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Abstract 

Genotypes can seldom achieve maximal performance across all environments they 

inhabit. Instead, increased performance in one environment often comes at a cost of lower 

performance in another. Such effects are the consequence of genotype-by-environment 

interactions, which are usually studied using reaction norms—functions describing the 

relationship between trait and environment. When the environmental variable is 

continuous rather than discrete, a continuous reaction norm is investigated, also known as 

function-valued or infinite dimensional traits. Through the study of continuous reaction 

norms, trade-offs that shape evolutionary trajectories can be identified. Whilst reaction 

norms have been studied extensively, we know little about their genetic basis, specifically 

their mutational inputs and the types of genes and genetic effects involved.  

Thermal performance curves (TPC) are a specific, but common, class of continuous 

reaction norm mapping the response of a performance-associated trait to environmental 

temperature. TPCs are commonly used to explore the trade-offs involved in thermal 

adaption for ectothermic organisms. Three major ‘modes’ of variation have been identified; 

a ‘faster-slower’ axis representing overall increases or decreases in performance 

regardless of temperature, a ‘hotter-colder’ axis representing a trade-off between hot and 

cold temperatures, and a ‘generalist-specialist’ axis which explores a trade-off between the 

range of temperatures across which an organism can perform effectively and the maximal 

level of performance it can achieve. In this thesis, I have conducted three empirical studies 

using locomotor activity in two Drosophila species to investigate the genetic architecture of 

TPCs. 

My first study investigated the contribution of new mutations to TPCs through a 

mutation accumulation assay followed by an eigendecomposition of the mutational 

variance-covariance matrix, M. Three independent axes of mutational variance were 

investigated that corresponded to the three major axes of TPC variation. In contrast to its 

near-absence from standing variation in this species, a ‘faster-slower’ axis, accounted for 

most mutational variance (75% in males and 66% in females) suggesting selection may 

easily fix or remove these types of mutations in outbred populations. Axes resembling the 

‘hotter-colder’ and ‘generalist-specialist’ modes of variation contributed less mutational 

variance but nonetheless point to an appreciable input of new mutations to the two major 

trade-offs involved in thermal adaptation. 
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In my second study, I began to dissect the genotype-phenotype map for TPCs. A 

multivariate quantitative trait loci (QTL) analysis was performed on a panel of recombinant 

inbred lines (RILs) derived from an inter-population cross of Drosophila serrata. I found 

that vectors of QTL effects across temperatures were well-aligned with the major axes of 

genetic variance in the RIL population. Most QTL effects resembled either a ‘faster-slower’ 

or ‘hotter-colder’ axis whereas very few resembled  ‘generalist-specialist’ like variation and 

those that did had small effects. Strong and directionally-biased transgressive segregation 

was also detected, consistent with weak selection between the two founder populations 

and a highly polygenic basis to TPC variation. 

In the final study, I dissected the genetic architecture locomotor activity TPCs in a 

single population of Drosophila melanogaster. A genome-wide association study (GWAS) 

was conducted by assaying the TPC variation in 152 lines from the Drosophila Genetic 

Reference Panel (DGRP). The analysis was performed on four major components of the 

TPCs that were statistically extracted using a function-valued trait analysis (TMV) and on 

the first five principal component (PC) scores in an attempt to identify genomic elements 

underlying the biologically important axes of TPC variation. I identified polymorphisms 

associated with ‘overall height’, optimum temperature, ‘generalist-specialist’ and maximum 

performance TPC components of variation and the first five PC axes. Intriguingly, for 

components underlying thermal trade-offs, I observed strong skew in the direction in which 

the minor-frequency allele affected a TPC component and some of the PC axes, 

suggesting a role for natural selection in shaping standing variation.  Although most 

significant variants were located within or near coding genes, they were located in areas 

more consistent with the regulation of gene expression than altering coding sequences, 

suggesting that changes in gene expression may be particularly important. Limited 

pleiotropic effects were detected between different TPC components possibly reflecting 

their highly optimised statistical partitioning along different trade-off axes. Gene ontology 

term enrichment analysis, revealed a degree of functional independence between the 

different modes of variation, which may translate into evolutionary independence between 

them. Where functional overlap did occur, it primarily involved neurological functioning and 

responses to stimuli.  

My thesis places TPCs as highly complex traits, integrating a significant number of 

biological functions. It is clear that genetic variance is far from being equally distributed 

across the three major components of variation—likely a consequence of both contrasting 
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mutational inputs and differences in the efficacy of natural selection to shape standing 

variation. A role for selection in shaping standing variation is implicated in both species 

through either mismatches between patterns of mutational and standing variation or 

associations between allele frequency and the directions of additive effects on phenotype.  

Whilst this thesis has outlined the evolutionary genetic architecture of a single type of TPC, 

genomic-level investigation into these continuous reaction norms is only beginning. 
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Chapter One: General Introduction 

1.1 The Evolutionary Significance of Environmental variation 

Understanding how the environment can influence organisms is of key importance 

to the study of many ecological and evolutionary processes (Schwenk et al. 2009; 

Angilletta and Sears 2011). External environmental conditions can influence multiple 

aspects of biological function, from biochemical and physiological processes (Hochachka 

and Somero 2002 ; Savage et al. 2004) to behaviour (Bennett 1990; Roff 2002) and 

ultimately fitness (Kingsolver and Watt 1983; Via and Lande 1985; Lynch and Gabriel 

1987; Roff 2002). Well-adapted organisms are thought to have phenotypes well suited to 

the unique challenges of the environment within which they reside (Levins 1968). When an 

organism is poorly suited to its environment, stress may occur, resulting in consequences 

such as decreased fertility (Chakir et al. 2002; Marshall and Sinclair 2009; Ribeiro and 

Borghetti 2014) and survival (Lin et al. 1998; Hoffmann et al. 2003). 

An additional complexity is that individuals seldom experience a single 

environmental condition within a lifetime and so must deal with multiple environmental 

conditions. Similarly, for a species to persist in the long term, it must be capable of coping 

with varying modes of environmental variation. Environments can vary spatially, differing 

between populations from different latitudes or altitudes (Angilletta 2009; Scheiner 2013). 

The environment also fluctuates over time, which may span timescales spanning 

thousands of generations such as the coming and going of ice-ages (Petit et al. 1999; 

Wolff et al. 2010; Scheiner 2013), or within a single generation over the course of seasons 

or within a single day (Higgins et al. 2007; Scheiner 2013). 

The fundamental evolutionary and ecological consequence of a heterogeneous 

environment arises from the fact that individuals seldom have equal fitness in all 

environments they experience (Stearns 1989; Shaw et al. 1995; Fry et al. 1996). This 

inability of organisms to maintain fitness across all environments is commonly referred to 

as a trade-off, where high fitness in one environment is ‘traded’ for the lower fitness in 

another environment (Via 1991; Shaw et al. 1995; Lynch and Walsh 1998). In ecology, 

trade-offs may influence population dynamics. For example, high levels of environmental 

variation can negatively impact population growth rate and lead to a concomitant decline in 

population size (Kjaersgaard et al. 2012). Species distributions and invasions can be 
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affected by the ability of species to perform across a range of environments. For example, 

invasive species can often take advantage of a broad range of environments compared to 

indigenous species (Janion et al. 2010). Invasive plants can exploit a wide range of warm, 

moist and nutrient rich environments (Stohlgren et al. 2008) and invasive invertebrates are 

often small-bodied with high-growth rates, promoting their performance in novel 

environments (Lawton et al. 1986; Gaston et al. 2001).  

In evolutionary biology, trade-offs are often assumed to constrain phenotypic 

evolution (Stearns 1992; Roff 2002; Roff and Fairbairn 2007). However, when genetic 

variation exists for a trade-off, they may also facilitate local adaptation through the 

evolution of specialisation to local conditions. Here, a specialist’s performance can 

improve for a particular local environment but can decline in other environments via 

correlated responses to selection (Levins 1968; Huey and Hertz 1984; Angilletta et al. 

2003).  The empirical study of trade-offs has often focused on fitness components and has 

included a broad range of taxa, including plants (Chang and Shaw 2003), invertebrates 

(Fry et al. 1996) and bacteria (Knies et al. 2009). Life-history traits, such as growth rate 

and fecundity, vary across a range of environments, including different temperatures, 

humidities and nutrients (Fernandez and LopezFanjul 1997; Knies et al. 2006; Gutteling et 

al. 2007; Yamahira et al. 2007; Jordan et al. 2012). Behavioural traits, such as walking 

speed, have been measured as a response to temperature for multiple insect species 

(Gilchrist 1996; Latimer et al. 2011). Morphological traits, such a bristle numbers in 

Drosophila species, have been measured in response to temperature (Takahashi et al. 

2012). While these studies and many others demonstrate the existence of trade-offs, we 

know comparatively little about how they evolve (Roff and Fairbairn 2007) and specifically, 

their genetic basis. 

1.2 Trade offs and the Quantitative Genetics of Reaction Norms 

In quantitative genetics, the response of a genotype to different environments is 

measured as a reaction norm (Schmalhausen 1949; Falconer and Mackay 1996; Lynch 

and Walsh 1998).  In the simplest form, a reaction norm is a linear function describing the 

mean phenotypic values for a genotype in two discrete environments (Falconer and 

Mackay 1996). The slope of a reaction norm contains information about the degree of 

environmental sensitivity of a genotype. Environment-sensitive genotypes will have a 
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reaction norm with a non-zero slope (Fig. 1.1a), whereas insensitive genotypes have 

slopes that cannot be distinguished from zero (Fig. 1.1b).   

 

Figure 1.1: Simple reaction norms describing the response of genotypes to two discrete 

environments a) a sensitive genotype, and b) a non-sensitive genotype.  

An opportunity for the evolution of trade-offs is apparent when multiple genotypes in 

a population differ in the slope of their reaction norms via differences in rank and/or scales 

across different environments (Lynch and Walsh 1998). A genotype-by-environment 

interaction (GEI) within a population can arise from quite different patterns of reaction 

norm variation. If no GEI is present, genotypes will maintain the same scale and rank of 

phenotype across the environments resulting in parallel reaction norms (Fig. 1.2a). When 

a GEI exists, non-parallel reaction norms between genotypes will be evident (Via 1987; Fry 

et al. 1996). Three different patterns can result in non-parallel reaction norms and indicate 

trade-offs across the environments. The first pattern has genotypes that vary in the scale 

of their phenotypes between environments (Fig. 1.2b). The third and fourth groups have 

patterns that represent crossing of reaction norms within populations. The crossing of 

reaction norms has been used to identify trade-offs between environments (Fry et al. 1996; 

Xu 2004) and can be due to either variation in rank (Fig. 1.2c) or variation in both rank and 

scale of the phenotypes (Fig. 1.2d). 
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Figure 1.2: A schematic that represents the main patterns of variation in reaction norms for 

three genotypes, a) no variation in slope, rank or scale of reaction norms indicating no 

genotype-by-environment interaction or trade-off, b) variation in the scale of reaction norm, 

c) variation in the rank of reaction norms, and d) variation in the scale and rank of reaction 

norms. Adapted from Lynch and Walsh (1998). 

Cross-environment genetic correlations are commonly used to explore trade-offs 

and genetic constraints between environments and are estimated from the genetic 

variance within each environment and the genetic covariance between the environments, 

whereby 𝑟𝐸1,𝐸2 =  
𝐶𝑜𝑣𝐸1,𝐸2

√𝑉𝐸1×𝑉𝐸2
 (Falconer and Mackay 1996; Lynch and Walsh 1998). A genetic 

constraint can arise, for example, when a trait is strongly selected in opposite directions 

between two environments, but the cross-environment correlation is strong and positive 

(Via and Lande 1985; Stinchcombe and Kirkpatrick 2012). In general, when a cross-

environment correlation is low, the genetic variation is likely to be specific to one 

environment and selection in that environment will not affect performance in the other 

environment (Falconer and Mackay 1996; Lynch and Walsh 1998); therefore no trade-offs 

exists. However, if the trait is strongly genetically correlated between environments, then 
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selection in one environment will also be dependent upon selection in another 

environment (Via and Lande 1985; Andersson and Shaw 1994) and a trade-off exists.  

However, there are different views on how to interpret genetic correlations to 

identify trade-offs, particularly regarding the sign of the correlation. A negative genetic 

correlation is posited in some studies to demonstrate a trade-off because it represents a 

negative association between the two environments (Lande 1982; Futuyma and Philippi 

1987; Bell 1992; Roff and Fairbairn 2007). However, a genetic correlation less than one 

but different from zero, regardless of its sign, may also demonstrate a trade-off by 

illustrating that performance is not maximal across all environments (Fry et al. 1996). For 

example, studies often find positive, rather then negative, genetic correlations between 

environments (e.g. Van Noordwijk and de Jong 1986; Futuyma and Philippi 1987; Mackay 

and Lyman 1998; Baer et al. 2006; Ketola et al. 2012). The presence of a trade-off in a 

positive genetic correlation can be explained by Van Noordwijk & de Jong’s (1986) 

acquisition-allocation model. This model posits that the allocation of resources can 

influence a negative trade-off, however when variability in the acquisition of resources 

exists, a positive correlation can potentially exist (Houle 1991; Roff and Fairbairn 2007).  

A large amount of research on trade-offs has focused on the response of a 

phenotype to discrete environments; this analysis is coined a ‘character-state’ approach 

(Via and Lande 1985; Walsh and Lynch 2014). However, many environmental factors are 

not naturally discrete, instead they vary along continuous scales, like temperature or 

salinity. In such cases, the character-state approach does not include information related 

to the ordering and spacing between the different levels of the variable (Walsh and Lynch 

2014). Incorporation of this information into the study of trade-offs could provide a clearer 

understanding of the response of genotypes to the environment that underlie trade-offs 

(Kirkpatrick and Heckman 1989; Stinchcombe and Kirkpatrick 2012). A continuous 

reaction norm (CRN) measures the response of a trait across a continuous environmental 

factor, such as soil nutrition or population density (Fig. 1.3) (Kingsolver et al. 2004b). They 

are sometimes termed as function-valued (Pletcher and Geyer 1999; Meyer and 

Kirkpatrick 2005b) or infinite-dimensional traits (Kirkpatrick and Heckman 1989). CRNs 

feature heavily in agricultural quantitative genetics, the most common types are the growth 

curve, such as the change in body mass as an organism ages (Kirkpatrick et al. 1990; 

Kirkpatrick and Lofsvold 1992) and lactation curves—the amount of milk a cow lactates 

during reproduction (Shanks et al. 1981; Mellado et al. 2014).  
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Figure 1.3: An example of a continuous reaction norm. The different lines indicate different 

genotypes.  

1.3 Thermal Performance Curves 

Temperature is an important environmental variable for many organisms and has 

been linked to species distributions (Kellermann et al. 2012), cellular (Clarke 2003) and 

metabolic (Galli and Richards 2012) processes, and behaviour (Gilchrist 1996). The 

thermal environment is particularly important for ectotherms as they have limited 

thermoregulation abilities (Gilchrist 1996) and as a result, their physiological processes are 

more likely to be affected by fluctuating environmental temperature (Gibbs 2002). Many 

phenotypes respond to temperature variation, for example, egg production (Berger et al. 

2008), growth in bacteriophage (Knies et al. 2009), sprinting in lizards (Bennett 1980), and 

jumping distance in frogs (Wilson 2001). If traits do not adequately respond to the thermal 

environment, organism’s can become stressed resulting in possible consequences for their 

physiological and behavioural state (Roberts et al. 2003), decreasing fitness, survival 

(Hoffmann et al. 2003), and ultimately leading to death.  

Thermal adaptation is often investigated via the study of thermal performance 

curves (TPC). A TPC is a class of a continuous reaction norm that relates a temperature 

dependent trait, generally performance, to a range of acutely exposed temperatures 

(Kingsolver et al. 2001; Izem and Kingsolver 2005). TPCs exhibit a common shape, where 

trait values increase slowly, reaches a peak then decreases rapidly (Fig. 1.4). Despite a 

common shape, TPCs have been shown to vary between populations (Wilson 2001; 

Yamahira et al. 2007; Latimer et al. 2011), individuals (Kingsolver and Gomulkiewicz 2003; 
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Lachenicht et al. 2010), and genotypes (Gilchrist 1996; Izem and Kingsolver 2005; Knies 

et al. 2009). These changes occur in the components of a TPC; ‘overall height’, optimum 

temperature, width and maximum performance at optimum temperature (Fig. 1.4a). The 

width represents the range of temperatures across which an individual can operate; 

‘overall height’ is the level of performance across all temperatures; and optimum 

temperature is the position of the temperature for maximum performance. Depending on 

the level of investigation (individual/genotype/population), differences in the shape of a 

curve can illustrate the outcomes of a plastic or genetically-based response to the 

environment (Izem and Kingsolver 2005).  

Common theories of thermal adaption can be explored through investigation of 

genetic contributions to three modes or axes along which TPCs tend to vary; the three 

modes are the horizontal shift or ‘faster-slower’ axis, the vertical shift or ‘hotter-colder’ axis 

and the width shift or ‘generalist-specialist’ axis (Kingsolver et al. 2001; Izem and 

Kingsolver 2005). The ‘faster-slower’ axis represents variation for the overall performance 

across the TPC regardless of the temperature (Fig. 1.4b). The ‘faster-slower’ axis does not 

represent any trade-off between the environments unlike the ‘generalist-specialist’ and the 

‘hotter-colder’ axes. The ‘hotter-colder’ axis incorporates variance in the optimum 

temperature and includes a trade-off for performance between hot and cold temperatures 

(Fig. 1.4c). For a population to have optimal performance at hotter temperatures, 

performance at colder temperatures will be lower (Kingsolver et al. 2001). Some 

evolutionary physiological models predict that the optimum temperature should match the 

most common environmental temperature (Lynch and Gabriel 1987; Gilchrist 1995).  
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Figure 1.4: Schematic of a thermal performance curve, showing the general response of 

fitness/performance to temperature. a) Illustrates the four main components of the curve, 

height, width, optimum temperature and maximum performance, b) ‘faster-slower’; a 

response of a by changing the overall height of the curve, c) ‘hotter-colder’; a change in 

optimal temperature, and d) ‘generalist-specialist’; a trade off between the width and 

height of a curve at its optimum. Modified from Izem & Kingsolver (2005).  

The ‘generalist-specialist’ axis of variation represents variation in the width and 

maximum performance at optimum temperature components and is linked to the 

‘generalist-specialist’ trade-off (Fig. 1.4d). The ‘generalist-specialist’, also known as the 

jack-of-all-trades or the master-of-none (Huey and Hertz 1984), has received a large 

amount of attention particularly in ecological studies. This trade-off underlies optimisation 

models that build upon Levins’ (1968) Principle of Allocation, suggesting a trade-off, where 

a genotype’s physio-chemical structures, reproductive constraints, and 

physiological/cellular mechanisms limit the range of temperatures it can perform across  

(Angilletta et al. 2003; Angilletta 2009). The trade-off posits that for an organism to be able 

to perform over a broad range of temperatures, a lower performance is required (the 

generalist) and that high performance can be achieved for only a small range of 
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temperatures (the specialist) (Huey and Hertz 1984). The two main optimisation models 

incorporating the ‘generalist-specialist’ trade-offs are Gilchrist’s (1995), and Lynch and 

Gabriel’s (1987) models. Gilchrist’s (1995) model predicted that the breadth was a result of 

the amount of environmental variability populations experienced within and among 

generations. Lynch and Gabriel’s (1987) model predicts that the range of temperatures 

experienced within an individual’s lifetime determines their thermal breadth range. Both 

stipulate that specialists are thought to occur in a constant environment, and generalists 

when the environment is more temporally variable to enable the residents to have a higher 

fitness across a larger range of temperatures. 

Dissection of the genetic basis of TPCs is needed to illuminate the mechanisms that 

may underlie the different axes of variation and determine how freely different axes can 

evolve in isolation of the others. Although physiologists have performed many studies on 

the trade-offs in TPCs, little is actually known about the genetic mechanisms and 

constraints that underlie these axes (Angilletta 2009). Input of genetic material to maintain 

sufficient genetic variation is required to generate a heritable response to selection for any 

trait (Barton 1990; Houle 1992; Barton 2010). Only a few experiments have been 

conducted to investigate the evolutionary potential of TPCs. Most experiments have 

detected genetic variation in one or more of the components, for example, growth rates of 

caterpillars (Izem and Kingsolver 2005) and bacteriophage (Knies et al. 2006; Knies et al. 

2009), and the temperature for performance in fish (Yamahira et al. 2007). However, little 

is known about the mutational inputs that maintain the evolvability of these traits, with one 

study identifying specific nucleotide mutations in bacteriophage (Knies et al. 2006) and 

only one other that looked at mutation accumulation patterns in Escherichia coli (Cooper et 

al. 2001).  

Furthermore, we also know very little of the types of molecular variants, pleiotropic 

or otherwise, that contribute to standing variance for TPCs and which may contribute to 

their adaptive evolution. No studies have directly attempted to estimate the magnitude and 

direction of allelic effects in TPC or their axes. Based on studies investigating local 

adaptation, including specialisation, genetic architectures might contain alleles with 

pleiotropic effects (Ostrowski et al. 2007; Anderson et al. 2013). Two main types of allele 

can exist that contribute to trade-offs and therefore may also be present in the ‘hotter-

colder’ and ‘generalist-specialist’ axes of TPCs.  First, antagonistic alleles that have 

opposing effects in different environments have been linked to trade-offs (Via 1991; 
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Cooper et al. 2001; Nikolin et al. 2012). Second, alleles have pleiotropic effects in the 

same direction across temperatures but differ in magnitude (Fry et al. 1996; Kawecki et al. 

1997; Kawecki and Ebert 2004; Hall et al. 2010).  

1.4 Study Species and traits 

To investigate the genetic basis of TPCs, I have used two Drosophila species from 

the Melanogaster species group. Drosophila serrata is from the largest subgroup, 

montium, and is endemic to the Australasian region (Kellett et al. 2005). The geographic 

range for this species is from Papua New Guinea to Wollongong (Jenkins and Hoffmann 

1999, 2001). Over this latitudinal gradient, populations experience a wide range of 

temperature fluctuations, possibly generating natural selection for different reaction norms. 

The different temperatures across the geographical range of D. serrata are known to affect 

life history traits (Ayala 1968; Sgro and Blows 2004) and stress related traits such as their 

ability to recover from cold temperatures (chill-coma recovery) (Jenkins and Hoffmann 

1999, 2001; Hallas et al. 2002). The thermal sensitivity of locomotor activity in D. serrata 

has also been demonstrated to differ genetically between populations (Latimer et al. 

2011).   

The second species, Drosophila melanogaster, is well known. D. melanogaster is a 

cosmopolitan species that originated from Africa but is now found throughout the world 

(Bock 1980; Kellett et al. 2005). Its broad distribution covers a range of different 

environments with different thermal regimes; from cooler, dry, temporal environments to 

hot, humid, tropical climates. For this species to successfully colonise such a wide range 

of environments suggests that it may have the ability to adapt to different climates 

effectively. Vast numbers of studies have been conducted on D. melanogaster, including 

genomic studies, making it also a powerful genetic model for dissecting the genetic 

architecture of TPCs (Zou et al. 2000; Gopal et al. 2001; Noor et al. 2001; Blumenstiel et 

al. 2009; Deloger et al. 2009; Keightley et al. 2009; Angilletta and Sears 2011; Jordan et 

al. 2012; Mackay et al. 2012; Harbison et al. 2013). 

To measure TPC for both these species, the model trait I used was locomotor 

performance. Locomotor performance is a complex trait, incorporating the fitness of an 

adult (Gilchrist et al. 1997; Long and Rice 2007), an individual’s decision-making ability 

(Martin, 2003), and is influenced by temperature for a range of species (Gilchrist 1996; 

Lehmann 1999; Wilson et al. 2000; Chen et al. 2003; Martin 2003; Elnitsky and Claussen 
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2006).  Locomotor performance changes dynamically in response to prior and current 

environmental conditions (Martin 2003). The influences of temperature on two aspects of 

locomotor performance, walking speed and locomotor activity, are widely studied (Crill et 

al. 1996; Gilchrist 1996; Roberts et al. 2003). For example, different thermal populations 

affect walking speed in Drosophila (Gibert et al. 2001). Reproductive successes, territorial 

defense, ability to avoid predators, and food detection (Gilchrist 1996; Roberts et al. 2003) 

have all been shown to vary with locomotor activity. Moreover, Drosophila species are 

often exposed to extreme temperatures, as both adults and larvae, at their preferred 

feeding and laying sites, rotten fruit (Feder 1997).  

1.5 Thesis Approach and Aims 

The overarching aim of my dissertation was to explore the genetic basis and 

evolutionary potential of the TPC. In Chapter 2, now published in the journal Evolution 

(Latimer et al. 2014), I investigated the evolutionary potential of locomotor TPCs by 

studying the supply of new genetic variation from spontaneous mutations. Employing a 

mutation accumulation experiment in Drosophila serrata, I estimated the contribution of 

mutational variation to the three major axes of TPC variation and compared their relative 

abundance to that commonly observed in standing genetic variation. My results provide an 

indication of the potential for mutation to generate variation in each of the major 

components of TPC variation, and establish a baseline against which to compare the 

distribution of standing genetic variation in different populations, which may shed light on 

how selection acts on TPC variation. 

