
�������� ��	
���
��

Geophysical anomalies and quartz deformation of the Warburton West
structure, central Australia

A.Y. Glikson, A.J. Meixner, B. Radke, I.T. Uysal, E. Saygin, J. Vickers,
T.P. Mernagh

PII: S0040-1951(14)00647-7
DOI: doi: 10.1016/j.tecto.2014.12.010
Reference: TECTO 126501

To appear in: Tectonophysics

Received date: 22 September 2013
Revised date: 12 December 2014
Accepted date: 18 December 2014

Please cite this article as: Glikson, A.Y., Meixner, A.J., Radke, B., Uysal, I.T.,
Saygin, E., Vickers, J., Mernagh, T.P., Geophysical anomalies and quartz deforma-
tion of the Warburton West structure, central Australia, Tectonophysics (2015), doi:
10.1016/j.tecto.2014.12.010

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/10.1016/j.tecto.2014.12.010
http://dx.doi.org/10.1016/j.tecto.2014.12.010


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Warburton West manuscript minor changes applied 12-12-2014  

 1 

 

Geophysical anomalies and quartz deformation of the  

Warburton West structure, central Australia 

 

A.Y. Glikson
1, 2

, A.J. Meixner
2
,
 
B. Radke

2
, I.T. Uysal

4
,
 
E. Saygin

3
,
 
J. Vickers

3
 T.P. 

Mernagh
2
 

 

1. Australian National University and Geothermal Energy Centre of Excellence, 

University of Queensland.  

2. Geoscience Australia.  

3. Research School of Earth Science, Australian National University  

4. Geothermal Energy Centre of Excellence, University of Queensland. 

 

 
Abstract 

This paper reports geophysical anomalies and intra-crystalline quartz lamellae in drill cores 

from the Warburton West Basin overlapping the border of South Australia and the Northern 

Territory. The pre-Upper Carboniferous ~450x300 km-large Warburton Basin, north-eastern 

South Australia, is marked by distinct eastern and western magnetic, gravity and low-velocity 

seismic tomography anomalies. Quartz grains from arenite core samples contain intra-

crystalline lamellae in carbonate-quartz veins and in clastic grains, similar to those reported 

earlier from arenites, volcanic rocks and granites from the Warburton East Basin. Universal 

stage measurements of quartz lamellae in both sub-basins define Miller-Bravais indices of 

{10-12} and {10-13}. In-situ quartz lamellae occur only in pre-late Carboniferous rocks 

whereas lamellae-bearing clastic quartz grains occur in both pre-late Carboniferous and post 

–late Carboniferous rocks – the latter likely redeposited from the pre-late Carboniferous 

basement. Quartz lamellae in clastic quartz grains are mostly curved and bent either due to  

tectonic deformation or to re-deformation of impact-generated planar features during  crustal 

rebound or/and post-impact tectonic deformation.  Seismic tomography low-velocity 

anomalies in both West and East Warburton Basin suggest fracturing of the crust to depths of 

more than 20 km. Geophysical modelling of the Cooper Basin, which overlies the eastern 

Warburton East Basin, suggests existence of a body of high-density (~2.9―-3.0 gr/cm
3
) and 

high magnetic susceptibility (SI ~ 0.012-0.037) at depth of ~6-10 km at the centre of the 

anomalies. In the Warburton West Basin a large magnetic body of SI = 0.030 is modelled 

below ~10 km, with a large positive gravity anomaly offset to the north of the magnetic 

anomaly. In both the Warburton East and Warburton West the deep crustal fracturing 
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suggested by the low velocity seismic tomography complicates interpretations of the gravity 

data. Universal Stage measurements of quartz lamellae suggest presence of both planar 

deformation features of shock metamorphic derivation and deformed planar lamella. The 

latter may be attributed either to re-deformation of impact-generated lamella, impact rebound 

deformation or/and post impact tectonic deformation. The magnetic anomalies in the 

Warburton East and West sub-basins are interpreted in terms of (1) presence of deep seated 

central mafic bodies; (2) deep crustal fracturing and (3) removal of Devonian and 

Carboniferous strata associated with rebound of a central uplift consequent on large asteroid 

impact. Further tests of the Warburton structures require deep crustal seismic transects.   

 

Introduction 

 The discovery of large impact structures, including Vredefort (South Africa; 298 km; 

2023 ± 4 Ma) (Dietz, 1961; Kamo et al., 1996; Therriault et al., 1997), Sudbury (Ontario; 250 

km; 1850 ± 3 Ma) (Dietz, 1964), Chicxulub (Mexico; 170 km; 64.98 ± 0.05 Ma; Hildebrand 

et al., 1991), Manicouagan (Quebec; 214±1; 85 km; Dressler, 1990), Woodleigh (Western 

Australia; 120 km; 360 Ma; Mory et al., 2000; Glikson et al., 2005; Uysal et al., 2005), 

Popigai (Siberia; 90 km, 35.7 ± 0.2; Masaitis, 1998); Chesapeake Bay (off-shore Virginia; 85 

km; 35.5 ± 0.3 Ma; Poag et al., 2004), Morokweng (South Africa; 70 km;  145.0±0.8; Hart 

et al., 2000 (for further details refer to the Earth Impact Database, 2001, and Glikson, 

2013) underpins the significance of large asteroid impacts in the history of Earth. The 

development of geophysical exploration and drilling techniques uncovered a number of 

large buried impact structures identified by circular gravity, magnetic and seismic 

tomography anomalies and confirmed by shock metamorphic features. In Australia such 

discoveries include Woodleigh, Tookoonooka (Eromanga Basin, Queensland - 55-65 km; 

~125 Ma; Gorter et al., 1989; Gostin and Therriault 1997), Acraman (Gawler Plateau, 90 km, 

580 Ma; Gostin et al., 1986; Williams, 1994), Talundilly (Eromanga Basin, Queensland - 84 

km, 125 Ma; Longley 1989; Gorter and Glikson, 2012), and probable impact structures 

(Gnargoo, north Carnarvon Basin, Western Australia; Iasky et al., 2001; Iasky and Glikson, 

2005), and Mount Ashmore (Timor Sea; Glikson et al., 2010). Very large impact structures 

yet to be confirmed include the ~500 km-large Otish Basin, Quebec, containing intra-

crystalline planar deformation features in quartz and cored by a mafic body (Genest et al., 

2011). The identification of impact structures depends critically on microstructural criteria of 

shock metamorphism (Carter, 1965, 1968; Carter and Friedman, 1965; Carter et al., 1986; 

Alexopoulos et al., 1988; Lyons et al., 1993; Grieve et al., 1996; Stöffler and Langenhorst, 

1994; Engelhardt et al., 1969; Vernooij and Langenhorst, 2005; Spray and Trepmann, 2006; 
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Ferriere et al., 2009; French and Koeberl, 2010; Hamers and Drury, 2011; Glikson and Uysal, 

2013).  

 Duane and Reimold (1990) suggested the existence of a ~800 km-large impact 

structure under the Simpson Desert, South Australia and Northern Territory. The 

Warburton Basin in South Australia, with extensions into Queensland and Northern Territory, 

underlies an area approximately ~400,000 km
2
 (Figure 1) consisting of a >4.5 km thick 

sequence including a basal suite of felsic volcanic rocks overlain by late Cambrian carbonates 

and Ordovician pelagic to shelf clastic sediments (Gatehouse et al., 1995; Gravestock and 

Gatehouse, 1995; Radke, 2009; Roberts et al., 1990; Sun, 1997, 1998, 1999; Sun et al., 1994). 

