
esys-Escript User’s Guide:
Solving Partial Differential Equations

with Escript and Finley

Release - 3.4.1
(r4596)

Lutz Gross et al. (Editor)

December 12, 2013

Earth Systems Science Computational Centre (ESSCC)
School of Earth Sciences

The University of Queensland
Brisbane, Australia

Email: esys@esscc.uq.edu.au

Copyright (c) 2003-2013 by University of Queensland
http://www.uq.edu.au

Primary Business: Queensland, Australia
Licensed under the Open Software License version 3.0

http://www.opensource.org/licenses/osl-3.0.php
Development until 2012 by Earth Systems Science Computational Center (ESSCC)

Development since 2012 by School of Earth Sciences
This work is supported by the AuScope National Collaborative Research Infrastructure Strategy, the Queensland

State Government and The University of Queensland.

2

http://www.uq.edu.au
http://www.opensource.org/licenses/osl-3.0.php

Abstract

esys.escript is a python-based environment for implementing mathematical models, in particular those based
on coupled, non-linear, time-dependent partial differential equations.

It consists of five major components

• esys.escript core library

• finite element solver esys.finley (which uses fast vendor-supplied solvers or our paso linear solver
library)

• the meshing interface esys.pycad

• a model library.

• an inversion library.

The current version supports parallelization through both MPI for distributed memory and OpenMP for distributed
shared memory.

In this release there are a number of small changes which are not backwards compatible. Please see Appendix B
to see if your scripts will be affected.

If you use this software in your research, then we would appreciate (but do not require) a citation. Some
relevant references can be found in Appendix D.

For Python3 support, see Appendix E.

3

Researchers and Developers

Escript is the product of years of work by many people. The active researchers for the current release series (3.X)
are listed here in alphabetical order. While development is collaborative, each person is listed with some of their
major contributions — this list is not exhaustive. Personel for previous release series are listed in an appendix of

the user guide.

Cihan Altinay esys.weipa visualisation package, SCons build system rework.

Vince Boros Magnetism.

Joel Fenwick Lazy evaluation, maintenance of escript module, release wrangler.

Lutz Gross Patriarch, technical lead, solvers, large chunks of the original code.

Simon Shaw Release help.

4

Contents

1 Tutorial: Solving PDEs 9
1.1 Installation . 9
1.2 The First Steps . 9

1.2.1 Plotting Using matplotlib . 13
1.2.2 Visualization using export files . 15

1.3 The Diffusion Problem . 16
1.3.1 Outline . 16
1.3.2 Temperature Diffusion . 16
1.3.3 Helmholtz Problem . 17
1.3.4 The Transition Problem . 19

1.4 Wave Propagation . 21
1.5 Elastic Deformation . 28
1.6 Stokes Flow . 30
1.7 Slip on a Fault . 33

2 Execution of an escript Script 37
2.1 Overview . 37
2.2 Options . 38

2.2.1 Notes . 38
2.3 Input and Output . 39
2.4 Hints for MPI Programming . 39
2.5 Lazy Evaluation . 40

3 The esys.escript Module 41
3.1 Concepts . 41

3.1.1 Function spaces . 41
3.1.2 Data Objects . 43
3.1.3 Tagged, Expanded and Constant Data . 44
3.1.4 Saving and Restoring Simulation Data . 45

3.2 esys.escript Classes . 46
3.2.1 The Domain class . 46
3.2.2 The FunctionSpace class . 47
3.2.3 The Data Class . 49
3.2.4 Generation of Data objects . 50
3.2.5 Data methods . 50
3.2.6 Functions of Data objects . 51
3.2.7 Interpolating Data . 57
3.2.8 The DataManager Class . 59
3.2.9 Saving Data as CSV . 60
3.2.10 The Operator Class . 61

3.3 Physical Units . 61

Contents 5

3.4 Utilities . 64

4 The esys.escript.linearPDEs Module 67
4.1 Linear Partial Differential Equations . 67

4.1.1 Classes . 69
4.1.2 LinearPDE class . 69
4.1.3 The Poisson Class . 71
4.1.4 The Helmholtz Class . 71
4.1.5 The Lame Class . 72

4.2 Projection . 72
4.3 Solver Options . 73
4.4 Some Remarks on Lumping . 80

4.4.1 Scalar wave equation . 80
4.4.2 Advection equation . 81
4.4.3 Summary . 83

5 The esys.pycad Module 85
5.1 Introduction . 85
5.2 The Unit Square . 85
5.3 Holes . 87
5.4 A 3D example . 88
5.5 Alternative File Formats . 89
5.6 Element Sizes . 90
5.7 esys.pycad Classes . 90

5.7.1 Primitives . 90
5.7.2 Transformations . 93
5.7.3 Properties . 94

5.8 Interface to the mesh generation software . 95

6 Models 99
6.1 The Stokes Problem . 99

6.1.1 Solution Method . 99
6.1.2 Functions . 103
6.1.3 Example: Lid-driven Cavity . 104

6.2 Darcy Flux . 104
6.2.1 Solution Method . 105
6.2.2 Functions . 105
6.2.3 Example: Gravity Flow . 106

6.3 Isotropic Kelvin Material . 107
6.3.1 Solution Method . 108
6.3.2 Functions . 109

6.4 Fault System . 110
6.4.1 Functions . 112
6.4.2 Example . 114

7 The esys.finley Module 115
7.1 Formulation . 115
7.2 Meshes . 115
7.3 Macro Elements . 122
7.4 Linear Solvers in SolverOptions . 122
7.5 Functions . 122

6 Contents

8 The esys.weipa Module and Data Visualization 125
8.1 The EscriptDataset class . 125
8.2 Functions . 126
8.3 Visualizing escript Data . 127

8.3.1 Using the VisIt GUI . 127
8.3.2 Using the VisIt CLI (command line interface) . 128

A Einstein Notation 129

B Changes from previous releases 131

C Escript researchers and developers by release 135

D Escript references 137

E Python3 Support 139
E.1 Impact on scripts . 139

Index 141

Bibliography 145

Contents 7

8 Contents

CHAPTER

ONE

Tutorial: Solving PDEs

1.1 Installation

To download escript and friends, please visit https://launchpad.net/escript-finley. The web site
offers binary distributions for some platforms and provides information about the installation process.

Please direct any questions you might have to mailto:esys@esscc.uq.edu.au.

1.2 The First Steps

In this chapter we give an introduction how to use esys.escript to solve a partial differential equation (PDE).
We assume you are at least a little familiar with Python. The knowledge presented in the Python tutorial at
http://docs.python.org/tut/tut.html is more than sufficient.

The PDE we wish to solve is the Poisson equation

−∆u = f (1.1)

for the solution u. The function f is the given right hand side. The domain of interest, denoted by Ω, is the unit
square

Ω = [0, 1]2 = {(x0;x1)|0 ≤ x0 ≤ 1 and 0 ≤ x1 ≤ 1} (1.2)

The domain is shown in Figure 1.1.

x

x

0

1

(0, 0)

(1, 1)
n

FIGURE 1.1: Domain Ω = [0, 1]2 with outer normal field n.

∆ denotes the Laplace operator, which is defined by

∆u = (u,0),0 + (u,1),1 (1.3)

Chapter 1. Tutorial: Solving PDEs 9

https://launchpad.net/escript-finley
mailto:esys@esscc.uq.edu.au
http://docs.python.org/tut/tut.html

where, for any function u and any direction i, u,i denotes the partial derivative of u with respect to i.1 Basically,
in the subindex of a function, any index to the right of the comma denotes a spatial derivative with respect to the
index. To get a more compact form we will write u,ij = (u,i),j which leads to

∆u = u,00 + u,11 =

2∑
i=0

u,ii (1.4)

We often find that use of nested
∑

symbols makes formulas cumbersome, and we use the more compact Einstein
summation convention. This drops the

∑
sign and assumes that a summation is performed over any repeated

index. For instance we write

xiyi =

2∑
i=0

xiyi (1.5)

xiu,i =

2∑
i=0

xiu,i (1.6)

u,ii =

2∑
i=0

u,ii (1.7)

xijui,j =

2∑
j=0

2∑
i=0

xijui,j (1.8)

(1.9)

With the summation convention we can write the Poisson equation as

− u,ii = 1 (1.10)

where f = 1 in this example.
On the boundary of the domain Ω the normal derivative niu,i of the solution u shall be zero, i.e. u shall fulfill

the homogeneous Neumann boundary condition

niu,i = 0 . (1.11)

n = (ni) denotes the outer normal field of the domain, see Figure 1.1. Remember that we are applying the Einstein
summation convention , i.e. niu,i = n0u,0 +n1u,1.2 The Neumann boundary condition of Equation (1.11) should
be fulfilled on the set ΓN which is the top and right edge of the domain:

ΓN = {(x0;x1) ∈ Ω|x0 = 1 or x1 = 1} (1.12)

On the bottom and the left edge of the domain which is defined as

ΓD = {(x0;x1) ∈ Ω|x0 = 0 or x1 = 0} (1.13)

the solution shall be identical to zero:
u = 0 . (1.14)

This kind of boundary condition is called a homogeneous Dirichlet boundary condition. The partial differential
equation in Equation (1.10) together with the Neumann boundary condition Equation (1.11) and Dirichlet boundary
condition in Equation (1.14) form a so-called boundary value problem (BVP) for the unknown function u.

1You may be more familiar with the Laplace operator being written as∇2, and written in the form

∇2u = ∇t · ∇u =
∂2u

∂x20
+
∂2u

∂x21

and Equation (1.1) as
−∇2u = f

2Some readers may familiar with the notation ∂u
∂n

= niu,i for the normal derivative.

10 1.2. The First Steps

ElementNode

FIGURE 1.2: Mesh of 4 × 4 elements on a rectangular domain. Here each element is a quadrilateral and described by four
nodes, namely the corner points. The solution is interpolated by a bi-linear polynomial.

In general the BVP cannot be solved analytically and numerical methods have to be used to construct an
approximation of the solution u. Here we will use the finite element method (FEM). The basic idea is to fill the
domain with a set of points called nodes. The solution is approximated by its values on the nodes. Moreover,
the domain is subdivided into smaller sub-domains called elements. On each element the solution is represented
by a polynomial of a certain degree through its values at the nodes located in the element. The nodes and their
connection through elements is called a mesh. Figure 1.2 shows an example of a FEM mesh with four elements
in the x0 and four elements in the x1 direction over the unit square. For more details we refer the reader to the
literature, for instance Reference [39, 4].

The esys.escript solver we want to use to solve this problem is embedded into the python interpreter
language. So you can solve the problem interactively but you will learn quickly that it is more efficient to use
scripts which you can edit with your favorite editor. To enter the escript environment, use the run-escript
command3:

run-escript

which will pass you on to the python prompt

Python 2.5.2 (r252:60911, Oct 5 2008, 19:29:17)
[GCC 4.3.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

Here you can use all available python commands and language features, for instance

>>> x=2+3
>>> print "2+3=",x
2+3= 5

We refer to the python user’s guide if you not familiar with python.
esys.escript provides the class Poisson to define a Poisson equation. (We will discuss a more general

form of a PDE that can be defined through the LinearPDE class later.) The instantiation of a Poisson class
object requires the specification of the domain Ω. In esys.escript the Domain class objects are used to
describe the geometry of a domain but it also contains information about the discretization methods and the actual
solver which is used to solve the PDE. Here we are using the FEM library esys.finley . The following
statements create the Domain object mydomain from the esys.finley method Rectangle:

from esys.finley import Rectangle
mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20)

In this case the domain is a rectangle with the lower, left corner at point (0, 0) and the right, upper corner at
(l0,l1) = (1, 1). The arguments n0 and n1 define the number of elements in x0 and x1-direction respectively.
For more details on Rectangle and other Domain generators within the esys.finleymodule, see Chapter 7.

3run-escript is not available under Windows yet. If you run under Windows you can just use the python command and the
OMP NUM THREADS environment variable to control the number of threads.

Chapter 1. Tutorial: Solving PDEs 11

The following statements define the Poisson class object mypde with domain mydomain and the right
hand side f of the PDE to constant 1:

from esys.escript.linearPDEs import Poisson
mypde = Poisson(mydomain)
mypde.setValue(f=1)

We have not specified any boundary condition but the Poisson class implicitly assumes homogeneous Neuman
boundary conditions defined by Equation (1.11). With this boundary condition the BVP we have defined has no
unique solution. In fact, with any solution u and any constant C the function u+C becomes a solution as well. We
have to add a Dirichlet boundary condition. This is done by defining a characteristic function which has positive
values at locations x = (x0, x1) where Dirichlet boundary condition is set and 0 elsewhere. In our case of ΓD

defined by Equation (1.13), we need to construct a function gammaD which is positive for the cases x0 = 0 or
x1 = 0. To get an object x which contains the coordinates of the nodes in the domain use

x=mydomain.getX()

The method getX of the Domain mydomain gives access to locations in the domain defined by mydomain.
The object x is actually a Data object which will be discussed in Chapter 3 in more detail. What we need to know
here is that x has rank (number of dimensions) and a shape (list of dimensions) which can be viewed by calling
the getRank and getShape methods:

print "rank ",x.getRank(),", shape ",x.getShape()

This will print something like

rank 1, shape (2,)

The Data object also maintains type information which is represented by the FunctionSpace of the object.
For instance

print x.getFunctionSpace()

will print

Function space type: Finley_Nodes on FinleyMesh

which tells us that the coordinates are stored on the nodes of (rather than on points in the interior of) a Finley mesh.
To get the x0 coordinates of the locations we use the statement

x0=x[0]

Object x0 is again a Data object now with rank 0 and shape (). It inherits the FunctionSpace from x:

print x0.getRank(), x0.getShape(), x0.getFunctionSpace()

will print

0 () Function space type: Finley_Nodes on FinleyMesh

We can now construct a function gammaD which is only non-zero on the bottom and left edges of the domain with

from esys.escript import whereZero
gammaD=whereZero(x[0])+whereZero(x[1])

whereZero(x[0]) creates a function which equals 1 where x[0] is (almost) equal to zero and 0 else-
where. Similarly, whereZero(x[1]) creates a function which equals 1 where x[1] is equal to zero and 0
elsewhere. The sum of the results of whereZero(x[0]) and whereZero(x[1]) gives a function on the
domain mydomain which is strictly positive where x0 or x1 is equal to zero. Note that gammaD has the same
rank , shape and FunctionSpace like x0 used to define it. So from

print gammaD.getRank(), gammaD.getShape(), gammaD.getFunctionSpace()

one gets

0 () Function space type: Finley_Nodes on FinleyMesh

An additional parameter q of the setValue method of the Poisson class defines the characteristic function of
the locations of the domain where the homogeneous Dirichlet boundary condition is set. The complete definition
of our example is now:

12 1.2. The First Steps

from esys.escript.linearPDEs import Poisson
x = mydomain.getX()
gammaD = whereZero(x[0])+whereZero(x[1])
mypde = Poisson(domain=mydomain)
mypde.setValue(f=1,q=gammaD)

The first statement imports the Poisson class definition from the esys.escript.linearPDEs module. To
get the solution of the Poisson equation defined by mypde we just have to call its getSolution method.

Now we can write the script to solve our Poisson problem

from esys.escript import *
from esys.escript.linearPDEs import Poisson
from esys.finley import Rectangle
generate domain:
mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20)
define characteristic function of GammaˆD
x = mydomain.getX()
gammaD = whereZero(x[0])+whereZero(x[1])
define PDE and get its solution u
mypde = Poisson(domain=mydomain)
mypde.setValue(f=1,q=gammaD)
u = mypde.getSolution()

The question is what we do with the calculated solution u. Besides postprocessing, e.g. calculating the gradient
or the average value, which will be discussed later, plotting the solution is one of the things you might want to
do. esys.escript offers two ways to do this, both based on external modules or packages and so data need
to converted to hand over the solution. The first option is using the matplotlib module which allows plotting
2D results relatively quickly from within the Python script, see [15]. However, there are limitations when using
this tool, especially for large problems and when solving 3-dimensional problems. Therefore, esys.escript
provides functionality to export data as files which can subsequently be read by third-party software packages such
as mayavi [17] or VisIt [35].

1.2.1 Plotting Using matplotlib
The matplotlib module provides a simple and easy-to-use way to visualize PDE solutions (or other Data
objects). To hand over data from esys.escript to matplotlib the values need to mapped onto a rectangular
grid4. We will make use of the numpy module.

First we need to create a rectangular grid which is accomplished by the following statements:

import numpy
x_grid = numpy.linspace(0., 1., 50)
y_grid = numpy.linspace(0., 1., 50)

x_grid is an array defining the x coordinates of the grid while y_grid defines the y coordinates of the grid. In
this case we use 50 points over the interval [0, 1] in both directions.

Now the values created by esys.escript need to be interpolated to this grid. We will use the matplotlib
mlab.griddata function to do this. Spatial coordinates are easily extracted as a list by

x=mydomain.getX()[0].toListOfTuples()
y=mydomain.getX()[1].toListOfTuples()

In principle we can apply the same toListOfTuples method to extract the values from the PDE solution u.
However, we have to make sure that the Data object we extract the values from uses the same FunctionSpace
as we have used when extracting x and y. We apply the interpolation to u before extraction to achieve this:

z=interpolate(u, mydomain.getX().getFunctionSpace())

The values in z are the values at the points with the coordinates given by x and y. These values are interpolated to
the grid defined by x_grid and y_grid by using

4Users of Debian 5 (Lenny) please note: this example makes use of the griddata method in matplotlib.mlab. This method is not
part of version 0.98.1 which is available with Lenny. If you wish to use contour plots, you may need to install a later version. Users of Ubuntu
8.10 or later should be fine.

Chapter 1. Tutorial: Solving PDEs 13

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 1.3: Visualization of the Poisson Equation Solution for f = 1 using matplotlib

import matplotlib
z_grid = matplotlib.mlab.griddata(x, y, z, xi=x_grid, yi=y_grid)

Now z_grid gives the values of the PDE solution u at the grid which can be plotted using contourf:

matplotlib.pyplot.contourf(x_grid, y_grid, z_grid, 5)
matplotlib.pyplot.savefig("u.png")

Here we use 5 contours. The last statement writes the plot to the file u.png in the PNG format. Alternatively, one
can use

matplotlib.pyplot.contourf(x_grid, y_grid, z_grid, 5)
matplotlib.pyplot.show()

which gives an interactive browser window.
Now we can write the script to solve our Poisson problem

from esys.escript import *
from esys.escript.linearPDEs import Poisson
from esys.finley import Rectangle
import numpy
import matplotlib
import pylab
generate domain:
mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20)
define characteristic function of GammaˆD
x = mydomain.getX()
gammaD = whereZero(x[0])+whereZero(x[1])
define PDE and get its solution u
mypde = Poisson(domain=mydomain)
mypde.setValue(f=1,q=gammaD)
u = mypde.getSolution()
interpolate u to a matplotlib grid:
x_grid = numpy.linspace(0.,1.,50)
y_grid = numpy.linspace(0.,1.,50)
x=mydomain.getX()[0].toListOfTuples()
y=mydomain.getX()[1].toListOfTuples()
z=interpolate(u,mydomain.getX().getFunctionSpace()).toListOfTuples()
z_grid = matplotlib.mlab.griddata(x,y,z,xi=x_grid,yi=y_grid)

14 1.2. The First Steps

FIGURE 1.4: Visualization of the Poisson Equation Solution for f = 1

interpolate u to a rectangular grid:
matplotlib.pyplot.contourf(x_grid, y_grid, z_grid, 5)
matplotlib.pyplot.savefig("u.png")

The entire code is available as poisson_matplotlib.py in the example directory. You can run the script
using the escript environment

run-escript poisson_matplotlib.py

This will create the u.png, see Figure 1.3. For details on the usage of the matplotlib module we refer to the
documentation [15].

As pointed out, matplotlib is restricted to the two-dimensional case and should be used for small problems
only. It can not be used under MPI as the toListOfTuples method is not safe under MPI5.

1.2.2 Visualization using export files
As an alternative to matplotlib, escript supports exporting data to VTK and SILO files which can be read by
visualization tools such as mayavi[17] and VisIt [35]. This method is MPI safe and works with large 2D and 3D
problems.

To write the solution u of the Poisson problem in the VTK file format to the file u.vtu one needs to add:

from esys.weipa import saveVTK
saveVTK("u.vtu", sol=u)

This file can then be opened in a VTK compatible visualization tool where the solution is accessible by the name
sol. Similarly,

from esys.weipa import saveSilo
saveSilo("u.silo", sol=u)

will write u to a SILO file if escript was compiled with SILO support.
The Poisson problem script is now

from esys.escript import *
from esys.escript.linearPDEs import Poisson
from esys.finley import Rectangle
from esys.weipa import saveVTK

5The phrase ’safe under MPI’ means that a program will produce correct results when run on more than one processor under MPI.

Chapter 1. Tutorial: Solving PDEs 15

x
0

x
1

n
T
ref

FIGURE 1.5: Temperature Diffusion Problem with Circular Heat Source

generate domain:
mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20)
define characteristic function of GammaˆD
x = mydomain.getX()
gammaD = whereZero(x[0])+whereZero(x[1])
define PDE and get its solution u
mypde = Poisson(domain=mydomain)
mypde.setValue(f=1,q=gammaD)
u = mypde.getSolution()
write u to an external file
saveVTK("u.vtu",sol=u)

The entire code is available as poisson_vtk.py in the example directory.
You can run the script using the escript environment and visualize the solution using mayavi:

run-escript poisson_vtk.py
mayavi2 -d u.vtu -m SurfaceMap

The result is shown in Figure 1.4.

1.3 The Diffusion Problem

1.3.1 Outline

In this chapter we will discuss how to solve a time-dependent temperature diffusion PDE for a given block of
material. Within the block there is a heat source which drives the temperature diffusion. On the surface, energy
can radiate into the surrounding environment. Figure 1.5 shows the configuration.

In the next Section 1.3.2 we will present the relevant model. A time integration scheme is introduced to
calculate the temperature at given time nodes t(n). We will see that at each time step a Helmholtz equation must
be solved. The implementation of a Helmholtz equation solver will be discussed in Section 1.3.3. In Section 1.3.4
this solver is used to build a solver for the temperature diffusion problem.

1.3.2 Temperature Diffusion

The unknown temperature T is a function of its location in the domain and time t > 0. The governing equation in
the interior of the domain is given by

ρcpT,t − (κT,i),i = qH (1.15)

where ρcp and κ are given material constants. In case of a composite material the parameters depend on their
location in the domain. qH is a heat source (or sink) within the domain. We are using the Einstein summation

16 1.3. The Diffusion Problem

convention as introduced in Chapter 1.2. In our case we assume qH to be equal to a constant heat production rate
qc on a circle or sphere with center xc and radius r, and 0 elsewhere:

qH(x, t) =

{
qc if ‖x− xc‖ ≤ r
0 else (1.16)

for all x in the domain and time t > 0.
On the surface of the domain we specify a radiation condition which prescribes the normal component of the

flux κT,i to be proportional to the difference of the current temperature to the surrounding temperature Tref :

κT,ini = η(Tref − T) (1.17)

η is a given material coefficient depending on the material of the block and the surrounding medium. ni is the i-th
component of the outer normal field at the surface of the domain.

To solve the time-dependent Equation (1.15) the initial temperature at time t = 0 has to be given. Here we
assume that the initial temperature is the surrounding temperature:

T (x, 0) = Tref (1.18)

for all x in the domain. Note that the initial conditions satisfy the boundary condition defined by Equation (1.17).
The temperature is calculated at discrete time nodes t(n) where t(0) = 0 and t(n) = t(n−1) + h, where h > 0

is the step size which is assumed to be constant. In the following, the upper index (n) refers to a value at time t(n).
The simplest and most robust scheme to approximate the time derivative of the temperature is the backward Euler
scheme. The backward Euler scheme is based on the Taylor expansion of T at time t(n):

T (n) ≈ T (n−1) + T
(n)
,t (t(n) − t(n−1)) = T (n−1) + h · T (n)

,t (1.19)

This is inserted into Equation (1.15). By separating the terms at t(n) and t(n−1) one gets for n = 1, 2, 3 . . .

ρcp
h
T (n) − (κT

(n)
,i),i = qH +

ρcp
h
T (n−1) (1.20)

where T (0) = Tref is taken form the initial condition given by Equation (1.18). Together with the natural boundary
condition

κT
(n)
,i ni = η(Tref − T (n)) (1.21)

taken from Equation (1.17) this forms a boundary value problem that has to be solved for each time step. As a
first step to implement a solver for the temperature diffusion problem we will implement a solver for the boundary
value problem that has to be solved at each time step.

1.3.3 Helmholtz Problem
The partial differential equation to be solved for T (n) has the form

ωT (n) − (κT
(n)
,i),i = f (1.22)

and we set
ω =

ρcp
h

and f = qH +
ρcp
h
T (n−1) . (1.23)

With g = ηTref the radiation condition defined by Equation (1.21) takes the form

κT
(n)
,i ni = g − ηT (n) on Γ (1.24)

The partial differential Equation (1.22) together with boundary conditions of Equation (1.24) is called the Helmholtz
equation.

We want to use the LinearPDE class provided by esys.escript to define and solve a general linear,
steady, second order PDE such as the Helmholtz equation. For a single PDE the LinearPDE class supports the
following form:

− (Ajlu,l),j +Du = Y (1.25)

Chapter 1. Tutorial: Solving PDEs 17

where we show only the coefficients relevant for the problem discussed here. For the general form of a single
PDE see Equation (4.1). The coefficients A and Y have to be specified through Data objects in the general
FunctionSpace on the PDE or objects that can be converted into such Data objects. A is a rank-2 Data
object and D and Y are scalar. The following natural boundary conditions are considered on Γ:

njAjlu,l + du = y . (1.26)

Notice that the coefficient A is the same like in the PDE Equation (1.25). The coefficients d and y are each a scalar
Data object in the boundary FunctionSpace. Constraints for the solution prescribe the value of the solution
at certain locations in the domain. They have the form

u = r where q > 0 (1.27)

r and q are each scalar Data object where q is the characteristic function defining where the constraint is applied.
The constraints defined by Equation (1.27) override any other condition set by Equation (1.25) or Equation (1.26).
The Poisson class of the esys.escript.linearPDEs module, which we have already used in Chapter 1.2,
is in fact a subclass of the more general LinearPDE class. The esys.escript.linearPDEs module pro-
vides a Helmholtz class but we will make direct use of the general LinearPDE class.

By inspecting the Helmholtz equation (1.22) and boundary condition (1.24), and substituting u for T (n), we
can easily assign values to the coefficients in the general PDE of the LinearPDE class:

Aij = κδij D = ω Y = f
d = η y = g

(1.28)

δij is the Kronecker symbol defined by δij = 1 for i = j and 0 otherwise. Undefined coefficients are assumed to
be not present.6 In this diffusion example we do not need to define a characteristic function q because the boundary
conditions we consider in Equation (1.24) are just the natural boundary conditions which are already defined in the
LinearPDE class (shown in Equation (1.26)).

The Helmholtz equation can be set up the following way7:

mypde=LinearPDE(mydomain)
mypde.setValue(A=kappa*kronecker(mydomain),D=omega,Y=f,d=eta,y=g)
u=mypde.getSolution()

where we assume that mydomain is a Domain object and kappa, omega, eta, and g are given scalar values
typically float or Data objects. The setValue method assigns values to the coefficients of the general
PDE. The getSolution method solves the PDE and returns the solution u of the PDE. kronecker is an
esys.escript function returning the Kronecker symbol.

The coefficients can set by several calls to setValue where the order can be chosen arbitrarily. If a value is
assigned to a coefficient several times, the last assigned value is used when the solution is calculated:

mypde = LinearPDE(mydomain)
mypde.setValue(A=kappa*kronecker(mydomain), d=eta)
mypde.setValue(D=omega, Y=f, y=g)
mypde.setValue(d=2*eta) # overwrites d=eta
u=mypde.getSolution()

In some cases the solver of the PDE can make use of the fact that the PDE is symmetric. A PDE is called symmetric
if

Ajl = Alj . (1.29)

Note that D and d may have any value and the right hand sides Y , y as well as the constraints are not relevant. The
Helmholtz problem is symmetric. The LinearPDE class provides the method checkSymmetry to check if the
given PDE is symmetric.

mypde = LinearPDE(mydomain)
mypde.setValue(A=kappa*kronecker(mydomain), d=eta)
print mypde.checkSymmetry() # returns True
mypde.setValue(B=kronecker(mydomain)[0])

6There is a difference in esys.escript for a coefficient to be not present and set to zero. Since in the former case the coefficient is not
processed, it is more efficient to leave it undefined instead of assigning zero to it.

7Note that this is not a complete code. The full source code can be found in “helmholtz.py”.

18 1.3. The Diffusion Problem

print mypde.checkSymmetry() # returns False
mypde.setValue(C=kronecker(mydomain)[0])
print mypde.checkSymmetry() # returns True

Unfortunately, calling checkSymmetry is very expensive and is only recommended for testing and debugging
purposes. The setSymmetryOn method is used to declare a PDE symmetric:

mypde = LinearPDE(mydomain)
mypde.setValue(A=kappa*kronecker(mydomain))
mypde.setSymmetryOn()

Now we want to see how we actually solve the Helmholtz equation on a rectangular domain of length l0 = 5 and
height l1 = 1. We choose a simple test solution such that we can verify the returned solution against the exact
answer. Actually, we take T = x0 (here qH = 0) and then calculate the right hand side terms f and g such that
the test solution becomes the solution of the problem. If we assume κ as being constant, an easy calculation shows
that we have to choose f = ω · x0. On the boundary we get κniu,i = κn0. Thus we have to set g = κn0 + ηx0.
The following script helmholtz.py which is available in the example directory implements this test problem
using the esys.finley PDE solver:

from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.finley import Rectangle
from esys.weipa import saveVTK
set some parameters
kappa=1.
omega=0.1
eta=10.
generate domain
mydomain = Rectangle(l0=5., l1=1., n0=50, n1=10)
open PDE and set coefficients
mypde=LinearPDE(mydomain)
mypde.setSymmetryOn()
n=mydomain.getNormal()
x=mydomain.getX()
mypde.setValue(A=kappa*kronecker(mydomain), D=omega,Y=omega*x[0], \

d=eta, y=kappa*n[0]+eta*x[0])
calculate error of the PDE solution
u=mypde.getSolution()
print("error is ",Lsup(u-x[0]))
saveVTK("x0.vtu", sol=u)

To visualize the solution ‘x0.vtu’ you can use the command

mayavi -d x0.vtu -m SurfaceMap

and it is easy to see that the solution T = x0 is calculated.
The script is similar to the script poisson.py discussed in Chapter 1.2. mydomain.getNormal()

returns the outer normal field on the surface of the domain. The function Lsup is imported by the from
esys.escript import * statement and returns the maximum absolute value of its argument. The error
shown by the print statement should be in the order of 10−7. As piecewise bi-linear interpolation is used by
esys.finley to approximate the solution, and our solution is a linear function of the spatial coordinates, one
might expect that the error would be zero or in the order of machine precision (typically ≈ 10−15). However most
PDE packages use an iterative solver which is terminated when a given tolerance has been reached. The default
tolerance is 10−8. This value can be altered by using the setTolerance of the LinearPDE class.

1.3.4 The Transition Problem
Now we are ready to solve the original time-dependent problem. The main part of the script is the loop over time
t which takes the following form:

t=0
T=Tref
mypde=LinearPDE(mydomain)

Chapter 1. Tutorial: Solving PDEs 19

mypde.setValue(A=kappa*kronecker(mydomain), D=rhocp/h, d=eta, y=eta*Tref)
while t<t_end:

mypde.setValue(Y=q+rhocp/h*T)
T=mypde.getSolution()
t+=h

kappa, rhocp, eta and Tref are input parameters of the model. q is the heat source in the domain and h
is the time step size. The variable T holds the current temperature. It is used to calculate the right hand side
coefficient f in the Helmholtz Equation (1.22). The statement T=mypde.getSolution() overwrites T with
the temperature of the new time step t + h. To get this iterative process going we need to specify the initial
temperature distribution, which is equal to Tref . The LinearPDE object mypde and the coefficients that do not
change over time are set up before the loop is entered. In each time step only the coefficient Y is reset as it depends
on the temperature of the previous time step. This allows the PDE solver to reuse information from previous time
steps as much as possible.

The heat source qH which is defined in Equation (1.16) is qc in an area defined as a circle of radius r and
center xc, and zero outside this circle. q0 is a fixed constant. The following script defines qH as desired:

from esys.escript import length,whereNegative
xc=[0.02, 0.002]
r=0.001
x=mydomain.getX()
qH=q0*whereNegative(length(x-xc)-r)

x is a Data object of the esys.escriptmodule defining locations in the Domain mydomain. The length()
function imported from the esys.escript module returns the Euclidean norm:

‖y‖ =
√
yiyi = esys.escript.length(y) (1.30)

So length(x-xc) calculates the distances of the location x to the center of the circle xc where the heat source
is acting. Note that the coordinates of xc are defined as a list of floating point numbers. It is automatically
converted into a Data class object before being subtracted from x. The function whereNegative applied to
length(x-xc)-r returns a Data object which is equal to one where the object is negative (inside the circle)
and zero elsewhere. After multiplication with qc we get a function with the desired property of having value qc
inside the circle and zero elsewhere.