Chapters 3 and 4 focus on molecular dissections of the genetic architecture of two 

different aspects of TPC variation; inter-population divergence (Chapter 3) and standing 

variation within a single population (Chapter 4). In Chapter 3, I performed a QTL analysis 

in a cross between two populations of D. serrata spanning a latitudinal gradient along 

which TPCs are known to have genetically diverged. Using multivariate QTL analysis, I 

identified vectors of QTL effects across temperatures that were well-aligned with the major 

axes of genetic variance in this population and resembled the common axes of TPC 

variation. 

In Chapter 4, I dissected the genetic architecture of TPC standing variation in a 

single population of D. melanogaster using a panel of 152 fully-sequenced wild-derived 

isogenic lines from the Drosophila Genetic Reference Panel (DGRP) (Mackay et al. 2012; 
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Huang et al. 2014). I first performed two different approaches to dissect the TPC; I first 

performed a character-state eigendecomposition approach and then a template mode of 

variation analysis (TMV), a functional trait analysis that partitions among line variance 

among the three major axes of TPC variation components associated with the TPC shape. 

I then performed a genome-wide association (GWA) analysis to provide unprecedented 

insight into the allelic nature of quantitative genetic variation for thermal performance 

curves. I identified polymorphisms associated with the axes of TPCs that had a strong 

skew in allelic effects suggesting a role for natural selection in shaping standing variation. I 

also found that the regulation of gene expression may be heavily involved in TPC shape 

variation. 
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Chapter Two:  

The contribution of spontaneous mutations to thermal 

sensitivity curve variation in Drosophila serrata 

(Published in Evolution, 2014 with authors below, 68:1824-1837) 

Latimer, C. A. L, McGuigan, K., Wilson, R. S., Blows, M. & Chenoweth, S. F. 

2.1 Abstract 

Many traits studied in ecology and evolutionary biology change their expression in 

response to a continuously varying environmental factor. One well-studied example are 

thermal performance curves (TPCs); continuous reaction norms that describe the 

relationship between organismal performance and temperature and are useful for 

understanding the trade-offs involved in thermal adaptation. I characterised curves 

describing the thermal sensitivity of voluntary locomotor activity in a set of 66 spontaneous 

mutation accumulation lines in the fly Drosophila serrata. Factor-analytic modeling of the 

mutational variance-covariance matrix, M, revealed support for three axes of mutational 

variation in males and two in females. These independent axes of mutational variance 

corresponded well to the major axes of TPC variation required for different types of 

thermal adaptation; ‘faster-slower’ representing changes in performance largely 

independent of temperature, and the ‘hotter-colder’ and ‘generalist-specialist’ axes, 

representing trade-offs. In contrast to its near-absence from standing variance in this 

species, a ‘faster-slower’ axis, accounted for most mutational variance (75% in males and 

66% in females) suggesting selection may easily fix or remove these types of mutations in 

outbred populations. Axes resembling the ‘hotter-colder’ and ‘generalist-specialist’ modes 

of variation contributed less mutational variance but nonetheless point to an appreciable 

input of new mutations that may contribute to thermal adaptation. 
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2.2 Introduction 

Trade-offs are central to many concepts in ecology and evolutionary biology such 

as life-history evolution (Stearns 1992) and local adaptation (Kawecki 1995; Kawecki et al. 

1997) and have been studied deeply at biochemical (Gillooly et al. 2001; Gillooly et al. 

2002; Savage et al. 2004), physiological (Huey and Kingsolver 1993; Gilchrist 1995; 

Angilletta 2009; Angilletta et al. 2010), and population levels (Gebhardt and Stearns 1988; 

Stearns 1989, 1992, 2000). Fundamental to the concept of any trade-off is that fitness, or 

one of its components, differs between the environments that an organism may inhabit 

(Levins 1968; Via 1991; Shaw et al. 1995; Fry et al. 1996). For trade-offs to evolve, fitness 

differences between environments must have a genetic basis, and more specifically, 

involve a genotype-by-environment interaction (GEI).  

Cross-environment genetic correlations have been the primary tool for inferring the 

GEIs that underlie trade-offs (Fry et al. 1996). GEIs are indicated when a genetic 

correlation is less than one (Lynch and Walsh 1998). Two classes of pleiotropic mutation 

can lower a cross environment genetic correlation; those that decrease fitness in one 

environment but increase it in the other, and those sharing direction of effect but differing 

in magnitude (Lande 1982; Futuyma and Philippi 1987; Houle 1991; Arnold 1992; Bell 

1992; Roff and Fairbairn 2007). Because cross-environment genetic correlations can 

change when allele frequencies change through drift or selection (Falconer and Mackay 

1996; Lynch and Walsh 1998), they can sometimes provide a misleading picture of the 

relative contributions of these different types of pleiotropic mutation to the genetic 

architectire of a trait. By estimating cross-environment correlations within a set of mutation 

accumulation lines, it becomes possible to obtain a clearer view of the contribution of 

different classes of pleiotropic mutation to the genetic covariance between environments 

before selection acts (Houle 1991). 

With few exceptions (see Fernandez and LopezFanjul 1997), studies taking a 

mutation accumulation approach report positive cross-environment genetic correlations 

that are less than one. For example, cross-environment genetic correlations for fitness in 

Drosophila melanogaster and Caenorhabditis elegans fall in the ranges of 0.29-0.98 and 

0.38-1 respectively (Fry et al. 1996; Fernandez and LopezFanjul 1997; Vassilieva et al. 

2000; Baer et al. 2006; Baer 2008), while estimates for bristle number in D. melanogaster 

range from 0.5 to 0.98 (Mackay and Lyman 1998). These results suggest that perhaps the 
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most common form of GEIs are those due to deleterious mutations that vary in effect size, 

but not sign, across environments. It is therefore possible that the evolution of 

specialisation is often due to such mutations rather those that increase fitness in one 

environment while lowering it another. 

Most mutation accumulation studies conducted to date have focused on discrete 

reaction norms that describe the relationship between genotype and discrete 

environments with a GEI indicated when reaction norm slopes are non-parallel (Stearns 

1989; Falconer and Mackay 1996; Fry et al. 1996; Lynch and Walsh 1998). While these 

environments may be naturally categorical factors, such as different food types (Fry et al. 

1996), the vast majority of traits studied in ecology and evolutionary biology are expressed 

at different levels of a continuously-varying environmental factor such as temperature, time 

or salinity (Stinchcombe and Kirkpatrick 2012). Such traits are termed function-valued 

(Pletcher and Geyer 1999; Meyer and Kirkpatrick 2005a) or infinite-dimensional 

(Kirkpatrick and Heckman 1989; Kirkpatrick et al. 1990). Typically, mutational studies have 

measured only a small number of environments (Mackay and Lyman 1998; Wayne and 

Mackay 1998; Vassilieva et al. 2000; Chang and Shaw 2003; Kavanaugh and Shaw 2005; 

Baer et al. 2006) or explored a range of unrelated environments (Kondrashov and Houle 

1994; Fry et al. 1996; Fernandez and LopezFanjul 1997; Xu 2004). Little is known of the 

mutational inputs to continuous reaction norms. 

Thermal performance curves (TPC) are a class of continuous reaction norm useful 

for understanding the trade-offs predicted by thermal adaptation theory (Levins 1968; 

Huey and Kingsolver 1989). A TPC describes the relationship between organismal 

performance and temperature (Huey and Stevenson 1979; Izem and Kingsolver 2005), a 

factor which has been shown to be important for ectotherms through its effects on 

physiological processes mediating locomotion (e.g. Bennett 1980; Weinstein 1998; Lyon et 

al. 2008), growth (e.g. Kingsolver 2000; Yamahira et al. 2007), resource acquisition (e.g. 

Greenwald 1974; Ayers and Shine 1997), and survival (e.g. Domenici and Blake 1993; 

Ahnesjo and Forsman 2006). TPCs have a characteristic shape; performance gradually 

increases with temperature, reaches a maximum and then falls sharply (Huey and 

Stevenson 1979; Huey and Kingsolver 1989; Hallas et al. 2002).  

Variation in TPCs among individuals is often summarised along axes that reflect the 

different ways in which thermal adaptation may occur. These axes differ in the extent to 
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which they require the contribution of alleles with negative pleiotropic effects between 

environments (Kingsolver et al. 2001). The first axis represents overall increases or 

decreases in performance and is known as the ‘faster-slower’ axis Fig. 2.1a). Genetic 

variation along this axis could be due to mutations that affect performance in similar 

directions and equally across temperatures but also mutations that share sign-of-effect but 

differ in magnitude. The two remaining axes require the existence of at least some 

mutations with negative pleiotropic effects. The ‘hotter-colder’ axis represents variation in 

the temperature at which performance is maximised, where increased performance at the 

hotter temperatures trade-off for decreased performance at colder temperatures (Fig. 2.1b) 

(Kingsolver et al. 2001). The ‘generalist-specialist’ axis represents a trade-off between the 

width of a curve and the maximum level of performance achieved; a generalist has a wider 

curve but a lower maximal level of performance, while a specialist has a narrower curve 

but a higher maximal level of performance (Fig. 2.1c).  
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Figure 2.1: Schematic diagram of the patterns of the three axes of TPC shape variation a) 

‘faster-slower’ axis b) ‘hotter-colder’ axis and c) ‘generalist-specialist’ axis. Shown in the 

right column are example eigenvector loadings typical of each of the three modes of 

variation; d) ‘faster-slower’ e) ‘hotter-colder’ and f) ‘generalist-specialist’. For the patterns 

in e) and f) multiple eigenvectors can exist in the variance covariance matrix among test 

temperatures; refer to Izem and Kingsolver (2005) for further details. 

To my knowledge, the mutational contributions to TPC shape variation remain 

unknown for any multicellular organism, the only studies to investigate the contribution of 

new mutations to thermal dependence have been restricted to microbial systems (Cooper 
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et al. 2001; Knies et al. 2006). Measuring the mutational contribution to these traits 

through estimation of the mutational analogue of the additive genetic variance-covariance 

matrix G (Lande 1979), the mutational variance-covariance matrix, M (Lande 1975), can 

provide insights into their ultimate evolutionary potential. M summarises the effects new 

mutations have on individual trait variances and also their pleiotropic effects across traits 

(or environments), which influence genetic covariances and can ultimately bias 

evolutionary trajectories (Lande 1979, 1980; Camara et al. 2000; Phillips and McGuigan 

2006; Chenoweth et al. 2010).   

In this study, I estimated the mutational variance for the thermal sensitivity of 

locomotor activity in the fruit fly Drosophila serrata. Quantitative genetic experiments 

conducted under common-garden conditions have established that TPCs are genetically 

variable and have diverged between populations inhabiting different thermal environments 

in this species (Latimer et al. 2011); a result consistent with the observation of TPC 

evolution during experimental adaptation to different thermal environments in D. 

melanogaster (Gilchrist et al. 1997). Within natural populations, the majority of the 

standing genetic variance was distributed along the ‘generalist-specialist’ axis with little 

standing genetic variance for the ‘faster-slower’ axis and, surprisingly no evidence for the 

‘hotter-colder’ axis (Latimer et al. 2011). I focus on locomotor activity because it has been 

associated with fitness in other Drosophila species through its links with reproductive 

success, dispersal, predator avoidance and foraging (Partridge et al. 1987; Gilchrist 1996; 

Roberts et al. 2003; Long and Rice 2007).  

I used a spontaneous mutation accumulation assay to estimate the mutational 

variance-covariance matrix, M, for male and female activity at different temperatures. My 

main focus was to ask whether the major axes of mutational variance reflect the three 

classic modes of variation thought critical for adaptive evolution of TPCs, the ‘faster-

slower’, ‘hotter-colder’ and ‘generalist-specialist’ axes. I also compare the relative 

contribution of these different axes of variation from new mutations to that observed in 

standing variance in this species and in other ectotherms. 
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2.3 Methods 

Mutation Accumulation Assay 

I used a set of spontaneous mutation accumulation (MA) lines that were created to 

test the role of sexual selection in purging deleterious mutations (McGuigan et al. 2011). 

Initially, 200 MA lines were founded from a single inbred line established from a lab-

adapted stock from Forster, Australia (32.12oS, 152.32oE). These 200 lines were randomly 

allocated to two mating treatments. One that represented a classic mutation accumulation 

protocol of maintenance via single pair full-sib mating, hereafter referred to as “standard” 

and a second that manipulated the opportunity for pre-copulatory sexual selection, 

hereafter referred to as “sexual-selection”. The treatment involved a female choosing 

between approximately four brothers as mates with no opportunity for multiple mating 

thereby equalising the effective population size of the two treatments. Comprehensive 

detail of the creation of these lines has been outlined in McGuigan et al. (2011).   

The existence of an evolutionary stable control is an important issue in mutation 

accumulation studies especially for the inferring magnitude of mutational effects that can 

be overestimated (Lynch et al. 1999; Halligan and Keightley 2009). In flies, it is not 

possible to freeze the founding line as it is in other systems such as C. elegans or 

bacteria. Instead, I maintained the founding inbred Forster line at a large effective 

population size to reduce its accumulation of new mutations while the MA lines were being 

established. It is nonetheless likely that some mutations accumulated in the founding line 

during the study period. I note that the estimation of mutational (co)variances—the main 

focus of this paper—is not greatly affected by the stability of the control (Lynch et al. 1999; 

Halligan and Keightley 2009). 

The locomotor activity assay was performed after 32 generations of spontaneous 

mutation accumulation. After generation 25, the sexual selection treatment ceased and all 

sexual-selection lines continued to be maintained by the mutation accumulation protocol 

that was applied to the standard lines. I assayed a total of 66 MA lines (30 standard and 

36 sexual-selection lines) as well as the inbred Forster founder line. I estimated individual 

level activity curves for 12 males and 12 females per MA line and used 60 males and 60 

females for the Forster inbred founder line. For each MA line three single mating pairs 

were each randomly allocated to a vial for egg laying. Adults were discarded after 48hrs. 

Upon emergence, I sexed 4 males and 4 females from each replicate vial and held them 
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singly in vials until the time of the assay. Phenotyping was conducted on five to nine day-

old virgins. During both mutation accumulation and phenotypic assays phases of the 

study, flies were maintained in the lab on a yeast-sucrose agar medium at 25 ± 0.5oC in a 

12:12 hr light cycle.  

 Assay of the Thermal Dependence of Locomotor Activity 

Individual TPCs were estimated by measuring locomotor activity when exposed 

briefly to six temperatures in the order of 30, 25, 33, 36, 35, and 38 ± 0.3oC (Latimer et al. 

2011). I measured the highest temperature last to prevent any detrimental effects 

interfering with subsequent measurements (e.g. Bennett 1980; Weinstein 1998; Lyon et al. 

2008). Between each temperature exposure, flies were held at 25 ± 0.5oC for 40 minutes 

to prevent acclimation to the temperature exposure. All measurements were conducted in 

the same constant temperature cabinet. Due to logistical constraints imposed by the 

availability of a limited number of locomotor activity testing devices, assays were 

conducted in 12 completely randomised blocks performed over six consecutive days. Two 

blocks were processed per day, each containing one male and one female from each of 

the 66 lines and five individuals per sex from the founding Forster line, ensuring that all the 

lines and founder was represented in all blocks.  

Locomotor activity was measured using Drosophila Activity Monitors (DAM, 

TriKinetics, Waltham, Massachusetts, USA) in a method similar to Latimer et al. (2011). A 

DAM comprises 32 x 5 mm holding tubes that are bisected by an infrared beam. When a 

fly crosses the beam, a connected computer records the number of intersections. 

Recordings were taken over a period of twenty minutes to prevent acclimation to the 

temperature treatment. I measured activity between 4.15am and 1.30pm to match with the 

diurnal activity patterns shown in a preliminary study I conducted (flies were maintained at 

a 12-hour light-cycle, 4am:4pm). Flies were placed in the 5 mm measurement tubes the 

afternoon prior to allow the flies to adjust to the new physical environment. Each 5 mm vial 

contained 1.5 cm of a three-day-old agar-sucrose medium that was caped and was 

stoppered with 0.2 mm of foam on the opposing end. 

My measure of locomotor activity differs from some of the previous measures that 

have been used as proxies for thermal performance in flies such as walking speed, which 

usually involves measurement after reaction to a stimulus such as flicking flies to the base 

of a vial (Crill et al. 1996; Gilchrist et al. 1997). Although all activity metrics include both 
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physiological and motivational aspects of physical movement, it could be argued that my 

metric includes more motivational variation (i.e. the willingness to move) than other 

measures (e.g. sprint speed) used in previous studies (Gilchrist et al. 1997; Lachenicht et 

al. 2010). Nonetheless, basal activity is positively correlated with walking speed in D. 

melanogaster (Burnet et al. 1988). Perhaps more critical, however, is the extent to which 

my measure is associated with fitness. This is the case in D. melanogaster, where 

voluntary activity co-varies with both male and female fitness (Long and Rice 2007). 

Statistical Analyses 

Univariate analyses  

I first tested for an effect of experimental mating treatment on both the mean and 

among-line variance of activity using the following mixed effects model: 

a = μ + b + t + b  t + l(t) + v(l(t)) + ε ,                  [2.1]  

where, a is a vector of locomotor activity scores taken at the six test temperatures, μ is the 

mean, b is a block effect reflecting the twelve experimental runs, t is the mating treatment, 

l(t) is the random MA line effect nested within mating treatment and v(l(t)) is the effect of 

replicate rearing vial nested within line. Males and Females were analysed separately. 

Models were fitted using restricted maximum likelihood (REML) using PROC MIXED in 

SAS (ver. 9.2; SAS Institute, Cary NC). Treatment and block were modeled as fixed 

effects, whilst all others were considered random effects. In all analyses, locomotor activity 

was square root transformed to normality. 

I was unable to detect an effect of the sexual selection treatment on locomotor 

activity. Locomotor activity did not significantly differ in either mean or genetic variance 

between the treatments in either sex at any temperature (Appendix 2.2, see also Appendix 

2.1). I therefore performed all further analyses by pooling the MA lines across treatments.  

Four measures of mutational variability were calculated from the variance 

component and mean estimates from the linear model:  

a = μ + b + l + v(l) + ε ,               [2.2] 
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where a is the activity score, μ is the population mean, b is a fixed block effect reflecting 

the twelve experimental runs, l is the random line effect and v is the effect of vial nested 

within line. The mutational variance per generation, Vm, was calculated by dividing the 

among-line variance component for each temperature by 2t, where t is the number of 

generations, a value of 32 in my case (Lynch and Walsh 1998; Halligan and Keightley 

2009). The mutational heritability (h2
m) was estimated as the mutational variance per 

generation divided by the environmental variance (Vm/VE) (Lande 1975).  The mutational 

coefficient of variation was estimated as, CVm = 100  × √Vm/X̅, where X̅ is the trait mean 

(Houle et al. 1996). To test for directional bias in the effect of new mutations on any trait 

(locomotor activity at each temperature), the activity change per generation (analogous to 

Mukai’s ΔM for fitness effects) was standardised by the trait mean: ΔM/ MC = (MMA – 

MC)/MC (Keightley and Ohnishi 1998), where MC is the mean of the founding Forster line 

and MMA is the mean for all the MA lines. Confidence intervals for all four measures were 

calculated by bootstrapping at the level of MA line 1000 times with replacement. 

Multivariate analyses 

The statistical analysis of function-valued traits such as TPCs is complex as a result 

of their nonlinear nature (Izem and Kingsolver 2005; Griswold et al. 2008). There are two 

broad approaches available by which function-valued traits can be analysed; functional 

(Griswold et al. 2008) and multivariate (Kirkpatrick and Heckman 1989). Functional 

analyses fit a continuous function to the vector of observations spanning an environmental 

axis for each individual. Differences between populations or genotypes are then revealed 

as differences in the means or variances of the underlying function coefficients. Although 

functional approaches have good statistical power when the number of phenotypic 

measurements per individual is large (owing to the relatively modest number of 

parameters that need to be estimated from the data (Griswold et al. 2008)), they assume 

that all individuals share a common underlying function (Izem and Kingsolver 2005). In 

situations where the heterogeneity in curve shape is large, this assumption may be 

violated, thereby weakening the approach. For example, different orders of polynomial 

may fit some genotypes better than others. In such instances, the multivariate approach, 

which treats all temperatures as discrete traits, has greater flexibility, because there is no a 

priori assumption of underlying curve shape. My mutational data set revealed 

heterogeneity in curve shapes that contrasted to what I had previously observed in the 

pattern of standing genetic variance in D. serrata (Latimer et al. 2011). Not all lines 



 30 

exhibited a drop in activity at the highest test temperatures. Consequently, nonlinear 

functional approaches were unable to effectively model such heterogeneity in curve shape 

and for this reason I rely on the multivariate approach. 

Multivariate approaches treat all measurements as discrete traits and fit a classic 

MANOVA model to the data. For analyses involving randomly sampled genotypes, the 

variance-covariance matrix at genotype level is analogous to the genetic variance 

covariance matrix, G (Lande 1979), of evolutionary quantitative genetics or in my case 

because I was assaying mutation accumulation lines, the mutational variance-covariance 

matrix, M (Lande 1975). The major axes of TPC genetic variance are revealed through an 

eigenanalysis of the estimated variance covariance matrix (Kirkpatrick et al. 1990; 

Kirkpatrick and Lofsvold 1992; Gilchrist 1996; Kingsolver et al. 2001). The ‘faster-slower’ 

axis is represented by eigenvectors with all positive (or negative) temperature loadings 

and is indicated when performance is positively genetically correlated between all pairs of 

temperatures (Fig. 2.1a, d). Variance for the ‘hotter-colder’ axis can be detected by an 

eigenvector with negative loadings at the lower temperatures and positive ones at the 

hotter temperatures (or vice versa), because this trade-off involves negative associations 

between performance at the lower temperatures and performance at the hotter 

temperatures (Fig. 2.1b, e). The ‘generalist-specialist’ axis is represented by eigenvectors 

where the loadings for temperatures in the center of the curve oppose those at either end, 

because intermediate temperatures are negatively genetically correlated with 

temperatures at the extreme (Fig. 2.1c, f).  

I estimated M for each sex using the multivariate mixed effects model: 

a = μ + b + l + v(l) + ε ,      [2.3] 

which is the multivariate equivalent of eqn. 2.2 where a is a vector of locomotor activity 

scores taken at the six test temperatures fit separately for males and females, μ  is the 

mean, b is a fixed block effect reflecting the twelve experimental runs, l is the random line 

effect and v is the effect of vial nested within line. Significance of line terms was assessed 

using likelihood ratio tests, comparing a model without a line effect to the full model [2.3]. 

Here, estimation was based on an unstructured variance-covariance matrix (type=UN) 

using PROC MIXED in SAS 9.2 (SAS Institute, Cary NC).  
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To visualise the major axes of mutational covariance, I conducted an eigenanalysis 

on each matrix and plotted the loadings of each eigenvector. To ensure that the 

eigenanalysis results were not influenced by differences in means across temperatures, I 

first mean standardised the among-line variance covariance matrix through element-wise 

division by [�̅�][ �̅�]-1 where 𝐗 refers to the six element mean vectors for each sex (Hansen 

and Houle 2008). I report values for M on a per generation scale, dividing all variance and 

covariance estimates by 2t, where t is the number of generations (t = 32) (Lynch and 

Walsh 1998; Halligan and Keightley 2009). To compare males and females, the vector 

correlations and angles between the sexes for each significant eigenvector and the trace 

of Mm and Mf were calculated. The vector correlations were calculated by the sum product 

of the normalised eigenvectors and the angle calculated by cos−1 (
𝑚𝑻𝑓

‖𝑚‖‖𝑓‖
) (Schluter 1996; 

Walsh and Blows 2009). 

I also investigated the dimensionality of M using a factor analytic modeling 

approach in SAS (Hine and Blows 2006; McGuigan and Blows 2007). A series of 

likelihood ratio tests were performed to compare the fit of models differing in the number of 

independent of dimensions of among MA line (co)variance. I specified a factor analytic 

variance-covariance structure at line level (Type =FA0(n) ) and adjusted n from one to six 

reflecting the specific number of dimensions to be tested.  

2.4 Results 

Thermal Performance Curve Shape 

When investigating the shape of the TPC, I found a general increase in locomotor 

activity with temperature (Fig. 2.2). However, for both sexes, the peak associated with the 

typical shape of TPCs was not evident for all lines. Instead for some lines, the highest 

mean performance was observed at the highest test temperature. 
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Figure 2.2: The mean locomotor activity TPCs for a) females and b) males of each 

mutation accumulation line. Locomotor activity was measured as counts per twenty-

minutes and has been square root transformed. The founder line is indicated by the solid 

black curve while individual MA lines appear in grey. As no difference between the 

treatments in the mutation accumulation experiment was found, the two treatments 

groups were not shown in this graph. See Appendix 2.1 for a plot highlighting both 

treatment groups. 

Univariate Mutational Variability 

The mutational heritability of locomotor activity at each temperature ranged 

between 2.618 × 10-3 and 5.329 × 10-3 for males, and 0.538 × 10-3 and 4.722 × 10-3 for 

females (Table 2.1). These values fall within the range of estimates reported for life-history 

traits (2 × 10-3 to 30 × 10-3: Lynch et al. 1999) except for females at 25oC with a value of 

0.583 × 10-3 being lower than this range. For both sexes, the mutational heritability was 

generally larger at higher temperatures; the difference in mutational heritability between 

25oC and 38oC was two-fold for males and eight-fold for females. I found that the 

mutational coefficient of variation, CVm ranged between 1.1% and 3.59% for all 

temperatures, within the range of estimates for other life-history traits (0.5 - 4.0%: Houle et 

al. 1994).  In contrast to heritability, CVm was maximal at 25 oC (Table 2.1). 

