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Population pharmacokinetic analyses can be applied to predict optimized dosages for individual patients. The aim of this study
was to compare the prediction performance of the published population pharmacokinetic models for meropenem in critically ill
patients. We coded the published population pharmacokinetic models with covariate relationships into dosing software to pre-
dict unbound meropenem concentrations measured in a separate cohort of critically ill patients. The agreements between the
observed and predicted concentrations were evaluated with Bland-Altman plots. The absolute and relative bias and precision of
the models were determined. The clinical implications of the results were evaluated according to whether dose adjustments were
required from the predictions to achieve a meropenem concentration of >2 mg/liter throughout the dosing interval. A total of
157 free meropenem concentrations from 56 patients were analyzed. Eight published population pharmacokinetic models were
compared. The models showed an absolute bias in predicting the unbound meropenem concentrations from a mean percent
difference (95% confidence interval [CI]) of �108.5% (�119.9% to �97.3%) to 19.9% (7.3% to 32.7%), while absolute precision
ranged from �249.1% (�263.4% to �234.8%) to 31.9% (17.6% to 46.2%) and �178.9% (�196.9% to �160.9%) to 175.0%
(157.0% to 193.0%). A dose change was required in 44% to 64% of the concentration results. Seven of the eight equations evalu-
ated underpredicted free meropenem concentrations. In conclusion, the overall accuracy of these models supports their inclu-
sion in dosing software and application for individualizing meropenem doses in critically ill patients to increase the likelihood of
achievement of optimal antibiotic exposures.

Meropenem, a carbapenem antibiotic with broad-spectrum
activities against both Gram-positive and Gram-negative

bacteria, is commonly used in critically ill patients with life-threat-
ening infections. Vital to the success of this treatment is early and
appropriate antibiotic therapy. Selecting the correct dose is as
important, but this process is highly challenging in critically ill
patients because of the variable and difficult-to-predict phar-
macokinetics in these patients (1, 2). Dose optimization of
meropenem should be considered imperative because subopti-
mal antibiotic exposures might jeopardize the clinical out-
comes and potentially increase the emergence of antibiotic re-
sistance (3).

Meropenem is a time-dependent antibiotic: its clinical and mi-
crobiological efficacy is related to the percentage of the dosing
interval in which the free drug concentration remains above the
MIC of the pathogenic organism (fT�MIC) (4, 5). The in vitro
bactericidal activity of carbapenems is optimal at an fT�MIC

of �40%; however, a target fT�MIC of 100% has been suggested in
critically ill patients (6). Population pharmacokinetic models that
quantify the effect of demographic, pathophysiological, and other
drug-related factors on drug disposition should be considered
valuable in the critical care setting for accurately predicting indi-
vidualized and optimized antibiotic doses for patients who exhibit
profoundly altered and rapidly changing pharmacokinetics. The
models can be applied to predict appropriate empirical doses or be
used to guide dose adaptation as part of a therapeutic drug mon-
itoring (TDM) intervention.

Several pharmacokinetic models have been developed for
meropenem from different subpopulations of patients (7–14). In
order to establish a TDM program for meropenem to optimize
meropenem dosing, the question arises as to which pharmacoki-
netic model best predicts the meropenem concentrations in a het-
erogeneous cohort of critically ill patients.

The aim of this study was to measure the agreement between
observed free meropenem concentrations from a mixed cohort of
critically ill patients and the free concentrations predicted by the
population pharmacokinetic models. We then sought to rank the
predictive performance of the identified models and compared
them according to the frequency of dose adjustments prompted
by the results based on the model predictions versus the observed
concentrations.
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MATERIALS AND METHODS
Patient selection and data collection. The TDM data collection and ob-
servational study was approved by the local hospital and university ethics
committees (Royal Brisbane and Women’s Hospital and The University
of Queensland) with a waiver for informed consent granted because of the
retrospective nature of the study. Data were available for critically ill pa-
tients aged 18 years and older who had received meropenem and had at
least one set of two serum samples available from routine clinical TDM
(samples were taken at the middle of the dosing interval and as a trough
sample). Patients receiving renal replacement therapy were excluded from
the study. Data were collected between 2011 and 2014.