Now we can put the components together to create the script diffusion.py which is available in the exam-
ple directory :

from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.finley import Rectangle
from esys.weipa import saveVTK
#... set some parameters ...
xc=[0.02, 0.002]
r=0.001
qc=50.e6
Tref=0.
rhocp=2.6e6
eta=75.
kappa=240.
tend=5.
... time, time step size and counter ...
t=0
h=0.1
i=0
#... generate domain ...
mydomain = Rectangle(l0=0.05, l1=0.01, n0=250, n1=50)
#... open PDE ...
mypde=LinearPDE(mydomain)
mypde.setSymmetryOn()
mypde.setValue(A=kappa*kronecker(mydomain), D=rhocp/h, d=eta, y=eta*Tref)
... set heat source:
x=mydomain.getX()

20 1.3. The Diffusion Problem

FIGURE 1.6: Results of the Temperature Diffusion Problem for Time Steps 1, 16, 32 and 48

qH=qc*whereNegative(length(x-xc)-r)
... set initial temperature
T=Tref
... start iteration:
while t<tend:

i+=1
t+=h
print("time step:",t)
mypde.setValue(Y=qH+rhocp/h*T)
T=mypde.getSolution()
saveVTK("T.%d.vtu"%i, temp=T)

The script will create the files T.1.vtu, T.2.vtu, . . ., T.50.vtu in the directory where the script has been
started. The files contain the temperature distributions at time steps 1, 2, i, . . . , 50 in the VTK file format.

Figure 1.6 shows the result for some selected time steps. An easy way to visualize the results is the command

mayavi -d T.1.vtu -m SurfaceMap

Use the Configure Data window in mayavi to move forward and backward in time.

1.4 Wave Propagation
In this next example we want to calculate the displacement field ui for any time t > 0 by solving the wave equation:

ρui,tt − σij,j = 0 (1.31)

in a three dimensional block of length L in x0 and x1 direction and height H in x2 direction. ρ is the known
density which may be a function of its location. σij is the stress field which in case of an isotropic, linear elastic
material is given by

σij = λuk,kδij + µ(ui,j + uj,i) (1.32)

where λ and µ are the Lame coefficients and δij denotes the Kronecker symbol. On the boundary the normal stress
is given by

σijnj = 0 (1.33)

for all time t > 0.

Chapter 1. Tutorial: Solving PDEs 21

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

FIGURE 1.7: Input Displacement at Source Point (α = 0.7, t0 = 3, U0 = 1).

Here we are modelling a point source at the point xC in the x0-direction which is a negative pulse of amplitude
U0 followed by the same positive pulse. In mathematical terms we use

u0(xC , t) = U0

√
2

(t− t0)

α
e

1
2−

(t−t0)2

α2 (1.34)

for all t ≥ 0 where α is the width of the pulse and t0 is the time when the pulse changes from negative to positive.
In the simulations we will choose α = 0.3 and t0 = 2 (see Figure 1.7) and apply the source as a constraint in a
sphere of small radius around the point xC .

We use an explicit time integration scheme to calculate the displacement field u at certain time marks t(n),
where t(n) = t(n−1) + h with time step size h > 0. In the following the upper index (n) refers to values at time
t(n). We use the Verlet scheme with constant time step size h which is defined by

u(n) = 2u(n−1) − u(n−2) + h2a(n) (1.35)
(1.36)

for all n = 2, 3, It is designed to solve a system of equations of the form

u,tt = G(u) (1.37)

where one sets a(n) = G(u(n−1)).
In our case a(n) is given by

ρa
(n)
i = σ

(n−1)
ij,j (1.38)

and boundary conditions

σ
(n−1)
ij nj = 0 (1.39)

derived from Equation (1.33) where

σ
(n−1)
ij = λu

(n−1)
k,k δij + µ(u

(n−1)
i,j + u

(n−1)
j,i). (1.40)

22 1.4. Wave Propagation

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5

FIGURE 1.8: Input Acceleration at Source Point (α = 0.7, t0 = 3, U0 = 1).

We also need to apply the constraint

a
(n)
0 (xC , t) = U0

√
(2.)

α2
(4

(t− t0)3

α3
− 6

t− t0
α

)e
1
2−

(t−t0)2

α2 (1.41)

which is derived from equation 1.34 by calculating the second order time derivative (see Figure 1.8). Now we have
converted our problem for displacement, u(n), into a problem for acceleration, a(n), which depends on the solution
at the previous two time steps u(n−1) and u(n−2).

In each time step we have to solve this problem to get the acceleration a(n), and we will use the LinearPDE
class of the esys.escript.linearPDEs package to do so. The general form of the PDE defined through the
LinearPDE class is discussed in Section 4.1. The form which is relevant here is

Dija
(n)
j = −Xij,j . (1.42)

The natural boundary condition
njXij = 0 (1.43)

is used. With u = a(n) we can identify the values to be assigned to D and X:

Dij = ρδij Xij = −σ(n−1)
ij (1.44)

Moreover we need to define the location r where the constraint 1.41 is applied. We will apply the constraint on a
small sphere of radius R around xC (we will use 3% of the width of the domain):

qi(x) =

{
1 where ‖x− xc‖ ≤ R
0 otherwise (1.45)

The following script defines the function wavePropagation which implements the Verlet scheme to solve our
wave propagation problem. The argument domain which is a Domain class object defines the domain of the
problem. h and tend are the time step size and the end time of the simulation. lam, mu and rho are material
properties.

Chapter 1. Tutorial: Solving PDEs 23

def wavePropagation(domain,h,tend,lam,mu,rho, x_c, src_radius, U0):
lists to collect displacement at point source which is returned
to the caller
ts, u_pc0, u_pc1, u_pc2 = [], [], [], []

x=domain.getX()
... open new PDE ...
mypde=LinearPDE(domain)
mypde.getSolverOptions().setSolverMethod(mypde.getSolverOptions().HRZ_LUMPING)
kronecker=identity(mypde.getDim())
dunit=numpy.array([1., 0., 0.]) # defines direction of point source
mypde.setValue(D=kronecker*rho, q=whereNegative(length(x-xc)-src_radius)*dunit)
... set initial values
n=0
for first two time steps
u=Vector(0., Solution(domain))
u_last=Vector(0., Solution(domain))
t=0
define the location of the point source
L=Locator(domain, xc)
find potential at point source
u_pc=L.getValue(u)
print("u at point charge=",u_pc)
ts.append(t)
u_pc0.append(u_pc[0])
u_pc1.append(u_pc[1])
u_pc2.append(u_pc[2])

while t<tend:
t+=h
... get current stress
g=grad(u)
stress=lam*trace(g)*kronecker+mu*(g+transpose(g))
... get new acceleration
amplitude=U0*(4*(t-t0)**3/alpha**3-6*(t-t0)/alpha)*sqrt(2.)/alpha**2 \

*exp(1./2.-(t-t0)**2/alpha**2)
mypde.setValue(X=-stress, r=dunit*amplitude)
a=mypde.getSolution()
... get new displacement ...
u_new=2*u-u_last+h**2*a
... shift displacements
u_last=u
u=u_new
n+=1
print(n,"-th time step, t=",t)
u_pc=L.getValue(u)
print("u at point charge=",u_pc)
save displacements at point source to file for t > 0
ts.append(t)
u_pc0.append(u_pc[0])
u_pc1.append(u_pc[1])
u_pc2.append(u_pc[2])

... save current acceleration in units of gravity and displacements
if n==1 or n%10==0:

saveVTK("./data/usoln.%i.vtu"%(n/10), \
acceleration = length(a)/9.81, \
displacement = length(u), \

tensor = stress, Ux = u[0])

return ts, u_pc0, u_pc1, u_pc2

24 1.4. Wave Propagation

Notice that all coefficients of the PDE which are independent of time t are set outside the while loop. This is for
efficiency reasons since it allows the LinearPDE class to reuse information as much as possible when iterating
over time.

The statement

mypde.getSolverOptions().setSolverMethod(mypde.getSolverOptions().HRZ_LUMPING)

switches on the use of an aggressive approximation of the PDE operator as a diagonal matrix formed from the
coefficient D. The approximation allows, at the cost of additional error, very fast solution of the PDE, see also
Section 4.4.

There are a few new esys.escript functions in this example: grad(u) returns the gradient ui,j of u
(in fact grad(g)[i,j] == ui,j). There are restrictions on the argument of the grad function, for instance
the statement grad(grad(u)) will raise an exception. trace(g) returns the sum of the main diagonal ele-
ments g[k,k] of g and transpose(g) returns the matrix transpose of g (i.e. transpose(g)[i,j] ==
g[j,i]).

We initialize the values of u and u_last to be zero. It is important to initialize both with the solution
FunctionSpace as they have to be seen as solutions of PDEs from previous time steps. In fact, the grad does
not accept arguments with a certain FunctionSpace, for more details see Section 3.2.3.

The Locator class is designed to extract values at a given location (in this case xC) from functions such as
the displacement vector u. Typically Locator is used in the following way:

L=Locator(domain, xc)
u=...
u_pc=L.getValue(u)

The return value u_pc is the value of u at the location xc8. The values are collected in the lists u_pc0, u_pc1
and u_pc2 together with the corresponding time marker in ts. These values are handed back to the caller. Later
we will show ways to access these data.

One of the big advantages of the Verlet scheme is the fact that the problem to be solved in each time step is very
simple and does not involve any spatial derivatives (which is what allows us to use lumping in this simulation).
The problem becomes so simple because we use the stress from the last time step rather than the stress which is
actually present at the current time step. Schemes using this approach are called explicit time integration schemes.
The backward Euler scheme we have used in Chapter 1.3 is an example of an implicit scheme. In this case one uses
the actual status of each variable at a particular time rather than values from previous time steps. This will lead to
a problem which is more expensive to solve, in particular for non-linear cases. Although explicit time integration
schemes are cheap to finalize a single time step, they need significantly smaller time steps than implicit schemes
and can suffer from stability problems. Therefore they require a very careful selection of the time step size h.

An easy, heuristic way of choosing an appropriate time step size is the Courant-Friedrichs-Lewy condition
(CFL condition) which says that within a time step information should not travel further than a cell used in the

discretization scheme. In the case of the wave equation the velocity of a (p-) wave is given as
√

λ+2µ
ρ so one

should choose h from

h =
1

5

√
ρ

λ+ 2µ
∆x (1.46)

where ∆x is the cell diameter. The factor 1
5 is a safety factor considering the heuristics of the formula.

The following script uses the wavePropagation function to solve the wave equation for a point source
located at the bottom face of a block. The width of the block in each direction on the bottom face is 10km (x0 and
x1 directions, i.e. l0 and l1). The variable ne gives the number of elements in x0 and x1 directions. The depth
of the block is aligned with the x2-direction. The depth (l2) of the block in the x2-direction is chosen so that
there are 10 elements, and the magnitude of the depth is chosen such that the elements become cubic. We chose
10 for the number of elements in the x2-direction so that the computation is faster. Brick(n0, n1, n2, l0, l1, l2)
is an esys.finley function which creates a rectangular mesh with n0 × n1 × n2 elements over the brick
[0, l0]× [0, l1]× [0, l2].

from esys.finley import Brick
ne = 32 # number of cells in x_0 and x_1 directions
width = 10000. # length in x_0 and x_1 directions

8In fact, it is the finite element node which is closest to the given position. The usage of Locator is MPI safe.

Chapter 1. Tutorial: Solving PDEs 25

FIGURE 1.9: Selected time steps (n = 11, 22, 32, 36) of a wave propagation over a 10km × 10km × 3.125km block from
a point source initially at (5km, 5km, 0) with time step size h = 0.02083. Color represents the displacement. Here the view is
oriented onto the bottom face.

lam = 3.462e9
mu = 3.462e9
rho = 1154.
tend = 60
U0 = 1. # amplitude of point source
spherical source at middle of bottom face
xc=[width/2.,width/2.,0.]
define small radius around point xc
src_radius = 0.03*width
print("src_radius =",src_radius)
mydomain=Brick(ne, ne, 10, l0=width, l1=width, l2=10.*width/32.)
h=(1./5.)*inf(sqrt(rho/(lam+2*mu))*inf(domain.getSize())
print("time step size =",h)
ts, u_pc0, u_pc1, u_pc2 = \

wavePropagation(mydomain, h, tend, lam, mu, rho, xc, src_radius, U0)

The domain.getSize() function returns the local element size ∆x. Using inf ensures that the CFL condi-
tion 1.46 holds everywhere in the domain.

The script is available as wave.py in the example directory . To visualize the results from the data directory:

mayavi2 -d usoln.1.vtu -m SurfaceMap

You can rotate this figure by clicking on it with the mouse and moving it around. Again use Configure Data to
move backward and forward in time, and also to choose the results (acceleration, displacement or ux) by using
Select Scalar. Figure 1.9 shows the results for the displacement at various time steps.

It remains to show some possibilities to inspect the collected data u_pc0, u_pc1 and u_pc2. One way is
to write the data to a file and then use an external package such as gnuplot[38], Excel or OpenOffice.org Calc
to read the data for further analysis. The following code shows one possible way to write the data to the file
./data/U_pc.csv:

u_pc_data=FileWriter('./data/U_pc.csv')

26 1.4. Wave Propagation

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 2 4 6 8 10

U_x
U_y
U_z

FIGURE 1.10: Amplitude at Point source from the Simulation

for i in xrange(len(ts)):
u_pc_data.write("%f %f %f %f\n"%(ts[i],u_pc0[i],u_pc1[i],u_pc2[i]))

u_pc_data.close()

The file U_pc.csv stores 4 columns of data: t, ux, uy, uz respectively, where ux, uy, uz are the x0, x1, x2 com-
ponents of the displacement vector u at the point source. These can be plotted easily using any plotting package.
In gnuplot[38]the command:

plot 'U_pc.csv' u 1:2 title 'U_x' w l lw 2, 'U_pc.csv' u 1:3 title 'U_y' w l
lw 2, 'U_pc.csv' u 1:4 title 'U_z' w l lw 2

will reproduce Figure 1.10 (As expected this is identical to the input signal shown in Figure 1.7). It is pointed
out that we are not using the standard python open to write to the file U_pc.csv as it is not safe when running
esys.escript under MPI, see Chapter 2 for more details.

Alternatively, one can implement plotting the results at run time rather than in a post-processing step. This
avoids the generation of an intermediate data file. In escript the preferred way of creating 2D plots of time depen-
dent data is matplotlib. The following script creates the plot and writes it into the file u_pc.png in the PNG
image format:

import matplotlib.pyplot as plt
if getMPIRankWorld() == 0:

plt.title("Displacement at Point Source")
plt.plot(ts, u_pc0, '-', label="x_0", linewidth=1)
plt.plot(ts, u_pc1, '-', label="x_1", linewidth=1)
plt.plot(ts, u_pc2, '-', label="x_2", linewidth=1)
plt.xlabel('time')
plt.ylabel('displacement')
plt.legend()
plt.savefig('u_pc.png', format='png')

You can add plt.show() to create an interactive browser window. Notice that by checking the condition
getMPIRankWorld()==0 the plot is generated on one processor only (in this case the rank 0 processor) when
run under MPI.

Chapter 1. Tutorial: Solving PDEs 27

Both options for processing the point source data are include in the example file wave.py. There are other
options available to process these data in particular through the SciPy[6] package, e.g. Fourier transformations. It
is beyond the scope of this user’s guide to document the usage of SciPy[6] for time series analysis but it is highly
recommended that users use SciPy[6] for any further data processing.

1.5 Elastic Deformation
In this section we want to examine the deformation of a linear elastic body caused by expansion through a heat
distribution. We want a displacement field ui which solves the momentum equation:

−σij,j = 0 (1.47)

where the stress σ is given by

σij = λuk,kδij + µ(ui,j + uj,i)− (λ+
2

3
µ) α (T − Tref)δij . (1.48)

In this formula λ and µ are the Lame coefficients, α is the temperature expansion coefficient, T is the temperature
distribution and Tref a reference temperature. Note that Equation (1.47) is similar to Equation (1.31) introduced
in Section 1.4 but the inertia term ρui,tt has been dropped as we assume a static scenario here. Moreover, in
comparison to the Equation (1.32) definition of stress σ in Equation (1.48) an extra term is introduced to bring in
stress due to volume changes through temperature dependent expansion.

Our domain is the unit cube

Ω = {(xi)|0 ≤ xi ≤ 1} (1.49)

On the boundary the normal stress component is set to zero

σijnj = 0 (1.50)

and on the face with xi = 0 we set the i-th component of the displacement to 0:

ui(x) = 0 where xi = 0 (1.51)

For the temperature distribution we use

T (x) = T0e
−β‖x−xc‖ (1.52)

with a given positive constant β and location xc in the domain.
When we insert Equation (1.48) we get a second order system of linear PDEs for the displacements u which is

called the Lame equation. We want to solve this using the LinearPDE class. For a system of PDEs and a solution
with several components the LinearPDE class takes PDEs of the form

− (Aijkluk,l),j = −Xij,j . (1.53)

A is a rank-4 Data object and X is a rank-2 Data object. We show here the coefficients relevant for the problem
we are trying to solve. The full form is given in Equation (4.4). The natural boundary conditions take the form

njAijkluk,l = njXij (1.54)

while constraints take the form
ui = ri where qi > 0 (1.55)

r and q are each a rank-1 Data object. We can easily identify the coefficients in Equation (1.53):

Aijkl = λδijδkl + µ(δikδjl + δilδjk) (1.56)

Xij = (λ+
2

3
µ) α (T − Tref)δij (1.57)

(1.58)

28 1.5. Elastic Deformation

The characteristic function q defining the locations and components where constraints are set is given by:

qi(x) =

{
1 xi = 0
0 otherwise (1.59)

Under the assumption that λ, µ, β and Tref are constant we may use Yi = (λ + 2
3µ) α Ti. However, this choice

would lead to a different natural boundary condition which does not set the normal stress component as defined in
Equation (1.48) to zero.

Analogously to the concept of symmetry for a single PDE, we call the PDE defined by Equation (1.53) sym-
metric if

Aijkl = Aklij (1.60)
(1.61)

This Lame equation is in fact symmetric, given the difference in D and d as compared to the scalar case. The
LinearPDE class is notified of this fact by calling its setSymmetryOn method.

After we have solved the Lame equation we want to analyse the actual stress distribution. Typically the von-
Mises stress defined by

σmises =

√
1

2
((σ00 − σ11)2 + (σ11 − σ22)2 + (σ22 − σ00)2) + 3(σ2

01 + σ2
12 + σ2

20) (1.62)

is used to detect material damage. Here we want to calculate the von-Mises stress and write it to a file for visual-
ization.

The following script, which is available in heatedblock.py in the example directory, solves the Lame
equation and writes the displacements and the von-Mises stress into a file deform.vtu in the VTK file format:

from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.finley import Brick
from esys.weipa import saveVTK
#... set some parameters ...
lam=1.
mu=0.1
alpha=1.e-6
xc=[0.3, 0.3, 1.]
beta=8.
T_ref=0.
T_0=1.
#... generate domain ...
mydomain = Brick(l0=1., l1=1., l2=1., n0=10, n1=10, n2=10)
x=mydomain.getX()
#... set temperature ...
T=T_0*exp(-beta*length(x-xc))
#... open symmetric PDE ...
mypde=LinearPDE(mydomain)
mypde.setSymmetryOn()
#... set coefficients ...
C=Tensor4(0., Function(mydomain))
for i in range(mydomain.getDim()):

for j in range(mydomain.getDim()):
C[i,i,j,j]+=lam
C[i,j,i,j]+=mu
C[i,j,j,i]+=mu

msk=whereZero(x[0])*[1.,0.,0.] \
+whereZero(x[1])*[0.,1.,0.] \
+whereZero(x[2])*[0.,0.,1.]

sigma0=(lam+2./3.*mu)*alpha*(T-T_ref)*kronecker(mydomain)
mypde.setValue(A=C, X=sigma0, q=msk)
#... solve pde ...
u=mypde.getSolution()

Chapter 1. Tutorial: Solving PDEs 29

FIGURE 1.11: von-Mises Stress and Displacement Vectors

#... calculate von-Mises stress
g=grad(u)
sigma=mu*(g+transpose(g))+lam*trace(g)*kronecker(mydomain)-sigma0
sigma_mises=sqrt(((sigma[0,0]-sigma[1,1])**2+(sigma[1,1]-sigma[2,2])**2+ \

(sigma[2,2]-sigma[0,0])**2)/2. \
+3*(sigma[0,1]**2 + sigma[1,2]**2 + sigma[2,0]**2))

#... output ...
saveVTK("deform.vtu", disp=u, stress=sigma_mises)

Finally, the results can be visualized by calling

mayavi2 -d deform.vtu -f CellToPointData -m VelocityVector -m SurfaceMap

Note that the filter CellToPointData is applied to create a smoother representation of the von-Mises stress. Fig-
ure 1.11 shows the results where the colour of the vertical planes represent the von-Mises stress and a horizontal
plane of arrows shows the displacements vectors.

1.6 Stokes Flow
In this section we will look at Computational Fluid Dynamics (CFD) to simulate the flow of fluid under the
influence of gravity. The StokesProblemCartesian class will be used to calculate the velocity and pressure
of the fluid. The fluid dynamics is governed by the Stokes equation. In geophysical problems the velocity of fluids
is low; that is, the inertial forces are small compared with the viscous forces, therefore the inertial terms in the
Navier-Stokes equations can be ignored. For a body force f , the governing equations are given by:

∇ · (η(∇~v +∇T~v))−∇p = −f, (1.63)

with the incompressibility condition
∇ · ~v = 0. (1.64)

where p, η and f are the pressure, viscosity and body forces, respectively. Alternatively, the Stokes equations can
be represented in Einstein summation tensor notation (compact notation):

− (η(vi,j + vj,i)),j −p,i = fi, (1.65)

with the incompressibility condition
− vi,i = 0. (1.66)

30 1.6. Stokes Flow

The subscript comma i denotes the derivative of the function with respect to xi. The body force f in Equation (1.65)
is the gravity acting in the x3 direction and is given as f = −gρδi3. The Stokes equation is a saddle point problem,
and can be solved using a Uzawa scheme. A class called StokesProblemCartesian in esys.escript
can be used to solve for velocity and pressure. A more detailed discussion of the class can be found in Chapter
6. In order to keep numerical stability and satisfy the Courant-Friedrichs-Lewy condition (CFL condition) , the
time-step size needs to be kept below a certain value. The Courant number is defined as:

C =
vδt

h
(1.67)

where δt, v, and h are the time-step, velocity, and the width of an element in the mesh, respectively. The velocity
v may be chosen as the maximum velocity in the domain. In this problem the time-step size was calculated for a
Courant number of 0.4.

The following python script is the setup for the Stokes flow simulation, and is available in the example directory
as fluid.py. It starts off by importing the classes, such as the StokesProblemCartesian class, for solving
the Stokes equation and the incompressibility condition for velocity and pressure. Physical constants are defined
for the viscosity and density of the fluid, along with the acceleration due to gravity. Solver settings are set for the
maximum iterations and tolerance; the default solver used is PCG. The mesh is defined as a rectangle, to represent
the body of fluid. We are using 20× 20 elements with piecewise linear elements for the pressure and for velocity
but the elements are subdivided for the velocity. This approach is called macro elements and needs to be applied
to make sure that the discretized problem has a unique solution, see [12] for details9. The fact that pressure and
velocity are represented in different ways is expressed by

velocity=Vector(0., Solution(mesh))
pressure=Scalar(0., ReducedSolution(mesh))

The gravitational force is calculated based on the fluid density and the acceleration due to gravity. The boundary
conditions are set for a slip condition at the base and the left face of the domain. At the base fluid movement in the
x0-direction is free, but fixed in the x1-direction, and similarly at the left face fluid movement in the x1-direction
is free but fixed in the x0-direction. An instance of the StokesProblemCartesian class is defined for the
given computational mesh, and the solver tolerance set. Inside the while loop, the boundary conditions, viscosity
and body force are initialized. The Stokes equation is then solved for velocity and pressure. The time-step size is
calculated based on the Courant-Friedrichs-Lewy condition (CFL condition), to ensure stable solutions. The nodes
in the mesh are then displaced based on the current velocity and time-step size, to move the body of fluid. The
output for the simulation of velocity and pressure is then saved to a file for visualization.

from esys.escript import *
import esys.finley
from esys.escript.linearPDEs import LinearPDE
from esys.escript.models import StokesProblemCartesian
from esys.weipa import saveVTK

physical constants
eta=1.
rho=100.
g=10.

solver settings
tolerance=1.0e-4
max_iter=200
t_end=50
t=0.0
time=0
verbose=True

define mesh
H=2.
L=1.

9Alternatively, one can use second order elements for the velocity and first order elements for pressure on the same element. You can set
order=2 in esys.finley.Rectangle.

Chapter 1. Tutorial: Solving PDEs 31

W=1.
mesh = esys.finley.Rectangle(l0=L, l1=H, order=-1, n0=20, n1=20)
coordinates = mesh.getX()

gravitational force
Y=Vector(0., Function(mesh))
Y[1] = -rho*g

element spacing
h = Lsup(mesh.getSize())

boundary conditions for slip at base
boundary_cond=whereZero(coordinates[1])*[0.0,1.0]+whereZero(coordinates[0])*[1.0,0.0]

velocity and pressure vectors
velocity=Vector(0., Solution(mesh))
pressure=Scalar(0., ReducedSolution(mesh))

Stokes Cartesian
solution=StokesProblemCartesian(mesh)
solution.setTolerance(tolerance)

while t <= t_end:
print(" ----- Time step = %s -----"%t)
print("Time = %s seconds"%time)

solution.initialize(fixed_u_mask=boundary_cond, eta=eta, f=Y)
velocity,pressure=solution.solve(velocity,pressure,max_iter=max_iter, \

verbose=verbose)

print("Max velocity =", Lsup(velocity), "m/s")

CFL condition
dt=0.4*h/(Lsup(velocity))
print("dt =", dt)

displace the mesh
displacement = velocity * dt
coordinates = mesh.getX()
newx=interpolate(coordinates + displacement, ContinuousFunction(mesh))
mesh.setX(newx)

time += dt

vel_mag = length(velocity)

#save velocity and pressure output
saveVTK("vel.%2.2i.vtu"%t, vel=vel_mag, vec=velocity, pressure=pressure)
t = t+1.

The results from the simulation can be viewed with mayavi, by executing the following command:

mayavi2 -d vel.00.vtu -m SurfaceMap

Colour-coded scalar maps and velocity flow fields can be viewed by selecting them in the menu. The time-steps
can be swept through to view a movie of the simulation. Figure 1.12 shows the simulation output. Velocity vectors
and a colour map for pressure are shown. As the time progresses the body of fluid falls under the influence of
gravity. The view used here to track the fluid is the Lagrangian view, since the mesh moves with the fluid. One of
the disadvantages of using the Lagrangian view is that the elements in the mesh become severely distorted after a
period of time and introduce solver errors. To get around this limitation the Level Set Method can be used, with
the Eulerian point of view for a fixed mesh.

32 1.6. Stokes Flow

(a) t=1 (b) t=20 (c) t=30

(d) t=40 (e) t=50 (f) t=60

FIGURE 1.12: Simulation output for Stokes flow. Fluid body starts off as a rectangular shape, then progresses downwards
under the influence of gravity. Colour coded distribution represents the scalar values for pressure. Velocity vectors are displayed
at each node in the mesh to show the flow field. Computational mesh used was 20×20 elements.

1.7 Slip on a Fault
In this example we illustrate how to calculate the stress distribution around a fault in the Earth’s crust caused by a
slip through an earthquake.

To simplify the presentation we assume a simple domain Ω = [0, 1]2 with a vertical fault in its center as
illustrated in Figure 1.13. We assume that the slip distribution si on the fault is known. We want to calculate the
distribution of the displacements ui and stress σij in the domain. Further, we assume an isotropic, linear elastic
material model of the form

σij = λuk,kδij + µ(ui,j + uj,i) (1.68)

where λ and µ are the Lame coefficients and δij denotes the Kronecker symbol. On the boundary the normal stress
is given by

σijnj = 0 (1.69)

and normal displacements are set to zero:

uini = 0 (1.70)

The stress needs to fulfill the momentum equation

−σij,j = 0 (1.71)

This problem is very similar to the elastic deformation problem presented in Section 1.5. However, we need to
address an additional challenge: the displacement ui is in fact discontinuous across the fault, but we are in the

Chapter 1. Tutorial: Solving PDEs 33

Fault

(0.5, 0.75)

(0.5, 0.25)

(1, 1)

(0, 0)

FIGURE 1.13: Domain Ω = [0, 1]2 with a vertical fault of length 0.5.

lucky situation that we know the jump of the displacements across the fault. This is in fact the given slip si. So we
can split the total distribution ui into a component vi which is continuous across the fault and the known slip si

ui = vi +
1

2
s±i (1.72)

where s± = swhen right of the fault and s± = −swhen left of the fault. We assume that s± = 0 when sufficiently
away from the fault.

We insert this into the stress definition in Equation (1.68)

σij = σcij +
1

2
σsij (1.73)

with

σcij = λvk,kδij + µ(vi,j + vj,i) (1.74)

and

σsij = λs±k,kδij + µ(s±i,j + s±j,i). (1.75)

In fact, σsij defines a stress jump across the fault. An easy way to construct this function is to use a function χ
which is 1 on the right and −1 on the left side from the fault. One can then set

σsij = χ · (λsk,kδij + µ(si,j + sj,i)) (1.76)

assuming that s is extended by zero away from the fault. After inserting Equation (1.73) into (1.71) we get the
differential equation

−σcij,j =
1

2
σsij,j (1.77)

Together with the definition (1.74) we have a differential equation for the continuous function vi. Notice that the
boundary condition (1.70) and (1.69) transfer to vi and σcij as s is zero away from the fault. In Section 1.5 we have
discussed how this problem is solved using the LinearPDE class. We refer to this section for further details.

To define the fault we use the FaultSystem class introduced in Section 6.4. The following statements define
a fault system fs and add the fault 1 to the system:

34 1.7. Slip on a Fault

fs=FaultSystem(dim=2)
fs.addFault(fs.addFault(V0=[0.5,0.25], strikes=90*DEG, ls=0.5, tag=1)

The fault added starts at point (0.5, 0.25) has length 0.5 and points north. The main purpose of the FaultSystem
class is to define a parameterization of the fault using a local coordinate system. One can inquire the class to get
the range used to parameterize a fault.

p0,p1 = fs.getW0Range(tag=1)

Typically p0 is equal to zero while p1 is equal to the length of the fault. The parameterization is given as a
mapping from a set of local coordinates onto a parameter range (in our case the range p0 to p1). For instance, to
map the entire domain mydomain onto the fault one can use

x = mydomain.getX()
p,m = fs.getParametrization(x, tag=1)

Of course there is the problem that not all locations are on the fault. For those locations which are on the fault m is
set to 1, otherwise 0 is used. So on return the values of p define the value of the fault parameterization (typically
the distance from the starting point of the fault along the fault) where m is positive. On all other locations the value
of p is undefined. Now p can be used to define a slip distribution on the fault via

s = m*(p-p0)*(p1-p)/((p1-p0)/2)**2*slip_max*[0.,1.]

Notice the factor m which ensures that s is zero away from the fault. It is important that the slip is zero at the ends
of the faults.

We can now put all components together to get the script:

from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.escript.models import FaultSystem
from esys.finley import Rectangle
from esys.weipa import saveVTK
from esys.escript.unitsSI import DEG

#... set some parameters ...
lam=1.
mu=1
slip_max=1.
mydomain = Rectangle(l0=1.,l1=1.,n0=16, n1=16) # n1 needs to be a multiple of 4!
.. create the fault system
fs=FaultSystem(dim=2)
fs.addFault(V0=[0.5,0.25], strikes=90*DEG, ls=0.5, tag=1)
... create a slip distribution on the fault
p, m=fs.getParametrization(mydomain.getX(), tag=1)
p0,p1= fs.getW0Range(tag=1)
s=m*(p-p0)*(p1-p)/((p1-p0)/2)**2*slip_max*[0.,1.]
... calculate stress according to slip:
D=symmetric(grad(s))
chi, d=fs.getSideAndDistance(D.getFunctionSpace().getX(), tag=1)
sigma_s=(mu*D+lam*trace(D)*kronecker(mydomain))*chi
#... open symmetric PDE ...
mypde=LinearPDE(mydomain)
mypde.setSymmetryOn()
#... set coefficients ...
C=Tensor4(0., Function(mydomain))
for i in range(mydomain.getDim()):

for j in range(mydomain.getDim()):
C[i,i,j,j]+=lam
C[j,i,j,i]+=mu
C[j,i,i,j]+=mu

... fix displacement in normal direction
x=mydomain.getX()
msk=whereZero(x[0])*[1.,0.] + whereZero(x[0]-1.)*[1.,0.] \

+whereZero(x[1])*[0.,1.] + whereZero(x[1]-1.)*[0.,1.]