I observed significant asymmetry in the direction of mutational effects across all 

temperatures with the single exception of 36oC in males (Table 2.1). In both sexes, the 

values of ΔM/ MC were positive for all temperatures below 38oC in females and below 

36oC in males (Table 2.1, Figure 2.2). By contrast ΔM/MC was negative for 38oC in both 
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sexes, indicating that most new mutations affecting locomotor activity at this temperature 

decreased it. 

Table 2.1: The estimates for mutational variance (Vm), mutational heritability (h2
m), the 

coefficient of mutational variance (CVm) and the activity change per generation (ΔM/ MC) 

for males and females at each temperature. Bootstrap 95% confidence intervals are 

presented in parentheses.  

 

 

 

Temp 

(°C) 

Vm x 10
-3

 h
2
m  x 10

-3
 CVm 100 × ΔM/ MC  

Males     

25 4.784 

(0.271,8.861) 

2.618 

(0.141,5.33) 

3.589 

(0.711,4.733) 

97.015 

(92.476, 101.646) 

30 7.134 

(0.166,11.45) 

3.131 

(0.079,5.36) 

1.736 

(0.266,2.186) 

11.776 

(10.644, 13.531) 

33 6.091  

(0.545,10.38) 

3.598 

(0.317,6.866) 

1.326 

(0.403,1.785) 

9.468 

(8.446, 10.655) 

35 6.819 

(1.149,12.24) 

5.160 

(1.029,9.686) 

1.334 

(0.543,1.827) 

3.973 

(2.866, 4.769) 

36 7.883 

(3.376,12.67) 

4.846  

(2.141,9.396) 

1.161  

(0.769,1.482) 

0.814 

(-0.433, 1.261) 

38 15.995 

(6.586,26.19) 

5.329 

(2.043,9.081) 

1.636  

(1.037,2.118) 

-12.847 

(-14.360, -12.281) 

Females     

25 0.852 

(0,1.873) 

0.583 

(0,1.602) 

3.001 

(0,4.748) 

179.885 

(169.669, 188.863) 

30 4.311 

(2.234x10
-17

,8.733) 

1.744  

(9.35x10
-18

,3.771) 

2.194 

(5.16x10
-9

,3.13) 

9.083 

(6.273, 10.500) 

33 6.433  

(0.200,10.88) 

2.392 

 (0.084,4.514) 

1.692  

(0.287,2.230) 

42.613 

(41.211, 44.840) 

35 6.134  

(1.828,10.14) 

2.766 

 (0.841,5.143) 

1.405 

(0.776,1.826) 

9.380 

(7.859, 10.218) 

36 6.606  

(1.304,11.65) 

2.582 

(0.456,5.098) 

1.146  

(0.519,1.528) 

10.214 

(8.906, 10.833) 

38  15.738 

(4.402,25.51) 

4.722  

(1.266,8.176) 

1.688 

(0.899,2.208) 

-8.008 

(-9.291, -7.076) 
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Multivariate Mutational Variance  

To test for the presence of mutational variance and covariance for locomotor activity 

among all the six temperatures, I tested the significance of the MA line term in linear model 

[2.3]. Removal of the line term resulted in a significant drop in likelihood in males (χ2=137, 

d.f. = 21, p< 0.0001) and females (χ2=87.9, d.f. = 21, p< 0.0001) indicating that I had 

captured significant mutational variance in both sexes. Further factor analytic modeling of 

the (co)variance among lines supported a maximum of three independent axes of 

mutational variation in males, and two in females (Table 2.2). For both male and female M 

matrices, the covariances between all pairs of temperatures were positive (with one 

exception: 25C vs. 38C in females) and the mutational correlations tended to weaken as 

the differences between the temperatures increased (Table 2.3).  

Table 2.2: Likelihood ratio tests and information criteria for reduced rank analyses testing 

the dimensionality of the mutational variance-covariance matrix, M, for locomotor activity in 

male and female D. serrata. The best model (based on AIC) is shown in bold for each sex. 

 

Factor Parameter -2LogLikelihood AIC χ2 d.f. p-value 

Males       

6 63 14089.1 14209.1    

5 62 14089.1 14209.1 0 1 1.00 

4 60 14090.2 14206.2 1.1 2 0.577 

3 57 14092.4 14202.4 2.2 3 0.532 

2 53 14116.8 14218.8 24.4 4 6.64x10-5 

1 48 14162.0 14258.0 45.2 5 1.32x10-7 

Females       

6 63 15457.1 15577.1   1.00 

5 62 15457.1 15577.1 0 1 1.00 

4 60 15457.2 15573.2 0.1 2 0.951 

3 57 15459.7 15569.7 2.5 3 0.475 

2 53 15465.0 15567.0 5.3 4 0.258 

1 48 15481.7 15575.7 16.7 5 0.0051 
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Table 2.3: The mutational variance-covariance matrices for locomotor activity in males, Mm
 (left panel), and females, Mf (right panel) 

across the six test temperatures (°C). Variances are on the diagonal in bold, the covariances below the diagonal and the correlation 

between temperatures above the diagonal. Estimates are mean-standardised. Variances and covariances estimates are reported as × 

1000. 

 Males Females 

 25 30 33 35 36 38 25 30 33 35 36 38 

25 1.243 0.911 0.718 0.484 0.438 0.154 0.820 0.768 0.871 0.569 0.311 -0.048 

30 0.557 0.301 0.839 0.642 0.519 0.341 0.473 0.462 0.676 0.685 0.605 0.333 

33 0.344 0.198 0.185 0.874 0.680 0.549 0.403 0.235 0.261 0.741 0.678 0.270 

35 0.226 0.148 0.157 0.175 0.836 0.860 0.230 0.208 0.169 0.199 0.953 0.696 

36 0.178 0.104 0.107 0.128 0.133 0.940 0.104 0.151 0.127 0.156 0.135 0.890 

38 0.088 0.097 0.122 0.186 0.177 0.266 -0.023 0.121 0.074 0.165 0.174 0.284 
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The loadings for the first three individual eigenvectors of M, which contribute more 

then 95% of the variance, was consistent with the observed strong covariance between 

temperatures (Fig. 2.3). All three eigenvectors show similar patterns across the sexes. The 

first eigenvector accounted for 75.6% and 69.7% of the total mutational variance for males 

and females respectively. The eigenvector loadings shared the same sign across all 

temperatures and the eigenvector most closely resembles the ‘faster-slower’ axis of TPC 

variation. In both sexes, loadings tended to weaken towards higher temperatures (Fig. 2.3; 

Appendix 2.3). The second eigenvector explained 20.3% and 22.7% of the total mutational 

variance for males and females respectively. The loadings indicated negative mutational 

covariance between activity expressed at cooler and hotter temperatures. Such a change 

in direction in loadings is consistent with a ‘hotter-colder’ axis of TPC variation. Although 

the existence of a third dimension was not statistically-supported for females, the third 

eigenvector, explained 2.75% and 6.08% of the total mutational variance for males and 

females respectively. A trade-off between the intermediate and extreme temperatures was 

displayed in the loadings. This pattern of negative correlation between intermediate and 

the most extreme temperatures is consistent with a ‘generalist-specialist’ axis of TPC 

variation.  

Figure 2.3 suggests mutations affected males and females similarly. The trace (the 

sum of the diagonal elements) of M supports this, being only slightly larger in males than 

the females (Mm: 2.303; Mf: 2.161) (Table 2.3). Vector correlations between the males and 

females for both the first and second eigenvectors were strong, indicating the male and 

female loadings were similar, (λ1: r
 = 0.977, angle = 12.07o λ2: r

 = 0.966, angle = 15.05o). 

However, for the third eigenvector the loadings for males and females were quite different, 

with a low vector correlation of 0.031 corresponding to an angle of 88.22o.  
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Figure 2.3: Eigenvector loadings for the male and females mutational variance-covariance 

matrices, Mm and Mf. M was mean standardised (sex-specific means) before 

eigenanalyses were conducted. The first three eigenvectors are shown for each sex 

(males: a-c, females e-f) and all are normalised to unit length.  
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2.5 Discussion 

Mutation and the Components of Thermal Performance Curve Variation 

I detected significant mutational (co)variance for the TPC of D. serrata. For both 

males and females, more than 95% of the mutational variance occurred along the first 

three eigenvectors of M.  Each of these independent axes shared broad similarities with 

one of the three commonly documented axes for thermal performance curve variation; 

‘faster-slower, ‘hotter-colder’ and ‘generalist-specialist’. At first glance these results 

suggest that a variety of different pleiotropic mutations make up the genetic variance for 

thermal adaptation trade-offs (Gilchrist 1996; Izem and Kingsolver 2005; Knies et al. 2006; 

Yamahira et al. 2007; Angilletta 2009; Knies et al. 2009; Latimer et al. 2011). However 

their relative contribution to mutational variation was in many cases different to what has 

commonly been observed in the pattern of standing variation for these traits.  

The first eigenvector of M, which described the largest axis of mutational variance, 

had loadings for all temperatures that were positive, which corresponds to positive 

correlations of mutational effects across all temperatures. In terms of thermal adaptation, 

all positive loadings resemble a ‘faster-slower’ axis of variation (Fig. 2.1a, d; Kingsolver et 

al. 2001; Izem 2004; Izem and Kingsolver 2005). Having the mutational variance 

dominated by this form of variation is particularly interesting because the ‘faster-slower’ 

axis often contributes the smallest amount of standing genetic variance in natural 

populations (Gilchrist 1996; Izem and Kingsolver 2005; Knies et al. 2006; Yamahira et al. 

2007). Further, a quantitative genetic study of TPC in natural populations of D. serrata 

failed to detect significant standing variance for a ‘faster-slower’ axis of variation, despite 

detecting ‘generalist-specialist’ and ‘hotter-colder’ variation (Latimer et al. 2011), which 

suggests low ‘faster-slower’ variance in outbred populations. 

It is possible that the majority of the mutational variance for the ‘faster-slower’ axis 

is maladaptive which would explain why it is observed infrequently in nature but remains 

observable in a mutation accumulation study where natural selection is greatly reduced. In 

general, correlations estimated from standing genetic variance tend to be considerably 

lower than estimates from mutational variance (Houle 1994). Estes and Phillips (2006) 

also found that mutational covariances were positive and larger before selection occurred. 
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In my case, the general increase in activity in the MA lines suggests that higher activity 

may be maladaptive (see section below). 

An interesting aspect to the first eigenvector of M was that although all loadings 

were positive, they tended to decrease as temperature increased. General mean-variance 

scaling effects cannot explain this pattern because my eigenanalysis was performed on 

mean-standardised values. The pattern may be a true reflection of the genotype-

phenotype relationship where the allelic effects on locomotor activity are larger at cooler 

rather than warmer temperatures. Given that activity was quite low at cooler temperatures, 

there may be a greater scope to increase activity from these low levels as opposed to the 

higher temperatures, where activity levels are already high. An alternative explanation is 

that simply more locations in the genome affect activity at lower temperatures than higher 

ones. 

The second eigenvector of M showed patterns consistent with the ‘hotter-colder’ 

axis. In both males and females, the loadings were of opposing sign between 25oC and 

the warmer temperatures suggesting a ‘hotter-colder’ trade-off and therefore a relatively 

high propensity for pleiotropic mutations that differ in their direction-of-effect between 

temperatures. Studies of standing variance typically see the ‘hotter-colder’ trade-off (Izem 

and Kingsolver 2005; Knies et al. 2006; Latimer et al. 2011) and may owe in part the 

contribution of pleiotropic mutations seen in my study. 

The third eigenvector of M was consistent with the ‘generalist- specialist’ axis for 

which standing genetic variation is typically detected (but see Yamahira et al. 2007). The 

‘generalist-specialist’ axis was the dominant mode of variation for standing genetic 

variance in my earlier study of D. serrata (Latimer et al. 2011). However, it contributes 

relatively little to mutational variation (3 and 6% in males and females), which again 

suggests natural selection may have altered the frequency of alleles with different classes 

of pleiotropic effects. Selection on ‘faster-slower’ variation might increase the frequency of 

‘generalist-specialist’ alleles, which are likely to affect fitness only under fluctuating 

selection. Whether this mechanism might also apply to TPCs in other species will require 

further study. 

In more general terms, my analyses suggest that alleles with quite varied pleiotropic 

effects across temperatures play an important role in thermal adaptation. In addition to 
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variation in the direction of effect across temperatures, my results suggest the existence of 

alleles that differ in their effect size across environments. Differences in allelic effect sizes 

suggest that some specialisation on the ‘faster-slower’ axis of variation might be possible 

even under consistent directional selection (Fry et al. 1996). Indeed, the fitness effects of 

new mutations in different environments are often deleterious in each environment but to 

differing degrees (Kondrashov and Houle 1994; Fry et al. 1996; Fernandez and 

LopezFanjul 1997; Mackay and Lyman 1998; Wayne and Mackay 1998; Xu 2004).  

An unusual feature of my data that could affect interpretation of the distribution of 

mutational variance across the three major axes of TPC variation was that some lines, 

including the founder, lacked an activity peak within the range of tested temperatures.  

Although an inability to measure activity at sufficiently high temperatures is a common 

issue in these types of assays (Wilson 2001; Angilletta 2009), my previous study of natural 

populations used an identical range of test temperatures and revealled activity peaks 

between 35 and 37oC (Latimer et al. 2011). It appears that the founding genome may differ 

genetically in its temperature of maximal activity. One key point of difference between the 

founder genome and the samples used in prior work was the population of origin. The 

founder genome was sourced from Forster, approximately 700kms away from the closest 

population assayed by Latimer et al. (2011). Genetically based divergence in the 

temperature of maximal activity was indeed observed among three northern populations, 

indicating genotypic variability for this trait (Latimer et al. 2011).    

Perhaps more important than understanding its origin is understanding how the lack 

of a peak could have influenced my findings. As my data essentially contained a mixture of 

genotypes, those exhibiting an activity peak and those still monotonically increasing, I 

reanalysed the male and female data excluding all MA lines lacking an activity peak. The 

results were remarkably similar to the previous analyses in Figure 2.3, both in terms of the 

distribution of mutational variance across the first three eigenvectors of Mm and Mf , and 

also, in terms of correspondence between vector loadings and the biological axes of TPC 

variation (Appendix 2.4). The loadings for the first eigenvector remained all positive 

loadings in both sexes and the fall in magnitude with increasing temperature was also 

preserved. The second eigenvector continued to resemble a ‘faster-slower’ axis with 

loadings changing sign between hotter and cooler temperatures. The third eigenvector 

again resembled a ‘generalist-specialist’ axis with loadings changing sign between 
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intermediate and extreme temperatures. Thus it does not appear that my biological 

conclusions have been greatly affected by not capturing optimal temperature values for all 

lines. 

The Direction of Mutational Bias Varies with Temperature 

Mutational bias occurs when the average effect of new mutations on a trait mean 

deviates from zero. I observed a high degree of mutational bias in my analysis of 

locomotor activity in D. serrata. With the single exception of 36°C in males, the values of 

ΔM/MC were significantly different from zero. For all but the highest temperatures, the 

direction of bias was consistent in increasing the level of locomotor activity. However, the 

pattern flipped at the highest temperature in my assay of 38°C, with most MA lines having 

lower levels of activity than the control. Beyond the mutational bias well-known presence 

for fitness itself (Keightley and Lynch 2003), the frequency with which it has been detected 

for phenotypes tends to be quite variable. Unsurprisingly, life history traits thought to be 

closely associated with fitness often display bias for mutagen-induced (Lyman et al. 1996; 

Keightley and Ohnishi 1998; Yang et al. 2001) and spontaneous (Santiago et al. 1992) 

mutations. The pattern is arguably less common for morphological traits such as 

abdominal (but not sternoplural) bristle number in D. melanogaster (Mackay et al. 1992) 

and wing shape (Houle and Fierst 2012; McGuigan and Blows 2013). A notable exception 

is the strong bias for body size in nematodes (Ostrow et al. 2007). 

I might have reasonably expected that locomotor activity would decrease rather 

than increase, as I saw for most temperatures, under mutation accumulation. The 

evolutionary significance of mutational bias depends upon the nature of selection acting on 

a trait (Waxman and Peck 2003). For traits under directional selection, like fitness, a 

downward bias is expected (Iwasa and Pomiankowski 1991; Pomiankowski et al. 1991). 

An analysis of adult fitness in these MA lines has indicated that both males and females 

indeed suffer reduced fitness relative to the founder line at 25°C (S. Allen, K. McGuigan, 

M. Blows, S, Chenoweth, manuscript in prep) and reductions in fitness components such 

as male mating success are also consistent with a reduction in fitness during mutation 

accumulation (McGuigan et al. 2011; McGuigan and Blows 2013). However, we do not yet 

know to what extent locomotor activity is a direct target of selection or exhibits these 

mutational bias effects through pleiotropic association with fitness-reducing alleles. 

Mutational data for performance and life history traits combined are scarce as both are 
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rarely measured in the same study or on the same sets of lines.  A notable exception is the 

D. melanogaster study of Huey et al. (2003), who reported that the mutational correlations 

between multiple performance and multiple life history traits were not consistently positive 

and are indeed highly variable. For the specific case of the largely-upward mutational bias 

for locomotor activity I have observed here, one intriguing possibility that may help to 

explain it is that the trait may experience sexually antagonistic selection. For example, in 

D. melanogaster, voluntary activity is under positive directional selection in males but 

negative directional selection in females (Long and Rice 2007); perhaps the fitness 

reduction via increased locomotor activity occurs on females, with any apparent benefit to 

males being offset through the fitness reduction in females. 

Conclusion 

Significant mutational variance exists for the thermal dependence of locomotor 

activity in D. serrata and it is distributed across at least three independent axes of 

variation. The majority of mutational variance appears to be along the ‘faster-slower’ axis 

where overall activity can increase or decrease across all temperatures. However, 

underlying this axis there appears to be differences in the strength of allelic effects 

between temperatures, suggesting that a degree of thermal specialisation remains feasible 

through this type of genetic variation. Two other axes of variation consistent with trade-offs 

central to thermal adaptation theory, the ‘generalist-specialist’ and ‘hotter-colder’ axes, 

were also evident. Opposing patterns of mutational and standing variance suggest 

selection affects the cross-temperature covariance structure of these traits in outbred 

populations. Association studies that can estimate both the frequency and pleiotropic 

additive effects of DNA sequence polymorphisms across different temperatures will be 

useful in furthering our understanding of the evolutionary dynamics of thermal performance 

curves. 
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Chapter Three:  

Connecting thermal performance curve variation to the 

genotype: a multivariate QTL approach 

(Published in Journal of Evolutionary Biology, 2015 with authors below, 28:155-168) 

Latimer, C. A. L., Foley, B., & Chenoweth, S. F. 

3.1 Abstract 

Thermal performance curves (TPCs) are continuous reaction norms that describe 

the relationship between organismal performance and temperature and are useful for 

understanding trade-offs involved in thermal adaptation. While thermal trade-offs such as 

those between generalists and specialists or between hot- and cold-adapted phenotypes 

are known to be genetically variable and evolve during thermal adaptation, little is known 

of the genetic basis to TPCs–specifically, the loci involved and the directionality of their 

effects across different temperatures. To address this, I took a multivariate approach, 

mapping QTL for locomotor activity TPCs in the fly, Drosophila serrata, using a panel of 76 

recombinant inbred lines. The distribution of additive genetic (co)variance in the mapping 

population was remarkably similar to the distribution of mutational (co)variance for these 

traits. I detected 11 TPC-QTLs in females and 4 in males. Multivariate QTL effects were 

closely aligned with the major axes genetic (co)variation between temperatures; most QTL 

effects corresponded to variation for either overall increases or decreases in activity, with a 

smaller number indicating possible trade-offs between activity at high and low 

temperatures. QTLs representing changes in curve shape such as the ‘generalist-

specialist’ trade-off, thought key to thermal adaptation, were poorly represented in the 

data. I discuss these results in light of genetic constraints on thermal adaptation.  
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3.2 Introduction 

Temperature is an important environmental factor for ectotherms, owing to their 

limited ability to thermoregulate, which in turn influences physiological (Hochachka and 

Somero 2002 ; Roberts et al. 2003; Kingsolver 2009) and behavioural (Bennett 1980; 

Gilchrist 1996) processes that link to growth and survival (Hoffmann et al. 2003; Angilletta 

2009). Therefore, ectotherms face a distinct challenge due to the fact that environmental 

temperatures vary in space and time (Gibbs 2002). If temperature fluctuates too widely or 

too rapidly, organismal performance can decline as a result, for example, through reduced 

reproductive success (Hoffmann et al. 2003; Berger et al. 2008) or increased predation 

risk due to suboptimal locomotion (Roberts et al. 2003; Lyon et al. 2008).  

Thermal performance curves (TPCs) provide a framework for understanding how 

changes in environmental temperature affect organismal performance (Huey and 

Stevenson 1979; Izem and Kingsolver 2005). TPCs are a non-linear continuous reaction 

norm that link values of a performance-related trait of an organism acutely exposed to a 

range of environmental temperatures. TPCs of ectotherms exhibit a characteristic shape, 

where performance gradually increases with temperature, reaching a maximum before 

decreasing sharply (Fig 1a) (Huey and Stevenson 1979; Huey and Kingsolver 1989; 

Angilletta et al. 2002b; Angilletta 2009). These functions have been used to understand 

the various trade-offs thought central to thermal adaptation (Huey and Kingsolver 1989; 

Kingsolver 2009). Specifically, three major components of TPC variation have been 

identified (Kingsolver et al. 2001; Izem and Kingsolver 2005). First, the ‘hotter-colder’ axis 

represents variation in the temperature where performance is maximised. Along this axis a 

trade-off is implied when increased performance at a high temperature involves decreased 

performance at a cold temperature or vice versa. Second, the ‘generalist-specialist’ axis 

represents a trade-off due to a negative correlation between the width of a performance 

curve and the maximum level of performance achieved; generalists have wider curves but 

achieve a lower maximal level of performance, whereas specialists have narrower curves 

but can attain a higher maximal level of performance (Huey and Slatkin 1976; Huey and 

Kingsolver 1989; Kingsolver et al. 2001).  Third, the ‘faster-slower’ axis represents 

variation for an overall increase or decrease in performance independent of temperature 

and therefore does not involve any trade-offs for performance at different temperatures. 
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Phenotypic variation in TPCs can arise through plasticity in response to 

environmental factors. For example, changes in TPC elevation and shape have been 

observed following exposure to different constant temperature treatments in both 

vertebrate and invertebrate species (Deere and Chown 2006; Condon et al. 2010). A 

genetic basis to TPC variation has also been established through a variety of approaches 

including mutation accumulation (Cooper et al. 2001; Knies et al. 2006; Chapter 2), 

quantitative genetic experiments (Gilchrist 1996; Izem and Kingsolver 2005; Berger et al. 

2013), and common-garden studies (Yamahira and Conover 2002; Van Doorslaer and 

Stoks 2005). Moreover TPCs diverge genetically between natural and experimental 

populations from different thermal environments suggesting local adaptation (Knies et al. 

2006; Yamahira et al. 2007; Latimer et al. 2011). Although it is clear that TPCs are 

genetically variable and evolve during thermal adaptation, we know little of their genetic 

architecture (Angilletta 2009). Quantitative genetic studies can indicate the overall 

distribution of genetic variance across TPCs, but the number, genomic distribution and 

pleiotropic effects of variants that underlie TPC variation may set bounds on their ultimate 

evolutionary potential. For example, we do not know whether the different axes of TPC 

variation are due to specific classes of pleiotropic variants or whether these axes are more 

ordinarily made up of multiple variants that affect different parts of a curve independently.  

A practical first step towards dissecting the genetic architecture of TPC variation 

would be to study their underlying Quantitative Trait Loci (QTL). Although QTL studies 

estimating the environmental sensitivity of quantitative traits are by no means new (Fry et 

al. 1998; Gurganus et al. 1998; Gutteling et al. 2007; Bergland et al. 2008), none have 

estimated QTLs for TPCs specifically.  Mapping QTLs for TPC variation is a problem best 

suited to multivariate QTL mapping methods. There are a large number of multivariate 

approaches available (e.g. Jiang and Zeng 1995; Mangin et al. 1998; Knott and Haley 

2000; Banerjee and Yi 2012), and typically approaches emphasise one of two areas: 

statistical demonstration of pleiotropy for pairs of traits, or the estimation of effects across 

many traits simultaneously. For mapping TPC QTLs the latter feature is perhaps most 

important, owing to the often-large number of temperatures assayed and the complex 

covariance structure between them.  

In this study I have applied a multivariate regression based mapping approach that 

permits estimation of QTL effects across all test temperatures simultaneously while 
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accounting for the covariance between temperatures. This approach yields an additive 

‘effects vector’—the loadings in each vector supplying information about the magnitude 

and direction of effect on performance at each temperature. A desirable property of this 

approach is that it provides estimates in the same ‘trait space’ as evolutionary quantitative 

genetic parameters of interest, such as the additive genetic variance covariance matrix 

across temperatures, G (Lande 1979), its mutational variance counterpart, M (Lande 

1975), and multivariate vectors of divergence between populations, d (Schluter 1996). 

Further, the approach allows one to determine how well QTL effects match the three major 

axes of TPC variation. For example, a ‘faster-slower’ QTL would have effects for all 

temperatures in the same direction; a ‘hotter-colder’ QTL would have similar direction of 

effects at one end of the temperature range but in the opposite direction at the other; and 

‘generalist-specialist’ QTL would have similar effects at mid-range temperatures but 

opposing effects at extreme temperatures (Fig. 3.1b-d).  