Demographic and laboratory data collected included sex, age, height,
total body weight, and serum creatinine concentrations. The creatinine
clearance was calculated using the Cockcroft and Gault equation (15). A
corresponding daily measured serum creatinine concentration was used
for each pair of data. Subjects with a serum creatinine concentration of
�0.4 mg/dl had their creatinine concentration set to 0.4 mg/dl (7). Sub-
jects aged 65 years or older with a serum creatinine concentration of �0.9
mg/dl had their creatinine values set to 0.9 mg/dl to estimate their creat-
inine clearance for predictions using the Crandon et al. method (9). Dos-
age and blood sampling histories, including the date, time, dosage, and
duration of infusion were also collected.

Determination of meropenem concentrations. Plasma unbound
concentrations of meropenem were determined by using published vali-
dated high-performance liquid chromatography (HPLC) assays (16, 17).
Briefly, to measure the unbound drug concentrations, plasma samples
were filtered using an Amicon Ultra 0.5-ml 30,000-molecular-weight-
cutoff centrifugal filter device. The ultrafiltrates were mixed with mor-
pholineethanesulfonic acid (MES) buffer (pH 6.6) and analyzed by using
HPLC. The concentration ranges of the standard curves were 0.1 to 50
mg/liter. The coefficients of variation (CV) for interassay and intra-
assay precision were 2.6% and 2.6 to 4.2%, respectively, and the accu-
racy was 7.2%.

Requirement for dose adjustment. The clinical implications of the
results were evaluated by comparing the need for dose adjustment of the
observed and the predicted concentrations. The chosen trough concen-
tration target was 100% ƒT�MIC where the chosen MIC was the mero-
penem breakpoint for Pseudomonas aeruginosa of 2 mg/liter available
from the European Committee of Antimicrobial Susceptibility Testing
(http://www.eucast.org/). For interpreting the need for dose adaptation, if
the trough concentration was �2 mg/liter, the dose was increased, and
if the trough concentration exceeded 15 mg/liter, the dose was decreased.
The dose adjustments were not required when the predicted or observed
trough concentration was between 2 mg/liter and 15 mg/liter.

Evaluation of population pharmacokinetic models. The dosing ap-
plication used to predict serum meropenem concentrations, taking into
account the patient demographic and laboratory information for these
analyses, was ID-DOS (individually designed optimum dosing strategies)
(http://www.optimum-dosing-strategies.org/). ID-ODS is a simulation
tool powered by R software (version 2.15.3; Institute for Statistics and
Mathematics [http://www.r-project.org/]) with an extensive model li-
brary built from population pharmacokinetic models published in the
peer-reviewed literature. Based on the patient demographic information
readily available at the bedside, ID-ODS incorporates Monte Carlo sim-
ulation and Bayesian feedback into the design of personalized dosing reg-
imens via a graphical user interface. The meropenem concentration-time
profiles were computed based on first-order 1- and 2-compartment intra-
venous (i.v.) infusion models written in the R language using the pub-
lished mean population pharmacokinetic parameter values for drug clear-
ance, volume of distribution (V), and transfer rate constants. A change in
the calculated pharmacokinetic parameters was allowed to ensure that
changing physiological variables were incorporated during the time
course of the therapy. Protein binding of 2% was assumed to calculate the
free meropenem concentrations as all models included only described
total meropenem concentrations (18). Prediction errors were evaluated

based on the absolute and relative bias and precision. The absolute bias
and precision were established with the Bland-Altman method using the
calculated mean percent difference and 95% limits of agreement, respec-
tively (19). The relative bias and precision were established by calculating
the delta mean prediction errors (�ME) and the delta mean squared pre-
diction errors (�MSE) and their 95% confidence intervals (CI), respec-
tively (20). Categorical and continuous variables were evaluated by the
Mann-Whitney U test and the Student t test, respectively, as appropriate,
using R software.

RESULTS
Patient characteristics and dosing data. The TDM data from 56
adult patients with a total of 157 collected samples were included
in this analysis. The mean number of concentrations per subject
was 2.8. The patients’ demographic and clinical characteristics are
shown in Table 1. Renal function varied among patients as char-
acterized by the serum creatinine concentrations. The majority of
patients received conventional doses of meropenem (1 g every 8 h
as a 0.5-h infusion), with 12% of the patients receiving higher
doses up to 2 g as a 3-h extended infusion regimen.