Chapter 1. Tutorial: Solving PDEs 35

mypde.setValue(A=C, X=-0.5*sigma_s, q=msk)
#... solve pde ...
mypde.getSolverOptions().setVerbosityOn()
v=mypde.getSolution()
.. write the displacement to file:
D=symmetric(grad(v))
sigma=(mu*D+lam*trace(D)*kronecker(mydomain))+0.5*sigma_s
saveVTK("slip.vtu", disp=v+0.5*chi*s, stress=sigma)

The script creates the file slip.vtu which contains the total displacements and stress. These values are stored
as cell-centered data. See Figure 1.14 for a visualization of the result.

FIGURE 1.14: Total Displacement after the slip event

36 1.7. Slip on a Fault

CHAPTER
TWO

Execution of an escript Script

2.1 Overview
A typical way of starting your escript script myscript.py is with the run-escript command1. This com-
mand was renamed from escript (used in previous releases) to avoid clashing with an unrelated program in-
stalled by default on some systems. Most 3.1 releases2 of esys.escript allow either run-escript or
escript to be used but the latter name will be removed in future releases. To run your script, issue3

run-escript myscript.py

as already shown in Section 1.2. In some cases it can be useful to work interactively, e.g. when debugging a script,
with the command

run-escript -i myscript.py

This will execute myscript.py and when it completes (or an error occurs), a python prompt will be provided.
To leave the prompt press Control-d (Control-z on MS Windows).

To run the script using four threads (e.g. if you have a multi-core processor) you can use

run-escript -t 4 myscript.py

This requires escript to be compiled with OpenMP [25] support. To run the script using MPI [20] with 8 processes
use

run-escript -p 8 myscript.py

If the processors which are used are multi-core processors or you are working on a multi-processor shared memory
architecture you can use threading in addition to MPI. For instance to run 8 MPI processes with 4 threads each,
use the command

run-escript -p 8 -t 4 myscript.py

In the case of a supercomputer or a cluster, you may wish to distribute the workload over a number of nodes4. For
example, to use 8 nodes with 4 MPI processes per node, write

run-escript -n 8 -p 4 myscript.py

Since threading has some performance advantages over processes, you may specify a number of threads as well:

run-escript -n 8 -p 4 -t 2 myscript.py

This runs the script on 8 nodes, with 4 processes per node and 2 threads per process.
1The run-escript launcher is not supported under MS Windows yet.
2i.e. not MS Windows or Ubuntu 9.10
3For this discussion, it is assumed that run-escript is included in your PATH environment. See the installation guide for details.
4For simplicity, we will use the term node to refer to either a node in a supercomputer or an individual machine in a cluster

Chapter 2. Execution of an escript Script 37

2.2 Options

The general form of the run-escript launcher is as follows:
run-escript [-n nn] [-p np] [-t nt] [-f hostfile] [-x] [-V] [-e] [-h] [-v] [-o] [-c] [-i] [-b

] [file] [ARGS]
where file is the name of a script and ARGS are the arguments to be passed to the script. The run-escript

program will import your current environment variables. If no file is given, then you will be presented with a
regular python prompt (see -i for restrictions).

The options have the following meaning:

-n nn the number of compute nodes nn to be used. The total number of process being used is nn ·ns. This option
overwrites the value of the ESCRIPT NUM NODES environment variable. If a hostfile is given (see
below), the number of nodes needs to match the number of hosts given in that file. If nn > 1 but escript
is not compiled for MPI, a warning is printed but execution is continued with nn = 1. If -n is not set the
number of hosts in the host file is used. The default value is 1.

-p np the number of MPI processes per node. The total number of processes to be used is nn · np. This option
overwrites the value of the ESCRIPT NUM PROCS environment variable. If np > 1 but escript is not
compiled for MPI, a warning is printed but execution is continued with np = 1. The default value is 1.

-t nt the number of threads used per process. The option overwrites the value of the ESCRIPT NUM THREADS
environment variable. If nt > 1 but escript is not compiled for OpenMP , a warning is printed but execution
is continued with nt = 1. The default value is 1.

-f hostfile the name of a file with a list of host names. Some systems require to specify the addresses or names of
the compute nodes where MPI processes should be spawned. These addresses or names of the compute
nodes are listed in the file with the name hostfile. If -n is set, the number of different hosts defined in
hostfile must be equal to the number of requested compute nodes nn. The option overwrites the value
of the ESCRIPT HOSTFILE environment variable. By default no host file is used.

-c prints information about the settings used to compile escript and stops execution.

-V prints the version of escript and stops execution.

-h prints a help message and stops execution.

-i executes the script file and switches to interactive mode after the execution is finished or an exception has
occurred. This option is useful for debugging a script. The option cannot be used if more than one process
(nn · np > 1) is used.

-b do not invoke python. This is used to run non-python programs within an environment set for escript.

-e shows additional environment variables and commands used to set up the escript environment. This option
is useful if users wish to execute scripts without using the run-escript command.

-o enables the redirection of messages printed by processors with MPI rank greater than zero to the files
stdout_r.out and stderr_r.out where r is the rank of the processor. The option overwrites the
value of the ESCRIPT STDFILES environment variable.

-v prints some diagnostic information.

2.2.1 Notes

• Make sure that mpiexec is in your PATH if applicable.

• For MPICH and INTELMPI and for the case a hostfile is present run-escript will start the mpd daemon
before execution.

38 2.2. Options

2.3 Input and Output

When MPI is used on more than one process (nn · np > 1) no input from the standard input is accepted. Stan-
dard output on any process other than the master process (rank = 0) will also not be available. Error output
from any processor will be redirected to the node where run-escript has been invoked. If the -o option or
ESCRIPT STDFILES is set5, then the standard and error output from any process other than the master process
will be written to files of the names stdout_r.out and stderr_r.out (where r is the rank of the process).

If files are created or read by individual MPI processes with information local to the process (e.g. in the dump
function) and more than one process is used (nn · np > 1), the MPI process rank is appended to the file names.
This is to avoid problems if processes are using a shared file system. Files which collect data that are global for all
MPI processors are created by the process with MPI rank 0 only. Users should keep in mind that if the file system
is not shared among the processes, then a file containing global information which is read by all processors needs
to be copied to the local file system(s) before run-escript is invoked.

2.4 Hints for MPI Programming

In general a script based on the esys.escript module does not require modifications to run under MPI. How-
ever, one needs to be careful if other modules are used.

When MPI is used on more than one process (nn ·np > 1) the user needs to keep in mind that several copies of
his script are executed at the same time6 while data exchange is performed through the esys.escript module.

This has three main implications:

1. most arguments (Data excluded) should have the same values on all processors, e.g. int, float, str
and numpy parameters.

2. the same operations will be called on all processors.

3. different processors may store different amounts of information.

With a few exceptions7, values of types int, float, str and numpy returned by esys.escript will
have the same value on all processors. If values produced by other modules are used as arguments, the user has
to make sure that the argument values are identical on all processors. For instance, the usage of a random number
generator to create argument values bears the risk that the value may depend on the processor.

Some operations in esys.escript require communication with all processors executing the job. It is
not always obvious which operations these are. For example, Lsup returns the largest value on all processors.
getValue on Locator may refer to a value stored on another processor. For this reason it is better if scripts
do not have conditional operations (which manipulate data) based on which processor the script is on. Crashing or
hanging scripts can be an indication that this has happened.

It is not always possible to divide data evenly amongst processors. In fact some processors might not have any
data at all. Try to avoid writing scripts which iterate over data points, instead try to describe the operation you wish
to perform as a whole.

Special attention is required when using files on more than one processor as several processors access the file
at the same time. Opening a file for reading is safe, however the user has to make sure that the variables which are
set from reading data from files are identical on all processors.

When writing data to a file it is important that only one processor is writing to the file at any time. As all
values in esys.escript are global it is sufficient to write values on the processor with MPI rank 0 only. The
FileWriter class provides a convenient way to write global data to a simple file. The following script writes to
the file test.txt on the processor with rank 0 only:

from esys.escript import FileWriter
f = FileWriter('test.txt')
f.write('test message')
f.close()

5That is, it has a non-empty value.
6In the case of OpenMP only one copy is running but escript temporarily spawns threads.
7getTupleForDataPoint

Chapter 2. Execution of an escript Script 39

We strongly recommend using this class rather than python’s built-in open function as it will guarantee a script
which will run in single processor mode as well as under MPI.

If the situation occurs that one of the processors throws an exception, for instance when opening a file for
writing fails, the other processors are not automatically made aware of this since MPI does not handle exceptions.
However, MPI will still terminate the other processes but may not inform the user of the reason in an obvious way.
The user needs to inspect the error output files to identify the exception.

2.5 Lazy Evaluation
Escript now supports lazy evaluation [10]. Lazy evaluation is when expressions are not evaluated until they are
actually needed. When applied to suitable problems, it can reduce both the memory and CPU time required to
perform a simulation. This implementation is designed to be as transparent as possible; so significant alterations
to scripts are not required.

How to use it
To have lazy evaluation applied automatically, put the following command in your script after the imports.

from esys.escript import setEscriptParamInt
setEscriptParamInt('AUTOLAZY', 1)

To get greater benefit, some fine tuning may be required. If your simulation involves iterating for a number of
time steps, you will probably have some state variables which are updated in each iteration based on their value in
the previous iteration. For example,

x=f(x_previous)
y=g(x)
z=h(y, x, ...)

could be modified to:

x=f(x_previous)
resolve(x)
y=g(x)
z=h(y, x, ...)

The resolve command forces x to be evaluated immediately.

When to use it
We believe that problems involving large domains and complicated expressions will benefit most from lazy evalu-
ation. In cases where lazy evaluation does provide a benefit, larger domains should give a greater benefit. If you
are uncertain, try running a test on a smaller domain first.

40 2.5. Lazy Evaluation

CHAPTER
THREE

The esys.escript Module

3.1 Concepts
esys.escript is a python module that allows you to represent the values of a function at points in a Domain
in such a way that the function will be useful for the Finite Element Method (FEM) simulation. It also provides
what we call a function space that describes how the data is used in the simulation. Stored along with the data is
information about the elements and nodes which will be used by esys.finley.

3.1.1 Function spaces
In order to understand what we mean by the term ’function space’, consider that the solution of a partial differ-
ential equation (PDE) is a function on a domain Ω. When solving a PDE using FEM, the solution is piecewise-
differentiable but, in general, its gradient is discontinuous. To reflect these different degrees of smoothness, differ-
ent function spaces are used. For instance, in FEM, the displacement field is represented by its values at the nodes
of the mesh, and so is continuous. The strain, which is the symmetric part of the gradient of the displacement field,
is stored on the element centers, and so is considered to be discontinuous.

A function space is described by a FunctionSpace object. The following statement generates the object
solution_space which is a FunctionSpace object and provides access to the function space of PDE solu-
tions on the Domain mydomain:

solution_space=Solution(mydomain)

The following generators for function spaces on a Domain mydomain are commonly used:

• Solution(mydomain): solutions of a PDE

• ReducedSolution(mydomain): solutions of a PDE with a reduced smoothness requirement, e.g. us-
ing a lower order approximation on the same element or using macro elements

• ContinuousFunction(mydomain): continuous functions, e.g. a temperature distribution

• Function(mydomain): general functions which are not necessarily continuous, e.g. a stress field

• FunctionOnBoundary(mydomain): functions on the boundary of the domain, e.g. a surface pressure

• FunctionOnContact0(mydomain): functions on side 0 of the discontinuity

• FunctionOnContact1(mydomain): functions on side 1 of the discontinuity

In some cases under-integration is used. For these cases the user may use a FunctionSpace from the following
list:

• ReducedFunction(mydomain)

• ReducedFunctionOnBoundary(mydomain)

Chapter 3. The esys.escript Module 41

Reduced

ContinuousFunction()

ContinuousFunction() Solution()

ReducedSolution()

FunctionOnBoundary() Function()

FunctionOnContactZero() FunctionOnContactOne()

FIGURE 3.1: Dependency of function spaces in esys.finley. An arrow indicates that a function in the
FunctionSpace at the starting point can be interpolated to the FunctionSpace of the arrow target. All function spaces
above the dotted line can be interpolated to any of the function spaces below the line. See also Section 4.2.

• ReducedFunctionOnContact0(mydomain)

• ReducedFunctionOnContact1(mydomain)

In comparison to the corresponding full version they use a reduced number of integration nodes (typically one
only) to represent values.

The reduced smoothness for a PDE solution is often used to fulfill the Ladyzhenskaya-Babuska-Brezzi con-
dition [12] when solving saddle point problems, e.g. the Stokes equation. A discontinuity is a region within the
domain across which functions may be discontinuous. The location of a discontinuity is defined in the Domain
object. Figure 3.1 shows the dependency between the types of function spaces in esys.finley (other libraries
may have different relationships).

The solution of a PDE is a continuous function. Any continuous function can be seen as a general function
on the domain and can be restricted to the boundary as well as to one side of a discontinuity (the result will be
different depending on which side is chosen). Functions on any side of the discontinuity can be seen as a function
on the corresponding other side.

A function on the boundary or on one side of the discontinuity cannot be seen as a general function on the
domain as there are no values defined for the interior. For most PDE solver libraries the space of the solution and
continuous functions is identical, however in some cases, for example when periodic boundary conditions are used
in esys.finley, a solution fulfills periodic boundary conditions while a continuous function does not have to
be periodic.

The concept of function spaces describes the properties of functions and allows abstraction from the actual
representation of the function in the context of a particular application. For instance, in the FEM context a function
of the general FunctionSpace type (written as Function() in Figure 3.1) is usually represented by its values
at the element center, but in a finite difference scheme the edge midpoint of cells is preferred. By changing its
function space you can use the same function in a Finite Difference scheme instead of Finite Element scheme.
Changing the function space of a particular function will typically lead to a change of its representation. So, when
seen as a general function, a continuous function which is typically represented by its values on the nodes of the
FEM mesh or finite difference grid must be interpolated to the element centers or the cell edges, respectively.
Interpolation happens automatically in esys.escript whenever it is required. The user needs to be aware that
an interpolation is not always possible, see Figure 3.1 for esys.finley. An alternative approach to change the
representation (=FunctionSpace) is projection, see Section 4.2.

42 3.1. Concepts

3.1.2 Data Objects
In esys.escript the class that stores these functions is called Data. The function is represented through
its values on data sample points where the data sample points are chosen according to the function space of the
function. Data class objects are used to define the coefficients of the PDEs to be solved by a PDE solver library
and also to store the solutions of the PDE.

The values of the function have a rank which gives the number of indices, and a shape defining the range of
each index. The rank in esys.escript is limited to the range 0 through 4 and it is assumed that the rank and
shape is the same for all data sample points. The shape of a Data object is a tuple (list) s of integers. The length
of s is the rank of the Data object and the i-th index ranges between 0 and s[i]− 1. For instance, a stress field
has rank 2 and shape (d, d) where d is the spatial dimension. The following statement creates the Data object
mydat representing a continuous function with values of shape (2, 3) and rank 2:

mydat=Data(value=1, what=ContinuousFunction(myDomain), shape=(2,3))

The initial value is the constant 1 for all data sample points and all components.
Data objects can also be created from any numpy array or any object, such as a list of floating point num-

bers, that can be converted into a numpy.ndarray [5]. The following two statements create objects which are
equivalent to mydat:

mydat1=Data(value=numpy.ones((2,3)), what=ContinuousFunction(myDomain))
mydat2=Data(value=[[1,1], [1,1], [1,1]], what=ContinuousFunction(myDomain))

In the first case the initial value is numpy.ones((2,3)) which generates a 2 × 3 matrix as an instance of
numpy.ndarray filled with ones. The shape of the created Data object is taken from the shape of the array.
In the second case, the creator converts the initial value, which is a list of lists, into a numpy.ndarray before
creating the actual Data object.

For convenience esys.escript provides creators for the most common types of Data objects in the fol-
lowing forms (d defines the spatial dimension):

• Scalar(0, Function(mydomain)) is the same as Data(0, Function(myDomain),(,))
(each value is a scalar), e.g. a temperature field

• Vector(0, Function(mydomain)) is the same as Data(0, Function(myDomain),(d))
(each value is a vector), e.g. a velocity field

• Tensor(0, Function(mydomain)) equals Data(0, Function(myDomain), (d,d)), e.g.
a stress field

• Tensor4(0,Function(mydomain)) equals Data(0,Function(myDomain), (d,d,d,d)),
e.g. a Hook tensor field

Here the initial value is 0 but any object that can be converted into a numpy.ndarray and whose shape is
consistent with shape of the Data object to be created can be used as the initial value.

Data objects can be manipulated by applying unary operations (e.g. cos, sin, log), and they can be combined
point-wise by applying arithmetic operations (e.g. +, - ,* , /). We emphasize that esys.escript itself does
not handle any spatial dependencies as it does not know how values are interpreted by the processing PDE solver
library. However esys.escript invokes interpolation if this is needed during data manipulations. Typically,
this occurs in binary operations when both arguments belong to different function spaces or when data are handed
over to a PDE solver library which requires functions to be represented in a particular way.

The following example shows the usage of Data objects. Assume we have a displacement field u and we want
to calculate the corresponding stress field σ using the linear-elastic isotropic material model

σij = λuk,kδij + µ(ui,j + uj,i) (3.1)

where δij is the Kronecker symbol and λ and µ are the Lame coefficients. The following function takes the
displacement u and the Lame coefficients lam and mu as arguments and returns the corresponding stress:

from esys.escript import *
def getStress(u, lam, mu):

d=u.getDomain().getDim()
g=grad(u)
stress=lam*trace(g)*kronecker(d)+mu*(g+transpose(g))
return stress

Chapter 3. The esys.escript Module 43

1

1

1 1
1 1

1
1

1
1

1

1

1

1

1

1

1

1

1

1

1 1

1

1
1

1
1

1

1

1
1 1

1

1
1

1
1 1 1

1
1

1

1

1

1

1

1

1

2

2
2

2

2

2
2

2 2
2

2

2

2

2
2

2

FIGURE 3.2: Element Tagging. A rectangular mesh over a region with two rock types white and gray is shown. The number
in each cell refers to the major rock type present in the cell (1 for white and 2 for gray).

The variable d gives the spatial dimension of the domain on which the displacements are defined. kronecker
returns the Kronecker symbol with indexes i and j running from 0 to d-1. The call grad(u) requires the dis-
placement field u to be in the Solution or continuous FunctionSpace. The result g as well as the returned
stress will be in the general FunctionSpace. If, for example, u is the solution of a PDE then getStress
might be called in the following way:

s=getStress(u, 1., 2.)

However getStress can also be called with Data objects as values for lam and mu which, for instance in the
case of a temperature dependency, are calculated by an expression. The following call is equivalent to the previous
example:

lam=Scalar(1., ContinuousFunction(mydomain))
mu=Scalar(2., Function(mydomain))
s=getStress(u, lam, mu)

The function lam belongs to the continuous FunctionSpace but with g the function trace(g) is in the
general FunctionSpace. In the evaluation of the product lam*trace(g) we have different function spaces
(on the nodes versus in the centers) and at first glance we have incompatible data. esys.escript converts the
arguments into an appropriate function space according to Figure 3.1. In this example that means esys.escript
sees lam as a function of the general FunctionSpace. In the context of FEM this means the nodal values of
lam are interpolated to the element centers. The interpolation is automatic and requires no special handling.

3.1.3 Tagged, Expanded and Constant Data
Material parameters such as the Lame coefficients are typically dependent on rock types present in the area of in-
terest. A common technique to handle these kinds of material parameters is tagging, which uses storage efficiently.
Figure 3.2 shows an example. In this case two rock types white and gray can be found in the domain. The domain
is subdivided into triangular shaped cells. Each cell has a tag indicating the rock type predominantly found in this
cell. Here 1 is used to indicate rock type white and 2 for rock type gray. The tags are assigned at the time when
the cells are generated and stored in the Domain class object. To allow easier usage of tags, names can be used
instead of numbers. These names are typically defined at the time when the geometry is generated.

The following statements show how to use tagged values for lam as shown in Figure 3.2 for the stress calcu-
lation discussed above:

lam=Scalar(value=2., what=Function(mydomain))
insertTaggedValue(lam, white=30., gray=5000.)

44 3.1. Concepts

s=getStress(u, lam, 2.)

In this example lam is set to 30 for those cells with tag white (=1) and to 5000 for cells with tag gray (=2). The
initial value 2 of lam is used as a default value for the case when a tag is encountered which has not been linked
with a value. The getStress method does not need to be changed now that we are using tags. esys.escript
resolves the tags when lam*trace(g) is calculated.

This brings us to a very important point about esys.escript. You can develop a simulation with constant
Lame coefficients, and then later switch to tagged Lame coefficients without otherwise changing your python
script. In short, you can use the same script for models with different domains and different types of input data.

There are three main ways in which Data objects are represented internally – constant, tagged, and expanded.
In the constant case, the same value is used at each sample point while only a single value is stored to save memory.
In the expanded case, each sample point has an individual value (such as for the solution of a PDE). This is where
your largest data sets will be created because the values are stored as a complete array. The tagged case has
already been discussed above. Expanded data is created when specifying expanded=True in the Data object
constructor, while tagged data requires calling the insertTaggedValue method as shown above.

Values are accessed through a sample reference number. Operations on expanded Data objects have to be
performed for each sample point individually. When tagged values are used, the values are held in a dictionary.
Operations on tagged data require processing the set of tagged values only, rather than processing the value for
each individual sample point. esys.escript allows any mixture of constant, tagged and expanded data in a
single expression.

3.1.4 Saving and Restoring Simulation Data

Data objects can be written to disk files with the dump method and read back using the load method, both
of which use the netCDF [23] file format. Use these to save data for checkpoint/restart or simply to save and
reuse data that was expensive to compute. For instance, to save the coordinates of the data points of a continuous
FunctionSpace to the file x.nc use

x=ContinuousFunction(mydomain).getX()
x.dump("x.nc")
mydomain.dump("dom.nc")

To recover the object x, and you know that mydomain was an esys.finley mesh, use

from esys.finley import LoadMesh
mydomain=LoadMesh("dom.nc")
x=load("x.nc", mydomain)

Obviously, it is possible to execute the same steps that were originally used to generate mydomain to recreate
it. However, in most cases using dump and load is faster, particularly if optimization has been applied. If
esys.escript is running on more than one MPI process dump will create an individual file for each pro-
cess containing the local data. In order to avoid conflicts the file names are extended by the MPI processor
rank, that is instead of one file dom.nc you would get dom.nc.0000, dom.nc.0001, etc. You still call
LoadMesh("dom.nc") to load the domain but you have to make sure that the appropriate file is accessible
from the corresponding rank, and loading will only succeed if you run with as many processes as were used when
calling dump.

The function space of the Data is stored in x.nc. If the Data object is expanded, the number of data points
in the file and of the Domain for the particular FunctionSpace must match. Moreover, the ordering of the
values is checked using the reference identifiers provided by FunctionSpace on the Domain. In some cases,
data points will be reordered so be aware and confirm that you get what you wanted.

A newer, more flexible way of saving and restoring esys.escript simulation data is through an instance of
the DataManager class. It has the advantage of allowing to save and load not only a Domain and Data objects
but also other values1 you compute in your simulation script. Further, DataManager objects can simultaneously
create files for visualization so no extra calls to saveVTK etc. are needed.

The following example shows how the DataManager class can be used. For an explanation of all member
functions and options see the class reference section 3.2.8.

1The python pickle module is used for other types.

Chapter 3. The esys.escript Module 45

from esys.escript import DataManager, Scalar, Function
from esys.finley import Rectangle

dm = DataManager(formats=[DataManager.RESTART, DataManager.VTK])
if dm.hasData():

mydomain=dm.getDomain()
val=dm.getValue("val")
t=dm.getValue("t")
t_max=dm.getValue("t_max")

else:
mydomain=Rectangle()
val=Function(mydomain).getX()
t=0.
t_max=2.5

while t<t_max:
t+=.01
val=val+t/2
dm.addData(val=val, t=t, t_max=t_max)
dm.export()

In the constructor we specify that we want RESTART (i.e. dump) files and VTK files to be saved. By default,
the constructor will look for previously saved RESTART files under the current directory and load them. We can
then enquire if such files were found by calling the hasData method. If it returns True we retrieve the domain
and values into local variables. Otherwise the same variables are initialized with appropriate values to start a new
simulation. Note, that t and t_max are regular floating point values and not Data objects. Yet they are treated
the same way by the DataManager.

After this initialization step the script enters the main simulation loop where calculations are performed. When
these are finalized for a time step we call the addData method to let the manager know which variables to
store on disk. This does not actually save the data yet and it is allowed to call addData more than once to add
information incrementally, e.g. from separate functions that have access to the DataManager instance. Once all
variables have been added the export method has to be called to flush all data to disk and clear the manager. In
this example, this call dumps mydomain and val to files in a restart directory and also stores t and t_max on
disk. Additionally, it generates a VTK file for visualization of the data. If the script would stop running before its
completion for some reason (e.g. because its runtime limit was exceeded in a multiuser environment), you could
simply run it again and it would resume at the point it stopped before.

3.2 esys.escript Classes

3.2.1 The Domain class

class Domain()
A Domain object is used to describe a geometric region together with a way of representing functions
over this region. The Domain class provides an abstract interface to the domain of FunctionSpace
and Data objects. Domain needs to be subclassed in order to provide a complete implementation.

The following methods are available:

getDim()
returns the spatial dimension of the Domain.

dump(filename)
writes the Domain to the file filename using the netCDF file format.

getX()
returns the locations in the Domain. The FunctionSpace of the returned Data object is chosen by the
Domain implementation. Typically it will be in the general FunctionSpace.

46 3.2. esys.escript Classes

setX(newX)
assigns new locations to the Domain. newX has to have shape (d,) where d is the spatial dimension of
the domain. Typically newX must be in the continuous FunctionSpace but the space actually to be
used depends on the Domain implementation.

getNormal()
returns the surface normals on the boundary of the Domain as a Data object.

getSize()
returns the local sample size, i.e. the element diameter, as a Data object.

setTagMap(tag name, tag)
defines a mapping of the tag name tag_name to the tag.

getTag(tag name)
returns the tag associated with the tag name tag_name.

isValidTagName(tag name)
returns True if tag_name is a valid tag name.

eq (arg)
(python == operator) returns True if the Domain arg describes the same domain, False otherwise.

ne (arg)
(python != operator) returns True if the Domain arg does not describe the same domain, False
otherwise.

str ()
(python str() function) returns a string representation of the Domain.

onMasterProcessor()
returns True if the processor is the master processor within the MPI processor group used by the Domain.
This is the processor with rank 0. If MPI support is not enabled the return value is always True .

getMPISize()
returns the number of MPI processors used for this Domain. If MPI support is not enabled 1 is returned.

getMPIRank()
returns the rank of the processor executing the statement within the MPI processor group used by the
Domain. If MPI support is not enabled 0 is returned.

MPIBarrier()
executes barrier synchronization within the MPI processor group used by the Domain. If MPI support is
not enabled, this command does nothing.

3.2.2 The FunctionSpace class

class FunctionSpace()
FunctionSpace objects, which are instantiated by generator functions, are used to define properties of
Data objects such as continuity. A Data object in a particular FunctionSpace is represented by its
values at data sample points which are defined by the type and the Domain of the FunctionSpace.

The following methods are available:

getDim()
returns the spatial dimension of the Domain of the FunctionSpace.

getX()

Chapter 3. The esys.escript Module 47

returns the location of the data sample points.

getNormal()
If the domain of functions in the FunctionSpace is a hyper-manifold (e.g. the boundary of a domain)
the method returns the outer normal at each of the data sample points. Otherwise an exception is raised.

getSize()
returns a Data object measuring the spacing of the data sample points. The size may be zero.

getDomain()
returns the Domain of the FunctionSpace.

setTags(new tag, mask)
assigns a new tag new_tag to all data samples where mask is positive for a least one data point. mask
must be defined on this FunctionSpace. Use the setTagMap to assign a tag name to new_tag.

eq (arg)
(python == operator) returns True if the FunctionSpace arg describes the same function space, False
otherwise.

ne (arg)
(python != operator) returns True if the FunctionSpace arg does not describe the same function
space, False otherwise.

str ()
(python str() function) returns a string representation of the FunctionSpace.

The following functions provide generators for FunctionSpace objects:

Function(domain)
returns the general FunctionSpace on the Domain domain. Data objects in this type of general
FunctionSpace are defined over the whole geometric region defined by domain.

ContinuousFunction(domain)
returns the continuous FunctionSpace on the Domain domain. Data objects in this type of general
FunctionSpace are defined over the whole geometric region defined by domain and assumed to
represent a continuous function.

FunctionOnBoundary(domain)
returns the boundary FunctionSpace on the Domain domain. Data objects in this type of general
FunctionSpace are defined on the boundary of the geometric region defined by domain.

FunctionOnContactZero(domain)
returns the contact FunctionSpace on side 0 the Domain domain. Data objects in this type of
general FunctionSpace are defined on side 0 of a discontinuity within the geometric region defined by
domain. The discontinuity is defined when domain is instantiated.

FunctionOnContactOne(domain)
returns the contact FunctionSpace on side 1 on the Domain domain. Data objects in this type of
general FunctionSpace are defined on side 1 of a discontinuity within the geometric region defined by
domain. The discontinuity is defined when domain is instantiated.

Solution(domain)
returns the solution FunctionSpace on the Domain domain. Data objects in this type of general
FunctionSpace are defined on the geometric region defined by domain and are solutions of partial
differential equations.

ReducedSolution(domain)

48 3.2. esys.escript Classes

returns the reduced solution FunctionSpace on the Domain domain. Data objects in this type of
general FunctionSpace are defined on the geometric region defined by domain and are solutions of
partial differential equations with a reduced smoothness for the solution approximation.

3.2.3 The Data Class

The following table shows arithmetic operations that can be performed point-wise on Data objects:

Expression Description
+arg identical to arg
-arg negation of arg
arg0+arg1 adds arg0 and arg1
arg0*arg1 multiplies arg0 and arg1
arg0-arg1 subtracts arg1 from arg0
arg0/arg1 divides arg0 by arg1
arg0**arg1 raises arg0 to the power of arg1

At least one of the arguments arg0 or arg1 must be a Data object. Either of the arguments may be a Data
object, a python number or a numpy object. If arg0 or arg1 are not defined on the same FunctionSpace, then
an attempt is made to convert arg0 to the FunctionSpace of arg1 or to convert arg1 to the FunctionSpace
of arg0. Both arguments must have the same shape or one of the arguments may be of rank 0 (a constant). The
returned Data object has the same shape and is defined on the data sample points as arg0 or arg1.

The following table shows the update operations that can be applied to Data objects:

Expression Description
arg0+=arg1 adds arg1 to arg0
arg0*=arg1 multiplies arg0 by arg1
arg0-=arg1 subtracts arg1 fromarg0
arg0/=arg1 divides arg0 by arg1
arg0**=arg1 raises arg0 to the power of arg1

arg0 must be a Data object. arg1 must be a Data object or an object that can be converted into a Data object.
arg1 must have the same shape as arg0 or have rank 0. In the latter case it is assumed that the values of arg1
are constant for all components. arg1 must be defined in the same FunctionSpace as arg0 or it must be
possible to interpolate arg1 onto the FunctionSpace of arg0.

The Data class supports taking slices as well as assigning new values to a slice of an existing Data object.
The following expressions for taking and setting slices are valid:

Rank of arg Slicing expression shape of returned and assigned object
0 no slicing N/A
1 arg[l0:u0] (u0-l0,)
2 arg[l0:u0,l1:u1] (u0-l0,u1-l1)
3 arg[l0:u0,l1:u1,l2:u2] (u0-l0,u1-l1,u2-l2)
4 arg[l0:u0,l1:u1,l2:u2,l3:u3] (u0-l0,u1-l1,u2-l2,u3-l3)

Let s be the shape of arg, then

0 ≤ l0 ≤ u0 ≤ s[0],

0 ≤ l1 ≤ u1 ≤ s[1],

0 ≤ l2 ≤ u2 ≤ s[2],

0 ≤ l3 ≤ u3 ≤ s[3].

Any of the lower indexes l0, l1, l2 and l3 may not be present in which case 0 is assumed. Any of the upper
indexes u0, u1, u2 and u3 may be omitted, in which case the upper limit for that dimension is assumed. The
lower and upper index may be identical in which case the column and the lower or upper index may be dropped. In
the returned or in the object assigned to a slice, the corresponding component is dropped, i.e. the rank is reduced
by one in comparison to arg. The following examples show slicing in action:

Chapter 3. The esys.escript Module 49

t=Data(1., (4,4,6,6), Function(mydomain))
t[1,1,1,0]=9.
s=t[:2,:,2:6,5] # s has rank 3
s[:,:,1]=1.
t[:2,:2,5,5]=s[2:4,1,:2]

3.2.4 Generation of Data objects

class Data(value=0, shape=(,), what=FunctionSpace(), expanded=False)
creates a Data object with shape shape in the FunctionSpace what. The values at all data sample
points are set to the double value value. If expanded is True the Data object is represented in
expanded form.

class Data(value, what=FunctionSpace(), expanded=False)
creates a Data object in the FunctionSpace what. The value for each data sample point is set to
value, which could be a numpy object, Data object or a dictionary of numpy or floating point
numbers. In the latter case the keys must be integers and are used as tags. The shape of the returned object
is equal to the shape of value. If expanded is True the Data object is represented in expanded form.

class Data()
creates an empty Data object. The empty Data object is used to indicate that an argument is not present
where a Data object is required.