Figure 3.1: Schematic diagram of a) a thermal performance curve illustrating the common 

shape, and b-d) possible multivariate QTL effects resembling the three major axes of TPC 

variation: b) faster-slower QTL c) hotter-colder QTL and d) generalist-specialist QTL.  

Here, I have implemented the multivariate QTL mapping framework for locomotor 

activity TPCs in the fruit fly Drosophila serrata using a panel of recombinant inbred lines 
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(RILs) that were established from a cross between two natural populations. Locomotor 

activity was used due to its known thermal sensitivity in ectotherms and association with 

fitness in Drosophila species where it has links with reproductive success, dispersal, 

predator avoidance and foraging (Gilchrist et al. 1997; Roberts et al. 2003; Long and Rice 

2007). In D. serrata, both mutational genetic variance (Chapter 2) and standing genetic 

variance for TPCs has been characterised (Latimer et al. 2011) as has their genetic 

divergence along a latitudinal gradient (Latimer et al. 2011). I discuss my results in light of 

genetic constraints on thermal adaptation.  

3.3 Methods 

Recombinant Inbred Lines 

I used a panel of 76 Recombinant Inbred Lines (RIL) of Drosophila serrata founded 

from a divergent line cross (Foley 2008). Founder lines were sampled from two natural 

populations (Eungella, QLD, 21.17° S, 148.50° E; Forster, NSW, 32.22° S, 152.53 E) 

spanning 11.05 degrees of latitude that represent opposing ends of the eastern Australian 

distribution of D. serrata. Founder lines were inbred for ten generations post collection. 

The founder lines were then checked for major inversions by examining polytene 

chromosomes to ensure that they were homosequential prior to crossing (Stocker et al. 

2004). The F2 offspring of the cross were then inbred via full-sib mating for a minimum of a 

further 17 generations to isogenise them. All lines were maintained at 25OC in a 12:12 

dark-light cycle on a yeast-sucrose agar medium.  

Thermal Performance Curve Assay 

Individual TPCs were estimated by measuring locomotor activity when exposed 

briefly (20 minutes) to each of six temperatures in the order of 30, 25, 33, 36, 35, and 38 ± 

0.3oC (similar to Latimer et al. 2011; Chapter 2). Temperature was measured in this order 

to minimise differences between runs and prevent overly sudden changes in temperature. 

I measured the highest temperature last to prevent any detrimental effects interfering with 

any subsequent measurements (Gilchrist 1996). Single fixed, as opposed to multiple 

random, testing orders are often used when estimating TPCs (Gilchrist 1996; Wilson 2001; 

Wilson et al. 2001; Angilletta et al. 2002a; Ben-Ezra et al. 2008). In an earlier study, my 

colleagues and I conducted a pilot experiment to determine the influence testing order had 
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on the curves (Latimer et al. 2011). The average correlation between TPCs from 6 

randomly selected testing orders was very high in both sexes (females: r = 0.9216; males: 

r = 0.9346), and therefore I opted for higher throughput with a fixed testing order over the 

use of random testing orders which would have dramatically reduced the number of 

samples we could process. All measurements were conducted in one single temperature 

cabinet and flies were rested at 25 ± 0.5oC for 40 minutes between each temperature 

treatment to prevent stress and acclimation. TPC assays were conducted in 12 completely 

randomised runs performed over six consecutive days. Two runs were processed per day; 

each run contained one male and one female per RIL and four males and four females per 

founder line. I estimated individual-level TPCs for 12 males and 12 females per RIL and for 

48 males and 48 females for each of the two founder lines. Flies were sexed across three 

density controlled replicate vials for the RILs and founder lines and held singly in vials until 

the time of the assay. Phenotyping was performed on five to seven day-old virgin flies.  

Locomotor activity was measured using Drosophila Activity Monitors (DAM, 

TriKinetics, Waltham, Massachusetts, USA) in line with the method used by Latimer et. al 

(2011; 2014). A DAM comprises 32 holding tubes that are bisected by an infrared beam. 

Activity is recorded as a count of intersections across the beam made by the fly over a 

period of 20 minutes, thus preventing acclimation to the temperature treatment. Assays 

were run between 04:15 and 13:30 each day. Flies were placed in the 5 mm x 65mm 

holding tubes and held at a constant temperature of 25oC the prior afternoon to allow the 

flies to adjust to the new physical environment. Each 5 mm holding tube contained, at one 

end, 1.5 cm of a three- day-old agar-sucrose medium to impede desiccation.  

The traits used to measure TPCs are ideally an aspect of an organism’s overall 

capacity to function (Angilletta 2009). All activity metrics involve both physiological and 

voluntary aspects of movement; however, it could be argued that activity captured by the 

DAMs, potentially involves a greater voluntary component than other performance metrics, 

such as sprint speed (Angilletta et al. 2002a; Lachenicht et al. 2010). Previous studies 

using the DAM based measure have successfully recovered expected TPC shapes and 

detected the expected trade-offs (Latimer et al. 2011), as have similar activity-based 

assays (Gilchrist 1996; but see Angilletta 2009). 
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Molecular Markers 

A total of 49 molecular markers were used to genotype the RILs (Appendix 3.2). 

This panel of markers consisted of 16 expressed sequenced tag (EST) derived single-

nucleotide polymorphisms (SNPs) genotyped using a SEQUENOM Assay (Stocker et al. 

2012), 7 derived Cleaved Amplified Polymorphic Sequences (dCAPS) markers genotyped 

using Agarose gels and 23 microsatellites. Microsatellites were derived chiefly from a D. 

serrata EST collection (Frentiu et al. 2009) with the exception of Dser6 ( marker 25), which 

was developed earlier (Magiafoglou et al. 2002). Because of the strong conservation of 

chromosome arm-level gene content between D. serrata and D. melanogaster genomes 

(Stocker et al. 2012), I was able to use BLAST (Altschul et al. 1997) to assign markers to 

chromosomal arms. Additionally, the 16 SNPs genotyped using SEQUENOM have been 

placed on the D. serrata linkage map (Stocker et al. 2012). Although it was possible to 

assign almost all the markers to chromosomal arms, it was not possible to create a linkage 

map for this set of markers because of low linkage disequilibrium between markers on the 

same chromosome. For this reason, I performed all QTL analyses using a single-marker 

approach as opposed to interval mapping. Although some markers exhibited segregation 

distortion, those with minor allele frequencies greater than 20% were retained for QTL 

mapping because single marker analysis is not particularly sensitive to segregation 

distortion (Xu 2008). 

Statistical Analysis 

Quantitative Genetic Analysis  

I first tested for differences in mean locomotor activity between the two Eungella 

and Forster founder lines. For all analyses, locomotor activity was square root transformed 

to improve normality. Sexes were analysed separately, due to locomotor activity across 

temperatures being sexually dimorphic in D. serrata (Latimer et al. 2011). The mixed 

effects model was: 

a = μ + f + t +b + f×t + f×b + t×b + f×t×b + v(f) + ε ,                   [3.1] 

where, a is locomotor activity taken at the six test temperatures for each sex, μ is 

the mean, f is founder line, t is temperature (here modelled as a categorical factor), b is 

block, reflecting the twelve experimental runs and v(f) is vial nested within founder line. I 
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modelled t, f, b and all interactions as fixed effects and the vial term, v(f), as random. I 

treated block as a fixed effect because the blocks were temporal instead of a random 

sample of times, where they were twelve successive runs conducted over the 6 test days 

(Quinn and Keough 2002). Analyses were performed using the MIXED procedure in SAS 

(ver. 9.3; SAS Institute, Cary NC).  

 I also estimated the multi-temperature vector of divergence between the two 

founder lines, d, from: 

𝑑 = [�̅�𝑬𝒖𝒏𝒈𝒆𝒍𝒍𝒂 − �̅�𝑭𝒐𝒓𝒔𝒕𝒆𝒓][(�̅�𝑬𝒖𝒏𝒈𝒆𝒍𝒍𝒂 − �̅�𝑭𝒐𝒓𝒔𝒕𝒆𝒓) ′(�̅�𝑬𝒖𝒏𝒈𝒆𝒍𝒍𝒂 − �̅�𝑭𝒐𝒓𝒔𝒕𝒆𝒓) ]
−𝟏/𝟐

 [3.2] 

where, �̅� refers to the six element mean vectors for each founder (Schluter 1996). Before 

divergence was calculated, the data were mean standardised using the overall population 

mean of RILs (founders included) to permit comparison with the QTL effects that were also 

estimated on a mean standardised scale. 

To test for genetic variance among the RILs, I fitted a multivariate mixed effects 

model: 

a = μ  + b + l + v(l) + ε ,           [3.3] 

where, a is a vector of locomotor activity scores (mean standardised) taken at the six test 

temperatures, μ is the vector of means, b is the block effect reflecting the twelve 

experimental runs, l is the line (RIL) effect and v(l) is the effect of vial nested within line. 

Block was modeled as a fixed effect (for the same reasons explained above), whereas all 

other terms were treated as random. I estimated the genetic variance-covariance matrix, G 

(Lande 1979), from the (co)variance component estimates corresponding to the line term. 

An unstructured covariance matrix (Type=UN; SAS MIXED procedure) was fitted at this 

level. Significance of the line term was tested using likelihood ratio tests against the null 

model where the line term was removed. To identify the major axes of genetic (co)variance 

among the RILs, I performed an eigenanalysis on the G matrix from [3] for each sex.   

Multivariate QTL Mapping Analysis 

A multivariate QTL analysis was performed to find markers associated to locomotor 

activity across all temperatures. The QTL mapping model was:  
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A = 𝑿𝒊B + E ,      [3.4]  

where, A is a n = 76 x 6 element matrix of means for the 76 RILs at six 

temperatures, X is an 76 x 2 element design matrix with 1 in the first column and the 

coding variables for the marker genotype i (0,1) in the second column, B is a 2 x 6 element 

matrix containing the six intercepts in the first row and six slope estimates in the second 

row that correspond to the additive ‘effects vector’ of the marker at each temperature. The 

residual error, E, here equates to the among RIL variance-covariance matrix. This model 

was performed for each of the 49 markers separately. I fitted this model using the MIXED 

procedure in SAS Version 9.3 (SAS Institute Inc. Cary NC) and assumed an unstructured 

variance covariance matrix for E.  The approach is essentially a multivariate regression 

and is similar to that based on canonical correlation used for QTL mapping by Leamy et al. 

(1999) and Wolf et al. (2005). More recently, this approach has also been adopted for use 

in association mapping (Ferreira and Purcell 2009).  

All QTL mapping was conducted at the level of RIL means. I performed a 

permutation test to check that the F-ratio approximated p-values for the QTL model were 

sensible. Briefly, I randomly shuffled the 6 element RIL mean activity vectors against the 

marker data 1000 times and estimated the linear model [4] retaining the F-ratio and p-

value at each iteration. I found that the permutation-based p-values were always extremely 

close to the F approximation and no systematic bias was apparent (Appendix 3.1). To 

correct for multiple testing, a false discovery rate (FDR) analysis was performed taking the 

approach of Storey and Tibshirani (2003) implemented in the qvalue package (Dabney et 

al. 2004) in R (R Core team version R 3.1.0).  

To provide a preliminary representation of the types of QTLs detected, I categorised 

QTL effects into three major groupings according to the consistency of the direction of QTL 

effects across temperatures. For the first class all the effects had to be in the same 

direction (i.e. all positive or all negative; Fig. 1b) but they could vary in magnitude, making 

this a broad definition of the ‘faster-slower’ axis. For second class, one switch in direction 

had to occur across the curve resulting in the vectors splitting into two groups with 

opposing direction (e.g., +++---, ++++-- or +++++-; Fig. 1c). For the final group two 

switches in direction had to occur, where the effects for intermediate temperatures were in 

the opposite direction to those at the extremes (e.g. ++--++, +----+, ++-+++; Fig. 1d).  

Because these groupings were initially based on the point estimates of QTL effects, I also 
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examined the nominal significance of effects at the individual testing temperatures, testing 

for a significant deviation from zero. 

I was also interested in the alignment of marker effects with the divergence vector 

between the founder lines, d. To explore this association I calculated angles between 

marker effects vectors, m, and the vector of divergence, d. I calculated the angles 

between di and m from 𝜃 = cos−1 (
𝒅𝒊𝑻𝒎

‖𝒅𝒊‖‖𝒎‖
) (Schluter 1996; Blows and Walsh 2009). The 

angles between the marker effects, m, and the eigenvectors of G, λi, were also calculated 

in the same way. This allowed me to assess the orientation of QTL effects with the major 

axes of the genetic variance created in this synthetic recombinant population. Angles were 

calculated for all significant QTLs. The lengths of the effects vectors were taken as a 

measure of overall QTL effect size. 

3.4 Results 

Thermal Performance Curve Shape 

Locomotor activity was positively correlated with temperature, with males generally 

having a higher level of locomotor activity than females (Fig. 3.2). A gradual increase in 

activity to a peak followed by a reduction was pronounced in most lines (in 59 and 63 out 

of 76 RILs for males and females respectively). The reduction in activity after the peak did 

not fall back all the way to zero at 38oC, as seen in the idealised thermal performance 

curve shape (Fig. 3.1), suggesting that higher testing temperatures may have been 

required to observe further reductions in activity. A small number of lines had highest 

mean performance at the hottest temperature of 38oC. 
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Figure 3.2: The mean locomotor activity TPCs for each recombinant inbred line for a) 

males, b) females. Locomotor activity was measured as counts over a twenty-minute 

period and square root transformed (see methods). The Eungella parent is in red, the 

Forster parent in blue, and the recombinant inbred lines means are broken grey lines.  

Quantitative Genetic Analysis  

My analysis of the founder lines detected significant divergence between the 

northern and southern genotypes. For males, there was a significant founder line effect 

(Table 3.1: F1,426=33.42, p<0.0001), with Eungella males having consistently higher 

locomotor activity than Forster males. However, the interaction term was marginally non-

significant (Table 3.1: F5,426=1.88, p=0.0960), suggesting that males differed in overall 

locomotor activity across all six temperatures but to a lesser degree in the shape of the 

curve. For females, the overall founder line effect was not significant (Table 3.1: 

F1,402=0.36, p=0.5482) but the interaction was highly significant (Table 3.1: F5,402=4.37, 

p=0.0023). This suggests that female founder genotypes differed to a greater degree in 

the shape of the performance curve, as can be observed by the crossing of founder TPCs 

in Figure 3.2b. Eungella line females had higher activity than Forster line females at 25oC, 

30oC and 33oC whereas Forster had higher activity at temperatures of 35oC and above. 

When comparing the RIL means to the founder lines for all temperatures, the RILs often 

spanned a far wider range of activity levels than the founders (Figs. 3.2&3.3). This pattern 

suggests extensive transgressive segregation for locomotor activity across the six 

temperatures (See Discussion). 
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Table 3.1: Mixed effects linear model testing for differences in D. serrata locomotor activity 

between the Eungella and Forster founder lines.  

 

 

 

 

 

 

 

 

 

 

 

 

Effects Test Statistic p-value 

Males   

Temperature F5,426   = 353.86 <0.0001 

Founder Line F1,426    = 33.42 <0.0001 

Block F11,426  = 18.43 <0.0001 

Founder Line x Temperature F5,426    = 1.88 0.0960 

Founder Line x Block F11,426  = 1.73 0.0650 

Temperature x Block F55,426  = 4.99 <0.0001 

Founder Line x Temperature x Block F55,426  = 0.97 0.5463 

Vial(Founder Line) 2
1         = 93.8 <0.0001 

Females   

Temperature F5,402    = 275.67 <0.0001 

Founder Line F1,402    = 0.36 0.5482 

Block F11,402  = 11.00 <0.0001 

Founder Line x Temperature F5,402    = 4.37 0.0007 

Founder Line x Block F8,402    = 2.55 0.0102 

Temperature x Block F55,402   = 4.71 <0.0001 

Founder Line x Temperature x Block F40,402   = 0.94 0.5719 

Vial(Founder Line) 2
1          = 0.0 1.000 
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Figure 3.3: Mean locomotor activity (square-root transformed) ± s.e. for each of the recombinant inbred lines and parents at each of the 

six temperatures in Drosophila serrata. The recombinant inbred lines are sorted in ascending order. Eungella parent is in red and Forster 

parent is in blue. 
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My analyses of genetic variance across the six temperatures in the RILs detected 

significant genetic (co)variance for both males (LRT χ2=153.4, p<0.0001) and females 

(LRT χ2=128.6, p<0.0001). For males and females, the genetic covariances between 

temperature pairs were positive except for the most extreme pair of temperatures, 

25oC:38oC. Furthermore, the genetic correlations between the temperatures tended to be 

strongest for more similar temperatures (Table 3.2).  

Table 3.2: The among RIL genetic variance covariance matrix (G) for D. serrata locomotor 

activity across the six temperatures. Variances are along the diagonal in bold, covariances 

below the diagonal, and the genetic correlations above the diagonal. Also indicated on the 

far right are the multi-temperature divergence vectors, d, between founder lines and the 

first three eigenvectors of G and the percentage of variance they explain.  

 

My eigendecomposition of G from [3.3] found that the first three eigenvectors 

explained 99% of the variance for both males and females, with similar vector loadings for 

both sexes (Fig. 3.4). The first eigenvector explained the majority of the variance of G, 

77.79% and 75.52% for males and females respectively, and the majority of the loadings 

were positive. Therefore this vector most closely resembled a “faster-slower” mode of TPC 

variation for females. However for males, loadings were all positive with the exception of 

38oC, for which a very small negative loading was observed (Fig 3.4a,d). The loadings for 

 

Males 

 

25 

 

30 

 

33 

 

35 

 

36 

 

38 
d 

 

λ1 

(77.79%) 

 

λ2 

(16.29%) 

 

λ3 

(4.92%) 

25 0.105 0.751 0.581 0.117 0.131 -0.139 0.476 0.864 -0.356 0.331 

30 0.046 0.035 0.746 0.471 0.321 0.137 0.371 0.443 0.350 -0.796 

33 0.022 0.016 0.013 0.892 0.676 0.611 0.600 0.222 0.457 0.193 

35 0.003 0.008 0.009 0.008 0.814 0.835 0.305 0.071 0.508 0.140 

36 0.003 0.004 0.006 0.005 0.005 0.993 0.231 0.048 0.343 0.318 

38 -0.003 0.002 0.005 0.006 0.005 0.006 0.360 -0.002 0.407 0.314 

Females        (75.52%) (19.00%) (5.33%) 

25 0.064 0.766 0.662 0.340 0.002 -0.061 -0.200 0.589 -0.595 0.462 

30 0.049 0.063 0.800 0.692 0.385 0.249 -0.118 0.636 0.040 -0.764 

33 0.029 0.035 0.030 1.009 0.763 0.547 -0.286 0.418 0.354 0.381 

35 0.011 0.022 0.022 0.016 0.950 0.789 0.438 0.246 0.471 0.133 

36 0.000 0.008 0.011 0.010 0.007 0.974 0.506 0.094 0.400 0.132 

38 -0.001 0.005 0.008 0.008 0.007 0.007 0.645 0.065 0.371 0.150 
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the first eigenvector also tended to weaken towards higher temperatures in both sexes. 

The second eigenvector accounted for 16.29% and 19.00% of the variance for male and 

female G respectively (Fig. 3.4b,e). Loadings indicated a change in sign between the 

lowest temperature of 25oC and all other temperatures. Although a classic interpretation of 

this vector would most closely fit the “hotter-colder” mode of variation, because our RIL 

performance curves were largely monotonically increasing, this axis also contains variation 

for thermal sensitivity or slope variation. The third eigenvector explained only a small 

amount of genetic variance in each sex; 4.92% and 5.39% in males and females 

respectively (Fig. 3.4c,f). The loadings indicated two changes of sign along the curve 

resulting in a contrast between intermediate (30oC) and high and low temperatures. This 

axis corresponds to changes in curvature, which may underlie trade-offs, consistent with 

the “generalist-specialist” axis of variation.  
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Figure 3.4: Loadings across temperatures for the first three eigenvectors of the male (a-c) 

and female (d-f) among-RIL G matrices for locomotor performance in D. serrata. Circles 

indicate vector loadings for each testing temperature and lines were fit using a lowess 

smoother. Each G matrix was mean standardised before the eigenanalysis was 

conducted.  

Multivariate QTL Analysis  

Of the 49 markers assayed, two (4 and 23) had severe segregation distortion with 

minor allele frequencies less than 20% and so were not considered further. In general, any 

distortion tended to be towards the Forster parent. As the general goal of my study was 

the broad exploration of possible QTL effects across the different temperatures rather than 

a fine-scale dissection of specific QTLs, I used a false discovery rate of 0.10. At this 

threshold we found eleven (female) and four (male) markers significantly associated with 

locomotor activity across the six test temperatures (Table 3.3).
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Table 3.3: Significant markers from the multivariate QTL analysis model ordered by effect size (length of effects vector). Positive values 

for the temperature-specific QTL effects indicate that the Forster allele increases activity.  The F-value and p-value, with the q-value in 

parenthesis, the marker vector length, pattern of sign change, the angles (θ) between the marker vectors and the divergence vector (d), 

and the first three eigenvalues (λ) of six are displayed. Note that the variation in error degrees of freedom for the QTL F-values is due to 

variation among the RILs in missing genotype data. QTL effects also appear visually in Figure 5. 

Marker 
Chr. 

Arm 
F-value P  (qvalue) 

QTL Effect (s.e.) 
Effect size 

(length) 

Sign 

change pattern 

θ 

25
o
C 30

o
C 33

o
C 35

o
C 36

o
C 38

o
C D 

 

λ1 

 

λ2 

 

λ3 

Males                

11 2R F6,53=3.230 0.009 (0.094) 0.339 

(0.119) 

0.195 

(0.056)* 

0.125 

(0.037)* 

0.104 

(0.036)* 

0.050 

(0.025)* 

0.065 

(0.031)* 
0.431 ++++++ 29.5 15.0 76.4 85.7 

7 3R F6,71=4.111 0.001 (0.057) 0.331 

(0.098)* 

0.203 

(0.046)* 

0.113 

(0.031)* 

0.059 

(0.028)* 

0.018 

(0.021) 

0.009 

(0.026) 
0.409 ++++++ 37.1 7.0 83.7 88.1 

35 3R F6,72=3.267 0.007 (0.094) -0.139 

(0.099) 

-0.157 

(0.046) 

-0.019 

(0.033)* 

-0.005 

(0.028) 

-0.002 

(0.021) 

0.012 

(0.025) 
0.211 +++++- 129.1 22.8 86.8 68.3 

44 3R F6,72=3.413 0.005 (0.094) 0.033 

(0109) 

-0.086 

(0.053) 

-0.044 

(0.036) 

-0.018 

(0.031) 

-0.051 

(0.022)* 

0.009 

(0.028) 
0.116 +----+ 119.3 78.6 42.7 62.0 

Females                

25 N/A F6,67=5.330 0.0002 (0.005) 
0.107 

(0.098) 

0.273 

(0.074)* 

0.126 

(0.054)* 

0.162 

(0.043)* 

0.030 

(0.025) 

0.039 

(0.031) 
0.362 ++++++ 86.6 22.2 74.8 77.2 

35 3R F6,72=4.405 0.001 (0.012) 
-0.097 

(0.086) 

-0.270 

(0.064)* 

-0.152 

(0.045)* 

-0.104 

(0.039)* 

-0.024 

(0.024) 

-0.019 

(0.028) 
0.342 ------ 85.8 20.1 77.8 75.7 

40 X F6,72=2.620 0.024 (0.096) 
0.263 

(0.078)* 

0.160 

(0.068)* 

0.091 

(0.047) 

0.021 

(0.041) 

0.013 

(0.024) 

0.003 

(0.028) 
0.322 ++++++ 104.3 20.6 71.6 83.0 

7 3R F6,71=3.283 0.007 (0.054) 
0.222 

(0.085)* 

0.142 

(0.072)* 

0.139 

(0.047)* 

0.099 

(0.040)* 

0.048 

(0.024)* 

-0.007 

(0.029) 
0.318 +++++- 96.9 14.5 87.4 78.1 
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* p < 0.05 

 

6 N/A F6,66=3.434 0.005 (0.054) 
-0.094 

(0.090) 

-0.235 

(0.067)* 

-0.106 

(0.049)* 

-0.066 

(0.043) 

0.001 

(0.026) 

-0.010 

(0.029) 
0.282 ----+- 81.5 19.5 84.8 72.5 

5 3R F6,66=2.490 0.031 (0.096) 
-0.080 

(0.092) 

-0.218 

(0.071)* 

-0.104 

(0.048)* 

-0.090 

(0.041)* 

-0.014 

(0.025) 

-0.027 

(0.029) 
0.272 ------ 88.3 20.4 78.1 74.6 

49 2R F6,70=2.548 0.027 (0.096) 
0.008 

(0.090) 

0.177 

(0.071)* 

0.094 

(0.050) 

0.103 

(0.042)* 

0.036 

(0.024) 

0.067 

(0.029)* 
0.238 ++++++ 76.1 37.3 58.7 73.5 

41 3L F6,70=2.464 0.032 (0.096) 
-0.092 

(0.088) 

-0.168 

(0.070)* 

-0.068 

(0.049) 

-0.068 

(0.042) 

0.011 

(0.025) 

0.009 

(0.029) 
0.214 

----++ 
79.4 17.8 90.0 75.5 

26 3L F6,73=2.687 0.021 (0.096) 
-0.068 

(0.085) 

-0.170 

(0.066)* 

-0.046 

(0.047) 

-0.042 

(0.040) 

0.021 

(0.023) 

0.018 

(0.027) 
0.195 

----++ 
75.0 26.7 86.4 65.5 

12 2R F6,72=2.723 0.019 (0.096) 
0.092 

(0.097) 

-0.012 

(0.079) 

-0.127 

(0.051)* 

-0.072 

(0045) 

-0.055 

(0.026)* 

-0.028 

(0.031) 
0.184 

+----- 
108.6 80.4 24.9 84.5 

46 2L F6,73=2.520 0.028 (0.096) 
-0.007 

(0.093) 

0.049 

(0.076) 

-0.035 

(0.052) 

-0.096 

(0.043)* 

-0.043 

(0.025) 

-0.035 

(0.030) 
0.126 

-+---- 
129.8 81.9 50.0 51.9 
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For females, five QTL (Table 3.3: markers 5,25,35,40,49) had effects with a 

common direction across all temperatures indicating genetic variation for overall increases 

or decreases in activity (i.e. ‘faster-slower’ variation).  Follow up testing suggested that at 

most 5, and as few as 2 temperatures, were nominally significant, likely reflecting the fact 

that, although directionality was shared, effect sizes differed greatly between 

temperatures. Four QTLs (Table 3.3: markers 7,12,26,41) had a single sign change along 

the curve, representing a switch in direction of effect between high and low temperatures. 

