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Abstract 

 

Rehabilitated landforms are often characterised by topographies, material properties and 

vegetation features untypical for the environment they are constructed in. Changed 

topography, decreased infiltration capacity and reduced vegetation cover often result in 

altered surface hydrological behaviours, typically resulting in increased surface runoff, which 

may be the cause for serious soil erosion, downstream contamination, revegetation failure 

and potential destruction of waste containment facilities.  

Proper rehabilitation planning, including the landform designs and revegetation strategies, 

together with the suitable water management, could help minimize these potential harmful 

environmental consequences and improve landform stability. This requires a good 

understanding and estimation of the surface hydrological processes in the rehabilitated 

landforms. A critical literature review in this thesis, however, has identified that there are still 

some uncertainties remaining in many areas of the surface hydrology research, including the 

major influencing factors and their combined and quantified effects on the surface 

hydrological process, the efficient determination of the unmeasurable parameters for the 

infiltration modelling, the evaluation and application of modified infiltration models for the 

simulation of complex rainfall conditions, and the accurate and effective methods for runoff 

modelling at different spatial or temporal scales.  

Furthermore, most of previous studies have focused on the surface hydrology in the 

agricultural, forestry and other natural systems, while limited effort has been made towards 

the disturbed environment such as the mining areas. The hydrologic theories, principles and 

models established in the natural environment thus may not be applicable to the rehabilitated 

environment because of the differences in their geomorphic features, surface hydraulic 

properties, spatial scales and landform complexities.  

The two major objectives of this research therefore were: (1) to evaluate the classical and 

modified infiltration models and estimate their parameters from major controlling factors by 

conducting small scale plot studies; and (2) to develop a more effective and universal surface 

runoff model by incorporating the evaluated infiltration models and Cellular Automata 

theories, and apply it for the simulation of runoff behaviours on the rehabilitated landforms. 

The infiltration experiments were firstly carried out at an experimental farm of the University 

of Queensland, located at Pinjarra Hills, Queensland, eastern Australia. Field plots of a size 



 

 
 

of 1 m × 1 m were set up to evaluate the performance of four classical infiltration models (i.e., 

Philip, Green-Ampt, Holtan and Horton models) and three modified infiltration models (i.e., 

modified Holtan, Green-Ampt and Horton models) under different site conditions, using the 

continuous rainfall or sequences of rainfall events generated by a field rainfall simulator. All 

these models demonstrated satisfactory and comparative performance, except for the 

modified Horton model, which however, showed greatly increased accuracies after the 

improvement made in this study. In addition, predictive regression equations were 

successfully developed for the unmeasurable parameters in the four classical infiltration 

models, on the basis of their identified major controlling factors. A simplified set of equations 

were also developed from five readily obtainable factors, thus improving the outcomes in 

regard to the effort, time and cost in determining these parameters. 

The well evaluated infiltration models laid a solid foundation for the prediction of runoff 

production as infiltration is recognised as an important regulator in surface hydrology that 

determines the quantity of incoming precipitation, which becomes surface runoff or 

contributes to soil moisture. On this basis, a novel surface runoff model (RunCA) was further 

proposed in this research by taking the advantages of Cellular Automata (CA), based on the 

cardinal-direction-priority principle, the minimization-of-difference algorithm and the 

calculated spatially varied flow velocities. The systematic validation of RunCA by the 

analytical solution under simplified conditions, the laboratory experiments on small plots and 

the field measurements (data taken from literature) at Pine Glen Basin, USA demonstrated 

its ability in simulating the spatial and temporal variations in the unsteady state runoff 

behaviours at different scales. RunCA also showed potential advantages over some other 

hydrologic models in terms of simulation accuracy, computational efficiency and scale 

flexibility. 

The validated RunCA model was then applied to a case study to assess the runoff 

performance on a rehabilitated mining landform at Ranger Uranium Mine, located at Northern 

Territory, Australia. Good agreement was achieved between the simulated and observed 

discharge volumes, runoff curves and flow distributions for the rainfall events monitored 

during four water years from 2009 to 2013. Simulation results also indicated the role of 

designed surface rip lines in reducing runoff and their insufficiency during several extreme 

rainfall events. New virtual landforms were therefore created by increasing the heights of rip 

lines and an optimum design was suggested by comparing the simulated runoff results of 

RunCA. The application of RunCA was further discussed by scenario analysis performed on 



 

 
 

virtual objects to broaden the aspects in mined land rehabilitation designs, including landform 

designs of batter slopes and tailings dams, revegetation strategies and cover constructions. 

These results have proven the efficacy of RunCA as a simulation tool to optimise 

rehabilitation designs. 

In conclusion, this thesis has improved our understanding on the effects of various factors on 

the soil infiltration behaviours and facilitated the determination of infiltration parameters by 

developing predictive equations. It also contributes the surface hydrologic modelling through 

the evaluation of different infiltration models and the development of a novel CA-based 

surface runoff model. The developed runoff model provides a powerful simulation tool for the 

sustainable landform design and effective water management, which would minimise the 

potential harmful environmental consequences and increase the success of the long-term 

stability of rehabilitated landforms.   
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Chapter 1 Introduction 

 

1.1 Problem statement 

An increasing area of land is disturbed by human activities, such as mining. In order to minimise the 

serious and long-lasting environmental and social impacts brought by these disturbed landforms, there 

is a requirement to implement rehabilitation practices following the disturbance. For example, the 

Australian and New Zealand Minerals and Energy Council (ANZMEC) and the Minerals Council of 

Australia (MCA) jointly published the Strategic Framework for Mine Closure (ANZMEC 2000), 

which states that the mining industry is responsible for rehabilitation of mine disturbance in an 

environmentally and socially acceptable way. Each State and Territory government in Australia also 

regulates mining impacts through the authorisations for mine leases, such as the Environmental 

Authority (EA) issued by the Queensland Department of Environment and Resource Management 

(DERM) under the Environment Protection Act 1994.  

Rehabilitation is defined as “the process of reshaping and revegetating land to restore it to a stable 

landform” (EPA, 2006), and the four general goals for rehabilitation are (1) safe to humans and 

wildlife; (2) non-polluting; (3) stable and (4) able to sustain an agreed post-mining land use 

(Protection, 2014). To reach these objectives, over the past decades considerable effort has been made 

toward the rehabilitation of the disturbed landforms, and major advances have been achieved in the 

rehabilitation technologies. However, there are still major challenges ahead, with an important one 

being the long-term stability of the rehabilitated landforms. 

Since most geographic, topographic, pedologic and vegetative parameters contributing to the surface 

hydrology of the natural landforms are altered during the reconstruction and rehabilitation phases, the 

hydrological processes in the rehabilitated landforms are greatly changed from their original conditions 

(Darmer and Dietrich, 1992; Guebert and Gardner, 2001). Typically, large amount of destruction and 

reconfiguration of the landscape may result in many elevated man-made structures (e.g., waste rock 

dumps) with steep and straight outer slopes are created, the surface infiltration capacities are decreased 

due to the disruption of the soil profile (Jorgensen and Gardner, 1987; Lemieux, 1987), and the 

vegetation cover is reduced especially at the early phases of rehabilitation (Majer, 1989). All these 

would contribute to the significant increase in the quantity of the surface runoff (Ritter and Gardner, 

1993; Sabey and Kitt, 1982). These altered surface hydrological behaviours may cause serious 

environmental consequences (Figure 1.1), including: 
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Soil erosion 

Erosion by water is one of the major consequences of increased surface runoff. Erosion features would 

have a great impact on the land use planning and management. An intense soil erosion may also result 

in the exposure of encapsulated contaminants in the rehabilitated landforms, and the channels created 

by erosion may in turn increase the runoff volume.  

Downstream degradation 

The adverse impact of elevated levels of runoff and erosion can even extend to offsite areas by 

transmitting pollutant rapidly in both soluble and particulate forms. For instance, spoil substrate, waste 

rocks or tailings containing harmful minerals or ions, which are exposed to the environment through 

the mining process, can be transported by overland flow to the surrounding area and pollute waterways. 

The subsequent degradation of downstream water quality would have negative impacts on surrounding 

environment and communities (Evans, 2000). 

Landform instability  

Excessive runoff can cause the land to be unstable and prone to environmental disasters such as 

landslide and debris flows. More seriously, elevated runoff could render the catastrophic destruction 

of waste containment facilities, such as the collapse of waste rock dumps and breakage of tailings 

dams, and hence release of large amount of waste materials to the environment and pose profound 

threats to the environment and the safety of local residents.  

Revegetation failure 

Accelerated runoff would also lead to the increased loss of top soil, nutrients and fertilizer, as well as 

the water deficit which may both cause the revegetation failure and biodiversity loss in these 

rehabilitated landforms (Haigh, 1992; Kapolka and Dollhopf, 2001; Nicolau and Asensio, 2000).  
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Figure 1.1 Environmental consequences caused by increased surface runoff in the rehabilitated 

landforms (source: Google images). 

 

These consequences would be more serious in the regions of high rainfall intensity and amount, where 

the detrimental runoff events are more likely to occur. Recent studies have also identified  the increased 

frequency of extreme precipitation events and the increased rainfall intensity in many regions around 

the world due to the climate change and human activities (Berg et al., 2013; Gordon et al., 1992; Jones 

et al., 2013; Min et al., 2011; Suppiah and Hennessy, 1998), which leads to an increasing risk of surface 

runoff. Therefore, appropriate rehabilitation planning, including landform design and revegetation 

strategies, together with the suitable water management, are required to minimize these potential 

harmful consequences caused by runoff. This requires the knowledge of major influencing factors and 

their effects on the surface hydrology. Many uncertainties, however, still remain in this area. It is also 

essential to determine the infiltration characteristics and to identify the sources and the magnitude of 

surface runoff in the rehabilitated landforms. While numerous relevant studies have been carried out 

in the agricultural, forestry and other natural systems, limited effort has been made towards the 

disturbed environment such as the mining areas. It is therefore unclear that whether the hydrologic 

theories, principles and relationships established in the natural environment would be applicable to the 

rehabilitated environment. Besides, most of existing hydrologic models were primarily developed for 

the simulation of natural hill-slopes or catchments, and they tend to produce unexpected errors when 
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applied to the rehabilitated landforms because of the changed spatial or temporal scales and 

complexities. These research gaps therefore motivated the research presented in this work to improve 

the understanding of surface hydrological processes in rehabilitated landforms and to develop an 

effective model for runoff prediction, on the basis of a critical review of research findings in literatures, 

utilization of Cellular Automata (CA) theory and principles, and data acquired from field experiments 

conducted at different scales. 

 

1.2 Research Aim and Objectives 

The key aim of this study is to provide supportive information to achieve long-term stability of 

rehabilitated landforms by improving rehabilitation design and water management on the basis of well 

understood and predicted surface hydrological processes and properties. 

To achieve this aim, there are four key research objectives: 

1) To identify major controlling factors of infiltration process and quantifying their relationships 

with infiltration parameters in small scale trials. 

2) To evaluate the performance of modified infiltration models for the simulation of complex 

rainfall situations. 

3) To develop a more effective and universal surface runoff model by incorporating the evaluated 

infiltration models and linking them to Cellular Automata theories. 

4) To simulate the surface hydrological processes in rehabilitated landforms using the developed 

runoff model. 

The hypothesis and assumptions of this research: 

 Performance of infiltration models can be evaluated by the infiltration experiments conducted on 

small scale plots using the rainfall produced by the field rainfall simulator, and their input 

parameters can be quantitatively predicted from relevant soil, vegetation, and rainfall properties.  

 The production and distribution of the infiltration-excess runoff in the rehabilitated landforms can 

be simulated by linking the surface hydrologic properties (e.g., infiltration) with the Cellular 

Automata (CA) method.  
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1.3 Thesis outline 

This thesis is structured into nine chapters. It shows the development of a novel Cellular Automata 

runoff model on the basis of evaluated infiltration models, and demonstrates its validation at different 

scales and application to the rehabilitated landforms. Figure 1.2 is a flow chart outlining the structure 

of the thesis and links the thesis chapters to the research objectives. 

Chapter 1 introduces the problems associated with the surface hydrology in the rehabilitated 

landforms, based on which the research aim and objectives are proposed. 

Chapter 2 reviews literature on general principles and affecting factors of surface hydrology, current 

methods for modelling infiltration and surface runoff, and the basic theories of Cellular Automata. 

Several research gaps are then identified.  

Chapter 3 and Chapter 4 are both based on the rainfall simulation experiments conducted on small 

scale field plots, with the purpose to investigate the infiltration behaviours and models. Specifically, 

Chapter 3 focus on the evaluation of four classical infiltration models and the estimation of their input 

parameters from basic affecting factors, while Chapter 4 is related to three modified infiltration models 

and the evaluation of their performance under complex rainfall conditions. 

On the basis of the evaluated infiltration models in the previous two chapters, in Chapter 5 a Cellular 

Automata based surface runoff model is developed by incorporating these infiltration models. Its 

performance is then validated at different spatial scales in Chapter 6. 

After the initial validation, in Chapter 7 the developed runoff model is further applied in a case study 

to assess the runoff performance on a rehabilitated landform of a mine site. In Chapter 8 some 

hypothetical scenario analysis is conducted to discuss the application of this runoff model in different 

aspects of mined land rehabilitation designs. 

Chapter 9 summarises the major findings and contributions and analyses the limitations of this study, 

based on which further research is recommended.      
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Figure 1.2 Flow chart of the thesis structure, linking the thesis chapters to the research objectives.
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Chapter 2 Literature Review 

 

The following literature review explains the basic principles in surface hydrology, analyses the 

hydrological behaviours in rehabilitated landforms, summarises the factors that control surface 

hydrological processes, discusses existing prediction models for both infiltration and surface runoff, 

and introduces the basic theory and application of Cellular Automata. 

 

2.1 Surface Hydrological Processes 

Figure 2.1 demonstrates the typical surface hydrological processes on the natural landforms. When 

precipitation occurs, a portion of rainfall may be intercepted by vegetation, while the remaining 

amount may fall onto the ground surface and entre the vadose zone of the soil through an infiltration 

process. Similarly, water stored in the soil may return to atmosphere by the evapotranspiration process. 

When the rainfall rate exceeds the infiltration capacity of surface soil, excess water will run off on the 

ground surface and thus the infiltration-excess runoff occurs. The infiltrated water will contribute to 

the increase of soil moisture, and when the soil is saturated, the saturation-excess runoff may take 

place. Subsurface flow may also occur dependent on soil properties and topographic conditions, and 

in some occasions subsurface water would return to the ground surface and contribute to the surface 

runoff.  

 

Figure 2.1 Typical surface hydrological processes on natural landforms. 
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It can be seen that while precipitation is the major driving factor for the surface hydrology, infiltration 

is the major regulator in this process as it determines how much water will enter the soil layer and how 

much would flow over the ground surface. Surface runoff is the major consequence which may cause 

some environmental issues, such as soil erosion, pollutant transport and others. Therefore, these two 

important components, surface runoff and infiltration, are discussed in more detail in the following 

sections.      

 

2.1.1 Mechanisms of surface runoff generation  

In order to well understand and predict the surface runoff in a study area, it is essential to identify how 

and when runoff is produced. In fact, runoff can be generated along several distinctively different paths, 

depending on climatic factors, topography, soil characteristics, vegetation and geology. There are 

basically three major runoff generation mechanisms as shown in Figure 2.1. 

2.1.1.1 Infiltration-excess runoff 

The infiltration-excess runoff, also known as the Hortonian runoff, was first described by Horton (1933) 

and further investigated by Chorley (1978). It occurs when the rate of the incoming precipitation 

exceeds the infiltration capacity of the soil (Dunne, 1978). More specifically, during a rainfall event 

and especially at the beginning phase, when the infiltration capacity of the soil is greater than the 

rainfall rate, all the rainfall will infiltrate into soil and no runoff occurs. The infiltrated water increases 

the water content at the surface, leading to a reduced infiltration capacity. When the infiltration 

capacity becomes less than the rainfall rate, ponding at the surface occurs and will become surface 

runoff once the depressions on the soil surface are filled. Then the surface runoff can be estimated as 

the difference between the infiltration rate and rain rate. According to the criteria reported by Freeze 

(1980), the necessary conditions for the generation of infiltration-excess runoff are: (1) Rainfall rate is 

greater than the saturated hydraulic conductivity of the soil, and (2) Rainfall duration is longer than 

the required time to ponding for a given initial soil water profile. Therefore, this type of runoff usually 

occurs in areas where infiltration is restricted or the water table is deep. It is the dominant flow path in 

many arid and semi-arid regions where surface vegetation is absent or sparse, and in association with 

thin soil profiles and high exposure to rainfall impact resulting in low infiltration capacity. In humid 

regions, occurrence of this mechanism is also quite common, when rainfall intensities are high enough. 

2.1.1.2 Saturation-excess runoff 
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Runoff also occurs when the soil becomes saturated, and any additional incoming precipitation cannot 

infiltrate the saturated areas and hence becomes overland flow. Surface runoff occurring as a result of 

these saturated areas is referred to as saturation-excess runoff, also known as the Dunne mechanism 

(Dunne and Black, 1970). The areas prone to saturation usually have shallow water table levels or 

interflow levels, or shallow soil layers underlain by a low-permeable and restrictive zone (e.g., bedrock 

for natural landforms and tailings for rehabilitated mining landforms). All these conditions result in 

small soil storage capacities. Therefore, precipitation infiltrating into the soil raises the water table or 

interflow levels, fills the soil pores and leads to surface saturation. At any time less than the time to 

saturation, the infiltration rate is equal to the rainfall rate and there is no runoff. At a time equal or 

greater than the time to surface saturation, the storage capacity of the soil is filled resulting in no 

infiltration, and for such situations, all rainfall generates runoff. 

Saturation-excess runoff has been identified as the most important flow process in humid forested 

catchments (Dunne and Black, 1970). It has also been described as the dominant flow process for areas 

of convergent flow (hollows) within a catchment area (Anderson and Kneale, 1982), as well as in 

groundwater discharge areas within a forested wetland site (Waddington et al., 1993).  

2.1.1.3 Subsurface runoff and return flow 

In some cases, the infiltrated water may also run laterally below the ground surface. This flow is called 

subsurface runoff which would most likely occur in areas with relatively steep hill-slopes that had 

permeable soil overlying an impermeable layer (e.g. bedrock) (Whipkey, 1965). Subsurface runoff 

could become surface runoff not only by intersecting a stream channel, but also by returning to the 

surface as return flow if the within-mantle downslope route is restricted by the subsurface outcropping 

or a saturated area. The contributions to catchment discharge via this mechanism can be the direct 

subsurface flow discharge via a seepage face into a channel or stream, or more importantly, subsurface 

runoff can create expanded saturated areas where saturation overland flow and return flow occur 

(Anderson and Burt, 1990). 

Different runoff generation mechanisms result in quite distinct hydrographs. The infiltration-excess 

hydrograph displays short lag times and times to peak, steep rising and recession limbs and high 

instantaneous peak discharge. Hydrographs for catchments where saturation-excess runoff 

predominates are similar to infiltration-excess hydrographs when antecedent soil moisture conditions 

are high, otherwise, there is a longer lag time and time to peak due to the delay as the soil saturate. 

Subsurface runoff hydrographs are generally of lower instantaneous peak intensity, the peak is delayed 

with longer lag times and the rising and recession limbs are gradual (Dunne, 1978). However, different 
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runoff mechanisms can exist in a heterogeneous landscape at the same time and the timing and shape 

of the hydrograph is a composite of the dominance of the different flow pathways.  

 

2.1.2 Roles of infiltration in regulating surface hydrology 

Infiltration process determines the quantity of incoming precipitation which becomes surface runoff 

or contributes to soil moisture or groundwater (Dunne, 1978). Previous studies have found that for a 

given hill-slope or catchment, the dominant runoff process is regulated by soil infiltration capacity 

(also known as infiltrability), which is the rate at which water enters at the soils surface, and is 

expressed in units of cm min-1 or mm h-1 (Shukla et al., 2004). For example, Martinez-Mena (1998) 

observed that infiltration-excess runoff mechanism occurs in the more degraded areas with low organic 

carbon content (< 0.5%) and low infiltrability (< 5 mm h-1), while a saturation-excess runoff 

mechanism occurs in the less degraded areas with a high organic carbon content (> 2%), high 

infiltrability (> 8 mm h-1) and covered by a dense plant cover (> 50%). The field studies conducted by 

Zhu et al. (1997) concluded that the observed spatial non-uniformity of runoff generation is a result of 

the spatial variability in soil infiltration capacities. In humid areas, this variability is mainly attributed 

to spatial differences in soil moisture while in semi-arid and arid areas, it is mainly controlled by 

rainfall characteristics and the surface soil physical properties (Lavee and Yair, 1987). Because of its 

important role in regulating the surface hydrological processes, it is essential to investigate the 

infiltration characteristics in a study area. 

 

2.1.3 Surface hydrological processes in rehabilitated landforms 

The surface hydrological processes in rehabilitated landforms may be dramatically altered from those 

in the natural landforms due to the extensive disturbance during the rehabilitation process. Typically, 

in order to minimise the ‘footprint’ of waste materials generated from, for example, the mining process, 

many man-made structures, such as waste rock dumps, are often built as elevated structures with steep 

and straight outer slopes (Figure 2.2) which may result in high surface runoff rates. The vegetation 

cover is often small especially in the early stage of rehabilitation, leading to reduced interception. In 

addition, the physical properties of the rehabilitated soils are dramatically altered from their natural 

condition, and exhibit increase in bulk density, decrease in soil depth, loss of soil structure, altered 

texture and reduction in porosity. Consequently, new rehabilitated soils have the infiltration capacities 

that can be an order of magnitude lower than those of surrounding undisturbed soils (Jorgensen and 

Gardner, 1987; Lemieux, 1987), and are considered to have relatively high runoff potential. It has been 
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found that there is a greater volume of surface storm runoff, up to 55% of rainfall per event, on 

rehabilitated mined land compared to less than 10% on non-mined pasture in central Pennsylvania 

(Ritter and Gardner, 1993). Since infiltration into newly rehabilitated soils is characteristically low, 

surface runoff is likely to be dominated by the infiltration-excess overland flow (Jorgensen and 

Gardner, 1987; Lemieux, 1987; Ritter and Gardner, 1993). Figure 2.2 shows the typical surface 

hydrological processes in the disturbed and rehabilitated landforms, where the infiltration-excess 

runoff generation mechanism contributes to the majority of surface runoff, while the other runoff 

generation paths, such as the saturation-excess runoff and subsurface runoff, are negligible.  

 

Figure 2.2 Typical surface hydrological processes on rehabilitated landforms. 

 

Nevertheless, Schroeder (1987) identified time since rehabilitation as a factor in the reduced surface 

runoff from rehabilitated areas in North Dakota, where surface runoff from a 7-year-old rehabilitated 

field was lower than that from an adjacent 4-year-old site, and was comparable to the natural grassland 

site when the soil profile was dry. Also, as vegetation establishes and pedogenic processes begin, 

alterations in soil characteristics may increase infiltration rates in rehabilitated areas (Jorgensen and 

Gardner, 1987), and the dominant runoff path would likely change in response to increased infiltration. 

For example, in a rehabilitated catchment in Pennsylvania (Guebert and Gardner, 1992), infiltration 

rates increased steadily over four years to near pre-mining levels. The tracer dye research and the 
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hydrographs analysis in this area both indicated that the dominant runoff path changed from 

infiltration-excess runoff to subsurface runoff through large macropores, and more of the discharge 

volume was attributed to saturation-excess runoff than infiltration-excess runoff. 

While a relatively complete theoretical system is available for the surface hydrological processes on 

the natural landforms, there is a lack of relevant studies for the disturbed and rehabilitated landforms 

where the hydrological behaviours can be significantly different. Some well-established methods and 

models in the natural environment may not suit this altered environment. Therefore, more specific in-

depth investigations are required to understand and predict the surface hydrology in these rehabilitated 

landforms. The characterisation of the infiltration process and the identification of the dominant runoff 

generation mechanisms are the foundation for this purpose, which would, however, also demand the 

knowledge of the factors and their effects on these processes that are discussed in the following section. 

 

2.2 Factors Influencing Surface Hydrology 

From above discussion we can see that the hydrological processes are rather complex, especially, the 

infiltration characteristics and runoff behaviours are highly variable in space and time. This complexity 

and variability is largely associated with the heterogeneous distribution of various affecting factors, 

and the knowledge of the sources and patterns of variation in these processes and their affecting factors 

is crucial for understanding and modelling the hydrological functioning (Mayor et al., 2009), and 

guiding the water and soil management in these environments.  

A lot of studies have been performed to identify the affecting factors and determine their relationships 

with infiltration and runoff processes, and important advances have taken place in recent decades. 

Some experiments were carried out in the laboratory under simulated rainfall for the identification of 

singular parameters influencing the runoff processes, including slope length (Bryan and Poesen, 1989), 

surface roughness (Gómez and Nearing, 2005) and rainfall intensity (Römkens et al., 2002). Small plot 

studies (≤ 1m2) with rainfall simulations have been widely used, especially in semi-arid Spain, where 

the investigations include the vegetation patches, landscape types, antecedent soil moisture conditions 

and their interacted effects on infiltration and runoff (Mayor et al., 2009), soil and topographic controls 

on runoff generation (Wilcox et al., 2007), and the role of soil surface components (vegetation, rock 

outcrop, fracture, and soil crust) in regulating infiltration-runoff processes (Li et al., 2011). At the same 

time, large plot (≥ 10m2) simulations have also been used. For example, four large-scale rainfall 

simulation experiments were conducted on different shrub lands and an abandoned site to determine 

hydrological characteristics in relation to spatial patterns in soil, vegetation and morphology 
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(Bergkamp et al., 1996). A study using simulated rain and overland flows was carried out on a 6-km-

long bund constructed in Australia for assessing the rehabilitation of mining areas with special regard 

to infiltration and erosion susceptibility and to parameterise simulation models (Loch, 2000b; Loch et 

al., 2000). In addition, the hydrological processes at hill-slope and catchment scales have also been 

monitored and studied: Cammeraat (2004) found that runoff depth and runoff coefficient of hill-slopes 

were significantly correlated with rainfall intensity and depth and antecedent 20-day precipitation; 

Kirkby et al. (2002) identified the influence of land use, soils and topography on the delivery of hill-

slope runoff to channels.  

From the studies carried out at different scales, the hydrological processes can be concluded to be 

affected by various factors and parameters. Generally, these controlling factors can be summarised 

into five categories, including climate, soil properties, surface condition, topography and vegetation, 

which will be discussed in details as follows. 

 

2.2.1 Climate 

In different climate zones or under various weather conditions, the hydrological behaviours within a 

catchment may be quite different, due to the impacts of climate characteristics, like precipitation, 

temperature, wind, solar radiation and seasonal variation. Rainfall and seasonal variation would have 

the greatest influences on catchment hydrology since they are directly related to infiltration and runoff 

processes. 

2.2.1.1 Rainfall characteristics 

Rainfall, as the most important component of precipitation and a major source of water flow, has a 

large influence on the hydrological behaviour. There are several characteristics that can describe 

rainfall events.  

Rainfall intensity 

Rainfall intensity is one of the most common rainfall properties. Cook (1946) noted a dependence of 

infiltration rate on rainfall intensity and attributed it to more complete ponding of the surface. On some 

soils, infiltration rate is negatively correlated with rainfall intensity because of the development of 

surface seals (Mclntyre, 1958). However, on soils which do not form seals, infiltration rate increases 

with rainfall intensity because of the tendency for higher rainfall intensities to exceed the saturated 

hydraulic conductivity of larger proportions of the soil surface and thereby to raise the spatially 

averaged hydraulic conductivity (Dunne et al., 1991). Moldenhauer et al. (1960) examined rainfall and 
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runoff records from plots during natural rainstorms, and found the 𝜑 index ((total storm rainfall - total 

storm runoff)/duration of excess precipitation) to be strongly dependent on rainfall intensity. Hawkins 

(1982) reviewed other published interpretations of rainfall and runoff records and concluded that the 

proportion of a drainage basin generating overland flow would increase as rainfall intensity increased. 

Kinetic energy 

Usually, a certain amount of rainfall could occur in two different forms: rainfall over a long period of 

time with low intensity and short time intervals of rainfall with high intensity, with the kinetic energy 

per unit mass varying considerably during a single rainfall event. Foley (1991) simulated both high 

energy and low energy rainfall events by placing a mesh screen 10 cm above the soil surface to absorb 

raindrop energy. Kinetic energy of high energy rain was of the order of 33 J m-2 mm-1 (Marston, 1980), 

while under the mesh, kinetic energy was greatly reduced. In this test, significantly greater infiltration 

rate occurred under low energy rain than under high energy rain, and this marked reduction in 

infiltration associated with high energy rain was typically described as surface sealing. Aggregate 

breakdown and soil surface compaction by raindrops has been strongly correlated with increasing 

rainfall energy over a range of soils (Bradford et al., 1987). 

Additionally, some other rainfall properties, such as cumulative rainfall, rainfall amount, raindrop size, 

rainfall depth and duration have also been used to describe rainfalls. Based upon these characteristics, 

rainfall events could be classified into different types to identify their impacts on runoff and erosion. 

For instance, 130 erosive rainfall events were grouped into four rainfall types based on precipitation 

depth, duration and maximum 30-min intensity in red soil region of southern China, with erosive 

rainfall type I being the group of rainfall events with low intensity, high frequent occurrence and very 

short duration, while type IV consisting of rainfall events with the highest intensity, the longest 

duration and infrequent occurrence. Erosive rainfall type II and III, however, were composed of rainfall 

events which have moderate rainfall characteristics (Huang et al., 2010). 

2.2.1.2 Seasonal variations 

Seasonal variation is another important climate factor that would affect the hydrological functions. For 

example, seasonal variations in soil surface state and soil moisture can lead to large shifts in soil 

hydrological responses as investigated for Mediterranean climate conditions, where in general the soil 

hydrological responses were slower during the transition between winter and spring and were 

characterised by higher infiltration, which could be explained by the occurrence of freeze–thaw cycles 

that disrupt the soil surface and increased soil porosity (Cerdà, 1997; Regüés and Gallart, 2004). In 

contrast, faster responses and subsequent decreases in infiltration rates took place throughout the year 
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until autumn, which can be explained by soil surface consolidation (associated to crusting), due to the 

occurrence of subsequent storms until summer, and a later increase in soil moisture at the beginning 

of autumn (Torri et al., 1999). 

 

2.2.2 Soil properties 

Previous studies have verified that soil properties play an important role on hydrological processes. 

For instance, the mechanisms of runoff generation have been found to depend on soil properties such 

as organic carbon, soil substrate (Martinez-Mena et al., 1998), soil depth (Mayor et al., 2009) and 

initial soil moisture (Calvo-Cases et al., 2003). Generally, the soil properties include both physical and 

hydraulic properties. The soil physical properties also have various sub-factors such as soil texture, 

bulk density, total porosity, macropore density and soil depth, while the soil hydraulic properties 

include sub-factors like hydraulic conductivity, water retention characteristics and initial water content. 

Some of these properties have been widely investigated for many years, as discussed below. 

2.2.2.1 Soil texture 

Soil texture is determined by particle size distribution, and is an important factor in determining 

infiltration rate and infiltrated volume from rehabilitated surface-mined catchment (Jorgensen and 

Gardner, 1987). Ekwue (2009) observed that infiltration was highest in sandy loam, followed by clay 

loam and the lowest in clay soil. The reverse was obtained for surface runoff, with the clay soil 

maintaining a far greater surface runoff than the clay loam and the sandy soil. But Willard (2010) did 

not achieve similar results, with no relationship found between fine particles and runoff/infiltration 

production, however, the role of rock sized particles (> 2mm) was emphasised in his study. It was 

suggested that as the percentage of rocks increased, runoff decreased and infiltration increased, 

because the larger diameter of rock particles compared to fine soil particles created a larger proportion 

of coarse pores which favoured infiltration. 

2.2.2.2 Bulk density 

Meek et al. (1992) found that an increase in bulk density from 1.6 Mg m-3 to 1.8 Mg m-3 decreased 

average infiltration rates by 54% in a sandy loam soil. It is concluded that compacted areas with high 

bulk density start contributing to runoff first during the rainfall event at the field scale, and as the 

duration of storm increases, areas with less compaction and low to medium bulk density become 

saturated depending upon the storm duration and intensity (Gupta, 2003). Soil compaction, a process 

by which soil particles are rearranged into a denser state, was found to be the most important factor 
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affecting bulk density of a certain soil. This is commonly caused by natural forces or human-induced 

mechanical loads such as wheel traffic and tillage (Ekwue and Harrilal, 2010). It leads to the increase 

in bulk density and thus reduction in soil porosity, aeration, macro-porosity and hydraulic conductivity 

(Tekeste et al., 2006). As a result, infiltration decreases while surface runoff increases. 

2.2.2.3 Macropores 

Macropores in natural soils, whether created from root channels, burrowing animals and insects, 

freeze-thaw cycles and/or the dissolution of minerals, are continuous openings with diameters ranging 

from 0.001 to >0.5 cm that permit channelized, preferential flow (Beven and Germann, 1982). 

Macropores may represent only a small percentage of the surface area of a soil (< 1%) and are generally 

undetected by bulk density measurements. Yet, they greatly increase the rate of infiltration by 

increasing the volume of storage that must be filled before surface runoff is initiated and by providing 

an important pathway for the quick preferential flow (Beven and Germann, 1981). Aubertin (1971) 

found that the infiltration rate of forest soils was significantly influenced by macropores, which served 

as the primary mechanism influencing the progression of runoff towards streams. Guebert (2001) also 

concluded that macropores have a profound effect on the increase of infiltration and shallow 

subsurface flow of water on a rehabilitated surface mine. 

2.2.2.4 Soil depth 

Soil depth is a crucial factor particularly in the case of very shallow soils or shallow water tables. Since 

the storage capacity of these soils is small, vertical percolation and subsurface flow may cause soil to 

become saturated throughout its depth, and ponding and saturation-excess runoff will occur at the time 

when no further soil water storage is available. The relatively rapid saturation of the entire soil profile 

could mask the influence of other factors on the infiltration rates, especially the final steady infiltration 

rates. Some studies have found that the increasing soil depth increases infiltration, and that small 

changes in soil depth can have a large impact on infiltration rates (Mayor et al., 2009; Wilcox et al., 

1988). 

2.2.2.5 Initial soil water content 

Several studies have reported lower infiltration rates and higher runoff coefficients under wet versus 

dry soil conditions (Cerdà, 1997; Simanton and Renard, 1982). Gupta (2003) observed that runoff 

generation areas increased with an increase in the initial soil water content on a field scale. Soil 

moisture may also indirectly impact the hydrological processes by affecting other controlling factors 

such as the stability of soil aggregates (Boix-Fayos et al., 1998) due to its relevance to the capillary 
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head distribution, hydraulic gradient, soil hydraulic conductivity and mobility of fine particles 

(Mualem et al., 1990).  

Besides of those factors discussed above, some other soil properties are also related to infiltration and 

runoff processes. For example, Descroix et al. (2001) and Huang (2010) found that soil organic matter 

content was negatively correlated with runoff. In addition, some soil amendments have been used to 

improve the soil hydrologic properties. Peat was found to be able to increase saturated hydraulic 

conductivity and reduce bulk density, consequently increasing the infiltration capacity of the soils and 

reducing runoff (Ekwue and Harrilal, 2010). Sawdust was added to a bentonite mine spoil and was 

proven to have effects on increasing soil structural stability and permeability, leading to a higher 

infiltration rate on the spoil amended with sawdust (Voorhees, 1986).  

 

2.2.3 Surface conditions 

The ground surface conditions, including stone cover, crust cover, roughness and fractures, are key 

explanatory variables for the hydrological behaviour, especially on bare soils. Mayor et al. (2009) 

found that these surface properties explained part of the variation in runoff rates and time to runoff, 

especially in the case of dry soils. Results of rainfall simulation studies carried out by Li (2011) 

confirmed that soil surface characteristics played a dominant role in controlling runoff and infiltration 

at plot scale in karst landscapes. 

2.2.3.1 Rock fragments 

Recently there has been a growing interest in soils containing abundant rock fragments. Rock 

fragments are stones and soil particles 2 mm or larger in diameter and include all material that has 

horizontal dimensions smaller than a pedon (Miller and Guthrie, 1984). Some researchers noted an 

increase in infiltration and a reduction of runoff and erosion with the effect of rock fragments under 

both laboratory and field conditions (Adams, 1966; Lavee and Poesen, 1991; Sanchez and Wood, 

1987). This can be explained by several reasons. Firstly, the cover of rock fragments influences the 

underlying soil by increasing organic matter content and porosity, improving aggregation, reducing 

bulk density and preventing the formation of crusts, consequently enhances infiltration. Then, a stony 

surface favours more rapid infiltration and deeper penetration also because the contact between the 

rock fragments and the soil matrix favours a faster and deeper flow (Poesen et al., 1990). Besides, the 

rock fragments can intercept large quantities of rain and absorb part of it, especially where the rock 

fragments are weathered (El Boushi and Davis, 1969). Another reason is the greater roughness caused 

by rock fragments, which slows runoff and enhances infiltration. For example, Cerdà (2001) found 
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that the times necessary to transform the ponding into runoff and the surface runoff into runoff outlet 

increase with greater rock fragment cover due to the greater soil roughness, and Meyer et al. (1972) 

observed that on cultivated land, surface runoff is reduced from 40.6 cm s-1 on bare soils to 2.54 cm s-

1 on soils covered with fragments. 

Nevertheless, other authors found a negative relation between the rock fragment cover and the soil 

hydrological response (Abrahams and Parsons, 1991; Wilcox et al., 1988). Li et al. (2011) observed 

no runoff at plots where rock fragments rested on the soil surface, but relatively large runoff at plots 

where rock fragments are usually embedded in the surface, and concluded that when rock fragments 

were embedded in the surface, they contributed to the establishment of a continuous crust which 

inhibited infiltration and promoted runoff. Therefore, the effects of rock fragment position and size in 

the profile, as well as the structure of the fine earth on runoff production could be the reasons for the 

contrasting effects of rock fragment on infiltration and runoff found by different researchers (Poesen 

et al., 1990). 

2.2.3.2 Surface sealing/crust 

Surface runoff can be mainly the result of crust formation on some soil surfaces during rainstorms. 

Basically two different types of crusts can be formed on a soil surface, pioneer biological crusts of 

cyanobacteria and lichens and the mechanical crust caused by rain. The latter rainfall induced soil 

surface sealing is more common, and its effects on infiltration has been studied under laboratory 

conditions and in some field experiments (Al-Qinna and Abu-Awwad, 1998; Fattah and Upadhyaya, 

1996). Crust formation is a result of raindrop impact over the soil surface and of aggregate dispersion 

(McIntyre, 1958). McIntyre found the crust to consist of two distinct parts: an upper skin seal attributed 

to compaction due to raindrop impact and a "washed-in" zone of reduced porosity attributed to fine 

particle movement and accumulation. The permeability of deeper layers was about 800 times that of 

the "washed-in" layer and about 2000 times that of the skin seal. Sealing would therefore cause 

problems such as low infiltration rate, large amount of runoff and erosion. Experimental work has 

revealed that a large number of soil properties, including aggregate size distribution, initial bulk 

density, texture (Tarchitzky et al., 1984) and chemical conditions (Shainberg, 1992) would affect seal 

formation. The rainfall characteristics, i.e., intensity, kinetic energy, and electrical conductivity 

(Baumhardt, 1985), as well as the initial water content distribution in the sealing soil profile (Le 

Bissonnais and Singer, 1992), were also found to play a role in shaping the seal properties and the 

corresponding infiltration curve.  
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2.2.4 Topography 

Topography controls the generation of runoff on hill-slopes and the delivery of hill-slope runoff to the 

stream valley. Researchers have observed that surface topography influenced both the location of 

runoff generation areas and the transport of subsurface and surface runoff (Anderson and Burt, 1978; 

Dunne et al., 1975). The final landscape features of a rehabilitated landform determine the stability of 

the re-contoured hill-slope, the stability of the catchment channel and the shape of the storm 

hydrograph. Since the cost of re-contouring represents a major cost in rehabilitation of mined land, 

and a small change in the degree and length of slope can have a major impact on the cost of re-

contouring the landscape (Bonta, 1991), it is essential to have a precise understanding of the 

consequence of topography on hydrological behaviour. 

2.2.4.1 Slope gradient and length 

From observations on an experimental field, Gupta (2003) concluded that areas with moderate to high 

slopes (> 3%) firstly became runoff contributing areas as compared with areas having a flatter slope 

(< 3%). This was explained by the fact that a flatter slope has longer contact time for runoff to infiltrate 

into soil. Fox et al. (1997) also found that infiltration was lower and runoff was higher with increasing 

slope gradients due to more rapid runoff velocities. However, increased slope gradient does not 

consistently translate into increased surface runoff. Warrington et al. (1989) investigated the effect of 

slope angle and addition of phosphogypsum on infiltration and runoff, and they reported no obvious 

relationships between slope angle and percentage of runoff for the untreated plots, but when 

phosphogypsum was added, runoff decreased with increasing slope angle. Also, surface runoff from a 

rehabilitated hill-slope with a 0.8% gradient was higher than that from a rehabilitated hill-slope with a 

6.8% gradient (Schroeder, 1987). The uncertainties in relationships between slope gradient and surface 

runoff may be due to the effects of some other factors, such as soil compaction and vegetation, which 

may override the effects of topography. Another reason is explained by Dunne et al. (1991) that the 

runoff depth increases when the slope gradient or length is increased. As a result, more of the 

microtopographical high areas along the hill-slopes are inundated with surface runoff. These areas, 

which can be mounds of vegetation, have greater infiltration rates than the depressional areas between 

the vegetation mounds. As a result, the apparent infiltration rate increases with the greater runoff depth 

downslope. 

2.2.4.2 Slope shape and aspect 

Form or shape of a landscape also influences water flow. Some previous studies have shown that 

convex or linear slopes tended to have higher rates of runoff than concave or S-shape slopes (Hancock, 
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2004; Toy and Chuse, 2005; Willard, 2010). This can be explained by the fact that the runoff velocity 

may decrease downslope as the gradient decreases on a concave or S-shape hill-slope (Willard, 2010). 

The decreased flow velocity allows longer time for runoff to infiltrate into the soil and thus reduces 

the runoff rate. In addition, convergent zones generally produced greater stream discharge per unit 

catchment area than divergent or straight zones because they increased the potential to transfer greater 

volumes of water as saturation-excess runoff at the base of the hill-slope to the stream valley (Eerkes, 

2003). 

Hydrologic processes also vary depending on slope aspect. Since soil temperature, transpiration rates, 

and evaporation rates vary across the landscape in association with changes in topographic position 

(Pierson et al., 2002), slope aspect affects soil moisture of the hill-slopes and therefore surface runoff. 

2.2.4.3 Micro-topography 

In addition to the topographic characteristics of large scales such as hill-slope or landscape, the local 

micro-topography also has significant impact on infiltration and runoff generation. For instance, 

micro-topography can attenuate and delay surface flows, because surface depressions first need to be 

filled until a specific surface water storage threshold is exceeded and surface flow towards the stream 

channel can be initiated (Antoine et al., 2009). Micro-topography was found to strongly affect runoff 

directions, velocities and depths and result in surface runoff along well defined micro-channels in the 

overland flow simulation studies conducted on small plots with micro-topography (Esteves et al., 2000). 

 

2.2.5 Vegetation 

Vegetation has been found to have great influence on surface hydrology. Higher infiltration and lower 

runoff was measured on vegetation patches compared to bare soils by small plot studies (Dunne et al., 

1991; Wilcox et al., 1988). Some studies have also concluded that runoff rates and peak flows are 

reduced by vegetation in agricultural, pastoral (McIvor et al., 1995) and reforested areas (Ranjith B, 

1995), as well as on rehabilitated mined soils (Loch, 2000a). 