Scalar(value=0., what=FunctionSpace(), expanded=False)
returns a Data object of rank 0 (a constant) in the FunctionSpace what. Values are initialized with
value, a double precision quantity. If expanded is True the Data object is represented in expanded
form.

Vector(value=0., what=FunctionSpace(), expanded=False)
returns a Data object of shape (d,) in the FunctionSpace what, where d is the spatial dimension of
the Domain of what. Values are initialized with value, a double precision quantity. If expanded is
True the Data object is represented in expanded form.

Tensor(value=0., what=FunctionSpace(), expanded=False)
returns a Data object of shape (d,d) in the FunctionSpace what, where d is the spatial dimension
of the Domain of what. Values are initialized with value, a double precision quantity. If expanded is
True the Data object is represented in expanded form.

Tensor3(value=0., what=FunctionSpace(), expanded=False)
returns a Data object of shape (d,d,d) in the FunctionSpace what, where d is the spatial
dimension of the Domain of what. Values are initialized with value, a double precision quantity. If
expanded is True the Data object is represented in expanded form.

Tensor4(value=0., what=FunctionSpace(), expanded=False)
returns a Data object of shape (d,d,d,d) in the FunctionSpace what, where d is the spatial
dimension of the Domain of what. Values are initialized with value, a double precision quantity. If
expanded is True the Data object is represented in expanded form.

load(filename, domain)
recovers a Data object on Domain domain from the file filename, which was created by dump.

3.2.5 Data methods
These are the most frequently used methods of the Data class. A complete list of methods can be found on
http://esys.esscc.uq.edu.au/docs.html.

getFunctionSpace()

50 3.2. esys.escript Classes

http://esys.esscc.uq.edu.au/docs.html

returns the FunctionSpace of the object.

getDomain()
returns the Domain of the object.

getShape()
returns the shape of the object as a tuple of integers.

getRank()
returns the rank of the data on each data point.

isEmpty()
returns True if the Data object is the empty Data object, False otherwise. Note that this is not the same
as asking if the object contains no data sample points.

setTaggedValue(tag name, value)
assigns the value to all data sample points which have the tag assigned to tag_name. value must be
an object of class numpy.ndarray or must be convertible into a numpy.ndarray object. value (or
the corresponding numpy.ndarray object) must be of rank 0 or must have the same rank as the object.
If a value has already been defined for tag tag_name within the object it is overwritten by the new
value. If the object is expanded, the value assigned to data sample points with tag tag_name is
replaced by value. If no value is assigned the tag name tag_name, no value is set.

dump(filename)
dumps the Data object to the file filename. The file stores the function space but not the Domain. It is
the responsibility of the user to save the Domain in order to be able to recover the Data object.

str ()
returns a string representation of the object.

3.2.6 Functions of Data objects
This section lists the most important functions for Data class objects. A complete list and a more detailed de-
scription of the functionality can be found on http://esys.esscc.uq.edu.au/docs.html.

saveVTK(filename, **kwdata)
writes Data defined by keywords to the file filename using the VTK file format. The keyword is used
as an identifier. The statement

saveVTK("out.vtu", temperature=T, velocity=v)

writes the scalar T as temperature and the vector v as velocity into the file out.vtu. Restrictions
on the allowed combinations of FunctionSpace apply. This method is deprecated and will be removed
in a future version of escript. Use the weipa module instead!

saveDX(filename, **kwdata)
writes Data defined by keywords to the file filename using the OpenDX[24] file format. The keyword
is used as an identifier. The statement

saveDX("out.dx", temperature=T, velocity=v)

writes the scalar T as temperature and the vector v as velocity into the file out.dx. Restrictions
on the allowed combinations of FunctionSpace apply.

kronecker(d)
returns a rank-2 Data object Data object in FunctionSpace d such that

kronecker(d) [i, j] =

{
1 if i = j
0 otherwise (3.2)

If d is an integer a (d, d) numpy array is returned.

Chapter 3. The esys.escript Module 51

http://esys.esscc.uq.edu.au/docs.html

identityTensor(d)
is a synonym for kronecker (see above).

identityTensor4(d)
returns a rank-4 Data object Data object in FunctionSpace d such that

identityTensor(d) [i, j, k, l] =

{
1 if i = k and j = l
0 otherwise (3.3)

If d is an integer a (d, d, d, d) numpy array is returned.

unitVector(i,d)
returns a rank-1 Data object Data object in FunctionSpace d such that

identityTensor(d) [j] =

{
1 if j = i
0 otherwise (3.4)

If d is an integer a (d,) numpy array is returned.

Lsup(a)
returns the Lsup norm of arg. This is the maximum of the absolute values over all components and all
data sample points of a.

sup(a)
returns the maximum value over all components and all data sample points of a.

inf(a)
returns the minimum value over all components and all data sample points of a

minval(a)
returns at each data sample point the minimum value over all components.

maxval(a)
returns at each data sample point the maximum value over all components.

length(a)
returns the Euclidean norm at each data sample point. For a rank-4 Data object a this is

length(a) =

√∑
ijkl

a [i, j, k, l]
2 (3.5)

trace(a[, axis offset=0])
returns the trace of a. This is the sum over components axis_offset and axis_offset+1 with the
same index. For instance, in the case of a rank-2 Data object this is

trace(a) =
∑
i

a [i, i] (3.6)

and for a rank-4 Data object and axis_offset=1 this is

trace(a,1) [i, j] =
∑
k

a [i, k, k, j] (3.7)

transpose(a[, axis offset=None])
returns the transpose of a. This swaps the first axis_offset components of a with the rest. If
axis_offset is not present int(r/2) is used where r is the rank of a. For instance, in the case of a
rank-2 Data object this is

transpose(a) [i, j] = a [j, i] (3.8)

52 3.2. esys.escript Classes

and for a rank-4 Data object and axis_offset=1 this is

transpose(a,1) [i, j, k, l] = a [j, k, l, i] (3.9)

swap axes(a[, axis0=0 [, axis1=1]])
returns a but with swapped components axis0 and axis1. The argument a must be at least of rank 2.
For instance, if a is a rank-4 Data object, axis0=1 and axis1=2, the result is

swap_axes(a,1,2) [i, j, k, l] = a [i, k, j, l] (3.10)

symmetric(a)
returns the symmetric part of a. This is (a+transpose(a))/2.

nonsymmetric(a)
returns the non-symmetric part of a. This is (a-transpose(a))/2.

inverse(a)
return the inverse of a so that

matrix_mult(inverse(a),a)=kronecker(d) (3.11)

if a has shape (d,d). The current implementation is restricted to arguments of shape (2,2) and (3,3).

eigenvalues(a)
returns the eigenvalues of a so that

matrix_mult(a,V)=e[i]*V (3.12)

where e=eigenvalues(a) and V is a suitable non-zero vector. The eigenvalues are ordered in
increasing size. The argument a has to be symmetric, i.e. a=symmetric(a). The current
implementation is restricted to arguments of shape (2,2) and (3,3).

eigenvalues and eigenvectors(a)
returns the eigenvalues and eigenvectors of a.

matrix_mult(a,V[:,i])=e[i]*V[:,i] (3.13)

where e,V=eigenvalues_and_eigenvectors(a). The eigenvectors V are orthogonal and
normalized, i.e.

matrix_mult(transpose(V),V)=kronecker(d) (3.14)

if a has shape (d,d). The eigenvalues are ordered in increasing size. The argument a has to be the
symmetric, i.e. a=symmetric(a). The current implementation is restricted to arguments of shape
(2,2) and (3,3).

maximum(*a)
returns the maximum value over all arguments at all data sample points and for each component.

maximum(a0,a1) [i, j] = max(a0 [i, j] ,a1 [i, j]) (3.15)

at all data sample points.

minimum(*a)
returns the minimum value over all arguments at all data sample points and for each component.

minimum(a0,a1) [i, j] = min(a0 [i, j] ,a1 [i, j]) (3.16)

at all data sample points.

Chapter 3. The esys.escript Module 53

clip(a[, minval=0.][, maxval=1.])
cuts back a into the range between minval and maxval. A value in the returned object equals minval
if the corresponding value of a is less than minval, equals maxval if the corresponding value of a is
greater than maxval, or corresponding value of a otherwise.

inner(a0, a1)
returns the inner product of a0 and a1. For instance in the case of a rank-2 Data object:

inner(a) =
∑
ij

a0 [j, i] · a1 [j, i] (3.17)

and for a rank-4 Data object:

inner(a) =
∑
ijkl

a0 [i, j, k, l] · a1 [j, i, k, l] (3.18)

matrix mult(a0, a1)
returns the matrix product of a0 and a1. If a1 is a rank-1 Data object this is

matrix_mult(a) [i] =
∑
k

a0 · [i, k]a1 [k] (3.19)

and if a1 is a rank-2 Data object this is

matrix_mult(a) [i, j] =
∑
k

a0 · [i, k]a1 [k, j] (3.20)

transposed matrix mult(a0, a1)
returns the matrix product of the transposed of a0 and a1. The function is equivalent to
matrix_mult(transpose(a0),a1). If a1 is a rank-1 Data object this is

transposed_matrix_mult(a) [i] =
∑
k

a0 · [k, i]a1 [k] (3.21)

and if a1 is a rank-2 Data object this is

transposed_matrix_mult(a) [i, j] =
∑
k

a0 · [k, i]a1 [k, j] (3.22)

matrix transposed mult(a0, a1)
returns the matrix product of a0 and the transposed of a1. The function is equivalent to
matrix_mult(a0,transpose(a1)). If a1 is a rank-2 Data object this is

matrix_transposed_mult(a) [i, j] =
∑
k

a0 · [i, k]a1 [j, k] (3.23)

outer(a0, a1)
returns the outer product of a0 and a1. For instance, if both, a0 and a1 is a rank-1 Data object then

outer(a) [i, j] = a0 [i] · a1 [j] (3.24)

and if a0 is a rank-1 Data object and a1 is a rank-3 Data object:

outer(a) [i, j, k] = a0 [i] · a1 [j, k] (3.25)

tensor mult(a0, a1)

54 3.2. esys.escript Classes

returns the tensor product of a0 and a1. If a1 is a rank-2 Data object this is

tensor_mult(a) [i, j] =
∑
kl

a0 [i, j, k, l] · a1 [k, l] (3.26)

and if a1 is a rank-4 Data object this is

tensor_mult(a) [i, j, k, l] =
∑
mn

a0 [i, j,m, n] · a1 [m,n, k, l] (3.27)

transposed tensor mult(a0, a1)
returns the tensor product of the transposed of a0 and a1. The function is equivalent to
tensor_mult(transpose(a0),a1). If a1 is a rank-2 Data object this is

transposed_tensor_mult(a) [i, j] =
∑
kl

a0 [k, l, i, j] · a1 [k, l] (3.28)

and if a1 is a rank-4 Data object this is

transposed_tensor_mult(a) [i, j, k, l] =
∑
mn

a0 [m,n, i, j] · a1 [m,n, k, l] (3.29)

tensor transposed mult(a0, a1)
returns the tensor product of a0 and the transposed of a1. The function is equivalent to
tensor_mult(a0,transpose(a1)). If a1 is a rank-2 Data object this is

tensor_transposed_mult(a) [i, j] =
∑
kl

a0 [i, j, k, l] · a1 [l, k] (3.30)

and if a1 is a rank-4 Data object this is

tensor_transposed_mult(a) [i, j, k, l] =
∑
mn

a0 [i, j,m, n] · a1 [k, l,m, n] (3.31)

grad(a[, where=None])
returns the gradient of a. If where is present the gradient will be calculated in the FunctionSpace
where, otherwise a default FunctionSpace is used. In case that a is a rank-2 Data object one has

grad(a) [i, j, k] =
∂a [i, j]

∂xk
(3.32)

integrate(a[, where=None])
returns the integral of a where the domain of integration is defined by the FunctionSpace of a. If
where is present the argument is interpolated into FunctionSpace where before integration. For
instance in the case of a rank-2 Data object in continuous FunctionSpace it is

integrate(a) [i, j] =

∫
Ω

a [i, j] dΩ (3.33)

where Ω is the spatial domain and dΩ volume integration. To integrate over the boundary of the domain
one uses

integrate(a,where=FunctionOnBoundary(a.getDomain)) [i, j] =

∫
∂Ω

a [i, j] ds (3.34)

where ∂Ω is the surface of the spatial domain and ds area or line integration.

interpolate(a, where)
interpolates argument a into the FunctionSpace where.

Chapter 3. The esys.escript Module 55

div(a[, where=None])
returns the divergence of a:

div(a)=trace(grad(a),where) (3.35)

jump(a[, domain=None])
returns the jump of a over the discontinuity in its domain or if Domain domain is present in domain.

jump(a) = interpolate(a,FunctionOnContactOne(domain))
−interpolate(a,FunctionOnContactZero(domain)) (3.36)

L2(a)
returns the L2-norm of a in its FunctionSpace. This is

L2(a)=integrate(length(a)2) . (3.37)

The following functions operate “point-wise”. That is, the operation is applied to each component of each point
individually.

sin(a)
applies the sine function to a.

cos(a)
applies the cosine function to a.

tan(a)
applies the tangent function to a.

asin(a)
applies the arc (inverse) sine function to a.

acos(a)
applies the arc (inverse) cosine function to a.

atan(a)
applies the arc (inverse) tangent function to a.

sinh(a)
applies the hyperbolic sine function to a.

cosh(a)
applies the hyperbolic cosine function to a.

tanh(a)
applies the hyperbolic tangent function to a.

asinh(a)
applies the arc (inverse) hyperbolic sine function to a.

acosh(a)
applies the arc (inverse) hyperbolic cosine function to a.

atanh(a)
applies the arc (inverse) hyperbolic tangent function to a.

exp(a)
applies the exponential function to a.

sqrt(a)

56 3.2. esys.escript Classes

applies the square root function to a.

log(a)
takes the natural logarithm of a.

log10(a)
takes the base-10 logarithm of a.

sign(a)
applies the sign function to a. The result is 1 where a is positive, −1 where a is negative, and 0 otherwise.

wherePositive(a)
returns a function which is 1 where a is positive and 0 otherwise.

whereNegative(a)
returns a function which is 1 where a is negative and 0 otherwise.

whereNonNegative(a)
returns a function which is 1 where a is non-negative and 0 otherwise.

whereNonPositive(a)
returns a function which is 1 where a is non-positive and 0 otherwise.

whereZero(a[, tol=None[, rtol=1.e-8]])
returns a function which is 1 where a equals zero with tolerance tol and 0 otherwise. If tol is not
present, the absolute maximum value of a times rtol is used.

whereNonZero(a[, tol=None[, rtol=1.e-8]])
returns a function which is 1 where a is non-zero with tolerance tol and 0 otherwise. If tol is not
present, the absolute maximum value of a times rtol is used.

3.2.7 Interpolating Data
In some cases, it may be useful to produce Data objects which fit some user defined function. Manually modifying
each value in the Data object is not a good idea since it depends on knowing the location and order of each data
point in the domain. Instead, esys.escript can use an interpolation table to produce a Data object.

The following example is available as int_save.py in the example directory. We will produce a Data
object which approximates a sine curve.

from esys.escript import saveDataCSV, sup, interpolateTable
import numpy
from esys.finley import Rectangle

n=4
r=Rectangle(n,n)
x=r.getX()
toobig=100

First we produce an interpolation table:

sine_table=[0, 0.70710678118654746, 1, 0.70710678118654746, 0,
-0.70710678118654746, -1, -0.70710678118654746, 0]

We wish to identify 0 and 1 with the ends of the curve, that is with the first and eighth value in the table.

numslices=len(sine_table)-1
minval=0.
maxval=1.
step=sup(maxval-minval)/numslices

So the values v from the input lie in the interval minval ≤ v < maxval. step represents the gap (in the input
range) between entries in the table. By default, values of v outside the table argument range (minval, maxval) will

Chapter 3. The esys.escript Module 57

be pushed back into the range, i.e. if v < minval the value minval will be used to evaluate the table. Similarly,
for values v > maxval the value maxval is used.

Now we produce our new Data object:

result=interpolateTable(sine_table, x[0], minval, step, toobig)

Any values which interpolate to larger than toobigwill raise an exception. You can switch on boundary checking
by adding check_boundaries=True to the argument list.

Now consider a 2D example. We will interpolate from a plane where ∀x, y ∈ [0, 9] : (x, y) = x+ y · 10.

from esys.escript import whereZero
table2=[]
for y in range(0,10):

r=[]
for x in range(0,10):

r.append(x+y*10)
table2.append(r)

xstep=(maxval-minval)/(10-1)
ystep=(maxval-minval)/(10-1)

xmin=minval
ymin=minval

result2=interpolateTable(table2, x2, (xmin, ymin), (xstep, ystep), toobig)

We can check the values using whereZero. For example, for x = 0:

print result2*whereZero(x[0])

Now a 3D. Note that the parameter tuples should be (x, y, z) but that in the interpolation table, x is the inner-
most dimension.

b=Brick(n,n,n)
x3=b.getX()
toobig=1000000

table3=[]
for z in range(0,10):

face=[]
for y in range(0,10):

r=[]
for x in range(0,10):

r.append(x+y*10+z*100)
face.append(r)

table3.append(face);

zstep=(maxval-minval)/(10-1)

zmin=minval

result3=interpolateTable(table3, x3, (xmin, ymin, zmin), (xstep, ystep, zstep), toobig)

3.2.7.1 Non-uniform Interpolation

Non-uniform interpolation is also supported for the one dimensional case.

Data.nonuniformInterpolate(in, out, check_boundaries)
Data.nonuniformSlope(in, out, check_boundaries)

Will produce a new Data object by mapping the given Data object through the user-defined function specified
by in and out. The . . . Interpolate version gives the value of the function at the specified point and the . . . Slope
version gives the slope at those points. The check boundaries boolean argument specifies what the function should
do if the Data object contains values outside the range specified by the in parameter. If the argument is False,
then those datapoints will be interpolated to the value of the edge they are closest to (or assigned a slope of zero). If

58 3.2. esys.escript Classes

the argument is True, then an exception will be thrown if out of bounds values are detected. Note that the values
given by the in parameter must be monotonically increasing.
For example:
If d contains the values {1,2,3,4,5}, then

d.nonuniformInterpolate([1.5, 2, 2.8, 4.6], [4, 5, -1, 1], False)

would produce a Data object containing {4, 5, -0.7777, 0.3333, 1}.
A similar call to nonuniformSlope would produce a Data object containing {0, 2, 1.1111, 1.1111,
0}.

3.2.8 The DataManager Class

class DataManager(formats=[RESTART], work dir=”.”, restart prefix=”restart”, do restart=True)
initializes a new DataManager object which can be used to save, restore and export simulation data in a
number of formats. All files and directories saved or restored by this object are located under the directory
specified by work_dir. If RESTART is specified in formats, the DataManager will look for
directories whose name starts with restart_prefix. In case do_restart is True , the last of these
directories is used to restore simulation data while all others are deleted. If do_restart is False , then
all of those directories are deleted. The restart_prefix and do_restart parameters are ignored if
RESTART is not specified in formats.

Valid values for the formats parameter are:

RESTART
enables writing of checkpoint files to be able to continue simulations as explained in the class description.

SILO
exports simulation data in the SILO file format. esys.escript must have been compiled with SILO
support for this to work.

VISIT
enables the VisIt simulation interface which allows connecting to and interacting with the running simulation
from a compatible VisIt client. esys.escriptmust have been compiled with VisIt (version 2) support and
the version of the client has to match the version used at compile time. In order to connect to the simulation
the client needs to have access and load the file escriptsim.sim2 located under the work directory.

VTK
exports simulation data in the VTK file format.

The DataManager class has the following methods:

addData(**data)
adds Data objects and other data to the manager. Calling this method does not save or export the data yet
so it is allowed to incrementally add data at various points in the simulation script if required. Note, that
only a single domain is supported so all Data objects have to be defined on the same one or an exception
is raised.

setDomain(domain)
explicitly sets the domain for this manager. It is generally not required to call this method directly. Instead,
the addData method will set the domain used by the Data objects. An exception is raised if the domain
was set to a different domain before (explicitly or implicitly).

hasData()
returns True if the manager has loaded simulation data for a restart.

getDomain()
returns the domain as recovered from a restart.

getValue(value name)

Chapter 3. The esys.escript Module 59

returns a Data object or other value with the name value_name that has been recovered after a restart.

getCycle()
returns the export cycle, i.e. the number of times export() has been called.

setCheckpointFrequency(freq)
sets the frequency with which checkpoint files are created. This is only useful if the DataManager object
was created with at least one other format next to RESTART. The frequency is 1 by default which means
that checkpoint files are created every time export() is called. Unlike visualization output, a simulation
checkpoint is usually not required at every time step. Thus, the frequency can be decreased by calling this
method with freq > 1 which would then create restart files every freq times export() is called.

setTime(time)
sets the simulation time stamp. This floating point number is stored in the metadata of exported data but
not used by RESTART.

setMeshLabels(x, y, z=””)
sets labels for the mesh axes. These are currently only used by the SILO exporter.

setMeshUnits(x, y, z=””)
sets units for the mesh axes. These are currently only used by the SILO exporter.

setMetadataSchemaString(schema, metadata=””)
sets metadata namespaces and the corresponding metadata. These are currently only used by the VTK
exporter. schema is a dictionary that maps prefixes to namespace names, e.g.

{"gml": "http://www.opengis.net/gml"} and metadata is a string with the actual content which
will be enclosed in <MetaData> tags.

export()
executes the actual data export. Depending on the formats parameter used in the constructor all data
added by addData() is written to disk (RESTART,SILO,VTK) or made available through the VisIt
simulation interface (VISIT). At least the domain must be set for something to be exported.

3.2.9 Saving Data as CSV
For simple post-processing, Data objects can be saved in comma separated value (CSV) format. If mydata1 and
mydata2 are scalar data, the command

saveDataCSV('output.csv', U=mydata1, V=mydata2)

will record the values in output.csv in the following format:

U, V
1.0000000e+0, 2.0000000e-1
5.0000000e-0, 1.0000000e+1
...

The names of the keyword parameters form the names of columns in the output. If the data objects are over
different function spaces, then saveDataCSV will attempt to interpolate to a common function space. If this is
not possible, then an exception is raised.

Output can be restricted using a scalar mask as follows:

saveDataCSV('outfile.csv', U=mydata1, V=mydata2, mask=myscalar)

This command will only output those rows which correspond to to positive values of myscalar. Some aspects
of the output can be tuned using additional parameters:

saveDataCSV('data.csv', append=True, sep=' ', csep='/', mask=mymask, e=mat1)

• append – specifies that the output should be written to the end of an existing file

60 3.2. esys.escript Classes

• sep – defines the separator between fields

• csep – defines the separator between components in the header line. For example between the components
of a matrix.

The above command would produce output like this:

e/0/0 e/1/0 e/0/1 e/1/1
1.0000000000e+00 2.0000000000e+00 3.0000000000e+00 4.0000000000e+00
...

Note that while the order in which rows are output can vary, all the elements in a given row always correspond to
the same input. When run on more than one MPI rank, saveDataCSV is currently limited to certain domain and
function space combinations throwing an exception in other cases. Writing data on continuous FunctionSpace
is always supported.

3.2.10 The Operator Class
The Operator class provides an abstract access to operators built within the LinearPDE class. Operator ob-
jects are created when a PDE is handed over to a PDE solver library and handled by the LinearPDE object defin-
ing the PDE. The user can gain access to the Operator of a LinearPDE object through the getOperator
method.

class Operator()
creates an empty Operator object.

isEmpty(fileName)
returns True is the object is empty, False otherwise.

setValue(value)
resets all entries in the object representation to value.

solves(rhs)
solves the operator equation with right hand side rhs.

of(u)
applies the operator to the Data object u.

saveMM(fileName)
saves the object to a Matrix Market format file with name fileName, see
http://maths.nist.gov/MatrixMarket

3.3 Physical Units
esys.escript provides support for physical units in the SI system including unit conversion. So the user can
define variables in the form

from esys.escript.unitsSI import *
l=20*m
w=30*kg
w2=40*lb
T=100*Celsius

In the two latter cases a conversion from pounds and degrees Celsius is performed into the appropriate SI units kg
and Kelvin. In addition, composed units can be used, for instance

from esys.escript.unitsSI import *
rho=40*lb/cm**3

defines the density in the units of pounds per cubic centimeter. The value 40 will be converted into SI units, in this
case kg per cubic meter. Moreover unit prefixes are supported:

Chapter 3. The esys.escript Module 61

http://maths.nist.gov/MatrixMarket

from esys.escript.unitsSI import *
p=40*Mega*Pa

The pressure p is set to 40 Mega Pascal. Units can also be converted back from the SI system into a desired unit,
e.g.

from esys.escript.unitsSI import *
print p/atm

can be used print the pressure in units of atmosphere.
The following is an incomplete list of supported physical units:

km
unit of kilometer

m
unit of meter

cm
unit of centimeter

mm
unit of millimeter

sec
unit of second

minute
unit of minute

h
unit of hour

day
unit of day

yr
unit of year

gram
unit of gram

kg
unit of kilogram

lb
unit of pound

ton
metric ton

A
unit of Ampere

Hz
unit of Hertz

N
unit of Newton

Pa
unit of Pascal

62 3.3. Physical Units

atm
unit of atmosphere

J
unit of Joule

W
unit of Watt

C
unit of Coulomb

V
unit of Volt

F
unit of Farad

Ohm
unit of Ohm

K
unit of degrees Kelvin

Celsius
unit of degrees Celsius

Fahrenheit
unit of degrees Fahrenheit

Supported unit prefixes:

Yotta
prefix yotta = 1024

Zetta
prefix zetta = 1021

Exa
prefix exa = 1018

Peta
prefix peta = 1015

Tera
prefix tera = 1012

Giga
prefix giga = 109

Mega
prefix mega = 106

Kilo
prefix kilo = 103

Hecto
prefix hecto = 102

Deca
prefix deca = 101

Chapter 3. The esys.escript Module 63

Deci
prefix deci = 10−1

Centi
prefix centi = 10−2

Milli
prefix milli = 10−3

Micro
prefix micro = 10−6

Nano
prefix nano = 10−9

Pico
prefix pico = 10−12

Femto
prefix femto = 10−15

Atto
prefix atto = 10−18

Zepto
prefix zepto = 10−21

Yocto
prefix yocto = 10−24

3.4 Utilities
The FileWriter class provides a mechanism to write data to a file. In essence, this class wraps the standard
python file class to write data that are global in MPI to a file. In fact, data are written on the processor with MPI
rank 0 only. It is recommended to use FileWriter rather than open in order to write code that will run with
and without MPI. It is safe to use open under MPI to read data which are global under MPI.

class FileWriter(fn[,append=False , [createLocalFiles=False]]))
Opens a file with name fn for writing. If append is set to True data are appended at the end of the file. If
running under MPI, only the first processor (rank==0) will open the file and write to it. If
createLocalFiles is set each individual processor will create a file where for any processor with
rank¿0 the file name is extended by its rank. This option is normally used for debugging purposes only.

The following methods are available:

close()
closes the file.

flush()
flushes the internal buffer to disk.

write(txt)
writes string txt to the file. Note that a newline is not added.

writelines(txts)
writes the list txts of strings to the file. Note that newlines are not added. This method is equivalent to
calling write() for each string.

closed
this member is True if the file is closed.

64 3.4. Utilities

mode
holds the access mode.

name
holds the file name.

newlines
holds the line separator.

setEscriptParamInt(name,value)
assigns the integer value value to the parameter name. If name =”TOO MANY LINES” conversion of
any Data object to a string switches to a condensed format if more than value lines would be created.

getEscriptParamInt(name)
returns the current value of integer parameter name.

listEscriptParams(a)
returns a list of valid parameters and their description.

getMPISizeWorld()
returns the number of MPI processors in use in the MPI COMM WORLD processor group. If MPI is not
used 1 is returned.

getMPIRankWorld()
returns the rank of the current process within the MPI COMM WORLD processor group. If MPI is not
used 0 is returned.

MPIBarrierWorld()
performs a barrier synchronization across all processors within the MPI COMM WORLD processor
group.

getMPIWorldMax(a)
returns the maximum value of the integer a across all processors within MPI COMM WORLD.

Chapter 3. The esys.escript Module 65

66 3.4. Utilities

CHAPTER
FOUR

The esys.escript.linearPDEs
Module

4.1 Linear Partial Differential Equations
The LinearPDE class is used to define a general linear, steady, second order PDE for an unknown function u
on a given Ω defined through a Domain object. In the following Γ denotes the boundary of the domain Ω and n
denotes the outer normal field on Γ.

For a single PDE with a solution that has a single component the linear PDE is defined in the following form:

− (Ajlu,l),j − (Bju),j + Clu,l +Du = −Xj,j + Y . (4.1)

u,j denotes the derivative of u with respect to the j-th spatial direction. Einstein’s summation convention, i.e.
summation over indexes appearing twice in a term of a sum, is used in this chapter. The coefficients A, B, C, D,
X and Y have to be specified through Data objects in the general FunctionSpace on the PDE or objects that
can be converted into such Data objects. A is a rank-2 Data object, B, C and X are each a rank-1 Data object
and D and Y are scalars. The following natural boundary conditions are considered on Γ:

nj(Ajlu,l +Bju) + du = njXj + y . (4.2)

Notice that the coefficients A, B and X are defined in the PDE. The coefficients d and y are each a scalar Data
object in the boundary FunctionSpace. Constraints for the solution prescribe the value of the solution at certain
locations in the domain. They have the form

u = r where q > 0 (4.3)

r and q are each a scalar Data object where q is the characteristic function defining where the constraint is applied.
The constraints defined by Equation (4.3) override any other condition set by Equation (4.1) or Equation (4.2).

For a system of PDEs and a solution with several components the PDE has the form

− (Aijkluk,l),j − (Bijkuk),j + Cikluk,l +Dikuk = −Xij,j + Yi . (4.4)

A is a rank-4 Data object, B and C are each a rank-3 Data object, D and X are each a rank-2 Data object and
Y is a rank-1 Data object. The natural boundary conditions take the form:

nj(Aijkluk,l +Bijkuk) + dikuk = njXij + yi . (4.5)

The coefficient d is a rank-2 Data object and y is a rank-1 Data object both in the boundary FunctionSpace.
Constraints take the form

ui = ri where qi > 0 (4.6)

r and q are each a rank-1 Data object. Notice that not necessarily all components must have a constraint at all
locations.

Chapter 4. The esys.escript.linearPDEs Module 67

LinearPDE also supports solution discontinuities over a contact region Γcontact in the domain Ω. To specify
the conditions across the discontinuity we are using the generalised flux J1 which in the case of a system of PDEs
and several components of the solution, is defined as

Jij = Aijkluk,l +Bijkuk −Xij (4.7)

For the case of single solution component and single PDE, J is defined as

Jj = Ajlu,l +Bjuk −Xj (4.8)

In the context of discontinuities n denotes the normal on the discontinuity pointing from side 0 towards side 1. For
a system of PDEs the contact condition takes the form

njJ
0
ij = njJ

1
ij = ycontacti − dcontactik [u]k . (4.9)

where J0 and J1 are the fluxes on side 0 and side 1 of the discontinuity Γcontact, respectively. [u], which is the
difference of the solution at side 1 and at side 0, denotes the jump of u across Γcontact. The coefficient dcontact

is a rank-2 Data object and ycontact is a rank-1 Data object both in the contact FunctionSpace on side 0
or contact FunctionSpace on side 1. In the case of a single PDE and a single component solution the contact
condition takes the form

njJ
0
j = njJ

1
j = ycontact − dcontact[u] (4.10)

In this case the coefficient dcontact and ycontact are each a scalar Data object both in the contact FunctionSpace
on side 0 or contact FunctionSpace on side 1.