However, for only one of these (marker 41) was the change in sign significant (i.e. a 

significantly negative and a significantly positive value). For the other three QTL all 

significant effects had a common direction, suggesting that many of these QTL probably 

contribute more to variation for overall activity than to trade-offs between temperatures. 

For two QTL in females (Table 3.3: markers 6 and 46), I observed two sign changes in the 

point estimates, however, in no case were both sign changes supported by individual 

significance testing. As above, only effects with a consistent direction were significant at 

individual level for these QTL, suggesting that curve shape changes or ‘generalist-

specialist’ effects were poorly supported by the data (Fig 3.5d-f). 

For males, two QTL (Table 3.3: markers 7 and 11) were detected with consistent 

directions of effect across temperatures, indicating overall increases or decreases in 

activity. One QTL (marker 35) had a single significant sign change along the curve 

between 36oC and 38oC. The remaining QTL (marker 44) had two sign changes in the 

point estimates suggesting a change in curvature, but these sign changes were not 

supported in follow up testing (Fig 5a-c). For both sexes, QTLs contributing to variation in 

overall activity, with either all positive or all negative loadings, tended to have larger effect 

sizes than those involving any changes in sign (Table 3.3). The emergent pattern from the 

multivariate QTL analysis was one where most QTL contributed to variation for overall 

activity and had larger effect sizes than the smaller number of QTLs involving changes in 

sign along the curve.  
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Figure 3.5: The effects vector loadings for the significant QTLs across the six temperatures 

for mean standardised locomotor activity TPCs in D. serrata males (a-c) and females (d-f). 

Black dots indicate the effects on each testing temperature. Lines were fit using a lowess 

smoother. QTLs were classified according to the number of sign changes between 

temperatures moving along the curve from left to right. Positive loadings indicate that the 

Forster allele increases the trait.  

Alignment of QTL effects with population divergence and axes of genetic variance  

I calculated the angles between multivariate QTL effects and the multivariate 

divergence vector, d, between the two founder lines; a divergence angle close to 0o would 

indicate a marker more associated with Eungella while angles near 180o indicate 

alignment with Forster. No QTLs were a particularly good match to the pattern of 

divergence between Eungella and Forster lines (Table 3.3). Divergence angles ranged 

between 75o and 130o for females, and between 29o and 129o for males. I also compared 

QTL effects with first three eigenvectors of G. The vast majority of QTLs were best aligned 
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with the first eigenvector of G (males: 3/4, females: 9/11) with angles ranging between 7o 

and 23o in males, and between 15o and 38o in females.  Remaining QTLs were best 

aligned with the second eigenvector of G (females: 2/11, 15o and 38o; males: 1/4; 43o), 

and none aligned well with the third eigenvector.  

3.5 Discussion 

Thermal adaptation and the genetic architecture of thermal performance curve variation 

A major goal of this study was to begin to understand the different types of allelic 

effects that constitute genetic variance for TPCs and the modes of variation involved in 

thermal adaptation. As the cross is between different populations, the genetic variances 

and covariances among temperatures contained within the G matrix can be considered 

‘synthetic. Furthermore, because allele frequencies are close to symmetrical, additive 

genetic variance is likely to be maximised (Falconer and Mackay 1996) and relatively 

unaffected by natural selection, which is not always the case when examining standing 

variation within a population. D. serrata locomotor activity TPCs are unique among other 

TPCs traits in that estimates of mutational (co)variance are available for an identical assay 

set up as used in the present study (Latimer et al. 2014). To determine the extent to which 

the genetic variance captured in our mapping population represented the mutational 

variation in these traits, I examined the orientation between the first three eigenvectors of 

G and the first three eigenvectors of M. Alignments were remarkably tight, for the first two 

eigenvectors (Males: λ1 r = 0.97 or 14.5 degrees; λ2 r = 0.86 or 30 degrees and Females: 

λ1 r = 0.98 or 12.2 degrees, λ2 r = 0.86 or 30 degrees). The association was still strong in 

females for the third eigenvector in females (λ3 r = 0.94 or 19.930 degrees) but weakened 

for males (λ3 r = 0.46 or 62.6 degrees). These observations suggest that although 

synthetic, the cross has captured biologically relevant variation such that the estimated 

QTL effects should be informative of the TPC genotype-phenotype map, thereby allowing 

us to determine how allelic effects generate genetic variance in these curves and how they 

align with the major trade-offs involved in thermal adaptation. 

The first eigenvector of G had positive loadings across all temperatures, with an 

exception of a very small negative value for the highest temperature in males and most 

likely reflects an availability of genetic variance for overall activity variation. This axis most 

closely resembles the faster-slower axis of TPC variation. However, although all 
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temperature loadings were positive, there was a noticeable decline in their strength 

towards the hotter temperatures. As my analyses were performed on mean standardised 

trait values, this association between temperature and loading strength is not a simple 

consequence of mean-variance scaling effects; instead it is likely a true reflection of a 

decrease in genetic variance at hotter temperatures. This pattern was also reflected in the 

multivariate QTL effects; the overwhelming majority of QTLs were best aligned with the 

first eigenvector of G and had a characteristic pattern of lower additive effects at high 

temperatures (see Table 3 & Figure 5). The tight correspondence between axes of 

mutational and genetic variance and multivariate QTL effects suggests that a class of 

pleiotropic variants that increase (or decrease) overall activity, but at the same time have 

ever shrinking effects towards high temperatures, are a dominant feature of the genetic 

architecture of the thermal sensitivity of locomotor activity in D. serrata.  

In some studies of TPC variation, larger, not smaller, genetic variances have been 

observed at the highest temperatures (Gilchrist 1996; Kingsolver et al. 2004b; Knies et al. 

2009). It is difficult to make direct comparisons between these studies because they do not 

report mean standardised estimates of genetic variance. However, one possibility is that 

because I did not observe large falls in activity at the highest testing temperatures, greater 

genetic variance could have been observed if higher testing temperatures were used. 

Genotypes may exhibit greater variation in the temperature at which activity declines 

rapidly than they do close to the activity peak.   

Smaller genetic variances at hotter rather than cooler temperatures, as we have 

observed, have also been reported for growth rate TPCs in natural populations of Sepsid 

flies (Berger et al. 2013). As their study examined standing, as opposed to mutational 

variance, the authors interpreted the lower genetic variances at high temperatures in terms 

of a mutation-selection balance, arguing that perhaps some genetic variance has been 

depleted at high temperatures owing to stronger selection in this part of the curve. My 

study suggests that depletion of genetic variance may not be required to explain this 

pattern and that it could be a genuine feature of the genotype-phenotype map for TPCs 

rather than a consequence of allele frequency changes. This then begs the question of 

why allelic effects might be smaller at hotter rather than cooler temperatures? The 

asymmetric shape of TPCs implies that the fitness costs of increasing activity at the 

highest temperatures are far more severe than at lower temperatures (Martin and Huey 
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2008). One possibility is that a history of stronger selection at hotter temperatures has 

favoured the evolution of smaller mutational effects in this part of the curve. Alternatively, 

there may be physiological limits to increasing activity level when it is already high. Under 

this scenario, the smaller mutational effects would not have occurred from a history of 

selection but rather are a reflection of constrained physiology or biomechanics at higher 

temperatures. 

The QTLs with a consistent direction of effect across all temperatures best 

resemble the ‘faster-slower’ axis of TPC variation and would generate positive genetic 

covariance between temperatures.  However, because none had effects that were equal 

across all temperatures, a degree of thermal specialisation could nonetheless evolve 

through frequency changes of such variants (Fry et al. 1996). The large shifts in QTL effect 

sizes between temperatures makes thermal adaptation along the ‘hotter-colder’ axis also 

possible through these types of QTL effects. There were remarkably few QTLs showing 

significant sign changes between high and low temperatures. Such QTLs effects would 

suggest antagonistic pleiotropy between temperatures and may be classic indicators of the 

‘hotter-colder’ trade-off. One possible reason for limited ‘hotter-colder’ variation could be 

due to our lowest testing temperature being 25oC. Temperatures lower than 25oC occur 

during the year in both parental (Eungella and Forster) populations. It may be the case that 

different physiological mechanisms, and therefore other loci, influence activity levels at 

lower temperatures. Assaying flies at lower temperatures may therefore reveal greater 

variation along a hotter-colder axis. 

Experimental evolution studies have reported genetic constraints on the ‘generalist-

specialist’ axis and have suggested that it may be the least evolvable of all axes (e.g. 

Berger et al. 2014). In this study, the ‘generalist-specialist’ axis was very poorly 

represented in the distribution of genetic variance; the third eigenvector of G, which 

accounted for less than 5% of the genetic variance possibly, contained an element of this 

type of variation. However, there were no convincing QTLs with ‘generalist-specialist’ like 

effects. The very few QTLs, showing two sign changes along the curve, had small overall 

effect sizes, and the sign changes were not supported by follow up testing. My results 

suggest that there may be fewer regions of the genome that, when variable, contribute 

‘generalist-specialist’ genetic variance. Owing to the relatively large level of linkage 

disequilibrium generated in a QTL mapping cross, it remains possible that the effects 
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estimated here are due to multiple causal loci within the single QTL (Whitlock 1996); and 

these genomic regions could harbour variants with different types of pleiotropic effects 

across temperatures, perhaps masking ‘generalist-specialist’ like effects. Mapping studies 

conducted in populations with much lower levels of linkage disequilibrium, like outbred 

Drosophila populations, which tend to have very short range linkage disequilibrium, may 

be a useful next step in understanding the genetic architecture of TPCs.   

Population differentiation and transgressive segregation 

At all assay temperatures, the population of RILs spanned a much wider range of 

activity levels than the founder lines. This is the hallmark of transgressive segregation, 

which occurs when phenotypes with larger or smaller trait values than the founders arise 

from interactions among, or recombination of founder alleles, that increase or decrease the 

trait. In the simplest form, alleles associated in repulsion phase in parents (i.e. AAbb and 

aaBB parents with selection of A and B) results in offspring with either higher (AABB) or 

lower (aabb) trait values than the parents through recombination (Rieseberg et al. 1999; 

Rieseberg et al. 2003; Johansen-Morris and Latta 2006). The extensive nature of the 

transgressive segregation seen here suggests that D. serrata TPCs are highly polygenic. 

Although epistasis is not required to explain transgressive segregation, it can exacerbate 

it, sometimes resulting in a pattern of directional bias where more segregants have 

phenotypes above (below) than below (above) the parental values (Peiffer et al. 2013).  

For D. serrata there was a strong directional bias towards higher activity levels at all 

temperatures. Epistasis therefore may be a feature of the genetic architecture of D. serrata 

TPCs, at least at the scale of among-population differentiation examined here. This 

directional bias cannot necessarily be accounted for by segregation distortion (e.g. 

elimination of deleterious recessives, which might be expected to confer overall lower 

levels of activity). Although distortion was present for some markers, it was most often 

biased towards the southern Forster allele, which for all but the three lowest temperatures 

in females had lower activity levels than Eungella. To some extent, the transgressive 

segregation seen here is not surprising because the founder lines were not originally 

selected to be highly divergent, but rather were simply from different populations along the 

D. serrata eastern Australian distribution.  

Some QTL-based tests for local adaptation rely on detecting a bias in the direction 

of QTL effects between founder lines derived from different populations. A significant 
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excess of QTLs with effects in one direction suggests a history of directional selection, 

while a random mixture of QTL effect directions is consistent with divergence via neutral 

processes such as genetic drift (Orr 1998; Rice and Townsend 2012). There was limited 

directional skew in the QTL effects across the six assay temperatures with more or less 

even numbers of positive and negative QTL effects in either sex, with the single exception 

of all positive effects for the 4 male QTLs at 38°C. Extending to a multivariate view, under 

strong directional selection we may expect to observe a close alignment between QTL 

effects vectors and the vector of divergence between populations. However, QTL effects 

were poorly aligned with the divergence between populations with angles generally quite 

large. If the different founder lines do indeed represent their original donor populations, 

divergent natural selection between them, in either univariate or multivariate form, may 

have been quite weak. 

Conclusion 

Studies of TPC divergence have revealed differences in the nature of thermal 

adaptation between populations; in some cases changes in reaction norm shape occur 

(Kingsolver et al. 2007; Berger et al. 2013), but sometimes divergence occurs mainly in 

overall performance with little change in shape (Klepsatel et al. 2013). Divergence can 

also occur via different modes across different parts of a species range (Berger et al. 

2013). These observations can lead to quite different views on the importance of genetic 

constraints on thermal adaptation, and it has been suggested that the evolvability of TPCs 

might be taxon or trait specific (Angilletta et al. 2002b; Angilletta 2009). My study suggests 

that the overwhelming majority of QTL effects tended to involve changes in overall 

performance. Other axes, better aligned with changes in temperature of maximal 

performance or reaction norm shape, contributed far less genetic variance and were 

supported by fewer QTLs with generally smaller effects. It is also apparent that a degree of 

thermal specialisation remains possible through frequency change at loci affecting overall 

performance but with differing strength between temperatures. My results do not support a 

view of complete evolutionary independence between variation for overall performance, 

changes in thermal sensitivity, and changes in reaction norm shape.
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Chapter Four: 

Genome-wide dissection of natural variation in thermal 

performance curves for locomotor activity in Drosophila 

melanogaster 

4.1 Abstract 

Theories of thermal adaptation seek to explain how organisms adapt to their local 

thermal environments and in particular identify two major trade-offs, the ‘generalist-

specialist’ and ‘hotter-colder’ trade-offs. Thermal adaptation is commonly explored through 

thermal performance curves (TPCs), reaction norms that characterise the relationship 

between organismal performance and temperature. Little is known about the genetic basis 

of TPCs, especially on a fine genomic scale. To address this, I performed a genome-wide 

association study (GWAS) of locomotor activity TPCs in 152 lines from the Drosophila 

Genetic Reference Panel (DGRP). Two types of analysis were performed to partition TPC 

variation. A character-state analysis detected five axes (principal components) of variation 

that described more than 95% of the genetic variance in both overall activity and TPC 

shape. The number of significant associations detected in the GWA analysis for each 

principal component (1 – 5) was 66, 29, 43, 12, and 39 respectively for females and 87, 

53, 12, 16, and 23 variants respectively for males. A function-valued trait analysis showed 

the numbers of associated variants for each trait corresponded closely to their relative 

contributions to standing variation with 222 and 135 variants for ‘hotter-colder’, 66 and 17 

for ‘generalist-specialist’, 56 and 18 for maximum performance, and only 20 and 5 for 

‘overall height’ for females and males respectively. Annotation of associated 

polymorphisms suggested that gene expression is likely an important process shaping 

TPC variation compared with protein coding changes. I found strong skew in the direction 

in which the minor-frequency alleles affected TPC traits, suggesting a role for natural 

selection in shaping standing variation. Alleles producing specialised TPCs tended to 

occur at higher frequencies than alleles that produced generalists. An enrichment analysis 

on gene ontology terms showed that neurological functioning and responses to stimuli 

were key functional processes of the genes involved. This study provides insights into the 
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underlying genetic architecture of trade-offs that can have implications for thermal 

adaptation. 

4.2 Introduction 

 Environmental temperature has a major influence on the performance of 

ectotherms through its influences on growth (Knies et al. 2009; Nilsson-Ortman et al. 

2012), reproduction (Berger et al. 2008), and behaviour (Bennett 1980; Gilchrist 1996; 

Lyon et al. 2008), which in turn affects survival (Hoffmann et al. 2003; Ahnesjo and 

Forsman 2006) and fitness (Gilchrist et al. 1997). However, adaptation to specific 

temperatures is challenging because temperature varies greatly in both time and space 

(Gilchrist 1995; Angilletta 2009). Theories of thermal adaptation seek to explain how 

organisms adapt to their local thermal environments, and in particular, to identify the 

performance trade-offs that may exist between different temperatures. 

Fitness usually cannot be maintained at a high level across all temperatures that an 

organism encounters (Levins 1968; Via and Lande 1987; Fry et al. 1996); instead, fitness 

trade-offs often occur between temperatures. These trade-offs are based on the 

performance of a genotype at one temperature being constrained by performance at an 

alternative temperature (Levins 1968; Palaima 2007).  Two major trade-offs have been 

identified in thermal adaptation theory. First, a ‘generalist-specialist’ trade-off describes 

essentially a negative association between maximal fitness and the breadth of 

temperatures across which an organism can operate (Huey and Hertz 1984; Lynch and 

Gabriel 1987; Gilchrist 1995). Second, a ‘hotter-colder’ trade-off describes how individuals 

performing better in a hotter environment tend to have lower fitness in a cooler 

environment (Kingsolver et al. 2001). 

These thermal trade-offs can be summarised by variation in thermal performance 

curves (TPC), a common class of continuous reaction norm characterising the relationship 

between organismal performance and temperature (Huey and Stevenson 1979; Izem and 

Kingsolver 2005). TPCs tend to exhibit a common shape across species; performance 

slowly increases with temperature, reaches a peak before falling suddenly at high 

temperatures (Huey and Stevenson 1979; Huey and Kingsolver 1989; Angilletta 2009). 

Generally, four components of the curves are identified; (Fig. 1a): ‘overall height’, 

indicating the performance across all the temperatures (Izem and Kingsolver 2005), curve 
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width, which describes the range of temperatures across which an individual can perform 

(Izem and Kingsolver 2005), maximum performance (zmax) at the peak, and optimum 

temperature (Topt), indicating the temperature where performance is maximized (Izem and 

Kingsolver 2005). 

It has been a challenge to develop statistical methods that can define these 

components for multiple individuals or genotypes in a consistent manner. For example, 

TPCs for some individuals may best resemble a third order polynomial function whereas 

for others, in the same data set, a fourth order or more complex function may be more 

suitable (Krenek et al. 2011). One method that attempts to deal with these shortcomings is 

the Template Mode of Variation (TMV) approach, created by Izem and Kingsolver (2005). 

Based on Lawton’s (1972) shape invariant model, the approach fits a common ‘template 

curve’ to all individuals and then scores individual-level deviations from the common 

template in specific directions of biological interest. The attractive feature of TMV is the 

decomposition of phenotypic and genetic variation into three modes that describe the 

relevant trade-offs and thermal adaptation, the ‘faster-slower’, the ‘hotter-colder’, and the 

‘generalist-specialist’ axis (Fig. 4.1) (Huey and Kingsolver 1989; Kingsolver et al. 2001; 

Izem and Kingsolver 2005). The ‘faster-slower’ axis explores the variation in ‘overall 

height’ of the curve, and represents performance across all temperatures. The ‘faster-

slower’ axis is independent of temperature values but the other two shifts involve trade-

offs, as they capture temperature-dependent variation (Fig. 4.1b). The ‘hotter-colder’ axis 

represents variation in the Topt with TPCs shifting right or left along the temperature axis. 

Performance decreases at temperatures opposite to the direction of curve shift (Fig. 4.1c). 

For example, a hotter Topt will result in loss of performance at the lower range of 

temperatures. Last, the ‘generalist-specialist’ axis represents variation in the width and 

zmax and incorporates a ‘generalist-specialist’ trade-off by restraining the area under the 

curve so that a wider curve has a lower maximal performance (Fig. 4.1c). 
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Figure 4.1: Schematic of thermal performance curves and axes of variation. a) A thermal 

performance curve illustrating the width, zmax and Topt components, b) the ‘faster-slower’ 

axis, c) the ‘hotter-colder’ axis and d) the ‘generalist-specialist’ axis. Adapted from Izem 

and Kingsolver (2005). 

The shape of TPCs and the trade-offs inherent in them, can arise from at least three 

physiological processes and the underlying genetic architecture (Angilletta 2009). First, the 

functions of enzymes across temperatures can pose thermal constraints; as temperatures 

increase the catalytic reaction time must decrease to maintain conformity for substrate 

binding (Somero 1995; Fields 2001; Hochachka and Somero 2002 ; Yang et al. 2013). 

Second, temperature impacts the movement and conformation of cellular membranes; 

high temperatures increase movement, disrupting the laminar structure, whereas cold 

temperatures decrease movement (Hazel and Eugene Williams 1990). Third, oxidation-

limitation theory posits that thermal limits are set where aerobic respiration fails to meet 

energetic requirements. At higher temperatures, the energy required for performance is 

restricted due to the limited oxygen supply from respiration and circulatory processes, 

while at low temperatures the mitochondria cannot produce enough ATP for performance 

to be maintained (Pörtner et al. 2000). From a genetic perspective, trade-offs between 
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different environments arise as a consequence of the pleiotropic effects of different 

segregating variants (Fry et al. 1996). Broadly, two classes of pleiotropic effects could 

underlie a trade-off: antagonistic pleiotropic effects that increase performance at one 

temperature but decrease it at another, or pleiotropic effects that differ in magnitude but in 

the same direction across temperatures (Fry et al. 1996). The ‘hotter-colder’ and 

‘generalist-specialist’ are perhaps likely to consist of antagonistic pleiotropic effects 

(Berger et al. 2014, but see Chapter 3). In addition to these classes of pleiotropic variant, 

there may be multiple variants that each affect only one TPC component and may 

therefore permit independent evolution of shape components (Anderson et al. 2013).  

A genome-wide-association study (GWAS) in a natural population can capture 

natural variation and allow the identification of common variants affecting phenotypes (Iles 

2008), such as TPC components. In contrast to the synthetic variation created by the 

crossing of pre-selected parents in my previous QTL chapter, a GWAS enables the 

mapping of standing variation. The analysis of a GWAS facilitates a more accurate 

estimation of individual allelic effects due to a finer mapping resolution. Whilst many 

studies have associated genes with responses to temperature (Nielsen et al. 2006; 

Sørensen et al. 2007; Jensen et al. 2008; Colinet et al. 2010; Svetec et al. 2011; Carreira 

et al. 2013), to my knowledge none have associated genes with TPCs. When applied in a 

well-annotated model species, the GWAS approach may be particularly powerful for 

linking genetic variance with the key physiological processes, such as enzyme function, 

cellular structure and oxidation-limitation, predicted to play a part in thermal trade-offs. 

In this Chapter, I performed a GWAS on the major components of TPC shape to 

investigate genetic architecture at a finer scale. To do this, I took advantage of the 

Drosophila Genetic Reference Panel (DGRP), a fully sequenced panel of inbred 

Drosophila melanogaster lines sampled from a single natural population in Raleigh, North 

Carolina (Mackay et al. 2012; Huang et al. 2014). I phenotyped locomotor activity TPCs 

using two methods to statistically extract the axes of variation; I used the character-state 

principal component analysis approach similar to the previous two Chapters and the TMV 

function-valued trait approach (Izem and Kingsolver 2005). Functional annotation of 

GWAS hits via gene ontology (GO) analysis allowed me to investigate the functional 

pathways that may contribute to the trade-offs evident in TPC variation.   
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4.3 Methods 

Species Inbreeding and Husbandry 

I phenotyped 152 lines from the Drosophila Genetic Reference Panel (DGRP) 

(Mackay et al. 2012; Huang et al. 2014) obtained from the Bloomington Drosophila Stock 

Center, Indiana. The DGRP is a set of wild-derived, inbred Drosophila melanogaster lines 

founded from a wild population in Raleigh, NC. Isofemale lines were inbred for 20 

generations via full-sib mating. Each line was tested for homozygosity using microsatellite 

markers and resequencing of several regions on all three chromosomes (Mackay et al. 

2012). All flies were maintained on a sugar-yeast-polenta medium at 25oC under a 12:12 

hour dark-light cycle. 

Genome Re-sequencing 

The DGRP lines were sequenced using a combination of Illumina and Roche 454 

technology and aligned to the D. mel 5.49 reference genome (www.flybase.org) by Huang 

et al. (2014) and Mackay et al. (2012). Integrative genotyping strategy was then used to 

identify single-nucleotide polymorphisms and non-SNP variants (Stone 2012). 

Furthermore, inversion genotypes were identified by cytogenic analysis of polytene 

salivary gland chromosomes, and Wolbachia pipeintis infection status for each line was 

determined through PCR assay to identify lateral gene transfer events.  

