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The discovery of microRNAs (miRNAs) and their functions has

led to a paradigm shift in our understanding of the regulation

of gene expression, adding an extra layer of complexity for

the mechanisms of gene expression. Both cellular and

virus encoded miRNAs play important roles in virus–host

interactions that may affect virus replication and the outcome of

infection. Recent developments in RNA-seq platforms and

bioinformatics tools have accelerated the discovery of miRNAs,

their targets, and a myriad of associated research in various

species. Here, recent findings and developments in miRNA

research pertinent to insect host–virus interactions are

reviewed and analyzed.
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Introduction
MicroRNAs (miRNAs) are �22 nucleotide small non-

coding RNAs (sncRNAs) that are produced in most

eukaryotes [1], but also by viruses [2] and possibly bacte-

ria [3,4]. These multi-tasking molecules have been shown

to regulate transcription and translation of genes involved

in almost all cellular pathways. The first miRNA, lin-4,

described in Caenorhabditis elegans in 1993 was found to

regulate the lin-14 gene controlling timing of develop-

ment [5��]. Since then, thousands of miRNAs have been

described and their sequences deposited in the miRNA

database, miRBase [6], including many from different

insect species. Along with the discovery of more miRNAs,

our understanding of their biogenesis is expanding. For

instance, in addition to the canonical pathway of miRNA

biogenesis (Figure 1), several non-canonical pathways have

also been described. These include Drosha-independent,

but Dicer-dependent or Dicer-independent, production
Please cite this article in press as: Asgari S: Regulatory role of cellular and viral microRNAs in inse
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of miRNAs from introns (known as mirtrons) [7], small

nucleolar RNAs [8], transfer RNA [9] and endogenous

short interfering RNAs (endo-siRNAs) [10,11]. For

detailed miRNA biogenesis pathways, in particular

in insects, readers are referred to other recent reviews

[12,13,14,15��].

New findings in miRNA research have also provided

evidence for non-canonical miRNA–target interactions.

For instance, evidence suggests that first, miRNA-target

interaction may not always lead to suppression by cleav-

age of the target mRNA or translational repression, but

could also enhance target transcription, by inducing tran-

scription [16�] and translation [17], repressing nonsense-

mediated RNA decay [18] or increasing mRNA stability

[19]; second, although the majority of target sites of

miRNAs might be localized to the 30UTR of target genes,

the 50UTR and open reading frame (ORF) may also

frequently contain non-canonical miRNA binding sites

(e.g. [20,21,22,23�]); third, complementarity of the seed

region (nucleotides 2–8 from the 50 end of the miRNA)

with target sequences is important in many miRNA-

target interactions, but accumulating evidence shows that

strong base-paring at the 30 end or centered pairing may

compensate for low complementarity in the seed region

(e.g. [21,24]).

Drosophila melanogaster as a model insect with many

genetic tools available for its manipulation has been

the main subject of miRNA research particularly relating

to insect development [12]. In comparison, there is little

known about the role of miRNA in insect host-pathogen

interactions [25]. In insects, following viral infection the

host antiviral responses are activated including the RNA

interference (RNAi) pathway, which leads to the produc-

tion of viral short interfering RNAs (vsiRNAs) that target

viral genomes, replication intermediates and transcripts

[26,27]. Concurrently, cellular miRNAs, as part of the

RNAi response, may target viral genes. Conversely, virus-

encoded miRNAs might target cellular or viral genes

to facilitate virus replication. Below, the latest develop-

ments in miRNA research with respect to insect–virus

interactions are reviewed, highlighting issues that require

further consideration and analyses.