Studies of the Warburton East Basin have identified intra-crystalline planar lamellae in quartz 

grains within granites, sediments and volcanic rocks in drill cores over an area ~220×195 km-

large between Walkillie-1 in the north, Cutapirrie-1 in the south, Kalladeina-1, and Jennet-1 

in the west  (Glikson and Uysal, 2010; Glikson et al., 2013). The present paper reports the 

identification of intra-crystalline lamellae in quartz in drill cores in the Warburton West Basin 

and the significance of major magnetic, gravity and seismic tomography anomalies of the 

Warburton West and Warburton East Basins. 

 

Nomenclature  

In this paper references to intra-crystalline lamellae in quartz are made in the following ways: 

(1) descriptive text references are made in non-genetic terms, mainly as ―intra-crystalline 

quartz lamellae‖ or ―quartz lamellae‖; (2) Where interpretations of intra-crystalline quartz 

lamellae are discussed the terms ―Planar Features‖ (PF), ―Planar Deformation Features‖ 

(PDF) and ―Metamorphic Deformation lamellae‖, reference is made to definition of these 

planar features as discussed by French (1998) and French and Koeberl (2010). 

 

Geological Methods 

Drill hole cores and cuttings were sampled from 6 drill holes located in the Simpson Desert 

straddling the South Australia–Northern Territory border (Figure 1b), including the 

Macumba-1 (2 samples), Mokari-1 (4 samples), Pandieburra-1 (3 samples), Purni-1 (5 

samples), Walkandi-1 (8 samples), Witcherie-1 (9 samples) (Table 1). Samples were 

collected from stratigraphic levels within the pre-late Carboniferous Warburton Basin as well 

as from post-Carboniferous units (Mokari-1, Purni-1) (Table 1). The rocks include fine-

grained to medium-grained quartzite, quartz-feldspar arenite, feldspathic arenite, feldspathic 

greywacke, siltstone, carbonated siltstone and carbonated siltstone, including carbonate-
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quartz veins. All samples were studied in thin section in a search for intra-crystalline quartz 

lamellae. Intra-crystalline quartz lamellae are observed in (A) detrital quartz grains in 

arenites; (B) quartz-carbonate veins (Walkandi-1 3122.9 m) (Table 1). The best formed intra-

crystalline quartz lamellae are observed in quartz-carbonate veins and irregular aggregates 

injected into foliated siltstone of Walkandi-1 3229.1 m core samples (Figure 5a). The rock 

consists of laminated to weakly cleaved siltstone consisting of aphanitic cryptocrystalline 

quartz-clay aggregates pervaded by veinlets and irregular granular aggregates of 

microcrystalline to fine-grained quartz and carbonate (Figure 5a [a and b]). By contrast 

penetrative intra-crystalline quartz lamellae which occur in fine to medium grained detrital 

quartz grains in arenites range from planar to curved and bent (Figures 3, 4 and 5). 

The crystal orientations of intra-crystalline quartz lamellae were measured using a 4-axis U-

stage Leitz microscope (magnification ×120) (StÖffler and Langenhorst, 1994). The analysis 

is complicated by the relatively small proportion of planar sets-bearing quartz grains in most 

samples, where only one grain in many hundreds of grains displays intra-crystalline lamellae. 

The restriction of lamellae to sectors within the grains (Figures 5c, d) and their commonly 

wavy and clouded nature of (Figures 5a, b) required selection of least-bent lamellae for 

measurement. In general deformed quartz lamellae occur in single sets and less commonly in 

intersecting planar sets (Figure 5a, b). Measurements are complicated where wavy 

orientations of lamellae complicate measurements, which results in errors in the definition of 

the C optic axis and planar traces within the host quartz grains. For these reasons in each case 

the orientations of the optic axis (COAQz) and of the orientation of quartz lamellae relative to 

COA were derived from the mean of 3 measurements of the angle between COAQz and the pole 

to lamellae (COAQz^PPE), recorded on a Wulff stereogram (Engelhardt and Bertsch, 1969). 

Frequency distribution of COAQz^PPE angles are plotted in Figure 6. Frequency plots include 

multiple intra-grain measurements as well as measurements of individual planar sets. Errors 

arising from the bent and wavy geometry of lamellae and errors in readings of the C optic 

axis and vertical positioning of quartz lamellae (COA^PPE) are estimated as ± 3°. 

 

Geophysical Methods 

Seismic tomography images which record the ambient crustal seismic velocity at different 

levels of the crust, as applied in the US (Shapiro et al., 2005), South Korea (Kang and Shin, 

2006); Europe (Yang et al., 2007; Stehly et al., 2009) and Australia (Saygin and Kennett, 

2010, 2012), allow cross-correlations of simultaneously recorded seismic ambient noise at 

two different stations and the extraction of the ‗Green's Function‘ - a wavelet allowing 

information from the medium along the connecting path of the two stations. Systematic cross-
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correlations between the different stations of a seismic network allows measurements of the 

travel time variations between each station pair, used in a tomographic inversion method to 

map variations of the seismic velocities for regions covered by the network. Studies of the 

ambient seismic noise tomography of the Australian continent indicate close spatial 

correspondence between the features of the group wavespeed anomaly map and major 

geological features (Saygin and Kennett, 2010, 2012). Tomographic imaging of the ambient 

seismic noise cross-correlations delineates Rayleigh type surface wave group velocity 

variation maps from the Low wavespeeds, suggesting correlation with the thickness of 

sedimentary cover as well as thermal anomalies. Anomalies imaged with shorter period 

surface waves are mostly associated with thick sedimentary sequences. At the longer periods 

reduced wavespeeds are most likely caused by the elevated temperatures. A correlation 

between major low velocity tomography anomalies and the Woodleigh impact structure and 

Warburton East shock metamorphosed structure suggests that in these terrains deep crustal 

fracturing constitute a major factor for such anomalies (Glikson et al., 2013). 

The Total Magnetic Intensity (TMI) data used in the investigation of the Warburton Basin are 

based on an airborne magnetic survey conducted for Geoscience Australia by UTS 

Geophysics Pty Ltd along N-S 400 meters-spaced lines at an above-ground elevation of 60 

meters (Geoscience Australia, 2009). A distinct magnetic anomaly can be modelled 

coincident with the centre of Warburton West body with similar magnetic susceptibility 

values (SI) values as for the Warburton East Basin (Meixner et al., 2000) with a large depth 

extent body of moderately high SI. The irregular shaped outline of the body is based on the 

anomaly as imaged in the first vertical derivative.  The gravity data are based on an airborne 

survey conducted for Geoscience Australia by Daishsat Geodetic Surveys with station 

spacing of 4.0X4.0 km (Geoscience Australia, 2007). An E-W section suggests the magnetic 

anomaly is coincident with a gravity anomaly that can be modelled using a density contrast of  

0.1 g/cm
3
, i.e. a 2.9 g/cm

3
 for body within a 2.8 g/cm

3
 background similar to the Warburton 

East model, supporting a modelled mafic intrusion in depth. By contrast a north-south section 

indicates no gravity anomaly coincident with the magnetic body (see below).  

 

Warburton East Basin 

The Warburton East Basin (Figure 1a and b), including sediments and volcanics intruded 

by the Big Lake Granite suite, has been deformed and uplifted during the Carboniferous Alice 

Springs Orogeny and buried beneath the Cooper Basin (Gravestock et al., 1998; Sun et al., 

1994; Sun, 1998, 1999; Radke, 2009). Structural orientations range from sub-horizontal 

below the Patchawarra Trough and Gidgealpa–Merrimelia–Innamincka Ridge to vertical and 
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locally overturned. Early to Middle Carboniferous granitic intrusives of the Big Lake Suite 

resulted in local contact metamorphism of Cambrian rocks below the Nappamerri Trough. 