The PDE is symmetrical if
Ajl = Alj and Bj = Cj (4.11)

The system of PDEs is symmetrical if

Aijkl = Aklij (4.12)
Bijk = Ckij (4.13)
Dik = Dki (4.14)
dik = dki (4.15)

dcontactik = dcontactki (4.16)

Note that in contrast to the scalar case Equation (4.11) now the coefficients D, d and dcontact have to be inspected.
The following example illustrates a typical usage of the LinearPDE class:

from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.finley import Rectangle
mydomain = Rectangle(l0=1., l1=1., n0=40, n1=20)
mypde=LinearPDE(mydomain)
mypde.setSymmetryOn()
mypde.setValue(A=kappa*kronecker(mydomain), D=1, Y=1)
u=mypde.getSolution()

We refer to Chapter 1 for more details.
An instance of the SolverOptions class is attached to the LinearPDE class object. It holds options for

the solver that may be set before solving the PDE. In the following example the getSolverOptions method is
used to access the SolverOptions object attached to mypde:

from esys.escript import *
from esys.escript.linearPDEs import LinearPDE, SolverOptions
from esys.finley import Rectangle
mydomain = Rectangle(l0=1., l1=1., n0=40, n1=20)
mypde=LinearPDE(mydomain)
mypde.setValue(A=kappa*kronecker(mydomain), D=1, Y=1)

1In some applications the definition of flux used here can be different from the commonly used definition. For instance, if T is a temperature
field the heat flux q is defined as q,i = −κT,i (κ is the diffusivity) which differs from the definition used here by the sign. This needs to be
kept in mind when defining natural boundary conditions.

68 4.1. Linear Partial Differential Equations

mypde.getSolverOptions().setVerbosityOn()
mypde.getSolverOptions().setSolverMethod(SolverOptions.PCG)
mypde.getSolverOptions().setPreconditioner(SolverOptions.AMG)
mypde.getSolverOptions().setTolerance(1e-8)
mypde.getSolverOptions().setIterMax(1000)
u=mypde.getSolution()

In this example, the preconditioned conjugate gradient method SolverOptions.PCG is used with precondi-
tioner SolverOptions.AMG . The relative tolerance is set to 10−8 and the maximum number of iteration steps
to 1000. After a completed call to getSolution(), the attached SolverOptions object gives access to
diagnostic information:

u=mypde.getSolution()
print("Number of iteration steps =", mypde.getDiagnostics("num_iter"))
print("Total solution time =", mypde.getDiagnostics("time"))
print("Set-up time =", mypde.getDiagnostics("set_up_time"))
print("Net time =", mypde.getDiagnostics("net_time"))
print("Residual norm of returned solution =", mypde.getDiagnostics('residual_norm'))

Typically, a negative value for a diagnostic variable indicates that it is undefined.

4.1.1 Classes
The module esys.escript.linearPDEs provides an interface to define and solve linear partial differential
equations within esys.escript. The module esys.escript.linearPDEs does not provide any solver
capabilities in itself but hands the PDE over to the PDE solver library defined through the Domain of the PDE, e.g.
esys.finley. The general interface is provided through the LinearPDE class. The Poisson class which is
also derived form the LinearPDE class should be used to define the Poisson equation.

4.1.2 LinearPDE class
This is the general class to define a linear PDE in esys.escript. We list a selection of the most important
methods of the class. For a complete list, see the reference at http://esys.esscc.uq.edu.au/docs.
html.

class LinearPDE(domain,numEquations=0,numSolutions=0)
opens a linear, steady, second order PDE on the Domain domain. The parameters numEquations and
numSolutions give the number of equations and the number of solution components. If
numEquations and numSolutions are non-positive, then the number of equations and the number of
solutions, respectively, stay undefined until a coefficient is defined.

4.1.2.1 LinearPDE methods

setValue([A][, B], [, C][, D] [, X][, Y] [, d][, y] [, d contact][, y contact] [, q][, r])
assigns new values to coefficients. By default all values are assumed to be zero2. If the new coefficient
value is not a Data object, it is converted into a Data object in the appropriate FunctionSpace.

getCoefficient(name)
returns the value assigned to coefficient name. If name is not a valid name an exception is raised.

getShapeOfCoefficient(name)
returns the shape of the coefficient name even if no value has been assigned to it.

getFunctionSpaceForCoefficient(name)
returns the FunctionSpace of the coefficient name even if no value has been assigned to it.

setDebugOn()
2In fact, it is assumed they are not present by assigning the value escript.Data(). This can be used by the solver library to reduce

computational costs.

Chapter 4. The esys.escript.linearPDEs Module 69

http://esys.esscc.uq.edu.au/docs.html
http://esys.esscc.uq.edu.au/docs.html

switches on debug mode so more diagnostic messages will be printed.

setDebugOff()
switches off debug mode.

getSolverOptions()
returns the solver options for solving the PDE. In fact, the method returns a SolverOptions class
object which can be used to modify the tolerance, the solver or the preconditioner, see Section 4.3 for
details.

setSolverOptions([options=None])
sets the solver options for solving the PDE. If argument options is present it must be a
SolverOptions class object, see Section 4.3 for details. Otherwise the solver options are reset to the
default.

isUsingLumping()
returns True if matrix lumping is set as the solver for the system of linear equations, False otherwise.

getDomain()
returns the Domain of the PDE.

getDim()
returns the spatial dimension of the PDE.

getNumEquations()
returns the number of equations.

getNumSolutions()
returns the number of components of the solution.

checkSymmetry(verbose=False)
returns True if the PDE is symmetric, False otherwise. The method is very computationally expensive and
should only be called for testing purposes. The symmetry flag is not altered. If verbose=True
information about where symmetry is violated is printed.

getFlux(u)
returns the flux Jij for given solution u defined by Equation (4.7) and Equation (4.8).

isSymmetric()
returns True if the PDE has been indicated to be symmetric, False otherwise.

setSymmetryOn()
indicates that the PDE is symmetric.

setSymmetryOff()
indicates that the PDE is not symmetric.

setReducedOrderOn()
enables the reduction of polynomial order for the solution and equation evaluation even if a quadratic or
higher interpolation order is defined in the Domain. This feature may not be supported by all PDE
libraries.

setReducedOrderOff()
disables the reduction of polynomial order for the solution and equation evaluation.

getOperator()
returns the Operator of the PDE.

getRightHandSide()

70 4.1. Linear Partial Differential Equations

returns the right hand side of the PDE as a Data object. If ignoreConstraint=True, then the
constraints are not considered when building up the right hand side.

getSystem()
returns the Operator and right hand side of the PDE.

getSolution()
returns (an approximation of) the solution of the PDE. This call will invoke the discretization of the PDE
and the solution of the resulting system of linear equations. Keep in mind that this call is typically
computationally expensive and – depending on the PDE and the discretization – can take a long time to
complete.

4.1.3 The Poisson Class

The Poisson class provides an easy way to define and solve the Poisson equation

− u,ii = f (4.17)

with homogeneous boundary conditions

niu,i = 0 (4.18)

and homogeneous constraints

u = 0 where q > 0. (4.19)

f has to be a scalar Data object in the general FunctionSpace and q must be a scalar Data object in the
solution FunctionSpace.

class Poisson(domain)
opens a Poisson equation on the Domain domain. Poisson is derived from LinearPDE.

setValue(f=escript.Data(),q=escript.Data())
assigns new values to f and q.

4.1.4 The Helmholtz Class

The Helmholtz class defines the Helmholtz problem

ω u− (k u,j),j = f (4.20)

with natural boundary conditions

k u,jn,j = g − α u (4.21)

and constraints

u = r where q > 0. (4.22)

ω, k, and f each have to be a scalar Data object in the general FunctionSpace, g and α must be a scalar
Data object in the boundary FunctionSpace, and q and r must be a scalar Data object in the solution
FunctionSpace or must be mapped or interpolated into the particular FunctionSpace.

class Helmholtz(domain)
opens a Helmholtz equation on the Domain domain. Helmholtz is derived from LinearPDE.

setValue([omega] [, k] [, f] [, alpha] [, g] [, r] [, q])
assigns new values to omega, k, f, alpha, g, r, and q. By default all values are set to zero.

Chapter 4. The esys.escript.linearPDEs Module 71

4.1.5 The Lame Class
The Lame class defines a Lame equation problem

− (µ(ui,j + uj,i) + λuk,kδij)j = Fi − σij,j (4.23)

with natural boundary conditions

nj(µ (ui,j + uj,i) + λuk,kδij) = fi + njσij (4.24)

and constraint
ui = ri where qi > 0. (4.25)

µ, λ have to be a scalar Data object in the general FunctionSpace, F has to be a vector Data object in
the general FunctionSpace, σ has to be a tensor Data object in the general FunctionSpace, f must be a
vector Data object in the boundary FunctionSpace, and q and r must be a vector Data object in the solution
FunctionSpace or must be mapped or interpolated into the particular FunctionSpace.

class Lame(domain)
opens a Lame equation on the Domain domain. Lame is derived from LinearPDE.

setValue([lame lambda] [, lame mu] [, F] [, sigma] [, f] [, r] [, q])
assigns new values to lame_lambda, lame_mu, F, sigma, f, r, and q. By default all values are set to
zero.

4.2 Projection
Using the LinearPDE class provides an option to change the FunctionSpace attribute in addition to the
standard interpolation mechanism as discussed in Chapter 3. If you consider the stripped-down version

u = Y (4.26)

of the general scalar PDE 4.1 (boundary conditions are irrelevant), you can see the solution u of this PDE as
a projection of the input function Y which has the general FunctionSpace attribute to a function with the
solution FunctionSpace or reduced solution FunctionSpace attribute. In fact, the solution maps values
defined at element centers representing a possibly discontinuous function onto a continuous function represented
by its values at the nodes of the FEM mesh. This mapping is called a projection. Projection can be a useful tool
but needs to be applied with some care due to the possibility of projecting a potentially discontinuous function
onto a continuous function, although this may also be a desirable effect, for instance to smooth a function. The
projection of the gradient of a function typically calculated on the element center to the nodes of a FEM mesh can
be evaluated on the domain boundary and so projection provides a tool to extrapolate the gradient from the internal
to the boundary. This is only a reasonable procedure in the absence of singularities at the boundary.

As projection is often used in simulations esys.escript provides an easy to use class Projector which
is part of the esys.escript.pdetools module. The following script demonstrates the usage of the class to
project the piecewise constant function (= 1 for x0 ≥ 0.5 and = −1 for x0 < 0.5) to a function with the reduced
solution FunctionSpace attribute (default target):

from esys.escript.pdetools import Projector
proj=Projector(domain)
x0=domain.getX()[0]
jmp=1.-2.*wherePositive(x0-0.5)
u=proj.getValue(jmp)
alternative call:
u=proj(jmp)

By default the class uses lumping to solve the PDE 4.26. This technique is faster than using the standard solver
techniques of PDEs. In essence it leads to using the average of neighbour element values to calculate the value at
each FEM node.

The following script illustrates how to evaluate the normal stress on the boundary from a given displacement
field u:

72 4.2. Projection

from esys.escript.pdetools import Projector
u=...
proj=Projector(u.getDomain())
e=symmetric(grad(u))
stress = G*e+ (K-2./3.*G)*trace(e)*kronecker(u.getDomain())
normal_stress = inner(u.getDomain().getNormal(), proj(stress))

class Projector(domain[, reduce=True [, fast=True]])
This class defines a projector on the domain domain. If reduce is set to True the projection will be
returned as a reduced solution FunctionSpace Data object. Otherwise the solution
FunctionSpace representation is returned. If reduce is set to True lumping is used when the
Equation (4.26) is solved, otherwise the standard PDE solver is used. Notice, that lumping requires
significantly less computation time and memory. The class is callable.

getSolverOptions()
returns the solver options for solving the PDE. In fact, the method returns a SolverOptions class
object which can be used to modify the tolerance, the solver or the preconditioner, see Section 4.3 for
details.

getValue(input data)
projects the input_data. This method is equivalent to call an instance of the class with argument
input_data

4.3 Solver Options

class SolverOptions()
This class defines the solver options for a linear or non-linear solver. The option also supports the handling
of diagnostic information.

getSummary()
returns a string reporting the current settings.

getName(key)
returns the name as a string of a given key.

setSolverMethod([method=SolverOptions.DEFAULT])
sets the solver method to be used. Use method =SolverOptions.DIRECT to indicate that a direct
rather than an iterative solver should be used and use method =SolverOptions.ITERATIVE to
indicate that an iterative rather than a direct solver should be used. The value of method must be one of
the constants:

SolverOptions.DEFAULT
SolverOptions.DIRECT
SolverOptions.CHOLEVSKY
SolverOptions.PCG
SolverOptions.CR
SolverOptions.CGS
SolverOptions.BICGSTAB
SolverOptions.SSOR
SolverOptions.GMRES
SolverOptions.PRES20
SolverOptions.ROWSUM_LUMPING
SolverOptions.HRZ_LUMPING
SolverOptions.ITERATIVE
SolverOptions.NONLINEAR_GMRES
SolverOptions.TFQMR
SolverOptions.MINRES

Chapter 4. The esys.escript.linearPDEs Module 73

SolverOptions.GAUSS_SEIDEL.
Not all packages support all solvers. It can be assumed that a package makes a reasonable choice if it encounters
an unknown solver. See Table 7.2 for the solvers supported by esys.finley.

getSolverMethod()
returns the key of the solver method to be used.

setPreconditioner([preconditioner=SolverOptions.JACOBI])
sets the preconditioner to be used. The value of preconditioner must be one of the constants:

SolverOptions.ILU0
SolverOptions.JACOBI
SolverOptions.AMG
SolverOptions.REC_ILU
SolverOptions.GAUSS_SEIDEL
SolverOptions.RILU
SolverOptions.NO_PRECONDITIONER.
Not all packages support all preconditioners. It can be assumed that a package makes a reasonable choice if it
encounters an unknown preconditioner. See Table 7.3 for the preconditioners supported by esys.finley.

getPreconditioner()
returns the key of the preconditioner to be used.

setPackage([package=SolverOptions.DEFAULT])
sets the solver package to be used as a solver. The value of method must be one of the constants:

SolverOptions.DEFAULT
SolverOptions.PASO
SolverOptions.SUPER_LU
SolverOptions.PASTIX
SolverOptions.MKL
SolverOptions.UMFPACK.
Not all packages are supported on all implementations. An exception may be thrown on some platforms if a
particular package is requested. Currently esys.finley supports SolverOptions.PASO (as default) and,
if available, SolverOptions.MKL3 and SolverOptions.UMFPACK.

getPackage()
returns the solver package key.

resetDiagnostics([all=False])
resets the diagnostics. If all is True all diagnostics, including accumulative counters, are reset.

getDiagnostics([name])
returns the diagnostic information name. The following keywords are supported:

"num_iter": number of iteration steps
"cum_num_iter": cumulative number of iteration steps
"num_level": number of levels in the multi level solver
"num_inner_iter": number of inner iteration steps
"cum_num_inner_iter": cumulative number of inner iteration steps
"time": execution time
"cum_time": cumulative execution time
"set_up_time": time to set up the solver, typically this includes factorization and reordering
"cum_set_up_time": cumulative time to set up the solver
"net_time": net execution time, excluding setup time for the solver and execution time for preconditioner
"cum_net_time": cumulative net execution time
"residual_norm": norm of the final residual
"converged": status of convergence

3If the stiffness matrix is non-regular MKL may return without returning a proper error code. If you observe suspicious solutions when using
MKL, this may be causes by a non-invertible operator.

74 4.3. Solver Options

"preconditioner_size": size of preconditioner in MBytes
"preconditioner_size": size of preconditioner in MBytes
"preconditioner_size": size of preconditioner in MBytes .

hasConverged()
returns True if the last solver call has been finalized successfully. If an exception has been thrown by the
solver the status of this flag is undefined.

setReordering([ordering=SolverOptions.DEFAULT REORDERING])
sets the key of the reordering method to be applied if supported by the solver. Some direct solvers support
reordering to optimize compute time and storage use during elimination. The value of ordering must be
one of the constants:

SolverOptions.NO_REORDERING
SolverOptions.MINIMUM_FILL_IN
SolverOptions.NESTED_DISSECTION
SolverOptions.DEFAULT_REORDERING.

getReordering()
returns the key of the reordering method to be applied if supported by the solver.

setRestart([restart=None])
sets the number of iterations steps after which SolverOptions.GMRES is to perform a restart. If
restart is equal to None no restart is performed.

getRestart()
returns the number of iterations steps after which SolverOptions.GMRES performs a restart.

setTruncation([truncation=20])
sets the number of residuals in SolverOptions.GMRES to be stored for orthogonalization. The more
residuals are stored the faster SolverOptions.GMRES converges but the higher the storage needs are
and the more expensive a single iteration step becomes.

getTruncation()
returns the number of residuals in SolverOptions.GMRES to be stored for orthogonalization.

setIterMax([iter max=10000])
sets the maximum number of iteration steps.

getIterMax()
returns maximum number of iteration steps.

setLevelMax([level max=10])
sets the maximum number of coarsening levels to be used in the SolverOptions.AMG solver or
preconditioner.

getLevelMax()
returns the maximum number of coarsening levels to be used in an algebraic multi level solver or
preconditioner.

setCoarseningThreshold([theta=0.25])
sets the threshold for coarsening in the SolverOptions.AMG solver or preconditioner.

getCoarseningThreshold()
returns the threshold for coarsening in the SolverOptions.AMG solver or preconditioner.

setDiagonalDominanceThreshold([value=0.5])
sets the threshold for diagonal dominant rows which are eliminated during SolverOptions.AMG
coarsening.

Chapter 4. The esys.escript.linearPDEs Module 75

getDiagonalDominanceThreshold()
returns the threshold for diagonal dominant rows which are eliminated during SolverOptions.AMG
coarsening.

setMinCoarseMatrixSize([size=500])
sets the minimum size of the coarsest level matrix in SolverOptions.AMG .

getMinCoarseMatrixSize()
returns the minimum size of the coarsest level matrix in SolverOptions.AMG .

setSmoother([smoother=SolverOptions.GAUSS_SEIDEL])
sets the SolverOptions.JACOBI or SolverOptions.GAUSS_SEIDEL smoother to be used with
SolverOptions.AMG .

getSmoother()
returns the key of the smoother used in SolverOptions.AMG .

setAMGInterpolation([method=None])
sets interpolation method for SolverOptions.AMG to
CLASSIC_INTERPOLATION_WITH_FF_COUPLING, CLASSIC_INTERPOLATION, or
DIRECT_INTERPOLATION.

getAMGInterpolation()
returns the key CLASSIC_INTERPOLATION_WITH_FF_COUPLING, CLASSIC_INTERPOLATION,
or DIRECT_INTERPOLATION of the interpolation method for SolverOptions.AMG .

setNumSweeps([sweeps=2])
sets the number of sweeps in a SolverOptions.JACOBI or SolverOptions.GAUSS_SEIDEL
preconditioner.

getNumSweeps()
returns the number of sweeps in a SolverOptions.JACOBI or SolverOptions.GAUSS_SEIDEL
preconditioner.

setNumPreSweeps([sweeps=2])
sets the number of sweeps in the pre-smoothing step of SolverOptions.AMG .

getNumPreSweeps()
returns the number of sweeps in the pre-smoothing step of SolverOptions.AMG .

setNumPostSweeps([sweeps=2])
sets the number of sweeps in the post-smoothing step of SolverOptions.AMG .

getNumPostSweeps()
returns he number of sweeps in the post-smoothing step of SolverOptions.AMG .

setTolerance([rtol=1.e-8])
sets the relative tolerance for the solver. The actual meaning of tolerance depends on the underlying PDE
library. In most cases, the tolerance will only consider the error from solving the discrete problem but will
not consider any discretization error.

getTolerance()
returns the relative tolerance for the solver.

setAbsoluteTolerance([atol=0.])
sets the absolute tolerance for the solver. The actual meaning of tolerance depends on the underlying PDE
library. In most cases, the tolerance will only consider the error from solving the discrete problem but will
not consider any discretization error.

76 4.3. Solver Options

getAbsoluteTolerance()
returns the absolute tolerance for the solver.

setInnerTolerance([rtol=0.9])
sets the relative tolerance for an inner iteration scheme, for instance on the coarsest level in a multi-level
scheme.

getInnerTolerance()
returns the relative tolerance for an inner iteration scheme.

setRelaxationFactor([factor=0.3])
sets the relaxation factor used to add dropped elements in SolverOptions.RILU to the main diagonal.

getRelaxationFactor()
returns the relaxation factor used to add dropped elements in SolverOptions.RILU to the main
diagonal.

isSymmetric()
returns True if the discrete system is indicated as symmetric.

setSymmetryOn()
sets the symmetry flag to indicate that the coefficient matrix is symmetric.

setSymmetryOff()
clears the symmetry flag for the coefficient matrix.

isVerbose()
returns True if the solver is expected to be verbose.

setVerbosityOn()
switches the verbosity of the solver on.

setVerbosityOff()
switches the verbosity of the solver off.

adaptInnerTolerance()
returns True if the tolerance of the inner solver is selected automatically. Otherwise the inner tolerance set
by setInnerTolerance is used.

setInnerToleranceAdaptionOn()
switches the automatic selection of inner tolerance on.

setInnerToleranceAdaptionOff()
switches the automatic selection of inner tolerance off.

setInnerIterMax([iter max=10])
sets the maximum number of iteration steps for the inner iteration.

getInnerIterMax()
returns the maximum number of inner iteration steps.

acceptConvergenceFailure()
returns True if a failure to meet the stopping criteria within the given number of iteration steps is not
raising in exception. This is useful if a solver is used in a non-linear context where the non-linear solver
can continue even if the returned solution does not necessarily meet the stopping criteria. One can use the
hasConverged method to check if the last call to the solver was successful.

setAcceptanceConvergenceFailureOn()
switches the acceptance of a failure of convergence on.

Chapter 4. The esys.escript.linearPDEs Module 77

setAcceptanceConvergenceFailureOff()
switches the acceptance of a failure of convergence off.

DEFAULT
default method, preconditioner or package to be used to solve the PDE. An appropriate method should be
chosen by the used PDE solver library.

MKL
the MKL library by Intel, Reference [19]4.

UMFPACK
the UMFPACK library, Reference [34]. Note that UMFPACK is not parallelized.

PASO
PASO is the default solver library of esys.finley, see Section 7.

ITERATIVE
the default iterative method and preconditioner. The actual method used depends on the PDE solver li-
brary and the chosen solver package. Typically, SolverOptions.PCG is used for symmetric PDEs and
SolverOptions.BICGSTAB otherwise, both with SolverOptions.JACOBI preconditioner.

DIRECT
the default direct linear solver.

CHOLEVSKY
direct solver based on Cholevsky factorization (or similar), see Reference [28]. The solver requires a sym-
metric PDE.

PCG
preconditioned conjugate gradient method, see Reference [37]. The solver requires a symmetric PDE.

TFQMR
transpose-free quasi-minimal residual method, see Reference [37].

GMRES
the GMRES method, see Reference [37]. Truncation and restart are controlled by the truncation and
restart parameters of getSolution.

MINRES
minimal residual method

ROWSUM LUMPING
row sum lumping of the stiffness matrix, see Section 4.4 for details. Lumping does not use the linear system
solver library.

HRZ LUMPING
HRZ lumping of the stiffness matrix, see Section 4.4 for details. Lumping does not use the linear system
solver library.

PRES20
the GMRES method with truncation after five residuals and restart after 20 steps, see Reference [37].

CGS
conjugate gradient squared method, see Reference [37].

BICGSTAB
stabilized bi-conjugate gradients methods, see Reference [37].

4The MKL library will only be available when the Intel compilation environment was used to build esys.escript.

78 4.3. Solver Options

SSOR
symmetric successive over-relaxation method, see Reference [37]. Typically used as preconditioner but
some linear solver libraries support this as a solver.

ILU0
the incomplete LU factorization preconditioner with no fill-in, see Reference [28].

JACOBI
the Jacobi preconditioner, see Reference [28].

AMG
the algebraic multi grid method, see Reference [29]. This method can be used as linear solver method but is
more robust when used as a preconditioner.

GAUSS SEIDEL
the symmetric Gauss-Seidel preconditioner, see Reference [28]. getNumSweeps() is the number of
sweeps used.

REC ILU
recursive incomplete LU factorization preconditioner, see Reference [33]. This method is similar to the one
used for SolverOptions.ILU0 but applies reordering during the factorization.

NO REORDERING
no reordering is used during factorization.

DEFAULT REORDERING
the default reordering method during factorization.

MINIMUM FILL IN
applies reordering before factorization using a fill-in minimization strategy. You have to check with the
particular solver library or linear solver package if this is supported. In any case, it is advisable to apply
reordering on the mesh to minimize fill-in.

NESTED DISSECTION
applies reordering before factorization using a nested dissection strategy. You have to check with the partic-
ular solver library or linear solver package if this is supported. In any case, it is advisable to apply reordering
on the mesh to minimize fill-in.

SUPER LU
the SuperLU library [7] is used as a solver.

PASTIX
the Pastix library [14] is used as a solver.

NO PRECONDITIONER
no preconditioner is applied.

DIRECT INTERPOLATION
direct interpolation in SolverOptions.AMG , see [29]

CLASSIC INTERPOLATION
classic interpolation in SolverOptions.AMG , see [29]

CLASSIC INTERPOLATION WITH FF COUPLING
classic interpolation with enforced FF coupling in SolverOptions.AMG , see [29]

Chapter 4. The esys.escript.linearPDEs Module 79

4.4 Some Remarks on Lumping
Explicit time integration schemes (two examples are discussed later in this section), require very small time steps
in order to maintain numerical stability. Unfortunately, these small time increments often result in a prohibitive
computational cost. In order to minimise these costs, a technique termed lumping can be utilised. Lumping
is applied to the coefficient matrix, reducing it to a simple diagonal matrix. This can significantly improve the
computational speed, because the solution updates are simplified to a simple component-by-component vector-
vector product. However, some care is required when making radical approximations such as these. In this section,
two commonly applied lumping techniques are discussed, namely row sum lumping and HRZ lumping.

4.4.1 Scalar wave equation
One example where lumping can be applied to a hyperbolic problem, is the scalar wave equation

u,tt = c2u,ii . (4.27)

In this example, both of the lumping schemes are tested against the reference solution

u = sin(5π(x0 − c ∗ t)) (4.28)

over the 2D unit square. Note that u,ini = 0 on faces x1 = 0 and x1 = 1. Thus, on the faces x0 = 0 and x0 = 1
the solution is constrained.

To solve this problem the explicit Verlet scheme was used with a constant time step size dt given by

u(n) = 2u(n−1) − u(n−2) + dt2a(n) (4.29)

for all n = 2, 3, . . . where the upper index (n) refers to values at time t(n) = t(n−1) + h and a(n) is the solution of

a(n) = c2u
(n−1)
,ii . (4.30)

This equation can be interpreted as a PDE for the unknown value a(n), which must be solved at each time-step. In
the notation of equation 4.1 we thus set D = 1 and X = −c2u(n−1)

,i . Furthermore, in order to maintain stability,
the time step size needs to fulfill the Courant-Friedrichs-Lewy condition (CFL condition). For this example, the
CFL condition takes the form

dt = f · dx
c
. (4.31)

where dx is the mesh size and f is a safety factor. In this example, we use f = 1
6 .

Figure 4.1 depicts a temporal comparison between four alternative solution algorithms: the exact solution;
using a full mass matrix; using HRZ lumping; and row sum lumping. The domain utilised rectangular order
1 elements (element size is 0.01) with observations taken at the point (1

2 ,
1
2). All four solutions appear to be

identical for this example. This is not the case for order 2 elements, as illustrated in Figure 4.2. For the order
2 elements, the row sum lumping has become unstable. Row sum lumping is unstable in this case because for
order 2 elements, a row sum can result in a value of zero. HRZ lumping does not display the same problems, but
rather exhibits behaviour similar to the full mass matrix solution. When using both the HRZ lumping and full mass
matrix, the wave-front is slightly delayed when compared with the analytical solution.

Alternatively, one can directly solve for u(n) by inserting equation 4.29 into equation 4.30:

u(n) = 2u(n−1) − u(n−2) + (dt · c)2u
(n−1)
,ii . (4.32)

This can also be interpreted as a PDE that must be solved at each time-step, but for the unknown u(n). As per
equation 4.1 we set the general form coefficients to: D = 1; Y = 2u(n−1) − u(n−2); and X = −(h · c)2u

(n−1)
,i .

For the full mass matrix, the acceleration 4.30 and displacement formulations 4.32 are identical.
The displacement solution is depicted in Figure 4.3. The domain utilised order 1 elements (for order 2, both

lumping methods are unstable). The solutions for the exact and the full mass matrix approximation are almost
identical while the lumping solutions, whilst identical to each other, exhibit a considerably faster wave-front prop-
agation and a decaying amplitude.

80 4.4. Some Remarks on Lumping

FIGURE 4.1: Amplitude at point (1
2
, 1
2
) using the acceleration formulation 4.30 of the Velet scheme with order 1 elements,

element size dx = 0.01, and c = 1.

FIGURE 4.2: Amplitude at point (1
2
, 1
2
) using the acceleration formulation 4.30 of the Velet scheme with order 2 elements,

element size 0.01, and c = 1.

4.4.2 Advection equation
Consider now, a second example that demonstrates the advection equation

u,t = (viu)i . (4.33)

where vi is a given velocity field. To simplify this example, set vi = (1, 0) and

u(x, t) =

{
1 x0 < t
0 x0 ≥ t

}
. (4.34)

The solution scheme implemented, is the two-step Taylor-Galerkin scheme (which is in this case equivalent to
SUPG): the incremental formulation is given as

du(n− 1
2) =

dt

2
(viu

(n−1))i (4.35)

du(n) = dt(vi(u
(n−1) + du(n− 1

2)))i (4.36)
u(n) = u(n) + du(n) (4.37)

This can be reformulated to calculate u(n) directly:

u(n− 1
2) = u(n−1) +

dt

2
(viu

(n−1))i (4.38)

u(n) = u(n−1) + dt(viu
(n− 1

2))i (4.39)

Chapter 4. The esys.escript.linearPDEs Module 81

FIGURE 4.3: Amplitude at point (1
2
, 1
2
) using the displacement formulation 4.32 of the Velet scheme with order 1 elements,

element size 0.01 and c = 1.

In some cases it may be possible to combine the two equations to calculate u(n) without the intermediate step. This
approach is not discussed, because it is inflexible when a greater number of terms (e.g. a diffusion term) are added
to the right hand side.

The advection problem is thus similar to the wave propagation problem, because the time step also needs to
satisfy the CFL condition . For the advection problem, this takes the form

dt = f · dx
‖v‖

. (4.40)

where dx is the mesh size and f is a safty factor. For this example, we again use f = 1
6 .

Figures 4.4 and 4.5 illustrate the four incremental formulation solutions: the true solution; the exact mass
matrix; the HRZ lumping; and the row sum lumping. Observe, that for the order 1 elements case, there is little
deviation from the exact solution before the wave front, whilst there is a significant degree of osciallation after the
wave-front has passed. For the order 2 elements example, all of the numerical techniques fail.

FIGURE 4.4: Amplitude at point (1
2
, 1
2
) using the incremental formulation 4.35 of the Taylor-Galerkin scheme with order 1

elements, element size dx = 0.01, v = (1, 0).

Figure 4.6 depicts the results from the direct formulation of the advection problem for an order 1 mesh. Gen-
erally, the results have improved when compared with the incremental formulation. The full mass matrix still
introduces some osciallation both before and after the arrival of the wave-front at the observation point. The two
lumping solutions are identical, and have introduced additional smoothing to the solution. There are no oscillatory
effects when using lumping for this example. In Figure 4.7 the mesh or element size has been reduced from 0.01
to 0.002 units. As predicted by the CFL condition, this significantly improves the results when lumping is applied.
However, when utilising the full mass matrix, a smaller mesh size will result in post wave-front oscilations which
are higher frequency and slower to decay.

82 4.4. Some Remarks on Lumping

FIGURE 4.5: Amplitude at point (1
2
, 1
2
) using the incremental formulation 4.35 of the Taylor-Galerkin scheme with order 2

elements, element size 0.01, v = (1, 0).

Figure 4.8 illustrates the results when utilising elements of order 2. The full mass matrix and HRZ lumping
formulations are unable to correctly model the exact solution. Only the row sum lumping was capable of producing
a smooth and sensical result.

FIGURE 4.6: Amplitude at point (1
2
, 1
2
) using the direct formulation 4.38 of the Taylor-Galerkin scheme using order 1

elements, element size dx = 0.01, v = (1, 0).

4.4.3 Summary
The examples in this section have demonstrated the capabilities and limitations of both HRZ and row sum lumping
with comparisons to the exact and full mass matrix solutions. Wave propagation type problems that utilise lump-
ing, produce results simular the full mass matrix at significantly lower computation cost. An acceleration based
formulation, with HRZ lumping should be implemented for such problems, and can be applied to both order 1 and
order 2 elements.

In transport type problems, it is essential that row sum lumping is used to achieve a smooth solution. Addition-
ally, it is not recommended that second order elements be used in advection type problems.

Chapter 4. The esys.escript.linearPDEs Module 83

FIGURE 4.7: Amplitude at point (1
2
, 1
2
) using the direct formulation 4.38 of the Taylor-Galerkin scheme using order 1

elements, element size dx = 0.002, v = (1, 0).

FIGURE 4.8: Amplitude at point (1
2
, 1
2
) using the direct formulation 4.38 of the Taylor-Galerkin scheme using order 2

elements, element size 0.01, v = (1, 0).