What is the effect of virus infection on the host
miRNA profile?
It is evident from several studies that the host miRNA

profile is altered following infection, which may range

from small changes to more profound effects depending
ct–virus interactions, Curr Opin Insect Sci (2015), http://dx.doi.org/10.1016/j.cois.2014.12.008
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Canonical pathway of miRNA biogenesis. A miRNA gene is transcribed by RNA polymerase II/III in the nucleus forming the primary miRNA

(pri-miRNA) transcript, which has a 50 cap and a poly(A) tail similar to mRNAs. Pri-miRNA may contain one or several stem-loop structures. The

stem-loop is cleaved near the base by the ribonuclease enzyme Drosha in association with Pasha producing the precursor miRNA (pre-miRNA),

which is about 70 nt in length. Pre-miRNA is then transported into the cytoplasm by Exportin-5 (Exp-5) and its co-factor Ran. In the cytoplasm,

Dicer-1 together with TRBP removes the hairpin head producing a miRNA duplex. The duplex becomes loaded into one of the argonaute (Ago)

proteins (usually Ago1 or Ago2) forming the miRNA-RISC (RNA Induced Silencing Complex). One of the strands (often referred to as miRNA* or

passenger strand) may become degraded or alternatively loaded into an Ago protein. The mature miRNA guides the miRNA-RISC complex to

target mRNA sequences by sequence complementarity leading to degradation of the miRNA, increased stability or repression of its translation.

C

n the host and virus combination. Differential expres-

on of host miRNAs has been shown for baculoviruses

8,29,30�], an ascovirus [31], a cytoplasmic polyhedrosis

irus [32], West Nile virus (WNV) [33�], chikungunya

irus [42] and dengue virus (DENV) [34]. These changes,

etected by microarray or deep sequencing analyses,

ould be either due to host response to viral infection

r host manipulation by the virus, including virus-

ncoded miRNAs (see below). Interestingly, a recent

udy showed that poxviruses, including the Amsacta
oorei entomopoxvirus, induce the degradation of the

ost miRNAs by polyadenylation with a virus-encoded

oly(A) polymerase [35�]. This leads to the degradation

f the polyadenylated host miRNAs; however, siRNAs

re resistant to this mechanism of degradation because

ey are protected by 20O-methylation.

hile differential abundance of host miRNAs has been

ocumented upon infection in a number of systems, the

le of those differentially expressed miRNAs remains

 be explored by experimental approaches. In addition,

isabling the miRNA biogenesis pathway by loss-of-

nction mutants (if the technology available) or by

lencing key genes in the pathway (such as Drosha

r Dicer-1) may allow for elucidation of the extent to

hich miRNAs contribute to host–pathogen interactions,

ecause differential abundance of host miRNAs upon

fection may not necessarily mean that they play a
Please cite this article in press as: Asgari S: Regulatory role of cellular and viral microRNAs in in
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significant role. However, miRNAs produced through

non-canonical pathways may not be affected. The

Argonaute 1 (Ago1) gene may not be the best choice

for silencing to interrupt the pathway because recent

evidence shows that miRNAs may also be sorted into

Ago2 [7–10]. Relevant to this topic, findings from a recent

study provided some insights into the dynamics of miR-

NA–target interactions, which may have implications for

studies investigating differential abundance of miRNAs.

Using Drosophila S2 cells, it was revealed that although

miRNA abundance is overall positively correlated with

target repression, changes in the levels of miRNA abun-

dance might not necessarily lead to changes in target

levels [36]. For example, miRNAs were identified that

even with 2–3-fold changes in abundance still repressed

their target to the same level; conversely, miRNAs with

similar abundance exhibited differences in their target

repression. Consequently, the authors cautioned that

miRNA levels alone might not be used as a reliable

indicator of miRNA function. Further, they demonstrated

that miRNA*s that exist at substantially lower levels in

comparison with their abundant counterparts from the

other arm of the stem-loop also function as repressors of

gene expression [36]. In other words, lower abundance of

a miRNA does not necessarily result in lower repression

of the target gene. For example, the miRNA bantam that

is well known for its role in various functions in insects

produces two mature miRNAs, bantam-5p being 50-fold
sect–virus interactions, Curr Opin Insect Sci (2015), http://dx.doi.org/10.1016/j.cois.2014.12.008

www.sciencedirect.com
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less abundant than bantam-3p. However, it was shown

that bantam-5p is a more active suppressor of the target

sequence than bantam-3p [36].