2.2.5.1 Effects of vegetation 

Vegetation can influence hydrological processes by affecting rainfall interception, infiltration, 

evaporation and soil water storage. The impact of vegetation in explaining high infiltration rates and 

low runoff rates observed by various studies can be attributed to a number of direct and indirect effects. 

Rainfall interception 
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Plant canopies split rainfall into different components (interception, throughfall and stemflow), 

modifying the volume and intensity of the effective rainfall reaching the soil surface. Surface runoff 

can be reduced because well grown vegetation can intercept large amounts of rainfall. For example, 

Owens et al. (2006) found that Ashe juniper canopy cover intercepts approximately 40% of total 

precipitation during a moderate precipitation event, and can increase to 96% with a decrease in rainfall 

intensity and duration. Vegetation canopy and litter-fall can also protect the soil surface against the 

impact of raindrops, reduce their kinetic energy (Deuchars et al., 1999), stimulate the formation and 

stabilization of soil aggregates (Zuazo and Pleguezuelo, 2009), prevent surface sealing (Foley et al., 

1991), and consequently enhance infiltration.  

Soil improvement  

The differences in the hydrological behaviour between bare and vegetated areas are also attributed to 

the general improvement of the soil structure made by plants, which typically increase soil organic 

matter and aggregate stability (Blackburn, 1975), improve macropores (Bergkamp et al., 1996), and 

decrease bulk density and penetration resistance (Greene, 1992). These improved soil physical 

properties under vegetated patches are generally translated into higher infiltration rates and lower 

runoff compared with adjacent bare soils (Puigdefábregas, 2005). 

Surface roughness 

The increase of infiltration and decrease of runoff can also be explained by the greater surface 

roughness caused by vegetation. On hill-slopes, vegetation plays an important role in decreasing the 

average velocity of flow, increasing its residence time and allowing significant post-storm infiltration 

to decrease runoff volumes (Dunne and Dietrich, 1980). Similarly, a well vegetated channel also 

provides resistance to overland flow and allows more time for surface runoff to infiltrate (Harms, 1996). 

2.2.5.2 Vegetation coverage 

Although vegetation has been realised to have great impacts on the hydrological function, the specific 

relationships between vegetation coverage and infiltration or runoff are not very clear yet. For example, 

Marston (1952) and Kincaid et al. (1964) failed to discover any simple relationship between vegetation 

cover density and infiltration capacity measured with infiltrometers, whereas Smith and Leopold (1942) 

documented large changes in infiltration with only modest changes in vegetation density. Littleboy et 

al. (1996) found a linear relationship between straw cover and runoff curve number, while the data 

from the study of Loch (2000a) showed a curvilinear response at the lower levels of vegetation 

coverage. However, the determination of optimum vegetative cover thresholds which ensure the 
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biological control of hydrological processes has been stressed for the rehabilitation of both natural and 

man-made landscapes, with several studies in natural Mediterranean environments showing that runoff 

increases drastically when vegetation cover drops below 30% (Francis and Thornes, 1990), and the 

restoration of 50% cover with herbaceous vegetation being decisive by some researchers for site 

stabilization in human-made systems (Andrés and Jorba, 2000; Loch, 2000b). 

2.2.5.3 Vegetation types 

In addition to vegetation coverage, some research suggested that different vegetation types, vegetation 

structure or plant species composition could also be expected to result in different hydrological 

behaviours (Tian et al., 2003). However, results from previous studies are not conclusive about the 

importance of plant types in controlling runoff. A 5-year record of discharge for the forest and 

grassland catchments at Puckapunyal showed a consistent pattern of forest producing lower peak 

discharges and significantly less runoff than grassland (Burch et al., 1987).  Bochet et al. (2006) found 

that Anthyllis cytisoides, an open-canopy shrub, was significantly less efficient than the tussock grass 

Stipa tenacissima and Rosmarinus officinalis shrubs in reducing runoff volume under its canopy. On 

the contrary, Quinton et al. (1997) found few significant differences in the abilities of six vegetation 

types in controlling runoff in south-east Spain. The effects of vegetation types have been concluded 

by some researchers to be attributed to the differences in ground cover and plant morphologies which 

affect the redistribution of incident rainfall, as well as the extent of the amelioration of soil properties 

under different vegetation types (Bochet et al., 1999; Hidalgo et al., 1997). 

 

2.2.6 Uncertainties in the affecting factors 

Although a large number of studies have been carried out for many years in looking for the affecting 

factors of surface hydrologic processes and great improvement has been made, there are still many 

uncertainties and unsolved problems in this area due to the complexity and variability of the surface 

hydrology. Some of them are listed here for further discussion. 

2.2.6.1 Inconsistent findings 

Through the discussion in this section, it can be seen that some findings or conclusions from different 

researchers about which factors and how they affect the hydrological behaviours are not consistent or 

even contradictory. For example, whether rainfall intensity is positively or negatively related to 

infiltration rate, which parameters could best represent the effects of soil physical property, whether 

rock fragment will increase or decrease the runoff, if increased slope gradient could contribute to 
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increased runoff amount, how different slope shapes affect hydrological processes, what kind of 

relationship exist between vegetation cover and runoff, whether there is significant impact of 

vegetation types on infiltration-runoff processes, among others, remain unclear yet. This impedes the 

better understanding and predicting of the surface hydrological processes, and thus further efforts need 

to be made by pedologists, hydrologists and ecologists to answer these questions.   

2.2.6.2 Interactions among different factors 

Most of previous studies focused on the influence of a single factor or several separate factors, but in 

fact, these factors are not separated from each other, but closely correlated. For instance, rainfall 

characteristics have impacts on many other factors, such as sealing formation, soil moisture, vegetation 

cover and types. Soil properties could affect plant growth, while vegetation development could in turn 

change soil properties. The surface condition, like rock fragment, could influence the underlying soil. 

The slope gradient and aspect would cause the variation in soil water content and consequently the 

vegetation distribution. Vegetation could also prevent sealing, increase surface roughness and change 

the micro-topography. In addition to the interactions among these factors, their sub-factors are 

affecting each other as well. For example, the sub factors of soil properties, such as texture, bulk 

density and porosity, are related to each other, with clay usually having high bulk density and low 

porosity, while sand responds opposite. Rock fragments have great influence on crust formation, one 

other sub factor of surface condition. Different vegetation types may also have different effects on 

surface hydrology because of their differences in vegetation coverage. These interactions among the 

affecting factors would increase the complexity and difficulty in explaining the hydrological 

behaviours and thus partially contribute to some inconsistent findings from different studies.  

2.2.6.3 Dominant factors at different spatial scales 

The hydrological processes at different scales have been found to be dominated by different features. 

Some factors, dominant at large spatial scales, may become relatively unimportant at a small spatial 

scale (Haggett et al., 1965), while other features relevant at the small scale may become insignificant 

at larger scales (Schultz, 1994). At the small scale, there may be little heterogeneity of these affecting 

factors, and with an increase in scale, the heterogeneity may become obvious and random, but if the 

scale continues increasing, the heterogeneity will become more systematic. Specifically, at a small unit 

area (1 m2), the soil, vegetation, topography and precipitation are considered homogeneous in space, 

and the hydrological process tends to be dominated by soil properties, vegetative characteristics, 

rainfall intensity and duration. At the hill-slope scale, soils and vegetation are likely to be variable over 

the area, and runoff tends to move in uneven rivulets controlled by micro-topography and vegetation 
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pattern, and the hydrologic response is dominated by soil properties, vegetation distribution, 

precipitation intensity and slope characteristics (inclination, profile and aspect). At the catchment scale, 

most of the affecting parameters are considered to be heterogeneous, even the spatial distribution of 

rainfall can be significant, and topographic and vegetative features start to have more impact on runoff 

distribution and catchment response. However, insufficient effort has been made towards the dominant 

parameters and their effects on the hydrological processes at different scales. Inconsistent conclusions 

from different studies may be due to the fact that they were carried out at different scales. These scale 

issues also lead to problems in hydrologic modelling that a model developed from a scale may produce 

unexpected errors when applied to a different scale. 

2.2.6.4 Quantification of relationships 

Most of the previous studies were limited in the qualitative description of the influence of affecting 

factors, such as “slope with greater gradient generates greater runoff”, “vegetation patches increase 

infiltration”, “stone cover changes the surface hydrology” and so forth. Just a few of them, such as that 

conducted by Li et al. (2011), have tried to develop linear regression equations for predicting runoff 

coefficients using data analysis methods like principle components analysis and stepwise linear 

regression analysis. The quantification of the impacts of these affecting factors is therefore very 

deficient, and considerable efforts need to be further made to quantify these relationships, which is 

essential for predicting the hydrological behaviours. 

 

2.3 Infiltration Modelling 

As mentioned before, infiltration of water into soils is one of the most important components of 

hydrological processes occurring at the soil-atmosphere interphase, since it determines how much 

water will enter the unsaturated soil zone, and how much will flow over the ground surface as runoff. 

Thus the ability to quantify infiltration is of great importance in water resource management. 

Prediction of flooding, erosion and pollutant transport all depend on the rate of runoff which is directly 

affected by the rate of infiltration. Therefore, accurate methods for characterizing infiltration are 

required.  
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2.3.1 Classical infiltration models 

Numerous attempts have been made to model the infiltration process that a number of classical 

infiltration models have been developed through the past century. They can be basically categorized 

into physically based and empirical models. 

2.3.1.1 Physically based models 

Physically based models rely on the law of conservation of mass and the Darcy law, and assume the 

soil media as capillary tubes, infiltrating water into the whole porous media. The parameters of these 

infiltration models usually assign physical meanings, and can be obtained from soil physical properties 

such as soil hydraulic conductivity, soil porosity, soil water pressure head and soil water content. 

Examples of such models include the models of Green-Ampt, Philip, Mein and Larson, Smith and 

Parlange and Morel-Seytoux (Mishra et al., 2003), among which Green-Ampt model and Philip model 

have been used more frequently and will be discussed here because of their simplicity and wide spread 

use in hydrologic models. 

Green-Ampt model 

Green and Ampt (1911) developed the first physically based infiltration model for ponded and deep 

homogeneous soil profile conditions with uniform initial water content. It assumes a piston-type water 

content profile with a well-defined front, characterized by a constant pressure value. Using these 

hypotheses together with Darcy’s law, the cumulative infiltration 𝐼(𝑡) can be expressed as equation 

(2-1): 

𝐼(𝑡) = 𝐾s𝑡 + (𝜃s − 𝜃0)𝜓𝑓 𝑙𝑛 [1 +
𝐼(𝑡)

(𝜃s−𝜃0)𝜓𝑓
]                                        (2-1) 

where 𝑡 is time for infiltration (h), 𝐾s is the hydraulic conductivity (mm h-1) corresponding to the water 

content at natural saturation 𝜃s (cm3 cm-3), 𝜃0 is the initial water content (cm3 cm-3) considered to be 

uniformly distributed with depth, and 𝜓𝑓 is the suction at wetting front (mm). Differentiating Eq. (2-

1) yields the infiltration rate 𝑖(𝑡) (mm h-1) at the soil surface: 

𝑖(𝑡) = 𝐾s [
(𝜃s−𝜃0)𝜓𝑓

𝐼(𝑡)
+ 1]                                                            (2-2) 

The values of 𝐾s and (𝜃s − 𝜃0) in above equation could be derived from the hydraulic conductivity at 

natural saturation and the water-storage capacity, respectively. 𝜓𝑓 cannot be measured directly, but it 

has been related in some theoretical way to soil characteristics or in a statistical way to textural soil 

properties. However, experience shows that such determination of 𝜓𝑓  mostly generates large 
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imprecision on the calculated 𝐼(𝑡) values. Hence for field applications parameters are often estimated 

by empirical fitting. To that end, the equation can be rewritten as: 

𝐼(𝑡) = 𝐾s𝑡 + λ 𝑙𝑛 [1 +
𝐼(𝑡)

λ
]       and        𝑖(𝑡) = 𝐾s [

λ

𝐼(𝑡)
+ 1]                                 (2-3) 

where 𝜆 = (𝜃s − 𝜃0)𝜓𝑓. Both parameters 𝐾s and 𝜆 (mm) are considered as fitting parameter, and are 

free of any physical significance in such a case. 

In spite of the many assumptions under which the Green-Ampt equation was originally developed, it 

has been adapted for use under a much wider variety of conditions. It produced reasonably good 

predictions for non-uniform soil profiles (Childs and Bybordi, 1969), and for soils with partially sealed 

surfaces (Hillel and Gardner, 1970). Its simplicity and adaptability to varying scenarios makes it a 

popular and widely used method for field applications. The physical significance of parameters and 

the ability to obtain their values from soil properties increases the attraction for this model. The Green-

Ampt equation has been chosen for infiltration estimation in many physically based hydrologic models, 

such as WEPP (Laflen et al., 1991), SWAT (Tuppad et al., 2011), SWMM (Rossman, 2010), LISEM 

(De Roo et al., 1996), HEC-1 (Feldman, 1995) and ANSWERS-2000 (Bouraoui and Dillaha, 1996).  

Philip model 

Philip (1957a) developed an infinite-series solution to solve the non-linear partial differential Richards’ 

equation (Richards, 1931) for a homogeneous deep soil with uniform initial water content under 

ponded conditions. The two-term Philip infiltration equations (Philip, 1957b) are: 

𝑖(𝑡) =
1

2
𝑆𝑡−1

2 + 𝐴    and      𝐼(𝑡) = 𝑆𝑡
1
2 + 𝐴𝑡                                            (2-4) 

where parameter 𝑆 is referred to as the soil sorptivity (mm h-0.5), and 𝐴 is the soil water transmissivity 

(mm h-1). Both 𝑆 and 𝐴 have physical meaning, with 𝑆 indicating the initial capacity of the soil to 

absorb water and 𝐴 controlling the equilibrium infiltration rate. They are both dependent on the soil 

properties and the initial water content, and can be determined from some soil physical properties. For 

example, 𝑆 can be expressed in terms of saturated hydraulic conductivity, effective capillary drive and 

the difference between saturated and initial soil water content (Nachabe et al., 1997). Philip (1969) 

showed that 𝐴 may take values between 0.38𝐾𝑠 and 0.66𝐾𝑠, and as time approaches infinity, 𝐴 should 

approach 𝐾𝑠 for a saturated soil. They can also be evaluated numerically using procedures provided 

by Philip (1957a), however, these solutions are too cumbersome for practical applications. Whisler 

and Bouwer (1970) found that determining their values from physical soil properties was very time 

consuming and yielded results that were not in agreement with the experimental curve. So in many 
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cases, the values of 𝑆 and 𝐴 are obtained by curve-fitting of Philip’s model to infiltration data, but the 

physical significance of these parameters is lost by using this approach. 

A shortcoming of the Philip infiltration model is that the assumptions for which the equation is 

applicable are rarely found in the field. Field soils are seldom homogeneous, but vary both spatially 

and with depth, and so do the vegetation and surface conditions. Consequently its reliability may 

reduce in practice, especially for larger areas such as catchments. Nevertheless, the Philip model has 

often been integrated in hydrologic models, including WATFLOOD (Kouwen, 2012) and HYSIM 

(Manley, 1993). 

2.3.1.2 Empirical models 

Another group of infiltration models are empirically based, as they do not give a physical insight into 

the infiltration process, but try to model the shape of the infiltration curve as well as possible (Van De 

Genachte et al., 1996). Empirical models are usually in the form of simple equations, the parameters 

of which do not have a physical meaning, and are derived by means of curve-fitting the equation to 

actual field or laboratory measurements of cumulative water infiltration. Examples of such models are 

the Horton, Holtan, SCS-CN, Kostiakov, Huggins and Monke, Mezencev and Collis-George models, 

among others (Mishra et al., 2003). Horton and Holtan models are the two most popular models. 

Horton model 

Horton model (Horton, 1940) is one of the most widely-used empirical infiltration models. It considers 

infiltration as a natural “exhaustion process”, during which infiltration rate decreases exponentially 

with time from a finite initial value 𝑖0 (mm h-1) to a final constant value 𝑖𝑓 (mm h-1), as shown in the 

following equations: 

𝑖(𝑡) = 𝑖𝑓 + (𝑖0 − 𝑖𝑓)𝑒−𝑘𝑡    and    𝐼(𝑡) = 𝑖𝑓𝑡 +
1

𝑘
(𝑖0 − 𝑖𝑓)(1 − 𝑒−𝑘𝑡)                       (2-5) 

where 𝑘 is the infiltration decay factor (h-1). Although the Horton model is empirical in nature, it does 

reflect the laws and basic equations of soil physics. 𝑖𝑓 refers to the same soil characteristic as the 

saturated hydraulic conductivity (𝐾𝑠), and 𝑖0 can be related to the initial soil moisture condition using 

a simple linear relation (Chahinian et al., 2005). Morel-Seytoux (1989) also related these parameters 

to the physically based parameters of the Green-Ampt model. However, for field applications, their 

values are often obtained from curve-fitting with the experimental data. 

The Horton model has been employed in some hydrology models such as MARINE and SWMM 

(Chahinian et al., 2005) because it generally provides a good fit to data. However, it is somewhat 



Chapter 2 

 

28 
 

cumbersome in practice since it contains three constants that must be evaluated experimentally, and it 

does not adequately represent the rapid decrease of infiltration rate from very high values at a short 

period (Philip, 1957b). A further limitation would be that it is applicable only when rainfall intensity 

exceeds 𝑖𝑓. 

Holtan model 

Using a storage exhaustion concept, Holtan (1961) derived an infiltration equation expressed as:     

𝑖(𝑡) = 𝑖𝑓 + 𝑎(𝑆0 − 𝐼𝑡)1.4                                                         (2-6) 

where 𝑆0  is the storage potential of the soil above the impeding layer (mm) and 𝑎  is a constant 

(mm−0.4 h−1) dependent on soil type, surface condition and vegetation. 𝑆0 can be computed from: 

𝑆0 = (𝜙 − 𝜃0)𝐷                                                                  (2-7) 

where 𝜙 is the total porosity (cm3 cm-3) and 𝐷 is the control zone depth (mm).  

This model has been found to be suitable for inclusion in catchment models, such as LISEM, HEC-1 

and ANSWERS (Beasley et al., 1980), and satisfactory progress has been reported for runoff 

predictions (Dunin, 1976) because of its soil water dependence. Nevertheless, a serious obstacle with 

this model is the determination of the control zone depth, 𝐷. Holtan and Creitz recommended using 

the depth to the plow layer or to the first impeding layer or depth of A-horizon, but Huggins and Monke 

found that the effective control zone depth varied depending on both the surface condition and the 

farming practices used for seedbed preparation (Turner, 2006). Therefore, in practical application this 

parameter is often determined by model calibration process.  

 

2.3.2 Modified infiltration models for complex rainfall 

Although various aforementioned infiltration models have been developed, a major limitation of them 

is that they were all developed from the ponding conditions, and thus are expected to be only valid for 

the single continuous rainfall events when the water supply rate is always larger than the infiltration 

capacity, in other words, when ponding occurs at all times. However, the natural rainfall events are 

not always constant and continuous, but often featured by temporally varied intensities and even 

several hiatus periods. Since these models express the infiltration capacity as a function of time or 

cumulative infiltration amount, they could only describe the decrease of infiltration capacity. In reality, 

however, the infiltration capacity would be also gradually recovered during dry periods because of the 

redistribution of soil moisture caused by the soil drainage or percolation to deeper layers and 
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evaporation. The inability of these classical infiltration models in describing the increase or recovery 

of infiltration capacity has constrained the application of many hydrologic models to event-based or 

short-term simulations, only. Some modification or improvement to the classical infiltration models is 

therefore required to make them applicable to more complex rainfall conditions. Some typical 

examples of the modified infiltration models are shown as follows. 

2.3.3.1 Modified Horton model 

To make the Horton equation applicable to complex rainfall conditions, Bauer (1974)  introduced a 

soil drainage component to the original Horton model based on the concept that as the soil wets up, 

the rate of infiltration declines and the rate of percolation or drainage rises and minimum infiltration 

rate approximates to maximum drainage rate (Figure 2.3a). The drainage equation was then developed 

as: 

𝑑 = 𝑖𝑓 − 𝑖𝑓𝑒−𝑘𝑡                                                                (2-8) 

where 𝑑 is the drainage rate (mm h-1), 𝑖𝑓 is the final steady infiltration rate (mm h-1), and 𝑘 is the 

infiltration decay factor (ℎ−1).  

 

Figure 2.3 Infiltration and drainage capacity as a function of time (a) and soil water accumulation with 

time (b) in the modified Horton model (Bauer, 1974). 

 

By expressing the change of soil water storage as the difference between the input infiltration and 

output drainage, the cumulative amount of soil water 𝑆𝑡
′ (mm) at time 𝑡 (h) could be calculated as: 

𝑆𝑡
′ =

𝑖0

𝑘
(1 − 𝑒−𝑘𝑡)                                                               (2-9) 

where 𝑖0 is the initial infiltration rate (mm h-1). The resulting 𝑆𝑡
′ curve with time is shown in Figure 

2.3b, from which it can be seen that as 𝑡 approaches infinity, the soil gets saturated and the maximum 

soil water storage capacity 𝑆𝑚𝑎𝑥 (mm) is: 

(a) (b) 
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𝑆𝑚𝑎𝑥 =
𝑖0

𝑘
                                                                     (2-10) 

Based on this concept, Aron (1992) further combined equation (2-8) and (2-9) and expressed the 

drainage rate as: 

𝑑 =
𝑖𝑓

𝑖0
𝑘𝑆𝑡

′                                                                    (2-11) 

Expressing the potential infiltration rate (infiltration capacity) 𝑖𝑝 (mm h-1) by combining equation (2-

5), (2-8) and (2-9) results in: 

𝑖𝑝 = 𝑖0 + 𝑑 − 𝑘𝑆𝑡
′                                                             (2-12) 

However, the actual/effective infiltration rate 𝑖𝑡 (mm h-1) does not always equal to 𝑖𝑝, as it is also 

determined by the water supply rate/available infiltration rate 𝑖𝑎 (mm h-1), which can be calculated 

based on the available water depth, consisting of both ponding depth and rainfall intensity: 

𝑖𝑎 =
𝑅𝑡∆𝑡+ℎ𝑡

∆𝑡
                                                                   (2-13) 

where 𝑅𝑡 (mm h-1) is rainfall intensity at time 𝑡, ℎ𝑡 (mm) is surface water depth at time 𝑡, and ∆𝑡 (h) 

is the time increment. If the water supply rate exceeds the infiltration capacity, 𝑖𝑡 will equal to 𝑖𝑝, 

otherwise it will equal to 𝑖𝑎.  

Consequently, it can be seen that the major contribution of Bauer to the Horton model is introducing 

a drainage equation for water draining to deeper lying strata to allow the recovery of infiltration 

capacity, while that of Aron is further expressing both the infiltration and drainage rate as a function 

of soil water storage instead of time to make the model applicable at any time during a rainfall event, 

even when the water supply rate does not at all times exceed the infiltration capacity.  

2.3.3.2 Modified Holtan model 

In a similar way, Huggins & Monke (1966; 1968) introduced a soil water drainage component to the 

original Holtan model based on the assumptions that in the case of the soil water content being less 

than the its field capacity 𝐹𝐶, no water will drain from the control zone, while when soil moisture 

exceeds 𝐹𝐶, the water will move from the control zone at a drainage rate related to current soil storage 

potential 𝑆𝑡 (mm), as expressed in equation (2-14): 

𝑑𝑡 = 𝑖𝑓 [1 −
𝑆𝑡

(𝜙−𝐹𝐶)𝐷
]

3
                                                         (2-14) 
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where 𝜙 is the total porosity. According to equation (2-7), 𝑆𝑡 can be expressed as a function of current 

soil moisture 𝜃𝑡 : 𝑆𝑡 = (𝜙 − 𝜃𝑡)𝐷 . Combining this formula and (2-14) and assuming 𝜙  equals to 

saturated soil water content 𝜃𝑠, 𝑑𝑡 can also be expressed by equation (2-15).  

𝑑𝑡 = 𝑖𝑓 [
𝜃𝑡−𝐹𝐶

𝜃𝑠−𝐹𝐶
]

3
                                                                   (2-15) 

This equation shows that under the condition of saturation (𝜃𝑡 = 𝜃𝑠), water will move from the control 

zone at a drainage rate equal to the final steady state infiltration rate 𝑖𝑓. Thereafter the drainage rate 

will gradually decrease as the soil dries from the saturated state and finally reaches zero when the soil 

moisture equals to field capacity 𝐹𝐶. As a result, the recovery of infiltration capacity can be described. 

2.3.3.2 Modified Green-Ampt model 

The original Green-Ampt model was modified to relate infiltration capacity to the cumulative soil 

water amount 𝑆𝑡
′ in ANSWERS-2000 (Bouraoui and Dillaha, 1996), where the equations developed 

by Savabi et al. (1989) were employed to calculate drainage rate when the soil moisture exceeds the 

field capacity. The drainage rate is calculated as: 

𝑑𝑡 = 𝐷(𝜃 − 𝐹𝐶)(1 − 𝑒−Δ𝑡 𝑡𝑑⁄ )                                                   (2-16) 

where Δ𝑡 is time increment (h) and 𝑡𝑑 (h) is time required for water to drain from an infiltration control 

depth: 

𝑡𝑑 =
𝜃−𝐹𝐶

𝐾𝐴
𝜙𝐷                                                                   (2-17) 

where 𝐾𝐴 is the adjusted hydraulic conductivity rate (mm h-1) which is calculated from: 

𝐾𝐴 = 𝐾𝑠(𝜃 𝜙⁄ )−2.655 log(𝐹𝐶 𝜙⁄ )⁄                                                      (2-18) 

The incorporation of this soil drainage component enables the modified Green-Ampt model to describe 

both the decrease and increase in the infiltration capacity. 

It can be seen that these modified infiltration models were basically developed from their original 

forms by expressing the infiltration capacity as a function of a soil storage condition related parameter 

that was not constrained by time. A soil drainage component was also employed in these models to 

take into account the recovery of infiltration capacity during dry periods. Despite of the similar 

conceptual basis and model structure, the specific formulas and parameters used in these models are 

totally different from each other. Therefore, they are expected to have varied performance and 

accuracies which need to be evaluated and compared by systematic tests. 
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2.3.3 Comparison of infiltration models 

Numerous studies have been carried out to evaluate and compare the existing classical infiltration 

models. Swartzendruber and Youngs (1974) compared different physically based infiltration models 

and concluded that Philip's two-term equation was preferred over Green and Ampt's. Various empirical 

infiltration equations were evaluated by Parlange and Haverkamp (1989), and a best performance for 

Horton’s equation was reported. Rawls et al. (1976) examined the infiltration models of Green and 

Ampt, Philip, Horton, and Hotlan, and found that the Horton model best represented the infiltration 

capacity curves. A similar result was observed in Chahinian’s (2005) study, which showed that the 

Horton model had better overall performance over the Philip model. However, when Singh et al. (1992) 

evaluated the Horton and Philip models for determining the optimum slope of graded check borders, 

they revealed that the Philip model yielded values of slope closer to the observed field values than did 

the Horton model.  

The above discussion shows that different results were obtained in different studies, thus there is no 

clear evidence which model is better and under what conditions. Basically, the physically based 

infiltration models usually apply the physical principles governing infiltration for simplified boundary 

and initial conditions, and are based on assumptions of uniform movement of water from the ponded 

surface downwards through deep homogenous soil with a well-defined wetting front. This physical 

basis on one hand enables the parameters to be obtained from soil water properties without measured 

infiltration data, but on the other hand, would also limit their applicability when the assumptions are 

not met in reality. For example, Mishra et al. (2003) found that the physically based models performed 

better on the soils tested in the laboratory than those tested in the field. The Philip model also performed 

worst in Ghorbani’s (2009) study because a number of its pre-assumptions were violated when used 

in the field. 

Empirical models tend to be less restricted by assumptions of soil surface and soil profile conditions. 

Their initial parameters are determined based on actual field-measured infiltration data, thus on 

heterogeneous field soils, empirical models may potentially provide more accurate predictions, as long 

as they are used under similar conditions to those under which they were developed. An example is 

that Gosh (1983) found the empirically based Kostiakov model to be better than the Philip model in 

fields with wide spatial variability in infiltration data. However, these models have less value as 

predictive tools when the parameter values are obtained from a site that differs significantly from the 
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site of application. Actual field measurements of infiltration are also required to determine these 

parameters, making these models less versatile. 

While most of previous studies focused on the testing and comparison of the classical infiltration 

models using ponded water in infiltrometers or continuous rainfall, the systematic evaluation of the 

modified infiltration models under complex rainfall conditions is extremely lacked. This has greatly 

limited their application in the hydrologic models for the long-term simulation of the surface runoff 

behaviours.    

 

2.3.4 Determination of infiltration parameters 

As previously discussed, the developed infiltration models, especially some classical models, have 

been widely incorporated in hydrologic models for the determination of the infiltration process. Most 

of these hydrologic models have shown great sensitivity to the input parameter values in these 

infiltration models  (Bingeman et al., 2006; De Roo and Jetten, 1999; Kannan et al., 2007; Nearing et 

al., 1990; Ritter, 1992; Zaghloul, 1983). Therefore, the precise determination of these infiltration 

parameters is essential for generating accurate prediction results.  

The problem for the determination of infiltration parameters is the lack of any physical meaning of 

some fitting parameters in the empirical infiltration models and that they cannot be measured directly. 

They have to be determined through calibration with the actual infiltration data or from the suggested 

values from literature. The calibration process is time-consuming and the actual infiltration data is 

often unavailable in practice. Most of those suggested values, for example, the empirical parameter 

values in the Holtan model as suggested by Musgrave (1955) and Frere et al. (1975), were found to be 

very rough estimates that may lead to a large bias in an application (Turner, 2006). Even though some 

infiltration parameters with physical meaning can be obtained from direct laboratory or field 

measurements, they are always subject to measurement errors and uncertainty caused by the different 

measuring methods and the scaling effect. For example, the laboratory determined values of the 

saturated hydraulic conductivity, a common parameter for many infiltration models, have been found 

to vary significantly from field measured values (Mohanty et al., 1994; Reynolds et al., 2000). In 

addition, the distributed hydrologic models often require the inputs for each of a series of small spatial 

hydrologic elements. Due to the large spatial variability of the infiltration behaviour, it is time-

consuming, costly and often impractical to directly measure the infiltration parameters as a large 

number of samples are required to be taken and analysed, and/or numerous in situ measurements are 

required to be conducted.  
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As an alternative, these infiltration parameters can be indirectly estimated from some more easily 

available or measurable controlling factors. Numerous studies have revealed that the infiltration 

process is influenced by various factors, however, most of them only qualitatively analysed the effects 

of these factors. A quantitative estimation for the parameters of infiltration models is very deficient, 

except for the Green-Ampt model. Some pedotransfer functions (PTF) have been developed to relate 

its parameters with soil texture and other simple soil properties (Ahuja et al., 1989; Brakensiek and 

Onstad, 1977; McCuen et al., 1981; Van den Putte et al., 2013; Zhang et al., 1995). These PTFs show 

great advantage in estimating the desired parameter values from already available basic soil data. 

However, they do not take into account other factors such as vegetation, topography and rainfall which 

also have great impact on infiltration parameters and bear some degree of uncertainty. Therefore, 

further efforts are required to explore the effects of other factors on the infiltration parameters and to 

quantify the relationships between them for the estimation of these parameter values.  

 

2.4 Surface Runoff Modelling 

2.4.1 Model classification 

Various models have been developed for the prediction of the surface hydrological processes. They 

can be classified into different categories based on specific criteria. One important criterion is the 

ability of the model to describe the different components of surface hydrology conceptually or 

physically, another is the capacity to define the spatial description of large scale (e.g., catchment) 

hydrological processes as lumped or distributed (Refsgaard, 1996). In this respect, two typical model 

types are the lumped conceptual model and the distributed physically based model, as shown in Figure 

2.4. 
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Figure 2.4 Schematic diagram for the structures of different types of hydrologic models. 

 

2.4.1.1 Lumped conceptual model 

Lumped conceptual models treat the study area as a spatially singular entity (Figure 2.4), use state 

variables that represent averages over the entire area, and produce output at a single point (Haan et al., 

1982). This modelling procedure is based on establishing mathematical relationships or empirical 

equations between the input (precipitation) and the output (runoff) variables, usually by fitting the 

model to hydrologic data with an optimization technique. Typical examples of lumped conceptual 

runoff models (or erosion models that incorporate a runoff component) are the Stanford Watershed 

Model, the Sacramento (Jens Christian, 1997), SCS curve number (U.S.  Department  of  Agriculture, 

1972) and CREAMS (Knisel, 1980). Since they do not consider the complex physical processes, the 

primary advantage of this group of models is the computational efficiency, with relatively few input 

parameters required. However, the main disadvantage is clearly the loss of the spatial distribution 

information, and thus they do not have the capability of assessing the sensitivity of internal 

distributions of land use on runoff. Moreover, the parameters derived in this way can only be used to 

estimate the area that the model is calibrated with, and if the same set of parameters were to be used 

for time periods outside the calibration period, the prediction made by the model would be uncertain. 
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So great effort would be needed in model calibration if these models are applied to regions different 

from the location of first development. 

2.4.1.2 Distributed physically based model 

To better describe the extent of spatial and temporal variability of runoff processes, some distributed 

physically based models have emerged. They have a theoretical structure based upon physical laws, 

and usually make predictions by partitioning the target area into a number of hydrologic units supposed 

to be homogeneous in terms of their physical characteristics. For example, some of these models, 

including KINEROS (Smith, 1981), WEPP (Laflen et al., 1991), EUROSEM (Morgan et al., 1998b) 

and HEC-1 (Feldman, 1995), partition the target area (e.g., a catchment) using a network of elemental 

sections, such as a cascade of planes and channels (Figure 2.4). These elements are always simplified 

geometries with large sizes, which can provide a representation of the gross topographic features but 

may lose some local topography details and complexities. Defining these elements is sometimes an 

arbitrary process and requires professional experience, as different definitions may lead to large 

variations in the results. With the development of remote sensing, digital elevation models (DEM) and 

geographic information systems (GIS), grid structures (Figure 2.4) are more frequently used in the 

distributed models, with examples being ANSWERS (Beasley et al., 1980), AGNPS (Young et al., 

1989), LISEM (De Roo et al., 1996) and SHE (Abbott et al., 1986). These grids usually have much 

smaller sizes than the geometric elements and provide an easier way to represent the study area. These 

models attempt to incorporate data concerning the areal distribution of controlling parameter variations 

in conjunction with computational algorithms to evaluate the influence of this distribution on simulated 

behaviour. Some of them would require development of many partial differential equations governing 

various physical processes and equations of continuity for surface water flow. A major advantage of 

this type of models is the ability to incorporate component relationships developed from small-scale 

studies to yield predictions on larger scales. Thus, distributed models are much less dependent on 

calibration data to adapt the model to widely differing geographic regions than are lumped models. 

Such models could increase the accuracy of the simulation, but this usually comes at the expense of 

increased computational and data preparation effort. So the main disadvantage of this strategy is the 

increase in model complexity and parameters parallel to the increase in partitioning. Nevertheless, 

since the various factors influencing the surface runoff, such as precipitation, soil, topography and 

vegetation, all have great spatial variations, a distributed physically based model is considered to be a 

better choice for describing and quantifying the complex, unsteady and non-uniform runoff processes 

occurring on a natural hill-slope or catchment.  
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In order to precisely simulate the surface runoff, two essential processes are required to be accurately 

determined. One is the runoff production process in each hydrologic element that determines how 

much of rainfall will become surface runoff, and the other one is the runoff distribution process among 

these elements that determines the movement of the excess precipitation over the land surface. These 

two components may appear in many different forms and degrees of complexity in different models, 

but they are always there in any distributed runoff model, together with the difficulty of clearly 

separating one component from each other. 

 

2.4.2 Prediction of runoff production 

The direct runoff is produced from the effective rainfall (sometimes called excess rainfall) which is 

neither retained on the land surface nor infiltrated into the soil. The difference between the input 

rainfall and the effective rainfall hyetographs is termed the abstractions or rainfall losses, which 

include: (1) Infiltration losses into soil; (2) Interception losses by vegetation or tree canopy; (3) 

Depression or hollow storage and (4) Evapotranspiration losses. In order to obtain a prediction of 

surface runoff it is necessary to quantitatively characterize all the components mentioned above. 

2.3.2.1 Infiltration 

Infiltration is the most important and also complicated component of the rainfall loss in many 

occasions. Its determination is therefore very essential and has been discussed in details in section 2.3.  

2.3.2.2 Interception 

The rainfall which is caught by vegetation prior to reaching the ground is referred to as interception 

losses. There are several factors influencing the amount of interception. The first one is the species, 

growth stage, and density of the vegetation. Interception is relatively important for the areas with dense 

vegetative canopies (e.g. forest covers), but plays a rather insignificant role in any areas barren of 

vegetation. Then the rainfall characteristics would also impact the interception that the relative effect 

of interception can be quite significant when runoff-producing events are rather small. In addition, the 

canopy is capable of holding a smaller interception volume as wind velocity increases (Donald and 

Michael, 1976; Haan et al., 1982).  

To quantify the interception amount, Chow (1964) has developed an interception model which is of 

the form: 

𝐿 = 𝑆 + 𝐾𝐸𝑡                                                                  (2-19) 
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where 𝐿 is the volume of water intercepted in inches, 𝑆 the interception storage retained against the 

forces of wind and gravity, 𝐾 the ratio of surface area of intercepting leaves to horizontal projection 

of the area, 𝐸 the amount of water evaporated per hour during the rain period, and 𝑡 the time in hours.  

Aston (1979) also developed an equation to estimate the cumulative interception during a rainfall event: 

𝑃𝑐𝑢𝑚 = 𝑃𝑚𝑎𝑥 [1 − 𝑒𝑥𝑝 (−0.046𝐿𝐴𝐼
𝑅𝑐𝑢𝑚

𝑃𝑚𝑎𝑥
)]                                         (2-20) 

where 𝑃𝑐𝑢𝑚 is the cumulative interception (mm), 𝑅𝑐𝑢𝑚 is the cumulative rainfall (mm), 𝐿𝐴𝐼 is the leaf 

area index, and 𝑃𝑚𝑎𝑥 is the maximum interception storage capacity (mm) that can be estimated from  

𝐿𝐴𝐼 using the equation developed by Von Hoyningen-Huene (1981): 

𝑃𝑚𝑎𝑥 = 0.935 + 0.498𝐿𝐴𝐼 + 0.00575𝐿𝐴𝐼2                                        (2-21) 

2.3.2.3 Depression storage/ Surface retention 

Water caught in the small voids or swales on the ground surface which is held until it infiltrates or 

evaporates is called depression storage or surface retention. Factors which control the amount of 

surface retention are micro-topography, surface macro-slope and rainfall characteristics. Rough 

ground can store large amounts of rainfall which results in smaller amounts of water being available 

for surface runoff and larger amounts of water being infiltrated and/or evaporated. As the average 

macro-slope of a surface increases for a given roughness, the volume of surface retention will usually 

decrease. The larger the rainfall, the less significant depression storage will be in runoff model 

calculations.  

Because of the wide variability of the depressions and the general lack of experimental data, a 

generalized relation or model of the process does not exist. However, Linsley et al. (1949) reported 

that the volume of water stored by depressions, 𝑉, at any given instant of time after the beginning of 

rainfall could be approximated by equation (2-22):                     

𝑉 = 𝑆𝑑[1 − 𝑒𝑥𝑝 (−𝑘𝑃𝑒)]                                                       (2-22) 

Where 𝑆𝑑 is the maximum storage capacity of the depressions, 𝑃𝑒  is the rainfall minus infiltration, 

interception and evaporation, and 𝑘 is the constant equivalent to 1/𝑆𝑑.  

2.3.2.4 Evapotranspiration 

Evapotranspiration is a process by which water is returned to the atmosphere. It consists of evaporation 

from open water surface, bare soil surface, and water intercepted by plant surfaces, as well as 

transpiration by plants from their root zone. Since it is difficult to quantify evaporation and 
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transpiration separately, they are considered together as evapotranspiration. The process of evaporation 

is influenced by different meteorological variables, the nature of the evaporating surface, and 

availability of water. The amount and rate of transpiration depends on the type of vegetation cover and 

their stage of growth, season of the year, time of the day, availability of water in the root zone and the 

same meteorological factors that affect evaporation.   

There are different methods available for the estimation of potential evapotranspiration. Several 

intensive physical approaches such as the Penman-Monteith equation (Monteith, 1965) have been 

developed, which require a large amount of input information. Because of the complexity of the 

process, many less demanding empirical approaches have been presented in the literature, including 

the Hamon (1961) and the Blaney and Criddle (1950) methods. However, many of the empirical 

methods are developed for specific climate regions and should not be used for conditions different 

from those they are developed for. 

It can be seen that each of the four components shown above can be determined to calculate the 

effective rainfall and thus runoff production. Alternatively, sometimes a single model could be 

developed in a lumped fashion. For instance, the U.S. Soil Conservation Service (SCS) (1972) 

suggested an empirical model for rainfall abstractions based on the potential for the soil to absorb a 

certain amount of moisture. On the basis of field observations, this potential storage 𝑆 (millimetres or 

inches) is related to a “curve number” 𝐶𝑁 which is a characteristic of the soil type, land use and the 

initial degree of saturation known as the antecedent moisture condition. The value of 𝑆 is defined by 

the empirical expressions below depending on the units being used. 

𝑆 =
1000

𝐶𝑁
− 10  (𝑖𝑛𝑐ℎ𝑒𝑠),       𝑆 =

25400

𝐶𝑁
− 254   (𝑚𝑖𝑙𝑙𝑖𝑚𝑒𝑡𝑟𝑒𝑠)                        (2-23) 

 

2.4.3 Simulation of runoff distribution 

After determining the amount of runoff produced in each hydrologic element, a further runoff 

distribution component is required to route the generated runoff among different hydrologic elements 

and from the source areas to the outlet. Different methods have been developed and incorporated in 

the distributed runoff models to determine this process. 

2.3.3.1 Numerical techniques 

Numerical techniques have been widely employed in the distributed runoff models to simulate the 

runoff routing processes. Typically, the overland flow and channel flow are described by solving the 

Saint-Venant equations of continuity and momentum. To make these complex equations solvable, 
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simplifying assumptions need to be made and different methods are produced by neglecting various 

terms of the momentum equation. 

Kinematic wave method 

The kinematic wave method is simplest and also the most popular method. Although it has been shown 

to be a valid approximation for some flow scenarios, it is based on various simplifying assumptions 

that the influences of local acceleration and pressure forces are neglected, the flow is one dimensional 

and its characteristics such as depth and velocity are considered to vary only in the direction of 

principle slope, and the land surface slope is approximately equal to the friction slope. As a 

consequence, neither the backwater effects nor the depression storage can be accounted for, and the 

peak flows are also tended to be over-estimated as this theory does not provide for attenuation of the 

waves (MacArthur and DeVries, 1993; Swensson, 2003). The finite difference numerical techniques 

are often employed to solve the kinematic wave equations, but they have low computational efficiency 

and would become unstable when the selection of space and time increments dissatisfy the Courant 

condition (Chow et al., 1988).    

Diffusion wave method 

The diffusion wave method is a more complete form of the momentum equation. In the rainfall-runoff 

model developed by Jain et al. (2004), a one-dimensional solution based on the diffusion wave method 

is used, with the advantages of accounting for backwater effects and including the acceleration and 

differences in pressure. However, like the kinematic wave method, it does not consider the spatial 

variation in the direction perpendicular to the principle slope due to its one-dimensional nature. 