Thermal Performance Assay 

Locomotor activity was measured for individual flies briefly exposed to each of the 

eight test temperatures to estimate TPCs. Activity was measured across the mixed order 

of temperatures, 38, 25, 29, 35, 32, 20, 40 and 42 ± 0.3oC to maintain the same testing 

environment among days. The two highest temperatures were measured last to prevent 

any detrimental effects interfering with any subsequent measurements (Gilchrist 1996). All 

locomotor activity was measured in a single control temperature cabinet for a total of 20 

minutes. To prevent acclimation to the exposed test temperature, flies were held at 25 ± 

0.5oC for 40 minutes between each assay recording. Activity was measured between 

09:00 and 15:00 to correspond to the light cycle experienced by the flies. Phenotyping 

occurred across six consecutive days. Each day had one, five to six day-old virgin fly for 

each sex per line, thereby ensuring all lines were represented across each day. Six males 
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and six females from three different laying vials were phenotyped per line (two flies per sex 

from each vial). Each laying vial contained three males and three females that were 

allowed to mate and lay for 48 hours.  

Drosophila Activity Monitors (DAM, TriKinetics, Waltham, Massachusetts, USA) 

were used to measure locomotor activity using a similar method to Latimer et al. (2011) 

and in the previous two Chapters. A DAM measures activity as the number of times a fly 

intersects an infra-red beam that bisects each of the 32 x 5 mm holding tubes. A computer 

connected to the DAMs records the number of intersections when a fly crosses the beam. 

To allow flies to adjust to the new environment for phenotyping, they were placed into the 

5 mm holding tubes the afternoon prior. Each 5 mm tube contained 1.5 cm of a three-day-

old agar-sucrose medium that was caped and stoppered with 0.2 mm of foam on the 

opposing end. 

Statistical Analysis 

Quantitative Genetic Analysis 

First, I tested for genetic variance in locomotor activity across the eight test 

temperatures using a multivariate mixed model analysis. To improve normality, locomotor 

activity was square root transformed (Quinn and Keough 2002). To account for the 

differences in mean between temperatures, locomotor activity was mean standardised 

prior to analysis. Males and females were analysed separately. Proc MIXED in SAS (ver 

9.3; SAS Institute, Cary, NC, USA) was used to fit the mixed model:  

a = μ + d + l + v (l) + e,      [4.1] 

where a is a vector of locomotor activity scores at the eight temperatures, d, is the day 

effect, l is the effect line, and v(l) is the  effect of vial nested within line. The terms for line 

and vial were considered random effects whereas day was fitted as a fixed effect. An 

unstructured variance-covariance matrix between temperatures (Type=UN) was assumed 

for the random effects. 

Here, I have taken two approaches to characterise TPC shape. The first approach 

was similar to the previous two Chapters where I used a character-state (classic 

multivariate) approach to characterise TPC variation. I performed a principal component 
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(PC) analysis on the among line variance-covariance matrix to reveal the major axes of 

TPC variance. The matrix was estimated from residuals to account for the effects of day 

and were estimated from square-root transformed, mean standardised data. The princomp 

function in R was used to perform the PC analysis and calculate the PC scores for each 

line. The sign of the PC loadings represent changes in TPCs and its shape. The ‘faster-

slower’ axis is represented by PCs with all the temperature loadings having the same sign 

(i.e. all positive or all negative). The ‘hotter-colder’ axis is represented by PCs with a sign 

change between the hot and cold temperatures. The ‘generalist-specialist’ axis involves 

PC loadings with two changes in sign; the loadings in the center are a different sign to the 

loadings at either end of the temperatures. More than two sign changes would represent a 

more complex change in TPC shape not classified into one of these three major axes of 

variation.  

In contrast to the character-state approach, I also took a function-valued approach 

to characterise the distribution of genetic variance across the major axes of TPC shape 

variation. I used the Template Mode of Variation approach (TMV) (Izem and Kingsolver 

2005) that describes each inbred line’s curve by three parameters, each modeled as 

deviations from a common shape template curve using a three-parameter shape invariant 

model Lawton et al. (1972): 

𝑧𝑖(𝑡) =
1

𝑤𝑖
𝑧 [

1

𝑤𝑖
(𝑡 − 𝑇𝑜𝑝𝑡𝑖

)] + ℎ𝑖 + 𝑒,      [4.2] 

where 𝑧𝑖(𝑡) is the continuous function of locomotor activity of family, i, across temperature, 

t. The common shape template is represented by z, a quintic polynomial (order 5) in this 

study, and h, Topt and w represent the three parameters describing each family’s curves, i. 

The vertical shift, h, parameterises the ‘overall height’ of the curves and is independent of 

temperature. The horizontal shift, Topt, parameterises the location of temperature for 

maximum performance by detecting a shift in the curve to the left or the right. The width 

shift, w, parametersises the ‘generalist-specialist’ axes. The estimation of w constrains the 

area under the curve to be constant so that a wider curve has a lower maximum 

performance.  

I analysed the DGRP template curve and individual TPCs using the semi-

parametric method as recommended by Izem and Kingsolver (2005) and implemented in 

the TMV MATLAB package. This produced estimates of the three components of the TPC: 
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‘overall height’ (h), ‘generalist-specialist’ (w), and optimum temperature (Topt) for each 

DGRP line. The fourth component of TPC, maximum performance (zmax), was estimated 

using the following formula found within the TMV package, 

𝑧𝑚𝑎𝑥𝑗
= 𝑤𝑗  ×  𝑖 + ℎ𝑗 ,                [4.3] 

where, 𝑖 is the intercept for the template curve, 𝑤𝑗   is the width axis for the jth family and ℎ𝑗  

is the height axis for the jth family. Additionally, a ratio sum of squares was calculated for 

each of the Topt, h and w modes of variation to estimate the amount of among-family 

variation. A fifth order polynomial was used to fit the template and TPCs as it produced 

components that had a normal distribution (except h) that is critically important for the 

GWA analysis. A reasonable fit to the TPC curves and estimates for the TMV components 

was also produced from this polynomial order. Because the current MATLAB code for 

TMV does not support the fitting of additional fixed effects, TMV was conducted on 

(untransformed) residual activity scores after correcting for day effects using the MIXED 

procedure in SAS. Males and females were analysed separately in TMV, allowing each 

sex to have separate template curves.  

Genome Wide Association Analysis (GWA) 

GWA was conducted on the DGRP line mean TMV components, h, Topt, w and zmax 

and the first five PC scores by submitting phenotypic data to the DGRP2 online GWAS 

pipeline (http://dgrp2.gnets.ncsu.edu) (Huang et al. 2014). In this pipeline, the phenotypic 

data are first adjusted for the effects of Wolbachia infection and the six major inversions 

[In(2L)t, In(2R)NS, In(3R)P, In(3R)K, and In(3R)Mo]. Then the FastLMM program (v1.09) 

(Lippert et al. 2011) is used to fit the adjusted phenotypic line values in the linear mixed 

model 

𝑦 = 𝑿𝒃 +  𝒁𝒖 + 𝑒,     [4.4] 

where, 𝑦 is the adjusted TMV component, h, Topt, w or zmax, X is the design matrix for the 

fixed SNP effect b, Z is the incidence matrix for the random polygenic effect 𝒖, and 𝑒 is the 

residual. The vector of polygenic effects, 𝒖, has a covariance matrix in the form of 𝚨𝜎2, 

where 𝜎2 is the polygenic variance component. For these analyses, 1,895,647 biallelic 

variants (including snps and indels) with a minor allele frequency (MAF) > 0.05 and a call 
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rate > 80% were used. A BLOM rank normal transformation (Blom 1958) was performed 

on the scores for h before the GWA analysis (via PROC RANK in SAS, Version 9.3). 

Owing to a non-normal distribution, this transformation has been shown to improve results 

in association studies of non-normal phenotypes (Goh and Yap 2009).   

Owing to a small sample size in the DGRP compared to human or livestock GWAS, 

but a relatively large number of markers, I used a significance threshold of P < 1 × 10-5. 

Whilst lower than a strict Bonferroni threshold, other GWAS studies utilising the DGRP 

typically use this less stringent threshold (Huang et al. 2012; Jordan et al. 2012; Mackay et 

al. 2012; Ober et al. 2012; Brown et al. 2013; Chow et al. 2013b; Swarup et al. 2013). 

When hits in genes are followed up with RNAi knockouts for example, they often 

demonstrate that the genes identified from GWAS hits using this threshold do indeed 

detect causal genes underlying quantitative traits (Jordan et al. 2012; Chow et al. 2013a; 

Grubbs et al. 2013). The effect sizes for significant variants were estimated as one half of 

the difference between phenotype means for the major and minor allele. 

Functional annotation of significant GWA hits  

I performed two levels of annotation of the significant GWA hits: DNA sequence-

level and gene ontology-level. First, for all variants I determined the genomic position and 

likely functional consequence of the polymorphism on annotated genes. Variants were 

classified as intergenic, intronic, exonic, 3'UTR, up or downstream (within 1000bp from a 

gene), synonymous or non-synonymous, and whether they caused a change in reading 

frame. This analysis was performed using the DGRP online pipeline (Huang et al. 2014). 

Second, for the subset of significant variants that could reliably be determined to 

reside within or near an annotated gene (i.e. non-intergenic variants), I performed a 

functional enrichment analysis using gene ontology (GO) terms. This analysis provided an 

opportunity to explore the likely functional processes that, when perturbed genetically, 

create variation in TPCs. These analyses essentially evaluate whether specific gene 

ontology terms for a given set of genes are present more often than expected by chance 

using hypergeometric tests. The analysis was performed using the gene ontology 

Enrichment Analysis Software Tool (GOEAST) available online 

(http://omicslab.genetics.ac.cn/GOEAST/) (Zheng and Wang 2008). The recommended 

settings, hypergeometric testing, and a p<0.1 cut-off were used, and to correct for multiple 



 

 78 

testing, the Hochberg FDR correction method was used (Benjamini and Hochberg 1995). I 

created a network representation of the enriched terms for the four TPC components using 

Cytoscape (vers. 2.8). This approach has been adopted for use in other functional analysis 

of GWAS hits (Brown et al. 2013). 

Functional enrichment analysis was only performed on the PC scores and for 

female data TMV components. For male TMV components, after the intergenic variants 

and genes that do not have functional annotations were removed, h only had one gene, 

and w and z only had eight genes available for enrichment. This small number of genes is 

likely to greatly decrease the power of enrichment analysis (Huang et al. 2009).  

4.4 Results 

Quantitative Genetics 

For each DGRP line, locomotor activity TPCs resembled a typical TPC shape. 

Locomotor activity slowly increased as temperatures approached 35oC, peaked around 

38°C-40°C and suddenly dropped (Fig. 4.2). Likelihood ratio tests confirmed significant 

genetic (co)variance among the DGRP lines for both males (Line effect: LRT 𝜒36
2 =508.4, 

p<0.0001; Fig. 4.2) and females (LRT 𝜒36
2 =560.1, p<0.0001; Fig. 4.2). The effect of day 

was also significant (Males: F5,507=7.61, p<0.0001, Females: F5,539=12.34, p<0.0001), 

suggesting some day-to-day variation in the thermal dependence of locomotor activity as 

expected for behavioural traits. The among-line variance-covariance matrices for both 

males and females indicated that the genetic covariance for all pairs of temperatures was 

positive (except for 32°C and 42°C in males), and that genetic correlations between 

temperatures generally weakened as the difference between the temperatures increased 

(Table 4.1).  
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Table 4.1: The among line variance-covariance matrices for locomotor activity across the eight temperatures (°C) in males (top panel), 

and females (bottom panel). Variances are on the diagonal in bold, the covariances below the diagonal and the correlation between 

temperatures above the diagonal. Estimates are mean-standardised. The five columns on the far right are eigenvectors 1-5 of the 

variance-covariance matrix and the percentage they explain.  

 

 

 

 

Males 

 

20 

 

25 

 

29 

 

32 

 

35 

 

38 

 

40 

 

42 

 

λ1 

(59.65%) 

 

λ2 

(16.60%) 

 

λ3 

(8.25%) 

 

λ4 

(7.46%) 

 

λ5 

(1.81%) 

20 0.210 0.667 0.489 0.310 0.248 0.198 0.103 0.112 -0.442 -0.462 0.424 -0.612 0.186 

25 0.172 0.319 0.575 0.440 0.300 0.213 0.169 0.057 -0.627 -0.427 -0.489 0.423 -0.041 

29 0.109 0.157 0.235 0.707 0.307 0.165 0.209 0.146 -0.509 0.472 0.289 0.014 -0.643 

32 0.061 0.106 0.147 0.183 0.326 0.100 0.102 -0.063 -0.375 0.616 -0.216 -0.157 0.603 

35 0.018 0.027 0.024 0.023 0.026 0.659 0.519 0.364 -0.078 0.029 0.176 0.213 0.295 

38 0.013 0.017 0.011 0.006 0.015 0.020 0.743 0.474 -0.043 -0.026 0.216 0.240 0.223 

40 0.008 0.016 0.017 0.007 0.014 0.017 0.028 0.714 -0.045 0.007 0.311 0.370 0.199 

42 0.011 0.007 0.016 -0.006 0.013 0.015 0.026 0.049 -0.031 -0.034 0.526 0.426 0.105 

Females         (59.28%) (13.89%) (10.81%) (7.97%) (3.94%) 

20 0.163 0.611 0.482 0.406 0.266 0.249 0.224 0.160 -0.407 0.550 0.311 0.647 0.118 

25 0.117 0.227 0.670 0.504 0.179 0.193 0.180 0.112 -0.574 0.444 -0.284 -0.542 -0.306 

29 0.086 0.141 0.195 0.773 0.412 0.297 0.270 0.137 -0.548 -0.395 -0.112 -0.076 0.708 

32 0.063 0.093 0.132 0.149 0.492 0.325 0.260 0.041 -0.423 -0.544 -0.059 0.295 -0.529 

35 0.019 0.015 0.032 0.034 0.031 0.700 0.638 0.351 -0.105 -0.187 0.290 0.045 -0.219 

38 0.014 0.013 0.019 0.018 0.018 0.020 0.781 0.503 -0.070 -0.082 0.285 -0.056 -0.170 

40 0.015 0.014 0.020 0.017 0.019 0.018 0.032 0.787 -0.076 -0.084 0.451 -0.184 -0.121 

42 0.014 0.012 0.013 0.003 0.014 0.016 0.031 0.062 -0.057 -0.009 0.661 -0.394 0.137 
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Figure 4.2:  DGRP line means for locomotor activity across the eight test temperatures 

(oC) for a) females and b) males. Each coloured line represents one of the 152 DGRP 

lines. Locomotor activity was measured as counts per 20 minutes and was squared root 

transformed. 

I performed an eigenanalysis on the among-line variance-covariance matrix to 

investigate the major axes of variance. The eigendecomposition of the variance-

covariance matrix showed that the first five principal components captured over 95% of the 
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variance. The first PC accounted for 59.65% and 59.28% of the total variance for males 

and females respectively with similar loading patterns in each sex (Table 4.1). All the 

loadings were in the same direction indicating the ‘faster-slower’ axis of TPC variation (Fig. 

4.3a & f). In both sexes, the loadings were stronger between 20oC and 35oC (Fig. 4.3a & 

f). The remaining PCs explained 46% of the variance with the loadings indicating trade-offs 

between the temperatures. Female PC2 had a sign change between the hot and cold 

temperatures, therefore most closely resembling the ‘hotter-colder’ axis of variation (Fig. 

4.3g). Female PC3 and male PC5 had a change in sign between the intermediate 

temperatures with the hottest and coldest temperatures, consistent with a ‘generalist-

specialist’ axis of variation (Fig. 4.3e & h). The remaining PCs loadings had more complex 

patterns, indicating changes in the shape of the TPCs (Fig. 4.3b-d, i, & j).  
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Figure 4.3: PC loadings for the male and females among-line variance-covariance 

matrices. The first five PCs are shown for each sex (males: a-e, females f-j). Data was 

mean standardised before PC analysis was performed. 
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I performed the TMV analysis, on each sex separately to partition the among-line 

broad-sense genetic variance into the three axes; ‘overall height’, h, ‘generalist-specialist’, 

w, and optimum temperature, Topt. The total genetic variance was similar for each sex, at 

30.73% and 29.62% for males and females respectively. Most among-line variance was 

along the ‘hotter-colder’ and ‘generalist-specialist’ axes (Table 4.2). Very little among-line 

variance (less than 1%) was explained by the ‘faster-slower’ axis, which corresponds to 

the overall locomotor activity regardless of temperature (Table 4.2).  

Table 4.2: Percentage of phenotypic variance due to among-line variance in the three 

major TMV components for males and females. Values are ratio sum of squares (RSS) 

expressed as percentage of total variance. 

  

 

 

 

 

 

Genome-wide-association analysis 

Genome-wide-association analysis was performed to dissect the genetic 

architecture of the four components of TPC variation, h, Topt, w and zmax and the first five 

PCs. Before analyses were performed, the components were adjusted for the effects of 

Wolbachia and the six major inversions present in the DGRP, which were tested using 

analysis of variance.  Wolbachia only had a significant affect for PC5 in males 

(F1,150=0.031, p=0.016); no TMV components were affected by Wolbachia in either sex 

(Table 4.3). Topt was the only component affected by inversions, where In(3R)Mo inversion 

was significant for males (F2,149=5.874, p=0.004) and In(3R)K inversion was significant for 

females (F2,149=3.974, p=0.021). None of the PCs were affected by any of the inversions in 

either sex (Table 4.3).  

 RSS Values (%) 

 Males  Females  

Faster-Slower 

axis (h) 
0.22 0.28 

 Hotter-Colder 

axes (Topt) 
19.26 17.99 

 Generalist-

Specialist axis (w) 
11.25 11.35 

 Total explained 

by model 
30.73 29.62 

Error 69.27 70.38 
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Table 4.3: Effect of inversions and Wolbachia on the first five PCs and the four curve components, optimum temperature (Topt), 

‘generalist-specialist’ (w), ‘overall height’ (h) and maximum activity at Topt (zmax) for females and males. F-values and p-values (in 

parenthesis) from Type three ANOVA given for Wolbachia and inversion genotypes. Significant p-values in bold (p<0.05). 

Trait Sex In(2L)t 

(d.f=2,149) 

In(2R)NS 

(d.f=2,149) 

In(3R)P 

(d.f=2,149) 

In(3R)K 

(d.f=2,149) 

In(3R)Mo 

(d.f=2,149) 

Wolbachia 

(d.f=1,150) 

Optimum Temperature 

(Topt ) 

Male 

Female 

1.128(0.327) 

0.928(0.398) 

0.361(0.698) 

0.779(0.461) 

1.553(0.215) 

0.144(0.866) 

0.847(0.431) 

3.974(0.021) 

5.874(0.004) 

0.314(0.731) 

2.261(0.135) 

3.840(0.052) 

Generalist-Specialist 

(w) 

Male 

Female 

0.521(0.595) 

0.567(0.569) 

0.325(0.723) 

0.080(0.923) 

2.033(0.135) 

0.172(0.842) 

0.609(0.545) 

2.723(0.069) 

2.158(0.119) 

0.152(0.859) 

0.095(0.759) 

0.230(0.632) 

Overall Height (h) Male 

Female 

0.367(0.694) 

0.224(0.799) 

0.063(0.939) 

1.409(0.248) 

0.476(0.622) 

0.538(0.585) 

0.874(0.419) 

1.659(0.194) 

0.905(0.407) 

0.197(0.821) 

0.073(0.787) 

0.165(0.685) 

Maximum Activity 

Level (zmax) 

Male 

Female 

0.424(0.655) 

0.469(0.626) 

0.223(0.800) 

0.305(0.737) 

1.734(0.180) 

0.031(0.969) 

0.688(0.505) 

2.776(0.066) 

1.998(0.139) 

0.060(0.942) 

0.033(0.855) 

0.091(0.763) 

PC1 Male 

Female 

0.059(0.943) 

 1.209(0.301) 

0.083(0.919) 

0.069(0.933) 

2.894(0.059) 

 1.107(0.345) 

1.047(0.354) 

 0.966(0.383) 

0.191(0.826) 

 0.201(0.818) 

0.086(0.770) 

 0.481(0.489) 

PC2 Male 

Female 

0.378(0.686) 

1.755(0.177) 

0.028(0.972) 

0.013(0.988) 

0.618(0.541) 

 0.492(0.612) 

0.735(0.481) 

 0.231(0.794) 

1.534(0.219) 

 0.633(0.532) 

0.876(0.351) 

 0.072(0.788) 

PC3 Male 

Female 

0.400(0.671) 

  0.435(0.648) 

0.369(0.692) 

2.167(0.118) 

0.523(0.594) 

0.351(0.705) 

2.358(0.098) 

1.429(0.243) 

0.770(0.465) 

1.069(0.346) 

0.328(0.568) 

2.266(0.135) 

PC4 Male 

Female 

0.167(0.847) 

0.400(0.671) 

1.037(0.357) 

0.369(0.692) 

0.158(0.854) 

0.523(0.594) 

0.046(0.955) 

2.356(0.098) 

0.082(0.921) 

0.770(0.465) 

1.011(0.316) 

0.328(0.568) 

PC5 Male 

Female 

0.308(0.735) 

1.697(0.187) 

0.469(0.626) 

0.662(0.517) 

0.321(0.726) 

0.915(0.403) 

1.979(0.142) 

0.939(0.393) 

0.484(0.617) 

0.963(0.384) 

0.031(0.016) 

0.328(0.861) 
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GWA analysis was performed on a total of 1,895,647 segregating biallelic SNPs 

and non-SNP variants. For females, at p < 1×10-5, I identified 20 variants associated with 

h, 222 variants associated with Topt, 66 variants associated with w, 56 variants associated 

with zmax, 66 variants associated with PC1, 29 variants associated with PC2, 43 variants 

associated with PC3, 12 variants associated with PC4, and 39 variants with PC5. For 

males, I found 5 variants associated with h, 135 variants associated with Topt, 17 variants 

associated with w, 18 variants associated with zmax, 87 variants associated with PC1, 53 

variants associated with PC2, 12 variants associated with PC3, 16 variants associated 

with PC4, and 23 variants with PC5.  

When the p-values were plotted along the chromosomes, the significant variants 

were distributed broadly throughout the genome, indicating a likely polygenic architecture 

for all TPC components (Fig. 4.4 & 4.5) and PCs (Fig. 4.6 & Fig. 4.7). For males, the 

significant hits for PC2, PC3, Topt, w and zmax predominately occurred on 2R, 3L and the X 

chromosome, with the addition of 2L for Topt  and 3R for PC2 and PC3 (Fig. 4.3 & 4.6). I 

found that clusters of significant hits spanned all the chromosomes for PC1, PC2, PC3, 

Topt, w and zmax in females (Fig. 4.5 & 4.7) and PC1 in males (Fig. 4.6). Noticeably, for 

both sexes, w and zmax had a similar spread of p-values (Fig. 4.3 & 4.4). Consistent with 

the detection of very little among line variance, PC4, PC5, and h had few hits (Fig. 4.4-

4.7). Varying degrees of deviation from the null hypothesis for each trait for both sexes 

was illustrated in the quantile-quantile (Q-Q) plots and show little evidence of population 

stratification (Appendix 4.1 & 4.2). 
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Figure 4.4: Manhattan plots for the association between the variants and each of the four 

TPC components for males in the DGRP lines. The dashed horizontal line is the nominal 

threshold of 1 x 10-5. Each colour represents a different chromosomal arm; a) h 

component, b) Topt component, c) w component, and d) zmax component.  
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Figure 4.5: Manhattan plots for the association between the variants and each of the four 

TPC components for females in the DGRP lines. The dashed horizontal line is the nominal 

threshold of 1 x 10-5. Each colour represents a different chromosomal arm; a) h 

component, b) Topt component, c) w component, and d) zmax component.  
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Figure 4.6: Manhattan plots for the association between the variants and each of the first 

five principal components for males in the DGRP lines. The dashed horizontal line is the 

nominal threshold of 1 x 10-5. Each colour represents a different chromosomal arm; a) 

PC1, b) PC2, c) PC3, d) PC4, and e) PC5.  
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Figure 4.7: Manhattan plots for the association between the variants and each of the first 

five principal components for females in the DGRP lines. The dashed horizontal line is the 

nominal threshold of 1 x 10-5. Each colour represents a different chromosomal arm; a) 

PC1, b) PC2, c) PC3, d) PC4, and e) PC5.  
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Skew in the direction of minor allele effects  

I detected a noticeable skew in the direction in which the minor-frequency alleles 

affected a trait. Within the PC analysis, the skew was detected in the minor-frequency 

alleles for PC1 and PC2 in males, and PC1 and PC3 in females (Fig. 4.9). For Topt, a skew 

towards positive effects was observed suggesting that, at all loci (100% of significant hits 

for both sexes, Fig. 4.8), the rarer allele increased optimum temperature. A contrasting 

pattern of a skew towards negative effects was observed for zmax  (males: zmax 94% and w 

94 %; females zmax  96% and w 97%, Fig. 4.8), where the rarer allele lowered maximum 

performance. There was far less skew observed for the h component, which had too few 

hits in males, but for females a similar number of positive an negative values (minor 

effect>0: 70%, minor effect<0: 30%, Fig. 4.8). For correct interpretation of the effects of w 

values, an explanation of how TMV estimates w is required. The measure of w from the 

TMV output incorporates the ‘generalist-specialist’ axis as it constrains the area under the 

curve to remain constant, meaning that both changes in the width of the curve and 

maximum performance occur simultaneously (Izem 2004). Therefore, the interpretation of 

the w value does not directly relate to the range of temperatures; instead, a larger w 

indicates a specialist and smaller w a generalist. Therefore, the observed skew for 

decreased w value (males: w 94 %; females w 97%, Fig. 4.8) indicates that the rarer 

alleles resulted in generalists. Across all the components, the rarer alleles increased Topt, 

decreased zmax and resulted in generalists. 
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Figure 4.8: Skew in the direction of minor frequency variant effects across the genome for 

the variants with a p-value larger than 1 x 10-5 from the GWA for each sex’s four 

components of TPC. Each point represents a different variant and the colours correspond 

to the chromosome. h is represented in a) for males and d) for females. Topt is represented 

in b) for males and f) for females. w is represented in c) for males and g) for females. zmax 

is presented in d) for males and h) for females.  
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Figure 4.9: Skew in the direction of minor frequency variant effects across the genome for 

the variants with a p-value larger than 1 x 10-5 from the GWA for each sex’s first five PCs. 