Cellular miRNAs targeting viral or host genes
As indicated above, host miRNAs differentially expressed

upon viral infection might potentially target viral genes as

part of the host antiviral response. However, viruses may

in turn evolve mechanisms to nullify the antiviral effect of

the miRNAs or use it to their own advantage. For exam-

ple, a miRNA (Hz-miR-24) from Heliothis zea fat body

cells (HzFB) was found to target two subunits of the

RNA polymerase genes from Heliothis virescens ascovirus

(HvAV3e), but the virus suppresses the miRNA abun-

dance by 4-fold during early hours of infection to avoid

the impact of the miRNA on transcription of early viral

genes that are essential for virus replication [31].

In Aedes albopictus, an abundant cellular miRNA, alb-miR-

252, is induced 3-fold following DENV-2 infection [37].

The investigators found that inhibition of the miRNA

using antagomirs slightly enhanced virus replication

(1.5-fold) whereas oversupply of the small RNA (mimic)

led to moderately less accumulation of viral genomic

RNA (2.5-fold). The gene encoding the viral envelope

protein (Protein E) was found to be a target of alb-miR-

252. It was suggested that alb-miR-252 could be part of

the mosquito’s antiviral response.

aae-miR-2940 is a miRNA that based on the current

knowledge appears to be mosquito-specific. The 5p

arm of the miRNA (aae-miR-2940-5p) was selectively

downregulated upon West Nile virus (WNV) infection in

mosquito Ae. albopictus C6/36 cells [38�]. A target of aae-

miR-2940-5p is the metalloprotease m41 FtsH gene (MetP),

which is positively regulated by the miRNA [39]. Inter-

estingly, MetP was found to enhance WNV replication

[38�]. Therefore, reduction of aae-miR-2940-5p abun-

dance after WNV infection leads to lower MetP levels

in the cell resulting in reduced virus replication. Given

that other cellular miRNAs tested were not affected, the

decline in aae-miR-2940 is not due to a global decline in

miRNA biogenesis but a selective response. This sug-

gested a miRNA-dependent antiviral response to limit

viral replication [38�].

Virus encoded miRNAs and challenges
pertinent to RNA virus encoded miRNAs
Virus-encoded miRNAs might target host as well as viral

genes (summarized in Figure 2). Those that target host

genes may interfere with host miRNA biogenesis, cell

proliferation and survival, anti-viral responses, or facilitate

virus replication. Viral miRNAs that target virus genes are

mainly involved in the regulation of virus replication,

which may include switching between lytic and latent

viral phases.
Please cite this article in press as: Asgari S: Regulatory role of cellular and viral microRNAs in inse
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DNA viruses
So far, no miRNAs have been reported from cytoplasmic

DNA viruses that infect vertebrates or invertebrates. The

first insect virus-encoded miRNA was reported from the

ascovirus HvAV3e produced from a stem-loop in the ORF

coding for the capsid protein. HvAV-miR-1 was shown

to target the viral DNA polymerase I gene [40��]. From

baculoviruses, the Bombyx mori nucleopolyhedrovirus

encoded BmNPV-miR-3 regulates p6.9 and a number

of other late genes [41], and the Autographa californica
multiple nucleopolyhedrovirus encoded AcMNPV-miR-

1 suppresses the ODV-25 gene regulating occlusion-de-

rived virus (ODV) production [42]. All of these examples

demonstrate the involvement of virus-encoded miRNAs

in autoregulating replication of the viruses mainly during

the late phase of infection. This strategy may benefit the

viruses by avoiding over-replication within a short period

of time, which may compromise host survival, in order

to produce more virions over longer period of time to

facilitate viral dissemination in the environment.