CASC2D (Rojas et al., 2003) employed a more advanced two-dimensional diffusion wave method to 

make it capable of describing the overland flow process in both x- and y-axis directions. While it could 

better describe the spatial variation of the flow behaviours, one limitation of this model is that it 

produces the calculations in a sequence from the grid located at the top left corner to that at the bottom 

right corner in a study area. This would cause a problem when the update of states (e.g., water depth) 

for a grid depends on the previously updated neighbouring grids, which however, cannot be affected 

by this grid. This is obviously in disagreement with reality, in which water depth changes everywhere 

at the same time and the flows at different points are interacting with each other. Furthermore, the 

computational efficiency would be further reduced in these diffusion wave methods because of the 

increased complexity in solving the mathematical equations 
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2.3.3.2 Elevation-based methods 

Alternative to the complex numerical methods, the more straightforward elevation-based methods 

have been developed to determine the runoff distributions simply according to the differences in the 

elevations among hydrologic elements. These methods are generally based on the digital elevation 

map (DEM), which appears to be a very suitable tool for the distributed runoff modelling due to its 

raster or grid based data structure. As a result, some DEM-based runoff routing algorithms were 

proposed for the derivation of flow directions. They are generally categorized into two groups, 

including the single-direction algorithms that transfer all flow from the centre grid to one downslope 

neighbour, and the multiple-direction algorithms that partition flow to multiple downslope neighbours. 

Single-direction algorithms 

D8 is the earliest and simplest method for specifying flow directions. It assigns all flow from each grid 

to one of its eight neighbours, either adjacent or diagonal, in the direction with steepest downward 

slope. This method was introduced  by O'Callaghan and Mark (1984) and has been widely used (Jenson, 

1991; Martz and Garbrecht, 1992). The D8 method is computationally efficient due to its simplicity, 

but one major limitation is that flow which originates over a two-dimensional grid is treated as a point 

source (non-dimensional) and is projected downslope by a line (one dimensional) (Moore and Grayson, 

1991).  

The 𝜌8 algorithm (Fairfield and Leymarie, 1991) attempts to overcome the problem of straight flow 

paths by introducing a stochastic component into method D8. This algorithm randomly assigns flow 

from the centre grid cell to one of its downslope neighbours with the probability proportional to slope. 

It maintains the simplicity of single-direction algorithm, and the randomness creates flow paths that 

reflect more closely the true processes than D8. However, this randomness does not ensure 

reproducible results, and in locations of parallel flow, adjacent flow paths are not parallel but wiggle 

randomly and therefore often converge laterally with one another. 

Multiple-direction algorithms 

MFD (Multiple flow direction methods) attempts to solve the major limitation of single-direction 

method, the one-dimensional representation of flow, by distributing flow fractionally from a grid 

among all of its lower-elevation neighbour grids according to some specified rules (Freeman, 1991; 

Quinn et al., 1991). However, MFD methods have the potential disadvantage that flow from a grid is 

dispersed to all neighbouring grids with lower elevation, thus it tends to produce wider flow pathways 

due to excessive flow divergence (Erskine et al., 2006). 
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The DEMON (digital elevation model networks) algorithm (Costa-Cabral and Burges, 1994) is an 

extension of the method of Lea (1992), where grid elevation values are taken as grid corners, rather 

than block centred, and flow directions are based on the aspect of a plane surface fit to each grid. Flow 

is assumed to be uniform over the grid area and partitioned to two downslope neighbours in cardinal 

directions. Flow is generated over an area, not at point sources, and is projected downslope over a two-

dimensional flow strip, analogous to a flow tube. This procedure also has the advantage of specifying 

flow direction continuously (as an angle between 0 and 2𝜋) and without dispersion. 

The D∞ algorithm (Tarboton, 1997) recognizes the advantages of DEMON, and makes some 

development through the assignment of a single flow direction to each grid. This single flow direction 

is determined in the direction of the steepest downwards slope on the eight triangular facets formed in 

a 3 x 3 grid cell window centred on the grid of interest. The flow from each grid either all drains to 

one neighbour (if the angle falls along a cardinal or diagonal direction) or is on an angle falling between 

the direct angle to two adjacent neighbours. In the latter case the flow is proportioned between these 

two neighbour grids according to how close the flow direction angle is to the direct angle to those grids. 

So it is a combination of single-direction and multiple-direction method to some extent. Similar to 

DEMON, the dispersion is minimized since flow is never proportioned between more than two 

downslope grids. 

Several studies have shown differences between these different runoff routing algorithms based on 

predicted channel networks (Endreny and Wood, 2003) and the location of ephemeral gullies (Desmet 

and Govers, 1996), with better results derived from the algorithms with multiple directions and limited 

flow divergence (DEMON and D∞). Erskine (2006) compared these algorithms in computing upslope 

contributing area based on different grid sizes, and concluded that multiple-direction algorithms, 

allowing for flow divergence, are recommended on the undulating terrains. 

These elevation-based methods are very straightforward and computationally efficient, compared to 

those numerical methods; however, a major limitation is that they tend to be oversimplified as the 

water component in the elements is not taken into account. In reality, the water does not always flow 

according to the elevation differences because of the different water depths among the elements. Thus 

it is actually the relative water surface heights, rather than the relative element elevations, that 

determine the flow patterns. Moreover, since the elevation of each element is consistent and 

independent, flow directions derived from these methods are pre-determined and fixed, thus neither 

the dynamic flow behaviours nor the interactions between elements can be captured. 
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Therefore, currently available methods, either the numerical techniques or the elevation-based methods, 

all have their limitations in accuracy and/or computational efficiency for the simulation of surface 

runoff. Besides, most of existing runoff models were developed from the catchment scale in the natural 

environment, and thus they may be not applicable to the rehabilitated landforms, where the soil 

properties, vegetation covers, topography features, spatial complexities and runoff generation 

mechanisms could be significantly altered from their original natural conditions. Consequently, more 

effective and robust runoff models are required to be developed for the rehabilitated landforms on the 

basis of new methods with both high reliability and reduced complexity. Cellular Automata (CA) is 

one of such promising approach worthy of investigation, and it will be introduced and discussed in 

details in the following section.   

 

2.5 Cellular Automata (CA) as a Possible Method for Runoff Simulation 

2.5.1 Introduction 

For many years it has been very difficult to explain and simulate the behaviour of complex phenomena 

because the traditional methods describing them were mainly based on the systems of differential 

equations, which could not be easily solved without making substantial simplifications, thus causing 

the models intractable even using powerful computers. The advent and development of novel parallel 

computing showed the significant potential in representing a valid alternative modelling technique to 

the classical numerical models in description of complex phenomena, especially when the differential 

equations cannot be efficiently solved because of their complexity. In particular, Cellular Automata 

(CA) provides such an alternative approach for some complex natural systems, whose behaviour can 

be described in terms of local interactions of its constituent parts (Tommaso, 1984). 

Cellular Automata (CA) is a discrete dynamic system composed of a set of cells in a one-dimensional 

or multi-dimensional lattice. Each cell in the regular spatial lattice can have any one of a finite number 

of states, and the states of the cells are updated according to local transition rules. In CA, the state of 

a cell at a given time depends only on its own state and the states of its neighbours at the previous time 

step. All cells are updated synchronously, and thus the state of the entire automata advances in discrete 

time steps. The global behaviour of the system is determined by the evolution of the states of all cells 

as a result of multiple interactions (Figure 2.5). Consequently CA is very effective in solving scientific 

problems because it can capture the essential features of systems in which the global behaviour arises 

from the collective effect of large numbers of locally interacting simple components (Wolfram, 1984a). 
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Figure 2.5 Evolution of cell states in CA. 

 

2.5.2 CA components and theoretical background 

Models based on CA theory consist of four primary components: a lattice space, the definition of a 

local neighbourhood area, transition rules determining the changes in cell properties, and boundary 

conditions (Parsons and Fonstad, 2007). Each of these components could influence the state of an 

individual cell and in turn the overall behaviour of the system. 

2.5.2.1 Lattice space  

A lattice space covers the whole study area and consists of a series of spatial cells. Theoretically, a 

cellular space can have any dimension from 1 to N. However, the majority of research so far has been 

on one-dimensional (Wolfram, 1984b) or two-dimensional CA. There is no restriction to the 

tessellation of a lattice space, which means that the shape of each cell can be any of the three regular 

polygons which tile the plane: triangle, square, or hexagon (Figure 2.6). Hexagons are often used in 

lattice gas model that deal with diffusion of gases and turbulent flow of liquids, and one of their 

advantages is that they maintain a constant distance from centre to edge of the hexagon. However, 

square cells are the most common form in CA applications due to their inherent convenience of 

implementation in computers. 

 

Figure 2.6 Examples of different types of CA lattice space. 
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2.5.2.2 Neighbourhood 

A neighbourhood is the group of cells around a cell of interest that affect the centre cell’s properties at 

each time step. The neighbourhoods can be either symmetrical or asymmetrical, with no limitation to 

the size of a neighbourhood, and thus there are numerous ways to define a neighbourhood for CA. The 

simplest choice is “nearest neighbours”, in which only cells directly adjacent to a given cell are 

considered. Frequently used neighbourhood templates for two-dimensional square grids are the von 

Neumann-neighbourhood (Figure 2.7-a) and the Moore-neighbourhood (Figure 2.7-b). The von 

Neumann-neighbourhood is the group of four cells in the four cardinal directions from the centre cell, 

whereas the Moore-neighbourhood also includes the diagonal neighbours. Unlike the von Neumann-

neighbourhood, in Moore-neighbourhood the centre cell is fully surrounded by neighbour cells, but 

the distance from the diagonal neighbours to the centre cell is different from that from cardinal 

neighbours, causing some potential difficulties in model application. The hexagonal grids employ the 

most symmetric two-dimensional neighbourhood (Figure 2.7-d), where each neighbour is the same 

distance around the centre cell and totally surrounds each part of the centre cell. In addition, 

neighbourhoods including a wider radius than these simple neighbourhoods may also be employed, 

termed the extended von Neumann and extended Moore neighbourhoods (Figure 2.7-c). Unfortunately, 

these hexagonal and extended neighbourhoods can be much more difficult to integrate with known 

physical laws and/or with computers than simple neighbourhoods. So the von Neumann and Moore 

neighbourhoods are most adopted in present studies. 

  

a) von Neumann neighbourhood b) Moore neighbourhood 

  

c) Extended Moore neighbourhoods d) Hexagonal neighbourhood 

Figure 2.7 Examples of CA neighbourhoods. 

 



Chapter 2 

 

46 
 

2.5.2.3 Transition rules 

Transition rules specify how the state of each cell is updated according to the defined neighbourhood 

and current states of cells. One example is the famous transition rules in John Conway's Game of Life 

(Gardner, 1970), where cells are considered to be “alive” (their state is coded as “alive”) or “dead”. In 

each time step of the model, the transition rules are applied to the cells' states: a “live” cell in one time 

step remains “alive” in the next time step if its neighbourhood contains either two or three other alive 

cells, otherwise its state is coded as “dead”; while a “dead” cell in one time step can become “alive” 

in the next if its neighbourhood contains exactly three “live” cells. In concept, transition rules are 

applied to each cell in the lattice space uniformly and synchronously, so all the spatial cells change 

their states simultaneously according to the same transition rules during model execution. 

For modelling and simulating the complex macroscopic phenomena by CA, a transition rule known as 

the minimisation-of-differences algorithm was proposed by Gregorio and Serra (1999). It is a very 

straightforward transition rule that a dynamic system tends to evolve towards equilibrium conditions 

by flow of some conserved quantity in the central cell to its neighbours, with an example demonstrated 

in Figure 2.8. This transition rule has been applied to simulate the lava flows, debris flows, 

bioremediation and soil erosion (D'Ambrosio et al., 2001; Gregorio and Serra, 1999).    

 

Figure 2.8 Example of distribution process by minimisation-of-differences algorithm (Gregorio and 

Serra, 1999). 

 

2.5.2.4 Boundary conditions 

The final component of a CA model is the boundary condition that describes what happens at the outer 

cells of the lattice. Since these outer cells do not have a complete neighbourhood, special conditions 

require to be applied to their behaviour. CA models may incorporate several different types of 

boundaries, including “reflective” boundary that prevents, for example, fluid from flowing off the 

edges, “periodic” boundary that allows it flowing off one edge to re-enter the grid on the opposite side 

from where it left, or “absorbing” boundary that absorbs any fluid moving into them (Parsons and 
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Fonstad, 2007). Sometimes, an auxiliary border consisting of several lines of cells could be added at 

the edge of study area to eliminate the boundary effects. 

 

2.5.3 Application of CA  

CA was invented by John von Neumann in the early fifties with the contribution of his colleague 

Stanislaw Ulam when they were investigating self-reproduction (Von Neumann, 1966). However, until 

1970, CA had been studied by only a few researchers. With the advent and popularity of the “Game 

of Life” in 1970 developed by John Conway (Gardner, 1970), science research communities were 

introduced to and fascinated by the idea of CA, and researchers started to conduct a wide range of CA 

experiments in numerous fields. To date CA has been widely applied in a large number of science 

branches, such as urban development (Deadman et al., 1993; Itami, 1988; Kirtland et al., 1994), traffic 

flow simulation (Wahle et al., 2001), biological modelling (Ermentrout and Edelstein-Keshet, 1993), 

vegetation growth (Aassine and El Jaı̈, 2002; Silvertown et al., 1992), forest fire dynamics (Clarke et 

al., 1994), and so on.  

While CA has become a major tool for discovering the processes and structures of many complex 

natural systems, only in the recent decade a few studies have emerged to relate its application to surface 

hydrologic modelling. Rinaldi et al. (2007) and Ma et al. (2009) developed CA based models for 

simulating runoff in large plains and on hill-slopes, respectively. Both models have shown the capacity 

of CA, however, a spatially uniform flow velocity was assumed and simply applied over the entire 

study area, leading them to be only used for simulating the steady flow conditions. Parsons and Fonstad 

(2007) developed a more complex CA model capable of simulating the unsteady flow conditions by 

delaying the water from one cell to the next until the correct timing is reached. Although this is a large 

progress, unfortunately in their model the flow directions were restricted to only four cardinal 

directions due to the difficulties in producing accurate timed water flows. Uncertainty also existed in 

selecting an appropriate time step for simulation. In addition, calculation of the rainfall excess is rather 

simple and empirical in this model as it does not include any related hydrologic principles. Some other 

CA models, such as RillGrow (Favis-Mortlock, 1998), EROSION-3D (Schmidt et al., 1999) and 

CAESAR (Coulthard et al., 2000), incorporate a surface hydrology component, but it is usually 

simplified because these models were primarily developed to study soil erosion or landform evolution. 

Larger errors are expected if they are used to quantitatively predict surface runoff yields. For instance, 

Mike Saynor (2012a) used CAESAR to simulate the runoff performance of field plots (30 m × 30 m) 

at rehabilitated mine sites in Australia, but the predicted discharge was 3.5 times greater than measured 
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values because some basic hydrological processes (e.g., infiltration) were not considered in the model. 

Consequently, a more effective and specialised CA-based model is required to be developed for the 

quantitative prediction of the dynamic surface runoff processes, by integrating fundamental 

hydrological principles and basic CA theories.  

 

2.6 Summary of research gaps in the literature 

The literature analysis in the previous sections aimed to overview the principles in surface hydrology 

and the current methods for the modelling of this process, specifically targeting issues on their 

application in the rehabilitated landforms. The main research gaps identified from the literature review 

relate to: 

 There is a lack of understanding on the surface hydrological processes in the disturbed and 

rehabilitated landforms (section 2.1.3). 

 There is no persistent conclusion about the influences of various affecting factors on the surface 

hydrology (section 2.2.6). 

 The performance of the infiltration models modified for complex rainfall conditions has not 

been systematically evaluated, which has limited their application and value in hydrologic 

modelling (section 2.3.3). 

 The determination of input parameters for infiltration models has been hampered by the 

difficulties and inaccuracies in the direct measurement; the quantitative estimation of their 

values from related controlling factors is required (section 2.3.4). 

 Currently available methods for runoff simulation all have limitations in the accuracy of the 

prediction, computational efficiency and/or scale flexibility, and may produce unexpected 

errors if applied in rehabilitated landforms (section 2.4.3). 

 Cellular Automata, an effective and well-accepted approach for describing the dynamic and 

complex processes in many disciplines, has been rarely applied to surface hydrologic modelling 

(section 2.5.3).     

The understanding and simulation of the surface hydrological processes in the rehabilitated landforms 

are constrained by above mentioned research gaps. The study in this thesis aims to address these 

impediments.
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Chapter 3 Estimating Input Parameters for Four Infiltration 

Models from Basic Soil, Vegetation and Rainfall Properties 

 

3.1 Introduction 

Infiltration process is one of the most important components in the hydrologic cycle as it determines 

the quantity of incoming precipitation which becomes surface runoff or contributes to soil moisture or 

groundwater (Dunne, 1978). Predictions of flooding, erosion and pollutant transport all depend on the 

rate of infiltration. Infiltration is also a very complex process to measure as it varies both temporally 

and spatially. To accurately characterize and quantify this process, considerable effort has been made 

to develop various infiltration models. Among these models, some physically based models including 

Philip (Philip, 1957b) and Green-Ampt (Green and Ampt, 1911) models, and some empirical models 

including Horton (Horton, 1940) and Holtan (Holtan, 1961) models are frequently used due to their 

simplicity, good fit to measured data and reduced number of parameters. These infiltration models 

have been incorporated in many distributed physically based hydrologic models to improve their 

prediction accuracy. For example, the Green-Ampt model is widely used in models such as WEPP 

(Laflen et al., 1991), SWAT (Tuppad et al., 2011), SWMM (Rossman, 2010), LISEM (De Roo et al., 

1996), HEC-1 (Feldman, 1995) and ANSWERS-2000 (Bouraoui and Dillaha, 1996), Philip model is 

integrated in WATFLOOD (Kouwen, 2012) and HYSIM (Manley, 1993), Horton model is 

incorporated in MARINE (Estupina-Borrell et al., 2002) and SWMM, and Holtan model is used in 

LISEM, HEC-1 and ANSWERS (Beasley et al., 1980). Most of these hydrological models have shown 

great sensitivity to the input parameter values in these infiltration models  (Bingeman et al., 2006; De 

Roo and Jetten, 1999; Kannan et al., 2007; Nearing et al., 1990; Ritter, 1992; Zaghloul, 1983). 

Therefore, the precise determination of these infiltration parameters is essential for generating accurate 

prediction results.  

Problem for the determination of infiltration parameters is the lack of any physical meaning of some 

fitting parameters in the empirical infiltration models and that they cannot be measured directly. They 

have to be determined through calibration with the actual infiltration data or from the suggested values 

from literature. The calibration process is time-consuming and the actual infiltration data is often 

unavailable in practice. Most of those suggested values, for example, the empirical parameter values 

in the Holtan model as suggested by Musgrave (1955) and Frere et al. (1975), were found to be very 

rough estimates that may lead to a large bias in an application (Turner, 2006). Even though some 

infiltration parameters with physical meaning can be obtained from direct laboratory or field 
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measurements, they are always subject to measurement errors and uncertainty caused by the different 

measuring methods and the scaling effect. For example, the laboratory determined values of the 

saturated hydraulic conductivity, a common parameter for many infiltration models, have been found 

to vary significantly from the field measured values (Mohanty et al., 1994; Reynolds et al., 2000). In 

addition, the distributed hydrologic models often require the inputs for each of a series of small spatial 

hydrologic elements. Due to the large spatial variability of the infiltration behaviour, it is time-

consuming, costly and often impractical to directly measure the infiltration parameters as a large 

number of samples are required to be taken and analysed, and/or numerous in situ measurements are 

required to be conducted.  

As an alternative, these infiltration parameters can be indirectly estimated from some more easily 

available or measurable controlling factors. Numerous studies have revealed that the infiltration 

process is influenced by various factors, including soil properties (Mayor et al., 2009; Meek et al., 

1992), surface conditions (Fattah and Upadhyaya, 1996; Lavee and Poesen, 1991; Li et al., 2011), 

vegetation covers (Puigdefábregas, 2005; Wilcox et al., 1988), topography features (Fox et al., 1997; 

Poesen, 1984) and rainfall characteristics (Dunne et al., 1991; Foley et al., 1991). Most of previous 

studies have only qualitatively analysed the effects of these controlling factors. Just a few of them, 

such as that conducted by Li et al. (2011), have developed regression equations for predicting the 

steady-state infiltration rate. The quantitative estimation for the parameters of infiltration models, 

however, is very deficient, except for the Green-Ampt model. Some pedotransfer functions (PTF) have 

been developed to relate its parameters with soil texture and other simple soil properties (Ahuja et al., 

1989; Brakensiek and Onstad, 1977; McCuen et al., 1981; Van den Putte et al., 2013; Zhang et al., 

1995). These PTFs show great advantage in estimating the desired parameter values from already 

available basic soil data. However, they do not take into account other factors such as vegetation, 

topography and rainfall which also have great impact on infiltration parameters. Reason for this neglect 

is that in most of these studies the actual infiltration was measured by the single ring or double ring 

infiltrometer method, which was often applied on soil removed of vegetation and levelled ground 

surface by ponding the water inside. This ponded water is also different from the rainfall as the rain 

drop may compact the soil and cause surface sealing that could affect the infiltration rate (Bradford et 

al., 1987). Using a rainfall simulator or sprinkling infiltrometer may overcome these problems, and at 

the same time provide a larger spatial coverage. Therefore, the objectives of this study are (1) to 

measure and compare the infiltration rates under different soil, vegetation, topography and rainfall 

conditions using a field rainfall simulator; (2) to determine the input parameters for four popular 

infiltration models (i.e., Philip, Green-Ampt, Horton and Holtan model) for all rainfall events; (3) to 



Chapter 3 

 

51 
 

investigate various soil, vegetation, topography and rainfall related factors that have potential impacts 

on the infiltration parameters; and (4) to identify the major controlling factors for each infiltration 

parameter and quantify their relationships by developing predictive regression equations.     

 

3.2 Materials and methods 

3.2.1 Infiltration models 

The Green-Ampt and Philip model used in this study are both physically based models. They assume 

the soil media as capillary tubes with water infiltrating into the porous media. Green and Ampt (1911) 

proposed this first physically based infiltration model based on Darcy’s law, and expressed the 

infiltration rate as: 

𝑖𝑡 = 𝐾𝑠 [
(𝜃𝑠−𝜃0)𝜓𝑓

𝐼𝑡
+ 1]                                                          (3.1) 

where 𝑖𝑡  is the infiltration rate (mm h-1) at time t (h), 𝐾𝑠  is the saturated hydraulic conductivity 

(mm h−1), 𝜃𝑠  and 𝜃0  is the saturated and initial water content (cm3 cm-3) respectively, 𝜓𝑓  is the 

suction at the wetting front (mm), and 𝐼𝑡 is the cumulative infiltration (mm) at time t. 

Philip (1957b) developed a time series to solve the Richards’ flow equation (Richards, 1931), and a 

two-term Philip infiltration equation was derived by neglecting the higher order terms: 

𝑖𝑡 = 0.5𝑆0𝑡−0.5 + 𝐴                                                           (3.2) 

where 𝑆0  is the sorptivity (mm h-0.5) and A is a parameter reflecting the steady infiltration rate 

(mm h−1). 

Another group of infiltration models are empirically based. They do not give a physical insight into 

the infiltration process, but try to model the shape of the infiltration curve as well as possible (Van De 

Genachte et al., 1996). The Horton model (Horton, 1940) is one of the most widely-used empirical 

infiltration models. It considers infiltration as a natural “exhaustion process”, during which infiltration 

rate decreases exponentially with time, as shown in the following equation:  

𝑖𝑡 = 𝑖𝑓 + (𝑖0 − 𝑖𝑓)𝑒−𝑘𝑡                                                    (3.3) 

where 𝑖0  and 𝑖𝑓  is the initial and final steady infiltration rate (mm h-1) respectively, and k is the 

infiltration decay coefficient (h-1). 

Using a storage exhaustion concept, Holtan (1961) derived an infiltration model expressed as: 
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𝑖𝑡 = 𝑖𝑓 + 𝑎(𝑆 − 𝐼𝑡)1.4                                                     (3.4) 

where a is a constant (mm-0.4 h-1) dependent on soil type, surface and cropping conditions, and S is the 

soil water storage potential (mm).   

As shown in Table 3.1, some parameters with physical meaning in these infiltration models can be 

directly measured from field experiments or laboratory analysis. However, some other parameters do 

not have any physical meaning or are very difficult to measure. These parameters are unmeasurable 

and need to be indirectly determined by curve-fitting the infiltration models to the measured infiltration 

rates. 

Table 3.1 Measurable and unmeasurable input parameters for four infiltration models 

Infiltration model 
Directly measured  

Parameters1 

Indirectly determined  

unmeasurable parametersa  

Green-Ampt 𝐾𝑠, 𝜃𝑠, 𝜃0 𝜓𝑓 

Philip  𝑆0, A 

Horton 𝑖𝑓 𝑖0, k 

Holtan 𝑖𝑓 a, S 
a 𝐾𝑠  is the saturated hydraulic conductivity, 𝜃𝑠  and 𝜃0  is the saturated and initial water content 

respectively, 𝜓𝑓is the suction at the wetting front, 𝑆0is the sorptivity, A is the soil water transmissivity,  

𝑖𝑓 and 𝑖0 is the final and initial infiltration rate respectively, k is the infiltration decay coefficient, a is 

a constant in Holtan model, and S is the soil water storage potential. 

 

3.2.2 Experimental procedure 

Rainfall simulation experiments were conducted in the field to measure the temporal changes of 

infiltration rates at different spatial plots. Both field investigations and laboratory analysis were 

conducted to measure the measurable infiltration parameters, as well as the factors that have potential 

impacts on the infiltration (Table 3.2), including rainfall intensity, slope gradient, soil physical and 

hydraulic properties, soil textural parameters and the vegetation related factors. They were selected 

because they are easily accessible and measurable factors that represent rainfall, topography and 

vegetation features.  
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Table 3.2 Potential controlling factors for the infiltration parameters 

Controlling factors Abbr. Units 

 

Controlling factors Abbr. Units 

Rainfall intensity Rain mm h-1 
Stone content  

(>5.3 mm) 
Stone g g-1

 

Slope gradient Slope % 
Gravel content  

(2.0-5.3 mm) 
Gravel g g-1

 

Top soil depth Depth m 
Sand content  

(0.02-2.0 mm) 
Sand g g-1

 

Bulk density 𝜌𝑏 g cm-3 
Silt content  

(0.002-0.02 mm) 
Silt g g-1

 

Porosity 

 (saturated water content) 
𝜙(𝜃𝑠) m3 m-3 

Clay content  

(<0.002 mm) 
Clay g g-1

 

Field capacity 𝜃𝐹𝐶  m3 m-3 Root content Root g/100cm3
 

Initial soil moisture 𝜃0 m3 m-3 Vegetation cover Cover m2 m-2
 

Initial saturation degree SAT% -  Vegetation height Height m 

 

Field experiments 

This study was carried out at the Veterinary Science Farm of the University of Queensland, which is 

located at Pinjarra Hills, Queensland, Eastern Australia. The climate is humid subtropical with an 

average annual rainfall of 1000 mm of which 66% occurs during the wet season from October to 

March. Monthly mean temperatures vary from 15 °C in July to 25 °C in January.   

Small plots of 1 m2 (1 m long and 1 m wide) were set up in an area of about 5 km2. Specifically, plots 

1 to 6 were randomly distributed on a lawn, which was in large parts compacted by vehicle traffic; 

plots 7 to 13 were randomly selected in a restored area, which was previously disturbed by construction 

work; while plots 14 to 22 were randomly set up in an undisturbed paddock (previously used for 

grazing and fallow since >5 years) with natural conditions. This selection of plots maximized the 

ranges of site features in terms of soil properties, slope gradients and vegetation characteristics. 

Furthermore, each of the last three plots, which were fully covered by vegetation, was further mowed 

into a partially covered plot and a bare plot to better investigate the influences of vegetation. This lead 

to six additional plots (Fig. 1). The 1 m2 plot was used because they have been widely applied in field 

measurements of infiltration under either simulated (Dos Reis Castro et al., 1999; Leonard and 

Andrieux, 1998) or natural rainfalls (Le Bissonnais et al., 1998; Patin et al., 2012). The measured 

results in this size of plots are found to represent the local infiltration characteristics in this unit area, 

and the controlling factors are also relatively spatially homogenous in such a small plot. Each small 
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plot was defined by a 1 m × 1 m metal runoff frame sunk into the ground to a depth of 5 cm, allowing 

a 10 cm extension above the ground to separate runoff produced within the plot area from that produced 

outside the plot. A V-shape runoff collector was installed at the bottom of each plot for collecting and 

measuring runoff (Figure 3.2). Before the start of experiments an orthogonal top view picture of every 

plot was taken to make an assessment of the vegetation coverage. A mean vegetation height was 

determined by averaging 10 measured heights in each plot. The depth of the top soil was obtained by 

measuring the depth to the first impeding layer in the soil profile that was dug next to the plot. The 

slope gradient for each plot was also measured.     

 

Figure 3.1 Orthogonal top view photos of all plots. Plot 20, 21 and 22 were mowed into plots with 

different vegetation covers. 

 

Simulated rainfall was produced by a field rainfall simulator (Figure 3.2) which uses Veejet 80100 

nozzles mounted on a manifold, with the nozzles controlled to sweep to and from across a plot. The 

more detailed information of this type of rainfall simulator is given by Loch et al. (2001), who has 

proven its ability in giving reasonable simulation of kinetic energies of intense natural rain and 

producing the rainfall intensity with a small coefficient of variation (8-10%) in its spatial distribution. 

For each plot, three runs were conducted based on different initial soil moisture conditions: a first dry 

run on the initially dry soil, a second wet run on the wet soil 24 hours after the first run, and a third 

moist run on the very wet soil just 2 hours after the second run. The rainfall intensity was controlled 
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by the frequency with which the nozzles sweep. In order to investigate the influence of rainfall intensity 

on infiltration, one of three sweeping frequencies was randomly selected for each rainfall event. The 

actual rainfall intensity was measured by four measuring cups distributed across the plot. During each 

rainfall simulation run, after the appearance of runoff, the runoff generated in 30 seconds was collected 

and measured at the outlet of the runoff collector using collecting bottles every minute in the first 15 

minutes and every two minutes in the remaining period. Based on these measured runoff rates, the 

infiltration rates at different time points were calculated by subtracting them from the measured rainfall 

intensity. Each rainfall event lasted until the runoff equilibrium was reached. Since the final steady 

infiltration rate and the field saturated hydraulic conductivity represent the same physical phenomenon 

– the final water intake rate of a soil under saturated conditions, they were assumed to be equal in this 

study and were both determined by averaging the last 5 measured infiltration rates.  

 

Figure 3.2 Photo of the field rainfall simulator. 

 

Laboratory measurements 

In order to avoid the disturbance of plots, soil was sampled from the area immediately adjacent to the 

plots. Three undisturbed soil core samples were taken at the depth of 0-5 cm before the start of each 

rainfall event with metal sampling rings (100 cm3) for the measurement of basic soil properties. The 

initial and saturated soil water contents, as well as the field capacity of collected soil samples, were 
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determined by weighing them before and after oven-drying at 105 °C for 24 h. Specifically, the 

saturated condition was reached by leaving the core samples in a tray filled with shallow water for 2-

4 days, and the field capacity was achieved by leaving the saturated core samples on a suction plate 

with 33 kPa (0.33 bar) suction pressure for 7 days. The total porosity of the soil sample was assumed 

to be equal to the saturated water content. The dry bulk density was calculated by dividing the oven-

dried soil weight by the soil volume. For the particle size distribution analysis, both stone content (> 

5.3 mm) and gravel content (2.0 - 5.3 mm) were determined by the sieving method, while the sand, 

silt and clay contents were measured using the hydrometer method. The root content was measured by 

weighing the roots in each soil sample and expressed as g/100cm3.   

 

3.2.3 Statistical analysis 

Parameterization of infiltration models 

The unmeasurable parameters in the four infiltration models were determined by curve-fitting the 

infiltration models to the observed infiltration rates after runoff generation by a non-linear least-

squares optimization using the method of Marquardt in SAS (2008).  The goodness of fit of each model 

was tested by both the coefficient of determination (R2) and the root mean square error (RMSE) to 

evaluate how closely each model describes the measured infiltration. The R2values indicate the degree 

to which data variations are explained by each model, while RMSE shows the amount of divergence 

of the model values from the observed values. Therefore, a high R2 close to 1 and a low RMSE value 

close to 0 both indicate a good agreement between the predicted and observed infiltration curves. 

Development of predictive regression equations 

After deriving all the infiltration parameters and controlling factors, the entire data set was split into a 

calibration and validation subset using the method introduced by Van den Putte et al. (2013): the 66 

rainfall events in total for the 22 natural plots (no mowing) were ranked based on the value of the 

runoff coefficient, and subsequently every rainfall event with an odd rank number was assigned to the 

calibration subset and that with an even rank number was assigned to the validation subset. The 

calibration subset was used to develop the predictive regression equations for the infiltration 

parameters. Four different factor sets were used in the regression analysis. The first one was a full 

factor set that consists of all the investigated soil, vegetation, rainfall and topography factors. The 

second factor set used soil related factors, only, as is the case in most existing pedotransfer functions. 

A simplified third factor set included only Rain, 𝜃0, Cover  and Height, which are the factors easily 

obtainable from either field measurement or some quick methods such as remote sensing (RS) and 
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Geographic Information System (GIS) techniques. The fourth set further included 𝐾𝑠 on the basis of 

the former factor set.  

The correlation analysis was performed to reduce the number of variables for regression analysis in 

the first and second factor sets. The Pearson correlation coefficient (r) between each controlling factor 

and each infiltration parameter was calculated using SPSS Statistics 22. The r values range from -1 to 

+1, with the sign indicating the direction of the relationship, and its absolute value indicating the 

strength of the relationship. The controlling factors that had significant correlations (P<0.05) with one 

infiltration parameter were defined as the major controlling factors of this infiltration parameter. Only 

these identified major controlling factors were further used in the regression analysis in these two 

factor sets. For the other two factor sets, all the factors were included due to the small number of 

factors. 

If the controlling factors to be included in the regression analysis were correlated with each other, they 

cannot be directly used due to the multicollinearity among the predictor variables, which has been 

found to have negative effects on the regression analysis (Gunst and Mason, 1980; Vereecken, 1988). 

In this case, a principle components analysis (PCA) was performed in SPSS prior to the regression 

analysis to find a smaller number of principle components (PCs) that are linear combinations of the 

original variables and can explain a large percentage of variability within samples (Lin et al., 1999). 

Since these PCs are orthogonal and thus uncorrelated, the problem of multicollinearity can be avoided 

by using them as the independent variables in the regression analysis.   

Then the predictive regression equation for each infiltration parameter was developed by a multiple 

linear regression analysis performed in SPSS, using the standardized infiltration parameter as the 

dependent variable and the PCs or standardized controlling factors as the independent variables. These 

developed regression equations were further transformed into equations that were expressed in terms 

of the original infiltration parameters and controlling factors. The performance of these equations was 

measured by the coefficient of determination (R2), which represents the proportion of variance in the 

dependent variable that can be explained by the independent variables. Thus the equation with the 

highest R2 is expected to perform best.  

Validation procedure 

In order to validate the developed regression equations from each factor set, the unmeasurable 

infiltration parameters for all the rainfall events were predicted using these equations. The predicting 

accuracies were evaluated by the coefficient of determination (R2) for fitting the one-to-one diagram 

to the scatter plots showing the observed versus predicted values. Then both the observed (measured 
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or curve-fitting determined) and predicted (based on different factor sets) parameter values were used 

as inputs for the infiltration models to generate the infiltration curves for each rainfall event. The 

performance of these predicted curves were evaluated and compared against the observed infiltration 

rates by the respective RMSE values. According to Wösten et al. (2001),  the accuracy and reliability 

of the regression equations were assessed by the results in the calibration subset and in the validation 

subset, respectively.  

 

3.3 Results 

3.3.1 Potential controlling factors 

Initial soil moisture conditions were found to affect the time to runoff from start of rainfall. The mean 

time to runoff generation was 7.86±4.31 min, 4.12±3.38 min and 2.53±1.78 min for the dry (first), wet 

(second) and moist (third) run, respectively, while the mean time to reach the runoff equilibrium was 

93.46±13.87 min, 62.50±11.57 min and 36.18±4.83 min, respectively. Obviously it took longer time 

for the initially drier soil to generate runoff and to reach a steady infiltration rate. Table 3.3 summarizes 

the results of measured potential controlling factors for all the rainfall events. It can be seen that most 

of these controlling factors had a large range of values, except for the slope gradient with its maximum 

value of only 5%, due to the difficulty in setting up the rainfall simulator at steep slopes. Relatively 

large rainfall intensities (66.8-103.6 mm h-1) were applied in order to ensure the occurrence of runoff 

which was necessary for determining the infiltration rates and also to reduce the time to runoff 

generation. This approach reduced the effect of delays as a consequence of sorptive buffering prior to 

the starting of runoff. The soil texture for different plots ranged from clay loam to sandy loam 

according to the results of particle size analysis. With respect to the vegetation parameters, the plots 

varied from bare soil without vegetation to those fully covered by vegetation (as also shown in Figure 

3.1). These large variations in various controlling factors resulted in significantly different runoff 

behaviours for different rainfall events applied on different plots, with the runoff coefficient ranging 

from 1.5% to 87.0%.  

 

3.3.2 Infiltration parameters 

Except for the 𝐾𝑠 , 𝑖𝑓, 𝜃𝑠  and 𝜃0 which were measured directly, all the other infiltration parameters 

were determined by fitting the four infiltration models to the measured infiltration rates. Figure 3.3, 

describing the infiltration curves for plot 12 and demonstrating an example for the curve-fitting results, 
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shows that these infiltration models seemed to be able to well fit the observed infiltration values. 

Statistical analysis showed that the mean R2 for the dry, wet and moist run on all the plots was 

0.887±0.088, 0.884±0.070 and 0.885±0.083 respectively, and the mean RMSE was 5.319±3.264 mm 

h-1, 4.512±2.737 mm h-1 and 4.647±3.440 mm h-1 respectively. These large R2 values and small  

values both indicate that the infiltration models were capable to well describe the temporally varied 

infiltration process, and no significant differences existed among their performance under different 

initial soil moisture conditions. Comparisons between infiltration models showed that the goodness of 

fit of empirical models including Horton (R2=0.921, RMSE=3.769 mm h-1) and Holtan (R2=0.901, 

RMSE=4.221 mm h-1) model was better than that of physically based models including Philip 

(R2=0.893, RMSE=5.767 mm h-1) and Green-Ampt model (R2=0.826, RMSE=6.905 mm h-1). This may 

be due to the fact that the physically based models were initially developed from bare soil and rely 

heavily on the soil hydraulic and physical properties within the profile (Turner, 2006), but do not take 

into account the surface conditions, such as vegetation factors which had a large influence on 

infiltration in this study. The performance of the Green-Ampt model was significant (P<0.05) worse 

than the other three models, probably because it had only one fitting parameter, while all the other 

models allow two parameters to be calibrated. Nevertheless, the four infiltration models all had large 

R2 values greater than 0.8, indicating their good performance in this study.    

The curve-fitting derived values for the infiltration parameters were summarized in Table 3.3. Due to 

the large variances in various controlling factors, their values also varied significantly, but at the same 

time were all physically meaningful and remained in reasonable ranges.  
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Table 3.3 Summary of results for the potential controlling factors and infiltration parameters. 

Controlling factor 

/Infiltration parametera 
Min. Max. Range Mean Std. Deviation 

Controlling factors 

Rain (mm h-1) 66.8 103.6 36.8 89.2 9.3 

Slope (%) 1 5 4 2.54 1.07 

Depth (m) 0.05 0.40 0.35 0.22 0.10 

𝜌𝑏 (g cm-3) 0.53 1.17 0.64 0.78 0.20 

𝜙 (m3 m-3) 0.33 0.55 0.22 0.45 0.07 

𝜃𝐹𝐶  (m3 m-3) 0.18 0.37 0.20 0.29 0.06 

SAT%  0.28 0.98 0.70 0.77 0.18 

Stone (g g-1) 0.01 0.36 0.36 0.11 0.10 

Gravel (g g-1) 0.06 0.25 0.19 0.16 0.07 

Sand (g g-1) 0.26 0.52 0.26 0.41 0.09 

Silt (g g-1) 0.06 0.25 0.20 0.17 0.06 

Clay (g g-1) 0.08 0.19 0.11 0.14 0.03 

Root (g/100cm3) 0.01 1.03 1.02 0.38 0.27 

Cover (m2 m-2) 0 1.00 1.00 0.62 0.37 

Height (m) 0 0.87 0.87 0.28 0.27 

Infiltration parameters 

𝐾𝑠(𝑖𝑓) (mm h-1)  2.64 85.29 82.65 40.33 27.07 

𝜃𝑠 (m3 m-3) 0.33 0.55 0.22 0.45 0.07 

𝜃0 (m
3 m-3) 0.11 0.53 0.42 0.36 0.12 

𝜓𝑓 (mm) b  0.80 4706.77 4705.96 443.93 840.42 

A (mm h-1) b  1.01 84.85 83.84 27.83 24.80 

𝑆0 (mm h-0.5) b 0.42 107.19 106.77 37.39 24.84 

𝑖0 (mm h-1) b 62.02 391.80 329.78 113.83 41.35 

k (h-1) b  1.49 30.31 28.81 5.55 5.21 

a (mm-0.4 h-1) b  0.00 4.57 4.57 0.44 0.77 

S (mm) b  5.92 187.23 181.31 67.47 45.26 

a Refer to Table 3.1 for the meaning of the symbols  

b Infiltration parameters determined by curve-fitting procedure 
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Figure 3.3 Curve-fitting of four infiltration models to the measured infiltration data on plot 12. 

 

3.3.3 Predictive regression equations 

The predictive regression equations were developed for all the unmeasurable infiltration parameters, 

based on four different factor sets in the calibration dataset.  

The predictive regression equations were developed for all the unmeasurable infiltration parameters, 

based on four different factor sets in the calibration dataset.  

1st factor set 
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Correlation analysis results showed that the number of identified major controlling factors for different 

infiltration parameters ranged from 3 to 11, and they were highly correlated with each other. The 

significant correlations existed not only within the group of soil texture variables (i.e., Stone, Gravel, 

Sand, Silt, Clay) and that of variables reflecting the soil physical properties (i.e.,  

𝜌𝑏, 𝜙, 𝜃𝐹𝐶), but also between these two groups. The three vegetation factors, Cover, Height and Root, 

also showed strong correlations. Therefore, PCA was performed on these major controlling factors 

prior to the regression analysis. Table 3.4 shows the factor loading matrix for the parameter k which 

was controlled by the largest number of factors. The numbers in the table represent the correlations 

between the calculated PCs and the original factors, and only those factors with correlation values 

greater than 0.5 were defined as the major loading factors for each PC. It can be seen that PC1 is 

heavily loaded (either positively or negatively) on various soil related factors, while PC2 and PC3 is 

only highly correlated with Cover and Rain respecitvely. In the same way, PCs were determined for 

all the other infiltration parameters and the results are summarised in Table 3.5. It can be seen that PC1 

representing the soil properties was identified for all these parameters, PC2 refering to vegetation 

features was built for all the parameter except for 𝑆0, while PC3 reflecting rainfall intensity was only 

applied for some of these parameters, including 𝑆0, 𝑖0, k and a. In spite of the similar PCs, the major 

factors loaded on each PC varied for different parameters. 

A multiple linear regression analysis was performed for each standardized infiltration parameter based 

on the identified PCs. The derived regression equations are demonstrated in Table 3.5. These equations 

were further transformed to the final predictive equations expressed as the original infiltration 

parameter and controlling factors, as shown in Table 3.6. The large R2 values (ranging from 0.459 to 

0.750) indicated the good performance of these developed equations. 