Comparative accuracy of observed concentrations with
model-based predictions. Eight population pharmacokinetic
models were used to predict the meropenem concentrations for
the individual patients (Table 2). The absolute bias ranged from a
mean percent difference (95% CI) of �108.5% (�119.9% to
�97.3%) for the Leroy et al. equation (11, 13) to 19.9% (7.3% to
32.7%) for the Muro et al. model (14). The biases of two equations
were not different from zero with means (95% CI): Crandon et al.
(9), �1.9% (�16.2% to 12.3%); and Doh et al. with edema (8),
�10.29% (�23.7% to 3.1%). The Leroy model was found to be
the most precise with the narrowest range of the 95% limits of
agreement (95% CI) of �249.1% (�263.4% to �234.8%) to
31.9% (17.6% to 46.21%) for predicting the observed concentra-
tions. The relative percent plots for all models are shown in Fig. 1.

The relative predictive performances of these eight predictors
were also compared. Table 3 presents the relative performances of
the 8 equations ranked in terms of �ME and �MSE against the
constant prediction value (mean of the observed concentrations).
Compared to this naive predictor, the one-compartment model
by Muro et al. (14) developed in Japanese patients was found to be
the least biased with a �ME (95% CI) of 0.02% (�1.19% to

TABLE 1 Demographics and clinical characteristics of the patients
studieda

Characteristicb Value

Age (yr) 55 (36�63)
BMI (kg/m2) 24.2 (21.5�27.6)
Weight (kg) 75 (60�95)
Serum creatinine concn (�mol/liter) 72 (46.2�108.7)
Creatinine clearance (ml/min)c 99.9 (73�128.76)

Infection type (%)
Abdominal 17
Respiratory 44
CNS 15
Other 24

a Data are presented as median (interquartile range [IQR]) except where otherwise
indicated. The plasma creatinine concentrations were measured on the day of sampling;
other parameters were measured upon admission.
b BMI, body mass index; CNS, central nervous system.
c Creatinine clearance was estimated by the Cockcroft-Gault formula.
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1.24%) and the most precise as established by the �MSE (95% CI)
of �55.04% (�82.82% to �27.26%). To further evaluate whether
the Muro model is statistically superior to the other methods, we
compared the predictions of the other 7 methods against those
generated by the Muro model as shown in Table 4. Predictions by
the Muro model compared to those of the others were more pre-
cise, represented by the consistently negative �MSE values. The
positive �ME values suggest that all models tend to underpredict
concentrations compared to the Muro model. The results of this
analysis confirm the suitability of the Muro method for accurately
and precisely predicting free meropenem concentrations in a het-
erogeneous cohort of critically ill patients.

Requirement for dose adjustment. Figure 2 summarizes the
differences in the predictions from the models studied in terms of
whether a dose adjustment (or not) is indicated for the 81 oppor-
tunities for dose modification evaluated. In this figure, the deci-
sion to decrease, increase, or maintain the total daily dose require-
ment to achieve the prespecified 100% ƒT�MIC target is color
coded with white, black, and gray colors, respectively. In the ideal
situation and when the decision to adjust (or not) for all models is
in agreement with the conclusion made based on the observed
concentration, for the given ith opportunity, the colors moving
across the mosaic plot horizontally will be the same as the color in
the observed column. An example of this type of agreement is
represented by the 70th dose adjustment decision coded black to
increase the daily dose administered, which was based on the ob-
served concentrations and predictions by all models. Dose adjust-
ment decisions predicted by the Muro model agreed with those
determined by the observed concentrations 64% of the time (P �
0.22). The methods of Crandon et al. (9), Li et al. (7), and Doh et
al. (with or without edema) (8) would have led to similar dose
adjustment changes of 62% (P � 0.51), 62% (P � 0.05), 60% (P �
0.69), and 59% (P � 0.05) of the time as determined by observed
concentrations, respectively. The other three methods agreed with
the decisions based on the observed concentrations �55% (P �
0.05 for all three) of the time.