The only example showing the role of virus-encoded

miRNAs in insect virus entry into latency is from

H. zea nudivirus (HzNV-1) producing two miRNAs,

hv-miR-246 and hv-miR-2959, from its non-coding gene

( page1, persistency-associated gene 1) that downregulate

an early gene hhi1 [43�]. Given that a number of other

viruses have been found in insect populations existing

in latent infections (e.g. [44]), it will be interesting to

explore whether miRNAs could be involved in their

latency or reactivation.

As compared with mammalian viruses, there are relatively

few examples of virus-encoded miRNAs available that

target host genes. From insect DNA viruses, the only

example is BmNPV-miR-1, which targets Ran, the cofac-

tor of Exportin-5 [30�]. Considering the importance of the

export of pre-miRNA from the nucleus to the cytoplasm

by Exportin-5 in association with Ran, suppression of Ran

by the miRNA leads to a global reduction in mature host

miRNAs. However, it is not clear how the virus continues

to produce miRNAs, while the biogenesis of host miR-

NAs is interrupted.

RNA viruses
It was earlier believed that production of miRNAs from

RNA viruses is unlikely, mainly due to the fact that the

genome or the replicative forms of the viruses could be

destroyed via complementary binding of virus-encoded

miRNAs, and that most RNA viruses replicate in the

cytoplasm where they have no access to Drosha [45��,46].

However, experimental evidence demonstrated that

exogenous miRNAs could be produced from cloned

pre-miRNAs by recombinant RNA viruses without a

negative effect on the virus genome (e.g. [47��]), and

access to the nucleus may not be required as viral infec-

tion could lead to relocation of Drosha into the cytoplasm
ct–virus interactions, Curr Opin Insect Sci (2015), http://dx.doi.org/10.1016/j.cois.2014.12.008
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Virus-encoded miRNAs could be produced by nuclear or cytoplasmic viruses through canonical or non-canonical pathways. The mature miRNA

that may target the host and/or viral genes. Insect virus-encoded miRNAs that target viral genes generally regulate replication of the virus or the

switch between the latent to the active phase by affecting genes that are important for virus replication, whereas those that target host genes may

interfere with host miRNA biogenesis or facilitate virus replication. In the figure, examples of target genes (in italic) of insect virus encoded miRNAs

and their overall function (in bold) are shown.

C

8]. These findings coincided and were followed by a

umber of publications reporting miRNAs encoded by

veral RNA viruses. The first RNA virus encoded miR-

As were reported from a retrovirus (HIV-1; reviewed

 [49,50]), but those have been challenged [49,51] most

otably due to low read numbers of the small RNAs

etected in deep sequencing.

rom RNA viruses that infect insects, functional miRNA-

ke viral small RNAs (vsRNAs) have been reported only

om flaviviruses, WNV (KUN-miR-1) [52��] and DENV

ENV-vsRNA-5) [53�]. These are produced from stem-

op structures in the 30UTR of the viral genomes and

e subgenomic flavivirus RNA (sfRNA), which mainly

onsists of the viral 30UTR. While KUN-miR-1 enhances

NV replication by positively regulating its target, the

ATA4 transcription factor, DENV-vsRNA-5 appears to

rget the non-structural protein 1 (NS1) coding region
Please cite this article in press as: Asgari S: Regulatory role of cellular and viral microRNAs in in
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thereby autoregulating virus replication. However, simi-

lar to HIV-encoded miRNAs, low copy numbers in deep

sequencings of human and a mosquito cell line (Aag2) has

led some to conclude that these viruses do not encode

miRNAs and the detected small RNAs are likely the

product of another RNAi pathway in the host [54–56].