Each point represents a different variant and the colours correspond to the chromosome. 

PC1 is represented in a) for males and d) for females. PC2 is represented in b) for males 

and f) for females. PC3 is represented in c) for males and g) for females. PC4 is presented 

in d) for males and h) for females. PC5 is presented in e) for males and j) for females. 
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Functional Annotation of GWA hits 

Upon annotation of the different types of variants, across all components, I found 

that most variants resided in or near genes for both TMV components and PCs (TMV: 

males: 76%, females: 83%; PC: males: 81%, females: 79% Fig. 4.6). For the TMV 

components, I found that 301 out of 364 variants were localised to a total of 223 genes for 

females and 133 out of 175 significant variants localised to a total of 85 genes for males. 

For the PCs, I found that 155 out of 191 variants were localised to a total of 138 genes for 

males and 151 out of 189 significant variants localised to a total of 112 genes for females.   

Most variants were located in introns (males: 27-62%, except for male’s h and PC2; 

females: 31-79%; Fig. 4.10). A similar number of variants were also found in the intergenic 

region for PC3 for females (40%) and PC5 for males (27%), in the downstream region for 

PC2 for males (46%) and the upstream region for PC3 for males (38%) and PC4 for 

females (38%) (Fig. 4.10). For both sexes, upstream or downstream regions were the next 

most common for w and zmax (males: 10-20%, females: 12%-18% Fig. 4.10), third most 

common for Topt (males: 8-10%, females: 8-9% Fig. 4.10), and most for females h 

(upstream 34% Fig. 4.10). Similar numbers of variants were also found in the intergenic 

region (males: 7-25%, females: 9-16% Fig. 4.10). The remaining regions were found to 

generally have fewer variants with 14% or less in the synonymous, non-synonymous, 

coding change plus codon deletion regions, UTR-3 prime, UTR-5 prime, exon, start 

gained, and stop gained regions (Fig. 4.10).  
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Figure 4.10: The number of significant variants across the different functional site classes for each of the five PCs and four TPC 

components, a) male PC variants, b) females PC variants, c) male TMV variants, and d) female TMV variants.  
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 For the variants located near or within genes, functional annotations were also 

performed against the D. melanogaster Flybase reference 5.49. Within the TMV analysis, 

the total number of genes annotated was 85 and 223 for males and females respectively 

and within the PC analysis, 138 and 112 genes were annotated for males and females 

respectively. Majority of the genes were unique for each PC axis, whereby each sex only 

had two genes shared between PCs. For males one gene (dpr6) was shared between 

PC1 and PC2 and one gene (app) shared between PC1 and PC4 (Appendix 4.3a). For 

females, one gene (kirre) was shared between PC2 and PC5 and one gene (Dys) between 

PC4 and PC5 (Appendix 4.3b). For the TMV analysis, I found a varying degree of 

uniqueness for the four TMV components. Topt had the most unique genes (males: 59, 

females: 118; Fig. 4.11). For females, h had the second highest degree of uniqueness, 

followed by w then zmax (h:24, zmax:3, w:10; Fig 4.11b); for males h, w and zmax had a 

similar number of genes (h:1, zmax:3, w:1; Fig 4.11a). This suggests each TPC component 

and PC axis has an appreciable degree of (genetic) independence from the other 

components. The majority of gene sharing occurred between zmax and w (males: 9, 

females: 32; Fig. 4.11). Here, most of the genes were shared with 9 out of 14 and 32 out 

of the 45 genes for males and females (Fig. 4.11). Note that this is to be expected, as w is 

algebraically related to zmax through equation 4.3. Topt shared few with genes the other 

components with one gene for males (CG10440) and two genes for females (CG11409 

and Ets21C: Fig. 4.11). 
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Figure 4.11: Gene network graph for significant variants annotated to a gene for a) males 

and b) females. Each blue node represents a gene and the purple square nodes represent 

the four components.  

Topt 

Topt 

w 

zmax 

h 

w 

zmax 

h 



 

 97 

Gene Ontology Exploration 

While there was varying overlap in the genes involved in each of the four TMV-

defined traits, this alone does not take account of the type of biological processes and 

functional pathways these genes belong to. There may be an increased degree of overlap 

at a higher level of organisation. Therefore, I performed a functional enrichment analysis 

using gene ontology (GO) terms. Not all genes detected via significant associations have 

been systematically annotated, and therefore were not considered in this functional 

analysis. The number of genes analysed for females were 20 for h, 100 for Topt, 35 for w, 

29 for zmax, 36 for PC1, 16 for PC2, 18 for PC3, 11 for PC4 and 19 for PC5. For males the 

number of genes analysed were 51 for PC1, 27 for PC2, 11 for PC3, 12 for PC4 and 17 for 

PC5. Male TMV data were not analysed (see methods). The proportion of annotations 

within and shared among the components varied. At one extreme, majority of the enriched 

terms for zmax and w were shared with other components and at the other extreme, the 

majority of terms for Topt and h were not shared (Fig. 4.12). In the PCs for both sexes, the 

degree of uniqueness for each component had increased; all five PCs had more GO terms 

that were unique than shared with each other (Fig. 4.13 & 4.14) which is to be expected 

given the orthongonaility constraint of PC analysis.   

Particular types of biological processes, molecular functions and cellular 

components were enriched. Neurological function and development appeared to be 

involved in all TMV components. Each TMV component had a GO term that related to 

neurological function and development. Some specific examples are neurological system 

processes (Topt), axongenesis (Topt, h, w & zmax), central nervous system development (w 

& zmax), neuron development (Topt, w, h & zmax), neurongenesis (Topt, w, h & zmax ), neuron 

perception development (Topt, h, w & zmax) and regulation of axongenesis (h & Topt) (Fig. 

4.12). Unlike the TMV components, most but not all PCs had terms relating to neurological 

function and development. Neurological terms were present for males PC1, PC2 and PC3 

(Fig. 4.13) and females PC1, PC3 and PC5 (Fig. 4.14). Response to stimulus was another 

consistent theme across all TMV components. For example, all four TMV components had 

response to external stimulus and taxis (directed response to stimulus), h had regulation of 

chemotaxis and Topt had response to chemical stimulus (Fig. 4.12).  Response to stimulus 

terms was only present in two out of the five PCs for both sexes. The term taxis was 

present for PC1 in males and females and PC3 in females; negative regulation of 
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response to stimulus was present for males PC2 and response to external stimulus term 

was present for female’s PC1 (Fig. 4.13 & 4.14). Another theme across all TMV and PC 

components (except PC5 in females) was terms relating to the development of organs and 

anatomical features. Specifically, terms relating to muscle development were found in PC1 

and PC2 for males, PC3 for females, h and some terms shared between Topt and h (Fig. 

4.12-4.14).  

Some groups of terms I found to only be present in some of the PC and TMV 

components. These terms related to cognition, behaviours, metabolic processes and 

signaling processes. Terms relating to cognition were found in PC4 for males, and PC1 

and Topt for females and terms relating to behavior were found in PC1, PC3 and Topt for 

females (Fig. 4.12-4.14). Terms relating to biological processes were enriched in PC3, 

PC5 for males, and PC3, PC4, w, h and Topt for females (Fig. 4.12-4.14). Terms relating to 

signaling were enriched in all but PC5 for males and in w, Topt, zmax PC4 and PC5 in 

females (Fig. 4.12-4.14).  

At the molecular function level, all PC and TMV components had GO terms relating 

to transport and binding of substances; where it was equally spread among the PCs (Fig. 

4.13 & 4.14) but not for the TMV components, Topt and h had the most amount of unique 

molecular function terms present (Fig. 4.12). Exploration at the cellular level revealed few 

enriched terms across all the PC and TMV components (Fig. 4.12-4.14). Some of these 

terms related to the cell junctions, cell parts, plasma membrane, and channel complexes 

for PCs and TMV components and also neuron spines for PCs. 



 

 99  



 

 100 

Figure 4.12: Network of significantly enriched terms for genes associated with optimum temperature, Topt, maximum performance, zmax, 

‘generalist-specialist’, w and ‘overall height’ h for females. The four square purple nodes represent each of the four components, and 

each circular node represents an enriched GO term with biological processes in blue, molecular functions in green and cellular 

components in yellow.  
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Figure 4.13: Network of 

significantly enriched terms 

for genes associated with 

PC1, PC2, PC3, PC4, and 

PC5 for males. The five 

square purple nodes 

represent each of the five 

PCs, and each circular 

node represents an 

enriched GO term with 

biological processes in 

blue, molecular functions 

in green and cellular 

components in yellow. 
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Figure 4.14: 

Network of 

significantly 

enriched terms for 

genes associated 

with PC1, PC2, 

PC3, PC4, and PC5 

for females. The 

five square purple 

nodes represent 

each of the five 

PCs, and each 

circular node 

represents an 

enriched GO term 

with biological 

processes in blue, 

molecular functions 

in green and cellular 

components in 

yellow.
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4.5 Discussion 

Quantitative Genetics of TPCs  

A recurrent theme in quantitative genetic studies of TPC is that genetic variance is 

distributed unevenly across the three major axes of variation (Kingsolver et al. 2004b; 

Izem and Kingsolver 2005; Yamahira et al. 2007; Latimer et al. 2011). This was consistent 

in both the character-state and function-valued analyses in this study. Most variation 

occurred along a ‘faster-slower’ axis as defined by the PCs with the remaining PC axes 

consisting of changes in TPC shape. The ‘faster-slower’ axis as per the PCs had lower 

temperature loadings at the hotter temperatures, suggesting this axis defined a 

combination of both temperature specific effects and increases (or decreases) in overall 

activity. This pattern of decreased loadings at higher temperatures for PC1 was a 

consistent finding across the studies in this thesis. As all my analyses were performed on 

mean standardised trait values it suggests that a class of pleiotropic variant with a larger 

effects at the cool temperatures to be a true reflection of the connection between the 

genotype and phenotype for both D. serrata and D. melanogaster.  

Unlike the ‘faster-slower axis’ defined by the PCs, the function-valued trait analysis 

showed most of the genetic variance was along the ‘hotter-colder’ and ‘generalist-

specialist’ axes with little along the ‘faster-slower’ axis. One possible explanation for this 

discrepancy would be the differences in the statistical approach. The ‘faster-slower’ axis as 

defined by the TMV approach is pure overall height changes without any trade-offs; the 

equivalent for the PCs would involve equal loadings of shared sign across all 

temperatures, which was not the case. However, this particular pattern of genetic variance 

partitioning is consistent with other studies where the template mode of variation statistical 

approach was used (Izem and Kingsolver 2005; Knies et al. 2006; Latimer et al. 2011). 

Whilst both statistical approaches have benefits, they may isolate quite different aspects of 

TPC variation, therefore care needs to taken when comparing the results of studies that 

have used these different statistical methods. Nonetheless, upon investigation of the GWA 

results, a degree of consistency was observed.  
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Genome Wide Association Analysis of TPC variation 

This is the first GWAS of natural variation in TPCs and provides an opportunity to 

understand the types of mutations, genes, and functional pathways that underlie TPC 

variation. The numbers of variants found for each component tended to correlate with their 

contributions to genetic variance in the TMV analysis. Thus optimum temperature and 

PC1, which had the highest genetic variance, also had the largest number of associated 

variants, followed by ‘generalist-specialist’, ‘overall height’ and the remaining PCs.  Below I 

discuss the main evolutionary genetic and functional aspects of this genomic analysis.  

Functional Consequences of Associated Variants  

At the molecular level, phenotypic evolution can arise through changes in gene 

expression or changes in coding sequences (Levine and Tjian 2003; King and Wilson 

2014). I detected many more variants that could plausibly regulate gene expression than 

affect protein-coding sequence. Within coding regions, non-synonymous variants are of 

interest because they alter amino acid sequence and could affect enzyme function. This 

would be important for TPCs, as temperature has been demonstrated to affect the binding 

affinity and catalytic activity of enzymes (Fields 2001; Hochachka and Somero 2002 ). 

Interestingly, out of all the non-synonymous variants for Topt in males and females, PC1 in 

males, and PC2, PC3, w and zmax for females, most had functions related to the binding of 

a substance and/or catalytic activity. For example the genes, CG7922, ade3, Ice1, lid, sad, 

and CG10916 have been implicated in the binding of substances and CG7922, ade3, Ice1, 

hrg, CG33145, CG11050, and lid all have catalytic activity functions. In particular, one non-

synonymous variant in the gene, Cyck, had a function that was related to the regulation of 

enzyme binding. This supports the concept that the trade-offs observed in enzyme 

functions contribute to the shape of TPCs (Huey and Kingsolver 1989; Hochachka and 

Somero 2002 ; Angilletta 2009).  

Gene expression regulation has been proposed as an important mechanism 

allowing individuals to respond to environmental change (Via and Lande 1987; Scheiner 

1993; Schlichting and Pigliucci 1995). Therefore I am not surprised to have detected more 

variants that can be implicated with gene expression than coding changes. The majority of 

the variants in this study were located in non-coding regions, similar to other studies on 

DGRP (Jordan et al. 2012; Chow et al. 2013a; Harbison et al. 2013), including three 
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particular regions: intronic, intergenic and variants upstream or downstream from a gene. 

Non-coding regions can contain regulatory information, for example, intronic 

polymorphisms can affect gene expression through the regulation and translation of 

splicing efficiency. Variants in the upstream regions can also harbour cis-regulatory 

elements. Interestingly, one of the upstream variants for Topt was for the gene, Drak, which 

has been found to have a role in temperature dependent phenotypic plasticity of 

morphological traits in D. melanogaster (Carreira et al. 2013). Intergenic regions can also 

contain long distance regulators of gene expression, such as enhancers, or non-coding 

RNA. Non-coding RNA, especially the long non-coding RNAs, have recently been 

suggested to be important as regulatory factors for molecular processes and cellular 

functions (Li et al. 2012). They have been demonstrated to function as transcriptional 

regulators of neighbouring protein coding genes (Feng et al. 2006; Ng et al. 2012) and 

found to influence traits including locomotor behaviour in Drosophila (Li et al. 2012), neural 

function, and cognition (Mercer et al. 2008; Qureshi and Mehler 2011). Although this study 

cannot determine how polymorphisms in intergenic regions might be affecting TPC 

variation, it does suggest these genomic regions should be a focus of follow up studies. 

Biased Directions of Minor Allele Effects  

Natural selection may play an important part in shaping TPCs variation, for 

example, selection has been proposed as an explanation for lower standing genetic 

variance at hotter temperatures than cooler ones (Berger et al. 2013). This study provides 

an opportunity to explore the evolutionary forces that may shape standing variation by 

examining the frequencies and direction of phenotypic effects of trait-associated alleles. 

For instance, any major skew in the directional effect for minor frequency alleles 

associated with a trait may tell how selection acts on that trait. I observed quite a strong 

minor frequency allele skew for PC1 Topt, w and zmax for both sexes and PC2 for males. As 

PC1 resembles the ‘faster-slower’ axis suggests that selection maybe occurring to try and 

alter the level of activity regardless of the temperature. Unfortunately, due to the lack of 

directionality in the PCs, I can not discern which direction selection may have occurred.  

Generalists with a lower zmax and higher Topt appeared to have been selected against in 

this population in favour of specialists with higher zmax but lower Topt TPCs. The skew in 

PC2 supports this whereby it resembles a variation in TPC shape that is likely to 

encompass changes in w and Topt. In optimisation models, selection on Topt is predicted to 
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match the local environment and width of curves to match the degree of temperature 

fluctuations between and within generations (Lynch and Gabriel 1987; Gilchrist 1995). If 

this were the case, I would expect to see an opposite pattern of skew for species that can 

perform in hotter environments, which emphasises a need for similar studies to be 

conducted in other species such as thermal specialists.  

Pleiotropy 

Pleiotropy is predicted to be a major component of the genetic architecture of TPCs 

(Angilletta 2009; Knies et al. 2009; Latimer et al. 2011). Two levels of pleiotropy were 

found in this study; pleiotropy occurred at the variant-level and also the gene-level. At both 

levels, a large number of pleiotropic effects were identified between w and zmax; however, 

as these two components are algebraically connected, this was expected. Therefore, more 

interesting would be the existence of pleiotropic effects between the PCs and the two 

trade-off axes, ‘hotter-colder’ (Topt) and ‘generalist-specialist’ (w). At the variant-level, no 

variants were shared among the PCs for either sex and only one single variant in females 

had a minor allele that increased Topt and also resulted in a broader curve (lower w). This 

‘hotter-is-broader’ aspect was seen for growth rate TPCs in bacteriophages (Knies et al. 

2009) where the authors suggest it may have been a result of adaptation to high 

temperatures or high temperature variation. My study suggests these types of effects are 

extremely rare for TPCs in D. melanogaster. Gene-level pleiotropy was also very low 

between the PCs and between Topt and w. Only one gene for males and two genes for 

females showed such a pattern between Topt and w, and only two genes where shared 

between two PCs for each of the sexes. The low apparent pleiotropy was not surprising for 

the PC analysis and suggests that each PC axis is a separate unity with trade-offs present 

only among the set of genes that occur within that particular axis. In contrast, the low 

pleiotropy was surprising for the TMV components and could be due to the way the TPCs 

were analysed. The TMV analysis explicitly incorporates specific trade-offs within 

components. For example, w includes both a change in the breadth of temperatures for 

performance as well as the level of performance. Therefore, pleiotropic effects may exist 

within each of the components, but this study could not detect them because they were 

effectively combined into one trait. A GWA analysis using the multivariate mapping method 

I used in Chapter 3 may have revealed more pleiotropic effects; however, it was not 
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computationally feasible to implement here given the very large numbers of variants to be 

tested. 

Gene Ontology Functional Analysis 

In thermal adaptation, trade-offs are believed to be due to differences in 

biochemical and cell structure performance across temperatures (Hochachka and Somero 

2002 ; Angilletta 2009). My study suggests that the underlying biochemistry and 

physiology for TPC is complex, especially for the three physiological areas suggested to 

shape TPCs: oxidation-limitation, enzyme function and membrane structure (Angilletta 

2009). The gene ontology analysis revealed patterns consistent with the involvement of 

oxidation-limitation for ‘faster-slower’ variation. In particular, the ‘faster-slower’ axis had 

gene ontology terms relating to the transport of molecules involved in the citric-acid cycle 

(malate). All the female TMV axes and majority of the PC axes had enriched terms related 

to enzymes, where terms were present in all but PC5 for males and all but PC2 and PC3 

for females. The terms included the activity of steroid hydroxylase, cytochrome-c oxidase, 

oxidoreductase and phosphoric ester hydrolase for TMV and cyclic-nucleotide 

phosphodiesterase, metalloendopeptidase, quanylate cyclae, sulfotransferase, and 

nucleotidase for the PC axes. Membrane, plasma membrane or membrane part structures, 

which could lead to trade-offs through differences in stability between temperatures, were 

terms enriched for all TMV components and most PCs (except PC5 for males and PC2 for 

females) axes. 

For behavioural traits such as locomotor activity, it was expected that individuals 

must be capable of detecting and then responding to an environmental temperature 

stimulus. I found ontology terms linked to responses to stimuli for PC1 and PC2 for males 

and PC1, PC3, and all the TMV components for females. While only one gene, dnc, 

associated with PC1 for females, PC4 for males and Topt, is currently annotated in 

responding specifically to a temperature-based stimulus (GO term: thermosensory 

behaviour), independent studies have recently linked temperature-based stimulus 

responses to other detected genes that linked to the ‘response to stimulus’. These 

included a suite of olfactory receptor genes or65a, or65b, or65c and or59a, and two 

glutathione-S-transferases genes gstD6 and gstD5 (Riveron et al. 2013).  
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The ability to respond to a stimulus also requires sensing the stimulus from the 

peripheral system and relaying the information through the central nervous system. For 

instance, Brown et al. (2013) found that locomotory behavioral responses to olfactory cues 

were associated with neural functions. I also found that neurological function had a key 

role. Genes were also identified with functions relating to the peripheral system that 

included Nrx-IV, Appl, and bun for PCs, and shn mbl, and Tollo for TMV components; and 

for the development of nervous system and neurological function Ets21c, Lar, and frac for 

TMV components and NetB, Lar and sdk for the PCs plus many others. Therefore, the 

development and efficiency of an organism’s central nervous system may be processes 

important to TPC variation. In addition to the nervous system, signaling would also aid the 

relay of information. As expected I found terms related to signaling enriched in some of the 

axes, specifically the ‘hotter-colder’, ‘generalist-specialist’, ‘maximum performance’, PC4 

and PC5 axes in females and PC5 in males. An interesting result for the ‘faster-slower’ 

axis (PC1 in males and h) was the presence of many terms related to muscle development 

and function. This makes sense, as the ‘faster-slower’ axis encompasses overall 

performance regardless of temperature, and as a locomotor performance trait was used, 

muscles would be required for movement. Unlike the TMV components, terms relating to 

the muscle development and function were also present in other axes that affected TPC 

shape. This demonstrates that perhaps muscle development maybe also important for 

other variation in TPC shape. As a general note of caution, the functional annotation of 

genes in D. melanogaster is a constantly developing area and annotations to genes are 

constantly being added and revised over time. It is therefore difficult to gauge the level of 

uncertainty in these analyses. For now they serve as a useful guide into the likely functions 

that can be tested with targeted follow up studies. 

I found varied levels of overlap in annotated gene functions between the different 

TPC components and to a lesser extent for the PCs. There was a high degree of sharing 

between zmax and the ‘generalist-specialist’ axis, w. In contrast, term-sharing was more 

limited for the ‘hotter-colder’ and ‘faster-slower’ axes and the PCs. It may be the case that 

the ‘hotter-colder’, ‘faster-slower’ and PC axes have a higher degree of evolutionary 

autonomy than other axes. I found that the ‘faster-slower’ axis defined by the PCs in this 

chapter (PC1) and in previous chapters to also contain a level of ‘hotter-colder’ type 

variation. If this were the case for the TMV defined ‘faster-slower’ axis, h, I would have 

expected to see a greater number of shared functions between the TMV ‘hotter-colder’ and 
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‘faster-slower’ axes.  However, shared functions between ‘hotter-colder’ and ‘faster-slower’ 

TMV axes were not found. As mentioned earlier, this may be due to the different statistical 

approaches whereby the TMV method has more likely efficiently isolated pure ‘faster-

slower’ variation, disregarding any trade-offs. Recently developed statistical approaches, 

such as simplicity measures to explore the nearly null-space (Gaydos et al. 2013), may 

provide a useful complement to eigenanalysis in extracting this kind of variation.  

Conclusion 

In this study, I detected genetic variance for the thermal dependence of locomotor 

activity for Drosophila melanogaster. I found genes associated with five principal 

components that explained more than 95% of variance and with the three main axes of 

TPC variation defined by a function-valued trait analysis. Annotation of associated variants 

suggests that gene expression is likely an important process shaping TPC variation. At the 

functional level, different levels of independence were found between components, 

suggesting that some modes of variation, especially ‘hotter-colder’ and the axes defined by 

the PCs, might have greater evolutionary independence than others. Exploration of the 

genetic architecture and functions of TPCs remains in its infancy and further research is 

still needed to further understand the genomic processes involved in thermal adaptation. 
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Chapter 5: General Discussion 

The empirical studies in this thesis have contributed to the field of thermal 

adaptation through evaluation of the evolutionary potential and genetic architecture of an 

organism’s ability to perform across different environmental temperatures. Specifically, I 

have conducted an integrative genetic dissection of thermal performance curve (TPC) 

variation for locomotor activity in two Drosophilids. Below, I briefly acknowledge some 

limitations of the work and suggest directions for future research. I conclude discussing 

some broad observations from the work. 

5.1 Limitations and future directions 

One aspect that should be considered when interpreting the findings of this thesis is 

that the studies focused on a single trait—locomotor activity—and on a single type of 

continuous reaction norm (CRN). As the shape of CRNs, including TPCs, have been 

suggested to differ according to trait type and environmental factor (Angilletta 2009; Rocha 

and Klaczko 2012; Murren et al. 2014), some of my genetic results may be trait and CRN 

specific. Although the number of studies that have examined the genetic architecture of 

CRNs at the same fine scale examined in this thesis is low, some similarities may exist. 