The basal unconformity separating the Upper Palaeozoic Cooper Basin from the Lower 

Palaeozoic Warburton Basin is associated with a <150 meters-thick weathered zone. Several 

older disconformities representing tectonic events occur in the Lower Palaeozoic, including 

events representing sea-level fall and development of karst. Early Ordovician stratigraphy 

indicates development of major delta on the northern margin of a deep marine trough. During 

the Early to Late Cambrian intra-plate rifting propagated north-northwest. The Devonian-

Carboniferous Alice Springs orogeny resulted in arcuate NE tectonic trends (Radke, 2009). 

The Warburton East Basin is associated with major geophysical anomalies which include 

a positive magnetic high of near-200 nT centred on a ~25 km-wide magnetic low of <100 nT  

which has been modelled in terms of a magmatic body deeper than 6 km (Meixner et al., 

1999, 2000). A distinct seismic tomographic low velocity anomaly may reflect its thick (9.5 

km) sedimentary section, high temperatures and possible deep fracturing to mid-crustal depth 

(Saygin and Kennett, 2010, 2012; Glikson et al., 2013). Scanning electron microscope (SEM) 

analyses of granites resolves microbreccia veins consisting of micron-scale particles injected 

into resorbed quartz grains and likely representing recrystallized pseudotachylite (Glikson 

and Uysal, 2010; Glikson et al., 2013). Intra-crystalline planar and sub-planar lamellae in 

quartz grains have been identified in drill holes in granites, volcanics and sediments over an 

area >30,000 km
2
-large. Intra-crystalline micro-structures in quartz include multiple 

intersecting planar to curved lamellae, including relic lamellae less than 2 μm wide with 

spacing of 4–5 μm (Glikson et al., 2013). The lamellae are commonly re-deformed, 

displaying bent and wavy patterns accompanied with fluid inclusions.  

Universal-stage measurements of a total of 243 planar sets in 157 quartz grains indicate 

dominance of Π{10–12}, ω{10–13} and subsidiary ξ{11–22}, {22–41}, m{10–11} and 

x{51–61} planes (Fig. 6a), consistent with shock levels of >20 GPa (Stöffler and 

Langenhorst, 1994; Grieve et al., 1996; French, 1998; Langenhorst, 2002; Vernooij and 

Langenhorst, 2005; French and Koeberl, 2010). Transmission Electron Microscopy (TEM) 

analysis displays relic narrow ≤1 μm-wide lamellae which are not regarded as sub grain 

boundaries and where crystal segments maintain optical continuity, indicating they are not 

Boehm lamellae. Extensive sericite alteration of feldspar suggests hydrothermal alteration to 

a depth of ~500 m below the unconformity which overlies the Warburton East Basin 

(Boucher, 2001; Middleton et al., 2013, 2014). Deformed quartz lamellae are compared to re-

deformed planar deformation features in the Sudbury, Vredefort, Manicouagan and 

Charlevoix impact structures. A 4–5 km uplift of the Big Lake Granite Suite during ~298–
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295 Ma (Gatehouse al., 1995) is consistent with missing of upper Ordovician, Devonian and 

lower to middle Carboniferous strata and possible impact rebound (Glikson et al., 2013) 

 

Warburton West Basin 

The Warburton Basin forms a vast subsurface depository where sediments of Cambrian 

and Ordovician age were deposited in a foreland rift/sag setting north and northeast of the 

Gawler Craton (Radke, 2009). The supracrustal package comprises basal rift-related 

volcanics covered by shelf carbonates, and a thick upper package of slope and basinal 

siliceous clastics. West of the Birdsville Track Ridge, a Proterozoic structure that has been 

repeatedly active in uplift, is a region that has experienced intermittent subsidence from 

Devonian through Mesozoic to the Cenozoic.  This region has superposed depocentres of the 

Carboniferous Pedirka Basin, Triassic Simpson Basin, Poolowanna Trough within the 

Jurassic-Cretaceous Eromanga Basin, and the Cenozoic Lake Eyre Basin. Subsidence is still 

active. It is less certain that Devonian strata in this region were extensive. These have only 

been confirmed beneath the Pedirka Basin (Figure 1b), and are inferred from seismic data in 

the Boorthanna Trough. Late Carboniferous and younger strata completely cover the 

Warburton Basin (Radke, 2009). 

The supracrustal sequences of the Warburton West Basin are of medium to low thickness 

relative to parts of the Cooper Basin and parts of the Georgina Basin and Amadeus Basin 

(Figure 4) which contain stratigraphic equivalents of the Warburton Basin. Drill holes reach 

depths of approximately 3000 meters, intersecting Ordovician, Cambrian and Neoproterozoic 

units (Table 1). Stratigraphic holes drilled in the Poolowanna, Pandi-Pandi, Dalhausie, 

Noolyeana and Gason 1:250,000 sheet areas indicate major stratigraphic gaps (lacuna) 

between Mesozoic, upper Palaeozoic and lower Palaeozoic sequences, consistent with 

deformation events documented by Radke (2009, Table 1). Units of the Triassic-Jurassic-

Cretaceous Eromanga Basin or units of the mainly Permian Cooper Basin overlie Cambrian-

Ordovician units of the Warburton Basin or Proterozoic units through major unconformities 

and paraconformities (Figure 1b) (Veevers, 2009). Drill holes west of the main Warburton 

West anomaly (Witcherrie-1, Mt Hammersley-1, Dalhausie 1:250,000 sheet) intersect 

Devonian and Ordovician units (Figure 1b).   

The Warburton West Basin and the overlying Pedirka and Simpson Basins are marked by 

overlapping to part-overlapping major geophysical anomalies  >200 km diameter, displaying 

remarkable similarities to those of the Warburton East Basin (Figures 2a, b, c; 3). These 

features include: 
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1. An airborne magnetic anomaly) spanning an area of approximately 8000  km
2 
 over 

the Warburton West Basin and the Pedirka Basin and straddling the Northern 

Territory – South Australia border (~138
o
00–139

o
40

'
E; 25

o
20

‘
- 26

o
20

‘
S) (Figure 2a1 

and 2b2). 

2. A positive Bouguer gravity anomaly (Figure 2b2). 

3. A distinct circular low velocity seismic tomography anomaly (~136–140
o
E; 24 – 

28
o
S) (Figure 3).  

The north-eastern part of South Australia includes two of the sharpest low velocity anomalies 

of the Australian continent, over the Warburton East Basin and over the Warburton West 

Basin (Figure 3), separated from each other by the Birdsville Track structural ridge. Strong 

low velocity anomalies pertain to a short seismic period of up to 8.3 s whereas somewhat 

weaker anomalies pertain to the 12.5 s period, which emphasizes the role of the combined 

~9.5 km-thick sedimentary pile of the Eromanga–Cooper–Warburton basins (Radke, 2009). It 

is suggested that the twin tomographic low velocity anomalies of the Warburton Basin may 

represent deep crustal fracturing, consistent with an impact origin of the Warburton East 

structure (Glikson et al., 2013). A temperature profile at 5 km depth (Somerville et al., 1994) 

indicates high-temperature extending over large regions in northeast South Australia, 

northwest New South Wales and western Queensland. 