Deep sequencing indicates these small RNAs are present

in low numbers, which could be due to sequencing bias

(e.g. [57–60]; also see below). However, several lines

of experimental evidence suggest that these viral

small RNAs could be functional. For example, first, the

precursor stem-loops and mature small RNAs of both

KUN-miR-1 and DENV-vsRNA-5 were detectable on

northern blots, both with sizes in the range of pre-

miRNAs and mature miRNAs. Deep sequencing results

are mostly validated by northern blot or stem-loop

RT-PCR; second, siRNAs are usually 20O-methylated

blocking polyadenylation, but both KUN-miR-1 and
sect–virus interactions, Curr Opin Insect Sci (2015), http://dx.doi.org/10.1016/j.cois.2014.12.008

www.sciencedirect.com
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DENV-vsRNA-5 were cloned by polyadenylation of

the small RNAs in the first step. Notably, several

viral-encoded miRNAs have been identified and cloned

based on predications and subsequent cloning (e.g.

[40��,43�,61��]), without any deep sequencing; third, both

small RNAs were detectable in Dicer-2 (Dcr-2)-null

C6/36 cells; fourth, inhibiting or overexpressing the small

RNAs specifically affected their predicted target and

also viral replication; fifth, both small RNAs could be

produced from cloned precursor sequences (pre-miR-

NAs) independent of the virus; sixth, silencing Dcr-2,

the enzyme responsible for processing siRNAs, did not

affect levels of either KUN-miR-1 or DENV-vsRNA-5;

seventh, probes to the other arm of the stem-loop did not

detect any small RNAs. miRNAs often appear within a

particular period of time and there are some that are

highly expressed and others in lower copy numbers.

Therefore, while deep sequencing is a powerful tech-

nique in providing a starting dataset, experimental

approaches provide empirical evidence for data valida-

tion, and for ensuing functional analyses of small RNAs.

In this regard, in addition to the other reports mentioned

above pertinent to biases in deep sequencing data, an

elegant comparative study recently showed that several

factors involved in sequencing and cloning protocols can

deeply influence representation of miRNAs in libraries

utilized for high throughput sequencing. For example,

mdv1-miR-M7-5p from Marek’s disease virus 1 (MDV-1)

was 100 times less abundant through the deep sequencing

approach compared to small scale sequencing and north-

ern blot analysis [62]. The investigators similarly sug-

gested that various techniques such as northern blot

analysis, RT-qPCR and microarray should be used to

validate and support deep sequencing data.

Conclusions
Discovery of different types of functional small non-

coding RNAs has had a remarkable impact on our under-

standing of various biological processes and how they are

regulated. Cumulative evidence suggests that cellular as

well as viral encoded miRNAs play key roles in host–virus

interactions to varying extents. These studies have been

aided by developments in sequencing technologies allow-

ing deeper analysis of the transcriptome and miRNAome,

and bioinformatics tools that are becoming more and

more user friendly for biologists. Continued improve-

ments in these areas are essential to allow better and

more acceptable analysis of data. For example, reduction

in expenses associated with next generation sequencing

allows for increased replication. While more investiga-

tions present evidence of differential expression of host

miRNAs following infection, studies are required to

determine the biological significance of these changes

with regard to host-virus interactions, target genes, and

their roles in regulatory networks. Another suggested area

of future study is the comparison of different microbial

infections on the same or different hosts, in order to find
Please cite this article in press as: Asgari S: Regulatory role of cellular and viral microRNAs in inse
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out if common patterns are observed in regards to the

differential expression of miRNAs. Still another area of

interest is virus-encoded miRNAs. While the idea that

DNA viruses encode miRNAs is readily accepted, pro-

duction of miRNAs by RNA viruses remains controver-

sial. With regard to this, it might be useful to consider

empirical evidence as well as sequencing information

when drawing conclusions about the nature of miRNA-

like sequences encoded by RNA viruses. Analysis of

multiple samples from different stages following infec-

tion, in combination with experimental validation, may

also help to clarify this issue. While our understanding

of the role of miRNAs in insect host-virus interactions

is limited, it is important to continue exploring the

contributions of miRNAs to these interactions.
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