84 4.4. Some Remarks on Lumping

CHAPTER
FIVE

The esys.pycad Module

5.1 Introduction
esys.pycad provides a simple way to build a mesh for your finite element simulation. You begin by building
what we call a Design using primitive geometric objects, and then go on to build a mesh from this. The final step
of generating the mesh from a Design uses freely available mesh generation software, such as Gmsh[11].

A Design is built by defining points, which are used to specify the corners of geometric objects and the
vertices of curves. Using points you construct more interesting objects such as lines, rectangles, and arcs. By
adding many of these objects into a Design, you can build meshes for arbitrarily complex 2-D and 3-D structures.

5.2 The Unit Square
The simplest geometry is the unit square. First we generate the corner points

from esys.pycad import *
p0=Point(0.,0.,0.)
p1=Point(1.,0.,0.)
p2=Point(1.,1.,0.)
p3=Point(0.,1.,0.)

which are then linked to define the edges of the square

l01=Line(p0,p1)
l12=Line(p1,p2)
l23=Line(p2,p3)
l30=Line(p3,p0)

The lines are put together to form a loop

c=CurveLoop(l01,l12,l23,l30)

The orientation of the line defining the CurveLoop is important. It is assumed that the surrounded area is to the
left when moving along the lines from their starting points towards the end points. Moreover, the line needs to
form a closed loop. We now use the CurveLoop to define a surface

s=PlaneSurface(c)

Note that there is a difference between the CurveLoop, which defines the boundary of the surface, and the actual
surface PlaneSurface. This difference becomes clearer in the next example with a hole. Now we are ready to
define the geometry which is described by an instance of the Design class:

d=Design(dim=2,element_size=0.05)

Here we use the two-dimensional domain with a local element size in the finite element mesh of 0.05. We then add
the surface s to the geometry

Chapter 5. The esys.pycad Module 85

d.addItems(s)

This will automatically import all items used to construct s into the Design d. Now we are ready to construct a
esys.finley FEM mesh and then write it to the file quad.fly:

from esys.finley import MakeDomain
dom=MakeDomain(d)
dom.write("quad.fly")

In some cases it is useful to access the script used to generate the geometry. You can specify a specific name for
the script file. In our case we use

d.setScriptFileName("quad.geo")

It is also useful to check error messages generated during the mesh generation process. Gmsh[11] writes messages
to the file .gmsh-errors in your home directory. Putting everything together we get the script

from esys.pycad import *
from esys.pycad.gmsh import Design
from esys.finley import MakeDomain
p0=Point(0.,0.,0.)
p1=Point(1.,0.,0.)
p2=Point(1.,1.,0.)
p3=Point(0.,1.,0.)
l01=Line(p0,p1)
l12=Line(p1,p2)
l23=Line(p2,p3)
l30=Line(p3,p0)
c=CurveLoop(l01,l12,l23,l30)
s=PlaneSurface(c)
d=Design(dim=2,element_size=0.05)
d.setScriptFileName("quad.geo")
d.addItems(s)
pl1=PropertySet("sides",l01,l23)
pl2=PropertySet("top_and_bottom",l12,l30)
d.addItems(pl1, pl2)
dom=MakeDomain(d)
dom.write("quad.fly")

This example is included with the software in quad.py in the example directory.
There are three extra statements which we have not discussed yet. By default the mesh used to subdivide the

boundary is not written into the mesh file mainly to reduce the size of the data file. One needs to explicitly add the
lines to the Design which should be present in the mesh data. Here we additionally labeled the lines on the top
and the bottom with the name “top and bottom“ and the lines on the left and right hand side with the name “sides“
using PropertySet objects. The labeling is convenient when using tagging, see Chapter 3.

If you have Gmsh[11] installed you can run the example and view the geometry and mesh with:

run-escript quad.py
gmsh quad.geo
gmsh quad.msh

See Figure 5.1 for a result.
In most cases it is best practice to generate the mesh and solve the mathematical model in two separate scripts.

In our example you can read the esys.finley mesh into your simulation code1 using

from finley import ReadMesh
mesh=ReadMesh("quad.fly")

Note that the underlying mesh generation software will not accept all the geometries you can create. For example,
esys.pycad will happily allow you to create a 2-D Design that is a closed loop with some additional points
or lines lying outside of the enclosed area, but Gmsh[11] will fail to create a mesh for it.

1Gmsh[11] files can be directly read using ReadGmsh, see Chapter 7

86 5.2. The Unit Square

FIGURE 5.1: Quadrilateral with mesh of triangles

5.3 Holes
The example included below shows how to use esys.pycad to create a 2-D mesh in the shape of a trapezoid
with a cut-out area as in Figure 5.2.

from esys.pycad import *
from esys.pycad.gmsh import Design
from esys.finley import MakeDomain

A trapezoid
p0=Point(0.0, 0.0, 0.0)
p1=Point(1.0, 0.0, 0.0)
p2=Point(1.0, 0.5, 0.0)
p3=Point(0.0, 1.0, 0.0)
l01=Line(p0, p1)
l12=Line(p1, p2)
l23=Line(p2, p3)
l30=Line(p3, p0)
c=CurveLoop(l01, l12, l23, l30)

A small triangular cutout
x0=Point(0.1, 0.1, 0.0)
x1=Point(0.5, 0.1, 0.0)
x2=Point(0.5, 0.2, 0.0)
x01=Line(x0, x1)
x12=Line(x1, x2)
x20=Line(x2, x0)
cutout=CurveLoop(x01, x12, x20)

Create the surface with cutout
s=PlaneSurface(c, holes=[cutout])

Create a Design which can make the mesh
d=Design(dim=2, element_size=0.05)

Add the trapezoid with cutout
d.addItems(s)

Create the geometry, mesh and Escript domain
d.setScriptFileName("trapezoid.geo")
d.setMeshFileName("trapezoid.msh")
domain=MakeDomain(d)

Chapter 5. The esys.pycad Module 87

FIGURE 5.2: Trapezoid with triangular hole

write mesh to a finley file:
domain.write("trapezoid.fly")

This example is included with the software in trapezoid.py in the example directory.
A CurveLoop is used to connect several lines into a single curve. It is used in the example above to create the

trapezoidal outline for the grid and also for the triangular cutout area. You can define any number of lines when
creating a CurveLoop, but the end of one line must be identical to the start of the next.

5.4 A 3D example
In this section we discuss the definition of 3D geometries. As an example consider the unit cube as shown in
Figure 5.3. First we generate the vertices of the cube:

from esys.pycad import *
p0=Point(0.,0.,0.)
p1=Point(1.,0.,0.)
p2=Point(0.,1.,0.)
p3=Point(1.,1.,0.)
p4=Point(0.,0.,1.)
p5=Point(1.,0.,1.)
p6=Point(0.,1.,1.)
p7=Point(1.,1.,1.)

We connect the points to form the bottom and top surfaces of the cube:

l01=Line(p0,p1)
l13=Line(p1,p3)
l32=Line(p3,p2)
l20=Line(p2,p0)
bottom=PlaneSurface(-CurveLoop(l01,l13,l32,l20))

Similar to the definition of a CurvedLoop the orientation of the surfaces in a SurfaceLoop is relevant.
In fact, the surface normal direction defined by the right-hand rule needs to point outwards as indicated by the
surface normals in Figure 5.3. As the bottom face is directed upwards it is inserted with the minus sign into the
SurfaceLoop in order to adjust the orientation of the surface. Similarly we set

l45=Line(p4,p5)
l57=Line(p5,p7)
l76=Line(p7,p6)
l64=Line(p6,p4)
top=PlaneSurface(CurveLoop(l45,l57,l76,l64))

To form the front face we introduce the two additional lines connecting the left and right front points of the top
and bottom face:

88 5.4. A 3D example

(0,0,0)

(1,1,1)

Y

Z

X

FIGURE 5.3: Three dimensional block

l15=Line(p1,p5)
l40=Line(p4,p0)

To form the front face we encounter the problem as the line l45 used to define the top face is pointing the wrong
direction. In esys.pycad you can reversing direction of an object by changing its sign. So we write -l45 to
indicate that the direction is to be reversed. With this notation we can write

front=PlaneSurface(CurveLoop(l01,l15,-l45,l40))

Keep in mind that if you use Line(p4,p5) instead of -l45 both objects are treated as different although
connecting the same points with a straight line in the same direction. The resulting geometry would include an
opening along the p4–p5 connection. This will lead to an inconsistent mesh and may result in a failure of the
volumetric mesh generator. Similarly we can define the other sides of the cube:

l37=Line(p3,p7)
l62=Line(p6,p2)
back=PlaneSurface(CurveLoop(l32,-l62,-l76,-l37))
left=PlaneSurface(CurveLoop(-l40,-l64,l62,l20))
right=PlaneSurface(CurveLoop(-l15,l13,l37,-l57))

We can now put the six surfaces together to form a SurfaceLoop defining the boundary of the volume of the
cube:

sl=SurfaceLoop(top,bottom,front,back,left,right)
v=Volume(sl)

As in the 2D case, the Design class is used to define the geometry:

from esys.pycad.gmsh import Design
from esys.finley import MakeDomain

des=Design(dim=3, element_size = 0.1, keep_files=True)
des.setScriptFileName("brick.geo")
des.addItems(v, top, bottom, back, front, left, right)

dom=MakeDomain(des)
dom.write("brick.fly")

Note that the esys.finley mesh file brick.fly will contain the triangles used to define the surfaces as they
are added to the Design. The example script of the cube is included with the software in brick.py in the
example directory.

5.5 Alternative File Formats
esys.pycad supports other file formats including I-DEAS universal file, VRML, Nastran and STL. The follow-
ing example shows how to generate the STL file brick.stl:

Chapter 5. The esys.pycad Module 89

FIGURE 5.4: Local refinement at the origin by local_scale=0.01 with element_size=0.3 and number of ele-
ments on the top set to 10

from esys.pycad.gmsh import Design

des=Design(dim=3, element_size = 0.1, keep_files=True)
des.addItems(v, top, bottom, back, front, left , right)

des.setFileFormat(des.STL)
des.setMeshFileName("brick.stl")
des.generate()

The example script of the cube is included with the software in brick_stl.py in the example directory.

5.6 Element Sizes
The element size used globally is defined by the element_size argument of the Design. The mesh generator
will try to use this mesh size everywhere in the geometry. In some cases it can be desirable to use a finer mesh
locally. A local refinement can be defined at each Point:

p0=Point(0., 0., 0., local_scale=0.01)

Here the mesh generator will create a mesh with an element size which is by the factor 0.01 times smaller than
the global mesh size element_size=0.3, see Figure 5.4. The point where a refinement is defined must be a
point on a curve used to define the geometry.

Alternatively, one can define a mesh size along a curve by defining the number of elements to be used to
subdivide the curve. For instance, to use 20 elements on line l23:

l23=Line(p2, p3)
l23.setElementDistribution(20)

Setting the number of elements on a curve overwrites the global mesh size element_size. The result is shown
in Figure 5.4.

5.7 esys.pycad Classes

5.7.1 Primitives
Some of the most commonly-used objects in esys.pycad are listed here. For a more complete list see the full
API documentation.

class Point(x=0.,y=0.,z=0.[,local scale=1.])
creates a point at the given coordinates with local characteristic length local_scale

90 5.6. Element Sizes

class CurveLoop(list)
creates a closed curve from a list of Line, Arc, Spline, BSpline, BezierSpline objects.

class SurfaceLoop(list)
creates a loop of PlaneSurface or RuledSurface, which defines the shell of a volume.

5.7.1.1 Lines

class Line(point1, point2)
creates a line between two points.

setElementDistribution(n[,progression=1[,createBump=False]])
defines the number of elements on the line. If set, it overwrites the local length setting which would be
applied. The progression factor progression defines the change of element size between neighboured
elements. If createBump is set progression is applied towards the centre of the line.

resetElementDistribution()
removes a previously set element distribution from the line.

getElementDistribution()
returns the element distribution as a tuple of number of elements, progression factor and bump flag. If no
element distribution is set None is returned.

5.7.1.2 Splines

class Spline(point0, point1, ...)
A spline curve defined by a list of points point0, point1, . . .

setElementDistribution(n[,progression=1[,createBump=False]])
defines the number of elements on the spline. If set, it overwrites the local length setting which would be
applied. The progression factor progression defines the change of element size between neighboured
elements. If createBump is set progression is applied towards the centre of the spline.

resetElementDistribution()
removes a previously set element distribution from the spline.

getElementDistribution()
returns the element distribution as a tuple of number of elements, progression factor and bump flag. If no
element distribution is set None is returned.

5.7.1.3 BSplines

class BSpline(point0, point1, ...)
A B-spline curve defined by a list of points point0, point1, . . .

setElementDistribution(n[,progression=1[,createBump=False]])
defines the number of elements on the curve. If set, it overwrites the local length setting which would be
applied. The progression factor progression defines the change of element size between neighboured
elements. If createBump is set progression is applied towards the centre of the curve.

resetElementDistribution()
removes a previously set element distribution from the curve.

getElementDistribution()
returns the element distribution as a tuple of number of elements, progression factor and bump flag. If no
element distribution is set None is returned.

Chapter 5. The esys.pycad Module 91

5.7.1.4 Bezier Curves

class BezierCurve(point0, point1, ...)
A Bezier spline curve defined by a list of points point0, point1, . . .

setElementDistribution(n[,progression=1[,createBump=False]])
defines the number of elements on the curve. If set, it overwrites the local length setting which would be
applied. The progression factor progression defines the change of element size between neighboured
elements. If createBump is set progression is applied towards the centre of the curve.

resetElementDistribution()
removes a previously set element distribution from the curve.

getElementDistribution()
returns the element distribution as a tuple of number of elements, progression factor and bump flag. If no
element distribution is set None is returned.

5.7.1.5 Arcs

class Arc(centre point, start point, end point)
creates an arc by specifying a centre for a circle and start and end points. An arc may subtend an angle of
at most π radians.

setElementDistribution(n[,progression=1[,createBump=False]])
defines the number of elements on the arc. If set, it overwrites the local length setting which would be
applied. The progression factor progression defines the change of element size between neighboured
elements. If createBump is set progression is applied towards the centre of the arc.

resetElementDistribution()
removes a previously set element distribution from the arc.

getElementDistribution()
returns the element distribution as a tuple of number of elements, progression factor and bump flag. If no
element distribution is set None is returned.

5.7.1.6 Plane surfaces

class PlaneSurface(loop, [holes=[list]])
creates a plane surface from a CurveLoop, which may have one or more holes described by a list of
CurveLoop objects.

setElementDistribution(n[,progression=1[,createBump=False]])
defines the number of elements on all lines.

setRecombination([max deviation=45 * DEG])
the mesh generator will try to recombine triangular elements into quadrilateral elements.
max_deviation (in radians) defines the maximum deviation of any angle in the quadrilaterals from the
right angle. Set max_deviation =None to remove recombination.

setTransfiniteMeshing([orientation=”Left”])
applies 2D transfinite meshing to the surface. orientation defines the orientation of triangles.
Allowed values are ‘‘Left’’, ‘‘Right’’ and ‘‘Alternate’’. The boundary of the surface must
be defined by three or four lines and an element distribution must be defined on all faces where opposite
faces use the same element distribution. No holes must be present.

92 5.7. esys.pycad Classes

5.7.1.7 Ruled Surfaces

class RuledSurface(list)
creates a surface that can be interpolated using transfinite interpolation. list gives a list of three or four
lines defining the boundary of the surface.

setRecombination([max deviation=45 * DEG])
the mesh generator will try to recombine triangular elements into quadrilateral elements.
max_deviation (in radians) defines the maximum deviation of any angle in the quadrilaterals from the
right angle. Set max_deviation =None to remove recombination.

setTransfiniteMeshing([orientation=”Left”])
applies 2D transfinite meshing to the surface. orientation defines the orientation of triangles.
Allowed values are ‘‘Left’’, ‘‘Right’’ and ‘‘Alternate’’. The boundary of the surface must
be defined by three or four lines and an element distribution must be defined on all faces where opposite
faces use the same element distribution. No holes must be present.

setElementDistribution(n[,progression=1[,createBump=False]])
defines the number of elements on all lines.

5.7.1.8 Volumes

class Volume(loop, [holes=[list]])
creates a volume given a SurfaceLoop, which may have one or more holes define by the list of
SurfaceLoop.

setElementDistribution(n[,progression=1[,createBump=False]])
defines the number of elements on all lines.

setRecombination([max deviation=45 * DEG])
the mesh generator will try to recombine triangular elements into quadrilateral elements. These meshes are
then used to generate the volume mesh if possible. Together with transfinite meshing one can construct
rectangular meshes. max_deviation (in radians) defines the maximum deviation of any angle in the
quadrilaterals from the right angle. Set max_deviation =None to remove recombination.

setTransfiniteMeshing([orientation=”Left”])
applies transfinite meshing to the volume and all surfaces (if orientation is not equal to None).
orientation defines the orientation of triangles. Allowed values are ‘‘Left’’, ‘‘Right’’ and
‘‘Alternate’’. The boundary of the surface must be defined by three or four lines and an element
distribution must be defined on all faces where opposite faces use the same element distribution. If
orientation is equal to None transfinite meshing is not switched on for the surfaces but needs to be
set by the user. No holes must be present. Warning: The functionality of transfinite meshing without
recombination is not entirely clear in Gmsh[11]. So please apply this method with care.

5.7.2 Transformations

Sometimes it is convenient to create an object and then make copies at different orientations or in different sizes.
This can be achieved by applying transformations which are used to move geometrical objects in the 3-dimensional
space and to resize them.

class Translation([b=[0,0,0]])
defines a translation x→ x+ b. b can be any object that can be converted into a numpy object of shape
(3,).

class Rotation([axis=[1,1,1], [point = [0,0,0], [angle=0*RAD]]])

Chapter 5. The esys.pycad Module 93

defines a rotation by angle around axis through point point and direction axis. axis and point
can be any object that can be converted into a numpy object of shape (3,). axis does not have to be
normalised but must have positive length. The right-hand rule [27] applies.

class Dilation([factor=1., [centre=[0,0,0]]])
defines a dilation by the expansion/contraction factor with centre as the dilation centre. centre can
be any object that can be converted into a numpy object of shape (3,).

class Reflection([normal=[1,1,1], [offset=0]])
defines a reflection on a plane defined in normal form ntx = d where n is the surface normal normal and
d is the plane offset. normal can be any object that can be converted into a numpy object of shape
(3,). normal does not have to be normalised but must have positive length.

DEG
a constant to convert from degrees to an internal angle representation in radians. For instance use 90*DEG
for 90 degrees.

5.7.3 Properties

If you are building a larger geometry you may find it convenient to create it in smaller pieces and then assemble
them. Property Sets make this easy, and they allow you to name the smaller pieces for convenience.

Property Sets are used to bundle a set of geometrical objects in a group. The group is identified by a name.
Typically a Property Set is used to mark subregions which share the same material properties or to mark portions
of the boundary. For efficiency, the Design class assigns an integer to each of its Property Sets, a so-called tag.
The appropriate tag is attached to the elements at generation time.

See the file pycad/examples/quad.py for an example using a PropertySet.

class PropertySet(name,*items)
defines a group geometrical objects which can be accessed through a name The objects in the tuple
items mast all be Manifold1D, Manifold2D or Manifold3D objects.

getManifoldClass()
returns the manifold class Manifold1D, Manifold2D or Manifold3D expected from the items in the
property set.

getDim()
returns the spatial dimension of the items in the property set.

getName()
returns the name of the set

setName(name)
sets the name. This name should be unique within a Design.

addItem(*items)
adds a tuple of items. They need to be objects of class Manifold1D, Manifold2D or Manifold3D.

getItems()
returns the list of items

clearItems()
clears the list of items

getTag()
returns the tag used for this property set

94 5.7. esys.pycad Classes

5.8 Interface to the mesh generation software
The class and methods described here provide an interface to the mesh generation software, which is currently
Gmsh[11]. This interface could be adopted to triangle or another mesh generation package if this is deemed to be
desirable in the future.

class Design([dim=3, [element size=1., [order=1, [keep files=False]]]])
describes the geometry defined by primitives to be meshed. dim specifies the spatial dimension, while
element_size defines the global element size which is multiplied by the local scale to set the element
size at each Point. The argument order defines the element order to be used. If keep_files is set to
True temporary files are kept, otherwise they are removed when the instance of the class is deleted.

GMSH
gmsh file format [11]

IDEAS
I-DEAS universal file format [16]

VRML
VRML file format, [36]

STL
STL file format [32]

NASTRAN
NASTRAN bulk data format [22]

MEDIT
Medit file format [18]

CGNS
CGNS file format [3]

PLOT3D
Plot3D file format [26]

DIFFPACK
Diffpack 3D file format [8]

DELAUNAY
the Delaunay triangulator, see Gmsh[11] and [30]

MESHADAPT
the gmsh triangulator, see Gmsh[11]

FRONTAL
the NETGEN [9] triangulator

generate()
generates the mesh file. The data are written to the file Design.getMeshFileName.

setDim([dim=3])
sets the spatial dimension which needs to be 1, 2 or 3.

getDim()
returns the spatial dimension.

setElementOrder([order=1])
sets the element order which needs to be 1 or 2.

Chapter 5. The esys.pycad Module 95

getElementOrder()
returns the element order.

setElementSize([element size=1])
sets the global element size. The local element size at a point is defined as the global element size
multiplied by the local scale. The element size must be positive.

getElementSize()
returns the global element size.

setKeepFilesOn()
work files are kept at the end of the generation.

setKeepFilesOff()
work files are deleted at the end of the generation.

keepFiles()
returns True if work files are kept, False otherwise.

setScriptFileName([name=None])
sets the file name for the gmsh input script. If no name is given a name with extension ”geo” is generated.

getScriptFileName()
returns the name of the file for the gmsh script.

setMeshFileName([name=None])
sets the name for the mesh file. If no name is given a name is generated. The format is set by

Design.setFileFormat.

getMeshFileName()
returns the name of the mesh file.

addItems(*items)
adds the tuple of items. An item can be any primitive or a PropertySet. Warning: If a
PropertySet is added which includes an object that is not part of a PropertySet, it may not be
considered in the meshing.

getItems()
returns a list of the items.

clearItems()
resets the items in this design.

getMeshHandler()
returns a handle to the mesh. Calling this method generates the mesh from the geometry and returns a
mechanism to access the mesh data. In the current implementation this method returns a file name for a
file containing the mesh data.

getScriptString()
returns the gmsh script to generate the mesh as a string.

getCommandString()
returns the gmsh command used to generate the mesh as a string.

setOptions([algorithm=None [, optimize quality=True [, smoothing=1 [,
curvature based element size=False [, algorithm2D=None [, algorithm3D=None [,
generate hexahedra=False [, random factor=None]]]]]]]])

sets options for the mesh generator. Both algorithm and algorithm2D set the 2D meshing algorithm
to be used. If both parameters are given, they must be equal. The algorithm needs to be

96 5.8. Interface to the mesh generation software

Design.DELAUNAY, Design.FRONTAL, or Design.MESHADAPT. By default
Design.MESHADAPT is used. algorithm3D sets the 3D meshing algorithm to be used. The algorithm
needs to be Design.DELAUNAY or Design.FRONTAL. By default Design.FRONTAL is used.
optimize_quality =True invokes an optimization of the mesh quality. smoothing sets the number
of smoothing steps to be applied to the mesh. curvature_based_element_size =True switches
on curvature based definition of element size. generate_hexahedra =True switches on the usage of
quadrilateral or hexahedral elements. random_factor a positive amount used in the 2D meshing
algorithm.

getTagMap()
returns a TagMap to map the PropertySet names to tag numbers generated by gmsh.

setFileFormat([format=Design.GMSH])
sets the file format. format must be one of the values:

Design.GMSH
Design.IDEAS
Design.VRML
Design.STL
Design.NASTRAN
Design.MEDIT
Design.CGNS
Design.PLOT3D
Design.DIFFPACK.

getFileFormat()
returns the file format.

Chapter 5. The esys.pycad Module 97

98 5.8. Interface to the mesh generation software

CHAPTER

SIX

Models

The following sections give a brief overview of the model classes and their corresponding methods.

6.1 The Stokes Problem

In this section we discuss how to solve the Stokes problem. We want to calculate the velocity field v and pressure
p of an incompressible fluid. They are given as the solution of the Stokes problem

− (η(vi,j + vj,i)),j + p,i = fi − σij,j (6.1)

where fi defines an internal force and σij is an initial stress. The viscosity η may weakly depend on pressure and
velocity. If relevant we will use the notation η(v, p) to express this dependency.

We assume an incompressible medium:
− vi,i = 0 (6.2)

Natural boundary conditions are taken in the form

(η(vi,j + vj,i))nj − nip = si − α · ninjvj + σijnj (6.3)

which can be overwritten by constraints of the form

vi(x) = vDi (x) (6.4)

at some locations x at the boundary of the domain. si defines a normal stress and α ≥ 0 the spring constant for
restoring normal force. The index i may depend on the location x on the boundary. vD is a given function on the
domain.

6.1.1 Solution Method

If we assume that η is independent from the velocity and pressure, equations 6.1 and 6.2 can be written in the block
form [

A B∗

B 0

] [
v
p

]
=

[
G
0

]
(6.5)

where A is a coercive, self-adjoint linear operator in a suitable Hilbert space, B is the (−1)· divergence operator
and B∗ is the adjoint operator (=gradient operator). For more details on the mathematics see references [1, 2].

If v0 and p0 are given initial guesses for velocity and pressure we calculate a correction dv for the velocity by
solving the first equation of Equation (6.5)

Adv1 = G−Av0 −B∗p0 (6.6)

Chapter 6. Models 99

We then insert the new approximation v1 = v0 +dv1 to calculate a correction dp2 for the pressure and an additional
correction dv2 for the velocity by solving

BA−1B∗dp2 = Bv1

Adv2 = B∗dp2
(6.7)

The new velocity and pressure are then given by v2 = v1 − dv2 and p2 = p0 + dp2 which will fulfill the block
system 6.5. This solution strategy is called the Uzawa scheme.

There is a problem with this scheme: in practice we will use an iterative scheme to solve any problem for
operator A. So we will be unable to calculate the operator BA−1B∗ required for dp2 explicitly. In fact, we need
to use another iterative scheme to solve the first equation in 6.7 where in each iteration step an iterative solver for
A is applied. Another issue is the fact that the viscosity η may depend on velocity or pressure and so we need to
iterate over the three equations 6.6 and 6.7.

In the following we will use the two norms

‖v‖21 =

∫
Ω

vj,kvj,k dx and ‖p‖20 =

∫
Ω

p2 dx. (6.8)

for velocity v and pressure p. The iteration is terminated if the stopping criterion

max(‖Bv1‖0, ‖v2 − v0‖1) ≤ τ · ‖v2‖1 (6.9)

for a given tolerance 0 < τ < 1 is met. Notice that because of the first equation of 6.7 we have that ‖Bv1‖0 equals
the norm of BA−1B∗dp2 and consequently provides a norm for the pressure correction.

We want to optimize the tolerance choice for solving 6.6 and 6.7. To do this we write the iteration scheme as a
fixed point problem. Here we consider the errors produced by the iterative solvers being used. From Equation (6.6)
we have

v1 = e1 + v0 +A−1(G−Av0 −B∗p0) (6.10)

where e1 is the error when solving 6.6. We will use a sparse matrix solver so we have not full control on the norm
‖.‖s used in the stopping criterion for this equation. In fact we will have a stopping criterion of the form

‖Ae1‖s = ‖G−Av1 −B∗p0‖s ≤ τ1‖G−Av0 −B∗p0‖s (6.11)

where τ1 is the tolerance which we need to choose. This translates into the condition

‖e1‖1 ≤ Kτ1‖dv1 − e1‖1 (6.12)

The constant K represents some uncertainty combining a variety of unknown factors such as the norm being used
and the condition number of the stiffness matrix. From the first equation of 6.7 we have

p2 = p0 + (BA−1B∗)−1(e2 +Bv1) (6.13)

where e2 represents the error when solving 6.7. We use an iterative preconditioned conjugate gradient method
(PCG) with iteration operator BA−1B∗ using the ‖.‖0 norm. As suitable preconditioner for the iteration operator
we use 1

η [31], i.e. the evaluation of the preconditioner P for a given pressure increment q is the solution of

1

η
(Pq) = q . (6.14)

Note that in each evaluation of the iteration operator q = BA−1B∗s one needs to solve the problem

Aw = B∗s (6.15)

with sufficient accuracy to return q = Bw. We assume that the desired tolerance is sufficiently small, for instance
one can take τ2

2 where τ2 is the tolerance for 6.7.
In an implementation we use the fact that the residual r is given as

r = B(v1 −A−1B∗dp) = B(v1 −A−1B∗dp) = B(v1 − dv2) = Bv2 (6.16)

100 6.1. The Stokes Problem

In particular we have e2 = Bv2. So the residual r is represented by the updated velocity v2 = v1 − dv2. In
practice, if one uses the velocity to represent the residual r there is no need to recover dv2 in 6.7 after dp2 has been
calculated. In PCG the iteration is terminated if

‖P 1
2Bv2‖0 ≤ τ2‖P

1
2Bv1‖0 (6.17)

where τ2 is the given tolerance. This translates into

‖e2‖0 = ‖Bv2‖0 ≤Mτ2‖Bv1‖0 (6.18)

where M is taking care of the fact that P
1
2 is dropped.

As we assume that there is no significant error from solving with the operator A we have

v2 = v1 − dv2 = v1 −A−1B∗dp (6.19)

Combining the equations 6.10, 6.13 and 6.19 and setting the errors to zero we can write the solution process as a
fix point problem

v = Φ(v, p) and p = Ψ(u, p) (6.20)

with suitable functions Φ(v, p) and Ψ(v, p) representing the iteration operator without errors. In fact, for a linear
problem, Φ and Ψ are constant. With this notation we can write the update step in the form p2 = δp + Ψ(v0, p0)
and v2 = δv + Φ(v0, p0) where the total error δp and δv are given as

δp = (BA−1B∗)−1(e2 +Be1)
δv = e1 −A−1B∗δp .

(6.21)

Notice that Bδv = −e2 = −Bv2. Our task is now to choose the tolerances τ1 and τ2 such that the global errors
δp and δv do not stop the convergence of the iteration process.

To measure convergence we use

ε = max(‖v2 − v‖1, ‖BA−1B∗(p2 − p)‖0) (6.22)

In practice using the fact that BA−1B∗(p2 − p0) = Bv1 and assuming that v2 gives a better approximation to the
true v than v0 we will use the estimate

ε = max(‖v2 − v0‖1, ‖Bv1‖0) (6.23)

to estimate the progress of the iteration step after the step is completed. Note that the estimate of ε is used in the
stopping criterion 6.9. If χ− is the convergence rate assuming exact calculations, i.e. e1 = 0 and e2 = 0, we are
expecting to maintain ε ≤ χ− · ε−. For the pressure increment we get:

‖BA−1B∗(p2 − p)‖0 ≤ ‖BA−1B∗(p2 − δp− p)‖0 + ‖BA−1B∗δp‖0
= χ− · ε− + ‖e2 +Be1‖0
≈ χ− · ε− + ‖e2‖0
≤ χ− · ε− +Mτ2‖Bv1‖0

(6.24)

So we choose the value for τ2 from
Mτ2‖Bv1‖0 ≤ (χ−)2ε− (6.25)

in order to make the perturbation for the termination of the pressure iteration a second order effect. We use a
similar argument for the velocity:

‖v2 − v‖1 ≤ ‖v2 − δv − v‖1 + ‖δv‖1
≤ χ− · ε− + ‖e1 −A−1B∗δp‖1
≈ χ− · ε− + ‖e1‖1
≤ χ− · ε− +Kτ1‖dv1 − e1‖1
≤ (1 +Kτ1)χ− · ε−

(6.26)

So we choose the value for τ1 from
Kτ1 ≤ χ− (6.27)

Chapter 6. Models 101

Assuming we have estimates for M and K1 we can use 6.27 and 6.25 to get appropriate values for the tolerances.
After the step has been completed we can calculate a new convergence rate χ = ε

ε− . For partial reasons we restrict
χ to be less or equal a given maximum value χmax ≤ 1. If we see χ ≤ χ−(1 +χ−) our choices for the tolerances
were suitable. Otherwise, we need to adjust the values forK andM . From the estimates 6.24 and 6.26 we establish

χ ≤ (1 + max(M
τ2‖Bv1‖0
χ−ε−

,Kτ1)) · χ− (6.28)

If we assume that this inequality would be an equation if we would have chosen the right values M+ and K+ then
we get

χ = (1 + max(M+χ
−

M
,K+χ

−

K
)) · χ− (6.29)

From this equation we see if our choice for K was not good enough. In this case we can calculate a new value

K+ =
χ− χ−

(χ−)2
K (6.30)

In practice we will use

K+ = max(
χ− χ−

(χ−)2
K,

1

2
K, 1) (6.31)

where the second term is used to reduce a potential overestimate of K. The same identity is used for to update M .
The updated M+ and K+ are then use in the next iteration step to control the tolerances.