Table 3.4 Component loading matrix for infiltration decay factor k based on 1st factor set. 

Controlling  

factors 

Principle component 

PC1 PC2 PC3 

𝜙 0.964a 0.040 0.134 

𝜃𝐹𝐶  0.957a 0.077 0.145 

𝜌𝑏 -0.944a 0.045 -0.117 

Silt 0.934a 0.238 0.114 

Depth 0.905a -0.083 -0.119 

Stone -0.888a -0.234 -0.153 
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𝐾𝑠 0.871a 0.293 0.161 

Clay 0.721a 0.162 0.135 

SAT% 0.715a .000 -0.466 

Cover -0.085 0.904a -0.087 

Rain 0.200 0.035 0.933a 

a major loading factors for each principle component 

 

Table 3.5 Prediction regression equations based PCs developed from 1st factor set. 

 
a ‘Zscore’ means the standardized parameter. 

 

2nd factor set 

Only the factors reflecting soil properties were included in this factor set to determine whether they 

were sufficient to predict the infiltration parameters. A similar data processing procedure to that in the 

previous factor set was applied, and the resulted predictive regression equations are shown in Table 

3.6. It can be seen that different major controlling factors were identified and included in the regression 

equations for different infiltration parameters. However, none of these equations had R2 value greater 
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than 0.5, indicating that the regression equations developed from only soil related factors may not be 

able to well predict the target infiltration parameters in this study.      

3rd factor set 

Only four controlling factors, 𝜃0, Cover, Height and Rain, which can be easily and quickly measured 

in the field without taking any soil samples or conducting any laboratory analysis, were included in 

this factor set. Three PCs representing vegetation features (Cover and Height), initial soil moisture and 

rainfall intensity were derived from these controlling factors. The infiltration parameters were related 

to these PCs using a multiple regression analysis, with the resulted regression equations based on the 

original factors shown in Table 3.6. However, due to the small R2 values (ranging from 0.173 to 0.473), 

these equations are not expected to perform well in predicting the infiltration parameter. 

Table 3.6 Predictive regression equations based on original variables and developed from different 

factor sets. 

Predictive regression equation based on original variables† R2 

1st factor set (full factor set)  

0
675.167 295.769 690.039 589.126 5.297 660.432

564.907 788.476

bf s
Depth K Root

Cover

             

  


 0.698 

14.596 18.516 10.156 14.077 29.771 34.596

0.200 25.053 19.101 15.067

FC

s

Stone Gravel Sand Silt Clay

K Root Cove

A

r

          

      


 0.765 

0
1.408 160.611 23.502 % 94.083Rain ClaS y SAT       0.646 

0
1.197 6.966 43.588 30.685 70.571 20.561 3.56

b
Rain Gravel Sand Cla Hi y eight             0.459 

0.287 5.302 0.945 3.942 5.120 4.053 4.997

12.151 0.480 0.030 7.775 % 29.828

b FC

s

Rain Depth Stone Silt

Clay Cover K SAT

k                

        


 0.740 

0.040 0.396 0.414 0.010 4.851
s

Rain Root Cover Ka           0.692 

4.413 27.233 35.052 37.246 65.712 0.376 86.342

27.595 0.885

b FC s
Stone Silt K Clay

Cove

S

r

               

  


 0.583 

2nd factor set (soil factor set)  

0380.879 196.690 564.622 305.386 0.468 118.525
f b sDepth K              0.215 

35.160 21.230 31.344 23.862 37.358 57.576

0.047 1.254

FC

s

Stone Gravel Sand Silt Clay

K

A           

  
 0.483 

0
252.427 39.023 % 31.035Clay SATS      0.356 

0
5.312 16.466 11.89 28.608 104.261b Gravel Sand Clayi            0.135 
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4.361 0.677 0.184 2.403 3.914 5.738 20.499

0.949 % 0.053 10.296

b FC

s

Depth Stone Silt Clay

SAT

k

K

              

    


 0.410 

0.019 1.262sKa     0.455 

17.782 52.429 57.992 33.605 59.298 98.968 0.066

20.511

b FC s
Stone Silt ClayS K               




 0.442 

3rd factor set (simplified factor set)  

0
1.586 1930.522 604.085 582.258 390.380

f
Rain Cover Height           0.348 

0
0.044 22.097 18.552 32.552 1.365Rain Cover H i tA e gh         0.315 

00
0.015 1.063 6.109 9.599 43.134Rain Cover HeightS           0.175 

00
972 32.223 3.400 9 2.686 10.642. Rain Cover Heighi t         0.173 

0
0.383 4.594 2.023 1.039 39.375Rain Cover Heighk t          0.473 

0
0.002 2.102 0.572 0.502 0.366Rain Cover Heia ght          0.436 

0
0.044 17.861 18.489 31.692 39.514Rain Cover g tS Hei h         0.296 

4th factor set (simplified factor set + Ks)  

01983.973 708.477 237.718 2.943 10.069 257.199
f sCover Height Rain K            0.726 

018.586 24.956 21.096 0.318 0.655 13.530sCover HeA ight Rain K          0.932 

0 08.779 10.033 6.354 0.166 0.098 101.302sCover HeS ight Rain K            0.654 

0 027.186 8.659 12.550 0.108 0.079 5.351sCover Hei ight Rain K           0.440 

06.432 0.853 0.576 0.034 0.038 35.688sCover Heik ght Rain K           0.695 

02.177 0.769 0.637 0.005 0.013 0.165sCover Height Rain Ka            0.623 

010.628 27.305 20.777 0.319 0.678 53.224sCover HeS ight Rain K          0.528 

a Refer to Table 3.1 and 3.2 for the meaning of the symbols. 

 

4th factor set 

The saturated hydraulic conductivity (𝐾𝑠) describes functional hydraulic properties and is one of the 

most important and common soil hydraulic properties. It was added to the factors used in the 3rd factor 

set. This resulted in another PC that can be used as a measurement of 𝐾𝑠. After the regression analysis 

on these new PCs and the transformation procedure, the derived regression equations based on the 

original factors were summarized in Table 3.6. It can be seen that the R2 values (ranging from 0.440 
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to 0.932) for these equations were much larger than those in the previous factor set, indicating that the 

performance of the predictive equations was much improved by incorporating 𝐾𝑠. 

 

3.3.4 Validation results 

The unmeasurable infiltration parameters in both calibration and validation subsets were calculated by 

the predictive regression equations developed from four different factor sets. Scatter plots showing the 

predicted versus observed (measured or curve-fitting determined) infiltration parameters are given in 

Figure 3.4. It can be seen that in general the dots lie closer to the 1:1 line in the 1st and 4th factor sets, 

while more scatter was observed for the 2nd and 3rd factor sets. This was as expected judging from the 

values for the R2 shown in these figures. The average R2 values for the 1st (0.653) and 4th (0.623) factor 

sets were significantly (P<0.05) larger than those for the 2nd (0.364) and 3rd (0.414) data sets. Only R2 

values for the parameter a were above 0.5 in the 2nd factor set, suggesting the potential failure of the 

predictive equations developed from this factor set. The equations developed from the 3rd factor set 

seemed to work well for k, but were obviously unsuccessful for 𝑆0 and S, with R2 values all smaller 

than 0.350. In the contrast, the parameter values predicted from the 1st and 4th factor sets all reasonably 

agreed with the observed values, with no significant differences existed in R2 values between these 

two factor sets. In addition, the performance of the equations developed from these two factor sets did 

not vary significantly from the calibration subset to the validation subset, indicating that they had not 

only high accuracies but also high reliabilities.  

The observed (measured or curve-fitting determined) and predicted infiltration parameter values (from 

four factor sets) were then used as the inputs for the infiltration models to simulate the infiltration rates 

for all the rainfall events. The resulted goodness of fit to the measured infiltration values was 

represented by RMSE. The mean RMSE values for all the rainfall events were summarized in Table 

3.7. Not suprisingly, the observed infiltration parameter values led to the smallest RMSE values and 

thus the best model performance. In most cases the RMSE values based on the 1st and 4th factor sets 

were significantly (P<0.05) smaller than those based on the other two factor sets, but had no significant 

difference from the results based on the observed parameters. These results indicated that these 

infiltration models were able to accurately predict the actual infiltration processes on the basis of their 

parameter values estimated from the predictive regression equations developed from the 1st and 4th 

factor sets.  
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Figure 3.4 Predicted infiltration parameter values versus observed values for the four investigated 

factor sets. The symbols represent the same meaning as those in Table 3.1. 

 

The response of the performance of the infiltration model to each of these infiltration parameters was 

also investigated, with the results shown in Figure 3.5. The linear fitting line for each parameter was 

able to reflect the sensitivity of RMSE to the predicting accuracy (R2 in Figure 3.4) of this parameter. 

It can be seen that the fitting lines for 𝜓𝑓  and a had the largest absolute values of slope in both 

calibration and validation subsets, indicating the greatest response of RMSE to them. These two 

parameters also led to the worst model performance (the largest RMSE values). The predicted results 

were more sensitive to k, S and A in the calibration subset than in the validation subset, while 𝑆0 and 

𝑖0 both tended to produce the most accurate and consistent results.  
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Figure 3.5 Response of infiltration model performance (RMSE) to the accuracy in determining the 

input parameters (R2). 

 

3.4 Discussion 

3.4.1 Influences of different controlling factors on the infiltration parameters 

In this study, four groups of potential controlling factors were investigated. Their effects on different 

infiltration parameters are discussed as follows: 

Soil factors 

The major controlling factors of each infiltration parameter and their relationships can be identified 

from Table 3.5, from which it can be seen that the group of soil related factors played the most 
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important role as they had significant influences on all these infiltration parameters. However, different 

soil factors were associated with different parameters.  

The factors representing the soil texture were included in most of these regression equations. For 

example, the increased contents of Stone and Gravel could reduce A as these large fragments embedded 

in the soil may slow down the downward movement of water by reducing the hydraulic conductivity. 

On the contrary positive relations were found between A and the finer particle contents. These soil 

texture factors also had significant impacts on 𝑆0, 𝑖0, k and S due to their roles in affecting other soil 

properties.  

While the increase of 𝜌𝑏  is often associated with the reduction in 𝜙, aeration and macro-porosity 

(Tekeste et al., 2006), in this study it was found to have an effect in reducing 𝜓𝑓, 𝑖0 and S. However, 

it was positively associated with k as less time and water volume is required to fill the reduced pore 

space and smaller pores, which would result in a larger infiltration decay rate.  

𝜃0 and SAT% were both parameters reflecting the initial soil moisture conditions. A positive 

relationship between 𝜓𝑓 and 𝜃0 was built in the regression equation, however, this is not in line with 

some other studies which suggested that a smaller 𝜃0 would result in a larger 𝜓𝑓 due to the increased 

hydraulic gradient and the greater available storage capacity (Skaggs and Khaleel, 1982). This 

inconsistency may be due to the reason that 𝜃0  in this study was also significantly (P<0.01) and 

positively correlated with some other soil properties (e.g., 𝜙, Depth, 𝐾𝑠) that have more important 

effects in increasing 𝜓𝑓. According to Philip (1957a), 𝑆0, a parameter indicating the initial capacity of 

the soil to absorb water by capillary uptake, is a function of the initial soil moisture content. This was 

verified in this study that it had a negative relationship with SAT%. The increased SAT% would also 

increase k as the infiltration rate tended to drop more quickly to a steady rate in initially wetter soils.  

In addition, Depth was found to be positively associated with 𝜓𝑓  due to the increased hydraulic 

gradient, while negatively related to k because of the greater total pore space for water to fill. Although 

𝐾𝑠 was identified as a major controlling factor for most infiltration parameters in this study, its effect 

cannot be easily interpreted as it was significantly correlated with not only many other soil factors, but 

also the vegetation and rainfall factors. 

Vegetation factors 

The vegetation factors were included in six out of seven regression equations in Table 3.5, suggesting 

that they also played an important role in this study. To better analyse their effects, plot 20, 21 and 22 

were mowed into different vegetation covers, with the same intensities of rainfall events applied. This 
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ensured the consistent soil and rainfall properties, thus allowing to investigate the impacts of above-

ground vegetation solely.  

The results for these three plots were demonstrated in Figure 3.6. It can be seen that the larger Cover 

would lead to larger A. This can be attributed to the role of vegetation in protecting the soil surface 

against the impact of raindrops, reducing their kinetic energy (Deuchars et al., 1999), preventing 

surface sealing (Foley et al., 1991), and consequently enhancing infiltration. A negative relationship 

was found between Cover and k, probably because vegetation cover could delay the rainfall to reach 

the soil by intercepting and storing a portion of rainfall. The increased S with increased Cover was also 

attributed to the fact that vegetation can serve as a water storage layer (by interception) and thus 

increase the total storage potential. 

In addition to Cover, Root also had great impacts on some of these infiltration parameters (Table 3.5).  

It could increase A as the roots in the soil have been found to increase soil aggregate stability 

(Blackburn, 1975), improve macropores (Bergkamp et al., 1996), and decrease bulk density (Greene, 

1992), which all contribute to the increased infiltration rates. In this study a was largely associated 

with both Cover and Root, which is in line with the previous findings that this parameter is dependent 

on surface conditions and root density (Mishra et al., 2003; Turner, 2006). 

Some parameters, however, were not obviously affected by the vegetation factors. Figure 3.6 showed 

that 𝑆0 maintained a constant value for the same plot under different vegetation cover conditions. This 

agrees with the results in Table 3.5 that no vegetation factor was included in the regression equation 

for this parameter, which suggests that 𝑆0 is vegetation independent. Although 𝑖0 varied with different 

vegetation covers, its change did not show a consistent trend in different plots (Figure 3.6), probably 

due to the multiple effects of vegetation on this parameter. Vegetation played a role in increasing 𝑖0 

probably because of its capacity in preventing surface sealing at the beginning of rainfall event (Foley 

et al., 1991), but at the same time could decrease 𝑖0 as it reduces the available rainfall for infiltration 

by its interception and storage functions. 

Rainfall factors 

Results in Table 3.5 also indicate the impacts of Rain on some of these infiltration parameters. 

Specifically, 𝑆0  and 𝑖0  were both positively related to Rain which to some extent determines the 

available water amount for the initial absorption and initial infiltration, respectively. The positive effect 

of Rain on k can be explained by the surface sealing introduced by raindrops, which would lead to a 

rapidly decreased infiltration rate and thus a large k value. Similarly, Rain negatively influenced a also 

due to its presumed role in changing surface conditions and soil properties via the impacts of raindrops. 
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Topography factors 

Although the topography factor (i.e., slope gradient) was investigated as a potential controlling factor, 

it was not included in any of these regression equations shown in Table 3.5. One reason for this result 

may be that only a small range of slope gradients (0 - 5%) were tested in this study due to the difficulty 

to setup a rainfall simulator test on steeper slopes. Another reason could be the multiple and offsetting 

effects of slope gradient on infiltration under specific circumstances: with increased slope steepness 

greater runoff velocities would be expected, which on the one hand reduce the time for water to 

infiltrate and thus decrease the infiltration rate (Haggard et al., 2005; Huat et al., 2006), and on the 

other hand maintain a larger proportion of sediment particles in a suspended state resulting in reduced 

seal development and thus increased infiltration rate (Poesen, 1984; Römkens et al., 1985). 
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Figure 3.6 Comparison of Infiltration parameters under different vegetation covers in plot 20, 21 and 

22. The symbols represent the same meaning as those in Table 3.1. 

 

3.4.2 Insufficiency of soil factors in predicting infiltration parameters 

Only the soil related factors were included in the 2nd factor set to evaluate whether they were sufficient 

to predict the infiltration parameters. Unfortunately, the predictive regression equations based on this 

factor set all failed (small R2 values in Figure 3.4 and large RMSE values in Table 3.7). These results 

were not in accordance with some previous studies for developing the pedotransfer functions (PTF), 



Chapter 3 

 

74 
 

in which the functions developed from the basic soil data were proven quite effective. This 

inconsistency can be attributed to the fact that in these other studies the infiltration rates were measured 

by infiltrometers on bare soils or vegetation removed surfaces, while in our study they were measured 

by a field rainfall simulator on vegetation covered plots. Therefore, only soil factors were considered 

in their studies and the developed PTFs are only expected to be accurate for the bare soils under 

ponding conditions. In contrast, in our study the influences of many other factors, including the 

vegetation, topography and rainfall properties, were also investigated. The rainfall intensity and the 

vegetation features were found to have significant impacts on most infiltration parameters, which 

highlighted the important roles of these additional factors. Consequently, this explains why it was not 

sufficient to predict the infiltration parameters by considering the soil factors only, and why the 

accuracy of predictive equations was significantly improved by further including other controlling 

factors, as in the 1st factor set. 

Table 3.7 Summary of mean RMSE values for the infiltration predictions based on observed and 

predicted parameter values from different factor sets. 

 Green-Ampt Philip Horton Holtan 

Calibration subset 

Observed 6.77aa 6.22a 4.82a 5.99a 

1st factor set 11.35a 9.41a 6.56ab 10.01a 

2nd factor set 23.34c 14.44b 12.27b 19.66b 

3rd factor set 18.69b 16.69b 8.87b 23.47b 

4th factor set 11.27a 9.36a 6.60ab 11.49a 

Validation subset 

Observed 6.60a 6.58a 4.75a 5.74a 

1st factor set 14.19a 12.79a 7.07ab 13.74ab 

2nd factor set 30.14b 23.31b 9.91b 22.24c 

3rd factor set 26.75b 20.02b 9.53b 23.41c 

4th factor set 14.41a 12.41a 7.66ab 15.46b 
a Different letters in the same column indicate significant differences between RMSE values at P<0.05. 

 

3.4.3 Readily obtainable factors for predicting infiltration parameters 

The regression equations based on the 1st factor set, which includes all the potential controlling factors, 

have shown high efficacies in predicting the infiltration parameters (large R2 values in Figure 3.4 and 

small RMSE values in Table 3.7). However, the determinations of some factors heavily rely on taking 

soil samples for laboratory analysis. When the spatially varied parameter values are requried for large 

scale studies, for example runoff simulations using distributed hydrologic models, much effort and 



Chapter 3 

 

75 
 

time is required for the measurements of these parameters. Therefore more practical and efficient 

solutions are requried. Attempts were made in this study by using only the easily measurable factors 

as variables (as shown in the 3rd factor set) to predict the infiltration parameters. These factors included 

𝜃0, Cover, Height and Rain, which can be quickly and directly measured in the field without taking 

any samples or conducting any laboratory analysis. Another great advantage is that for large scale 

studies, the former three factors have been proven able to be effectively derived from RS and GIS 

techniques by various studies (Erik and Økland, 2002; Jackson, 1993; Stow et al., 2004), and the 

spatially and temporally varied rainfall information can also be readily obtained from rain gauge 

records or meteorological data. Nevertheless, the regression equations developed from these factors 

were found unsuccessful in predicting the infiltration parameters (small R2 values in Figure 3.4 and 

large RMSE values in Table 3.7).The reason may be that the only soil related factor, 𝜃0, was not 

sufficient to represent the soil properties. Therefore another soil factor, 𝐾𝑠, was further included (as 

shown in the 4th factor set) with the intention to improve the performance of regression equations. 𝐾𝑠 

showed significant correlations with the largest number of other soil factors in this study, thus it was 

expected to best reflect the soil properties. This factor was selected also because it has been recognized 

as one of the most important and common soil hydraulic properties (Deb and Shukla, 2012; Klute and 

Dirksen, 1986; Mohanty et al., 1994). Various methods have been developed for its in situ 

measurement, including some quick methods such as the mini-infiltrometer (Decagon Devices, 2012), 

and some more accurate methods such as the disc infiltrometer (Perroux and White, 1988) and the 

hood infiltrometer which can be used on vegetation covered plots (Schwärzel and Punzel, 2007). In 

addition, an increasing number of studies have shown the potential to derive 𝐾𝑠 from the RS data in 

recent years (Mohanty, 2013). As expected, the incorporation of 𝐾𝑠  significantly improved the 

accuracies of the prediction equations (Figure 3.4 and Table 3.7). Since no significant difference 

(P<0.5) was found between the 1st and 4th factor sets either in R2 values (Figure 3.4) or RMSE values 

(Table 3.7), we have successfully utilized these five relatively readily obtainable factors to replace the 

original 16 potential factors for predicting the infiltration parameters.  

 

3.4.4 Sensitivity of infiltration models to their input parameters 

The results in Figure 3.5 have shown the different extent of response of the infiltration models to their 

different input parameters. There is only one unmeasurable parameter, 𝜓𝑓, in the Green-Ampt model. 

The modelling results have shown great sensitivity to this parameter, and the inaccurcy in determining 

its value could also lead to large errors in the predicted infiltration rates. The physically based Philip 

model showed larger sensitivity to A than 𝑆0, probably because A would have a consistent effect during 
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the entire infiltration process according to the second term of equation (2), while 𝑆0  only has 

significant impact at the initial stage of infiltration as its effect would reduce with time, as shown in 

the first term of equation (2). Similarly, another two parameters reflecting the initial state for 

infiltration, 𝑖0 and S, were also found to have little impact on the performance of the Horton model 

and the Holtan model, respectively. These two emprical models, however, were more greatly 

influenced by k and a, the parameters both controlling the decrease rate of infiltration. Therefore, more 

attention needs to be paid to those more ‘sensitive’ parameters when applying these infiltration models.       

  

3.5 Conclusions 

Infiltration experiments were carried out on 28 small plots with varied soil, vegetation and topography 

conditions, using a field rainfall simulator to identify the major controlling factors for the parameters 

in four popular infiltration models. The predictive regression equations were also developed for each 

infiltration parameter based on four factor sets that included different types and numbers of controlling 

factors. The results showed that the regression equations developed from the full factor set including 

all the factors were able to produce the parameter values for an accurate simulation of infiltration, 

while those based on soil related factors only failed in this study as they could not account for the great 

influences of other factors. The simplified factor set consisting of only 𝜃0, Cover, Height and Rain, 

four factors easily obtainable from either direct field measurement or RS and GIS techniques, did not 

achieve the expected success. However, the further incorporation of 𝐾𝑠  significantly improved the 

efficacies of the regression equations. The results also showed that the performance of these infiltration 

models were more sensitive to the accuracy of their input parameters influencing the entire infiltration 

process than those affecting the initial stage of infiltration, only. Therefore, the results of this study 

have demonstrated that a better understanding of the effects of various factors - especially the 

vegetation and rainfall factors - on the different infiltration parameters is facilitating an improved 

estimation of the spatially varied infiltration parameter values for large scale studies by providing 

effective predictive equations. However, there are several limitations in this study. Firstly, a constant 

rainfall intensity was used for each rainfall event due to the constraint of the rainfall simulator, but the 

natural storm events are often featured by the temporally varied intensities. Thus the effects of the 

variations in a rainfall event (e.g., the peak intensity) on these infiltration parameters remain unclear. 

In addition, only a limited range of values for the controlling factors were investigated in this study 

(e.g., the soil texture only ranged from clay loam to sandy loam), and whether the developed predictive 

equations would be applicable to some other regions with different soil textures or other site features 

would require further investigation. Nevertheless, this study is expected to serve as a first approach to 
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explore the possibility of incorporating the vegetation and rainfall factors in estimating the parameters 

in the well-established infiltration models.    
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Chapter 4 Field Evaluation of Three Modified Infiltration 

Models for the Simulation of Rainfall Sequences 

 

4.1 Introduction 

Infiltration is one of the most important components in the surface hydrology cycle as it partitions the 

water entering the vadose zone from water running off on the ground surface. It is also a very complex 

process to determine as the infiltration rate varies both temporally and spatially. Various infiltration 

models have been developed for describing the dynamic infiltration process, and they have been widely 

incorporated in various hydrologic models. For example, the Green-Ampt model (Green and Ampt, 

1911) is used in WEPP (Laflen et al., 1991), SWAT (Tuppad et al., 2011) and SWMM (Rossman, 

2010), Philip model (Philip, 1957b) is integrated in WATFLOOD (Kouwen, 2012) and HYSIM 

(Manley, 1993), Horton model (Horton, 1940) is incorporated in MARINE (Estupina-Borrell et al., 

2002) and SWMM, and Holtan model (Holtan, 1961) is used in LISEM (De Roo et al., 1996) and 

HEC-1 (Feldman, 1995).  

A major limitation of these classical infiltration models is that most of them were developed from the 

ponding conditions, and thus are expected to be only valid for the single continuous rainfall events 

when the water supply rate is always larger than the infiltration capacity, in other words, when ponding 

occurs at all times. However, the natural rainfall events are not always constant and continuous, but 

often featured by temporally varied intensities and even several hiatus periods. This limitation is also 

reflected in the type of mathematical formulas used within these models. Some of them, such as Horton 

and Philip models, express the infiltration capacity as a function of time, and therefore resulting in the 

continuous decrease of infiltration with time during a simulation, even when the rainfall rate drops 

below the infiltration capacity or becomes zero. Some other models, such as Holtan and Green-Ampt 

models, determine the infiltration capacity on the basis of cumulative infiltration amount, and thus the 

infiltration capacity will decrease as the rainfall continues and become constant when no further 

infiltration occurs in the periods without rainfall. In reality, however, the infiltration capacity would 

be gradually recovered during the dry periods because of the redistribution of soil moisture caused by 

the soil drainage or percolation to deeper layers. The classical infiltration models could only describe 

the decrease of infiltration capacity, but not the increase or recovery of infiltration capacity. This has 

constrained the application of many hydrologic models to event-based or short-term simulations, only.  
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In order to make the hydrologic models applicable to more complex rainfall conditions or long term 

simulations, some modification or improvement to the classical infiltration models is required. Efforts 

for improvement have been made mainly along two different pathways. In the first pathway these 

models were improved by tracking the depth of penetration of an infiltration wetting front, with 

examples being the models proposed by Smith et al. (Smith et al., 1993), Corradini et al. (Corradini et 

al., 1994) and Corradini et al. (Corradini et al., 1997). While these wetting front models have a 

fundamental physical basis and have been found to be able to describe the soil water redistribution 

during the rainfall hiatus, they tend to be too complex and require too many input parameters. 

Considering that a distributed hydrologic model is in itself rather complex and requires considerable 

effort in preparing inputs due to the large spatial and temporal variations in the hydrological processes, 

the incorporation of these infiltration models would greatly increase the model complexity and reduce 

the computational efficiency, which is not desirable. Therefore, relatively simple representation of 

local infiltration is required. 

A second pathway was the development of capacitance or bucket models which relate the fluxes to the 

soil storage values, according to Struthers et al. (Struthers et al., 2006). These models were basically 

developed from the improvement of some classical infiltration models by expressing the infiltration 

capacity as a function of a soil storage condition related parameter that was not constrained by time. 

A soil drainage component was also employed in these models to take into account the recovery of 

infiltration capacity during dry periods. Their typical examples are the modified Holtan model 

(Huggins and Monke, 1966; Huggins and Monke, 1968), modified Green-Ampt model (Bouraoui and 

Dillaha, 1996) and modified Horton model (Aron, 1992). Compared to the wetting front models, these 

capacitance models have the advantages in conceptual simplicity, simple parameterization and 

flexibility to various conditions. However, they have been rarely used in hydrologic models. In 

addition, despite of a similar conceptual basis and a similar model structure that includes both 

components for determining infiltration and soil drainage, the specific formulas and parameters used 

in different capacitance models are totally different from each other. Therefore, their performance and 

accuracies need to be evaluated and compared by systematic tests. While most of previous studies 

focused on testing the classical infiltration models on bare soils using ponded water in infiltrometers 

or continuous rainfall (Chahinian et al., 2005; Davidoff and Selim, 1986; Ghorbani Dashtaki et al., 

2009; Mbagwu, 1995; Mishra et al., 2003), the evaluation of these modified models for rainfall 

sequences is lacking. Consequently, the main objective of this study was to evaluate the performance 

of three modified capacitance infiltration models (i.e., modified Holtan, Green-Ampt and Horton 
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models) on small field plots with different site conditions, using sequences of rainfall events produced 

by a rainfall simulator. 

 

4.2 Materials and methods 

4.2.1 Modified infiltration models 

Three modified infiltration models for rainfall sequences were investigated for this study. Their 

specific formulas and calculation routines are as follows: 

The initial Horton equation (Horton, 1940) considers infiltration as a natural “exhaustion process”, 

during which infiltration capacity decreases exponentially with time, as shown in the following 

equation: 

       𝑖𝑝 = 𝑖𝑓 + (𝑖0 − 𝑖𝑓)𝑒−𝑘𝑡                                                                   (4.1) 

where 𝑖𝑝  is the infiltration capacity (mm h-1) at time 𝑡 (h), 𝑖0  and 𝑖𝑓  
is the initial and final steady 

infiltration rate (mm h-1) respectively, and 𝑘 is the infiltration decay coefficient (h-1). Bauer (1974) 

introduced an equation to the original model to determine the soil drainage rate 𝑑𝑡 ( mm h-1) on the 

basis of 𝑖𝑓, 𝑘 and 𝑡, with the assumption that the rate of soil drainage rises as the soil wets up and the 

maximum drainage rate corresponds to the minimum infiltration rate. Then Aron (1992) further 

modified these equations by expressing the infiltration capacity and drainage rate as a function of 

cumulative soil water amount 𝑆𝑡
′ (mm) instead of time, and thus made the model applicable at any time 

during a rainfall event even when the rainfall rate drops below the infiltration capacity. The calculation 

routine and detailed formulas for the modified Horton model (MHR) are shown in Figure 4.1. 
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Figure 4.1 Calculation routine for the modified Horton Model. 𝑖0 and 𝑖𝑓 

is the initial and final steady 

infiltration rate (mm h-1) respectively, 𝑘 is infiltration decay coefficient (h-1), 𝜃0 is initial soil moisture 

(m3 m-3), 𝜙 is porosity (m3 m-3), 𝑅𝑡 is rainfall intensity (mm h-1) at time t, and ∆𝑡 is time step (min) for 

calculation.     

 

Green and Ampt (1911) proposed their original infiltration model based on Darcy’s law, and expressed 

the infiltration capacity as: 

    𝑖𝑝 = 𝐾𝑠 [1 +
(𝜃𝑠−𝜃0)𝜓𝑓

𝐼𝑡
]                                                                 (4.2) 

where 𝐾𝑠 is the saturated hydraulic conductivity (mm h-1), 𝜃𝑠 and 𝜃0 is the saturated and initial water 

content (cm3 cm-3) respectively, 𝜓𝑓 is the suction at the wetting front (mm), and 𝐼𝑡 is the cumulative 

infiltration (mm) at time t. The original model was modified to relate 𝑖𝑝 to the cumulative soil water 

amount 𝑆𝑡
′  in ANSWERS-2000 (Bouraoui and Dillaha, 1996), where the equations developed by 

Savabi et al. (1989) were employed to calculate 𝑑𝑡 when the soil moisture exceeds the field capacity. 

The calculation routine and detailed formulas for the modified Green-Ampt model (MGA) is shown 

in Figure 4.2. 
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Figure 4.2 Calculation routine for the modified Green-Ampt Model. 𝐾𝑠  is saturated hydraulic 

conductivity (mm h-1), 𝜆 is a constant (mm), 𝜃0 is initial soil moisture (m3 m-3), FC is field capacity 

(m3 m-3), 𝜙 is porosity (m3 m-3), D is control zone depth (mm), 𝑅1 is initial rainfall intensity (mm h-1), 

𝑅𝑡 is rainfall intensity (mm h-1) at time t, and ∆𝑡 is time step (min) for calculation.   

 

Using a storage exhaustion concept, Holtan (1961) derived an infiltration model expressed as: 

       𝑖𝑝 = 𝑖𝑓 + 𝑎(𝑆0 − 𝐼𝑡)1.4                                                                (4.3) 

where 𝑎 is a constant (mm-0.4 h-1) dependent on soil type, surface and cropping conditions, and 𝑆0 is 

the initial soil water storage potential (mm). Huggins & Monke (1966; Huggins and Monke, 1968) 

introduced a soil water drainage component to the original Holtan model based on the assumption that 

when soil moisture exceeds the field capacity, the water will move from the control zone at a drainage 

rate related to current soil storage potential 𝑆𝑡 (mm). The calculation routine and detailed formulas for 

the modified Holtan model (MHL) is shown in Figure 4.3. 
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Figure 4.3 Calculation routine for modified Holtan Model. 𝜙 is porosity (m3 m-3), D is control zone 

depth (mm), 𝜃0  is initial soil moisture (m3 m-3), FC is field capacity (m3 m-3), 𝑖𝑓  is final steady 

infiltration rate (mm h-1), 𝑎 is a constant (mm-0.4 h-1), 𝑅𝑡 is rainfall intensity (mm h-1) at time t, and ∆𝑡  

is time step (min) for calculation.   

 

4.2.2 Experimental procedure 

The study has been carried out at the experimental farm of The University of Queensland, Pinjarra 

Hills in Queensland, Eastern Australia, where the climate is humid subtropical. The average annual 

rainfall in this area is around 1000 mm, 66% of which occurs in the wet season from October to March. 

The minimum monthly mean temperature is 15 °C in July and the maximum value is 25 °C in January.   

28 small plots, with the size of 1 m × 1 m, were randomly set up at the study site. These plots were 

featured by different soil, topography and vegetation characteristics (Figure 4.4), thus allowing the 

evaluation of infiltration models under different site conditions. A large number of previous studies 

have used 1 m2 plots to field investigate the infiltration behaviours (Dos Reis Castro et al., 1999; Le 

Bissonnais et al., 1998; Leonard and Andrieux, 1998; Patin et al., 2012), and the infiltration 

characteristics and the site conditions have been found to be relatively spatially homogenous in such a 

small plot in this study area (Shao and Baumgartl, 2014). To set up the plot, a 1 m × 1 m metal frame 



Chapter 4 

 

84 
 

was sunk into the ground to 5 cm depth, with a 10 cm extension above the ground to prevent the runoff 

produced outside the frame from flowing into the plot. At the bottom of each plot, a V-shape runoff 

collector was installed to collect and measure runoff. The vegetation coverage, a mean vegetation 

height and the slope gradient were also investigated for each plot. Before the start of each rainfall 

event, three undisturbed soil core samples were taken at the depth of 0-5 cm in the area immediately 

adjacent to the plots for the laboratory measurement of input infiltration parameters and other basic 

soil properties. Specifically, the core samples were placed in a tray filled with shallow water for 2 to 

4 days to reach the saturated condition. Then the saturated core samples were placed on a suction plate 

with a suction pressure of 33 kPa (0.33 bar) for 7 days to achieve field capacity. Values of the initial 

soil moisture, field capacity and saturated soil moisture of collected soil samples were calculated from 

their weights before and after oven-drying at 105 °C for 24 h. The total porosity was assumed to be 

equal to the saturated soil moisture in this study, and the dry bulk density was determined from the 

ratio of the oven-dried soil weight and the soil volume. With respect to the soil particle distribution 

analysis, the stone fraction (> 5.3 mm) and gravel fraction (2.0 - 5.3 mm) were both determined by the 

dry sieving method, the coarse sand fraction (0.2 – 2.0 mm) was derived by the wet sieving method, 

and the fine sand (0.02 – 0.2 mm), silt (0.002 – 0.02 mm) and clay (< 0.002mm) fractions were 

measured using the hydrometer method. In addition, the weight of roots in each soil sample was also 

measured. 

 
Figure 4.4. Orthogonal top view photos of 1 m × 1 m field plots. 
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A field rainfall simulator with Veejet 80100 nozzles, which are controlled to sweep to and from across 

a plot, was used to generate the rainfall. Loch (2001) provides more detailed information for this type 

of rainfall simulator and has proven its capability in producing the rainfall with the kinetic energies of 

intense natural rain and the intensity of a small coefficient of variation (8-10%) in its spatial 

distribution. For each plot, a continuous rainfall event was firstly applied until a stable runoff rate was 

reached, for the calibration of the target infiltration models. The field saturated hydraulic conductivity 

and the final steady state infiltration rate were assumed to be equal here and were both determined by 

the average values of the last five observed infiltration rates in this calibration rainfall event. A 

sequence of rainfall events were then applied 24 h after the first continuous rainfall event, for the 

validation purpose. This rainfall sequence consisted of four pulses of rainfall, with each duration of 

about 0.5 h, separated by three hiatuses. The first two hiatuses were relatively short and both had a 

duration of about 1 h, while the third one was much longer, with a duration of about 18 h. During each 

rainfall period, the intensity of the produced rainfall was measured by four measuring cups distributed 

across the plot, and the surface runoff was collected at the outlet of the runoff collector for 30 seconds 

in every one minute for the first 15 minutes and in every two minutes for the remaining period. The 

measured rainfall intensity varied in different rainfall events (66.8 - 103.6 mm h-1) as shown in Table 

4.2, because of the differences in the height of nozzles, water pressure or weather conditions (e.g., 

wind). Relatively large rainfall intensities were applied here in order to ensure the occurrence of runoff, 

which was necessary for determining the infiltration rates and also to reduce the time to runoff 

generation to minimize potential inaccuracies caused by missing infiltration information prior to the 

starting of runoff. The actual infiltration rates at different time points were then calculated by 

subtracting these measured runoff rates from the measured rainfall intensity. 

Table 4.1 Measured and calibrated input parameters for three modified infiltration models. 

Models a 
Measured parameters b  Calibrated parameters b 

𝑖𝑓(𝐾𝑠) 𝜙 𝜃0 𝐹𝐶 𝑖0 𝑘 𝑎 𝐷 𝜆 

MHL √ √ √ √    √ √  

MGA √ √ √ √    √ √ 

MHR √ √ √   √ √    
a MHL: modified Holtan model; MGA: modified Green-Ampt model; MHR: modified Horton model. 

b 𝑖𝑓 : final steady infiltration rate (mm h-1); 𝐾𝑠 : saturated hydraulic conductivity (mm h-1); 

𝜙: soil porosity (m3 m-3); 𝜃0: initial soil moisture (m3 m-3); FC: field capacity (m3 m-3); 𝑖0: initial 

infiltration rate (mm h-1); 𝑘: infiltration decay coefficient (h-1); 𝑎: a constant (mm-0.4 h-1) in modified 

Holtan model; D: control zone depth (mm); 𝜆: a constant (mm) in modified Green-Ampt model.   
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4.2.3 Statistical Analysis 

The required input parameters for each of the three modified infiltration models are summarised in 

Table 4.1. It can be seen that some of these parameters could be directly measured from field 

investigation or laboratory analysis, while others were very difficult to measure and had to be indirectly 

determined by calibration with the observed results in the first continuous rainfall event. The goodness 

of fit of the predicted infiltration curve to the observed infiltration rates was tested by both the 

coefficient of determination (R2) and the root mean square error (RMSE). R2 indicates how accurately 

the model tracks the variation of observed values, and its value can range from 0 to 1 (perfect fit). 

RMSE shows the amount of divergence of the model values from the observed values and its value 

close to 0 indicates good agreement. In addition, the percentage of error (PE) was used to assess the 

under- or over-prediction and the magnitude of prediction error in the total infiltration amount. The 

mathematical expressions used for these three statistical analysis measures are: 
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where n is number of observations during the prediction period; 𝑂𝑖 and 𝑃𝑖 are observed and predicted 

values at each comparison point i; �̅� and �̅� is arithmetic mean of the observed and predicted values, 

respectively. 

Results from the four separated rainfall pulses in the rainfall sequence were used to validate the three 

modified infiltration models. The overall model performance during the entire sequence of rainfall was 

also evaluated. This led to five datasets in total for model validation. R2 and RMSE were employed to 

assess the agreement of predicted and observed infiltration rates at various time points in each dataset, 

and PE was used to represent the prediction accuracies in total infiltration amount and the initial soil 

moisture. Correlation analysis was then performed to identify the relationships between model 

performance and different site conditions, by calculating the Pearson correlation coefficient (r) using 
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SPSS Statistics 22. The r values range from -1 to +1, with the sign indicating the direction of the 

relationship, and its absolute value indicating the strength of the relationship. 

 

4.3 Results and discussion 

4.3.1 Parameterisation of infiltration models 

The investigated site conditions for the field plots were summarised in Table 4.2. It can be seen that 

most of the plot features had a large range of values, except for the slope gradient which had a 

maximum value of only 5% due to the difficulty in setting up the rainfall simulator on steeper slopes. 

The soil in the plots had various textures ranged from clay loam to sandy loam, as well as significantly 

different physical and hydraulic properties. For the vegetation features, the plots varied from totally 

bare soil conditions to those fully covered by vegetation (as also shown in Figure 4.4).  

Table 4.2 Summary of results for the plot features and infiltration parameters. 

Plot feature 

/infiltration parameter a 
Min. Max. Range Mean Std. Deviation 

Plot features 

Rainfall intensity (mm h-1) 66.8 103.6 36.8 89.2 9.30 

Slope gradient (%) 1 5 4 2.54 1.07 

Bulk density (g cm-3) 0.53 1.17 0.64 0.78 0.20 

Porosity (m3 m-3) 0.33 0.55 0.22 0.45 0.07 

Stone content (g g-1) 0.01 0.36 0.36 0.11 0.10 

Gravel content (g g-1) 0.06 0.25 0.19 0.16 0.07 

Sand content (g g-1) 0.26 0.52 0.26 0.41 0.09 

Silt content (g g-1) 0.06 0.25 0.20 0.17 0.06 

Clay content (g g-1) 0.08 0.19 0.11 0.14 0.03 

Root content (kg/m3) 0.10 10.30 10.20 3.80 2.70 

Vegetation cover (m2 m-2) 0 1.00 1.00 0.62 0.37 

Plant height (m) 0 0.87 0.87 0.28 0.27 

Measured infiltration parameters 

𝐾𝑠(𝑖𝑓) (mm h-1)  2.64 85.29 82.65 40.33 27.07 

𝜙 (m3 m-3) 0.33 0.55 0.22 0.45 0.07 

𝜃0 (m3 m-3) 0.11 0.53 0.42 0.36 0.12 

FC (m3 m-3) 0.18 0.37 0.20 0.29 0.06 

Calibrated infiltration parameters 

𝑖0 (mm h-1)  
116.3

4 

762.31 645.97 371.33 208.99 
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k (h-1)  1.49 3.09 1.60 2.11 0.44 

a (mm-0.4 h-1)  0.04 0.51 0.48 0.18 0.12 

D (m)   0.23 1.96 1.73 0.76 0.40 

𝜆 (m) 0.18 200.52 200.34 21.29 46.36 
a 𝑖𝑓 : final steady infiltration rate; 𝐾𝑠: saturated hydraulic conductivity; 𝜙: soil porosity; 𝜃0: initial soil 

moisture; FC: field capacity; 𝑖0: initial infiltration rate; k: infiltration decay coefficient; a: a constant 

in modified Holtan model; D: control zone depth; 𝜆: a constant of the modified Green-Ampt model.    

     

The greatly varied site conditions resulted in large variations in the rainfall duration (72 - 123 min) 

and runoff coefficient (8.8% - 70.8%) of the calibration rainfall events. The measured and calibrated 

input parameter values for the investigated infiltration models also had large ranges (Table 4.2). Figure 

4.5 shows the parameterisation results on plot 10, 9 and 22, which were selected for demonstration 

because they were representative for the conditions of low (9.0%), medium (35.1%) and high (59.7%) 

runoff coefficient in sequence. It can be seen that the predicted infiltration curves by the three modified 

infiltration models all fit the observed infiltration rates well on the three plots. Statistical analysis on 

the whole range of plots further showed that the mean R2 in the calibration process of all the plots was 

0.960±0.014, 0.941±0.029 and 0.961±0.017 for MHL, MGA and MHR respectively, the mean RMSE 

was 4.985±1.919 mm h-1, 6.659±2.620 mm h-1 and 4.577±1.991 mm h-1 respectively, and the mean 

percentage error in total infiltration amount (PE-I) was 3.034±1.839%, 3.554±3.865% and 

1.598±2.255% respectively. These large R2 values and small RMSE and PE-I values indicated that the 

three modified infiltration models were able to describe the infiltration process in the continuous 

calibration rainfall events very well, with no significant difference among their performance. It can be 

also concluded that the values of the calibrated infiltration parameters had high accuracy and 

reliability. 
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Figure 4.5 Calibration of three modified infiltration models on three representative plots using the 

continuous rainfall events. Plot 10, 9 and 22 is featured with low (9.0%), medium (35.1%) and high 

(59.7%) runoff coefficient, respectively. MGA, MHL, MHR represents modified Green-Ampt, Holtan 

and Horton model, respectively. 