 Modelling of magnetic and gravity data for the Warburton West Basin indicates that the 

magnetic anomaly can be reproduced by including a moderately high magnetic susceptibility 

body (0.033 SI) that has a large depth extent (10,000 m), where the top of the body is at ~10 

km depth (Figures 2c). The irregular shaped outline of the magnetic body is based on the 

extents of the anomaly as imaged in the first vertical derivative (Figure 2b1).  The magnitude 

of the anomaly and hence the modelled geometry are, therefore, similar to the Warburton 

East body which ranges up to 0.037 SI (Meixner 1999, 2000).  There is, however, no distinct 

gravity anomaly that coincides with the magnetic high. The gravity field in this region is 

anomalously high in a broad area to the north and also south and west of the magnetic 

anomaly (Figure 2b2). There are gravity lows consisting of a small circular low located on 

the western edge of the magnetic high and a larger gravity low to the east of the magnetic 

high (compare 2b1 with 2b2). These localised gravity lows give the impression of a 

coincident gravity high with the magnetic high in the east-west modelled section (Figure 2c).  

Although it is possible to reproduce the east-west gravity profile using a density contrast of 

0.1 g/cm
3
, i.e. for a 2.9 gr/cm

3
 set in a 2.8 gr/cm

3
 background, as for the Warburton East 

model (Meixner, 1999, 2000), no distinct coincident gravity anomaly is observed in the 

north-south section. The role of deep crustal fracturing, suggested by the seismic tomography 
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anomalies was not included in the gravity modelling. As numerous similar magnetic 

anomalies occur across the central Australian region, the geophysical anomalies are not in 

themselves diagnostic of an impact model.   

 

Intra-crystalline quartz lamellae in the Warburton West Basin 

The similarities between the geophysical anomalies of the Warburton West Basin and the 

Warburton East Basin probable impact structure (Glikson and Uysal, 2010; Glikson et al., 

2013) have warranted examination of drill cores from the Warburton West Basin in a search 

for possible quartz microstructures. Sampling of 31 core cuttings from the Macumba-1, 

Mokari-1, Pandieburra-1, Purni-1, Walkandie-1 and Witcherrie-1 drill holes included fine 

grained arenite, quartz arenite, greywacke, carbonate-rich arenites, siltstone and carbonate-

rich siltstone (Table 1). Of these core samples 24 samples are from pre-upper Carboniferous 

age and 7 samples are from post-upper Carboniferous sediments (Table 1) which overlie the 

Z-unconformity (Boucher, 2001).   

Intra-crystalline planar lamellae in quartz grains have been identified in the Walkandi-1, 

Witcherri-1, Mokari-1 and Purni-1 cores, as follows: 

1. Multiple intersecting closely spaced (<4 µm spacing) intra-crystalline lamellae sets occur 

in quartz grains in quartz-carbonate veins in the Walkandi-1 core (Adelaidean – 3122.9 

m) as well as in detrital quartz gains (3068.2 m, 3067.4 m, 2846.9 m) (Figures 5a and 

5b). 

2. Deformed intra-crystalline lamellae are also present in detrital quartz grains  in 

Walkandi-1 (Figure 5c), 

3. Deformed intra-crystalline lamellae occur in detrital quartz grains in Witcherrie-1 (Figure 

5c), Purni-1 and Mokari-1 (Figure 5d). 

4. Intra-crystalline planar lamellae in quartz grains occur in post Z-unconformity (post late 

Carboniferous) rocks, including arenites from Walkandi-1 (1461.9m), Purni-1 (1773.4 m, 

1773.7 m) and Mokari-1 (2031.3 m) (Figure 1b). These quartz grains could have been 

redeposited from shocked early Palaeozoic rocks. 

Evidence for the origin of quartz lamellae in the Warburton East Basin includes: 

1. Correspondence between measured COAQ ^ PLAMELLA angles and Miller-Bravais 

indices, mainly ω{10–13} and Π{10–12} (Figure 6a, b), correlated with shock levels 

higher than >20 GPa (French, 1998; Langenhorst, 2002);   



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Warburton West manuscript minor changes applied 12-12-2014  

 1

0 

2. It is noted that in some instances, where indexed distribution patterns mostly 

correspond to Miller-Bravais indices, no such correspondence is shown by 

non-indexed columnar plots, as in Figures 6b and 6d. The non-indexed 

frequencies may resemble bell-shaped distributions similar to those portrayed 

by French (1998, Figure 4.25).    

3. Observation by optical microscopy and TEM of lamellae 1–2 μm wide with ~4–5 μm 

spacing; 

4. Occurrence of multiple intersecting lamellae, and  

5. TEM observation of relic non-sub-grain boundaries between segments in optically 

coherent host quartz (Glikson et al., 2013).  

The penetrative lamellae are commonly undulating, wavy and bent, features attributed to 

deformation, recrystallization and annealing of the  host quartz grains, likely representing  

post-shock centripetal-oriented deformation associated with formation of a central uplift, 

deformation associated with hydrothermal activity (Naumov, 2002; Pirajno, 2005), or later 

tectonic events. The planar and sub-planar lamella sets are commonly accompanied by fluid 

inclusions (―decorated PDFs‖ - French, 1998) (Figure 5b). Some of the deformation may 

have been induced by reactivation of fracture and fault networks representing Jurassic (201.7 

± 9.3 Ma), and Cretaceous (~128 to ~86 Ma) tectonic events (Middleton, 2013). 

Results of Universal Stage measurements (Table 2; Figure 6a-d) indicate the following: 

1. Measurements of in-situ quartz grains within quartz-carbonate veins in arenite indicate a 

concentration of ~78 per cent of planar features within ±3
o 
from the Miller-Bravais 

indices ({10-13}, {10-12}, {10-11} and {11-21}), diagnostic of shock metamorphism.  

2. Due to the common deformation of quartz lamella Universal stage analysis comprised 

repeated measurements of planar elements within the same planar sets. Frequency 

distribution plots portray both multiple within-grain measurements as well as the 

orientations of combined planar sets (Figure 6c).  

3. Measurements of planar orientations in quartz grains within arenites confirm the 

prevalence of Miller-Bravais indices ({10-13}, {10-12}, {11-20}, {2-1-10}) in more than 

80 per cent of cases. 

The correspondence of the intra-crystalline lamellae with Miller-Bravais indices, the 

occurrence of multiple intersecting planar features within individual quartz grains and the 

micron scale (<2µm) intervals of lamellae set {10-12},( Figure 5b) militate for a 

classification of the quartz lamellae as planar deformation features (PDF) diagnostic of shock 
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metamorphism. According to French (1998, Table 4.2), the occurrence of the {10-12} planar 

set suggests pressures in excess of >20 GPa.  

 

Tectonic vs. impact origin of Warburton Basin structures 

The origin of the magnetic and seismic tomography anomalies which coincide with the 

Warburton Basin may be interpreted alternatively in terms of a purely structural or magmatic 

origin, such as the presence of deep crustal metamorphic or igneous body. Interpretations of 

penetrative lamellae in quartz as product of possible tectonic–metamorphic processes 

commonly refer to {0001} planar sets in ignimbrites (Carter et al., 1986) Explosive 

volcanism may produce Boehm lamellae which mostly display single planar sets (0001) 

(French and Koeberl, 2010; Vernooij and Langenhorst, 2005). Detrital quartz grains bearing 

penetrative lamellae in sandstones of unknown provenance (Lyons et al., 1993) may be 

derived from unidentified impact structures. Quartz lamellae in structural settings not known 

to be associated with asteroid impact are exemplified by quartzite enclaves in the Rooiberg 

Felsite, Bushveld Complex (French, 1990). Rhodes (1975) and Elston (2003, 2008) 

interpreted the Bushveld Complex in terms of a magmatic manifestation of an underlying 

impact structure. Penetrative quartz  lamellae in quartzite xenoliths of the Rooiberg Felsite 

are marked by fluid inclusions and display a wide scatter of COA^PPE angles on frequency 

distribution diagrams (French, 1990, his figures 4 and 5), distinct from frequency distribution 

patterns corresponding to shock metamorphism-indicative Miller-Bravais indices (French, 

1998; French and Koeberl, 2010). Buchanan and Reimold (1996) attributed the lamellae to 

localized tectonic deformation.  

