expert Opin Pharmacother
391	2009;10:1495-500.
392	
393	[37] Chiou WL, Jeong HY, Chung SM, Wu TC. Evaluation of using dog as an animal model to
394	study the fraction of oral dose absorbed of 43 drugs in humans. Pharm Res 2000;17:135-40.
205	

Table 1. Pharmacokinetic parameters of flupirtine after IV (1 mg/kg) and PO (5 mg/kg)

administrations in healthy donkeys (n = 6)

398

		IV			PC)	
Parameters	Units	Mean		SD	Mean		SD
AUC	hr*ng/mL	1867.97	±	1138.93	1454.69	±	748.9953
K01_HL	hr	/	\pm	/	0.21648	±	0.097415
K10_HL	hr	0.13213		0.1005	0.49594	±	0.186669
Alpha	1/hr	11.9077	\pm	6.27947	2.85026	±	0.847724
Beta	1/hr	1.35979	±	0.60358	0.08926	±	0.048583
Alpha_HL	hr	0.0869	±	0.07795	0.25886	÷	0.063732
Beta_HL	hr	0.9065	±	1.13075	10.8139	±	7.215173
Cmax	ng/mL	/	±	/	936.861	±	512.7385
Tmax	hr	/	±	/	0.33537	±	0.1168
CL‡	mL/hr/kg	679.419	±	312.95	4812.8	±	3721.237
V2‡	mL/kg	297.564	±	428.636	27870.9	±	22017.29
AUMC	hr*hr*ng/mL	702.329	±	378	/	±	/
MRT	hr	0.52	±	0.51	/	±	/
V1‡	mL/kg	157.81	±	179.621	3367.13	±	2777.976
K01	1/hr	/	\pm	/	4.63402	±	4.202936
K10	1/hr	7.91	\pm	5.62956	1.66127	±	0.922205
K12	1/hr	3.16	\pm	1.84219	1.10169	±	0.443344
K21	1/hr	2.19465	±	1.03867	0.17657	±	0.130243
F%	%				19.75	±	12.16


399

400 AUC, area under the plasma concentration-time curve; K01_HL, half-life of the absorption phase; K10_HL, half-life of 401 the elimination phase; Alpha, rate constant associated with distribution; Beta, rate constant associated with elimination; 402 Alpha_HL, distribution half-life; Beta_HL, elimination half-life; C_{max} , peak plasma concentration; T_{max} , time of peak; 403 CL, clearance; V2, volume of compartment 2; AUMC, area under the first moment curve; MRT, mean residue time; 404 V1, volume of compartment 1; K01, absorption rate; K10, elimination rate from compartment 1; K12, rate of movement 405 from compartment 1 to 2; K21, rate of movement from compartment 2 to 1; F%, bioavailability. ‡ For the oral 406 administration these parameters are divided for their bioavailability.

407

408

- 410 Figure captions
- Fig. 1. Mean plasma concentrations of flupirtine vs. time curves following PO (5 mg/kg) (-•-) and 411 IV (-- \circ --) (1 mg/kg) administrations in healthy donkeys (n = 6). The window graph focuses on the 412 FLU plasma concentrations detected in first 6h after treatment. Bars represent the standard 413 414 deviations. 415 416 417 418 419

Highlights

Flupirtine IV (1 mg/kg) and oral (5 mg/kg) administered, did not show any adverse effect in donkeys

Flupirtine oral bioavailability was about quite low in donkeys (about 20%)

The pharmacokinetics of flupirtine in donkeys is different from those earlier reported in cats and dogs