 

4.3.2 Evaluation of infiltration models 

The evaluation results of the three modified infiltration models, which document an independent 

validation of the model, using the five different datasets are summarised in Table 4.4. It can be seen 

that in the dataset of the first rainfall pulse (R1) in the rainfall sequence, all three models performed 

well, with high R2 and low RMSE and PE-I values. No significant difference was found between their 

performances.  

In the dataset of the second rainfall pulse (R2), the performance of MHL and MGA was significantly 

(P<0.05) better than that of MHR. When comparing to the results in R1, a significant decrease in R2 

and significant increases in both RMSE and PE-I were observed for MHR (P<0.05), indicating a 

significant reduction in the simulation accuracy. However, the performance of both MHL and MGA 

was maintained at a high level and was comparative to that in R1. 

In the third rainfall pulse (R3), MHL had the best performance which was not significantly different 

from that in the previous rainfall periods. MGA had comparative R2 with MHL, however, its RMSE 

was significantly larger (P<0.05), indicating a reduced accuracy. Horton produced significant errors, 

with small R2 and large RMSE and PE-I values.  

In the fourth rainfall pulse (R4), which followed a long dry period, the R2 values of both MHL and 

MGA were only slightly decreased. However, their RMSE values were significantly increased 

(P<0.05) when compared to those in the previous rainfall pulses. MHR was totally failed in this 

dataset, as reflected by the extremely small R2 and large RMSE and PE-I.  

It can be observed that the simulation accuracy of the three models all decreased from R1 to R4, 

probably attributed to the accumulation of errors in the predicted initial soil moisture. Results in the 



Chapter 4 

 

90 
 

dataset of the entire sequence of rainfall suggested the overall good performance of MHL and MGA, 

but a significantly (P<0.05) poorer performance of MHR. 

Table 4.3 Summary of statistic values for the evaluation of different infiltration models during the 

rainfall sequences. 

Models a R1 b R2 b R3 b R4 b Entire b 

R2 c 

MHL 0.81±0.23 Aa  0.82±0.12 Aa 0.84±0.09 Aa 0.78±0.23 Aa 0.86±0.06 Aa 

MGA 0.82±0.23 Aa 0.82±0.12 Aa 0.81±0.14 Aa 0.77±0.27 Aa 0.83±0.06 Aa 

MHR 0.74±0.31 Aa 0.52±0.35 Bb 0.58±0.36 Bb 0.09±0.19 Bc 0.64±0.22 Bab 

IMHR 0.78±0.36 Aa 0.79±0.14 Aa 0.80±0.17 Aa 0.71±0.26 Ab 0.85±0.09 Aa 

RMSE (mm/h) c 

MHL 4.44±2.33 Aa 4.41±2.35 Aa 6.65±3.63 Aa 15.60±9.58 Ac 9.59±5.08 Ab 

MGA 5.60±3.02 Aa 5.62±3.36 Aa 9.34±5.02 Ab 15.14±11.98 Ac 10.46±6.88 Ab 

MHR 4.75±2.90 Aa 13.21±7.91 Bb 16.72±9.54 Bb 26.04±20.98 Bc 18.52±11.16 Bb 

IMHR 4.68±2.68 Aa 5.65±2.49 Aa 5.42±2.36 Aa 16.13±12.44 Ac 10.07±6.37 Ab 

PE-I (%) c 

MHL 0.16±1.46 Ba 1.98±10.02 Ab 5.06±18.06 Bc 6.54±24.60 Ac 3.85±8.74 Abc 

MGA -1.57±3.79 Aa 6.28±14.20 Bb 8.76±22.73 Bbc 9.99±29.46 Ac 5.56±11.66 Ab 

MHR 0.51±3.36 Ba 24.21±20.38 Cb 52.05±31.91 Cd 34.75±33.71 Bc 18.81±12.27 Bb 

IMHR 1.92±2.43 Cc -2.73±11.14 Ab -9.15±9.11 Aa 10.69±28.72 Ad 2.84±8.43 Ac 

PE-𝜃0 (%) c  

MHL - 14.03±17.79 Bc 7.16±12.70 Bb 0.92±13.88 Ba - 

MGA - 12.62±16.69 Bc 4.74±11.71 Bb -2.88±13.82 Ba - 

MHR - -4.66±22.52 Ac -14.92±25.30 Ab -86.60±22.32 Aa - 

IMHR - 16.74±18.15 Bc 8.38±12.67 Bb -4.47±9.29 Ba - 
a MHL: modified Holtan model; MGA: modified Green-Ampt model; MHR: modified Horton model; 

IMHR: improved modified Horton model. 

b R1, R2, R3 and R4 represents the first, second, third and fourth rainfall pulse in the rainfall sequence, 

respectively; ‘Entire’ represents the entire rainfall sequence. 

c R2: coefficient of determination; RMSE: root mean square error; PE-I: percentage error in total 

infiltration volume; PE-𝜃0: percentage error in initial soil moisture. 

 

Figure 4.6, describing the predicted infiltration curves on plot 10, 9 and 22, showed some examples of 

the validation results through visual assessment of the model performance. It can be seen that for all 

three plots, both MHL and MGA performed well in all the four rainfall pulses of the rainfall sequence, 

while MHR only had satisfactory performance during R1, but produced significant errors in the other 

rainfall pulses.     
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Figure 4.6 Evaluation of modified infiltration models on representative plots using different datasets. 

Plot 10, 9 and 22 is featured with low (9.0%), medium (35.1%) and high (59.7%) runoff coefficient, 

respectively. R1, R2, R3 and R4 represents the first, second, third and fourth rainfall pulse in the 

rainfall sequence, respectively. MGA, MHL, MHR represent the modified Green-Ampt, Holtan and 

Horton model, respectively, and IMHR represents the improved modified Horton model. 

 

4.3.3 Improvement of the modified Horton model 

Aforementioned evaluation results have shown that among the three investigated infiltration models, 

only MHR failed in describing the infiltration behaviour during the rainfall sequences. The reasons for 

the poor performance of MHR can be identified from the values of PE-I and PE-𝜃0 (percentage error 

in initial soil moisture) in Table 4.3, which indicated that MHR significantly overestimated the total 
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infiltration amount, while it significantly underestimated the initial soil moistures (P<0.05). Figure 4.7 

also demonstrated that MHR tended to overestimate the soil drainage rate and thus the recovery of 

infiltration capacity. This was further verified by comparing the predicted soil drainage coefficient, the 

ratio of total soil drainage volume to the total rainfall volume during the rainfall sequence. The results 

showed that the mean drainage coefficient predicted by MHR (0.984±0.260) was significantly 

(P<0.05) larger than those predicted by MHL (0.422±0.141) and MGA (0.459±0.136). The 

overestimation of soil drainage by MHR can be attributed to two possible reasons. Firstly, MHR 

calculates soil drainage at any time even when the soil moisture is smaller than the field capacity 

(Figure 4.1), while in both the other two models there is a constraint that the soil only drains water 

when the soil moisture exceeds the field capacity (Figure 4.2 and 4.3). The second reason might be 

that the formula used for determining soil drainage rate in MHR tended to calculate too large drainage 

rate values.  
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Figure 4.7 Predicted infiltration capacity curves (Ip) and soil drainage rate curves (D) by different 

modified infiltration models during the rainfall sequence applied on representative plots. Plot 10, 9 

and 22 is featured with low (9.0%), medium (35.1%) and high (59.7%) runoff coefficient, respectively. 

MGA, MHL, MHR represents the modified Green-Ampt, Holtan and Horton model, respectively, and 

IMHR represents the improved modified Horton model. 

 

Therefore, attempts have been made in this study to further improve the accuracy of the original MHR, 

by introducing a constraint of field capacity and applying a reduction coefficient 𝛽 to the soil drainage 

formula. By testing different values of 𝛽 ranged from 1 to 0, the highest simulation accuracies were 

achieved when 𝛽  equalled to 0.2. The resultant calculation routine and detailed formulas for the 
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improved MHR (IMHR) were shown in Figure 4.8. From Table 4.3, it can be seen IMHR had 

significantly larger R2 values while significantly smaller RMSE, PE-I and PE-𝜃0 values than MHR 

(P<0.05), indicating the greatly improved model performance. Furthermore, there was no significant 

difference between the results of IMHR and those of MHL or MGA, suggesting a comparative 

performance of IMHR with the latter two models. These findings were further verified in Figure 4.6, 

where the predicted infiltration curves by IMHR agreed well with the observed values in all rainfall 

pulses. Results of the drainage coefficients indicated that IMHR (0.437±0.163) estimated significantly 

less soil drainage than MHR (0.437±0.163), and its results were very close to those of MHL 

(0.422±0.141) and MGA (0.459±0.136). However, Figure 4.7 showed that while their drainage 

coefficients were very similar, they had different shapes of drainage curves. IMHR tended to produce 

a flat drainage curve with a long duration, while the curves produced MHL and MGA were both 

fluctuant and more sensitive to the changes of rainfall intensities. 
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Figure 4.8 Calculation routine for improved modified Horton Model (IMHR). 𝑖0 and 𝑖𝑓 

is the initial 

and final steady infiltration rate (mm h-1) respectively, k is infiltration decay coefficient (h-1), 𝜃0 is 

initial soil moisture (m3 m-3), 𝜙 is porosity (m3 m-3), FC is field capacity (m3 m-3), 𝑅𝑡  is rainfall 

intensity (mm h-1) at time t, ∆𝑡 is time step (min) for calculation, and 𝜃𝑡  is soil moisture at time t 

(m3 m−3). 

 

4.3.4 Effects of site conditions on model performance 

In spite of the overall high simulation accuracies of MHL, MGA and IMHR, the relatively large 

standard error values shown in Table 4.3 suggested the possible varied model performance on different 

plots and under different site conditions. Therefore, correlation analysis was further conducted to 

identify which factors would have great influences on the model performance. The factors selected for 

analysis included various topography, soil and vegetation related plot features as listed in Table 4.2, 
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as well as the rainfall intensity and runoff coefficient for each rainfall event. In addition, the accuracies 

of the input parameter values were also taken into account, by including R2, RMSE, PE-I and PE-𝜃0  

values for the model calibration.  

Correlation analysis showed that in all validation datasets, R2 values of the three models had significant 

(P<0.05) and negative correlations with the vegetation cover and root content. This result suggests 

that the simulation accuracy could be affected by the presence of vegetation, probably due to the fact 

that these infiltration models were primarily developed for bare soils and that vegetation would affect 

the infiltration process by intercepting and storing rainfall, protecting the soil surface against the 

impact of raindrops, and changing the soil properties and thus the infiltration characteristic (Deuchars 

et al., 1999; Foley et al., 1991; Puigdefábregas, 2005; Wilcox et al., 1988). In addition, in all datasets 

except for R1, PE-I of three models were all significantly (P<0.05) and positively correlated with the 

runoff coefficient, suggesting that these models tended to produce relatively large biases in total 

infiltration when the infiltration rates were low. However, no significant correlation was found 

between simulation accuracy and slope gradient or any soil related factor, indicating that the model 

performance was not affected by either soil properties or topography conditions. Further, it was found 

that in all rainfall pulses, R2, RMSE and PE-I for the model validations were significantly (P<0.05) 

and positively correlated to those for model calibration, highlighting the importance of the accurate 

determination of input parameter values. 

 

4.3.5 Model sensitivity analysis  

The performance of the investigated infiltration models has been found to be closely associated with 

the accuracy of their input parameters. It is therefore essential to understand which parameters have 

the most prominent impact on the modelling results. For this purpose, a model sensitivity analysis was 

carried out. The rainfall sequence applied on plot 9 was selected as a representative for this analysis. 

Then four 20% decrements and four 20% increments from the base infiltration parameter values 

(measured or calibrated results) were applied. Two output parameters, total infiltration volume (INF) 

and total soil drainage volume (DR), were used to evaluate the model responses.  

Figure 4.9 shows that INF and DR predicted by MHL, MGA and IMHR were both most sensitive to 

𝐾𝑠 or 𝑖𝑓, demonstrating the importance of these two parameters which reflect the steady or minimum 

infiltration capacity of the soil. INF was also largely influenced by some other input parameters. 

Specifically, both 𝜙 and D, the two parameters determining the soil storage capacity, had large impacts 

on INF predicted by MHL, while only 𝜙 had obvious impacts on INF in MGA. MHR showed great 
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sensitivity to 𝑖0 and k in INF. Compared to INF, greater variations were found in DR in both MHL and 

MGA, where DR was largely sensitive to all of their parameters. In IMHR, however, DR was only 

sensitive to some of its parameters, including 𝑖𝑓, FC and k. 

From the results, it can be seen that DR tended to be more sensitive to the changes in input parameters 

than INF. This may be attributed to the fact that in these models the actual infiltration rate was 

determined by the smaller value between the rainfall intensity and the soil infiltration capacity, while 

the soil drainage rate was solely dependent on the soil conditions. Moreover, the input parameters 

influencing the entire infiltration process, such as 𝐾𝑠, 𝑖𝑓, 𝜙, D, FC and k, were found to have larger 

impacts on the modelling results than the parameters that only had significant influences at the initial 

stage of infiltration, such as a, 𝜃0, 𝜆 and 𝑖0. In addition, the three infiltration models showed some 

differences in their responses to different input parameters. On the whole, MHL and MGA showed 

greater parameter sensitivity than IMHR. This agrees with the correlation analysis results that MHL 

and MGA had larger correlations (0.752 and 0.724 respectively) between PE-I and RMSE for 

calibration than IMHR (0.564). It can be concluded from this comparative study that the prediction 

accuracy of MHL and MGA tended to be influenced to a greater extent by the errors in their input 

parameter values than IMHR, and more attention needs to be paid to those more sensitive input 

parameters when applying these infiltration models.  
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Figure 4.9 Results for model sensitivity analysis on plot 9 during the rainfall sequence. MGA, MHL 

and IMHR represents the modified Green-Ampt model, modified Horton model and the improved 

modified Horton model, respectively. 𝑖0 and 𝑖𝑓 is initial and final steady infiltration rate (mm h-1), 

respectively, 𝐾𝑠 is saturated hydraulic conductivity (mm h-1), 𝜙 is soil porosity (m3 m-3), 𝜃0 is initial 

soil moisture (m3 m-3), FC is field capacity (m3 m-3), k is infiltration decay coefficient (h-1), D is control 

zone depth (mm), and a ( mm-0.4 h-1)  and 𝜆 (mm) are both constant.        

 

4.4 Conclusions 

Performance of three infiltration models modified for sequences of rainfall were evaluated on small 

field plots with varied site conditions, using simulated rainfall sequences which consisted of four 
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rainfall pulses and three hiatus. Despite of the gradually reducing simulation accuracy from the first 

rainfall pulse to the last one, both MHL and MGA had satisfactory and comparative performance 

during the entire rainfall sequence, with large R2 values and small RMSE and PE-I values when 

comparing the predicted results to observed values. MHR, however, failed in accurately describing the 

infiltration processes due to its overestimation of soil drainage rate. MHR could be improved by 

applying a constraint that soil only drains water when soil moisture exceeds field capacity and 

introducing a reduction coefficient which equalled to 0.2 to the formula for calculating soil drainage 

rate. IMHR was found to significantly improve the simulation accuracy of MHR, and its performance 

was comparative to that of MHL and MGA. Correlation analysis showed that the performance of MHL, 

MGA and IMHR did not vary significantly under different soil, topography or rainfall conditions, but 

was negatively related to vegetation cover because of the role of vegetation in influencing the 

infiltration process. Model performance was also found to be greatly impacted by the accuracy in 

determining the input parameters. Sensitivity analysis was conducted for these three models. The 

results showed that the models were mostly sensitive to the input parameters representing the final 

steady infiltration capacity. Furthermore, they tended to be more sensitive to the parameters affecting 

the entire infiltration process compared to those which only had significant impacts at the initial stage 

of infiltration. In addition, MHL and MGA showed greater sensitivity to the errors in input parameters 

values than IMHR.  

Based on all results from this study, MHL, MGA and IMHR have been proven to be able to well 

describe the infiltration processes during the sequences of rainfall events. They also have simple 

calculation routines and formulas and thus are expected to be computationally efficient. Therefore, by 

incorporating these modified infiltration models, the applications of many hydrologic models are 

expected to be extended from the predictions of single continuous rainfall events to more complex 

rainfall sequences, and from short-term simulations to long-term simulations. Since these three models 

had comparative performance and the same complexity in their input parameters (i.e, four measurable 

and two calibrated parameters), no direct preference among them could be derived from this study. 

However, prior to implementation of these models in hydrologic models for the simulation of more 

complex hydrological processes at larger scales, their performance in terms of simulation accuracy 

and computational efficiency should be further tested.
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Chapter 5 Development of a Surface Runoff Model Based on 

Cellular Automata (RunCA) 

 

5.1 Introduction 

Surface runoff and associated soil erosion are subjects of continuous concern around the world, as they 

may have serious environmental consequences, including flood, landform instability (e.g., landslide 

and debris flow), loss of top soil and fertilizer leading to plant death or crop failure, and the transport 

of pollutants to surrounding areas and water courses. A quantitative evaluation of the extent and 

magnitude of runoff problems is consequently required to find, implement or improve land 

management strategies. For this purpose, some lumped conceptual runoff models (or erosion models 

that incorporate a runoff model) have been developed since the 1970s, typical examples being the SCS 

curve number (U.S.  Department  of  Agriculture, 1972), USLE (Wischmeier and Smith, 1978), 

CREAMS (Knisel, 1980) and RUSLE (Renard et al., 1997). These models usually treat the study area 

as a spatially singular entity, use state variables that represent averages over the entire area, and 

produce outputs at a single point according to empirical relationships (Haan et al., 1982). These models 

are computationally very efficient in calculating runoff and have relatively few input parameters. 

However, they are not able to capture the spatial or temporal variations in hydrological processes, and 

require calibration if applied to regions different from the location of first development. 

To better describe the extent of spatial and temporal variability of runoff processes, some distributed 

physically based hydrologic/erosion models have emerged. Some of these models, including 

KINEROS (Smith, 1981), WEPP (Laflen et al., 1991), EUROSEM (Morgan et al., 1998b) and HEC-

1 (Feldman, 1995), partition the target area (e.g., a catchment) using a network of elemental sections, 

such as a cascade of planes and channels. These elements are always simplified geometries with large 

sizes, which can provide a representation of the gross topographic features but may lose some local 

topography details and complexities. With the development of remote sensing, digital elevation models 

(DEM) and geographic information systems (GIS), grid structures are more frequently used in 

hydrologic models, with examples being ANSWERS (Beasley et al., 1980), AGNPS (Young et al., 

1989), LISEM (De Roo et al., 1996) and SHE (Abbott et al., 1986). These grids usually have much 

smaller sizes than the geometric elements and provide an easier way to represent the study area.  

Numerical techniques have been widely employed in these distributed models to simulate the runoff 

routing processes. Typically, the overland flow and channel flow are described by solving the Saint-
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Venant equations of continuity and momentum. To make these complex equations solvable, 

simplifying assumptions need to be made and different methods are produced by neglecting various 

terms of the momentum equation. The kinematic wave model is the simplest method that neglects both 

acceleration and pressure terms, while the diffusion wave model is a more complete form that includes 

the influence of the pressure force. Therefore, the diffusion wave method is expected to be more 

accurate when slopes are low and the diffusion term in the equation overwhelms the kinematic term. 

These two models only simulate the one-dimensional flow, while the spatial variation in the direction 

perpendicular to the principle slope could not be captured. The more advanced 2-D diffusion wave 

method, such as that used in CASC2D (Rojas et al., 2003), could better describe the spatial variation 

of the flow behaviours, but this would further increase the complexity and hence may lead to low 

computational efficiency.  

Alternatively, several simpler methods have been developed for determining the water flows based on 

the elevation differences of the elements. For example, in AGNPS flow directions are determined from 

the DEM. The DEM-based runoff routing algorithms include both single-direction algorithms (e.g., 

D8 (O'Callaghan and Mark, 1984) and ρ8 (Fairfield and Leymarie, 1991)) that transfer all flow from 

the centre grid to one downslope neighbour, and multiple-direction algorithms (e.g., MFD (Quinn et 

al., 1991), DEMON (Costa-Cabral and Burges, 1994) and D∞ (Tarboton, 1997)) that partition flow to 

multiple downslope neighbours. These elevation-based methods are very straightforward and 

computationally efficient; however, a major limitation is that they tend to be oversimplified as the 

water component in the elements is not taken into account. In reality, the water does not always flow 

according to the elevation differences because of the different water depths among the elements. 

Moreover, flow directions derived from these methods are pre-determined and fixed, thus nor the 

dynamic flow behaviours or the interactions between elements can be captured.  

Therefore, alternative methods that have both high reliability and reduced complexity are required for 

more efficient hydrologic modelling. Cellular Automata (CA), a discrete dynamic system composed 

of a set of cells in a regular spatial lattice, is one of such promising approach worthy of investigation. 

Since the states of each cell depend only on the states of its neighbours and the global behaviour of the 

whole system is determined by the synchronous evolution of all the cells in discrete time steps, CA is 

very effective in simulating dynamic complex natural phenomena from local to global according to 

simple transition rules (Wolfram, 1984a). Unlike some other disciplines where CA has been widely 

applied and accepted, CA was not introduced into surface hydrology until Murray and Paola (1994) 

developed the first cellular braided river model about 40 years after CA was first proposed in the 1950s 

(Von Neumann, 1966). Only in the recent six years a few studies have emerged to relate its application 
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to hydrologic modelling. Rinaldi et al. (2007) and Ma et al. (2009) developed CA based algorithms for 

simulating runoff in large plains and on hill-slopes, respectively. Both models have shown the capacity 

of CA, however, a spatially uniform flow velocity was assumed and simply applied over the entire 

study area, leading them to be only used for simulating the steady flow conditions. Parsons and Fonstad 

(2007) developed a more complex CA model capable of simulating the unsteady flow conditions by 

delaying the water from one cell to the next until the correct timing is reached. Although this is a large 

progress, unfortunately in their model the flow directions were restricted to only four cardinal 

directions due to the difficulties in producing accurate timed water flows. Uncertainty also existed in 

selecting an appropriate time step for simulation. In addition, calculation of the rainfall excess is rather 

simple and empirical in this model as it does not include any related hydrologic principles. Some other 

CA models, such as RillGrow (Favis-Mortlock, 1998), EROSION-3D (Schmidt et al., 1999) and 

CAESAR (Coulthard et al., 2000), incorporate a surface hydrology component, but it is usually 

simplified because these models were primarily developed to study soil erosion or landform evolution. 

Consequently, in this study a CA-based model, which integrates measurable hydrologic parameters, is 

developed for quantitatively predicting the dynamic surface runoff processes under complex 

conditions at different scales.  

 

5.2 Definition of lattice space and spatial cells: partition process 

A typical CA based model A can be expressed as a quadruple (Gregorio and Serra, 1999): 

             𝐴 = (𝑍𝑑 , 𝑋, 𝑆, 𝜎)                                                                          (5.1) 

where 𝑍𝑑  represents a lattice of cells covering the study area, X is the definition of the local 

neighbourhood, S is the set of cell states, and 𝜎 is the transition rule determining the changes in cell 

properties. Based on this structure and integrated with the physical processes involved in runoff 

production and distribution, the RunCA (Runoff Model Based on Cellular Automata) has been 

developed and is described as follows. 

As illustrated in Figure 5.1, in this model the study area is partitioned into small hydrologic elements 

by a two-dimensional lattice consisting of square cells. This discretization is selected for its simplicity, 

broad application and convenience of implementation in computers. The model uses the Moore-

neighbourhood, which consists of eight adjacent cells in the four cardinal directions and the four 

diagonal directions from the centre cell. The spatial cells located on the borders of the lattice space are 

treated as “closed and reflective” cells that simulate virtual plot boundaries. No water flows beyond 
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these boundary cells. The cells located at the outlet are treated as “open and absorbing” cells, which 

means they will absorb any water flowing into them by moving the water into a storage value. These 

values can then be used to track the volume of water leaving the study area and thus record the runoff 

amount as a virtual runoff collector.    

The simulation accuracy and computational complexity of CA models are largely determined by the 

size of their spatial cells, which is affected by various factors, including the size and spatial 

homogeneity of the study area, model accuracy requirements and the resolution of available spatial 

data (e.g., resolution of DEM/GIS maps and density of rain gauges). Normally, the accuracy of results 

can be improved by reducing the cell size, however, at the expense of increased time and labour 

required to run the model.  

 

Figure 5.1 Lattice space and spatial cells in the RunCA model. 

 

5.3 Determination of cell state: runoff production process 

At each time step, the simulation of the runoff production process is based on the determination of the 

cell state, expressed as the cell height, which consists of both cell elevation and water depth. The cell 

elevation is derived from field measurements, topographic maps or DEM, and remains constant during 

a rainfall event. The determination of water depth is relatively complex, as it varies both temporally 

and spatially, and is controlled by both the effective rainfall at the current time step and the balance 

between inflows and outflows at the last time step, derived from transition rules described later. The 

effective rainfall (𝑅𝑒) is determined by three components in equation (5.2):  

         𝑅𝑒 = 𝑅𝑖 − 𝑃 − 𝐼                                                                    (5.2) 



Chapter 5 

 

104 
 

where 𝑅𝑖  is input rainfall, P is interception by vegetation, and I is infiltration. Here the 

evapotranspiration is neglected because it is negligible during runoff-producing rainfall events. In 

order to obtain the effective rainfall, it is necessary to quantitatively characterize all three components. 

5.3.1 Input rainfall  

The input rainfall information at each time step can be derived from local measurements using rain 

gauges and/or records from nearby meteorological stations. For small scale simulation (e.g., small hill-

slopes), rainfall can be assumed to be uniformly distributed over the study area.  For large scales, the 

spatial distribution of rainfall needs to be considered and different rainfall inputs should be applied to 

different cells, for which spatial interpolation methods may be employed.    

 

5.3.2 Interception  

Interception refers to the portion of input rainfall collected, stored and evaporated from vegetation. In 

the areas barren of vegetation, interception is negligible. However, its relative effect can be significant 

when the vegetation cover is high and the rainfall intensity is small. In this model, interception is 

determined by the method used in LISEM (De Roo et al., 1996), where the cumulative interception 

during a rainfall event is estimated using an equation developed by Aston (1979): 

           𝑃𝑐𝑢𝑚 = 𝑃𝑚𝑎𝑥 [1 − 𝑒𝑥𝑝 (−0.046𝐿𝐴𝐼
𝑅𝑐𝑢𝑚

𝑃𝑚𝑎𝑥
)]                                             (5.3) 

where 𝑃𝑐𝑢𝑚 is the cumulative interception (mm), 𝑅𝑐𝑢𝑚 is the cumulative rainfall (mm), LAI is the leaf 

area index, and 𝑃𝑚𝑎𝑥 is the maximum interception storage capacity (mm) that can be estimated from  

LAI using the equation developed by Von Hoyningen-Huene (1981):   

    𝑃𝑚𝑎𝑥 = 0.935 + 0.468𝐿𝐴𝐼 + 0.00575𝐿𝐴𝐼2                                            (5.4) 

From the cumulative interception, the interception increment at each time step (P) is calculated by 

subtracting the 𝑃𝑐𝑢𝑚 at a previous time step from that at the current time step. 

 

5.3.3 Infiltration  

In many cases, infiltration prediction directly determines the accuracy of a hydrologic model, as it 

controls how much water will enter the unsaturated soil zone, and how much will flow on the ground 

surface as runoff. It is difficult to quantitatively analyse the infiltration process due to its various 

affecting factors and its changing characteristics with time, but several physically based and empirical 

infiltration models have been developed. Among these models, the Philip (1957a), Green-Ampt 
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(1911), Horton (1940) and Holtan (1961) equations are frequently used due to their simplicity, good 

fit to data and the ability to obtain their parameter values. These four infiltration models have been 

implemented in the RunCA model, permitting investigation of their relative efficacy for runoff 

prediction during single consecutive rainfall events (Table 5.1). However, these models are only valid 

when the water supply rate at all times exceeds the soil infiltration capacity as they were primarily 

developed for describing the infiltration processes under ponding conditions. They cannot be used for 

intermittent or multiple rainfall events, where the recovery of infiltration capacity during dry periods 

needs to be considered. To make the RunCA model applicable to complex rainfall conditions and long-

term simulations, three improved infiltration models, including the modified Horton equation (Aron, 

1992; Bauer, 1974), modified Holtan equation (Huggins and Monke, 1966; Huggins and Monke, 1968) 

and modified Green-Ampt equation (Bouraoui and Dillaha, 1996), are incorporated to allow soil 

drainage and infiltration recovery (Table 5.1).  

Table 5.1 Infiltration Equations Integrated in RunCA a 

Single continuous rainfall events 

 

Intermittent/multiple rainfall events 

Philip  equation 𝑖𝑡 = 0.5𝑆0𝑡−0.5 + 𝐴 Modified 

Horton equation 

 

𝑖𝑡 = 𝑖0 + 𝑑𝑡 − 𝑘𝑆𝑡 

𝑑𝑡 =
𝑖𝑓

𝑖0
𝑘𝑆𝑡 

Green-Ampt equation 𝑖𝑡 = 𝐾𝑠(𝜆 𝐼𝑡⁄ + 1) 

Horton equation 𝑖𝑡 = 𝑖𝑓 + (𝑖0 − 𝑖𝑓)𝑒−𝑘𝑡 

Modified 

Holtan equation 

 

𝑖𝑡 = 𝑖𝑓 + (𝑖0 − 𝑖𝑓) (
𝑆𝑡

′

𝜙𝐷
)

𝑃

 

𝑑𝑡 = 𝑖𝑓 [1 −
𝑆𝑡

′

(𝜙 − 𝐹𝐶)𝐷
]

3

 Holtan equation 𝑖𝑡 = 𝑖𝑓 + (𝑖0 − 𝑖𝑓) (
𝑆 − 𝐼𝑡

𝜙𝐷
)

𝑃

 

   
Modified Green-

Ampt equation 

𝑖𝑡 = 𝐾𝑠(𝜆 𝐼𝑡⁄ + 1) 

𝑑𝑡 = 𝐷(𝜃 − 𝐹𝐶)(1 − 𝑒−Δ𝑡 𝑡𝑑⁄ ) 

a 𝑖𝑡: infiltration capacity at time t, mm h-1 ; 𝑆0: sorptivity, mm h-0.5; 𝐴: soil water transmissivity, mm h-

1; 𝐾𝑠: hydraulic conductivity at natural saturation, mm h-1; 𝜆: fitting parameter in Green-Ampt equation, 

mm; 𝐼𝑡 : cumulative infiltration at time t, mm; 𝑖𝑓 : final steady infiltration rate, mm h-1; 𝑖0 : initial 

infiltration rate, mm h-1; k: infiltration decay factor in Horton equation, h-1; S: soil water storage 

potential, mm; 𝜙: total porosity, m3 m-3; D: control zone depth, mm; P: dimensionless coefficient 
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relating decrease rate of infiltration capacity in Holtan equation; 𝑑𝑡 : soil drainage rate at time t, 

mm h−1; 𝑆𝑡: cumulative soil water at time t, mm; 𝑆𝑡
′: soil water storage potential at time t, mm; 𝜃: soil 

moisture at time t, m3 m-3; FC: field capacity, m3 m-3; 𝑡𝑑: time for drain, min; ∆𝑡: time step (min) for 

calculation.     

 

5.4 Application of transition rules: runoff distribution process  

At each time step and after determining the states (i.e., water depth and cell height) of each cell, the 

redistribution of water amongst the spatial cells is then derived by applying three CA transition rules 

to all these cells.  

5.4.1 First transition rule for identifying flowing neighbours 

This first transition rule determines at each time step to which neighbour cells the water in each central 

cell will flow, on the basis of the minimization of differences algorithm. This algorithm was first 

proposed by Gregorio and Serra (1999), and is based on a very straightforward principle that a dynamic 

system tends to evolve towards equilibrium conditions by flow of some conserved quantity in the 

central cell to its neighbours. Specific to this runoff model, the water always flows from the central 

cell to its lower-height neighbour cells, in order to minimize the height differences among cells to 

reach equilibrium conditions. To implement this algorithm in RunCA, the average cell height in a local 

neighbourhood area is firstly determined and compared to the height of each neighbour cell to 

eliminate the neighbours with larger height values. Then a new average height is calculated and again 

compared to the remaining neighbours for further elimination. This process repeats until no neighbour 

could be eliminated, and then the remaining neighbours are identified as the flowing neighbours that 

will receive water flows from the central cell. The more detailed procedure and the equations for 

calculation are shown in Figure 5.2. 

Three different flow-direction options are included in this model. The first one (4N) only allows the 

water in the central cell to flow to four cardinal neighbours, while the second option (8N) allows eight 

flow directions by including the four diagonal neighbours. However, according to the previous findings 

on the MFD (Multiple flow direction) DEM-based runoff routing algorithm, the 4N and 8N type tends 

to cause under flow divergence and over flow divergence, respectively (Erskine et al., 2006). Therefore, 

a third flow-direction option (4+4N) is proposed, which gives the water in a cell the priority to flow to 

its four cardinal neighbours, and only allows it to flow to the four diagonal neighbours when there is 

no cardinal neighbour to flow to (i.e., all the cardinal neighbours are higher than the central cell). This 

is a compromise between the former two options, and is expected to be more realistic by controlling 



Chapter 5 

 

107 
 

the flow dispersion and at the same time keeping the eight possible flow directions. Their performance 

will be evaluated and compared later in the model testing sections. 

 

5.4.2 Second transition rule for calculating flow amount to flowing neighbours 

According to the minimization of differences algorithm, the potential flow amount 𝑓𝑝 from the central 

cell to each identified flowing neighbour is determined by the difference of its height and the average 

height. However, this calculation is based on the assumption of a constant velocity for all the flows. 

In reality the water flow velocity on a hill-slope or in a catchment is highly spatially and temporally 

variable due to various conditions, such as local elevation gradient, surface roughness and water depth. 

These variations are essential for the runoff distribution, and thus are considered in RunCA by 

calculating the travel time for all the flows. Specifically, the Manning’s equation is employed to 

determine the velocity V for the outflow from the central cell to each flowing neighbour:        

 

2 1
3 2h s

V
n

                                                                                 (5.5) 

where h is water depth in the central cell, n is Manning’s roughness coefficient, and s is water surface 

slope which is calculated from dividing the flow travel distance D by the height difference of the 

central cell and its flowing neighbour. Then the time T required for water to travel from the central cell 

to its flowing neighbour can be calculated from dividing the flow travel distance by the flow velocity, 

as shown in equation (5.6):  

 
2 1

3 2

D nD
T

V h s
                                                                               (5.6) 

If L represents the cell side length, then D equals to L and √2𝐿, respectively for the cardinal flowing 

neighbour and the diagonal flowing neighbour.  

The calculated flow travel time is then compared to the time step t used in the simulation. If t is larger 

than T, which means that there is enough time for the calculated 𝑓𝑝 to finish travelling, then the actual 

flow amount f will be equal to 𝑓𝑝; when t is smaller than T, which means 𝑓𝑝 cannot finish travelling in 

a time step, then only part of 𝑓𝑝 can flow and f is further calculated by multiplying 𝑓𝑝 by the ratio 

between t and T. Based on this consideration, a small time step which is less than most of the calculated 

flow travel times is demanded. To estimate a suitable time step value, the potential flow travel times 

are calculated prior to the simulation, by assuming s equal to the land surface slope gradient and h 

equal to the elevation differences between cells. These calculated potential flow travel times are further 
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sorted from largest to smallest and their percentiles are given, which provide a reference for the 

selection of time step. Normally a time step smaller than the 99% percentile is recommended to 

guarantee the simulation accuracy.     

After determining the amount of each flow, the total outflow from each central cell 𝑓0 is then calculated 

by the sum of f to all its flowing neighbours. When 𝑓0 is larger than its water depth ℎ0, which means 

that the water in the central cell is not sufficient for all the calculated outflows, f to each flowing 

neighbour needs to be further modified by timing a ratio of ℎ0 and 𝑓0. In this case the final 𝑓0 is equal 

to ℎ0. 

The detailed calculation process and equations used for this transition rule is demonstrated in the 

flowchart shown in Figure 5.2.      
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Figure 5.2 Flowchart for calculating water flows from central cell to neighbours. 𝐻𝑖 and 𝐻0 represents 

neighbour heights and central cell height, respectively; 𝑛′ is the number of remaining neighbours after 

each elimination; 𝑇𝑖 and 𝐷𝑖 represents flow travel time and distance from central cell to each flowing 

neighbour, respectively; n is Manning’s coefficient; ℎ0 is the water depth in central cell; t is time step; 
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𝑓𝑖 represents the flow amount from central cell to each flowing neighbour, while 𝑓0 is the total outflow 

from central cell.  

 

5.4.3 Third transition rule for determining total flows 

At each time step the former two transition rules are applied to all the spatial cells in the lattice space, 

thus the outflow f from each central cell to each of its neighbours can be determined and stored in a 

buffer. However in the global view, each central cell is also one neighbour of its adjacent cells, thus it 

not only flows water out, but also receives water from the surrounding cells at the same time. 

Consequently a third transition rule needs to be applied to calculate the total flow F (the balance 

between outflow and inflows) for each cell. This transition rule is based on the consideration that the 

inflows from the neighbours to each cell can be derived from the according outflows of these 

neighbours. More specifically, if i and j represent the row number and column number respectively, 

and the arrows represents the flow directions, then the total flow for the cell (i, j) can be determined 

by equation (5.7) for 4N option, and equation (5.8) for both 8N and 4+4N options:  

               0, 1, , 1 , 1 1, ,F i j f i j f i j f i j f i j f i j                                  (5.7) 

             

             0

, 1, 1 1, 1, 1 , 1

, 1 1, 1 1, 1, 1 ,

F i j f i j f i j f i j f i j

f i j f i j f i j f i j f i j

            

           
                     (5.8) 

The calculated total flow could be positive if the sum of inflows is larger than the total outflow, or 

reversely negative. Then the new water depth and cell height are updated by adding this total flow to 

the current water depth for the calculation of the next time step. This allows the simultaneous update 

of the states of all the cells.      

Based on all the components discussed above, RunCA has been implemented in C++ using the object-

oriented paradigm for the sake of flexibility and reusability. The model structure and modelling 

procedure is summarized in Figure 5.3.  
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Figure 5.3 Flowchart for RunCA modelling procedure. 

 

5.5 Conclusions 

The Runoff Model Based on Cellular Automata (RunCA) has been developed to simulate surface 

runoff at different scales by integrating basic cellular automata (CA) rules with fundamental 

measureable hydraulic properties. In this model, a two-dimensional lattice composed of a series of 

rectangular cells was employed to cover the study area. Runoff production within each cell was 

simulated by determining the cell state (height) that consists of both cell elevation and water depth. 

The distribution of water flow among cells was determined by applying CA transition rules based on 

the minimization-of-difference algorithm and the calculated spatially varied flow velocities. 

This study applied a new technique, Cellular Automata, for runoff modelling. The cell structure of 

RunCA, which enables its integration with GIS, can provide an accurate and easy representation of the 

study area. Linking ground-truthed data of hydrological properties with remote sensed data as model 

inputs broadens the range of options of applications for this model.  The simultaneous update of states 

of all the spatial cells at multiple time steps enables the model to describe the spatially and temporally 

varied runoff behaviours. Compared to the numerical techniques employed in most traditional 

distributed hydrologic models, the transition rules used in RunCA are expected to reduce the 

complexity in computation as there is no need to solve any complex equations of continuity or 

momentum. These CA transition rules are also considered to be more realistic than the DEM-based 

routing algorithms as they determine the water distribution based on the water surface elevations 
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instead of the land surface elevations. This model would be a further step based on the existing CA 

runoff models by considering the spatially varied flow velocities, introducing a more realistic 4+4N 

flow-direction algorithm and incorporating physically measurable hydrologic principles (e.g., 

infiltration characteristic) when determining the runoff production. Besides, instead of restricting to a 

certain spatial or temporal scale, RunCA is developed as a universal tool to be applied in different 

spatial scales for both event-based and long-term simulations. The performance of RunCA, however, 

needs to be further verified and validated by systematic analysis, which would be discussed in the 

following chapter.
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Chapter 6 Systematic Validation of RunCA at Different Spatial 

Scales 

 

6.1 Introduction 

A Cellular Automata based surface runoff model, RunCA, has been developed in the previous chapter. 

Before applying this developed model to real cases, it must be tested and verified to ensure that the 

model indeed represents the physical world adequately. Therefore, a systematic verification and 

validation procedure consisting of three steps (Wang et al., 2009) was employed in this chapter: (1) 

verification by analytical solution under simplified conditions to test the physical basis of the  model 

and to ensure the validity of computer coding and calculation algorithm; (2) validation by laboratory 

experiments to evaluate the model’s capacity in reproducing the basic physical processes of surface 

runoff; and (3) validation by field measurements to prove that the model has the capability of predicting 

the behaviour of the natural phenomenon.  

Two standard statistical metrics, including Nash-Sutcliffe efficiency or modelling efficiency (EF) 

(Nash and Sutcliffe, 1970) and root mean square error (RMSE), were used to evaluate the performance 

of RunCA. EF describes the proportion of the variance of the observed values that is accounted for by 

the model, and its value can vary from 1 (perfect fit) to negative infinity. RMSE shows the amount of 

divergence of the model values from the observed values and its value close to 0 indicates good 

agreement. The mathematical expressions used for these two statistical analysis measures are: 
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where n is number of observations during the simulation period; 𝑂𝑖 and 𝑃𝑖 are observed and simulated 

values at each comparison point i; �̅� is arithmetic mean of the observed values.   
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6.2 Model verification by analytical solution under simplified conditions 

RunCA was firstly tested against the analytical solution for the idealized overland flow over a uniform 

plane using the kinematic wave modelling, as suggested by Singh (1996). A 500 m long and 100 m 

wide hypothetical flow plane at a uniform slope of 5% was considered, where the surface roughness, 

slope, and rainfall regime were assumed invariant in space and time. A Manning’s n of 0.01, a cell size 

of 1 m and a time step of 1 s were set for all the simulations by RunCA in this section.   

The effective rainfall of 100 mm h-1 was applied on an impervious plane with no infiltration, and the 

hydrographs predicted by both the analytical solution (derived from Figure 12.13 and 12.26 in Singh 

(1996)) and RunCA are shown in Figure 6.1. Figure 6.1a represents the equilibrium hydrograph where 

the rainfall duration is 25 min and is larger than the time of concentration, i.e., the time when flow 

from the farthest point reaches the outlet, while Figure 6.1b shows the partial equilibrium hydrograph 

where the rainfall duration is 5 min and is smaller than the time of concentration. Both figures show 

that compared to the results derived from the analytical solution, RunCA predicted slightly higher 

values of runoff rates during the rising limbs while slightly lower values during the recession limbs of 

the hydrographs. However, they had very similar crest segments where the peak discharge rate values 

were almost the same. The large EF values (0.964 and 0.923) and small RMSE values (8.054 mm h-1 

and 6.414 mm h-1) indicated the good agreement between analytical solution and RunCA. 