For example, a QTL analysis on photosynthetic light curves indicated elevation QTLs; they 

found QTLs that increased photosynthetic rate across all CO2 and irradiance levels (Gu et 

al. 2012). Another QTL study on growth curves for Japanese medaka fish fin suggest a 

contribution by QTLs that vary in their pleiotropic effects across the ontogeny, which could 

lead to changes in curve shape as opposed to elevation (Kawajiri et al. 2014). Such a 

finding is similar to my results for Chapters 2 and 3, where I detected pleiotropic effects on 

TPC shape and elevation, but the relative contribution to each differed between studies 

where more QTLs contributed to the shape of growth curves in medaka. Further, Kawajiri 

et al. (2014) annotated the genes found within the associated QTL for medaka and found 

functions related to the central nervous system, ion transport, substrate binding and 

membrane; a very similar finding to my results for Chapter 4. However, it was not possible 

to determine if there was a greater contribution to gene expression as opposed to coding 

sequence based on these analyses, therefore, the relative contributions of coding verse 

regulatory variation to CRNs remains an open question. Until more studies are conducted 

on the genetic architecture of CRNs, especially at the finer scale permitted in a GWAS, I 
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can only speculate on the generality of my results The existence of living genomic 

resources for animals and plants, such as the DGRP, may facilitate controlled comparative 

analyses of genetic architectures across a broad range of CRNs within the same 

organism.  

A broader taxonomic breadth to genomic studies may also be required. While this 

thesis focused on two species of Drosophila, other species including ectothermic 

vertebrates, like the zebrafish, offer exciting opportunities for the genomic dissection of 

TPCs. As different species have different distributions and inhabit different thermal 

environments, differences in genetic architecture may become apparent.  For instance, the 

two species used in this study inhabit different ranges of climates. Drosophila serrata is 

endemic to the Australasian region, occurring from Papua New Guinea and down along 

the east coast of Australia (Lemeunier et al. 1986; Kellett et al. 2005). Drosophila 

melanogaster, however, is a cosmopolitan species that is found across the world 

(Lemeunier et al. 1986; David et al. 2007). The recent development of a panel of 105 

sequenced lines of D. serrata (A. Reddiex and S. Chenoweth, manuscript in preparation) 

may offer an opportunity to conduct a comparative GWAS between these different 

species.  

Populations of the same species that occur in different climates, such as tropical 

and temperate environments, may also have different TPC genetic architectures. Studies 

have identified population divergence in TPCs (Wilson 2001; Yamahira et al. 2007; Latimer 

et al. 2011; Berger et al. 2013; Gaitan-Espitia et al. 2013) but have not investigated the 

genetic basis of divergence. Exploration of the genetic architecture among different 

populations was attempted in Chapter 3 by looking at recombinant inbred lines derived 

from two populations. However, weak divergence was detected, suggesting they may have 

not been the best candidate populations to compare. Comparisons of the genetic 

architecture for a different group of lines that more closely represents the natural 

population (e.g. isofemales collected from natural populations and inbred similar to the 

DGRP lines) may be more informative of how selection has shaped TPCs. For instance, 

would different patterns of skew in the directions of allelic effects occur between 

populations with different thermal minima and maxima or different levels of variability in 

temperature?  
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In thermal adaptation, acclimation during development or for a short period of time 

(e.g. 5-10 days) is often found to influence an organism’s ability to respond to temperature 

(Wilson and Franklin 1999; Glanville and Seebacher 2006; Cooper et al. 2010; Lachenicht 

et al. 2010). In particular, recent studies have started to use acclimation as a way to better 

understand how fluctuating environments during development affect an organism’s ability 

to respond to thermal environments and has been suggested to contain different genetic 

constraints (Cooper et al. 2010). Whilst my aim was not to explore the effects of 

acclimation, I acknowledge that if the flies were exposed to a different thermal regime 

during their development, such as fluctuating temperatures, a difference in TPC shape 

may have been observed. For example, the low genetic variance found for the ‘faster-

slower’ axis in Chapter 4 may be characteristic of non-developmental rather than 

developmental thermal reaction norms, as found in Kingsolver et al. (2004a) study. If the 

partitioning of the genetic variance between the axes differs between developmental and 

non-developmental thermal reaction norms, the underlying genetic architecture may vary 

with the activation of different genes.  

One particular challenging aspect to the study of function-valued traits, such as 

TPCs, is the statistical approach used for their analysis. Many different methods have 

been used to investigate TPCs including regression analysis, ANOVAs (Butler et al. 2013), 

eigenanalysis (Kingsolver et al. 2004b), and the template mode of variation (Izem and 

Kingsolver 2005). Over the years, debates have occurred over which methods are best, 

Bulté and Blouin-Demers (2006) arguing regression is the most optimal, whilst others 

argued that method choice is data and question specific (Angilletta 2006; Stinchcombe 

and Kirkpatrick 2012). If a curve is fit, then arguments also arise over the best function to 

fit; Angilletta (2006) argues that the Gaussian is the best while others have used different 

models such as the four parameter spain model (Krenek et al. 2011) and the Briere1 and 

Briere2 models (Shi and Ge 2010).  

In this thesis, I have used two different approaches, the eigendecomposition 

(character-state) and the template mode of variation (function-valued trait) approaches. 

Whilst both have been suggested as adequate tools for function-valued trait analysis 

(Stinchcombe and Kirkpatrick 2012), in Chapter 4 I highlight that these two approaches 

may distill TPC variation in different ways. This suggests that studies on TPC may benefit 

from a combination of statistical approach to capture the full picture of TPC variation. 
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However, both approaches may not always be applied together for some data, whereby 

each approach is more suited to different circumstances depending on whether a common 

shape exists for all individuals in a data set (Stinchcombe and Kirkpatrick 2012). For 

example, the eigenanalysis is more flexible when very different shapes occur between 

individuals, as was the case for Chapters 2 and 3. The eigendecomposition approach was 

able to detect genetic variance that was less constrained to specific directions but could 

not explore axes with very low genetic variance. The template mode of variation methods 

was powerful to explore the shape of the TPCs and at detecting predefined axes that had 

very low genetic variance. However, it was restrictive when looking for pleiotropic effects 

across the temperatures. I can see two complementary approaches that could be applied 

in future research to avoid these issues. First, would be to conduct an eigenanalysis, 

similar to Chapters 2 and 3, but in addition to this, also look at the nearly null spaces of M 

or G to understand regions of absolute genetic constraint. Gaydos et al.’s (2013) simplex 

method may be useful for such analyses. Second, would be to fit curves to each genotype, 

and then width, maximum performance, and optimum temperature could be measured 

without imposing area (under the curve) constraints. Such a non-parametric approach may 

allow pleiotropic effects to be more easily mapped. Such methods have been used by 

Knies et al. (2009) and Krenek et al. (2011). Whilst it would be interesting to then explore 

pleiotropic effects at a whole genome-scale using either of these suggested methods, both 

have limitations. Fitting individual curves would require an adequate sample size within 

each genotype to ensure the correct curve is fitted, which can itself pose logistical 

constraints (Stinchcombe and Kirkpatrick 2012) especially when a large number of 

genotypes are needed for sufficient power in a GWAS. The multivariate QTL mapping 

approach used in Chapter 3 could be applied to GWAS data to gain a more complete 

picture of the distributions of allelic affects across temperatures, but the approach is not 

without significant computational overhead.  

5.2 Conclusions 

Standing variation is likely shaped by natural selection 

A common observation in quantitative genetic studies of TPC variation has been 

that the genetic variance is not distributed equally, either across individual temperatures 

along the curves (Gilchrist 1996; Kingsolver et al. 2004b; Berger et al. 2013), or across 

specific axes of variation (Izem and Kingsolver 2005; Knies et al. 2006; Knies et al. 2009; 
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Latimer et al. 2011). There are two non-mutually exclusive explanations for these patterns. 

First, differences in genetic variance might reflect different mutational inputs to each 

temperature or axis of variation. For example, some axes could have greater mutational 

target sizes or accrue generally larger mutational effects than others. My mutation 

accumulation study (Chapter 2) showed that while mutational contributions were 

detectable for all three common axes of TPC variation, mutational variances differed 

greatly. However, the distribution of genetic variance across the major axes of variation 

was not the same as the distribution seen for standing variation in D. serrata (Latimer et al. 

2011), the TMV analysis in my study of D. melanogaster (Chapter 4) or, more generally, 

prior studies of TPCs (Izem and Kingsolver 2005; Knies et al. 2006). Specifically, there 

was limited genetic variance for the ‘faster-slower’ axis, whereas the mutational variance 

was dominated by this axis. 

A second explanation for differences in genetic variance between temperatures or 

TPC components is that a balance between natural selection and mutation may shape 

standing variance (Berger et al. 2013). It is quite possible that the mismatches between 

standing and mutational variation seen for the ‘faster-slower’ axis are the consequence of 

natural selection against deleterious ‘faster-slower’ type alleles. Because ‘faster-slower’ 

variation is likely to involve alleles with effects independent of temperature, they may be 

more efficiently purged by natural selection than alleles with temperature-dependent 

effects. I speculate that low standing variation for the ‘faster-slower’ axis may be a general 

phenomenon induced by natural selection. Higher standing variance for the ‘hotter-colder’ 

and ‘generalist-specialist’ axes could therefore be a by-product of natural selection purging 

‘faster-slower’ variance faster (or more efficiently) than particularly large mutational 

contributions to the ‘hotter-colder’ and ‘generalist-specialist’ axes.  For example, the QTL 

analysis in Chapter 3 was somewhat consistent with the mutational study; generalist-

specialist QTL were relatively uncommon and tended to have smaller effect sizes than 

‘faster-slower’ QTLs. The eigendecomposition of D. melanogaster TPC variation also 

revealed PC axis loadings that decreased towards warmer temperatures for the ‘faster-

slower’ axis. 

It should be noted that the mismatch between standing and mutational variation 

was not always strong. For example, when considering specific temperatures rather than 

TPC components, Berger et al. (2013) argued that low standing variance at hot 
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temperatures in Sepsid dung flies may have been the result of strong selection as 

opposed to low mutational variation.  In Chapter 2, I found that the mutational variance 

was very low at hot temperatures, which was also present in Chapter 3—QTL effects 

tended to be quite small at hotter temperatures—and in Chapter 4—the loading effect 

sizes were lower at the hotter temperatures. These observations suggest that this specific 

pattern could be a genuine feature of the genotype-phenotype map rather than a mutation-

selection balance.  

Another line of evidence supporting a role for natural selection in shaping standing 

variation came from the GWAS on D. melanogaster. I observed some quite consistent 

patterns of skew in the direction in which the minor-frequency allele affected a trait. So 

long as the sample of associated variants is sufficiently large and linkage disequilibria 

between them are weak, as is the case for most DGRP variants (Huang et al. 2014), a 

bias in directionality would likely be the result of natural selection against the minor allele. 

In the GWAS I found that there was a strong skew for all shape components and for some 

of the principal component axes.  For curve height, minor frequency alleles tended to 

increase activity, which was also the direction of effect for most, presumably deleterious, 

mutations in Chapter 2. For the ‘generalist-specialist’ axis, rare alleles tended to produce 

broader TPCs with lower maximal performance levels. There was also apparent selection 

along the ‘faster–slower’ axis, with a bias in favor of lower optimum temperatures. 

Different classes of pleiotropic alleles likely contribute to thermal trade-offs 

Multivariate genetic constraints slow and/or bias the direction of phenotypic 

evolution during adaptation by reducing the availability of genetic variance in the direction 

favored by natural selection. Such constraints are thought to be a consequence of 

pleiotropy. Two different classes of pleiotropic alleles may underlie the trade-offs involved 

in thermal adaptation: antagonistic alleles that affect performance in different directions at 

different temperatures, and also alleles that affect performance in the same direction 

across temperatures, but with varying strength. I observed both of these in Chapters 2 and 

3. In particular, the ‘hotter-colder’ axis appears due to both antagonistic pleiotropy and, 

perhaps to a larger extent, pleiotropic effects that vary in size but not direction. In contrast, 

the ‘generalist-specialist’ axis appeared to involve mainly antagonistic pleiotropic effects. 

The existence of many pleiotropic alleles that might increase locomotor activity across all 

temperatures but to varying degrees is interesting because it suggests that although the 
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‘faster-slower’ and ‘hotter-colder’ axes can be distinguished statistically, they may not 

necessarily be genetically independent. 

Towards an understanding of the molecular basis of TPC variation 

By conducting a genome-wide association study on a well-understood model 

system, I was able to begin to provide a molecular understanding of natural variation in 

TPCs. It has been suggested that changes in gene expression may aid organisms in 

responding to different environmental conditions (Scheiner 1993; Schlichting and Pigliucci 

1995). The GWAS results from Chapter 4 implicate changes in gene expression as a 

major contributor to TPC variation as opposed to changes in protein coding sequences. 

This was illustrated by the majority of significant GWAS hits residing near, but in the non-

coding regions of genes, and therefore likely to have regulatory functions. Although I 

observed changes in the amino acid sequence (non-synonymous variants), these were 

modest in number. Interestingly, those I did detect appear to have implications for enzyme 

function, which has been predicted to affect the ability to perform at different temperatures 

(Somero 1995; Fields 2001; Hochachka and Somero 2002 ; Angilletta 2009). 

The functional annotation of TPC-associated genes revealed that the underlying 

physiological and biochemical processes affecting TPC variation were quite complex. 

There were three key physiological functions previously hypothesised to affect TPCs, 

including enzyme function, oxidation-limitation, and membrane structure (Hochachka and 

Somero 2002 ; Angilletta 2009). I provided a link to these functions, through the 

exploration of gene annotations. Specifically, membrane structure was associated with all 

the axes of TPCs, and oxidation-limitation was present in gene functions for the ‘faster-

slower’ axes, such as enriched terms for molecules relating to the citric-acid cycle. 

Enzyme functions were enriched for the genes in the ‘faster-slower’, ‘hotter-colder’, and 

‘generalist-specialist’ axes. They were also found to be largely present for functional genes 

that were annotated to non-synonymous variants, suggesting the enzymes functions may 

be impacted by amino acid changes. Additionally, the neurological system was evident to 

have a key role in the shape of TPCs because it was present across all TPC axes. As 

genome annotations improve and genomic resources become available for other species 

where the study of TPCs is tractable, further studies should be conducted to permit a 

better understanding of the functional aspects of TPCs.  
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Appendix 2 

 

 

Appendix 2.1: The mean locomotor activity TPCs for a) females and b) males of each 

mutation accumulation line. Locomotor activity has been square root transformed and was 

measured as counts per twenty-minute testing period. The founder line is in thick solid 

black, the control mutation accumulation lines are in blue and the sexual selection 

mutation accumulation treatment lines are in green. 
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Appendix 2.2: Univariate mixed effects linear models testing for the effects of mating treatment, block, line and vial on locomotor activity 

at each of the six test temperatures in male and female D. serrata. The test for differences in mutational variance between treatments 

involves estimating a model with independent variance components for the Line(Treatment) effect in each treatment and testing for a 

significant improvement of fit using likelihood ratio tests. Significance of all random effects was evaluated using likelihood ratio tests. P-

values are shown in italics (significant tests (P < 0.05) are highlighted in bold) and variance components for random effects are in 

parentheses. 

Effects Test  Temperature 

 Statistic 25C 30C 33C 35C 36C 38C 

Males        

Block F1,630 7.48, <0.0001 5.28, <0.0001 3.81, <0.0001 11.57, <0.0001 4.71, <0.0001 3.95,  <0.0001 

Treatment  F1,64 1.62, 0.208  2.61, 0.111 0.28, 0.599   0.36, 0.553 0.16, 0.689 0.05, 0.826 

Block  Treatment F1,630 0.97, 0.474 01.37, 0.181 1.03, 0.422 1.16, 0.316 1.55, 0.1088 1.38, 0.179 

Line(Treatment) 
2
1 28.0, <0.0001 

(0.304) 

22.6, <0.0001 

(0.445) 

34.7, <0.0001 

(0.394) 

38.48, <0.0001 

 (0.440) 

45.4, <0.0001 

(0.521) 

42.7, <0.0001 

(1.039) 

Vial(Line(Treatment))  
2
1 0.0, 1.000 

(0.000) 

0.226, 0.635 

(0.043) 

0.0, 1.000 

(0.000) 

  0.040, 0.841 

 (0.010) 

0.0, 1.000 

(0.000) 

0.977, 0.323 

(0.109) 

Residual  (1.826) (2.216) (1.693)  (1.309) (1.609) (2.875) 

Independent line variances 

between treatments 


2
1 2.561, 0.109 0.123, 0.725 1.4, 0.238 

 

3.5, 0.060 0.98, 0.755 0.74, 0.390 

Females        

Block 
2
1 4.65, <0.0001 7.00 <0.0001 5.76, <0.0001 7.21, <0.0001 6.75, <0.0001 3.50, <0.0001 

Treatment  F1,64 1.07, 0.305  1.55, 0.217 0.20, 0.657 1.06, 0.308 1.03, 0.313 0.17, 0.678 

Block  Treatment 
2
1 1.14, 0.329 0.59, 0.834 0.91, 0.529 1.40, 0.166 1.49, 0.131 0.09, 0.358 

Line(Treatment) 
2
1 1.29, 0.254 9.46, 0.002 19.17, <0.0001 33.8, <0.0001 32.1, <0.0001 45.3, <0.0001 
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(0.047) (0.267) (0.410) (0.386)  (0.416) (1.015) 

Vial(Line(Treatment))  
2
1 1.73, 0.188 

(0.073) 

2.83, 0.092 

(0.163) 

0.0, 1.000 

(0.000) 

 0.0, 1.000 

(0.000) 

  0.0, 1.000 

 (0.000) 

 0.0, 1.000 

(0.000) 

Residual  (1.389) (2.32) (2.696) (2.205)  (2.540) (3.329) 

Independent line variances 

between treatments 


2
1 0.009, 0.924 0.018, 0.892 

 

0.857, 0.354 

 

 

0.02, 0.892 0.005, 0.945 2.23, 0.136 
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Appendix 2.3: Eigenvalues and vectors of the mutational variance-covariance matrices, M, 

for locomotor activity across six temperatures for Drosophila serrata. Estimation was 

based on an unstructured variance-covariance matrix using PROC MIXED in SAS 9.3 

(Sas Institute, Cary NC).  Eigenanalyses were conducted on mean standardised values. 

 

 

 

 

 

 

  

Males m1 m2 m3 m4 m5 m6 

 

Eigenvalue 1.740×10
-3

 4.677×10
-4

 6.342×10
-5

 2.522×10
-5

 1.012×10
-5

 -4.650×10
-6

 

 

25
o
C 0.819 -0.382 0.323 -0.218 -0.126 0.129 

30
o
C 0.398 -0.006 -0.356 0.818 0.074 -0.200 

33
o
C 0.276 0.212 -0.632 -0.380 0.497 0.298 

35
o
C 0.214 0.425 -0.302 -0.284 -0.635 -0.445 

36
o
C 0.168 0.390 0.422 -0.086 0.555 -0.571 

38
o
C 0.145 0.691 0.317 0.226 -0.143 0.575 

       

Females 

 

Eigenvalue 1.506×10
-3

 4.914×10
-4

 1.306×10
-3

 2.380×10
-5

 2.045×10
-5

 -1.181×10
-5

 

 

25
o
C 0.688 -0.453 0.169 -0.156 -0.426 0.295 

30
o
C 0.496 0.097 -0.807 0.154 0.207 -0.165 

33
o
C 0.382 0.002 0.510 0.556 0.314 -0.432 

35
o
C 0.288 0.334 0.199 -0.774 0.247 -0.325 

36
o
C 0.191 0.405 0.138 0.095 0.429 0.767 

38
o
C 0.125 0.714 0.045 0.186 -0.658 -0.072 
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Appendix 2.4: Reanalysis of data in figure 3.3 of the main text including only those MA 

lines that showed a unimodal activity curve (males 24 lines, females 16 lines). Eigenvector 

loadings are shown for the male and female mutational variance-covariance matrices, Mm 

and Mf. M was mean standardised (sex-specific means) before eigenanalyses were 

conducted. The first three eigenvectors are shown for each sex (males: a-c, females e-f) 

and all are normalised to unit length. The linear model used to re-estimate the among line 

variances and covariances is the same as eqn. 3, but with the vial term removed owing to 

the smaller numbers of lines available for analysis (i.e a = μ + b + l + ε). The TYPE = 

FA0(6) option was specified for the random effect of line in SAS Proc MIXED upon re-

estimation to improve model convergence.  
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Appendix 3 

 

 

Appendix 3.1: The correlation between the F-approximated and permutation based p-

values for the multivariate QTL analysis in a) males and b) females. Each point represents 

a different marker. 

Appendix 3.2: Molecular markers used in the QTL analysis of locomotor activity thermal 

performance for D. serrata. Chromosomal arm locations correspond to the top BLAST hit 

to D. melanogaster using FlyBase. Allele frequency is the count of Eungella vs. Forster 

alleles for each marker. Segregation distortion is the chi-squared test on the allele 

frequency to investigate if frequency was an even 50:50 split for each marker.  
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Marker Marker Type 
D. melanogaster 

Chr. Arm 

Allele 

Frequency 

Eung.|Fors 

Segregation 

 Distortion  

χ
2 
(p-value) 

1 Microsatellite 2R 32|47 2.8481(0.0915) 

2 Microsatellite 2L 34|46 1.8000(0.1797) 

3 
Microsatellite 

2R 31|50 4.4568(0.0348) 

4* Microsatellite 2R 78|5 64.2048(1.12x10
-15

) 

5 Microsatellite 3R 37|40 0.1169(0.7324) 

6 Microsatellite Not Mapped 32|45 2.1948(0.1385) 

7 Microsatellite 3R 53|28 7.7160(0.0055) 

8 Microsatellite X 33|30 0.1429(0.7055) 

9 Microsatellite 2L 39|42 0.1111(0.7389) 

10 Microsatellite 2L 38|42 0.2000(0.6547) 

11 Microsatellite 2R 21|41 6.4516(0.01108) 
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12 Microsatellite 2R 22|61 18.3253(1.86 x10
-5

) 

13 Microsatellite 3L 16|61 26.2987(2.92x10
-7

) 

14 Microsatellite 2L 31|50 4.4568(0.0347) 

15 Microsatellite X 39|38 0.0130(0.9092) 

16 Microsatellite 2L 16|54 20.6286(5.558x10
-6

) 

17 Microsatellite 2L 45|36 1.0000(0.3173) 

18 Microsatellite 3L 34|37 0.1268(0.7218) 

19 SNP 3R 35|44 1.0253(0.3112) 

20 SNP 3R 37|44 0.6049(0.4367) 

21 Microsatellite 2L 43|35 0.8205(0.365) 

22 Microsatellite 2L 32|46 2.5128(0.1129) 

23* Microsatellite 2R 7|56 38.1111(6.68x10
-10

) 

24 Microsatellite 3R 26|40 2.9697(0.08483) 

25** Microsatellite ? 23|52 11.2133(8.121x10
-4

) 

26 Microsatellite 3L 40|43 0.1084(0.7419) 

27 Microsatellite 2R 20|59 19.2532(1.14x10
-5

) 

28 DCAPS 2R 40|37 0.1169(0.7324) 

29 DCAPS 3L 34|45 1.5316(0.2159) 

30 DCAPS 3L 50|31 4.4568(0.03476) 

31 DCAPS 2L 36|41 0.3247(0.5688) 

32 DCAPS 3L 24|55 12.1646(4.87x10
-4

) 

33 DCAPS 2L 25|57 12.4878(4.096x10
-4

) 

34 DCAPS 3R 37|43 0.4500(0.50233) 

35 EST derived SNP  3R 36|45 1.0000(0.3173) 

36 EST derived SNP 3L 40|39 0.0127(0.9104) 

37 EST derived SNP  X 40|44 0.1905(0.6625) 

38 EST derived SNP  3L 37|47 1.1905(0.2752) 

39 EST derived SNP  2L 23|57 14.4500(1.439x10
-4

) 

40 EST derived SNP  X 40|42 0.0488(0.8252) 

41 EST derived SNP  3L 42|37 0.3165(0.5737) 

42 EST derived SNP  3R 28|54 8.2439(0.0041) 

43 EST derived SNP  2L 37|41 0.2051(0.6506) 

44 EST derived SNP  3R 24|58 14.0976(1.735x10
-4

) 

45 EST derived SNP  3R 16|58 23.8378(1.05x10-6) 

46 EST derived SNP  2L 25|58 13.1205(2.92x10-4) 

47 EST derived SNP  2L 38|41 0.1139(0.73576) 

48 EST derived SNP  3L 23|57 14.4500(1.439x10
-4

) 

49 EST derived SNP  2R 30|50 5.0000(0.0253) 

* Markers were removed from QTL analysis due to extreme segregation distortion. **Dser6 marker from (Magiafoglou 

et al. 2002) 
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Appendix 4 

 

Appendix 4.1: Quantile–quantile plots of the observed P-values against the expected P-

values under the null hypothesis that no true associations exist with each of the TPC 

component for each sex. The straight line is the distribution expected if the observed 

values equal the expected values. Graph was plotted using the coding from R package 

qqman.  
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Appendix 4.2: Quantile–quantile plots of the observed P-values against the expected P-

values under the null hypothesis that no true associations exist with the first five principal 

component scores for each sex. The straight line is the distribution expected if the 

observed values equal the expected values. Graph was plotted using the coding from R 

package qqman.  
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Appendix 4.3: Gene network graph for significant variants from the principal component 

analysis annotated to a gene for a) males and b) females. Each blue node represents a 

gene and the purple square nodes represent the first five principal components.  