DISCUSSION

The population pharmacokinetics of meropenem has been stud-
ied extensively in critically ill patients (7–14). To the best of our
knowledge, no report has compared the predictive performance of
the existing pharmacokinetic models when applied to a heteroge-
neous cohort of critically ill patients. Our results demonstrate
considerable differences in both accuracy and precision among
the published models. These disagreements are likely due to a
number of factors, including the patient population that the mod-
els were derived from and the methods applied in the pharmaco-
kinetic modeling procedure. The model of Crandon et al. (9) and
that of Doh et al. in burned patients (8), which incorporates the
presence of edema in estimating the volume of distribution (V) of
the central compartment, showed no significant bias in the pre-
diction of observed concentrations. The similarity of the predic-
tions by these two methods is not unexpected, as the method by
Doh et al. was developed in burn patients in the hypermetabolic
phase, a physiologic state that is known to alter the pharmacoki-
netics (8, 10). When the Doh et al. model was evaluated without
edema, where the volume of distribution is nearly 30% lower than
with edema, an increase in the magnitude of bias was observed.

While showing the absence of significant bias, the Crandon et
al. model (9) was the least precise of all as evidenced by the widest
95% limits of agreement. Indeed, the importance of the accuracy
of the estimated model parameters has little value if they are not
precise. The covariate relationship between creatinine clearance
and the elimination rate constant included in the Crandon et al.
model resulted in a slope parameter mean of 0.007 h�1 and a
corresponding CV of 157.1%. This large CV is a likely contribut-
ing factor to the observed widest range of the 95% limits of agree-
ment (21). The magnitude of variation is also larger than that
observed for any other parameters of the competing models. The
models with and without edema by Doh et al. were both moder-
ately precise (8).

Two other methods by Li et al. (9) and Roberts et al. (10)
exhibited very similar degrees of bias and precision. Both models

TABLE 2 Equations of the evaluated methods for the prediction of meropenem pharmacokinetic parameters in adult patients

Study (reference), no. of patients in the study Equationa

Noncompartmental analysis models
Leroy et al. (11,13), n � 32 CL (ml/min) � 1.85 · CLCR � 24.9; Vss (liters) � 0.264 · TBW if CLCR � �80 ml/min; Vss

(liters) � 0.212 · TBW if CLCR is 30�80 ml/min; Vss (liters) � 0.342 · TBW if CLCR � �30
ml/min

Christensson et al. (12), n � 23 CL (ml/min/1.73 m2) � 1.71 · CLCR � 14; Vss (liters) � 0.21 · TBW if CLCR � �80 ml/min/
1.73 m2; Vss (liters) � 0.2 · TBW if CLCR � 30�80 ml/min/1.73 m2; Vss (liters) � 0.23 ·
TBW if CLCR � �30 ml/min/1.73 m2

One-compartment population pharmacokinetic model
Muro et al. (14), n � 68 CL (liters/h) � 11.1 · (mSCR/0.7)�1; V (liters) � 33.6

Two-compartment population pharmacokinetic models
Crandon et al. (9), n � 21 K (h�1) � 0.392 � 0.003 · CLCR; V1 (liters) � AdjBW · 0.239
Li et al. (7), n � 79 CL (liters/h) � 14.6 · (CLCR/83)0.62 · (AGE/35)�0.38; V1 (liters) � 10.8 · (TBW/70)0.99; V2

(liters) � 12.6
Doh et al. (8), n � 59 CL (liters/h) � 4.45 � 10.5 · (CLCR/138); V1 (liters) � 17 � 11.1 · EDEMA; V2 (liters) � 10.1
Roberts et al. (10), n � 10 CL (liters/h) � 13.6 · (6/CLCR); V1 � 7.9; V2 � 14.8

a CL, meropenem plasma clearance; CLCR, creatinine clearance; Vss, steady-state volume of distribution; TBW, total body weight, mSCR, modified serum creatinine; V, volume of
distribution for one-compartment model; K, elimination rate constant from the central compartment; V1, volume of distribution of the central compartment; V2, volume of
distribution of the peripheral compartment; AdjBW, adjusted body weight; EDEMA, indicator for the presence (1) or absence (0) of edema.
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were found to consistently underpredict concentrations to a
greater degree than the three above-mentioned models. The Li
model accounted for the effects of creatinine clearance, age, body
weight, and gender in a mixed population of patients with mainly
intra-abdominal infections and community-acquired pneumonia
(7). The high bias with the mean percent difference of �54.8%

and low precision with a CV of nearly 300% may be a result of the
heterogeneous cohort of the population studied by Li et al., which
did not solely include critically ill patients. The study by Roberts et
al. exclusively evaluated patients with critical illnesses, but ex-
cluded those with renal dysfunction, making it difficult to accu-
rately characterize the relationship between renal function and