 
Figure 6.1 Simulated hydrographs based on the analytical solution and RunCA, for both the impervious 

plane (a, b) with no infiltration and the infiltrating plane (c, d) with a constant infiltration rate of 20 

mm h-1.   
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Figure 6.1c and 4d show the results for another case where the 120 mm h-1 of rainfall was applied on 

the infiltrating plane with a constant infiltration rate of 20 mm h-1. Similarly, both equilibrium and 

partial equilibrium conditions were considered using the 25 min and 5 min rainfall durations. Again, 

good fit between the hydrographs based on the analytical solution (derived from Figure 13.10 and 

13.18 in Singh (1996)) and RunCA was achieved. Hence, the model verification by the analytical 

solution of the equation of continuity and momentum verifies the transition rules for runoff distribution 

in RunCA and the correctness of the software code, and at the same time suggests the model ability in 

reflecting the basic physical processes involved in surface water flows.   

 

6.3 Model validation with laboratory experiments at small plot scale 

Laboratory experiments are often conducted in a controllable and repeatable environment, smaller in 

scale and less costly to measure more properties at higher resolution of the measuring points. 

Therefore, the comparison between the measured values with modelled results is more meaningful to 

test the model’s capability in reproducing the most fundamental physical processes of the system tested 

(Wang et al., 2009; Wang and Wu, 2004). In this study, the performance of RunCA was tested by 

using the results of runoff experiments previously carried out at small plot scale in the rainfall 

simulation laboratory of Beijing Normal University, China. 

6.3.1 Experimental data 

Small laboratory plots (2 m × 1 m) were established by spraying the substrate, consisting of a mixture 

of natural soil and soil adhesive, onto a platform using the soil-spray technique applied by a high 

hydraulic pressure machine to form a stabilized soil layer with a thickness of 30 cm. Six treatments 

were set up based on two different types (inorganic and polymer) and three contents (0.3%, 0.5%, 

0.7%) of soil adhesives to achieve different infiltration characteristics among plots. Simulated rainfall 

was produced by a group of rainfall simulators, which use Veejet 80100 nozzles, with a water pressure 

of 0.04 MPa, height of 5 m, target area of 2.2 m × 3 m, and coefficient of uniformity of 95%. Steady 

rainfalls with three different intensities (20 mm/h, 44 mm/h and 70 mm/h) were applied to the plots at 

three different slope gradients (10%, 20% and 30%), with a duration of 2 hours for each rainfall event.  

Surface runoff has been collected and measured every five minutes during all the rainfall events. 

Results showed that total runoff increased with increasing adhesive content within both groups of plots 

treated by inorganic and polymer adhesive, with the latter group tending to generate more runoff. In 
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addition, larger runoff amount has been produced at steeper slopes and during higher intensity rainfall 

events.   

 

6.3.2 Model inputs and settings 

Before running RunCA for runoff simulation, five groups of input parameters needed to be determined, 

as well as two basic model settings (Figure 5.3): 

Cell elevation: Due to the straight slope profile and the relative smooth surface, the elevation of each 

line of cells on the plot could be easily calculated based on the slope length and angle. After applying 

the rainfall using the simulator, some rills were observed on some plots. The elevation of the cells 

located on these rills were determined by subtracting the measured rill depths. 

Rainfall: actual rainfall intensity was measured by tipping buckets for each rainfall event, and was 

considered homogeneously distributed on the plot because of the high coefficient of uniformity of 

rainfall simulators and the small size of the runoff plot. 

Interception: this part was ignored since no vegetation cover existed on any plot. 

Manning’s n: This roughness coefficient was derived empirically from the guide values in EUROSEM 

(Morgan et al., 1998a). The resulted values varied from 0.026 for plot 1 treated with lowest content of 

inorganic adhesive to 0.016 for plot 6 treated with highest content of polymer adhesive.  

Infiltration: infiltration rate of each plot varied temporally and the four infiltration equations for single 

rainfall events (Table 5.1) were selected due to the continuous rainfall applied. Since the input 

parameter values for these infiltration equations were not measured in this experiment, they were 

derived indirectly by calibration with the actual infiltration values, which were determined by 

subtracting measured runoff amount from rainfall amount every five minutes. For each plot at each 

slope gradient, infiltration parameters were calibrated by curve-fitting with the experimental data in 

the 44 mm h-1 rainfall event, and the calibrated values were then used for runoff simulations in both 

20 mm h-1  and 70 mm h-1  rainfall events. Table 6.1 summarizes the derived parameter values, with 

the mean coefficient of determination (R2) of four infiltration equations ranging from 0.84 to 0.96, 

indicating that these selected infiltration equations were able to well describe the infiltration process 

and the determined parameter values were accurate and reliable.  

Model settings: For the plots with smooth and homogenous surfaces, the side length of each cell was 

set as 0.1 m, with 20 × 10 cells in total covering the whole plot. While for the more heterogeneous 
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surfaces where rills developed, smaller cell size (0.01m × 0.01m) was used in order to capture the rill 

characteristics. The potential flow travel times were then calculated based on equation (6) using the 

method described in section 2.3. The value of the 99% percentile was selected here as the time step for 

simulation. The resultant time step ranged from 0.044 s for plot 1 at 20° slope to 0.013 s for plot 6 at 

40° slope. 

Table 6.1 Calibrated Infiltration Parameter Values and Coefficients of Determination (R2) for Curve-

fitting Results at Small Plot Scale a 

Plot 
Slope 

(%) 

Philip  Horton  Green-Ampt  Holtan 

A So R2  if i0 k R2  K a R2  if i0 P R2 

1 

10 1.34 0.44 0.85  1.33 2.50 1.65 0.97  1.50 0.05 0.79  1.24 2.62 1.03 0.96 

20 1.14 0.39 0.99  1.33 2.74 6.77 0.95  1.30 0.04 0.98  1.04 2.12 1.45 0.91 

30 0.83 0.35 0.91  0.98 2.79 7.48 0.94  1.03 0.04 0.87  0.82 3.68 2.53 0.94 

 

2 

10 1.24 0.44 0.73  0.98 2.37 1.38 0.99  1.41 0.05 0.59  1.02 3.02 1.20 0.99 

20 0.92 0.37 0.98  1.07 2.49 5.26 0.97  1.08 0.05 0.96  0.94 3.79 2.98 0.94 

30 0.69 0.34 0.91  0.88 2.63 9.29 0.95  0.87 0.04 0.88  0.69 3.51 2.72 0.93 

 

3 

10 0.92 0.46 0.76  0.49 2.30 1.58 0.99  1.12 0.06 0.62  0.59 5.77 2.29 0.99 

20 0.64 0.40 0.93  0.65 2.24 3.06 0.99  0.83 0.06 0.90  0.45 3.99 2.87 0.99 

30 0.44 0.35 0.92  0.64 2.42 8.57 0.98  0.60 0.05 0.88  0.30 4.21 3.28 0.94 

 

4 

10 1.26 0.44 0.84  1.36 2.30 1.24 0.93  1.41 0.05 0.78  1.12 2.12 0.71 0.90 

20 0.97 0.39 0.98  1.14 2.56 4.64 0.96  1.14 0.05 0.97  0.82 3.02 2.35 0.93 

30 0.69 0.35 0.88  0.80 2.67 6.90 0.94  0.89 0.05 0.85  0.71 3.58 2.55 0.94 

 

5 

10 1.24 0.45 0.55  1.00 2.20 0.97 0.98  1.38 0.29 0.74  0.94 2.45 0.83 0.97 

20 0.74 0.37 0.93  0.77 2.30 3.51 0.96  0.92 0.05 0.90  0.89 3.21 2.75 0.95 

30 0.52 0.33 0.86  0.62 2.45 6.55 0.94  0.72 0.05 0.81  0.80 3.24 2.72 0.94 

 

6 

10 0.89 0.43 0.83  0.79 1.95 1.16 0.96  1.04 0.06 0.75  0.82 2.63 1.42 0.95 

20 0.58 0.38 0.94  0.61 2.07 2.73 0.97  0.76 0.06 0.92  0.59 2.91 2.53 0.96 

30 0.31 0.33 0.87  0.49 2.30 7.74 0.97  0.47 0.05 0.83  0.49 3.14 3.06 0.94 

 

Mean   0.87     0.96    0.84     0.94 
a All the symbols representing infiltration parameters are the same as those in Table 5.1. 

 

6.3.3 Model validation 

RunCA was performed for the 20 mm h-1 and 70 mm h-1 rainfall events applied on all the plots at 

different slope gradients. The model performance was evaluated through the comparison of the 

predicted hydrographs with the measured runoff rates at certain time points, using both EF and RMSE. 

The resultant EF was on average 0.795 (0.033) for the 20 mm h-1 rainfall events, and was significantly 
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correlated (r=0.446, P<0.001) to the R2 for curve-fitting the infiltration equations, suggesting that a 

large portion of error in the simulated runoff rates was attributed to the error in estimating the 

infiltration parameters, instead of the inherent error of model itself. This is confirmed by the fact that 

when simulating runoff for the larger intensity (70 mm h-1) rainfall events where infiltration played a 

less important role, the model performed much better, with the EF values significantly (P<0.01) 

increased to 0.995 (0.001). Among all the simulations, the largest RMSE value was only 2.62 mm h-1, 

and 80% of these values were less than 1.5 mm h-1, suggesting a good model efficacy in predicting the 

runoff rates with time.  

Correlation analysis showed that neither EF nor RMSE had significant correlation with the plot or 

slope gradient, indicating that the model performance did not vary much under different soil or 

topographic conditions. Three different flow-direction options were also compared, but no obvious 

difference was found, probably due to the relative simple slope profiles and homogenous surface 

conditions. 

Figure 6.2 shows the simulated flow maps at different time steps on a plot with rills development (plot 

4 at 30% slope), during the 20 mm h-1rainfall event and based on the Horton infiltration equation. It 

can be clearly seen that most water was flowing in the rills, while on the surface without rills, the water 

depth increased from the top to the bottom of the plot due to the accumulation of runoff water 

downslope. Besides, the runoff gradually expanded to a larger area and grew deeper with time due to 

the decreasing infiltration rate. All these results have indicated that the RunCA is able to describe both 

the spatial distribution and the temporal variation in the runoff process in this study. 

 



Chapter 6 

 

119 
 

 

Figure 6.2 Simulated flow maps (plan views) at different time steps on laboratory plot 4 at 30% slope, 

20 mm h-1 rainfall and based on Horton infiltration equation. The first flow map is a photo of plot 

surface at the initial condition. 

 

6.3.4 Model sensitivity analysis 

The above modelling results have suggested a close association between the simulated runoff and the 

infiltration parameters. To better understand the model response to the change in each of these 

parameters, sensitivity analysis was further performed. The 44 mm h-1 rainfall event applied on plot 2 

at 30% slope was selected as a representative for this analysis. Then four 20% decrements and four 

20% increments from the base infiltration parameter values (curve-fitting results) and the base 

Manning’s n value were applied. In addition, the simulations based on eight cell sizes ranged from 

0.01 m to 0.25 m were also performed, to evaluate the model sensitivity to the spatial resolution. 

Two output parameters, total runoff  𝑄𝑡 and total infiltration amount 𝐼𝑁𝐹𝑡, were used to evaluate the 

model responses. Figure 6.3 shows that both 𝑄𝑡 and 𝐼𝑁𝐹𝑡 were more sensitive to A, 𝐾𝑠 and 𝑖𝑓, which 

are all the parameters reflecting the steady infiltration rate, than the other infiltration parameters. 

Manning’s n, the parameter influencing the flow velocity and thus time step, had almost no impact on 

the results. The model also showed very little response to the change of cell size (results are not shown 

here), probably due to the fact that the plot in this test was small and homogeneous.   
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Figure 6.3 Results for model sensitivity analysis performed on plot 2 at 30% slope and 44 mm h-1 

rainfall intensity. 𝑄𝑡  and 𝐼𝑁𝐹𝑡  represents total runoff and total infiltration amount respectively, n 

represents Manning’s roughness coefficient, while all the other symbols representing infiltration 

parameters are the same as those in Table 5.1. 

 

6.4 Model validation with field measurements at the basin scale 

Previous model validations by analytical solution and laboratory experiments have demonstrated the 

efficacy of the model in reproducing the basic runoff processes. Before applying it to the investigation 

of a real-world problem, one more step is required to test the model by field data under the natural 

conditions. Therefore the model performance was further evaluated by applying it to a representative 

natural basin.  
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6.4.1 Field data 

Field data reported by Ritter (1992) were taken from the Pine Glen drainage basin located on 

rehabilitated surface mines in central Pennsylvania, to investigate its surface hydrology using our 

model RunCA. This basin (10.6 ha) was selected because it had well identified heterogeneous 

topographic and surface properties, which allowed the test of the model accuracy under complex 

conditions. A complete hydrology data set available in this basin is another advantage for model 

application. On the basis of vegetation type, land use, soil thickness and property, the basin could be 

divided into 5 different land units (Figure 6.4a). For each unit, infiltration parameters were measured 

by infiltration tests conducted by Jorgensen and Gardner (1987) on 0.4 m × 0.1 m plots with a dripping-

rainfall infiltrometer. In addition, a recording rain gauge and a water-level recorder housed in a cut-

throat flume were installed to continuously measure the rainfall and runoff rates (Ritter, 1990).    

 

Figure 6.4 Distribution of land units (a) of Pine Glen Basin, DEM in the year 1 (b) and the year 6 (c) 

after the rehabilitation. 

 

6.4.2 Model inputs and settings 

Cell elevation: the elevation values of spatial cells were derived from the basin DEMs (Figure 6.4b 

and 6.4c), which were created from an original topography maps (Ritter, 1992) using ArcMap 10. The 

DEMs in different years after the rehabilitation showed different extents of the channel network 

development in this basin. 

Rainfall: two observed rainfall events, with each in year 1 and 6 after the rehabilitation, were selected 

for model application. These rainfall events had temporally varied rainfall intensities, and thus were 

ideal for testing the model performance during complex rainfall conditions.  

Interception: due to the lack of LAI information for this basin, the interception could not be calculated. 

However, since the average vegetation cover in this basin was low (< 20%), the maximum interception 
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would be only 0.4 mm with an LAI of 2 according to Equation (5.3). Compared to the total rainfall 

amount (8.4 mm and 12.7 mm), this part was negligible and thus not included in this simulation. 

Infiltration: Based on the intermittent rainfall type and the available data, the modified Holtan 

infiltration equation (Table 5.1) was used in this simulation, with its measured input parameter values 

for each unit at different years shown in Table 6.2.  

Manning’s n: Different Manning’s n values were used for the different land units and the channels, 

as suggested by Ritter (1990) and shown in Table 6.2. 

Model settings: 1 m × 1 m cell size was set for the simulation, with 1.01 × 105 cells in total covering 

the whole basin. Based on the method introduced in section 2.3, an estimated time step value of 1.37 

s and 0.33 s, which equals to the calculated 99% percentile, was selected for the simulation in the year 

1 and 6, respectively. The latter smaller value can be explained by the larger flow velocity in the 

developed channels.  

Table 6.2 Measured Infiltration Input Parameters and Manning’s n for Runoff Simulation in Pine Glen 

Basin a 

Unit 𝑖𝑓 (mm h-1) 𝑖0 (mm h-1) P 𝜑 (%) 𝜃0 (%) FC (%) D (mm) Manning’s n 

Year 1 

1 60.00 64.50 0.55 43.00 6.45 21.50 100.00 0.25 

2 10.00 64.50 1.00 30.00 4.50 15.00 25.00 0.10 

3 10.00 64.50 1.00 30.00 4.50 15.00 25.00 0.10 

4 10.00 64.50 1.00 30.00 4.50 15.00 25.00 0.10 

5 10.00 64.50 1.00 30.00 4.50 15.00 25.00 0.10 

Year 6 

1 60.00 64.50 0.55 43.00 6.45 21.50 100.00 0.25 

2 9.00 63.50 10.00 27.00 4.05 13.50 25.00 0.05 

3 20.00 70.40 1.00 30.00 4.50 15.00 25.00 0.075 

4 22.00 62.00 4.00 43.00 6.45 21.50 25.00 0.05 

5 13.20 71.00 10.00 28.00 4.20 14.00 25.00 0.25 

Channels        0.05 
a 𝜃0 represents the initial soil moisture, and all the other symbols are the same as those in Table 5.1. 

 

6.4.3 Model validation 

The observed hydrograph for the chosen rainfall events, together with the simulated hydrographs based 

on the different flow-direction options, are demonstrated in Figure 6.5. It can be seen that the predicted 

hydrographs based on the 4+4N option agree best with the measured hydrographs in both runoff 

events, with the EF values greater than 0.913 and RMSE values less than 0.183 mm h-1. The 
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hydrographs derived from the 4N option showed similar trends, however, they tend to underestimate 

the runoff rates. The reason for this can be found from the close examination of the flow maps as 

shown in Figure 6.7. It can be seen that after 30 min of the rainfall event in year 6, there was still a 

portion of excess runoff trapped in the channels or small pits instead of flowing to the outlet, due to 

the limited flow directions to the cardinal neighbours of the 4N option. On the contrary, much less 

trapped water flow was observed in the according flow map derived from the 4+4N option. The 8N 

flow-direction option failed here (EF<0.124) in describing the shapes of the hydrographs, by 

overestimating the discharge rates and underestimating the durations of the runoff process. This may 

be attributed to the excessive flow divergence and unrealistic broadened flow pathways introduced by 

requiring water flow from a cell to all neighbour cells with smaller heights. These results are in line 

with our expectation that the 4+4N option is more accurate and realistic than the other two options as 

it controls the flow dispersion and at the same time maintains the eight possible flow directions. 

Therefore all the following model validation and sensitivity analysis are based on the results derived 

from this preferred option.   

Event 1 occurred in the first year after the rehabilitation work, when no channel network was developed 

and relative low infiltration rates were observed on the newly established mine soils. Figure 6.6 shows 

the simulated flow maps at different time steps in this runoff event. It can be seen that with the 

increasing rainfall intensity, runoff was generated in an expanding area and tended to flow to and 

accumulated in the central lower part of the basin, from where it further travelled to the outlet at the 

bottom of the basin. The runoff then disappeared gradually after the rainfall stopped. Due to the 

dominant overland flow process in this basin, the resultant hydrograph was characterized by low peak 

discharge rate, long lag time and gradual rising and recession limbs (Figure 6.5a). All these 

characteristics were captured by the predicted hydrograph, indicating the model capacity in describing 

the overland flow.  
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Figure 6.5 Observed discharge rates and simulated hydrographs based on ANSWERS and different 

flow-direction options of RunCA for two rainfall events in the year 1 and 6 after rehabilitation. 

 

The infiltration capacity of mine soil recovered gradually within six years following rehabilitation, and 

in the meantime the channel network initiation and maximum expansion in this basin occurred. The 

resultant simulated flow maps in the year 6 are shown in Figure 6.7. It can be observed that the changes 

in runoff area and depth both responded quickly to the changes of rainfall intensity, and the channels 

captured and transmitted a majority of the produced runoff. Due to the dominant channelized flow 

process, which has higher efficiency for removal of surface runoff from the basin than the overland 

flow process, the observed hydrograph for this rainfall event exhibits a short lag time and time to peak, 
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steep rising and recession limbs and high instantaneous peak discharge (Figure 6.5b). Comparison of 

the hydrographs shows that the predicted and measured slopes of the rising limbs matched well, as 

well as the peak discharge values and the times to peak discharge. The observed falling limbs, however, 

showed a slightly longer lag time than the predicted one, probably due to the contribution of the sub-

surface flow which is not considered in the current model, with the recovered infiltration capacity. 

Nevertheless, the general agreement of predicted and observed results demonstrated the model 

capacity in simulating the channelized flow. 

 

Figure 6.6 Simulated flow maps at different time steps for rainfall event 1 in the year 1. 
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Figure 6.7 Simulated flow maps at different time steps for rainfall event 2 in the year 6. The last two 

flow maps demonstrate the comparison of results derived from 4+4N and 4N flow direction options.  

 

The performance of RunCA were also compared to that of a well-known distributed physically based 

hydrologic model, ANSWERS (Beasley et al., 1980), in which the hydrologic response of any element 

in the basin is computed by an explicit, backward difference solution of the continuity equation, using 

Manning’s equation as a stage-discharge relationship for both overland and channelized flow (Beasley 

and Huggins, 1981). The model ANSWERS was chosen as its effectiveness in predicting surface 

runoff has been proven in a wide range of applications (Amin, 1982; Razavian, 1990; Sichani and 

Engel, 1990; Singh et al., 2006). Its performance was also found comparable to some other hydrologic 

models (Bhuyan et al., 2002; Borah et al., 2004; Walling et al., 2003). This model was also selected 

for its similarity of input parameters (e.g., infiltration parameters and Manning’s n) with RunCA, thus 

allowing the comparison of model performance by excluding the influence of errors in deriving the 

parameter values. The detailed information related to the input parameters and simulation process of 

ANSWERS for these two rainfall events can be found in Ritter (1990) and  Ritter (1992). Comparison 

of simulation results showed that there was no significant difference in the performance of ANSWERS 

and RunCA in the simulation of the hydrograph of rainfall event 1, although RunCA had a slightly 

larger EF value a smaller RMSE value (Figure 6.5a). However, ANSWERS produced obvious bias in 

simulating the hydrograph of rainfall event 2 by underestimating the lag time of runoff production 

following the rainfall (Figure 6.5b), while RunCA agreed much better with the observed discharge 
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rates. These results indicated an improvement of simulation accuracy by using RunCA instead of 

ANSWERS in this case study.  

 

6.4.4 Model sensitivity analysis      

To better understand the model response to the change in each input parameter and model setting, 

sensitivity analysis was performed, using runoff event 2. Three runoff output parameters that describe 

hydrographs and two infiltration output parameters (Figure 6.8) were used to evaluate the model 

responses. The infiltration parameter and Manning’s n values for year 6 in Table 6.2 were selected as 

the base values. Then four 20% decrements and four 20% increments from these base values were 

applied for the sensitivity analysis. In addition, the simulations based on eight cell sizes ranged from 

0.1 to 10 times of its original value were also performed.  

Figure 6.8 shows the model sensitivity analysis results, which are expressed as the percentage changes 

from the base output values. It can be found that the output parameters were all significantly sensitive 

to the change in the final steady infiltration rate 𝑖𝑓, indicating the importance of 𝑖𝑓 in this model. In 

addition, both peak discharge rate 𝑄𝑝 and time to peak 𝑇𝑝, the parameters determining the hydrograph 

shapes, were greatly influenced by the Manning’s n, due to its role in changing the flow velocity 

according to equation (5). The total drainage amount 𝐷𝑅𝑡  was also very sensitive to 𝜙,  FC and D, 

which is not surprising because they are all parameters for the modified Holtan equation as shown in 

Table 5.1. The change of spatial resolution to different directions had different impacts on the outputs. 

When reducing the cell side length to 0.1 m, the results were not significantly affected. But when 

increasing it gradually to 10 m, the total discharge 𝑄𝑡 and 𝑄𝑝 were greatly reduced, while 𝑇𝑝 and the 

total infiltration 𝐼𝑁𝐹𝑡 were increased. This can be due to the reason that large cell sizes lead to the loss 

of micro-topographic details and the channel information, and thus result in inaccurate outputs.   
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Figure 6.8 Model sensitivity analysis results at the basin scale. 𝑄𝑡 , 𝑄𝑝  and 𝑇𝑝  represents total 

discharge, peak discharge and time to peak discharge respectively, 𝐼𝑁𝐹𝑡  and 𝐷𝑅𝑡  represents total 

infiltration and total drainage respectively, n represents Manning’s roughness coefficient, while all the 

other symbols representing infiltration parameters are the same as those in Table 6.2. 
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6.5 Conclusions 

The efficacy of a CA-based runoff model (RunCA) was systematically validated by three steps. The 

comparison with the analytical solution proved the effectiveness of the calculation algorithms of 

RunCA in simulating the runoff distribution. The results of laboratory experiments on small plots 

showed that the model predicted the hydrographs with the average EF above 0.90 and RMSE below 

0.50 mm h-1. Its performance was not affected by varied soil or topographic conditions, but was most 

sensitive to the input final steady infiltration rate of soil, which could be measured directly in the field. 

Validation by field measurements at a basin showed that the 4+4N flow-direction option provided the 

best agreement between the simulated and measured hydrographs. The spatial distribution and 

temporal variation of the runoff process could also be described by RunCA, as reflected in the flow 

maps. RunCA showed better performance compared to ANSWERS in predicting the hydrographs in 

this case study. In addition to the steady infiltration rate, the modelling results at this large scale were 

sensitive to the Manning’s n because of the changed flow velocity, as well as to the setting of cell size 

due to the loss of topographic details.  

At current stage RunCA focuses only on the simulation of infiltration-excess runoff (Hortonian runoff) 

processes, thus it may produce some inaccurate results when applying it to the large scale study area 

where different runoff generation mechanisms (e.g., saturation-excess runoff or subsurface runoff) are 

dominant. For the validations in this study, the impacts of vegetation (e.g. interception) on surface 

runoff were not included due to lack of appropriate information or type of test. This needs to be further 

evaluated. As the main purpose of this chapter was to focus on the initial validation of the model, 

RunCA was only tested in limited case studies using limited rainfall events. Nevertheless, based on 

the results there is promising potential for successfully applying this model and evaluating its 

performance to other spatial or temporal scales and under more complex conditions.
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Chapter 7 Assessing Runoff Performance in a Rehabilitated 

Landform Using RunCA: a Case Study in Ranger Uranium 

Mine 

 

7.1 Introduction 

Surface runoff is recognized as a major contributor to many environmental issues, including soil 

erosion, flood, debris flow, landslide and pollutant transport. Whilst many previous studies have been 

conducted to understand and predict the runoff processes in the agricultural and other natural systems, 

limited effort has been made to the disturbed environment such as the mining areas, where the 

consequences of the excessive runoff could also be serious. At mine closure, rehabilitation work is 

often carried out to minimise the harmful impacts of mining and to restore the ecological functions of 

the environment. However, due to the extensive disturbance during the mining activities in terms of 

excavation, stacking and rebuilding, the rehabilitated landforms are often greatly altered from their 

original conditions and tend to be more vulnerable to the instability caused by surface runoff. In case 

of the use of covers for the encapsulation of contaminants, as a consequence erosion may expose 

hazardous material and deteriorate the water quality downstream by the sediment delivery, and even 

worse, a large amount of waste materials could be released to environment because of the destruction 

of the waste containment facilities (e.g., collapse of waste rock dumps and breakage of tailings dams). 

To prevent these detrimental consequences, optimised rehabilitation design and water management 

strategies are required to be developed on the basis of well predicted and assessed runoff behaviours.  

Various hydrologic models (or erosion models that incorporate a hydrologic component) have been 

developed over the past few decades and are available for the prediction of surface runoff. These 

models are basically classified into two groups. The first group is the lumped conceptual models which 

treat the study area as a spatially singular entity (Figure 7.1) and calculates runoff on the basis of 

lumped parameters according to some empirical relationships (Haan et al., 1982). Typical examples 

are SCS curve number (U.S.  Department  of  Agriculture, 1972) and CREAMS (Knisel, 1980). While 

these models are computationally efficient and widely applied, they are not able to capture the spatial 

information in the runoff processes. Besides, the empirical relationships developed for the natural 

environment cannot necessarily be applied to the mining context, where the substrates are often 

significantly different from natural conditions.  
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Figure 7.1 Schematic diagram for the structures of different types of hydrologic models. 

 

Another popular group of models are distributed physically based models. In some of these models the 

target area (usually the catchment) is represented by a network of hydrologic elements, such as a 

cascade of planes and channels (Figure 7.1) as in KINEROS (Smith, 1981), WEPP (Laflen et al., 1991) 

and EUROSEM (Morgan et al., 1998b). Since these elements are always simplified geometries with 

large size, they can only reflect the gross topographic features without local details, and thus may be 

not suitable for some small scale studies where the spatial heterogeneity needs to be considered, as in 

most mining areas. Numerical techniques, on the basis of solving the equations of continuity and 

momentum, are employed in these models to simulate the overland flows and channel flows. Some 

simplifying assumptions made to these complex equations led to the kinematic wave method and 

diffusion wave method, which both assume a uniform slope and a one-dimensional flow along the 

slope direction. Therefore, they tend to produce unexpected errors when these assumptions are not met 

under more complex topography conditions. 

With the development of remote sensing and GIS techniques, grid structures (Figure 7.1) are more 

frequently used in many distributed hydrologic models. These grids usually have much smaller sizes 

and therefore are expected to better represent the study area. More advanced numerical methods, such 
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as the two-dimensional diffusion wave method used in CASC2D (Rojas et al., 2003), have been 

developed to determine the runoff distribution among the grids. While these methods are able to 

describe the spatial variations in the runoff behaviours, the computational efficiency is greatly reduced 

because of the increased complexity in solving the mathematical equations and the larger number of 

hydrologic elements in these models. Alternative ways are the more straightforward elevation-based 

methods which determine the flow distributions simply according to the differences in the elevations 

among grids. These methods are generally based on the digital elevation maps (DEM), using different 

runoff routing algorithms to transfer the flow from a centre grid to one downslope neighbour (Fairfield 

and Leymarie, 1991; O'Callaghan and Mark, 1984) or multiple downslope neighbours (Costa-Cabral 

and Burges, 1994; Quinn et al., 1991; Tarboton, 1997). Despite of the great computational efficiency, 

these elevation-based methods tend to be oversimplified as they do not take into account the water 

component in the grids, and therefore they can only generate the fixed flow directions but cannot 

capture the dynamic flow behaviours.  

More recently, Cellular Automata (CA) has been employed for distributed hydrologic models. CA also 

has a cell/grid based structure, but different from DEM, it is a dynamic system that evolves at discrete 

time steps on the basis of the synchronous updates of the states of all the spatial cells. It is able to well 

capture the interactions among cells as the state of each cell depends on the states of its surrounding 

neighbour cells. Therefore, CA has been found very effective in simulating dynamic complex 

phenomena from local to global scale according to simple transition rules (Wolfram, 1984a), without 

solving any complex mathematical equations. Despite of a long history since it was first proposed in 

the 1950s (Von Neumann, 1966) and wide applications in many areas, CA has not been introduced to 

surface hydrologic modelling until the recent decade. Some CA based soil erosion and landform 

evolution models, such as RillGrow (Favis-Mortlock, 1998), EROSION-3D (Schmidt et al., 1999), 

SIBERIA (Willgoose et al., 1991) and CAESAR (Coulthard et al., 2000), were firstly proposed. They 

all incorporate a surface hydrology component, which however, is often simplified and only 

empirically based. Two more specific models were then developed by Rinaldi et al. (2007) and Ma et 

al. (2009) to simulate the steady state runoff in large plains and on hill-slopes, respectively, by 

assuming a spatially uniform flow velocity. Parsons and Fonstad (2007) proposed a more advanced 

CA model capable of simulating the unsteady flow conditions by introducing a timing to control the 

release of water stored in the cells. However, the performance of this algorithm was found to be largely 

dependent on the selection of the time step. The accuracy of this model is also restricted by the 

empirical calculation of runoff production and the four flow directions to cardinal neighbours that may 

cause the underestimation of flow divergence (Erskine et al., 2006).  
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To further improve the simulation accuracy, RunCA (Runoff Model Based on Cellular Automata) was 

proposed by Shao et al. (Shao et al., Under review) to simulate surface runoff at different scales. Since 

well-established infiltration models are incorporated in RunCA to calculate the runoff production and 

effective transition rules are developed to determine the unsteady state runoff process on the basis of 

cardinal-direction-priority principle, minimisation-of-difference algorithm and spatially varied flow 

velocities, RunCA is expected to be a large progress to the previous CA runoff models. Satisfactory 

performance of RunCA has been achieved when initially evaluating the model by analytical solution 

under simplified conditions, laboratory experiments at small plot scale and literature data in a natural 

basin (Shao et al., Under review). However, a detailed calibration and validation process for this model 

has not been reported. It also remains unclear whether the model would have the comparative 

performance under more complex conditions at the field scale and whether it would be applicable to 

the conditions of rehabilitated landforms in e.g. mining. In this study RunCA was further applied to 

simulate the surface runoff on a rehabilitated landform at a mine site in northern Australia. This 

landform was selected as it had a great extent of surface roughness caused by surface ripping and 

coarse waste rock materials, as well as complete sets of hydrologic data observed in multiple years 

with high measurement accuracies. The previous successful applications of the landform evolution 

models of CAESAR and CAESAR-Lisflood on this landform (Coulthard et al., 2012; Lowry J.B.C. et 

al., 2011; Saynor et al., 2012a) also laid a solid foundation for the runoff simulations by RunCA. The 

objectives of this study are (1) investigate how RunCA performs at the field scale for both event-based 

and long-term simulations through the calibration with the observed data and (2) assess the 

effectiveness of the proposed landform designs in controlling surface runoff by the simulation results.        

 

7.2 Materials and method 

7.2.1 Description of RunCA model 

RunCA is a surface runoff model developed based on the theory of Cellular Automata. It uses a two-

dimensional lattice consisting of square cells to partition the study area into small hydrologic elements. 

The cells located at the boundaries are treated as “closed” cells that prevent the runoff from flowing 

beyond the boundaries, while the cells at the outlet are “open” cells that allow the flow water to leave 

the study area and at the same time record the runoff amount. The Moore-neighbourhood type, which 

consists of eight adjacent cells in the four cardinal directions and the four diagonal directions from the 

centre cell, is employed in this model. 
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The state of each spatial cell in this model is expressed as the water depth, which varies both temporally 

and spatially, and is determined from the runoff production process. The amount of runoff produced 

in a cell at every time step is derived by subtracting the amount infiltrated into the soil and the amount 

intercepted by vegetation from the total input rainfall amount. Since infiltration is a very important 

component and also a rather complex process for partitioning the water entering the vadose zone from 

water running off on the ground surface, three infiltration routines are incorporated in RunCA on the 

basis of the modified Holtan model (Huggins and Monke, 1966; Huggins and Monke, 1968), modified 

Horton model (Aron, 1992) and modified Green-Ampt model (Bouraoui and Dillaha, 1996). These 

models have been proven very effective in simulating the infiltration processes during sequences of 

rainfall events (Shao and Baumgartl, Under review). They allow the infiltration recovery during the 

dry periods and thus enable RunCA to be applicable for both event-based and long-term simulations.  

The flow distribution among these cells are controlled by three transition rules. The first transition rule 

is to calculate the potential flows from each cell to its neighbour cells. It is based on the cardinal-

direction-priority principle, which means that the water has the priority to flow to its four cardinal 

neighbours, and it will flow to its diagonal neighbours only when there is no cardinal neighbour to 

flow. This helps to control the unexpected flow dispersion, and at the same time keep eight possible 

flow directions. The calculation of flow amount is based on the improved minimisation-of-differences 

algorithm. This means that the water always flows from the cells with greater heights (elevation + 

water depth) to those with lower heights to minimise their height differences to reach the most balanced 

conditions. No complex calculations are included in this process, which ensures the high computational 

efficiency of RunCA. Since in reality the actual flow amount is also determined by the spatially varied 

flow velocities, a second transition rule is then applied to incorporate the effects of flow velocity. The 

travel time for each flow is firstly calculated based on the Manning’s equation, and then this value is 

compared to the time step used for the simulation. If the time step is smaller than the calculated flow 

travel time, the actual flow amount needs to be further adjusted by multiplying a ratio between time 

step and flow travel time. This transition rule enables the model to simulate the unsteady state runoff 

process. The former two transition rules are both applied to the local neighbourhood area, however, 

from a global view, one cell not only discharges water, but also receives water from its neighbour cells. 

Therefore a third transition rule is used to calculate the total flow for each cell by the balance between 

outflow and inflows. Then the new water depth in each cell is updated by adding this total flow to the 

current water depth for the calculation of the next time step. Through the synchronous and continuous 

updating of all the cells in the lattice space, the temporal and spatial runoff behaviours can be 

described. The model structure and modelling procedure of RunCA is summarized in Figure 7.2. 
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Figure 7.2 Flowchart for the structure and modelling procedure of RunCA (Shao et al., Under review). 

 

7.2.2 Introduction to study site 

The study site is at Ranger Uranium Mine, which is operated by Energy Resources of Australia Ltd 

(ERA). It is located in the wet-dry monsoonal tropics, approximately 250 km east of Darwin, Northern 

Territory, Australia (Saynor et al., 2012a) (Figure 7.3). The average annual rainfall in this area is 1584 

mm (Meteorology, 2014), featured with high-intensity storms occurring between October and April 

(wet season) while virtually no rain falls during the remainder of the year (dry season). Therefore, high 

rates of runoff is expected in the wet seasons. The mine site is surrounded by the World Heritage-listed 

Kakadu National Park, and a broad expanse of floodplain and wetlands listed as ‘Wetlands of 

International Importance’ under the Ramsar Convention are located in its downstream area (Coulthard 

et al., 2012). Four surrounding catchments are potentially impacted by the surface runoff and 

associated erosion from the mine site (Figure 7.3). Given the aforementioned climate condition and 

regional significance, the current environmental requirements for Ranger Uranium Mine specify that 

“the rehabilitated site should have erosion characteristics which as far as can reasonably be achieved, 

do not vary significantly from those of comparable landforms in surrounding undisturbed areas” 

(Division, 1999). The rehabilitation design therefore must ensure that surface runoff and erosion from 

the mine site are well controlled to minimise the potential release of contaminants that would degrade 

the environment of surrounding areas. 
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Figure 7.3 Location of Ranger Uranium Mine and satellite imagery of the trial landform (Lowry et al., 

2014; Saynor et al., 2012a). 

 

To assist with the evaluation of the proposed landform designs and revegetation strategies for the mine 

closure at the end of mine life, a trial landform with a footprint area of approximately 8 ha (200 m × 

400 m), was constructed during late 2008 and early 2009 by ERA to the northwest of the tailings 

storage facility at Ranger mine (Figure 7.3). Two types of potential cover materials, waste rock alone 
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and waste rock blended with approximately 30% of laterite (a type of fine-grained weathered horizon 

material), were designed on this landform to test and compare their suitability as cap materials (Lowry 

et al., 2014; Saynor et al., 2012a). These materials were used because they were the main components 

of the uneconomic stockpiles at this mine site, while topsoil was not available as it was not stockpiled 

during mining (Saynor et al., 2012a). The constructed landform has a mean slope of 2%, and its surface 

was ripped along the contour using tynes attached to a large bulldozer (Figure 7.4a) (Lowry et al., 

2014; Saynor et al., 2012a), with the expectation to reduce surface runoff, enhance infiltration and 

conserve water for revegetation. The vegetation was planted along the rip lines using two different 

methods, with half of the area planted by direct seeding and the other half with tubestocks, for each of 

those two cover types.  

Four runoff plots, with each size of approximately 30 m × 30 m, were set up on the trial landform by 

the Supervising Scientist Division during the dry season of 2009. Two plots (plot 1 and 2) were 

constructed in the area of the waste rock cover, and the other two (plot 3 and 4) were in the area of 

mixed waste rock and laterite cover (Figure 7.3) (Coulthard et al., 2012; Lowry et al., 2014; Saynor et 

al., 2012a). Raised borders (Figure 7.6a) were built around these plots to prevent the runoff produced 

in the rest area of the landform from flowing into the plots. The purposes of setting up these runoff 

plots were to facilitate the measurement and assessment of the runoff and erosion performance of the 

proposed landform designs. Plot 1 and plot 2 (Figure 7.4), on the waste rock cover, were the focus of 

this study as they had the most complete sets of available measured and observed data.   
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Figure 7.4 Photos (a, b) of runoff plot 1 (dry) and plot 2 (wet) and their digital elevation maps (c, d).  

Figure (b) from Saynor et al. (2012b).   

 

7.2.3 Field observation and measurement 

Bulk samples of surface material were collected by Saynor and Houghton (2011) across the waste rock 

surface of the trial landform, at both the non-ripped areas between the rip lines and the top of the 

mounds formed by ripping (Figure 7.5a). Grain size analysis was conducted on these samples by the 

combined hydrometer and sieve method (Gee and Bauder, 1986) and the results for the grain size 

distribution of the waste rock cover are demonstrated in Figure 7.5b, which shows that the large 

fractions (> 0.2 m) accounts for more than 40% of the total amount. 

 

Figure 7.5 Bulk samples collection (a) (Saynor and Houghton, 2011) and grain size analysis results (b) 

for waste rock cover on trial landform (Lowry et al., 2014; Saynor et al., 2012a). 
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Digital elevation maps (DEM) of the runoff plots were produced by eriss (Environmental Research 

Institute of the Supervising Scientist) in June 2010 from the data collected by a Terrestrial Laser 

Scanner, with a horizontal resolution of 20 cm (Lowry et al., 2014; Saynor et al., 2012a). Then the 

DEMs were processed in ArcGIS 10.1 to remove the high points resulted from the capture of 

components of vegetation. Figure 7.4c and 7.4d show the final DEMs for plot 1 and 2, from which it 

can be seen that plot 1 has better defined rip lines than plot 2. Field survey of topography was also 

conducted and 14 rip lines were observed in each plot (a rip line consists of two mounds and a furrow 

created by ripping). The mean measured width of rip lines was 163 ± 20 cm for plot 1 and 171 ± 52 

cm for plot 2, and the mean height (measured from the top of mounds to the bottom of furrows) was 

15 ± 5 cm for plot 1 and 10 ± 4 cm for plot 2. 

As described in Saynor et al. (2012a) and Lowry et al. (2014), an exposed PVC drain was installed at 

the downslope border of each plot to divert surface runoff to the outlet of the plot, where continuous 

measurements are made in a 200 mm RBC flume which has a trapezoidal broad-crested control section 

(Figure 7.6a). Water height was measured in the control section by both an optical shaft encoder 

(primary sensor) and a pressure transducer (backup sensor). According to Saynor et al. (2012a), the 

runoff rates were then calculated from these recorded water heights using the equations derived by Bos 

et al. (1984) and Evans and Riley (1993). A tipping bucket rain gauge was also installed adjacent to 

each runoff plot for the measurement of rainfall rates. All the above data are recorded and stored in a 

data logger with mobile phone telemetry connection (Saynor et al., 2012a). Data at one-minute 

intervals and over four water years from 2009 to 2013, monitored and provided by eriss, was used in 

this study, with each water year defined as the period from 1 September to 31 August of the following 

year to facilitate the data analysis. In addition, the surface water content across the landform was 

measured by ERA continuously at 30-minute intervals with four Campbell scientific CS616 soil 

moisture probes horizontally buried at the depth of 5 cm, and another four vertically buried at 0-30 cm 

in plot 1. The soil moisture data was recorded by the Campbell data logger CR1000.  
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Figure 7.6 Runoff monitoring at outlet (a) and infiltration measurement using infiltrometers with large 

(b) and small (c) diameters on plot 1. Figure (a) from Saynor et al. (2012b), modified. 