In some cases one can observe that there is a significant change in the velocity but the new velocity v1 has still
a small divergence, i.e. we have ‖Bv1‖0 � ‖v1 − v0‖1. In this case we will get a small pressure increment and
consequently only very small changes to the velocity as a result of the second update step which therefore can be
skipped and we can directly repeat the first update step until the increment in velocity becomes significant relative
to its divergence. In practice we will ignore the second half of the iteration step as long as

‖Bv1‖0 ≤ θ · ‖v1 − v0‖ (6.32)

where 0 < θ < 1 is a given factor. In this case we will also check the stopping criterion with v1 → v2 but we will
not correct M in this case.

Starting from an initial guess v0 and p0 for velocity and pressure the solution procedure is implemented as
follows:

1. calculate viscosity η(v0, p)0 and assemble operator A from η

2. calculate the tolerance τ1 from Equation (6.27)

3. solve Equation (6.6) for dv1 with tolerance τ1

4. update v1 = v0 + dv1

5. if Bv1 is large (see 6.32):

(a) calculate the tolerance τ2 from 6.25
(b) solve 6.7 for dp2 and v2 with tolerance τ2
(c) update p2 ← p0 + dp2

6. else:

• update p2 ← p and v2 ← v1

7. calculate convergence measure ε and convergence rate χ

8. if stopping criterion 6.9 holds:

• return v2 and p2

9. else:

(a) update M and K
(b) goto step 1 with v0 ← v2 and p0 ← p2.

1if no estimates are available, we use the value 1

102 6.1. The Stokes Problem

6.1.2 Functions

class StokesProblemCartesian(domain)
opens the Stokes problem on the Domain domain. The domain needs to support LBB compliant elements
for the Stokes problem, see [12] for details. For instance one can use second order polynomials for
velocity and first order polynomials for the pressure on the same element. Alternatively, one can use macro
elements using linear polynomials for both pressure and velocity with a subdivided element for the
velocity. Typically, the macro element is more cost effective. The fact that pressure and velocity are
represented in different ways is expressed by

velocity=Vector(0.0, Solution(mesh))
pressure=Scalar(0.0, ReducedSolution(mesh))

initialize([f=Data(), [fixed u mask=Data(), [eta=1,[surface stress=Data(), [stress=Data()],[
restoration factor=0]]]]])

assigns values to the model parameters. In any call all values must be set. f defines the external force f ,
eta the viscosity η, surface_stress the surface stress s and stress the initial stress σ. The
locations and components where the velocity is fixed are set by the values of fixed_u_mask.
restoration_factor defines the restoring force factor α. The method will try to cast the given
values to appropriate Data class objects.

solve(v,p [, max iter=100 [, verbose=False [, usePCG=True]]])
solves the problem and returns approximations for velocity and pressure. The arguments v and p define
initial guesses. v must have function space Solution(domain) and p must have function space
ReducedSolution(domain). The values of v marked by fixed_u_mask remain unchanged. If
usePCG is set to True then the preconditioned conjugate gradient method (PCG) scheme is used.
Otherwise the problem is solved with the generalized minimal residual method (GMRES). In most cases
the PCG scheme is more efficient. max_iter defines the maximum number of iteration steps. If
verbose is set to True information on the progress of of the solver is printed.

setTolerance([tolerance=1.e-4])
sets the tolerance in an appropriate norm relative to the right hand side. The tolerance must be
non-negative and less than 1.

getTolerance()
returns the current relative tolerance.

setAbsoluteTolerance([tolerance=0.])
sets the absolute tolerance for the error in the relevant norm. The tolerance must be non-negative.
Typically the absolute tolerance is set to 0.

getAbsoluteTolerance()
returns the current absolute tolerance.

getSolverOptionsVelocity()
returns the solver options used to solve Equation (6.6) and Equation (6.15)) for velocity.

getSolverOptionsPressure()
returns the solver options used to solve the preconditioner Equation (6.14) for pressure.

getSolverOptionsDiv()
sets the solver options for solving the equation to project the divergence of the velocity onto the function
space of pressure.

setStokesEquation([f=None, [fixed u mask=None, [eta=None,[surface stress=None, [stress=None],[
restoration factor=None]]]]])

assigns new values to the model parameters, see method initialize for description of the parameter
list. In contrast to initialize only values given in the argument list are set. Typically this method is

Chapter 6. Models 103

called to update parameters such as viscosity η within a time integration scheme after the problem has
been set up by an initial call of method initialize.

updateStokesEquation(v, p)
this method is called by the solver to allow for updating the model parameter during the iteration process
for incompressibility. In order to implement a non-linear dependence of model parameters such as
viscosity η from the current velocity v or pressure field p this function can be overwritten in the following
way:

class MyStokesProblem(StokesProblemCartesian):
def updateStokesEquation(self, v, p):

my_eta=<eta derived from v and p>
self.setStokesEquation(eta=my_eta)

Note that setStokesEquation to update the model. Warning: It is not guaranteed that the iteration
converges if model parameters are altered.

6.1.3 Example: Lid-driven Cavity

The following script lid_driven_cavity.py which is available in the example directory illustrates the usage
of the StokesProblemCartesian class to solve the lid-driven cavity problem:

from esys.escript import *
from esys.finley import Rectangle
from esys.weipa import saveVTK
from esys.escript.models import StokesProblemCartesian
NE=25
dom = Rectangle(NE,NE,order=2)
x = dom.getX()
sc=StokesProblemCartesian(dom)
mask= (whereZero(x[0])*[1.,0]+whereZero(x[0]-1))*[1.,0] + \

(whereZero(x[1])*[0.,1.]+whereZero(x[1]-1))*[1.,1]
sc.initialize(eta=.1, fixed_u_mask=mask)
v=Vector(0., Solution(dom))
v[0]+=whereZero(x[1]-1.)
p=Scalar(0.,ReducedSolution(dom))
v,p=sc.solve(v, p, verbose=True)
saveVTK("u.vtu", velocity=v, pressure=p)

6.2 Darcy Flux

We want to calculate the flux u and pressure p on a domain Ω solving the Darcy flux problem

ui + κijp,j = gi
uk,k = f

(6.33)

with the boundary conditions
ui ni = uNi ni on ΓN

p = pD on ΓD
(6.34)

where ΓN and ΓD are a partition of the boundary of Ω with ΓD non-empty, ni is the outer normal field of the
boundary of Ω, uNi and pD are given functions on Ω, gi and f are given source terms and κij is the given perme-
ability. We assume that κij is symmetric (which is not really required) and positive definite, i.e. there are positive
constants α0 and α1 which are independent from the location in Ω such that

α0 xixi ≤ κijxixj ≤ α1 xixi (6.35)

for all xi.

104 6.2. Darcy Flux

6.2.1 Solution Method

Unfortunate equation 6.33 can not solved directly in an easy way and requires mixed FEM. We consider a few
options to solve equation 6.33

6.2.1.1 Evaluation

The first equation of equation 6.33 is inserted into the second one:

− (κijp,j),i = f − (gi),i (6.36)

with boundary conditions
κijp,j ni = (gi − uNi) ni on ΓN

p = pD on ΓD
(6.37)

Then the flux field is recovered by directly setting

uj = gj − κijp,j (6.38)

This simple recovery process will not ensure that the (numerically) calculated flux meets the boundary conditions
for flux or the incompressibility condition. However this is a very fast way of calculating the flux.

6.2.1.2 Global Postprocessing

An improved flux recovery can be achieved by solving a modified version of equation 6.38 adding the gradient of
the divergence of the flux:

κ−1
ij uj − (λ · uk,k),i = κ−1

ij gj − p,i − (λ · f),i (6.39)

where
λ = ω · |κ−1| · vol(Ω)1/d · h (6.40)

with a non-negative factor ω, d is the spatial dimension and h is the local element size.

ui ni = uNi ni on ΓN
uk,k = f on ΓD

(6.41)

Notice that the second condition is a natural boundary condition. Global post-processing is more expense than di-
rect pressure evaluation however the flux is more accurate and asymptotic incompressibility for mesh size towards
zero can be shown, if ω > 0.

6.2.2 Functions

class DarcyFlow(domain, [w=1., [solver=DarcyFlow.POST, [useReduced=True , [verbose=True]]]])
opens the Darcy flux problem on the Domain domain. Reduced approximations for pressure and flux are
used if useReduced is set. Argument solver defines the solver method. If verbose is set some
information are printed. w defines the weighting factor ω for global post-processing of the flux (see
equation 6.40.)

EVAL
flux is calculated directly from pressure evaluation, see section 6.2.1.1.

SMOOTH
solver using global post-processing of flux with weighting factor ω = 0, see section 6.2.1.2.

POST
solver using global post-processing of flux, see section 6.2.1.2.

Chapter 6. Models 105

FIGURE 6.1: Flux and pressure field of the Dary flow example.

setValue([f=None, [g=None, [location of fixed pressure=None, [location of fixed flux=None,
[permeability=None]]]]])

assigns values to the model parameters. Values can be assigned using various calls – in particular in a time
dependent problem only values that change over time need to be reset. The permeability can be defined as
a scalar (isotropic), or a symmetric matrix (anisotropic). f and g are the corresponding parameters in 6.33.
The locations and components where the flux is prescribed are set by positive values in
location_of_fixed_flux. The locations where the pressure is prescribed are set by by positive
values of location_of_fixed_pressure. The values of the pressure and flux are defined by the
initial guess. Notice that at any point on the boundary of the domain the pressure or the normal component
of the flux must be defined. There must be at least one point where the pressure is prescribed. The method
will try to cast the given values to appropriate Data class objects.

getSolverOptionsFlux()
returns the solver options used to solve the flux problems. Use this SolverOptions object to control
the solution algorithms. This option is only relevant if global postprocesing is used.

getSolverOptionsPressure()
returns a SolverOptions object with the options used to solve the pressure problems. Use this object
to control the solution algorithms.

solve(u0,p0)
solves the problem and returns approximations for the flux v and the pressure p. u0 and p0 define initial
guesses for flux and pressure. Values marked by positive values location_of_fixed_flux and
location_of_fixed_pressure, respectively, are kept unchanged.

getFlux(p, [u0 = None])
returns the flux for a given pressure p where the flux is equal to u0 on locations where
location_of_fixed_flux is positive, see setValue. Notice that g and f are used.

6.2.3 Example: Gravity Flow
The following script darcy.py which is available in the example directory illustrates the usage of the DarcyFlow
class:

from esys.escript import *
from esys.escript.models import DarcyFlow
from esys.finley import Rectangle
from esys.weipa import saveVTK

106 6.2. Darcy Flux

mydomain = Rectangle(l0=2.,l1=1.,n0=40, n1=20)
x = mydomain.getX()
p_BC=whereZero(x[1]-1.)*wherePositive(x[0]-1.)
u_BC=(whereZero(x[0])+whereZero(x[0]-2.)) * [1.,0.] + \

(whereZero(x[1]) + whereZero(x[1]-1.)*whereNonPositive(x[0]-1.0)) * [0., 1.]
mypde = DarcyFlow(domain=mydomain)
mypde.setValue(g=[0., 2],

location_of_fixed_pressure=p_BC,
location_of_fixed_flux=u_BC,
permeability=100.)

u,p=mypde.solve(u0=x[1]*[0., -1.], p0=0)
saveVTK("u.vtu",flux=u, pressure=p)

In the example the pressure is fixed to the initial pressure p0 on the right half of the top face. The normal flux is
set on all other faces. The corresponding values for the flux are set by the initial value u0.

6.3 Isotropic Kelvin Material
As proposed by Kelvin [21] material strain Dij = 1

2 (vi,j + vj,i) can be decomposed into an elastic part Del
ij and a

visco-plastic part Dvp
ij :

Dij = Del
ij +Dvp

ij (6.42)

with the elastic strain given as

Del′

ij =
1

2µ
σ̇′ij (6.43)

where σ′ij is the deviatoric stress (notice that σ′ii = 0). If the material is composed by materials q the visco-plastic
strain can be decomposed as

Dvp′

ij =
∑
q

Dq′

ij (6.44)

where Dq
ij is the strain in material q given as

Dq′

ij =
1

2ηq
σ′ij (6.45)

and ηq is the viscosity of material q. We assume the following between the strain in material q

ηq = ηqN

(
τ

τ qt

)1−nq

with τ =

√
1

2
σ′ijσ

′
ij (6.46)

for given power law coefficients nq ≥ 1 and transition stresses τ qt , see [21]. Notice that nq = 1 gives a constant
viscosity. After inserting Equation (6.45) into Equation (6.44) one gets:

D′vpij =
1

2ηvp
σ′ij with

1

ηvp
=
∑
q

1

ηq
. (6.47)

and finally with 6.42

D′ij =
1

2ηvp
σ′ij +

1

2µ
σ̇′ij (6.48)

The total stress τ needs to fulfill the yield condition

τ ≤ τY + β p (6.49)

with the Drucker-Prager cohesion factor τY , Drucker-Prager friction β and total pressure p. The deviatoric stress
needs to fulfill the equilibrium equation

− σ′ij,j + p,i = Fi (6.50)

where Fj is a given external force. We assume an incompressible medium:

− vi,i = 0 (6.51)

Chapter 6. Models 107

Natural boundary conditions are taken in the form

σ′ijnj − nip = f (6.52)

which can be overwritten by a constraint
vi(x) = 0 (6.53)

where the index i may depend on the location x on the boundary.

6.3.1 Solution Method
By using a first order finite difference approximation with step size dt > 0 Equation (6.43) is transformed to

σ̇ij =
1

dt

(
σij − σ−ij

)
(6.54)

and

D′ij =

(
1

2ηvp
+

1

2µdt

)
σ′ij −

1

2µdt
σ−
′

ij (6.55)

where σ−ij is the stress at the previous time step. With

γ̇ =

√
2

(
D′ij +

1

2µ dt
σ−
′

ij

)2

(6.56)

we have
τ = ηeff · γ̇ (6.57)

where

ηeff = min(

(
1

µ dt
+

1

ηvp

)−1

, ηmax) with ηmax =


τY +β p

γ̇ γ̇ > 0

if
∞ otherwise

(6.58)

The upper bound ηmax makes sure that yield condition 6.49 holds. With this setting the equation 6.55 takes the
form

σ′ij = 2ηeff

(
D′ij +

1

2µ dt
σ
′−
ij

)
(6.59)

After inserting 6.59 into 6.50 we get

− (ηeff (vi,j + vi,j)),j + p,i = Fi +

(
ηeff
µdt

σ
′−
ij

)
,j

(6.60)

Combining this with the incompressibility condition 6.42 we need to solve a Stokes problem as discussed in
Section 6.1.1 in each time step.

If we set
1

η(τ)
=

1

µ dt
+

1

ηvp
(6.61)

we need to solve the nonlinear problem

ηeff −min(η(γ̇ · ηeff), ηmax) = 0 (6.62)

We use the Newton-Raphson scheme to solve this problem:

η
(n+1)
eff = min(ηmax, η

(n)
eff −

η
(n)
eff − η(τ (n))

1− γ̇ · η′(τ (n))
) = min(ηmax,

η(τ (n))− τ (n) · η′(τ (n))

1− γ̇ · η′(τ (n))
) (6.63)

where η′ denotes the derivative of η with respect to τ and τ (n) = γ̇ · η(n)
eff . Looking at the evaluation of η in 6.61

it makes sense to formulate the iteration 6.63 using Θ = η−1. In fact we have

η′ = −Θ′

Θ2
with Θ′ =

∑
q

(
1

ηq

)′
(6.64)

108 6.3. Isotropic Kelvin Material

As (
1

ηq

)′
=
nq − 1

ηqN
· τn

q−2

(τ qt)nq−1
=
nq − 1

ηq
· 1

τ
(6.65)

we have
Θ′ =

1

τ
ω with ω =

∑
q

nq − 1

ηq
(6.66)

which leads to

η
(n+1)
eff = min(ηmax, η

(n)
eff

Θ(n) + ω(n)

η
(n)
effΘ(n)2 + ω(n)

) (6.67)

6.3.2 Functions

class IncompressibleIsotropicFlowCartesian(domain [, stress=0 [, v=0 [, p=0 [, t=0 [, numMaterials=1 [,
verbose=True [, adaptSubTolerance=True]]]]]]])

opens an incompressible, isotropic flow problem in Cartesian coordinates on the domain domain.
stress, v, p, and t set the initial deviatoric stress, velocity, pressure and time. numMaterials
specifies the number of materials used in the power law model. Some progress information is printed if
verbose is set to True . If adaptSubTolerance is equal to True the tolerances for subproblems are
set automatically.

The domain needs to support LBB compliant elements for the Stokes problem, see [12] for details. For instance
one can use second order polynomials for velocity and first order polynomials for the pressure on the same
element. Alternatively, one can use macro elements using linear polynomials for both pressure and velocity but
with a subdivided element for the velocity. Typically, the macro element method is more cost effective. The fact
that pressure and velocity are represented in different ways is expressed by

velocity=Vector(0.0, Solution(mesh))
pressure=Scalar(0.0, ReducedSolution(mesh))

getDomain()
returns the domain.

getTime()
returns current time.

getStress()
returns current stress.

getDeviatoricStress()
returns current deviatoric stress.

getPressure()
returns current pressure.

getVelocity()
returns current velocity.

getDeviatoricStrain()
returns deviatoric strain of current velocity

getTau()
returns current second invariant of deviatoric stress

getGammaDot()
returns current second invariant of deviatoric strain

setTolerance(tol=1.e-4)

Chapter 6. Models 109

V t0

V t1 V t2

V t3

x0

x1

0=W
t0

Wt1 W t2
Wt3

w0

sigma
t0

sigma
t1

sigma
t2

FIGURE 6.2: Two dimensional fault system with one fault named ‘t‘ in the (x0, x1) space and its parameterization in the w0

space. The fault has three segments.

sets the tolerance used to terminate the iteration on a time step.

setFlowTolerance(tol=1.e-4)
sets the relative tolerance for the incompressible solver, see StokesProblemCartesian for details.

setElasticShearModulus(mu=None)
sets the elastic shear modulus µ. If mu is set to None (default) elasticity is not applied.

setEtaTolerance=(rtol=1.e-8)
sets the relative tolerance for the effective viscosity. Iteration on a time step is completed if the relative of
the effective viscosity is less than rtol.

setDruckerPragerLaw([tau Y=None, [friction=None]])
sets the parameters τY and β for the Drucker-Prager model in condition 6.49. If tau_Y is set to None
(default) then the Drucker-Prager condition is not applied.

setElasticShearModulus(mu=None)
sets the elastic shear modulus µ. If mu is set to None (default) elasticity is not applied.

setPowerLaws(eta N, tau t, power)
sets the parameters of the power-law for all materials as defined in Equation (6.46). eta_N is the list of
viscosities ηqN , tau_t is the list of reference stresses τ qt , and power is the list of power law coefficients
nq .

update(dt [, iter max=100 [, inner iter max=20]])
updates stress, velocity and pressure for time increment dt, where iter_max is the maximum number of
iteration steps on a time step to update the effective viscosity and inner_iter_max is the maximum
number of iteration steps in the incompressible solver.

6.4 Fault System

The FaultSystem class provides an easy-to-use interface to handle 2D and 3D fault systems as used for instance
in simulating fault ruptures. The main purpose of the class is to provide a parameterization of an individual fault
in the system of faults. In case of a 2D fault the fault is parameterized by a single value w0 and in the case of a 3D
fault two parametersw0 andw1 are used. This parameterization can be used to impose data (e.g. a slip distribution)
onto the fault. It can also be a useful tool to visualize or analyze the results on the fault if the fault is not straight.

110 6.4. Fault System

A fault t in the fault system is represented by a starting point V t0 and series of directions, called strikes, and
the lengths (lti). The strike of segment i is defined by the angle σti between the x0-axis and the direction of the
fault, see Figure 6.2. The length and strike defines the polyline (V ti) of the fault by

V ti = V t(i−1) + lti · Sti with Sti =

 cos(σti)
sin(σti)

0

 (6.68)

In the 3D case each fault segment i has an additional dip θti and at each vertex i a depth δti is given. The fault
segment normal nti is given by

nti =

 −sin(θti) · Sti1
sin(θti) · Sti0
cos(θti)

 (6.69)

At each vertex we define a depth vector dti defined as the intersect of the fault planes of segment (i − 1) and i
where for the first segment and last segment the vector orthogonal to strike vector Sti and the segment normal nti

is used. The direction d̃ti of the depth vector is given as

d̃ti = nti × nt(i−1) (6.70)

If d̃ti is zero the strike vectors Lt(i−1) and Lti are collinear and we can set d̃ti = lti×nti. If the two fault segments
are almost orthogonal d̃ti is pointing in the direction of Lt(i−1) and Lti. In this case no depth can be defined. So
we will reject a fault system if

min(‖d̃ti × Lt(i−1)‖, ‖d̃ti × Lti‖) ≤ 0.1 · ‖d̃ti| (6.71)

which corresponds to an angle of less than 10o between the depth vector and the strike. We then set

dti = δti · d̃ti

‖d̃ti‖
(6.72)

We can then define the polyline (vti) for the bottom of the fault as

vti = V ti + dti (6.73)

In order to simplify working on a fault t in a fault system a parameterization P t : (w0, w1)→ (x0, x1, x2) over a
rectangular domain is introduced such that

0 ≤ w0 ≤ wt0max and − wt1max ≤ w1 ≤ 0 (6.74)

with positive numbers wt0max and wt1max. Typically one chooses wt0max to be the unrolled length of the fault and
wt1max to be the mean value of segment depth. Moreover we have

P t(W ti) = V ti and P t(wti) = vti (6.75)

where
W ti = (Ωti, 0) and wti = (Ωti,−wt1max) (6.76)

and Ωti is the unrolled distance of W ti from W t0, i.e. lti = Ωt(i+1) − Ωti. In the 2D case wt1max is set to zero
and therefore the second component is dropped, see Figure 6.2.

In the 2D case the parameterization P t is constructed as follows: The line connecting V t(i−1) and V ti is given
by

x = V ti + s · (V t(i+1) − V ti) (6.77)

where s is between 0 and 1. The point x is on i-th fault segment if and only if such an s exists. Assuming x is on
the fault it can be calculated as

s =
(x− V ti)t · (V t(i+1) − V ti)

‖V t(i+1) − V ti‖2
(6.78)

We then can set
w0 = Ωti + s · (Ωti − Ωt(i−1)) (6.79)

Chapter 6. Models 111

to get P t(w0) = x. It remains the question if the given x is actually on the segment i of fault t. To test this s is
restricted between 0 and 1 (so if s < 0, s is set to 0 and if s > 1, s is set to 1) and then we check the residual of
Equation (6.77), i.e. x has been accepted to be in the segment if

‖x− V ti − s · (V t(i+1) − V ti)‖ ≤ tol ·max(lti, ‖x− V ti‖) (6.80)

where tol is a given tolerance.
In the 3D case the situation is a bit more complicated: we split the fault segment across the diagonal V ti-vt(i+1)

to produce two triangles. In the upper triangle we use the parameterization

x = V ti + s · (V t(i+1) − V ti) + r · (vt(i+1) − V t(i+1)) with r ≤ s; (6.81)

while in the lower triangle we use

x = V ti + s · (vt(i+1) − vti) + r · (vti − V ti) with s ≤ r; (6.82)

where 0 ≤ s, r ≤ 1. Both equations are solved in the least-squares sense e.g. using the Moore-Penrose pseudo-
inverse for the coefficient matrices. The resulting s and r are then restricted to the unit square. Similar to the 2D
case (see Equation (6.80)) we identify x to be in the upper triangle of the segment if

‖x− V ti − s · (V t(i+1) − V ti)− r · (vt(i+1) − V t(i+1))‖ ≤ tol ·max(‖x− V ti‖, ‖vt(i+1) − V t(i))‖) (6.83)

and in the lower part

‖x− V ti − s · (vt(i+1) − vti)− r · (vti − V ti)‖ ≤ tol ·max(‖x− V ti‖, ‖vt(i+1) − V t(i))‖) (6.84)

after the restriction of (s, t) to the unit square. Note that ‖vt(i+1)−V t(i))‖ is the length of the diagonal of the fault
segment. For those x which have been located in the i-th segment we then set

w0 = Ωti + s · (Ωti − Ωt(i−1)) and w1 = wt1max(r − 1) (6.85)

6.4.1 Functions

class FaultSystem([dim =3])
creates a fault system in the dim dimensional space.

getMediumDepth(tag)
returns the medium depth of fault tag.

getTags()
returns a list of the tags used by the fault system.

getStart(tag)
returns the starting point of fault tag as a numpy.ndarray object.

getDim()
returns the spatial dimension.

getDepths(tag)
returns the list of the depths of the segments in fault tag.

getTopPolyline(tag)
returns the polyline used to describe the fault tagged by tag.

getStrikes(tag)
returns the list of strikes σti of the segments in fault t =tag.

getStrikeVectors(tag)
returns the strike vectors Sti of fault t =tag.

112 6.4. Fault System

getLengths(tag)
returns the lengths lti of the segments in fault t =tag.

getTotalLength(tag)
returns the total unrolled length of fault tag.

getDips(tag)
returns the list of the dips of the segments in fault tag.

getBottomPolyline(tag)
returns the list of the vertices defining the bottom of the fault tag.

getSegmentNormals(tag)
returns the list of the normals of the segments in fault tag.

getDepthVectors(tag)
returns the list of the depth vectors dti for fault t =tag.

getDepths(tag)
returns the list of the depths of the segments in fault tag.

getW0Range(tag)
returns the range of the parameterization in w0. For tag t this is the pair (Ωt0,Ωtn) where n is the number
of segments in the fault. In most cases one has (Ωt0,Ωtn) = (0, wt0max).

getW1Range(tag)
returns the range of the parameterization in w1. For tag t this is the pair (−wt1max, 0).

getW0Offsets(tag)
returns the offsets for the parameterization of fault tag. For tag tag =t this is the list [Ωti].

getCenterOnSurface()
returns the center point of the fault system at the surfaces. In 3D the calculation of the center is
considering the top edge of the faults and projects the edge to the surface (the x2 component is assumed to
be 0). An numpy.ndarray object is returned.

getOrientationOnSurface()
returns the orientation of the fault system in RAD on the surface (x2 = 0 plane) around the fault system
center.

transform([rot=0, [shift=numpy.zeros((3,)]])
applies a shift shift and a consecutive rotation in the x2 = 0 plane. rot is a float number and shift
an numpy.ndarray object.

getMaxValue(f[, tol=1.e-8])
returns the tag of the fault where f takes the maximum value and a Locator object which can be used to
collect values from Data objects at the location where the maximum is taken, e.g.

fs=FaultSystem()
f=Scalar(..)
t, loc=fs.getMaxValue(f)
print("maximum value of f on the fault %s is %s at location %s."%(t, \

loc(f), loc.getX()))

f must be a scalar Data object. When the maximum is calculated only data sample points are considered
which are on a fault in the fault system in the sense of condition 6.80 or 6.84, respectively. In the case no
data sample points are found the returned tag is None and the maximum value as well as the location of
the maximum value are undefined.

getMinValue(f[, tol=1.e-8])

Chapter 6. Models 113

returns the tag of the fault where f takes the minimum value and a Locator object which can be used to
collect values from Data objects at the location where the minimum is taken, e.g.

fs=FaultSystem()
f=Scalar(..)
t, loc=fs.getMinValue(f)
print "minimum value of f on the fault %s is %s at location."%(t,loc(f),loc.getX())

f must be a scalar Data object. When the minimum is calculated only data sample points are considered
which are on a fault in the fault system in the sense of condition 6.80 or 6.84, respectively. In the case no
data sample points are found the returned tag is None and the minimum value as well as the location of
the minimum value are undefined.

getParametrization(x,tag [[, tol=1.e-8], outsider=None])
returns the argument w of the parameterization P t for tag =t to provide x together with a mask indicating
where the given location if on a fault in the fault system by the value 1 (otherwise the value is set to 0). x
needs to be a vector Data object or numpy.ndarray object. tol defines the tolerance to decide if
given data sample points are on fault tag. The value outside is the value used as a replacement value
for w where the corresponding value in x is not on a fault. If outside is not present an appropriate value
is used.

getSideAndDistance(x,tag)
returns the side and the distance at locations x from the fault tag. x needs to be a vector Data object or
numpy.ndarray object. Positive values for side means that the corresponding location is to the right of
the fault, a negative value means that the corresponding location is to the left of the fault. The value zero
means that the side is undefined.

getFaultSegments(tag)
returns the polylines used to describe fault tag. For tag =t this is the list of the vertices [V ti] for the 2D
and the pair of lists of the top vertices [V ti] and the bottom vertices [vti] in 3D. Note that the coordinates
are represented as numpy.ndarray objects.

addFault(strikes[, ls[, V0=[0.,0.,0.][, tag=None[, dips=None[, depths= None[, w0 offsets=None[,
w1 max=None]]]]]]])

adds the fault tag to the fault system. V0 defines the start point of fault named t =tag. The polyline
defining the fault segments on the surface are set by the strike angles strikes (=σti, north = π/2, the
orientation is counterclockwise.) and the length ls (=lti). In the 3D case one also needs to define the dip
angles dips (=δti, vertical=0, right-hand rule applies.) and the depth depths for each segment.
w1_max defines the range of w1. If not present the mean value over the depth of all segment edges in the
fault is used. w0_offsets sets the offsets Ωti. If not present it is chosen such that Ωti − Ωt(i−1) is the
length of the i-th segment. In some cases, e.g. when kinks in the fault are relevant, it can be useful to
explicitly specify the offsets in order to simplify the assignment of values.

6.4.2 Example
See Section 1.7.

114 6.4. Fault System

CHAPTER

SEVEN

The esys.finley Module

finley is a library of C functions solving linear, steady partial differential equations (PDEs) or systems of PDEs us-
ing isoparametrical finite elements. It supports unstructured 1D, 2D and 3D meshes. The module esys.finley
provides access to the library through the LinearPDE class of esys.escript supporting its full functionality.
finley is parallelized using the OpenMP paradigm.

7.1 Formulation

For a single PDE that has a solution with a single component the linear PDE is defined in the following form:∫
Ω

Ajl · v,ju,l +Bj · v,ju+ Cl · vu,l +D · vu dΩ

+

∫
Γ

d · vu dΓ +

∫
Γcontact

dcontact · [v][u] dΓ

=

∫
Ω

Xj · v,j + Y · v dΩ

+

∫
Γ

y · v dΓ +

∫
Γcontact

ycontact · [v] dΓ

(7.1)

7.2 Meshes

To understand the usage of esys.finley one needs to have an understanding of how the finite element meshes
are defined. Figure 7.1 shows an example of the subdivision of an ellipse into so-called elements. In this case,
triangles have been used but other forms of subdivisions can be constructed, e.g. quadrilaterals or, in the three-
dimensional case, into tetrahedra and hexahedra. The idea of the finite element method is to approximate the
solution by a function which is a polynomial of a certain order and is continuous across its boundary to neighbour
elements. In the example of Figure 7.1 a linear polynomial is used on each triangle. As one can see, the triangu-
lation is quite a poor approximation of the ellipse. It can be improved by introducing a midpoint on each element
edge then positioning those nodes located on an edge expected to describe the boundary, onto the boundary. In this
case the triangle gets a curved edge which requires a parameterization of the triangle using a quadratic polynomial.
For this case, the solution is also approximated by a piecewise quadratic polynomial (which explains the name
isoparametrical elements), see Reference [39, 4] for more details. esys.finley also supports macro elements.
For these elements a piecewise linear approximation is used on an element which is further subdivided (in the
case of esys.finley halved). As such, these elements do not provide more than a further mesh refinement
but should be used in the case of incompressible flows, see StokesProblemCartesian. For these problems
a linear approximation of the pressure across the element is used (use the reduced solution FunctionSpace)
while the refined element is used to approximate velocity. So a macro element provides a continuous pressure
approximation together with a velocity approximation on a refined mesh. This approach is necessary to make sure
that the incompressible flow has a unique solution.

Chapter 7. The esys.finley Module 115

Node with reference numberid

Element with reference numberid

17

13
12

7

4

1
0

20

19

15

16

11

9

10
8

5
6

23

18

11

10
8

7

9
5

6

4

3
1

0

FIGURE 7.1: Subdivision of an Ellipse into triangles order 1 (Tri3)

The union of all elements defines the domain of the PDE. Each element is defined by the nodes used to describe
its shape. In Figure 7.1 the element, which has type Tri3, with element reference number 19 is defined by the
nodes with reference numbers 9, 11 and 0. Notice that the order is counterclockwise. The coefficients of the PDE
are evaluated at integration nodes with each individual element. For quadrilateral elements a Gauss quadrature
scheme is used. In the case of triangular elements a modified form is applied. The boundary of the domain is also
subdivided into elements. In Figure 7.1 line elements with two nodes are used. The elements are also defined by
their describing nodes, e.g. the face element with reference number 20, which has type Line2, is defined by the
nodes with the reference numbers 11 and 0. Again the order is crucial, if moving from the first to second node the
domain has to lie on the left hand side (in the case of a two-dimensional surface element the domain has to lie on
the left hand side when moving counterclockwise). If the gradient on the surface of the domain is to be calculated
rich face elements need to be used. Rich elements on a face are identical to interior elements but with a modified
order of nodes such that the ’first’ face of the element aligns with the surface of the domain. In Figure 7.1 elements
of the type Tri3Face are used. The face element reference number 20 as a rich face element is defined by the nodes
with reference numbers 11, 0 and 9. Notice that the face element 20 is identical to the interior element 19 except
that, in this case, the order of the node is different to align the first edge of the triangle (which is the edge starting
with the first node) with the boundary of the domain.