FIG 1 Bland-Altman plots of relative differences between predicted (Pred) and observed (Obs) unbound meropenem concentrations against the means of
predicted and measured unbound concentrations for the models tested. The Li et al. data are from reference 7, and the Roberts et al. data are from reference 10.
SD, standard deviation. The biases and 95% limits of agreement are shown as solid and broken horizontal lines, respectively.

TABLE 3 Evaluation of the predictive performance of the studied models

Model

Bias and precision relative to naive predictora

�	
 (mg/liter) �MSE (mg/liter)

Mean 95% CI Rank Mean 95% CI Rank

Crandon et al. (9) �1.82 �3.28 to �0.36 2 �26.27 �58.5 to 5.95 5
Li et al. (7) �4.25 �5.55 to �2.95 5 �29.02 �49.95 to �8.01 4
Doh et al. with edema (8) �2.96 �4.29 to �1.63 3 �35 �58.4 to �11.58 3
Doh et al. without edema (8) �4.31 �5.69 to �2.93 6 �19.8 �39.02 to �0.57 6
Leroy et al. (11, 13) �5.34 �6.69 to �4 8 �13.13 �35.39 to 9.12 8
Christensson et al. (12) �4.45 �5.85 to �3.05 7 �16.02 �40.13 to 8.09 7
Muro et al. (14) 0.02 �1.19 to 1.24 1 �55.04 �82.82 to �27.26 1
Roberts et al. (10) �3.37 �4.66 to �2.08 4 �36.54 �57.37 to �15.7 2
a The bias and precision of the models were ranked according to the delta mean prediction error (�ME) and delta mean square prediction error (�MSE) in relation to a naive
predictor (mean of all observed concentrations), respectively.

Wong et al.
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meropenem clearance for a wide range of patients at all levels of
renal dysfunction, similar to the group studied here (10).

The Leroy et al. (11, 13) and Christensson et al. (12) methods
showed the highest degrees of bias based on our evaluation. Leroy
et al. developed the model for meropenem in both healthy subjects
and patients with renal impairment, while Christensson et al. eval-
uated the pharmacokinetics of meropenem in patients with vari-
ous degrees of renal impairment (12). The use of noncompart-
mental methods in both analyses, in addition to the population
studied, is likely to account for the inferior results displayed by

these two studies. Given that these studies were performed under
controlled conditions that are not fully representative of the di-
verse patient populations in which meropenem was used in the
critically ill patients studied here, a lack of accuracy and precision
for these models is expected.

The model of Muro et al., which was developed in Japanese
hospitalized patients and included a covariate relationship for
modified serum creatinine concentration and for meropenem
clearance was the only model that slightly overestimated concen-
trations (14). Meropenem is predominantly excreted via the kid-

TABLE 4 Evaluation of the predictive performance of the studied models relative to the Muro et al. (14) model

Model

Bias and precision relative to Muro model

�MPE �MSPE

Mean 95% CI Mean 95% CI

Crandon et al. (9) 1.84 0.77 to 2.92 �28.76 �53.9 to �3.58
Li et al. (7) 4.27 3.57 to 4.98 �26.01 �50.36 to �1.67
Doh et al. with edema (8) 2.98 2.25 to 3.71 �20.03 �39.37 to �0.69
Doh et al. without edema (8) 4.33 3.57 to 5.09 �35.24 �58.05 to �12.42
Leroy et al. (11, 13) 5.37 4.72 to 6.02 �41.91 �69.79 to �14.03
Christensson et al. (12) 4.47 3.85 to 5.09 �39.02 �68.3 to �9.73
Roberts et al. (10) 3.39 1.45 to 5.33 �149.75 �206.44 to �93.06