 

In order to determine the hydraulic properties of this landform and the infiltration input parameters for 

RunCA, field infiltration measurements were carried out across the landform in September 2013, with 

the joint effort of ERA, the University of Queensland and Charles Darwin University. Due to the large 

width of the rip lines, four measurements were conducted on the rip lines at randomly selected areas 

on the waste rock cover, using a ring infiltrometer with a large diameter of 1 m (Figure 7.6b). Another 

four measurement were also conducted randomly on the non-ripped areas between the rip lines, using 

a smaller ring infiltrometer with a diameter of 0.4 m (Figure 7.6c). The falling head method was 

employed in all these measurements. Each measurement lasted until a stable infiltration state was 

reached, and then the final steady infiltration rate 𝑖𝑓  was calculated by averaging the last three 

measured infiltration rates. Core samples were also taken in the areas immediately adjacent to the 

infiltration measurements for the laboratory determination of various properties. Specifically, the total 

porosity TP was assumed to be equal to the saturated water content, which was reached by leaving the 

core samples in a tray filled with shallow water for 2-4 days, and field capacity 𝜃𝐹𝐶  was achieved by 

leaving the saturated core samples on a suction plate with 33 kPa (0.33 bar) suction pressure for 7 

days. Initial soil moisture 𝜃0, TP and 𝜃𝐹𝐶  were then determined by weighing the core samples before 

and after oven-drying at 105 °C for 24 h in the laboratory.  
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7.2.4 Statistical analysis 

As some of the infiltration parameters for RunCA are very difficult to measure directly, a curve-fitting 

procedure was used to derive their values on the basis of measured infiltration rates. The goodness of 

fit of the simulated infiltration curves to the observed data were assessed by both the coefficient of 

determination (R2) and the root mean square error (RMSE). R2 indicates how accurately the model 

tracks the variation of observed values, and its value can range from 0 to 1 (perfect fit). RMSE shows 

the amount of divergence of the model values from the observed values and its value close to 0 

indicates good agreement. R2 of the 1:1 fitting line in the scatter plots showing the predicted runoff 

volumes against the measured values was used to represent their agreement. Percentage error (PE) was 

also employed to reflect the under- or over-prediction and the magnitude of prediction error in the 

predicted runoff volume. In addition to RMSE, the Nash-Sutcliffe efficiency (EF) (Nash and Sutcliffe, 

1970) was used to evaluate the performance of RunCA in simulating the event-based runoff curves. It 

describes the proportion of the variance of the observed values that is accounted for by the model, and 

its value can vary from 1 (perfect fit) to negative infinity. The mathematical expressions used for these 

statistical analysis measures are: 
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where n is number of observations during the prediction period; 𝑂𝑖 and 𝑃𝑖 are observed and predicted 

values at each comparison point i; �̅� and �̅� is arithmetic mean of the observed and predicted values, 

respectively. 
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7.3 Results and discussion 

7.3.1 Observed rainfall and surface runoff 

The data of rainfall rates and runoff rates for runoff plot 1 and plot 2 during the four water years from 

2009 to 2013 was collected, processed and supplied by eriss. The observed results are demonstrated 

in Figure 7.7. It can be seen that the majority of rainfall happened in the wet season of each water year 

from September to April, with great variations in the rainfall rates (ranging from 0 mm h-1 to 384 

mm h−1). The monitored surface runoff rates from both plots showed corresponding changes to the 

varied rainfall rates. While most of the produced runoff rates were less than 20 mm h-1, a number of 

significantly higher rates were recorded in several extreme rainfall events, with the maximum runoff 

rate reaching 135 mm h-1 and 245 mm h-1 for plot 1 and plot 2, respectively.  

 

Figure 7.7 Observed rainfall and runoff rates for runoff plot 1 and 2 during four water years from 2009 

to 2013. 

 

Table 1 summarises the recorded annual rainfall and runoff for each water year. It can be seen that the 

two plots had very close annual rainfall values, with significantly larger rainfall amount observed in 

2010-11 than in other water years. Correspondingly, the annual runoff was the largest in 2010-11 for 

both plots, with larger volume of runoff produced in plot 2 than in plot 1 in each water year. An interval 

of three hours was employed in this study to define and separate rainfall events, in other words, each 

rainfall event only consisted of rainfall hiatuses that were less than three hours. This resulted in 304 

rainfall events in total for the four water years, with the number of events in each water year shown in 

Table 1. Plot 2 seemed to have larger mean event duration and runoff coefficient than plot 1, while 
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large ranges of values and standard deviations were derived for both plots (Table 1), demonstrating 

the varied characteristics of the observed rainfall events. According to the frequency analysis, more 

than 80% of the events had runoff coefficients less than 6% and 10% for plot 1 and plot 2, respectively. 

However, for some large events, the runoff coefficient could reach values as high as 80% for both 

plots. These large variations in the rainfall and runoff behaviours provided good opportunities to 

evaluate the accuracy of RunCA and assess the performance of the proposed landform designs under 

different conditions.  

Table 7.1 Statistical values for the observed rainfall events in the four water years from 2009 to 2013. 

Water 

year a 

Annual  

rainfall 

(mm) 

Annual 

runoff 

(mm) 

Number 

of events 

Event duration (min)   Runoff coefficient (%) 

Range Mean   Range Mean 

Plot 1 

2009-10 1528.1 77.7 68 15-534 113.1±104.2   0.7-14.2 5.6±2.5 

2010-11 2205.4 300.2 96 15-631 139.0±140.3   2.6-88.2 6.0±9.1 

2011-12 1481.0 101.2 78 16-713 87.5±127.6   2.2-40.3 5.4±4.4 

2012-13 1283.0 121.8 62 8-2135 88.1±275.8   1.2-29.9 4.6±4.3 

Plot 2 

2009-10 1531.5 132.0 68 26-543 156.2±114.3   1.1-22.3 8.0±4.0 

2010-11 2293.6 328.5 96 31-760 177.5±148.5   3.7-78.2 8.7±7.9 

2011-12 1531.4 166.3 78 26-1017 130.2±154.0   2.5-30.9 8.9±5.0 

2012-13 1274.2 196.4 62 13-2154 127.8±270.8   2.2-57.9 11.7±9.7 

a A water year is defined as the period from 1 September to 31 August of the following year 

 

7.3.2 Measured infiltration characteristics 

The results of infiltration measurements showed that the time to reach the steady infiltration rate ranged 

from 20 min to 35 min for rip lines, and 10 min to 22 min for non-ripped areas. These shorter time to 

equilibrium than those of most natural soils indicated a quicker decrease of infiltration rate on this 

waste rock cover, probably due to a relatively high proportion of large macropores in the coarse rock 

matrix.  
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Table 7.2 Summary of infiltration parameter values for field infiltration measurements conducted on 

waste rock cover. 

Measurement 

 No. 

Infiltration parameters a 
RMSE 

 (mm h-1) 
R2 𝒊𝒇 

(mm h-1) 

𝜽𝑭𝑪 

(m3 m-3) 

𝜽𝟎 

 (m3 m-3)  

TP 

(m3 m-3) 

a b 

(mm)  

D b 

(mm) 

Rip lines 

1 25.20 0.09 0.07 0.30 0.60 180 7.37 0.84 

2 24.00 0.12 0.09 0.26 0.50 90 5.09 0.84 

3 18.00 0.11 0.07 0.30 1.30 100 6.79 0.82 

4 30.00 0.09 0.08 0.26 2.50 120 7.76 0.95 

Mean 24.30 0.10 0.08 0.28 1.23 122.50 6.75 0.86 

SD 4.94 0.02 0.01 0.02 0.92 40.31 3.35 0.03 

Non-ripped areas 

5 7.50 0.08 0.06 0.23 0.75 100 9.38 0.83 

6 19.20 0.08 0.07 0.23 1.50 150 6.23 0.96 

7 12.00 0.06 0.06 0.21 1.50 50 5.00 0.96 

8 14.00 0.11 0.07 0.25 1.00 80 7.73 0.85 

Mean 13.18 0.08 0.07 0.23 1.19 95.00 7.08 0.90 

SD 4.85 0.02 0.01 0.01 0.38 42.03 1.90 0.07 
a 𝑖𝑓 : final steady infiltration rate (mm h-1); 𝜃0 : initial soil moisture (m3 m-3); 𝜃𝐹𝐶 : field capacity 

(m3 m−3); TP: soil porosity (m3 m-3); a: a constant (mm-0.4 h-1) in modified Holtan model; D: depth of 

control zone which affects the infiltration process (mm). 

b unmeasurable parameters determined by curve-fitting with observed infiltration rates. 

 

The three modified infiltration models employed in RunCA as introduced before were all used to 

describe the infiltration processes, and the modified Holtan model was found to best match the 

observed results and thus was selected for the further simulations in this study. Six input parameters 

are required to determine the modified Holtan model. Among these parameters, 𝑖𝑓, TP, 𝜃0
 and 𝜃𝐹𝐶  

were all determined from field observations or laboratory analysis. The other two parameter (constant  

a and control zone depth D), however, are very difficult to be measured directly and thus were 

indirectly derived by a curve-fitting procedure to the modified Holtan model with the observed 

infiltration rates. Table 7.2 summarise all the determined parameter values. It can be seen that within 

the group of rip lines or non-ripped areas, there was a range of values for each derived parameter from 

different measurements, but the standard deviation was not significant. This suggests a relatively 

homogeneous distribution of infiltration characteristics within each group. However, there were 

obvious differences in the parameter values between these two groups, with all parameter values larger 

in the rip lines than in the non-ripped area. This can be attributed to the effects of surface ripping on 
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enhancing infiltration on rip lines, and also the washing of fine materials by runoff from rip lines to 

non-ripped area, where the infiltration capacity was reduced due to this sedimentation. The small 

RMSE and large R2 values shown in the table indicate the capacity of the modified Holtan model in 

describing the infiltration processes, as well as the accuracy and reliability of the derived infiltration 

parameter values. Figure 7.8 also demonstrates that the simulated infiltration curves agreed well with 

the measured infiltration rates in two examples. 

  

Figure 7.8 Examples showing the agreement of simulated infiltration curves to the observed infiltration 

rates in the measurements conducted in rip lines (a) and non-ripped areas (b).  

 

7.3.3 Model sensitivity analysis 

As there were a range of values for each input parameter from different measurements across the 

landform, model calibration needs to be further conducted to optimise a set of parameter values. Before 

the calibration procedure, the model sensitivity analysis is required to be performed in order to 

understand how the modelling results would respond to the changes in the parameters and which 

parameters would have more important influences on the results, so that the priority of parameters to 

be calibrated can be identified. In this study, seven input parameters, including the six aforementioned 

infiltration parameters and the Manning’s roughness coefficient n, were included in the sensitivity 

analysis. Because of the observed differences between the rip lines and non-ripped areas, two different 

sets of input values were applied accordingly. The mean values of the infiltration parameters as shown 

in Table 7.2 were used as the base values. The base values for n were derived empirically from the 

guide values in EUROSEM (Morgan et al., 1998a), with 0.05 for the rip line areas and 0.03 for the 

non-ripped areas. Then five 10% increments and five 10% decrements were applied to these base 

values for runoff simulations. The total runoff volume was selected as the output parameter to evaluate 

the model responses. To investigate the model sensitivity under different rainfall conditions, all the 

observed rainfall events were ranked on the basis of rainfall intensity from the smallest to largest, and 
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then the three rainfall events at the 25%, 50% and 75% percentiles were selected to represent the small, 

medium and large rainfall events, respectively. The characteristics of the chosen events are 

summarised in Table 7.3. 

Table 7.3 Characteristics of the rainfall events selected for model sensitivity analysis. 

Event  

No. 
Date 

Rainfall intensity 

(mm/h) 

Duration 

(min) 

Total rain 

(mm) 

Runoff coefficient  

(%) 

208 29/1/2012 10.67 36 6.40 4.70 

252 30/11/2013 20.36 33 11.2 4.67 

73 28/10/2011 30.00 42 21.0 5.73 

 

The sensitivity analysis results are demonstrated in Figure 7.9. In general the model showed larger 

responses under higher rainfall intensity, and the model sensitivity was greater on plot 2 than plot 1. 

The simulated total runoff volume was more sensitive to the input parameters in the non-ripped areas 

than those in the rip lines, probably because of the more important role of these non-ripped in 

contributing surface runoff in this landform. The figure also shows that the changes in the parameter 

values, either increments or decrements, tended to have more significant impacts on the increase of 

total runoff volume than its decrease. In addition, the importance of different parameters in influencing 

the modelling results can be identified. Specifically, the model was most sensitive to TP and D, both 

parameters determining the substrate water storage capacity. a, 𝑖𝑓 and 𝜃0 had less significant impacts, 

while the modelling results were hardly impacted by FC or n.  
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Figure 7.9 Results for model sensitivity analysis using three rainfall events. 𝑖𝑓  is final steady 

infiltration rate (mm h-1), 𝜃0 is initial soil moisture (m3 m-3), FC is field capacity (m3 m-3), TP is soil 

porosity (m3 m-3), a is a constant (mm-0.4 h-1), D is control zone depth (mm), and n is Manning’s 

roughness coefficient. 

 

7.3.4 Calibration of model input parameters 

According to the sensitivity analysis results, the order of parameters for calibration can be determined 

on the basis of their influences from the largest to the smallest. With group I and II representing the 

rip line and the non-ripped area, respectively, then the model calibration was carried out in the order 

of TP(II), D(II), TP(I), D(I), a(II), 𝑖𝑓(II), a(I), 𝑖𝑓(I), 𝜃𝐹𝐶(II), 𝜃𝐹𝐶( (I), n(II) and n(I). 𝜃0 was not included 

here as it varied among rainfall events and was determined from the measurements of TDRs. 30 rainfall 

events were randomly selected from the 303 events in the four water years for the calibration purpose. 
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Statistical analysis showed that these rainfall events had large ranges of characteristics and thus were 

expected to well represent the whole set of rainfall events. The predicted total runoff values for all the 

calibration rainfall events were plotted against the measured values, and the coefficient of 

determination R2 of the 1:1 fitting line in the scatter plot was used to assess the results of calibration, 

with the larger R2 representing the better agreement between the simulated and observed results. The 

calibration of each parameter started from its mean value shown in Table 7.2, and then 5% increment 

or decrement was applied each time according to the simulation results and the sensitivity analysis 

results, until a largest R2 was reached or a minimum or maximum investigated value of this parameter 

in Table 7.2 was reached. This procedure optimised the parameter values and at the same time ensured 

that they remained in the ranges of the measurements, which made them reasonable. 

Table 7.4 Calibrated values of input parameters for the runoff simulations by RunCA. 

 𝒊𝒇 (mm h-1) a (mm) TP (m3 m-3) 𝜽𝑭𝑪 (m3 m-3) D (mm) n 

Plot 1 

Rip line 24.3 0.80 0.26 0.10 90 0.05 

Non-ripped area 12.9 0.75 0.21 0.08 50 0.03 

Plot 2 

Rip line 29.2 1.48 0.28 0.10 135 0.05 

Non-ripped area 7.9 0.75 0.21 0.08 50 0.03 

a 𝑖𝑓: final steady infiltration rate (mm h-1); 𝜃𝐹𝐶: field capacity (m3 m-3); TP: soil porosity (m3 m-3); a: a 

constant (mm-0.4 h-1) in modified Holtan model; D: control zone depth (mm); n: Manning’s roughness 

coefficient. 

 

The calibration results are displayed in Table 7.4, which shows that the calibrated values of parameters 

were larger in the rip lines than in the non-ripped areas on both plots. This indicates the larger 

infiltration capacities in the rip lines, which is in line with the investigated results in Table 7.2. Figure 

10a and 10d demonstrate that the total runoff predicted from the calibrated parameters matched well 

with the observed values, with large R2 values (0.981 for plot 1 and 0.980 for plot 2). Therefore, these 

calibrated parameter values are expected to lead to the highest simulation accuracies.  
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Figure 7.10 Scatter plots showing the simulated total runoff volumes against the observed values for 

calibration events (a) and validation events with runoff volumes less than 5 mm (b) and larger than 5 

mm (c). 

 

7.3.5 Runoff simulation using RunCA 

7.3.5.1 Event runoff volume  

On the basis of the calibrated input parameter values from the 30 calibration rainfall events and the 

measured antecedent soil moistures (ranging from 0.068 m3 m-3 to 0.269 m3 m-3) by the TDRs, RunCA 

was performed to simulate the surface runoff for the remaining 273 rainfall events for the validation 

purpose. Figure 7.10 shows the scatter plots of the predicted total runoff volumes against the observed 

values for all the validation events. Due to the large range in the total runoff volumes, the results were 

displayed in two separated figures (Figure 7.10b and 7.10c for plot 1, Figure 7.10e and 7.10f for plot 

2) for a better demonstration. It can be seen that the scatter plots all had high R2 values which were 

above 0.895, indicating no obvious differences between years or between the calibration and validation 

events Statistical analysis showed that the mean percentage error in total runoff volume (PE-TR) of all 

validation events was only -5.24% for plot 1 and -8.18% for plot 2. No significant correlation (P<0.5) 

was found between PE-TR and any of the event features, such as rainfall duration, rainfall intensity, 

total rainfall, runoff coefficient or total runoff volume. These results indicate that the model was able 
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to predict the event-based runoff volume produced on these runoff plots with satisfactory accuracies 

for different rainfall conditions. 

7.3.5.2 Event-based runoff curves 

Apart from the total runoff volume, RunCA also describes the temporally changing runoff rates. Figure 

7.11 shows some examples of the simulated runoff curves during the events with different rainfall 

conditions. Figure 7.11a demonstrates a rainfall event with relatively short duration and low rainfall 

intensity, where in general the simulated runoff curves agreed well with the observed runoff rates on 

both plots, with only minor differences during the recession limbs of the runoff curves. The rainfall 

event shown in Figure 7.11b also had a short duration but a higher mean rainfall intensity. As reflected 

in the large EF values and small RMSE values, the modelled runoff curves were able to capture the 

changes of the measured runoff rates on both plots, although the predicted values seemed to be more 

sensitive to the change of rainfall rates than the observed values. Figure 7.11c describes the results for 

a relatively long rainfall event which was featured by intermittent rainfall with low mean intensity. It 

can be seen that the runoff behaviours in the two plots were reasonably described by the model in the 

two major rain pulses and also in the major rain hiatus. The rainfall event displayed in Figure 7.11d 

had a similar duration with that in Figure 7.11c, but characterized by continuous rainfall with a larger 

mean intensity. The maximum rainfall rate reached values as high as 384 mm h-1 in this event, and this 

significant rainfall resulted in much larger runoff rates than those in most other rainfall events. While 

the peak discharge rates were slightly underestimated by the model in both plots, the simulated runoff 

curve was able to follow the overall trend of the observed results, especially during the runoff rising 

and falling (recession) phases. Comparison of simulated runoff curve with the measured runoff rates 

was conducted for all the validation rainfall events. The statistical analysis showed large mean EF 

values (0.693±0.129 for plot 1 and 0.683±0.140 for plot 2) and small mean RMSE values (0.548±0.272 

mm h-1 for plot 1 and 0.575±0.378 for plot 2) of all these events. Consequently, all the results have 

demonstrated the capacity of RunCA in simulating the temporally varied runoff rates in both plots 

under various rainfall conditions.  
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Figure 7.11 Simulated runoff curves and observed runoff rates for representative validation rainfall 

events with different durations and rainfall intensities. 
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7.3.5.3 Flow maps at different time steps 

In addition to the runoff curves, RunCA also creates flow maps at different time steps to demonstrate 

the spatial distribution of runoff behaviours. Figure 7.12 illustrates an example of rainfall event 277, 

where it can be seen that runoff was produced in an expanding area with a growing water depth as the 

rainfall proceeded. The majority of overland flow was accumulated in the rip lines which served as the 

temporal water storages, and the stored water flow disappeared gradually through infiltration with 

diminishing rainfall. In this case where the rainfall amount was small (11 mm), the depth of the trapped 

water in the furrows was smaller than the height of the mounds. Therefore, the flow paths to the outlet 

at the bottom left corner of the flow maps were discontinued by the rip lines, and only the small non-

ripped area at the bottom part of the plot became the major contributing area for runoff. This resulted 

in very low runoff rates ((< 3.2 mm h-1 for plot 1 and < 3.7 mm h-1 for plot 2) at the outlet. However, 

when a much more significant amount of rainfall was applied, as in the example of rainfall event 135 

(189.4 mm) demonstrated in Figure 7.13, the water accumulated in the furrows would grow deep 

enough to exceed the maximum storage capacity of these furrows and thus render the overtopping. As 

a result, not only the rip lines but also most of the non-ripped areas were inundated by the water flow, 

as shown in the flow map at the time of 35 min in Figure 7.13. This led to the formation of continuous 

runoff paths to the outlet and thus the significant runoff rates which were as high as 118.4 mm h-1 for 

plot 1 and 137.3 mm h-1 for plot 2. These results indicated that while the rip lines were effective in 

capturing water and reducing runoff during most of the rainfall events, their effects would become 

insufficient when overtopping happened in some extremely large rainfall events. Meanwhile, the 

accurate responses of the flow distributions to the rainfall conditions, as well as the good agreement 

of the flow maps to the observed situations (Figure 7.4b), both reflect the capacity of RunCA in 

describing the spatial distribution of runoff on this landform which has great topographic complexity.     
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Figure 7.12 Simulated flow distribution maps at different time steps for event 277 with small rainfall 

amount. 
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Figure 7.13 Simulated flow distribution maps at different time steps for event 135 with large rainfall 

amount. 

 

7.3.5.4 Long-term runoff simulation 

Abovementioned results have demonstrated the efficacy of RunCA in simulating event-based runoff. 

A continuous runoff simulation for the entire four water years was also conducted to predict the long-

term runoff behaviour on this landform and to evaluate the model performance for long-term 

simulations. The simulation results are displayed in Figure 7.14, which shows that the simulated 

cumulative runoff curve well followed the overall trend of the measured cumulative runoff curve, 

where the runoff volume increased mainly in the wet seasons and tended to stabilise at certain levels 

in the dry seasons. While moderate increments were observed for most of the time, three major rainfall 

events, with each occurring in the water year 2010-11, 2011-12 and 2012-13, respectively, contributed 

to the majority of the increase in the cumulative runoff. Simulation errors were mainly produced in 

these large rainfall events, leading to an overall underestimation of 43.3 mm and 42.6 mm at the end 
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of simulation for plot 1 and plot 2, respectively. Nevertheless, compared to the overall large cumulative 

runoff volumes (600 mm for plot 1 and 800 mm for plot 2), these simulation errors were insignificant 

and the ability of RunCA in simulating multi-year runoff behaviours was well demonstrated. 

Despite of the minor underestimation by RunCA, the accuracy of the simulated results was improved 

when compared to the results published by Saynor et al. (2012a), where the predicted cumulative 

runoff volume by CAESAR model for plot 1 was 3.5 times higher than the measured result. CAESAR 

is a landform evolution model primarily developed for the simulations at large spatial and temporal 

scales, and recently it has been downscaled to predict the runoff and erosion at this trial landform 

(Coulthard et al., 2012; Lowry J.B.C. et al., 2011). Its hydrologic component produces surface runoff 

when a lumped soil moisture storage exceeds an empirically calculated threshold value. This simplified 

runoff generation mechanism leads to some difficulties to account for the spatial or temporal changes 

in runoff production. This may be one of the causes for the significant prediction errors in the runoff 

volume. RunCA is based on well-established infiltration models for the description of the temporal 

variations (either decrease or increase) in infiltration capacity, which would contribute to the accurate 

prediction of runoff production. Different to CAESAR, which assumes a spatially uniform runoff 

velocity and thus only simulates the steady state runoff, RunCA is able to simulate the unsteady state 

runoff behaviours by calculating the velocity of flows from each of those spatial cells. In case of such 

complex landforms with great spatial variations in local topography, surface roughness and water 

depth, this is an advantage and improves the accuracy of prediction. However, the CAESAR-Lisflood 

model (Coulthard et al., 2013), an improved version of CAESAR by integrating the LISFLOOD-FP 

2D hydrodynamic model, is currently used to assess the runoff and erosion behaviours on this trial 

landform. Since the LISFLOOD-FP 2D flow model simulates runoff by solving a reduced form of the 

shallow water equations using a simple numerical scheme, the new CAESAR-Lisflood model has a 

much more stronger physical basis than the previous CAESAR model, and is expected to be more 

computationally efficient and generate more accurate prediction outcomes. The performance of 

CAESAR-Lisflood and RunCA will to be further compared and evaluated when the simulation results 

of CAESAR-Lisflood for runoff plot 1 become available.       
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Figure 7.14 Simulated and measured cumulative runoff for runoff plot 1 and plot 2 during four water 

years from 2009 to 2013. 

 

7.3.6 Landform optimization 

Runoff simulation results by RunCA have shown that the runoff produced during most of the observed 

rainfall events in the four water years were not significant, with low runoff rates (<10 mm h-1), small 

runoff coefficient (<10%) and thus low erosion risks. This can be attributed to the role of rip lines in 

capturing water flow and interrupting the runoff paths. Nevertheless, the three large rainfall events 

observed during this period still led to extremely high runoff rates and volumes, which reflects the 

insufficiency of the designed rip lines under these extreme conditions. As it is recognised that the 

majority of erosion typically occurs during a limited number of high-intensity events (Moliere et al., 

2002), the expected high erosion rates may further lower the mounds and infill the furrows and the 

areas between the rip lines, which would in turn increase the runoff and erosion risks and thus cause 

the instability of this landform in long-term. Therefore, different landform designs were tested in this 

study by increasing the height of the rip lines, with the intention to reduce runoff rates during extreme 

rainfall events and improve the landform stability. 

The mean height of the original rip lines (measured from the top of mounds to the bottom of furrows) 

were 15 cm for plot 1 and 10 cm for plot 2. Then their mean height was increased with a 15 cm 

increment at each time until the minimum runoff rates were reached. The recorded largest rainfall 

event in the four water years, event 135, was selected for the runoff simulations. Figure 7.15 shows 

the simulation results in the runoff plots with different landform designs. It can be clearly seen that for 

both plots the runoff rates decreased gradually with the raising rip line height. When the height 

increased to 90 cm at plot 1 and 85 cm at plot 2, a minimum runoff coefficient of only 7% and 15% 

was reached, respectively, which was a significant decrease from that of 81% and 77% on the original 
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landforms. This may be attributed to the reason that more water was captured and stored in the deeper 

furrows instead of flowing over the ground surface, leading to the decreased runoff rates. While these 

simulated elevated rip lines could help better control the surface runoff and thus erosion, it would not 

be physically or mechanically possible to achieve too high rip lines in practice, and it is also more 

costly to create higher rip lines due to the increased earthworks. It is therefore required to design the 

rip lines to a feasible height with an acceptable runoff rates during large rainfall events and also a 

minimised movement of materials. In this case, for example, a height from 45 cm to 60 cm would be 

recommended. 

  

Figure 7.15 Simulated runoff curves for the runoff plots designed with different rip line heights. RC 

represent runoff coefficient. 

 

7.4 Conclusions 

The performance of a Cellular Automata based runoff model, RunCA, was evaluated by the simulation 

of surface runoff in two runoff plots built on a trial landform at Ranger Uranium Mine, northern 

Australia. Rainfall and runoff rates were observed continuously for these plots in four water years from 

2009 to 2013. Infiltration measurements were also conducted on this landform using both large and 

regular ring infiltrometers to investigate the temporally and spatially varied infiltration rates, from 

which a range of infiltration parameter values were determined. RunCA was then parameterised by the 

model calibration process on the basis of the model sensitivity analysis results and the field derived 

parameter values. Runoff simulations for 273 observed individual rainfall events showed that RunCA 

was able to accurately predict the event-based total runoff volumes and well describe the temporally 

varied runoff rates under different rainfall conditions. The simulated water flow maps, which agreed 

with the observed situations, also demonstrated its ability in capturing the spatial variations in the 

runoff behaviours on this landform. The long-term simulation for the entire period of four water years 

indicated that the predicted cumulative runoff curve could well reflect the trend of the observed results, 
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although the model slightly underestimated the runoff volume in the largest observed rainfall event. 

All these results have proven the efficacy of RunCA in predicting the runoff performance on this 

complex rehabilitated mining landform.  

This trial landform was built to assess the stability, in terms of runoff and erosion performance, of the 

proposed landform designs for the mine closure. The surface of the waste rock cover was ripped along 

the contour with the intention to reduce surface runoff, enhance infiltration and conserve water for 

revegetation. Field investigation indeed showed a higher infiltration capacity in the areas of these rip 

lines than the non-ripped areas between them, due to the disturbance to the surface. Both the monitored 

and simulated results demonstrated that these proposed landform designs were able to control the 

surface runoff to very low levels, with runoff coefficients less than 6% and 10% for 80% of the 

observed rainfall events on plot 1 and plot 2, respectively. This can be attributed to the roles of the 

furrows in capturing and storing flow water and the role of the mounds in discontinuing the runoff 

paths. However, when the maximum storage capacity of these furrows was exceeded during several 

large rainfall events, the runoff became much more significant that the runoff coefficient reached as 

high as 88.2% and the maximum runoff rate reached 135 mm h-1. This contributed to the majority of 

cumulative runoff in these plots and led to high potentials for erosion and landform instability. To 

potentially address this issue, attempts have been made in this study to create virtual landforms by 

increasing the height of the rip lines. The resultant runoff was dramatically reduced with the elevating 

rip lines, according to the simulation results by RunCA. Therefore, it is suggested here that the current 

landforms may be subjected to great runoff and erosion risks under extreme rainfall events, and raising 

the rip line height can potentially solve this problem. RunCA can be used as a simulation tool to 

optimise the landform designs, however, field experiments are required to verify the predicted results. 

In conclusion, the results of this study have proven the efficacy of RunCA in simulating the runoff 

performance on a rehabilitated landform. It therefore shows potential to be used as an effective 

simulation tool for various purposes, for example, the optimisation of landform designs. 
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Chapter 8 Application of RunCA in Mined Land Rehabilitation 

Designs 

 

8.1 Introduction 

Considerable effort has been made towards the rehabilitation of mined land in order to minimise 

serious and long-lasting environmental and social impacts. However, many rehabilitation projects have 

failed because of the landform instability caused by the altered surface hydrology. In order to minimise 

the ‘footprint’ of waste materials generated from the mining process, many man-made structures, such 

as waste rock dumps, are often built as elevated structures with steep and straight outer slopes which 

may result in high surface runoff rates. Due to the extensive disturbance during the rehabilitation 

process, the physical properties of the rehabilitated soils are dramatically altered from their natural 

condition, and exhibit increase in bulk density, loss of soil structure and reduction in porosity. 

Consequently, new rehabilitated soils have the infiltration capacities that can be an order of magnitude 

lower than those of surrounding undisturbed soils (Jorgensen and Gardner, 1987; Lemieux, 1987), and 

are considered to have high runoff potential (Ritter and Gardner, 1993). In addition, the reduced 

vegetation covers in rehabilitated landforms also contribute to the increase of runoff, especially at the 

early phases of rehabilitation. The resultant excessive surface runoff may cause intense water erosion 

which in turn results in exposure of encapsulated contaminants, elevated sediment delivery and 

subsequent degradation of downstream water quality which would have negative impacts on 

surrounding environment and communities (Evans, 2000). Accelerated runoff would also lead to the 

increased soil and nutrients loss, as well as the water deficit which may cause revegetation failure and 

biodiversity loss (Haigh, 1992; Kapolka and Dollhopf, 2001; Nicolau and Asensio, 2000). More 

seriously, elevated runoff could render catastrophic destruction of waste containment facilities, such 

as the collapse of waste rock dumps and breakage of tailings dams, and hence release of large amount 

of waste materials to the environment and pose profound threats to the safety of local residents.  

Proper rehabilitation planning, including the landform designs and revegetation strategies, together 

with the suitable water management, could help minimize the potential harmful consequences brought 

by the runoff problems and thus improve the long-term landform stability. Hydrologic models are 

therefore required to predict and evaluate the hydrologic behaviours of different rehabilitation designs 

and strategies. Various models have been developed for this purpose, in which the lumped conceptual 

runoff models were first developed since the 1970s, typical examples being the SCS curve number 

(U.S.  Department  of  Agriculture, 1972) and CREAMS (Knisel, 1980). These models usually treat 
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the study area as a spatially singular entity, use state variables that represent averages over the entire 

area, and produce outputs at a single point according to empirical relationships (Haan et al., 1982). 

These models are computationally very efficient in calculating runoff and have relatively few input 

parameters. However, they would not be applicable for rehabilitation designs as they are not able to 

describe the spatially or temporally varied hydrological processes in rehabilitated landforms. Besides, 

they may require great effort in calibration as the mined land is significantly different from the location 

of their first development.  

To better describe the extent of spatial and temporal variability of runoff processes, some distributed 

physically based hydrologic models have emerged. These models are mechanistic models and usually 

make predictions by partitioning the target area into a series of small hydrologic elements. For example, 

the study area is represented by a cascade of planes and channels in KINEROS (Smith, 1981), WEPP 

(Laflen et al., 1991) and EUROSEM (Morgan et al., 1998b). In most distributed models, the collective 

behaviour of individual elements is simulated by integration of the continuity equation which treats 

outflow from an individual element as inflow into its adjacent elements, and the kinematic wave 

equation is widely used to simulate the movement of rainfall excess water. Although this has been 

shown to be a valid approximation for some overland flow scenarios, it is based on substantial 

simplifying assumptions and is rather complex to solve, leading to low computational stability and 

efficiency. Furthermore, most of these models were developed for catchment studies, therefore they 

may be inaccurate when simulating runoff at smaller scales, such as a waste rock dump or a tailings 

dam which are usually the basic units for rehabilitation designs. 

Another group of hydrologic models are elevation-based models, which determine the runoff 

distribution based on the elevation differences between adjacent elements. For example, in ANSWERS 

(Beasley et al., 1980) the outflow from an element is directed to adjacent elements in the direction of 

the steepest slope. In AGNPS (Young et al., 1989) flow directions are determined from digital 

elevation models (DEM). These elevation-based methods are very straightforward and 

computationally efficient. However, a major limitation is that they do not take into account the water 

component in each element. In reality it is actually the relative water surface heights, rather than the 

land surface elevations, that determine runoff patterns. Since the flow directions derived from these 

models are pre-determined and fixed, the dynamic flow behaviours, such as the overtopping and 

backflows which are important for landform designs, cannot be captured. 

Since the traditional hydrologic models all have their own limitations when applied to mined land 

rehabilitations, more advanced methods which can suit different spatial scales and at the same time 
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can simulate the spatially varied and dynamic runoff processes are required. Cellular Automata (CA), 

discrete dynamic systems composed of a set of cells in a regular spatial lattice, are promising approach 

worthy of investigation. Since the states of each cell depend only on the states of its neighbours and 

the global behaviour of the whole system is determined by the synchronous evolution of all the cells 

in discrete time steps, CA are very effective in simulating dynamic complex natural phenomena 

according to simple transition rules (Wolfram, 1984a). Proposed in the 1950s to investigate self-

reproduction (Von Neumann, 1966), CA have been widely applied in a large number of disciplines, 

but were not introduced into hydrology until Murray and Paola (1994) developed the first cellular 

braided river model. Later it was successfully applied to other hydrological processes, such as water 

flow in unsaturated soil (Folino et al., 2006) and ground water modelling (Ravazzani et al., 2011). 

However, rare studies have been focused on the application of CA in surface runoff. Some CA based 

land evolution models, such as GOLEM (Tucker and Slingerland, 1994) and CAESAR (Coulthard et 

al., 2000), incorporate a surface hydrology component which is usually simplified. Through proper 

calibrations, these simplified hydrology models in the land evolution models may be sufficient for 

large temporal scale simulations of landform evolutions. However, they may cause large errors for 

short-term simulations of runoff. Furthermore, these models may be not suitable for mining industry 

as they were developed for larger temporal scale simulations (thousands of years) which largely 

exceeds the life of a mine (usually about 30 years). Consequently, in this study a CA-based runoff 

model (RunCA) is developed for quantitatively predicting the spatially and temporally surface runoff 

processes in rehabilitated landforms. The examples of its application in mined land rehabilitation 

planning in terms of landform designs, revegetation strategies and cover constructions are also 

demonstrated. In this paper only conceptual studies are conducted on virtual objects, further work 

needs to be carried out to verify these results in comparison to real cases.   

 

8.2 Description of RunCA 

RunCA uses a two-dimensional lattice consisting of square cells to represent the study area. The 

Moore-neighbourhood, which consists of eight adjacent cells is employed in this model for the local 

calculations. The water is only allowed to flow away from the study area at the defined outlet located 

at the lower boundary.  

8.2.1 Cell states 

The cell state is expressed as the water surface elevation of each cell, which consists of both cell 

elevation and water depth. The cell elevation is considered constant during a rainfall event, while the 
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water depth varies both temporally and spatially, and is determined by the effective rainfall which is 

calculated by subtracting interception and infiltration from the input rainfall.  

Specifically, interception by vegetation is determined by both equation (1) developed by Aston (1979) 

and equation (2) developed by Von Hoyningen-Huene (1981) : 

 𝑃𝑐𝑢𝑚 = 𝑃𝑚𝑎𝑥 [1 − 𝑒𝑥𝑝 (−0.046𝐿𝐴𝐼
𝑅𝑐𝑢𝑚

𝑃𝑚𝑎𝑥
)]                                                (8.1) 

 𝑃𝑚𝑎𝑥 = 0.935 + 0.468𝐿𝐴𝐼 + 0.00575𝐿𝐴𝐼2                                               (8.2) 

where 𝑃𝑐𝑢𝑚  and 𝑅𝑐𝑢𝑚 is the cumulative interception (mm) and cumulative rainfall (mm) respectively, 

𝑃𝑚𝑎𝑥 is the maximum interception storage capacity (mm), and LAI is the leaf area index. From the 

cumulative interception, the interception increment at each time step is calculated by subtracting the 

𝑃𝑐𝑢𝑚 at a previous time step from that at the current time step. 

Infiltration controls the amount of water that will enter the unsaturated soil zone, and the amount that 

will flow on the ground surface as runoff, thus in many cases its prediction largely determines the 

accuracy of a hydrologic model. To make RunCA applicable to various rainfall conditions such as 

intermittent or multiple rainfall events, as well as various time scales including both short-term and 

long-term simulations, two improved infiltration models, the modified Horton equation (Aron, 1992; 

Bauer, 1974) and the modified Holtan equation (Huggins and Monke, 1966; Huggins and Monke, 

1968), that both allow soil drainage and infiltration recovery are incorporated in RunCA (Table 8.1).  

Table 8.1 Infiltration Equations Integrated in RunCA. 

 Infiltration rate Soil drainage rate 

Modified Horton equation 𝑖𝑡 = 𝑖0 + 𝑑𝑡 − 𝑘𝑆𝑡 𝑑𝑡 =
𝑖𝑓

𝑖0
𝑘𝑆𝑡 

Modified Holtan equation 𝑖𝑡 = 𝑖𝑓 + (𝑖0 − 𝑖𝑓) (
𝑆𝑡

′

𝜙𝐷
)

𝑃

 𝑑𝑡 = 𝑖𝑓 [1 −
𝑆𝑡

′

(𝜙 − 𝐹𝐶)𝐷
]

3

 

a 𝑖𝑡: infiltration capacity at time t, mm h-1; 𝑖0: initial infiltration rate, mm h-1; 𝑑𝑡: soil drainage rate at 

time t, mm h-1; k: infiltration decay factor in Horton equation, h-1; 𝑆𝑡: cumulative soil water at time t, 

mm; 𝑖𝑓: final steady infiltration rate, mm/h; 𝑆𝑡
′: soil water storage potential at time t, mm; 𝜙: total 

porosity, m3 m-3; D: control zone depth, mm; P: dimensionless coefficient relating decrease rate of 

infiltration capacity in Holtan equation.     
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8.2.2 Transition rules  

At each time step two transition rules are applied to determine the redistribution of water amongst the 

spatial cells. 

Transition rule A for allocating outflows to neighbours 

This first transition rule regulates how the water in a central cell flows to its neighbours in a 

neighbourhood area, and is developed based on the cardinal-direction-priority principle, improved 

minimization-of-differences algorithm and the calculated flow travelling time. 

Cardinal direction priority principle: The Moore-neighbourhood employed in this model allows the 

water in a cell to flow to eight different directions. However, the flow routing distance from the 

diagonal neighbours to the central cell is different from that from the cardinal neighbours (the 

neighbours in north, west, south and west directions), and it has been found to tend to produce wider 

flow pathways due to excessive flow divergence (Erskine et al., 2006). Therefore, a novel cardinal 

direction priority principle is proposed and used here, which means that the water in a cell has the 

priority to flow to its four cardinal neighbours, and it will flow to the four diagonal neighbours only 

when there is no cardinal neighbour to flow. This principle controls the flow dispersion and at the same 

time keeps the eight possible flow directions.   

Improved minimization of differences algorithm: the original minimization of differences 

algorithm was proposed by Di Gregorio (1999), and is based on a very straightforward principle that 

a dynamic system tends to evolve towards equilibrium conditions by flow of some conserved quantity 

in the central cell to its neighbours. Specific to this runoff model, in a local neighbourhood area the 

water always flows from the central cell to its lower-height neighbour cells, as shown in Figure 8.1 in 

order to minimize the height differences among cells to reach equilibrium conditions. In RunCA an 

improvement of the original algorithm is that two different cases are considered, that is, whether the 

water amount in the central cell is sufficient (case 1 in Figure 8.1) or not (case 2 in Figure 8.1) for all 

the calculated flows. 
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Figure 8.1 Illustration of the improved minimization-of-differences algorithm for calculating water 

flows from the central cell to its neighbour cells in a local neighbourhood area. AVE represents the 

average height of remaining cells; 𝐴𝑉𝐸′ is calculated from dividing the sum of central cell water depth 

and total heights of remaining neighbours by the number of remaining neighbours; 𝐻0 and ℎ0 

represents the height and water depth of the central cell, respectively; and f is the outflow from the 

central cell.  

 

Flow travelling time: the flow amount f calculated from the minimization-of-differences algorithm is 

based on the assumption of a constant velocity for all the flows. However, in reality the water flow 

velocity would be highly spatially and temporally variable due to the varied local elevation gradient, 

surface roughness and water depth. Therefore, the travelling time T for all the flows are calculated 

based on the Manning’s equation:  

 
2 1

3 2

D nD
T

V h s
                                                                              (8.3) 

where D is the flow travelling distance, V is flow velocity, n is Manning’s roughness coefficient, h is 

water depth in the central cell, and s is water surface slope. Then the calculated T is compared to the 

time step used for simulation. If time step is larger than T, which means there is sufficient time for the 

flow to finish travelling, then the actual flow amount remains equal to f. On the contrary, if time step 

is smaller than T, which means f cannot finish travelling in a time step, then only part of f can flow and 

the actual flow amount is further calculated by multiplying a ratio between time step and T. This allows 

RunCA to simulate the unsteady state runoff with spatially and temporally varied flow velocities. 
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Transition rule B for determining total flows 

At each time step transition rule A is applied to all the spatial cells, thus the outflow from each central 

cell to each of its neighbours can be determined. In the global view, each central cell is also one 

neighbour of its adjacent cells, thus it not only flows water out, but also receives water from the 

surrounding cells at the same time. Consequently a second transition rule is applied to calculate the 

total flow (the balance between outflow and inflows) for each cell. The calculated total flow could be 

positive if the sum of inflows is larger than the total outflow, or reversely negative. Then the new water 

depth and cell height are updated by adding this total flow to the current water depth for the calculation 

of the next time step. This allows the simultaneous update of the states of all the cells.      

Based on all the components discussed above, RunCA has been implemented in C++. Then the 

developed RunCA model was applied to several aspects of mined land rehabilitation design, as 

discussed in the following sections. 

 

8.3 Application of RunCA in mined land rehabilitation designs 

The examples included in this study for applying RunCA were landform designs for both hill-slopes 

and tailings dams, revegetation strategies and cover designs. These case studies were selected because 

they are of major interest when planning landforms for mine closure. They are also subjected to the 

risks caused by surface runoff and may have severe environmental consequences if not well managed.   

8.3.1 Hill-slope designs 

Hill-slopes are major surface runoff contribution areas in rehabilitated landforms and are most unstable 

due to their relatively large steepness. Many harmful environmental consequences, such as water 

erosion, landslide, discharge of pollutants and revegetation failure, are most likely to happen here. 

Therefore, proper hill-slope designs that include both grading and shaping are essential for 

guaranteeing the long-term landform stability. 
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Figure 8.2 Different shapes of batter slopes. 