Tectonic and metamorphic deformation of Warburton Basin granitoids, volcanics and 

sediments may not have reached a degree of penetrative deformation leading to development 

of metamorphic deformation lamellae in quartz (MDL) as defined by French and Koeberl 

(2010). Thus, whereas these rocks display extensive fracturing and brecciation, documented 

in the Warburton East Basin (Sun, 1999), they do not display penetrative deformation which 

could potentially account for the widespread occurrence of quartz microstructures.  

Penetrative quartz lamellae in the Warburton East and Warburton West are in many 

instances similar to Boehm lamellae and MDLs (Figures 5b, c and d). Boehm quartz lamellae 

are commonly bent to undulating, may be heavily clouded and are spaced ≥5 μm apart. 

Mostly only one set of Boehm lamellae or MDL is present in any single quartz grain, whereas 

two distinct sets are rarely observed (French and Koeberl, 2010; Lyons et al., 1993). Whereas 

Boehm lamellae may occur in both volcanic and deformed terrains, for example in Finland 
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(Preston, 1958), Boehm lamella are distinguished from the planar deformation features (PDF) 

displaying multiple intersecting Miller-Bravais indices and <2 µm spaced lamella.  

The occurrence of secondarily re-deformed quartz lamellae in confirmed impact 

structures, including Vredefort (Grieve et al. 1990, figures 2 and 8), Sudbury (Grieve et al., 

2010, figure 6), Manicouagan (Robertson 1975, Dressler 1990, figure 7 and 8), Charlevoix 

(Trepmann and Spray 2004, figure 1) and Yarrabubba (Glikson, 2013, figure 5.6), allows an 

interpretation of re-deformed intra-crystalline quartz lamellae in the Warburton Basins in 

terms of secondary deformation of shock metamorphic lamella (Figures 5c-d). Thus, whereas 

quartz lamellae within granite and quartz-carbonate veins of the Warburton East and West 

Basins correspond to Miller-Bravais indices (Figures 6a – c), quartz lamellae in detrital 

quartz grains show less regular distribution (Figure 6d, e). This suggests (1) that shock 

metamorphism of the arenite-hosted quartz grains may have been attenuated by the clay 

matrix which envelope the quartz grains and (2) the detrital quartz grains were subject to 

more intense re-deformation than granite and vein-hosted quartz grains.  

To summarize the evidence for shock metamorphism: 

A. Miller-Bravais indices indicative of shock metamorphism  

B. Occurrence of multiple sets of intersecting planar quartz lamella   

C. Narrow width lamellae ~1–2 μm and inter-lamellar spacing of ~4–5 μm observed by 

optical microscope and by TEM; 

D. TEM evidence for relic optically coherent (non-sub-grain) lamellae (Glikson et al., 2013) 

E. Shock metamorphic features correlated with shock levels according to the following scale 

(French, 1998; Langenhorst, 2002)  

 Mineral fracturing (0001) and r{10–11} in quartz: 5–7 GPa; 

 Basal Brazil twins (0001): 8–10 GPa; 

 PDF ω{10–13}: >10 GPa; 

 Transformation of quartz to stishovite: 12–15 GPa; 

 PDF Π{10–12}: >20 GPa; 

 Transformation of quartz to coesite: >30 GPa. 

 

 According to Langenhorst (2002) the appearance of Π{10–12} correlates with >22 GPa 

pressure, consistent with an interpretation of the Warburton structures as the result of large 

impact/s.  Similar shock pressures have been recorded in Yarrabubba impact structure, 

Western Australia (Macdonald et al., 2003), Woodleigh impact structure, Western Australia 

(D=120 km; age ~360 Ma) (Glikson et al., 2005; Uysal et al., 2001, 2002, 2005), the 

Chesapeake Bay impact structure (D=85 km; age ~35 Ma; Poag et al., 2004).   
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 Bouguer anomaly evidence for low rock densities of 2.64–2.76 g/cm
3
 below parts of the 

Cooper Basin (Meixner et al., 1999, 2000) is consistent with the occurrence of granite 

cupolas of the Big Lake Granite suite and with hydration and fracturing related to impact, by 

analogy to the Woodleigh impact structure (Glikson et al., 2005) and Mount Ashmore 

possible impact structure (Glikson et. al., 2010). 

The apparent near-absence of volcanic and sedimentary rocks of upper Devonian to 

Middle Carboniferous age from both the Warburton East and West Basins (Table 1) may be 

interpreted alternatively in terms of non-deposition or uplift, erosion and removal of these 

rock in post-Late Carboniferous times, represented by a major unconformity, defined as 

seismic Z-Horizon (Boucher, 2001). Such uplift may have occurred during the ‘Alice Springs 

Orogeny‘ dated by intrusive Upper Carboniferous granitoids (323±5 Ma to 298±4 Ma; 

Gatehouse et al., 1995) and/or rapid uplift at ~298–295 Ma, leading to exposure and erosion 

of the Big Lake Granite suite (Gravestock and Jensen-Schmidt, 1998). The uplift, estimated 

by these authors as ~5000 meters, on the basis of the minimum original depth of 

emplacement of the Big Lake Granite suite, could potentially represent rebound following a 

large asteroid impact and would have destroyed the impact crater. An uplift of a ~5 km-high 

terrain would be eroded in connection with the extensive glaciation represented by the Late 

Carboniferous to Permian Merimelia and Tirrawarra formations. Reversal of the apparent 

polar wander path (APWP) during this period suggests major tectonic movements in the end 

Carboniferous (Klootwijk, 2009). As the age of the Warburton impact/s remains unknown, 

the stratigraphic position of an ejecta layer cannot as yet be defined.   

 An impact model involving deep crustal fracturing, suggested by seismic tomography 

anomalies (Figure 3) may be consistent with the high radiogenic K-U-Th enrichment of the 

Big Lake Granite suite, possibly due to hydrothermal enrichment in these elements, 

accounting for the high geothermal gradients of 55–60°C/km in the Nappamerri Trough of 

the Cooper Basin (Middleton, 1979; Radke, 2009; Wyborn et al., 2004). In these areas 

temperatures of ~225°C occur at a 5 km depth over an area about 79,000 km2 large and total 

heat flow of 7.5–10.3 m W m
−3

 are consistent with enrichment of the Big Lake Granite Suite 

in radiogenic heat-producing elements (Chopra, 2003; McLaren and Dunlap, 2006; 

Middleton, 1979; Sandiford and McLaren, 2002). A presence of highly radiogenic basement 

sectors at depth of 3–4 km accounts for upward migration and reconcentration of large ion 

lithophile elements through the fractured crust, possibly initiated by a hydrothermal cell 

formed following impact (Naumov, 2002), as observed in the Woodleigh (Glikson et al., 

2005), Shoemaker and Yarrabubba impact structures (Pirajno, 2005).  