FIG 2 Dose adjustment decisions based on meropenem concentrations predicted by the models studied using 100% fT�MIC (MIC � 2 mg/liter) as the
pharmacokinetic/pharmacodynamic target for dose adjustment. w.ed., with edema; w.o.ed., without edema.
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neys and, consequently, clearance of the drug is significantly
affected by renal impairment (22). In this study, to avoid a dis-
crepancy between the renal function and the measured serum cre-
atinine concentration, a value less than the lower limit of normal
(established at 0.4 mg/dl) was rounded up to 0.4 mg/dl and was
defined as a modified serum creatinine concentration. Then, the
serum creatinine concentration was normalized in the study to the
population median value of 0.7 mg/dl during the covariate analy-
sis, which appears to have led to more meaningful estimations of
model parameters that are useful in a wider critically ill patient
group.

When we analyzed the �ME against a naive predictor (average
of the observed concentrations), it was evident that, in general,
most of the models underpredicted the meropenem free concen-
trations. Based on this analysis, the model of Muro et al. (14) was
also found to be the least biased and most precise compared to the
absolute standard versus all of the other methods when applied to
predict meropenem concentrations in this critically ill patient co-
hort. The superiority of the Muro model for predicting free mero-
penem concentrations in this group of critically ill patients was
further confirmed by comparing the predictive errors among the
models using the Muro model as the standard.

The utility of the TDM and subsequent dose adjustment based
on measured concentrations to achieve optimal beta-lactam ex-
posure was confirmed by Roberts et al. in a study of critically ill
patients (23). To enhance the accuracy of predictions in support
of optimal dose adjustments of these agents, TDM practices
should be supplemented with optimal sampling strategies and
adaptive feedback control. Once the observed serum meropenem
concentrations become available, preferably collected at the opti-
mal sampling times to ensure the most precise estimation of pa-
tient-specific pharmacokinetic parameters, computerized deci-
sion support equipped with Bayesian adaptive feedback control
can be used to establish meropenem dosing regimens designed to
achieve the desired therapeutic targets as precisely as possible for
individual patients (24). The clinical implications of the informa-
tion provided by our work is clearly demonstrated in the predicted
levels from the Muro model, leading to similar choices for dose
adjustment the great majority of the time, compared to the results
based on the observed concentrations, which in turn supports the
incorporation of this best performing model into a TDM program
focusing on the dose individualization of meropenem in critically
ill patients.

Limitations of the study. First, the small cohort of patients
available for analysis might be considered a limitation of the study.
However, this is the largest unbound meropenem concentration
data set used for comparing the models studied and so furthers
our understanding of the field. Second, the heterogeneous nature
of this patient cohort may not match the characteristics of the
patients that were included in the different meropenem popula-
tion models. Therefore, these models may be more accurate in
critically ill patient populations more closely matching those from
their studies. Third, our predictions have used the population
mean estimates from the contributing models and have not sim-
ulated incorporating measures of between-subject variability.
While our approach is pragmatic and suitable for describing
model accuracy in empirical dosing, it would not describe the true
pharmacokinetic variability present. Fourth, we assigned a fixed
2% protein binding of meropenem to the simulations from the
models which had used total concentrations. This approach may

have led to some inaccuracies, given that some authors have de-
scribed both higher and lower protein binding in critically ill pa-
tients (25).

In conclusion, to the best of our knowledge, this is the first
paper comparing the predictive performance of published mero-
penem pharmacokinetic models applied to data obtained from a
heterogeneous cohort of critically ill patients. While accuracy of
the models might generally be considered sufficient, we found that
the majority of the models tended to underestimate meropenem
concentrations, which in some circumstances could potentially
jeopardize the likelihood of achieving an optimal pharmacoki-
netic/pharmacodynamic target when they are applied in clinical
practice. The pharmacokinetic model developed by Muro et al.
(14) demonstrated the best predictive performance in this con-
text. However, given the vast heterogeneity among critically ill
patients’ clinical presentations and their pharmacokinetics, the
characteristics of pharmacokinetic models and the targeted pop-
ulations should be fully considered when population models are
used to predict the optimal dose of meropenem in critically ill
patients.
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