 

In this study, four different slope shapes, including straight, concave, convex and S-shape profile, were 

created for a batter slope on a waste rock dump with a height of 40 m, a slope length of 200m, a width 

of 500 m and a gradient of 20% (Figure 8.2a-d). In addition, four 10 m wide benches were cut into the 

straight batter slope at a 2% gradient and a spacing of 40 m (Figure 8.2e). Then a 60 min rainfall event 

with a constant 30 mm h-1 rainfall intensity was applied to each of these batter slopes to simulate the 

surface runoff using RunCA. The resulted hydrographs (Figure 8.3a) showed that both the concave 

and S-shape slopes could reduce the runoff rates and increase the runoff duration when compared to 

the straight slope, while the convex slope did not have such effect. This can be explained by the fact 

that the runoff velocity may decrease downslope as the gradient decreases on a concave or S-shape 

hill-slope. The decreased flow velocity could reduce the risk for water erosion and thus increase the 

slope stability, as found by some previous studies showing that convex or linear slopes tended to have 

higher rates of erosion than concave slopes (Hancock, 2004; Toy and Chuse, 2005; Willard, 2010), 

and the concave and S-shape profiles were more stable than the convex and straight profile (Nicolau, 

2003; Toy and Black, 2000). Furthermore, the reduced runoff velocity and increased runoff duration 

also allowed longer time for runoff to infiltrate into soil, which on one hand reduces the runoff rate, 

and on the other hand increases the water supply for plants. Despite of the advantages of concave and 

S-shape profiles, they are considerably more difficult and costly to construct than straight slopes 

because of the greater manoeuvring problems of earth-moving machinery (Hancock et al., 2003; Toy 

and Black, 2000). Placing benches is another popular option when reconstructing batter slopes. 

Simulation results in this study indicated that these benches could reduce the runoff rates as well as 

the runoff coefficient, probably attributed to their role in capturing and trapping runoff and thus 

reducing flow velocity and volume moving downslope. However, Gyasi-Agyei and Willgoose (1996) 

 
(a) Straight (b) Concave (c) Convex 

(d) S-shape (e) Benches 
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pointed out that the potential risk of failure for these benches over the long term may channel water in 

concentrated flow paths and lead to severe gullying.  

Five slope gradients were also evaluated for both concave and straight batter slopes, with results shown 

in Figure 8.3b and 8.3c. A gentlest hydrograph was produced on the flattest concave slope (10%), 

featured with the lowest peak runoff rate and the longest runoff duration. Runoff rates increased with 

the gradually increased slope gradient to 40%, while no obvious change was observed when further 

increasing gradient to 80%. Similar trends were found for the straight slopes, however, the responses 

were less significant. This can be explained by the reduced flow velocity on flatter slopes, which would 

increase the time for water to infiltrate and thus increase the infiltration rate (Haggard et al., 2005; 

Huat et al., 2006), and would also reduce the erosion rate and thus increase the slope stability (Silburn 

et al., 1991; Silburn et al., 1990; Toy and Chuse, 2005). Nevertheless, the reduced slope gradient could 

result in the undesired expanded waste pile footprints. Therefore, in practice it is required to reconstruct 

the batter slopes to a most suitable gradient with an acceptable stability and also a minimized occupied 

area. RunCA provided such a simulation tool for the slope designs. 
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Figure 8.3 Hydrographs of (a) 20% gradient slopes with different shapes; (b) concave slopes with 

different gradients and (c) straight slopes with different gradients. 

 



Chapter 8 

 

169 
 

8.3.2 Tailings dam landform designs 

Tailings dam is another common and important containment structure in the mine site that occupies a 

large area and contains contaminants such as metals (Carlsson and Büchel, 2005) and radioactive 

materials (Bollhöfer et al., 2008; Lottermoser and Ashley, 2006). The surface cover is usually built in 

the rehabilitation process on the tailings dam to isolate the contaminants and prevent the degradation 

of downstream water quality. The stability of this facility, however, is threatened by heavy rainfall and 

the resultant high runoff rates, which may lead to serious issues, such as the exposure of encapsulated 

contaminants and the failure of tailings dams caused by landslide or collapse. Therefore, a suitable 

landform design and water management strategy is essential to prevent these detrimental 

consequences. 

In this study a virtual 400 m × 400 m rehabilitated tailings dam (Figure 8.4a) was created at a gradient 

of 2% for evaluating the effectiveness of different landform designs. Embankments were built along 

the edges to prevent water flowing out of the tailings dam. An 8 m wide outlet was placed at the lowest 

corner to drain the runoff away. Then RunCA was performed on this tailings dam to simulate surface 

runoff during a 30 min storm with a constant intensity of 60 mm h-1. The simulated flow map at the 30 

min (Figure 8.4I) showed that large volume of flow water was accumulated and flowing along the two 

lower sides, which may increase the risk of dam failure, such as overtopping and the breakage of 

embankments which would release a significant quantity of waste (could be thousands of tons) to the 

natural environment. These concentrated flow pathways also resulted in a hydrograph with a high peak 

discharge rate (Figure 8.5), which requires a wide and deep drainage structure at the outlet and thus 

increase the construction costs. To potentially overcome these problems, different numbers of mounds 

were created on the flat dam surface. These mounds were 5 m high and their sizes and distribution 

were shown in Figure 8.4b and 8.4c. As expected, flow maps from these landforms showed that the 

existence of mounds could help reduce the surface water level along the embankments by trapping a 

portion of runoff (Figure 8.4II and 8.4III). The delay of flow to reach the outlet by these mounds also 

reduced the peak discharge rates and increased the runoff duration (Figure 8.5). The two landform 

designs with different numbers and sizes of mounds, however, did not show obvious differences in the 

flow maps or hydrographs, probably because they had the same total covering area (0.04 km2) in this 

study. 
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(II) (b) 2X2 mounds 

 

(III) (c) 3X3 mounds 

 

(IV) (d) Parallel ripping 
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Figure 8.4 Tailings dams with different landform designs (a-f) and their simulated flow maps (I-VI) at 

30 min. 

 

Another type of landforms evaluated in this study were the ripped surfaces. Rip lines (profile shown 

in Figure 8.6) were created on the tailings dam surface at a spacing of 20 m. Three landforms with 

different rip lines distributions, namely parallel, vertical and diagonal directions as shown in Figure 

8.4d-f, were included in the runoff simulations. The former two landforms generated similar flow 

maps, featured by runoff flowing along the rip lines and accumulated at the lower ends (Figure 8.4IV 

and 4V). The rip lines could catch and store a portion of runoff, thus resulting in gentle hydrographs 

with low runoff rates and long runoff durations (Figure 8.5). However, the large volume of water 

accumulated at the lower end would exert large pressures to the embankment at that side. This issue 

did not exist in the landform with rip lines at the diagonal direction. Since all these rip lines were 

parallel to the slope descending direction, the trapped water would not flow along the rip lines to either 

end, or flow out until the rips were filled up (Figure 8.4VI). The hydrograph produced from this 

landform displayed extremely low runoff rates, which on one hand would be benefit for reducing the 

erosion risk, but on the other hand would also lead to excessive water infiltrated downwards into the 

waste materials, thus increasing the risk for seepage and associated acid drainage issues.        

 

(V) (e) Vertical ripping 

  

(VI) (f) Diagonal ripping 
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Figure 8.5 Hydrographs of tailings dams with different landform designs. The curves of parallel 

ripping and vertical ripping are overlapped due to their similar runoff behaviours. 

 

 

Figure 8.6 Profile of ripping lines on the tailings dam. 

 

By comparing runoff simulation results from different tailings dam landform designs, the mounds, 

which can reduce runoff rates without trapping much water on the surface, are recommended to be 

used in humid regions where the principal objective is runoff control to minimize erosion and dam 

failure risks. The rip lines parallel to the slope descending direction, which can reduce runoff rates and 

at the same time accumulate large volume of runoff in them, are recommended to be used in arid and 

semiarid regions where the main purpose is water conservation to increase water supply for vegetation.  

 

8.3.3 Revegetation strategies 

In addition to the topography of landforms, vegetation has also been found to have influences on 

surface runoff by intercepting and storing rainfall (Owens et al., 2006), improving soil structure and 

thus infiltration (Puigdefábregas, 2005), and increasing surface roughness and thus reducing the flow 

1 m 

1 m 
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velocity (Dunne and Dietrich, 1980). However, how revegetation designs, such as the vegetation 

coverage and distributions, would affect the runoff processes in rehabilitated landforms have been 

rarely studied.   

Table 8.2 Modified Holtan infiltration equation parameter values for both bare areas and vegetation 

covered areas a 

 
𝒊𝒇  

(mm h-1) 

𝒊𝟎  

(mm h-1) 
P 

𝝓  

(%) 

𝜽𝟎 

 (%) 

FC  

(%) 
Manning’s n 

D  

(mm) 

Bare 20 60 4 40 5 20 0.05 80 

Vegetated 60 100 4 50 5 25 0.1 100 

a All the symbols representing infiltration parameters are the same as those in Table 8.1. 

 

In this study a 200 m long, 500 m wide, 40 m high and 20% steep virtual batter slope was created for 

revegetation. Plants were designed on the slope in rows or columns, with their total coverage ranged 

from 0% to 80% (Figure 8.7). Rainfall events with a constant intensity of 40 mm h-1 and a duration of 

60 min were applied for runoff simulation on these slopes. A larger set of infiltration, interception and 

Manning’s roughness parameter values was applied to the ‘vegetated’ cells according to the previous 

findings (Table 8.2). Not surprisingly, simulation results showed that runoff coefficient decreased 

gradually with the increasing vegetation covers for both the vegetation planted in rows and columns 

(Figure 8.7). This confirms the role of vegetation in controlling the surface runoff. A further finding 

was that under the same vegetation coverage, runoff coefficient was smaller when plants were in rows 

than in columns, suggesting that the distribution of vegetation would also impact the runoff process.       
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Coverage: 10%; RC: 25.67%                                                   Coverage: 10%; RC: 30.85% 

       

Coverage: 20%; RC: 17.75%                                                   Coverage: 20%; RC: 27.43% 

       

Coverage: 40%; RC: 5.69%                                                     Coverage: 40%; RC: 20.57% 

       

Coverage: 80%; RC: 1.95%                                                      Coverage: 80%; RC: 6.86% 

Figure 8.7 Batter slopes with different vegetation covers and their runoff coefficients (RC). 

 

Therefore, more revegetation designs with different plants distributions were further assessed. As 

shown in Figure 8.8, all the slopes have the same 40% vegetation coverage but different distribution 

patterns in rows, columns or patches. Comparison between different vegetation positions (Figure 8.8a-

c) indicated that the slope with vegetation distributed on the lower position had the smallest runoff 

coefficient. This may be explained by the positioning of the lower vegetation, which produces larger 

volume of runoff at the upslope bare area than what can infiltrate into the vegetated area or can be 

retained by the plants. Different numbers of vegetation rows were also compared, and the results 

showed less runoff was produced when increasing the number of rows from 1 to 8. This can be 

attributed to the fact that each row of vegetation could increase the slope surface roughness and 

performed as a ‘decelerator’ to reduce the flow velocity. Therefore, the increased number of vegetation 

rows would allow more time for the flow water infiltrating into soil and reduce the runoff volume. The 
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reduced flow velocity could also help reduce the erosion rate. The change of the number of vegetation 

columns, however, did not have any impact on the runoff results as most runoff was produced and 

flowing downslope on the bare area between vegetation columns. Different numbers of vegetation 

patches were also investigated. The increased patches had limited effect in reducing the runoff 

coefficient, and they tended to generate less runoff than the vegetation columns but more than the 

rows. Besides, it should be noted that the vegetation columns or patches could lead to concentrated 

flows between vegetated areas and thus increase the risk for soil erosion and slope instability. 

       

              (a) 1 row on upper slope; RC: 20.90%                                       (b) 1 row on lower slope; RC: 3.28% 

       

             (c) 1 row on middle slope; RC: 10.71%                                              (d) 1 column; RC: 20.57% 

       

                              (e) 2 rows; RC: 7.35%                                                         (f) 2 columns; RC: 20.57% 

       

                          (g) 4 rows; RC: 5.07%                                                               (h) 4 columns; RC: 20.57% 

       

                            (i) 8 rows; RC: 4.70%                                                              (j) 8 columns; RC: 20.57% 
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                         (k) 2X4 patches; RC: 11.89%                                                       (l) 4X8 patches; RC: 10.13% 

Figure 8.8 Batter slopes with a vegetation coverage of 40%, but different vegetation distributions and 

their according runoff coefficients (RC). 

 

Above results suggest that the increased vegetation cover can help control the surface runoff on the 

batter slopes. Large number of vegetation strips perpendicular to the slope descending direction are 

recommended as they are most effective in reducing the runoff coefficient, and are also expected to 

reduce the erosion rates by slowing down the runoff and preventing concentrated flows.          

 

8.3.4 Cover constructions 

In the rehabilitation process, surface covers are usually built on tailings dams or waste rock dumps to 

work as a physical barrier (Gatzweiler et al., 2001; Leoni et al., 2004; O’Kane and Wels, 2003), with 

the aim to isolate the contaminants, prevent the degradation of downstream water quality and provide 

the substrate for plant growth. The performance of covers would vary significantly according to their 

properties such as the component materials and thicknesses, and poor designs may cause the 

unbalanced hydrologic behaviours and thus the failure of a cover system. For example, elevated runoff 

and erosion rates could lead to the exposure of encapsulated contaminants or the failure of revegetation, 

while the excessive infiltrated water would result in contaminated seepage and acid drainage issues. 

Since RunCA simulates various hydrologic processes including surface runoff, infiltration process and 

soil drainage, it can be potentially used to access the hydrologic performance of different cover 

designs. 

Table 8.3 Modified Holtan infiltration equation parameter values for different cover materials a 

 
𝒊𝒇  

(mm h-1) 

𝒊𝟎  

(mm h-1) 
P 

𝝓  

(%) 

𝜽𝟎 

 (%) 

FC  

(%) 
Manning’s n 

D  

(mm) 

Waste rock 40 70 2 30 5 15 0.1 

0.125 - 14 Soil 20 60 4 40 5 20 0.05 

Spoil 10 30 8 30 5 15 0.025 

a All the symbols representing infiltration parameters are the same as those in Table 8.1. 
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In the study presented here, three types of covers constructed with waste rocks, soils and spoils, 

respectively, were built on a 200 m long, 500 m wide, 40 m high and 20% steep virtual batter slope. 

Nine different thicknesses varied from 0.125 m to 14 m were also evaluated for each type of cover. 

The Modified Holtan equation infiltration parameters (Table 8.1) for different materials, with their 

values empirically assumed to represent the infiltration characteristics of common waste rocks, soil 

and spoils, are shown in Table 8.3. Then a 60 min rainfall event with a constant 60 mm h-1 intensity 

was applied for runoff simulation using RunCA. The results are summarised in Figure 8.9. It can be 

seen that the covers constructed with waste rocks had the lowest runoff coefficient, due to their coarse 

texture and the resultant high infiltration capacities. On the contrary, the spoils, which consists of large 

amounts of fine particles, had very low infiltration capacity and produced the largest volume of runoff. 

With respect to runoff responses to the cover thickness, runoff coefficients of soil and spoil covers 

both decreased gradually with the increasing thickness. This can be attributed to the increased water 

storage capacity and in consequence the increased soil drainage rate according to the modified Holtan 

equation. However, less change in runoff coefficient can be observed after the thickness reached 2 m, 

indicating that the further increase of cover thickness had little effect on changing the hydrologic 

behaviours. The runoff coefficient of the spoil cover did not show a similar trend with the former two 

types, but stayed at a constant value when increasing the thickness. Reason may be that the spoil is 

very prone to superficial crusting (Nicolau, 2003) which may cause a large infiltration decrease rate 

(parameter P). As a result, most of rainfall (~80%) became surface runoff instead of infiltrating into 

cover or draining to deeper layers. Therefore, it is actually the top spoil layer, rather than the whole 

cover profile, that determines the hydrologic processes.  

 

Figure 8.9 Runoff coefficients of waste rock, soil and spoil covers with different thicknesses. 
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In addition to the above covers with the constant thickness along the slope, we also evaluated the 

covers with an increasing thickness from 0.125 m at the top to 2 m at the bottom of the slope (Figure 

8.10). Since this type of covers are very similar to the natural hill-slopes where the soil thickness is 

larger downslope because of the effect of deposition, they are expected to be more stable. Simulation 

results showed that the runoff coefficient for this type of waste rock cover and soil cover was 12.92% 

and 36.69%, respectively. These covers had an average thickness of 1.06 m, but their runoff coefficient 

values were smaller than those of 1 m constant thick covers (14.95% and 38.38%), and very close to 

those of 2 m constant thick covers (12.74% and 36.22%). This may be explained by two reasons. 

Firstly, the surface flow tends to accumulate downslope, and the larger infiltration capacity downslope 

(because of the larger depth) could allow more water to infiltrate and thus reduce runoff. Secondly, the 

reduced slope gradient would reduce the flow velocity and thus increase infiltration by allowing more 

time for flow to infiltrate. If using this type of cover instead of the cover with 2 m constant thickness, 

it can reduce the cost of earthworks for removing of about 93,750 m3 of material in this study. 

 

Figure 8.10 Schematic diagram of cover system with increasing thickness from top to bottom of slope. 

 

Assessing the hydrologic performance of covers using RunCA can help select the construction 

materials for varied purposes under varied climate conditions. It also facilitates the decisions from a 

rainfall-infiltration-runoff point of view on an optimum cover thickness which on one hand controls 

the surface runoff and erosion rates to an acceptable level and on the other hand may reduce 

construction costs. Covers with increasing thickness downslope are worth further investigation as they 

were found to be more efficient than the traditional covers, and at the same time would be more stable 

and would require less earthwork.        

 

 



Chapter 8 

 

179 
 

8.4 Conclusions 

RunCA is a novel hydrologic model that simulates the surface runoff by integrating cellular automata 

theories and basic hydrologic principles. It partitions the target area into a series of small spatial cells, 

and calculates the runoff production in each cell based on the balance of rainfall, interception and 

infiltration which is determined from various classical and modified equations. Flow distribution 

amongst these cells are regulated by three novel CA transition rules on the basis of the water surface 

elevations and the spatially varied flow velocities. The cell structure of RunCA can provide a better 

and easier representation of the study area than the elemental sections used in some distributed 

hydrologic models. The simultaneous update of states of all the cells at multiple time steps enables the 

model to capture the dynamic runoff behaviours. This model is also expected to be computationally 

more efficient than most traditional models as it does not need to solve any complex equations of 

continuity or momentum. Besides, instead of restricting to a certain spatial or temporal scale, RunCA 

can be applied in different spatial scales for both event-based and continuous simulations. 

Proper rehabilitation planning is essential to minimize the harmful consequences brought by elevated 

runoff and the resultant landform instability, and RunCA provides a valuable simulation tool for such 

purpose. Several examples of rehabilitation designs, including hill-slope and tailings dam landform 

designs, revegetation strategies and cover constructions, were demonstrated and discussed in this 

paper. Some conclusions from the RunCA simulation results, such as the positive relationship between 

runoff and slope gradients, different runoff responses to the slope shapes, the decreased runoff 

coefficient with increasing vegetation cover, and the low runoff production on covers constructed with 

high infiltrability materials, were all in line with the previous findings. This agreement has proven the 

applicability and efficacy of RunCA in assessing the hydrologic performance of different rehabilitation 

designs. In addition to these conclusions, some new findings were also derived from the simulation 

results. For example, building mounds and ripping surface could both help decrease the runoff rates 

on tailings dams and also reduce the water pressures at the embankments. However, their functions 

are different and thus are recommended to be applied to specific climatic regions. Plants grown in rows 

were more effective than those in columns or patches in controlling runoff rates on the slopes, and the 

efficiency increased with the increasing number of rows. Enlarging the thickness had an effect in 

improving infiltration and thus reducing runoff for the waste rock and soil covers, but not for the spoil 

covers which were prone to the crust formation on the surface. Furthermore, the covers with an 

increasing thickness from top to bottom of the slope was found more effective than the covers with a 

constant thickness, and they had another advantage in reducing the required earthworks. All findings 
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match observations and can be supported by reasonable explanations. However, further investigations 

(for example, field experiments) are required to systematically verify the model results.     
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Chapter 9 Conclusions, Contributions and Recommendations 

 

This chapter summarises the outcomes of this research and demonstrates how each of the research 

objectives has been addressed. The main research findings are presented and discussed in the context 

of how the thesis has contributed to our knowledge of critical aspects of surface hydrology. The chapter 

concludes with a summary of the limitations of this research and recommendations for future research.  

 

9.1 Summary of thesis 

The research problem identified in Chapter 1 stated that the stabilities of the rehabilitated landforms 

are often threatened by the excessive surface runoff due to the altered topography and surface hydraulic 

properties. The elevated runoff may be the cause for serious soil erosion, downstream contamination, 

revegetation failure and destruction of the waste containment facilities. It is therefore essential to 

minimise these environmental consequences through appropriate rehabilitation designs and water 

management. However, a review of literature in Chapter 2 recognised a deficiency in the understanding 

and estimation of the surface hydrological processes in the rehabilitated landforms. Typically, several 

research gaps have been identified in the affecting factors of surface hydrology, infiltration models 

and the determination of their parameters, as well as the methods for modelling surface runoff. To 

address these research problems and impediments, a research aim was proposed to “provide supportive 

information to achieve long-term stability of rehabilitated landforms by improving rehabilitation 

designs and water management on the basis of well understood and predicted surface hydrological 

processes”. Four research objectives were set up to achieve this aim. 

As soil infiltration is recognized as a major regulator of the surface hydrological behaviours, the first 

two objectives were both proposed to address the uncertainties in the determination of infiltration 

processes, with objective 1 being to identify the major controlling factors of infiltration process and 

quantify their relationships with infiltration parameters by small plot trials. This objective was 

proposed as it has been a challenging and time-consuming process to determine the input parameters 

for infiltration models due to the difficulties in the direct measurement of their values. This has greatly 

limited the application of these models for the prediction of infiltration and runoff. Therefore, a 

hypothesis was proposed that these parameters are affected by the soil, rainfall and vegetation 

characteristics and can be estimated from some of these dependent and readily measurable factors. To 

test this hypothesis, infiltration experiments were conducted on small plots using a field rainfall 

simulator at a UQ experimental farm located at Pinjarra Hills, Queensland, Eastern Australia (Chapter 
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3). Four well-established and widely applied infiltration models, including Philip, Green-Ampt, 

Horton and Holtan models, were investigated in this study and they were all found to be able to well 

describe the infiltration processes in continuous rainfall events under different site conditions. The 

effects of various factors on the input parameters of these infiltration models were also investigated, 

and the results showed that not only the soil properties, but also the vegetation and rainfall factors, 

have great impacts on these infiltration parameters. Then their relationships were quantified using the 

principle component analysis and linear regression analysis. Predictive regression equations for each 

infiltration parameter were further successfully developed on the basis of a full set of identified major 

controlling factors, as well as a simpler factor set including only five most readily obtainable factors 

(i.e., rainfall intensity, vegetation cover, plant height, initial soil moisture and saturated hydraulic 

conductivity).  

The second objective was to evaluate the performance of the modified infiltration models for the 

simulation of complex rainfall conditions. Some classical infiltration models have been modified or 

improved by previous studies to extend their applications from continuous rainfall events to more 

complex rainfall conditions. A systematic and comparative evaluation of their performance, however, 

has not been investigated. Therefore, based on the hypothesis that the performance of the infiltration 

models can be evaluated by the infiltration experiments conducted on small scale plots using the 

rainfall produced by the field rainfall simulator, three modified infiltration models were investigated 

in the experiments conducted at a UQ experimental farm located at Pinjarra Hills, Queensland, Eastern 

Australia (Chapter 4). The modified Holtan model (MHL) and modified Green-Ampt model (MGA) 

were both found to have satisfactory performance in describing the infiltration processes during a 

sequence of rainfall events with varied intensities, while the modified Horton model (MHR) tended to 

produce significant errors by overestimating the soil drainage rates and thus the recovery of infiltration 

capacity during the rainfall hiatuses. Hence improvement was further incorporated into MHR by 

introducing a constraint in form of field capacity and a reduction coefficient to its drainage formula. 

The improved MHR (IMHR) greatly increased the simulation accuracy and had comparative 

performance with MHL and MGA. This study also showed that the accuracy of these models were not 

affected by soil properties, rainfall intensities or topography conditions, but tended to decrease with 

increased vegetation cover.  

On the basis of the former two achieved objectives, a third objective was proposed to develop a more 

effective and universal surface runoff model by incorporating the evaluated infiltration models and 

Cellular Automata theories. This objective was proposed because of the limitations of existing runoff 

models in simulation accuracy, computational efficiency and scale flexibility, and the lack of 
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application of Cellular Automata (CA) in surface hydrology. A hypothesis was then proposed that the 

production and distribution of surface runoff can be simulated by linking the surface hydrologic 

properties (e.g., infiltration) with the CA method. The Runoff Model Based on Cellular Automata 

(RunCA) was thereby developed in this study (Chapter 5), which predicts the runoff production within 

each of the spatial cells by incorporating the previously evaluated infiltration models and simulates the 

runoff distribution among these cells based upon the cardinal-direction-priority principle, the improved 

minimization-of-difference algorithm and the calculated spatially varied flow velocities. The 

developed RunCA model was further verified and validated by a systematic procedure consisting of 

the analytical solution under simplified conditions, the laboratory experiments at small plot scale and 

the field measurements at large basin scale (Chapter 6). Promising model performance, in terms of 

simulation accuracy and computational efficiency, was achieved in all the tests with different spatial 

scales.  

After the development and initial testing of RunCA, a fourth objective was proposed to simulate the 

surface hydrological processes in rehabilitated landforms using the developed runoff model. This 

objective was proposed as the changed surface hydrology is a major threaten to the stability of the 

rehabilitated landforms, and the developed RunCA model was expected to improve the rehabilitation 

designs by providing a simulation tool to predict and assess the runoff performance. To achieve this 

objective, a case study was conducted at Ranger Uranium Mine, northern Australia, to simulate the 

surface runoff in two 30 m × 30 m plots on a trial rehabilitated mining landform using RunCA (Chapter 

7). The detailed model calibration procedure was demonstrated in this study, and the results from both 

event-based and long-term simulations proved the capacity of RunCA in precisely describing the 

temporal and spatial variations in the runoff behaviours on this landform. RunCA was also used to 

access the runoff performance on the virtual landforms with different heights of rip lines to optimise 

the landform designs for the closure of this mine site. In Chapter 8 the application of RunCA in more 

aspects of mined land rehabilitation designs, including hillslope designs, tailings dam landform designs, 

revegetation strategies and cover constructions, was further discussed by scenario analysis performed 

on virtual objects. The modelling results agreed with some previously finding, matched observations 

and could be supported by reasonable explanations. All these results have demonstrated the efficacy 

of RunCA as a simulation tool in assessing the surface hydrological behaviours in the rehabilitated 

landforms. 

On the basis of these addressed research objectives, the understanding and prediction of the surface 

hydrological processes in the rehabilitated landforms were greatly improved, which provided 

supportive information for the optimisation of rehabilitation designs and water management to 
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improve the long-term stability of these landforms. Therefore, the research gaps identified from the 

literature review were filled and the overall aim of this research was achieved. 

 

9.2 Contributions of this research 

Systematic evaluation of the classical and modified infiltration models 

The performance of four classical infiltration models, including two physically based models (Philip 

and Green-Ampt models) and two empirical models (Holtan and Horton model), was systematically 

evaluated on 1 m × 1 m field plots with different site conditions using continuous rainfall produced by 

a rainfall simulator (Chapter 3). The results showed that the performance of the two empirical models 

was slightly better than that of the two physically based model, probably due to the fact that the 

physically based models were initially developed from bare soil, without taking into account the 

surface conditions (e.g., vegetation) which would also have large influences on infiltration. 

Nevertheless, the simulated infiltration curves by the four models all well agreed with the observed 

infiltration rates, demonstrating their good efficacy in simulating the infiltration processes in this study. 

These models were also tested on 2 m × 1 m laboratory runoff plots by simulating the infiltration 

processes under different slope gradients and rainfall intensities (Chapter 6). Again satisfactory and 

comparative performance was achieved for all the four models. 

In addition to the classical models, three modified infiltration models, including the modified Holtan 

model (MHL), modified Green-Ampt model (MGA) and modified Horton model (MHR), were also 

evaluated on 1 m × 1 m field plots under more complex rainfall conditions (Chapter 4). Results showed 

that both MHL and MGA had satisfactory performance during a sequence of rainfall events. MHR, 

however, failed in accurately describing the infiltration processes due to its overestimation of soil 

drainage rate. MHR was then improved by applying a constraint that soil only drains water when soil 

moisture exceeds field capacity and introducing a reduction coefficient which equalled to 0.2 to the 

formula for calculating soil drainage rate. Improved MHR was found to significantly improve the 

simulation accuracy of MHR, and its performance was comparative to that of MHL and MGA. 

The evaluation of these infiltration models in this research have proven their good performance under 

different conditions and thus are recommended to be incorporated in hydrologic models to improve 

the outcomes for both event-based and long-term simulations.  

Improved understanding of the effects of various factors on soil infiltration behaviours 



Chapter 9 

 

185 
 

While numerous previous studies have been carried out to identify the effects of different factors on 

soil infiltration  (Dunne et al., 1991; Fox et al., 1997; Li et al., 2011; Mayor et al., 2009; Meek et al., 

1992), they were mainly focused on the lumped infiltration volume or the final steady infiltration rate, 

rather than the temporally changed infiltration behaviours which are important for the simulation of 

runoff. Therefore, in this research the effects of various controlling factors, including soil properties, 

vegetation features and rainfall characteristics, on different infiltration parameters were investigated 

by the infiltration experiments conducted on small field plots. Soil related factors were found to play 

the most important role as they had significant influences on all the investigated infiltration parameters, 

however, different soil factors were associated with different parameters. Vegetation factors, including 

vegetation cover, plant height and root content, also greatly influenced most of the infiltration 

parameters through their effects in intercepting and storing rainfall, protecting the soil surface against 

the impact of raindrops, reducing their kinetic energy, preventing surface sealing, improving soil 

structure and consequently enhancing infiltration. In addition, the rainfall intensity was found to have 

positive impacts on soptivity and initial infiltration rate due to its roles in determining the available 

water amount for initial absorption and infiltration. The increased rainfall intensity also led to an 

increased infiltration decay factor because of the rapidly decreased infiltration rate caused by the 

rainfall introduced surface sealing. As these infiltration parameters reflect the infiltration 

characteristics at different stages, the determination of the effects of various factors on these 

parameters contributed to a better understanding on how these factors influence the entire infiltration 

processes. These identified relationships also laid a foundation for the estimation of the input 

parameters of infiltration models from their controlling factors.   

Development of predictive equations for unmeasurable infiltration parameters 

The difficulties in determining input parameters, especially the unmeasurable parameters, have greatly 

limited the applicability of infiltration models for the simulation of infiltration and runoff behaviours. 

Effort was hence made in this research to estimate these parameters from more easily available or 

measurable controlling factors (Chapter 3). By conducting rainfall simulation experiments on small 

field plots with a large range of site conditions, the predictive regression equations were developed for 

the unmeasurable infiltration parameters from various soil, rainfall and vegetation factors. While these 

equations showed high efficacies, the determination of some factors was still time-consuming and 

costly. Therefore, a simplified set of predictive equations were further developed from five readily 

obtainable factors, including saturated hydraulic conductivity, initial soil moisture, rainfall intensity, 

vegetation cover and plant height. Despite of a reduced factor number, these equations also had 

satisfactory prediction accuracies. The incorporated five factors can be quickly and directly measured 
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in the field without taking any samples or conducting any laboratory analysis. They have also been 

proven able to be potentially derived from remote sensing and GIS techniques by various studies, 

which makes the determination of the spatially varied parameter values much easier. Consequently, 

these developed predictive equations have improved the outcomes in regard to the effort, time and cost 

in determining these parameters, thus facilitating the application of infiltration models in the 

distributed hydrologic modelling at large spatial scales.      

Development of an effective and universal runoff model for different spatial and temporal scales 

Although a large number of runoff models have been developed over past decades, most of these 

traditional models are constrained to a certain spatial and/or temporal scale as the numerical methods, 

empirical relationships and simplifying assumptions used in these models are only correct at this 

specific scale. Large errors may be produced if they are applied to a scale different from that they were 

developed from. More effective and universal runoff models are therefore required, and such a model 

(RunCA) was developed in this research based on the Cellular Automata (CA) method (Chapter 5). 

Since CA is a dynamic system evolving by updating the states of spatial cells at discrete time steps, it 

has the advantage of suiting different spatial and temporal scales by adjusting the size of cells and the 

length of time steps. The transition rules for runoff distribution in RunCA are based on the 

straightforward minimisation-of-differences algorithm instead of solving the complex mathematic 

equations, and thus are applicable to different spatial scales. The classical and modified infiltration 

models incorporated in this model also allow the simulations of different temporal scales. The 

university of RunCA was demonstrated by its successful application to the small plot scale (Chapter 

6), field scale (Chapter 7 and 8) and catchment scale (Chapter 6) for the simulations of continuous 

rainfall events (Chapter 6, 7 and 8), intermittent rainfall events (Chapter 6 and 7) and long-term runoff 

behaviours (Chapter 7). Therefore, RunCA has been proven to be a universal runoff model that can be 

applied at different spatial and temporal scales, for not only the rehabilitated landforms, but also any 

environment where the infiltration-excess runoff is dominant.      

Application of Cellular Automata theory to surface hydrology 

Cellular Automata (CA) has been proven to be an effective method for the simulations of dynamic and 

complex phenomenon as it determines the evolution of the entire system from local to global according 

to simple transition rules. While CA has been successfully applied to a wide range of disciplines, it 

has been rarely applied to surface hydrologic modelling, which is dominated by the numerical 

techniques and elevation based methods. These methods, however, all have their own limitations in 

simulation accuracy, computational efficiency and scale flexibility. A novel runoff model, RunCA, 



Chapter 9 

 

187 
 

was therefore proposed in this research by incorporating the CA theory (Chapter 5). The developed 

model was then validated at different scales (Chapter 6) and successfully applied to a case study 

(Chapter 7) and scenario analysis (Chapter 8) for runoff simulation on the rehabilitated landforms. 

RunCA showed better performance than ANSWERS (Beasley et al., 1980), a well well-known 

distributed physically based hydrologic model using numerical techniques, in predicting the 

hydrographs for a catchment (Chapter 6). When simulating the cumulative runoff curves for a 

rehabilitated mining landform (Chapter 7), RunCA also produced more accurate results than CAESAR 

(Coulthard et al., 2000), a CA-based landform evolution model which determines the runoff generation 

according to simple and empirical relationships. These results demonstrated the high efficacy of CA 

for the simulation of surface hydrology. Compared to the numerical techniques, the simple transition 

rules in the CA system are expected to reduce the complexity in computation as there is no need to 

solve any complex equations. These transition rules are also considered to be more realistic than the 

elevation based methods as the water component has been taken into account. RunCA is a large step 

for the application of CA to runoff modelling as it considers the spatially varied flow velocities, 

introduces a more realistic cardinal-direction-priority principle and incorporates the important surface 

hydraulic properties (e.g., infiltration) when determining the runoff production.       

Providing a simulation tool for the optimisation of rehabilitation designs 

Proper rehabilitation designs are essential to control the surface runoff and ensure the long-term 

landform stability. However, an effective simulation tool is lacked for assessing the runoff 

performance of designed landforms as most existing runoff models were developed for the natural 

environment and thus are not applicable for the rehabilitated landforms due to the different geomorphic 

features, spatial scales and landform complexities. In this research, a Cellular Automata based runoff 

model (RunCA) was developed for the runoff simulation at these rehabilitated landforms (Chapter 5). 

RunCA was used to evaluate the proposed landforms designs for the mine closure of Ranger Uranium 

Mine, northern Australia (Chapter 7). Simulation results by RunCA showed that in most rainfall events 

the designed rip lines on this landform could help control the surface runoff to very low levels by 

capturing flow water and interrupting runoff paths, however, they failed during several large rainfall 

events, leading very significant runoff. Improvement was then made to the original landform designs 

by raising the rip lines, and an optimum rip line height was achieved through the comparison of the 

simulated runoff behaviours by RunCA. The application of RunCA to landform designs of both 

hillslopes and tailings dams, revegetation strategies and cover constructions were further explored in 

Chapter 8. Simulation results showed that surface runoff increased with slope gradient and more runoff 

was produced on convex and straight slopes than on concave and S-shape slopes. Both mounds and 
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rip lines constructed on the tailings dam surface could help reduce the water discharge. Vegetation 

planted in rows were more effective than those in columns or patches in controlling runoff. Increased 

cover thickness had the potential in reducing runoff rates, and the covers with an increasing thickness 

from top to bottom of the slope tended to be more efficient than those with a constant thickness. All 

these results have demonstrated the efficacy of RunCA as a simulation tool in assessing the hydrologic 

behaviours of different rehabilitation designs.    

 

9.3 Limitations and recommendations for future research 

Validation of developed predictive equations for the infiltration parameters 

Predictive regression equations were developed in this research for some unmeasurable infiltration 

parameters on the basis of both a full set of controlling factors and a simpler set of readily obtainable 

factors (Chapter 3). These equations were developed from a number of calibration rainfall events 

applied on the small plots at a UQ experimental farm in Pinjarra Hills, Queensland, Australia. 

Although these developed equations have been proven very effective for predicting these infiltration 

parameters in the validation rainfall events, unfortunately there was no opportunity in this thesis to test 

whether they would have comparative performance in the other areas where the site conditions are 

different from those they were developed from. Hence, the versatility of these equations are required 

to be tested in future studies. In addition, the influences of the estimation errors from these predictive 

equations on the simulation results of the distributed hydrologic models remain unclear and thus need 

further efforts. Furthermore, five factors (i.e., saturated hydraulic conductivity, initial soil moisture, 

vegetation cover, plant height and rainfall intensity) were selected in the simplified regression 

equations based on the consideration that they can be quickly derived from the remote sensing and 

GIS techniques for the large scale studies. However, one problem is that the accuracies of determining 

these factors in these ways have not been tested in this research, and thus further evaluations need to 

be conducted.  

Evaluating the performance of infiltration models for the simulations of surface runoff 

Four classical infiltration models and three modified infiltration models were evaluated in this research 

by predicting the infiltration processes on small field plots under either continuous or intermittent 

rainfall (Chapter 3 and 4). The purpose of evaluating these infiltration models was to provide 

supportive information for their incorporation in the hydrologic models to simulate surface runoff. 

While these models all showed satisfactory and comparable performance, no direct preference among 
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them could be derived from current results. Furthermore, although these model were all incorporated 

in a CA-based runoff model (RunCA), their influences on the runoff simulation accuracies were not 

tested or compared in this thesis due to the lack of input parameter information. Therefore, future 

research is recommended to be carried out to evaluate their performance for the runoff simulations by 

performing RunCA based on different infiltration models at different spatial and temporal scales.  

Systematic comparison of RunCA to other hydrologic models 

The limitations of existing methods for runoff modelling were analysed in this thesis (Chapter 2 and 

5). To address these limitations, a new method, Cellular Automata, was used to develop a novel runoff 

model (RunCA) in this research (Chapter 5). The developed RunCA model is believed to have the 

advantages in capturing the spatial and temporal variations in the runoff behaviours when compared 

to the lumped conceptual models. It is also expected to have higher computational efficiency than the 

numerical techniques due to the simplicity of the CA transition rules. As RunCA determines runoff 

distribution according to the water surface elevations instead of land surface elevations, it would be 

more realistic than those elevation based algorithms. RunCA also tends to generate more accurate 

results in runoff prediction than the landform evolution models as the fundamental surface hydraulic 

properties are considered in this model. As expected, RunCA indeed showed better performance than 

ANSWERS and CAESAR in the runoff simulations for a rehabilitated catchment (Chapter 6) and a 

field plot on a rehabilitated landform (Chapter 7), respectively. Nevertheless, since the major 

objectives of this research were the development of a new runoff model and its application to 

rehabilitated landforms, a systematic comparison of RunCA to other models was not included. The 

lack of appropriate data was also an important obstacle for this comparison as different models would 

require different input parameters with different spatial or temporal resolutions. To well demonstrate 

and prove the potential advantages of RunCA over some other hydrologic models, a detailed 

comparison of their performance, in terms of availability of inputs, simulation accuracy, computational 

efficiency and scale flexibility, is recommended for future studies.   

Verification of modelling results for rehabilitation designs by field experiments 

The developed RunCA model was applied in this research to assess the runoff performance of different 

rehabilitation designs, including surface ripping designs, hillslope designs, tailings dam designs, 

revegetation strategies and cover constructions (Chapter 8). Some conclusions from the simulation 

results, such as the positive relationship between runoff and slope gradients, different runoff responses 

to the slope shapes, the decreased runoff coefficient with increasing vegetation cover, and the low 

runoff production on covers constructed with high infiltrability materials, were all in line with some 
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previous findings. In addition, some new finding, such as the roles of mounds and rip lines in reducing 

runoff on tailings dams, the impacts of vegetation distribution on runoff behaviours on batter slopes, 

and the effects of cover thickness on runoff rates, were supported by reasonable explanations. These 

demonstrated the potential ability of RunCA as a simulation tool to optimise the rehabilitation designs. 

However, a major limitation was that all these results were derived from the conceptual studies 

conducted on virtual objects, due to the lack of available field data and the difficulties in conducting 

experimental studies. Whether these conclusions would be valid in real cases are therefore unclear, 

and further investigations (e.g., field experiments) are required to verify the modelling results. 

Extension of RunCA to different runoff generation mechanisms 

At current stage RunCA focuses only on the simulation of the infiltration-excess runoff (Hortonian 

runoff) processes, as it was primary developed for the rehabilitated landforms, where the infiltration 

ability is characteristically low and surface runoff is dominated by the infiltration-excess runoff in 

most cases. However, some previous studies have identified that as vegetation establishes and 

pedogenic processes begin, alterations in soil characteristics may increase the infiltration capacity in 

rehabilitated areas (Jorgensen and Gardner, 1987), and the dominant runoff path would likely change 

in response to increased infiltration from infiltration-excess runoff to saturation-excess runoff and 

subsurface runoff (Guebert and Gardner, 1992). In these rehabilitated areas and other natural areas 

where the runoff is mainly attributed by the runoff generation mechanisms other than the infiltration-

excess runoff, RunCA would produce unexpected errors due to its inability in simulating these runoff 

behaviours. It is therefore a major constraint to the applicability and versatility of RunCA. This 

problem can be potentially solved by incorporating the other runoff generation paths in RunCA in 

future studies. To achieve this, it is required to develop some appropriate algorithms and transition 

rules for the simulations of saturation-excess runoff and subsurface runoff (Figure 9.1). As no relevant 

CA-based models for this purpose have been found in literature yet, this would be a great contribution 

to the current knowledge of integrated runoff modelling.  

Incorporation of soil erosion component 

The improved understanding and prediction of the surface hydrological processes by this research 

would contribute to the prevention of the harmful environmental consequences caused by surface 

runoff. However, most of these consequences, such as the landform instability, loss of top soil and 

nutrients, revegetation failure and sediment transport to water courses, are also directly associated with 

soil erosion, which further demands the prediction of the soil erosion process. In addition, while the 

accurate simulation of surface runoff by RunCA provides valuable supporting information for the 
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rehabilitation designs at the early stages, the surface hydrological behaviours on the designed 

landforms may change with time due to the evolution of these landforms caused by various factors. 

Soil erosion is such a major forcing factor that would greatly change the characteristics of these 

landforms. Therefore, to better simulate the surface hydrological behaviours over a long term, in future 

research it is worthwhile to further incorporate the soil erosion component in RunCA to capture the 

evolution of landforms. For this purpose, the according CA transition rules for sediment generation 

and movement require to be developed on the basis of relevant physical principles for these processes 

(Figure 9.1).    

 

Figure 9.1 Future directions for the improvement of RunCA.
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