Post-late Carboniferous movements including faulting, fracturing and hydrothermal 

activity related to Cretaceous extension tectonics are manifest in the Cooper and Galilee 
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Basins (Middleton et al., 2013, 2014). No evidence of shock metamorphism has been 

disclosed in these basins (Middleton et al., 2013, 2014; Uysal et al., 2013) although lamellae-

bearing detrital quartz grains occur. Nor have shock metamorphic effects been observed in 

Proterozoic basement rocks and granite intrusions intersected by petroleum drilling holes in 

Queensland (Tickalara-1, Roseneath-1, Wolgolla-1, Barrolka-2, Balfour-1), which provides 

further evidence for the unique nature of the Warburton Basin.  Reactivation of shock and 

tectonic-related fracture systems (Waclawik et al., 2008; Clark et al., 2011; Middleton et al., 

2013, 2014) may explain the permeable nature of deep crustal structures allowing mantle and 

crust radiogenic degassing of 
3
He and CO2 and heat production (Italiano et al., 2014).  

 A presence of a deep seated mafic body suggested by gravity and magnetic modelling of 

the Warburton East Basin (Meixner et al., 1999, 2000) and the Warburton West Basin (Figure 

2c) is corroborated by distinct tomography anomalies (Figure 3) under both basins and under 

the Woodleigh impact structure. Resolution of the geometry of the deep crustal structure of 

the Warburton Basins must await deep seismic reflection transects, pending which the 

structures can only be deemed as possible impact structures. An impact on the scale 

suggested by the Warburton Basin can be expected to have resulted in extensive ejecta fallout 

units and tsunami deposits, such as is unknown in the Late Carboniferous. A search for ejecta 

in drill cores from end-Carboniferous sediments of the Bonaparte Basin recovered tuff 

deposits containing granite fragments (Capuzzo and Bussy, 2001; Gorter et al., 2008). 

Determination of the age of Warburton impact/s depends on further isotopic age 

determinations of the Big Lake Granite suite. At the present state of knowledge it is possible 

the Warburton event constitutes an older, possibly Late Devonian impact cluster, which 

includes the Woodleigh (~360 Ma; 120 km), Charlevoix (342±15 Ma; 54 km), Alamo 

Breccia (~370 Ma; ~100 km) (Warme et al., 2002), Siljan (377±2 Ma; 53 km), and Kaluga 

(360±10 Ma; ~15 km) impact events.  

 

Conclusions 

Duane and Reimold (1990) inferred an 800 km-diameter impact structure of 

Proterozoic age centred under the Simpson Desert, referring to (1) broadly radial 

central Australia-wide tectonic fault patterns and shear zones, and (2) indirect 

considerations related to the structural and metamorphic evolution of the Arunta 

Block in central Australia. This putative Simpson Desert feature overlaps the 

Warburton West Basin, where we have identified possible shock metamorphic 

features potentially tectonically modified after formation. However, the present study 

does not provide evidence for an 800 km impact structure suggested by these authors.  
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To summarize our observations we report: 

(1) The pre-Upper Carboniferous ~450x300 km-large Warburton Basin, north-eastern 

South Australia, is marked by major magnetic, gravity and low-velocity seismic 

tomography anomalies, which distinguish the Warburton West Basin from the 

Warburton East Basin. (2) The >200 km-diameter Warburton East Basin and 

associated granitoids of the Big Lake Granite suite contain an abundance of quartz 

grains containing quartz lamellae which correspond to Miller-Bravais indices ({10-

13}, {10-12}, {10-11}, {11-21}), diagnostic of shock metamorphism at pressures in 

excess of 20 GPa (Glikson and Uysal, 2010; Glikson et al., 2013). (3) An 

investigation of arenites from drill cores in the Warburton West Basin, occupying an 

area similar in size to the Warburton East Basin (Figures 1 and 2), identifies quartz-

carbonate veins and clastic quartz grains containing both pristine and re-deformed 

quartz lamellae whose orientations correspond to Miller-Bravais indices. (4) Whereas 

lamellae-bearing clastic quartz could have been re-deposited from earlier rocks, the 

presence of well-preserved multiple and intersecting lamellae-bearing quartz grains in 

carbonate-quartz veins suggests in-situ shock metamorphism. (5) Universal stage 

measurements of Warburton West Basin drill hole samples indicate correspondence 

of penetrative quartz lamellae with Miller-Bravais indices of {10-12} and {10-13}, 

correlated with >20 GPa shock pressures. (6) Gravity and magnetic modelling of the 

Cooper Basin and the Warburton East Basin suggest existence of a high-density 

(~2.9-3.0 g/cm3) high magnetic susceptibility (SI ~ 0.012-0.037) body at depths 

below ~6-10 km at the centre of the anomalies. (7) A large magnetic body of SI = 

0.030  is modelled below ~10 km in the Warburton West Basin, with a large positive 

gravity anomaly offset to the north of the magnetic anomaly. (8) Seismic tomography 

anomalies under both the Warburton East and Warburton West structures indicate 

likely fracturing of the crust to depths of more than 20 km. (9) Deep seismic transects 

are required to test the occurrence of mafic magmatic bodies below the centres of the 

Warburton Basins, possibly representing deep crust and mantle rebound effects and 

uplift below possible twin impact structures.  
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Figure 1a. The East and West Warburton Basin, northeast South Australia (Radke, 2009). 

Known extent of the Warburton Basin on the structure of the pre-Permian ‗Z‘ seismic 

horizon. The Birdsville Track Ridge divides the Warburton East from the Warburton West 

Basins. 

Figure 1b. A west-east cross section across the Eromanga, Pedirka, Simpson and Warburton 

(Amadeus) basins, indicating positions of shock metamorphosed quartz grains rocks (full red 

circles – pre-Z-unconformity rocks; open red circle – post Z-unconformity rocks). 

Figure 2a. (1) Total Magnetic Intensity (TMI) of NE South Australia and SW Queensland.  

(2) Bouguer gravity anomaly of NE South Australia and SW Queensland. Source: Geoscience 

Australia. EA: East Warburton Basin; WA: West Warburton Basin. The TMI data are based 

on an airborne magnetic survey conducted for Geoscience Australia by UTS Geophysics Pty 

Ltd along N-S 400 meters-spaced lines at an above-ground elevation of 60 meters 

(Geoscience Australia, 2009). 

Figure 2b.  (1) Total magnetic intensity, reduced to pole: First vertical derivative of the total 

magnetic intensity): Range: -0.025 to 0.3 nT/m : Contour interval. 0.0025 nT/m.  Range, -124 

to 296 nT: Magnetic contour interval 10 nT; (2) Bouguer gravity with total magnetic 

intensity, reduced to pole contours): Range: -360 to 80 gravity units. Modelling by A.J. 

Meixner. 

Figure 2c. East-West and North-South magnetic and gravity sections across the Warburton 

West geophysical anomaly. Black lines – observations; red and blue lines – models. 

Modelling by A.J. Meixner. 

Figure 3. Tomographic anomalies of the upper crust of the Australian continent. (Saygin and 

Kennett, 2010). Note the overlap of distinct low group velocity anomalies with the 

Woodleigh impact structure, Warburton East shock metamorphic terrain and Warburton West 

terrain. 

Figure 4. Relative sedimentary thicknesses, NE South Australia, SW Queensland and SE 

Northern Territory (Radke, 2009). 

Figure 5a. Quartz grains in a quartz-carbonate vein in siltstone, Walkandi-1 core 3122.9 m, 

Warburton West Basin. (1) top left - A large quartz grain (thick section) in vein within 

siltstone. scale 500 µm, crossed nicols (CN); (2) bottom left - Corroded quartz grain 

displaying intra-crystalline lamellae and cross fractures, scale 200 µm, CN; (3) top right - 

quartz grain showing Π{10–12}, ω{10–13}, s {11-21} planar features, scale 200 µm, CN; (4) 

bottom right - same as in 5a3 [area outlined in white frame in figure 5a3], scale 50 µm, CN.  
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Figure 5b.  Re-deformed somewhat undulating and clouded lamellae in quartz grains from 

Walkandi-1 core 3068.2 m and 3067.4 m. Note the presence of cross-cutting lamina. Origin 

by tectonic origin during formation of a central uplift or alternatively a later discrete tectonic 

event is undetermined. 

Figure 5c. Re-deformed, undulating and clouded lamellae features in quartz grains from 

Witcherrie-1 1176.5 m core sample. Note the cross cutting lamina at the upper-right grain. 

Origin by tectonic origin during formation of a central uplift or alternatively a later discrete 

tectonic event is undetermined. 

Figure 5d. Re-deformed, undulating and clouded lamellae in quartz grains from Purni-1 

1773.4 m sample and Mokari-1 2031.3 m sample. Origin by tectonic origin during formation 

of a central uplift or alternatively a later discrete tectonic event is undetermined. 

Figure 6a. % Frequency of angles between optic axes of quartz grains (COA) and the pole of 

intra-crystalline lamellae features in the same quartz grains (PLAMELLA), indexed within ±3 

degrees from proximal Miller-Bravais indices for (1) Moomba-1 granite core, Warburton East 

Basin; (2) McLeod-1 granite core, Warburton East Basin. The frequency distribution plots 

display multiple intra-grain measurements (solid columns) as well as individual planar sets 

for each grain (open columns). 

Figure 6b. % Frequency at 5 degrees intervals of the angles between optic axes of quartz 

gains (COA) to the pole of planar  features in the same quartz grains (PLAMELLA), based on 62 

measurements of quartz lamellae in 9 quartz grains from a quartz-carbonate vein in 

carbonated siltstones, Warburton Basin.  West Walkandi-1 (coordinates: 137.46897E -

26.560001); depth 3122.9 m. The frequency distribution plots display multiple intra-grain 

measurements (solid columns) as well as individual planar sets for each grain (open columns). 

Figure 6c. % Frequency angles between optic axes of quartz gains (COA) to the pole of planar  

features in the same quartz grains (PLAMELLA), indexed within ±3 degrees from proximal 

Miller-Bravais indices (Π{10–12}, ω{10–13}, s {11-21}, r,z {10-11}), based on 62 

measurements of quartz lamellae in 9 quartz grains from a quartz-carbonate vein in 

carbonated siltstones, Warburton Basin.  The frequency distribution plots display multiple 

intra-grain measurements (solid columns) as well as individual planar sets for each grain 

(open columns). West Walkandi-1 (coordinates: 137.46897E -26.560001); depth 3122.9 m. 

The frequency distribution plots display multiple intra-grain measurements (solid columns) as 

well as individual planar sets for each grain (open columns). 

Figure 6d. % Frequency at 5 degrees intervals of the angles between optic axes of quartz 

gains (COA) to the pole of planar  features in the same quartz grains (PLAMELLA), based on 22 

measurements of quartz lamellae in 7 quartz grains from quartz grains in quartz arenites and 
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siltstones from Walkandi-1, Witcherrie-1, Mokari-1 and Purni-1 drill cores, Warburton West 

Basin.  The frequency distribution plots display multiple intra-grain measurements (solid 

columns) as well as individual planar sets for each grain (open columns). 

Figure 6e. % Frequency angles between optic axes of quartz gains (COA) to the pole of planar  

features in the same quartz grains (PLAMELLA ), indexed within ±3 degrees from proximal 

Miller-Bravais indices (Π{10–12}, ω{10–13}, {11-20}, based on 22 measurements of quartz 

lamellae in 7 quartz grains from Walkandi-1, Witcherrie-1, Mokari-1 and Purni-1 drill cores, 

Warburton West Basin.  -----------------------------------------------------------------------------------

----------------------- 

Table 1.  

List of samples from the Macumba-1, Mokari-1, Pandieburra-1, Purni-1, Walkandie-1 and 

Witcherrie-1 drill holes examined in thin sections  

Drill Hole 

 

Stratigraphy/a

ge 

Lithology 

 

Sample/thin section 

Macumba-1    

2599.6 (meters) Cambrian-

Ordovician 

 Carbonate-veined cryptocrystalline siltstone 

2601.0 Cambrian-

Ordovician 

 Mica and carbonate-bearing siltstone 

Mokari-1    

2030.3 (meters) Post-

Carboniferous 

  

2030.5 Post-

Carboniferous 

  

2031.3 Post-

Carboniferous 

Partly sandy and 

silty shale with beds 

of fine gr. sandstone 

and siltstone 

Fine grained quartz-feldspar arenite.  

Planar features in quartz 

2385.5 NeoProterozoic  Cryptocrystalline carbonate siltstone 

Pandieburra-1    

2088.8 (meters) Rhaetian-

Carnbrian 

 Fine-grained impure quartz arenite 

2089.2 ―  Fine-grained impure quartz arenite 

2140.7 Ordovician  Laminated graphitic quartz and feldspar-

bearing siltstone 

Purni-1 (meters)    

1773.4 Carboniferous-

Permian 

 Impure fine-grained arenite.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Warburton West manuscript minor changes applied 12-12-2014  

 2

7 

Planar features in quartz 

1773.7 Carboniferous- 

Permian 

 Impure fine-grained arenite.  

Planar features in quartz 

1868.9 Cambrian-

Ordovician 

Silty, dark grey, 

well bedded, v. 

pyritic shale with 

limestone as 

secondary cement 

Cryptocrystalline siltstone 

1869.03 ―  Cryptocrystalline siltstone 

1873.9 ―  Cryptocrystalline siltstone 

Walkandi-1    

1461.9 (meters) Post-

Ordovician 

 Near-pure quartzite.  

Minor lamellae in quartz 

2846.9 ―  Impure f.g. arenite; quartz grains and 

interstitial clay-altered feldspar.  

Planar features in quartz 

3067.4 Cambrian-

Ordovician 

Dullingari Group: 

Shale, black, 

pyritic; sandstone, 

grey, white; 

mudstone, grey, 

green.   

Impure f.g. arenite; quartz grains and 

interstitial clay-altered feldspar.  

Planar features in quartz 

3067.7 ―   

3068.2 ―  Impure fine grained arenite; quartz grains and 

interstitial clay-altered feldspar.  

Planar features in quartz 

3122.8 Adelaidean Siltstone Carbonated siltstone 

3122.9 ― ― Cryptocrystalline siltstone veined by quartz 

and carbonate.   

Planar features in quartz. 

3124.4 ― ― Cryptocrystalline layered siltstone 

Witcherie-1    

784.5 (meters) Devonian Partly sandy and 

silty shale, med.-v. 

coarse gr. poorly 

sorted sandstone, 

poorly sorted. 

Fine grained feldspar-bearing quartz 

sandstone 

785.9 ―  Fine grained Feldspathic greywacke 

914.6 ―  Fine grained Feldspathic greywacke 

921.1 ―  Fine grained clay-based feldspathic 

greywacke 
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985.6 ―  Feldspathic greywacke.  

Planar features in quartz 

1007.5 ―  Fine grained feldspathic sandstone 

1000.9 ―    

1175.5 Cambrian  Fine grained quartzite.  

Planar features in quartz 

1345.5 ―  Fine grained quartz-feldspar arenite 

 

 

Table 2.  
 

(A) Universal stage measurements of angles between C optic axis (COAQZ) and the 

pole of intra-crystalline lamellae (PLAMELLA) in quartz from Warburton East and 

Warburton West drill holes, northeast South Australia; (B) lamellae measurements in 

A indexed to Miller-Bravais planar deformation features.   

  

Coa  -  C optic axis of quartz 

PLAMELLA  -   Pole to planar deformation feature 
 

Quartz grains A B 

Moomba-1 2848.7 m - Quartz grains in Granite ( 8 

quartz grains; 11 planar set measurements) 

Measured 

angles 

COA^PLAMELLA 

±3
 
degrees 

Indexed angles 

COA^PLAMELLA 

Degrees. 

NI: Non-

indexed 

Grain 1 53 52 

Grain 1 26 23 

Grain 2 22 23 

Grain 3 34 32 

Grain 4 35 32 

Grain 5 34 32 

Grain 6 24 23 

Grain 7 22 23 

Grain 7 56 NI 

Grain 7 35 32 

Grain 8 20 23 

Moomba-1 2851 m - Quartz grains in Granite (8 

quartz grains; 16 planar set measurements)  

  

Grain 1 67 66 

Grain 1 42 NI 

Grain 1 64 66 

Grain 1 19 NI 

Grain 1 47 48 

Grain 2 22 23 

Grain 2 58 NI 

Grain 2 35 32 

Grain 3 57 NI 

Grain 3 21 23 

Grain 3 19 NI 

Grain 4 43 NI 

Grain 5 0 0 
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Grain 6 21 23 

Grain 7 24 23 

Grain 8 35 32 

Moomba-1 2851.9m - Quartz grains in Granite (2 

quartz grains; 5 planar set measurements) 

  

Grain 1 24 23 

Grain 1 48 48 

Grain 1 57 NI 

Grain 2 53 52 

Grain 2 33 32 

Moomba-1 2853.6m - Quartz grains in Granite (2 

quartz grains; 9 planar set measurements) 

  

Grain 1 20 23 

Grain 2 58 NI 

Grain 2 23 23 

Moomba-1 2855.8m - Quartz grains in Granite (4  

quartz grains; 9 planar set measurements) 

  

Grain 1 23 23 

Grain 1 17 NI 

Grain 1 56 Ni 

Grain 1 61 NI 

Grain 2 25 23 

Grain 3 30 32 

Grain 3 75 77 

Grain 4 48 48 

Grain 4 54 52 

Moomba-1 2857.4 m - Quartz grains in Granite (11 

quartz grains; 19 planar set measurements) 

  

Grain 1 23 23 

Grain 1 23 23 

Grain 1 66 66 

Grain 1  24 23 

Grain 2  53 66
 

Grain 2 49 48 

Grain 2 64 66 

Grain 3 32 32 

Grain 4 90 90 

Grain 4 86 90 

Grain 5 24 23 

Grain 6 33 32 

Grain 7 33 32 

Grain 8 84 82 

Grain 9 45 48 

Grain 9 48 48 

Grain 9 34 32 

Grain 10 34 32 

Grain 11 80 82 

McLeod-1 3745.2 Quartz grains in Granite ( 2 

quartz grains; 2 planar set measurements) 

  

Grain 1 66 66
 

Grain 2 30 32
 

McLeod-1 3745.9 m - Quartz grains in Granite (15 

quartz grains; 18 planar set measurements). 

  

Grain 1 80 82 

Grain 2 32 32 

Grain 3 33 32 

Grain 4 33 32 

Grain 5 54 52 
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Grain 5 34 32 

Grain 6 22 23 

Grain 7 32 32 

Grain 8 64 66 

Grain 9 80 82 

Grain 10 32 32 

Grain 11 35 32 

Grain 12 32 32 

Grain 13 85 82 

Grain 14 59 NI 

Grain 15 52 52 

Grain 15 85 82 

Grain 15 48 48 

McLeod-1 3747 m - Quartz grains in granite (4 

measurements)  

  

Grain 1 0 NI 

Grain 1 18 NI 

Grain 1 12 NI 

Grain 1 70 NI 

Walkandi-1 3122.9 m - Quartz-carbonate vein (8 

grains, 62 measurements) 

  

Grain 1 27 NI 

Grain 1 22 23 

Grain 1 21 23 

Grain 1 24 23 

Grain 1 24 23 

Grain 1 23 23 

Grain 1 22 23 

Grain 1  20 23 

Grain 1 20 23 

Grain 1 37 37 

Grain 1 59 NI 

Grain 1 31 32 

Grain 1 29 32 

Grain 1 32 32 

Grain 1 32 32 

Grain 1 31 32 

Grain 1 29 32 

Grain 1 24 23 

Grain 1 21 23 

Grain 1 19 NI 

Grain 1 23 23 

Grain 1 19 NI 

Grain 1 21 23 

Grain 1 69 66 

Grain 1 67 66 

Grain 1 70 NI 

Grain 1 68 66 

Grain 1 68 66 

Grain 1 68 66 

Grain 1 68 66 

Grain 1 72 74 

Grain 1 61 NI 

Grain 2 68 66 

Grain 3 21 23 

Grain 3 57 NI 

Grain 3 58 NI 
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Grain 3 20 23 

Grain 3 19 NI 

Grain 3 53 52 

Grain 3 54 52 

Grain 3 20 23 

Grain 3 59 NI 

Grain 3 23 23 

Grain 3 22 23 

Grain 3 23 23 

Grain 4 0 0 

Grain 4 0 0 

Grain 5 50 52 

Grain 5 55 52 

Grain 5 55 52 

Grain 5 18 NI 

Grain 5 22 23 

Grain 5 20 23 

Grain 5 14 NI 

Grain 5 22 23 

Grain 5 31 32 

Grain 6 50 52 

Grain 7 90 90 

Grain 8 22 23 

Grain 8 30 32 

Grain 8 32 32 

Grain 8 34 32 

Walkandi-1 3067.4 m - Quartz grains in arenite (1 

grain 7 measurements),    

 

Grain 1 26 23 

Grain 1 34 32 

Grain 1 30 32 

Grain 1 33 32 

Grain 1 28 NI 

Grain 1 32 32 

Grain 1 31 32 

Purni-1 1773.4 m - Quartz grains in arenite (1 

grain 8 measurements)   

 

Grain 1 33 32 

Grain 1 32 32 

Grain 1 34 32 

Grain 1 36 NI 

Grain 1 32 32 

Grain 1 28 NI 

Grain 1 25 23 

Grain 1 24 23 

Mokari-1 2031.3 m - Quartz grains in arenite (1 

grain 3 measurements)  

 

Grain 1 17 NI 

Grain 1 20 23 

Grain 1 21 23 

Witcherrie-1 985.6 m - Quartz grains in arenite (1 

grain 3 measurements)  

 

Grain 1 90 90 

Grain 1 90 90 

Grain 1 90 90 

Witcherrie-1 1175.5 m - Quartz grains in arenite   

Grain 1 90 90 
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No. of investigated quartz grains 66  

No of measured sets 167  

No of lamellae sets/grain 2.5 (Av)  

% Lamellae sets relative to number of grains 39%  

COA^PLAMELLA = 2 2  

COA^PLAMELLA = 23 46 27% 

COA^PLAMELLA = 32 40 24% 

COA^PLAMELLA = 48 7 4.2% 

COA^PLAMELLA = 52 11 6.6% 

COA^PLAMELLA = 66 14 8.4% 

COA^PLAMELLA = 74 2 1.2% 

COA^PLAMELLA = 82 6 3.6% 

COA^PLAMELLA = 90 7 4.2% 

Non-indexed 34 20.4% 
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HIGHLIGHTS 

 

1. The paper reports large buried possible impact structures in central 

Australia.   

 

2. The structures are marked by deep-seated magnetic and seismic 

tomography anomalies 

 

3. U-stage and TEM studies of quartz define Miller-Bravais and deformed 

lamella  

 

4. Missing Devonian to upper Carboniferous strata suggest strong uplift. 

 
 