Be aware that face elements and elements in the interior of the domain must match, i.e. a face element must be
the face of an interior element or, in case of a rich face element, it must be identical to an interior element. If no
face elements are specified esys.finley implicitly assumes homogeneous natural boundary conditions, i.e. d
=0 and y =0, on the entire boundary of the domain. For inhomogeneous natural boundary conditions, the boundary
must be described by face elements.

If discontinuities of the PDE solution are considered, contact elements are introduced to describe the contact
region Γcontact even if dcontact and ycontact are zero. Figure 7.2 shows a simple example of a mesh of rectangular
elements around a contact region Γcontact. The contact region is described by the elements 4, 3 and 6. Their
element type is Line2 Contact. The nodes 9, 12, 6 and 5 define contact element 4, where the coordinates of nodes
12 and 5 and nodes 4 and 6 are identical, with the idea that nodes 12 and 9 are located above and nodes 5 and 6
below the contact region. Again, the order of the nodes within an element is crucial. There is also the option of
using rich elements if the gradient is to be calculated on the contact region. Similarly to the rich face elements
these are constructed from two interior elements by reordering the nodes such that the ’first’ face of the element
above and the ’first’ face of the element below the contact regions line up. The rich version of element 4 is of
type Rec4Face Contact and is defined by the nodes 9, 12, 16, 18, 6, 5, 0 and 2. Table 7.1 shows the interior
element types and the corresponding element types to be used on the face and contacts. Figure 7.3, Figure 7.4 and
Figure 7.5 show the ordering of the nodes within an element.

116 7.2. Meshes

Node with reference numberid

Element with reference numberid

7

10

105

2

12 9

10

7

8

3

5 6

20

1816

15

2019

13

4 3 6

FIGURE 7.2: Mesh around a contact region (Rec4)

The native esys.finley file format is defined as follows. Each node i has dim spatial coordinates
Node[i], a reference number Node_ref[i], a degree of freedom Node_DOF[i] and a tag Node_tag[i].
In most cases Node_DOF[i] =Node_ref[i] however, for periodic boundary conditions, Node_DOF[i] is
chosen differently, see example below. The tag can be used to mark nodes sharing the same properties. Element i
is defined by the Element_numNodes nodes Element_Nodes[i] which is a list of node reference numbers.
The order of these is crucial. Each element has a reference number Element_ref[i] and a tag Element_
tag[i]. The tag can be used to mark elements sharing the same properties. For instance elements above a contact
region are marked with tag 2 and elements below a contact region are marked with tag 1. Element_Type and
Element_Num give the element type and the number of elements in the mesh. Analogue notations are used
for face and contact elements. The following python script prints the mesh definition in the esys.finley file
format:

print("%s\n"%mesh_name)
node coordinates:
print("%dD-nodes %d\n"%(dim, numNodes))
for i in range(numNodes):

print("%d %d %d"%(Node_ref[i], Node_DOF[i], Node_tag[i]))
for j in range(dim): print(" %e"%Node[i][j])
print("\n")

interior elements
print("%s %d\n"%(Element_Type, Element_Num))
for i in range(Element_Num):

print("%d %d"%(Element_ref[i], Element_tag[i]))
for j in range(Element_numNodes): print(" %d"%Element_Nodes[i][j])
print("\n")

face elements
print("%s %d\n"%(FaceElement_Type, FaceElement_Num))
for i in range(FaceElement_Num):

print("%d %d"%(FaceElement_ref[i], FaceElement_tag[i]))
for j in range(FaceElement_numNodes): print(" %d"%FaceElement_Nodes[i][j])
print("\n")

contact elements
print("%s %d\n"%(ContactElement_Type, ContactElement_Num))
for i in range(ContactElement_Num):

print("%d %d"%(ContactElement_ref[i], ContactElement_tag[i]))
for j in range(ContactElement_numNodes): print(" %d"%ContactElement_Nodes[i][j])
print("\n")

Chapter 7. The esys.finley Module 117

interior face rich face contact rich contact
Line2 Point1 Line2Face Point1 Contact Line2Face Contact
Line3 Point1 Line3Face Point1 Contact Line3Face Contact
Tri3 Line2 Tri3Face Line2 Contact Tri3Face Contact
Tri6 Line3 Tri6Face Line3 Contact Tri6Face Contact
Rec4 Line2 Rec4Face Line2 Contact Rec4Face Contact
Rec8 Line3 Rec8Face Line3 Contact Rec8Face Contact
Rec9 Line3 Rec9Face Line3 Contact Rec9Face Contact
Tet4 Tri6 Tet4Face Tri6 Contact Tet4Face Contact
Tet10 Tri9 Tet10Face Tri9 Contact Tet10Face Contact
Hex8 Rec4 Hex8Face Rec4 Contact Hex8Face Contact
Hex20 Rec8 Hex20Face Rec8 Contact Hex20Face Contact
Hex27 Rec9 N/A N/A N/A
Hex27Macro Rec9Macro N/A N/A N/A
Tet10Macro Tri6Macro N/A N/A N/A
Rec9Macro Line3Macro N/A N/A N/A
Tri6Macro Line3Macro N/A N/A N/A

Table 7.1: Finley elements and corresponding elements to be used on domain faces and contacts. The rich types
have to be used if the gradient of the function is to be calculated on faces and contacts, respectively.

point sources (not supported yet)
print("Point1 0")

The following example of a mesh file defines the mesh shown in Figure 7.2:

Example 1
2D Nodes 16
0 0 0 0. 0.
2 2 0 0.33 0.
3 3 0 0.66 0.
7 4 0 1. 0.
5 5 0 0. 0.5
6 6 0 0.33 0.5
8 8 0 0.66 0.5
10 10 0 1.0 0.5
12 12 0 0. 0.5
9 9 0 0.33 0.5
13 13 0 0.66 0.5
15 15 0 1.0 0.5
16 16 0 0. 1.0
18 18 0 0.33 1.0
19 19 0 0.66 1.0
20 20 0 1.0 1.0
Rec4 6
0 1 0 2 6 5
1 1 2 3 8 6
2 1 3 7 10 8
5 2 12 9 18 16
7 2 13 19 18 9

10 2 20 19 13 15
Line2 0
Line2_Contact 3
4 0 9 12 6 5
3 0 13 9 8 6
6 0 15 13 10 8

Point1 0

118 7.2. Meshes

Notice that the order in which the nodes and elements are given is arbitrary. In the case that rich contact elements
are used the contact element section gets the form

Rec4Face_Contact 3
4 0 9 12 16 18 6 5 0 2
3 0 13 9 18 19 8 6 2 3
6 0 15 13 19 20 10 8 3 7

Periodic boundary conditions can be introduced by altering Node_DOF. It allows identification of nodes even if
they have different physical locations. For instance, to enforce periodic boundary conditions at the face x0 = 0
and x0 = 1 one identifies the degrees of freedom for nodes 0, 5, 12 and 16 with the degrees of freedom for 7, 10,
15 and 20, respectively. The node section of the esys.finley mesh now reads:

2D Nodes 16
0 0 0 0. 0.
2 2 0 0.33 0.
3 3 0 0.66 0.
7 0 0 1. 0.
5 5 0 0. 0.5
6 6 0 0.33 0.5
8 8 0 0.66 0.5
10 5 0 1.0 0.5
12 12 0 0. 0.5
9 9 0 0.33 0.5
13 13 0 0.66 0.5
15 12 0 1.0 0.5
16 16 0 0. 1.0
18 18 0 0.33 1.0
19 19 0 0.66 1.0
20 16 0 1.0 1.0

Chapter 7. The esys.finley Module 119

u
Point1

u u
Line2

u u@@@
@

@
@

@
@
@

u

u

u

u

Tri3

u u

u u

u

u

u

u

Rec4

u u@@@
@

@
@

@
@
@

u

u

u

u

J
J
J
JJ

u
u

�
�

�
�

��

e
e

Z
Z

Z
Z

Z
Z

u
u

Tet4

u u

u u

u

u

u

u

�
�

�
�

��

e
e

�
�
�

�
�
�

u
u

�
�

�
�
�
�

u
u

�
�
�

�
�
�

u
u

e e

u u

e

e

u

u

Hex8

1 1 2

3

1 2

4

1

3

2

4

1 2

3

5

1

6

2

8

4

7

3

FIGURE 7.3: Elements of order 1

120 7.2. Meshes

u
Point1

u u u
Line3 and Line3Macro

u u u@@@
@

@
@

@
@
@

u
u

u

u
u
u

Tri6

u u u

u u u

u
u
u

u
u
u

Rec8

u u u@@@
@

@
@

@
@
@

u
u

u

u
u
u

J
J
J
JJ

u
u

u
�

��
�

��

e
e

e
Z

Z
Z
Z

Z
Z

u
u

u

Tet10 and Tet10Macro

u u u

u u u

u
u
u

u
u
u

�
��

�
��

e
e

e
�

�
�

�
�
�

u
u

u

�
�

�
�
�
�

u
u

u
�

�
�

�
�
�

u
u

u
e e e

u u u

e
e
e

u
u
u

Hex20

1 1 3 2

3

6

1

5

2
4 5

4

8

1

7
3

6

2

5

4

8

1

9

2

7 6

3

10

9

5

13

1

17
6

14

2

11

8

16

4

19
7

15

3

12 10

20 18

FIGURE 7.4: Elements of order 2 and macro elements

u u u

u u u

u
u
u

u
u
u

u

5

4

8

1

7 3

6

2

9

FIGURE 7.5: Rec9 and Rec9Macro

Chapter 7. The esys.finley Module 121

7.3 Macro Elements

Pressure Velocity

(a) Triangle (b) Quadrilateral

FIGURE 7.6: Macro elements in esys.finley

esys.finley supports the usage of macro elements which can be used to achieve LBB compliance when
solving incompressible fluid flow problems. LBB compliance is required to get a problem which has a unique
solution for pressure and velocity. For macro elements the pressure and velocity are approximated by a polynomial
of order 1 but the velocity approximation bases on a refinement of the elements. The nodes of a triangle and quadri-
lateral element are shown in Figures 7.6(a) and 7.6(b), respectively. In essence, the velocity uses the same nodes
like a quadratic polynomial approximation but replaces the quadratic polynomial by piecewise linear polynomials.
In fact, this is the way esys.finley defines the macro elements. In particular esys.finley uses the same
local ordering of the nodes for the macro element as for the corresponding quadratic element. Another interpreta-
tion is that one uses a linear approximation of the velocity together with a linear approximation of the pressure but
on elements created by combining elements to macro elements. Notice that the macro elements still use quadratic
interpolation to represent the element and domain boundary. However, if elements have linear boundaries a macro
element approximation for the velocity is equivalent to using a linear approximation on a mesh which is created
through a one-step global refinement. Typically macro elements are only required to use when an incompressible
fluid flow problem is solved, e.g. the Stokes problem in Section 6.1. Please see Section 7.2 for more details on the
supported macro elements.

7.4 Linear Solvers in SolverOptions
Table 7.2 and Table 7.3 show the solvers and preconditioners supported by esys.finley through the PASO
library. Currently direct solvers are not supported under MPI. By default, esys.finley uses the iterative solvers
SolverOptions.PCG for symmetric and SolverOptions.BICGSTAB for non-symmetric problems. If the
direct solver is selected, which can be useful when solving very ill-posed equations, esys.finley uses the MKL
1 solver package. If MKL is not available UMFPACK is used. If UMFPACK is not available a suitable iterative solver
from PASO is used.

7.5 Functions

ReadMesh(fileName [, [integrationOrder=-1], optimize=True])
creates a Domain object from the FEM mesh defined in file fileName. The file must be in the
esys.finley file format. If integrationOrder is positive, a numerical integration scheme is
chosen which is accurate on each element up to a polynomial of degree integrationOrder .

1If the stiffness matrix is non-regular MKL may return without a proper error code. If you observe suspicious solutions when using MKL ,
this may be caused by a non-invertible operator.

122 7.3. Macro Elements

setSolverMethod DIRECT PCG GMRES TFQMR MINRES PRES20 BICGSTAB lumping
setReordering X
setRestart X 20
setTruncation X 5
setIterMax X X X X X X
setTolerance X X X X X X
setAbsoluteTolerance X X X X X X
setReordering X

Table 7.2: Solvers available for esys.finley and the PASO package and the relevant options in
SolverOptions. MKL supports MINIMUM_FILL_IN and NESTED_DISSECTION reordering. Currently
the UMFPACK interface does not support any reordering.

NO_PRECONDITIONER AMG JACOBI GAUSS_SEIDEL REC_ILU RILU ILU0 DIRECT
status: X X X X later X later
setLevelMax X
setCoarseningThreshold X
setMinCoarseMatrixSize X
setMinCoarseMatrixSparsity X
setNumSweeps X X
setNumPreSweeps X
setNumPostSweeps X
setDiagonalDominanceThreshold X
setAMGInterpolation X
setRelaxationFactor X

Table 7.3: Preconditioners available for esys.finley and the PASO package and the relevant options in
SolverOptions.

Otherwise an appropriate integration order is chosen independently. By default the labeling of mesh nodes
and element distribution is optimized. Set optimize=False to switch off relabeling and redistribution.

ReadGmsh(fileName, numDim, [, [integrationOrder=-1], optimize=True[, useMacroElements=False]])
creates a Domain object from the FEM mesh defined in file fileName for a domain of dimension
numDim. The file must be in the Gmsh[11] file format. If integrationOrder is positive, a numerical
integration scheme is chosen which is accurate on each element up to a polynomial of degree
integrationOrder . Otherwise an appropriate integration order is chosen independently. By default
the labeling of mesh nodes and element distribution is optimized. Set optimize=False to switch off
relabeling and redistribution. If useMacroElements is set, second order elements are interpreted as
macro elements. Currently ReadGmsh does not support MPI.

MakeDomain(design[, integrationOrder=-1[, optimizeLabeling=True[, useMacroElements=False]]])
creates a esys.finley Domain from a esys.pycad Design object using Gmsh[11]. The Design
design defines the geometry. If integrationOrder is positive, a numerical integration scheme is
chosen which is accurate on each element up to a polynomial of degree integrationOrder .
Otherwise an appropriate integration order is chosen independently. Set optimizeLabeling=False
to switch off relabeling and redistribution (not recommended). If useMacroElements is set, macro
elements are used. Currently MakeDomain does not support MPI.

load(fileName)
recovers a Domain object from a dump file fileName created by the dump method of a Domain object.

Rectangle(n0,n1,order=1,l0=1.,l1=1., integrationOrder=-1,
periodic0=False , periodic1=False , useElementsOnFace=False , optimize=False)

generates a Domain object representing a two-dimensional rectangle between (0, 0) and (l0, l1) with
orthogonal edges. The rectangle is filled with n0 elements along the x0-axis and n1 elements along the
x1-axis. For order =1 and order =2, elements of type Rec4 and Rec8 are used, respectively. In the case
of useElementsOnFace =False , Line2 and Line3 are used to subdivide the edges of the rectangle,
respectively. If order =-1, Rec8Macro and Line3Macro are used. This option should be used when
solving incompressible fluid flow problems, e.g. StokesProblemCartesian. In the case of
useElementsOnFace =True (this option should be used if gradients are calculated on domain faces),
Rec4Face and Rec8Face are used on the edges, respectively. If integrationOrder is positive, a

Chapter 7. The esys.finley Module 123

numerical integration scheme is chosen which is accurate on each element up to a polynomial of degree
integrationOrder . Otherwise an appropriate integration order is chosen independently. If
periodic0 =True , periodic boundary conditions along the x0-direction are enforced. That means for
any solution of a PDE solved by esys.finley the values on the line x0 = 0 will be identical to the
values on x0 = l0. Correspondingly, periodic1 =True sets periodic boundary conditions in the
x1-direction. If optimize =True mesh node relabeling will be attempted to reduce the computation and
also ParMETIS will be used to improve the mesh partition if running on multiple CPUs with MPI.

Brick(n0,n1,n2,order=1,l0=1.,l1=1.,l2=1., integrationOrder=-1, periodic0=False , periodic1=False ,
periodic2=False , useElementsOnFace=False , optimize=False)

generates a Domain object representing a three-dimensional brick between (0, 0, 0) and (l0, l1, l2) with
orthogonal faces. The brick is filled with n0 elements along the x0-axis, n1 elements along the x1-axis
and n2 elements along the x2-axis. For order =1 and order =2, elements of type Hex8 and Hex20 are
used, respectively. In the case of useElementsOnFace =False , Rec4 and Rec8 are used to subdivide
the faces of the brick, respectively. In the case of useElementsOnFace =True (this option should be
used if gradients are calculated on domain faces), Hex8Face and Hex20Face are used on the brick faces,
respectively. If order =-1, Hex20Macro and Rec8Macro are used. This option should be used when
solving incompressible fluid flow problems, e.g. StokesProblemCartesian. If
integrationOrder is positive, a numerical integration scheme is chosen which is accurate on each
element up to a polynomial of degree integrationOrder . Otherwise an appropriate integration order
is chosen independently. If periodic0 =True , periodic boundary conditions along the x0-direction are
enforced. That means for any solution of a PDE solved by esys.finley the values on the plane x0 = 0
will be identical to the values on x0 = l0. Correspondingly, periodic1 =True and periodic2 =True
sets periodic boundary conditions in the x1-direction and x2-direction, respectively. If optimize =True
mesh node relabeling will be attempted to reduce the computation and also ParMETIS will be used to
improve the mesh partition if running on multiple CPUs with MPI.

GlueFaces(meshList, tolerance=1.e-13)
generates a new Domain object from the list meshList of esys.finley meshes. Nodes in face
elements whose difference of coordinates is less than tolerance times the diameter of the domain are
merged. The corresponding face elements are removed from the mesh. GlueFaces is not supported
under MPI with more than one rank.

JoinFaces(meshList, tolerance=1.e-13)
generates a new Domain object from the list meshList of esys.finley meshes. Face elements
whose node coordinates differ by less than tolerance times the diameter of the domain are combined to
form a contact element. The corresponding face elements are removed from the mesh. JoinFaces is not
supported under MPI with more than one rank.

124 7.5. Functions

CHAPTER

EIGHT

The esys.weipa Module and Data
Visualization

The weipa C++ library and accompanying python module allow exporting esys.escript Data objects and
their domain in a format suitable for visualization. Besides creating output files, weipa can also interface with the
VisIt visualization software. This allows accessing the latest simulation data while the simulation is still running
without the need to save any files.

8.1 The EscriptDataset class

class EscriptDataset()
holds an escript dataset including a domain and data variables for a single time step and offers methods to
export the data in various formats. It is preferable to create a dataset object using the createDataset
function from esys.weipa (see Section 8.2) rather than using the (non-exposed) python constructor for
the class.

The following methods are available:

setDomain(domain)
sets the Domain for this dataset. Note that the domain can only be set once and all Data objects added to
this dataset must be defined on the same domain.

addData(data, name [, units=””])
adds the Data object data to this dataset which will be exported by the given name. Some export
formats support data units which can be set through the units parameter, e.g. "km/h". Before calling
this method a domain must be set with setDomain and all Data objects added must be defined on the
same domain. There is no restriction, however, on the FunctionSpace used.

setCycleAndTime(cycle, time)
sets the cycle and time values for this dataset. The cycle is an integer value which usually corresponds
with the loop counter of the simulation script. That is, every time a new data file is created this counter is
incremented. The value of time on the other hand is a floating point number that encodes some form of
simulation time. Both, cycle and time may be read by analysis tools and shown alongside other metadata
to the user.

setMeshLabels(x, y [, z=””])
sets the labels of the X, Y, and Z axis. By default, visualization tools display default strings such as
”X-Axis” or ”X” along the axes. Some export formats allow overriding these with more specific strings
such as ”Width”, ”Horizontal Distance”, etc.

Chapter 8. The esys.weipa Module and Data Visualization 125

setMeshUnits(x, y [, z=””])
sets the units to be displayed along the X, Y, and Z axis in visualization tools (if supported). Not all export
formats will use these values.

setMetadataSchemaString([schema=”” [, metadata=””]])
adds custom metadata and/or XML schema strings to VTK files. The content of schema is added to the
top-level VTKFile element so care must be taken to keep the resulting file valid. As an example, schema
may contain the string xmlns:gml="http://www.opengis.net/gml". The content of
metadata will be written enclosed in <MetaData> tags. Thus, a valid example would be
<dataSource>something</dataSource>. Note that these values are ignored by other exporters.

saveSilo(filename)
saves the dataset in the SILO file format to a file named filename. The file extension .silo will be
automatically added if not present.

saveVTK(filename)
saves the dataset in the VTK file format to a file named filename. The file extension .vtu will be
automatically added if not present. Certain combinations of function spaces cannot be written to a single
VTK file due to format restrictions. In these cases this method will save separate files where each file
contains compatible data. The function space name is appended to the filename to distinguish them.

8.2 Functions

createDataset(domain, **data)
creates an EscriptDataset object, sets its domain, populates it with the given Data objects and
returns it. Note that it is not possible to set units for the data variables added with this function. If this is
required, it is recommended to call this function with a domain only and use the addData method
subsequently.

saveVTK(filename [, domain=None [, metadata=”” [, metadata schema=None]]], **data)
convenience function that creates a dataset with the given domain and Data objects and saves it to a file in
the VTK file format. If domain is None the domain will be determined by the Data objects. See the
setDomain, addData, saveVTK, and setMetadataSchemaString methods of the
EscriptDataset class for details. Unlike the class method, the metadata_schema parameter
should be a dictionary that maps namespace name to URI, e.g.

{"gml":"http://www.opengis.net/gml"}.

saveSilo(filename [, domain=None], **data)
convenience function that creates a dataset with the given domain and Data objects and saves it to a file in
the SILO file format. If domain is None the domain will be determined by the Data objects. See the
setDomain, addData, and saveSilo methods of the EscriptDataset class for details.

saveVoxet(filename, **data)
saves Data objects defined on a ripley grid in the Voxet file format suitable for import into GOCAD [13].
A Voxet dataset consists of a header file (extension .vo) and one property file (with no file extension) for
each Data object.

visitInitialize(simFile [, comment=””])
initializes the VisIt simulation interface which is responsible for the communication with a VisIt client.
This function will create a file by the name given via simFile (extension .sim2) which can be loaded
by a compatible VisIt client in order to connect to the simulation. The optional comment string is
forwarded to the client. Note that this function only succeeds if escript was compiled with support for VisIt
and the appropriate libraries are found in the runtime environment. Clients wanting to connect can only do
so if the version number matches the version number used to compile esys.weipa. Calling this function
does not make any data available yet, see the visitPublishData function.

126 8.2. Functions

visitPublishData(dataset)
publishes an EscriptDataset object through the VisIt simulation interface, checks for client requests
and handles any outstanding ones. Before publishing any data, the visitInitialize function must be
called to set up the interface. Since this function not only publishes new data but polls for incoming
connections and handles requests, it should be called as often as practical (even with the same dataset) to
avoid timeout errors from clients. On the other hand it should be noted that the same process(es) deal with
visualization requests that run your simulation. So a request for an expensive task by a VisIt client will
pause the simulation code while it is being processed.

8.3 Visualizing escript Data
This section gives a very brief overview on how data exported through esys.weipa can be visualized. While
there are many visualization packages available that are compatible with VTK and SILO files produced by escript,
this discussion will refer to VisIt [35], an actively maintained open source package optimally suited to visualize
and analyze large datasets both interactively and through python scripts. You can find a number of manuals, a wiki
page and links to mailing lists on the VisIt website. It is assumed that you have a working VisIt installation that can
be started by entering visit on the command line.

The examples that follow will use the output produced by the Elastic Deformation example from Section 1.5
(heatedblock.py in the example directory) which produces the file deform.vtu. This VTK file contains a
3D scalar variable called stress and a vector variable called disp, among others.

8.3.1 Using the VisIt GUI
Start the VisIt graphical user interface and open the file deform.vtu via the ’File’ menu. Alternatively, you can
directly open the file on startup by issuing

visit -o deform.vtu

You should see the VisIt GUI on the left hand side and an empty visualization window on the right. Click on ’Add’
under Plots in the GUI to bring up a menu of plot types, then click on ’Pseudocolor’ and select ’stress’. This will
add a plot to the list which maps values of the ’stress’ variable to colors. Note, that the plot will not be generated
until you click on the ’Draw’ button in the GUI. You should now see a coloured box in the visualization window
which you can rotate around and inspect from different angles using your mouse. The example uses a coarse mesh
of 10 by 10 by 10 elements which are clearly visible in this plot.

We can improve the visual effect by enabling interpolation between the elements. To do so, bring up the
plot attributes by double-clicking the ’Pseudocolor - stress’ plot entry in the GUI. Next, select ’Nodal’ under
’Centering’, click on ’Apply’ and dismiss the dialog. Notice how the colours now smoothly blend into each other
and the element boundaries are no longer visible.

Now we will add arrows to visualize the displacement vectors. Click on ’Add’ and under ’Vector’ select ’disp’.
Once again click on ’Draw’ to execute the new plot. By default only few vectors are shown but since the mesh is
very coarse we can tell VisIt to draw all available vectors. Bring up the Vector plot attributes (double-click on the
plot as before) and under ’Vector amount’ select ’Stride’, leaving the parameter as 1. Click on ’Apply’ and dismiss
the dialog.

As a final step we would like to see inside the plot. One possibility to do so is slicing. However, we want to
keep all vectors while slicing only the Pseudocolor plot. In VisIt slicing is one of the Operators that may be added
to plots and by default, Operators are added to all plots. To change this behaviour, uncheck the ’Apply operators
to all plots’ box which is located underneath the plot list in the GUI. Then select the Pseudocolor plot, bring up
the Operators menu by clicking on ’Operators’ and select ’ThreeSlice’ from the ’Slicing’ submenu. Again, click
on ’Draw’ to update the plots and notice how the box has now been sliced. We can move the slices to more
suitable positions by editing the operator attributes. Click on the little triangle to the left of the Pseudocolor plot to
reveal the list of elements that have been applied to it. Next, double-click the ’ThreeSlice’ element to bring up the
attribute window. Change the values to X = 0.3 and Y = 0.3, leaving Z = 0. Apply the changes and dismiss the
dialog to see the result.

You can now create an image of the plots as shown in the window. First, adjust the save options to your needs
in the ’Set Save options’ dialog which is accessible from the ’File’ menu. Then select ’Save Window’ and you
should find an image file with the name and location as entered in the options dialog.

Chapter 8. The esys.weipa Module and Data Visualization 127

8.3.2 Using the VisIt CLI (command line interface)
We will now perform exactly the same steps as in the last section but using the python interface of VisIt instead of
the GUI. Start up the CLI by issuing

visit -cli

You should now see an empty visualization window but unlike in the previous section there will be no graphical
user interface but a python command line instead. Enter the following commands, one by one, noticing the changes
in the visualization window after every block of commands:

OpenDatabase("deform.vtu")
AddPlot("Pseudocolor","stress")
DrawPlots()

p=PseudocolorAttributes()
p.centering=p.Nodal
SetPlotOptions(p)

AddOperator("ThreeSlice")
DrawPlots()

t=ThreeSliceAttributes()
t.x=0.3
t.y=0.3
SetOperatorOptions(t)

AddPlot("Vector", "disp")
DrawPlots()

v=VectorAttributes()
v.useStride=1
SetPlotOptions(v)

s=SaveWindowAttributes()
#change settings as required
SaveWindow()
exit()

All but the last call to DrawPlots() is not required and was only put there for demonstrating the effects of
the commands. You can save these commands to a file, e.g. deformVis.py and let VisIt process them non-
interactively like so:

visit -cli -nowin -s deformVis.py

The -nowin option prevents the visualization window from being shown which is not required since the purpose
of the script is to save an image file.

Obviously, we have barely touched on the powerful features of VisIt and this section was only meant to give
you a minimal introduction. The VisIt website has a reference manual for the python interface that explains how to
perform other operations programmatically, such as changing the view.

128 8.3. Visualizing escript Data

APPENDIX
A

Einstein Notation

Compact notation is used in equations such continuum mechanics and linear algebra; it is known as Einstein
notation or the Einstein summation convention. It makes the conventional notation of equations involving tensors
more compact by shortening and simplifying them.

There are two rules which make up the convention. Firstly, the rank of a tensor is represented by an index.
For example, a is a scalar, bi represents a vector, and cij represents a matrix. Secondly, if an expression contains
repeated subscripted variables, they are assumed to be summed over all possible values, from 0 to n. For example,
the expression

y = a0b0 + a1b1 + . . .+ anbn (A.1)

can be represented as

y =

n∑
i=0

aibi (A.2)

then in Einstein notation:
y = aibi (A.3)

Another example:

∇p =
∂p

∂x0
i +

∂p

∂x1
j +

∂p

∂x2
k (A.4)

can be expressed in Einstein notation as
∇p = p,i (A.5)

where the comma ’,’ in the subscript indicates the partial derivative.
For a tensor:

σij =

 σ00 σ01 σ02

σ10 σ11 σ12

σ20 σ21 σ22

 (A.6)

The δij is the Kronecker δ-symbol, which is a matrix with ones in its diagonal entries (i = j) and zeros in the
remaining entries (i 6= j).

δij =

{
1, if i = j
0, if i 6= j

(A.7)

Appendix A. Einstein Notation 129

130

APPENDIX

B

Changes from previous releases

3.4 to 3.4.1

• Renamed design.Design to design.AbstractDesign as a more explicit/descriptive name, this will break any
existing custom implementation until changed to match.

• Efficiency improvements in esys.downunder inversions.

• Implemented more CF conventions for the netCDF datasource and added GDAL support.

• Strongly coupled joint inversion added.

• Preliminary work on seismic modelling.

• Added support for more input data types in ER Mapper files.

• Improved stability for long MPI runs.

• Added timeStepFormat option to esys.escript.saveESD.

• Document generation process more stable.

• Added support for smoothed random 2D data.

• Documentation updated.

• Improved read support for grid-reading.

• Removed last usages of C compiler.

• Efficiency improvements in esys.downunder.

• Removed support for VSL random (boost::random is sufficient).

• Fixes related to compatibility with Intel compiler.

• Simplified module structure.

• Various code cleanup and bug fixes.

Appendix B. Changes from previous releases 131

3.3.1 to 3.4
• This release does not use the support bundles from 3.0 so building from source will be required in more

cases.

• In Debian and Ubuntu, there are now two packages. One containing escript itself and the other containing
documentation. This fits better with the way Debian does things.

• esys.weipa can now write Voxet files for data on ripley.

• All support for OpenDX has been dropped.

• Improved documentation HTML API documentation.

• Improvements to inversion module.

3.3 to 3.3.1
• Source packages for Debian and Ubuntu can now be made directly by dpkg-source from the source tree1.

• non-uniform 1D interpolation (see Section 3.2.7).

• The minimum version of python required for escript is now 2.6.

• saveVTK and saveDX (previously deprecated) have been removed from the main escript module. Please see
the weipa documentation for export functionality.

• The downunder inversion module is included.

– The documentation includes an inversion cookbook to get you started.

– Most operations are possible with esys.escript’s existing dependencies but some may require
pyproj or gdal but esys.escript will let you know if that happens.

3.2.1 to 3.3
• Experimental support for python3.

• Parameter order for the table interpolation methods has changed to be consistent. Please test your scripts if
you use these functions.

• setX on esys.finley and esys.dudley domains will now only accept coordinates from Continuous-
Function spaces. This is to avoid some potentially nasty behaviour when using periodic boundary conditions.
You can still use setX, just make sure that you interpolate first.

3.1 to 3.2
• The deprecated name for the launcher has been removed. To run scripts use run-escript not escript.

• esys.escript is no longer automatically imported by importing esys.finley. You will need to
import escript explicitly. (All of our example scripts do this anyway.)

• An experimental version of the new Dudley domain is now available.

• Various bug fixes and optimisations.

• New algorithms for gmsh support.

• Improvements to the AMG solver. AMG is the recommended solver for symmetric problems.

• Fixed compilation issues using netcdf.

1For this to work, you will need to place a file called svn_version containing the revision number in the root of the source.

132

• Redesigned configuration files to make it easier to compile from source without finding the locations of all
your libraries.

• Faster rendering of documentation.

• Documentation is now hyperlinked.

• New data export module esys.weipa. The saveVTK functionality has been moved into this module,
and while calling saveVTK from the esys.escript module still works it is discouraged and will be
removed in a future release.

• New esys.escript.DataManager class for convenient checkpointing and exporting of escript data.

• VisIt simulation interface for online data access and visualization.

• Simpler interpolation and support for interpolation from 3D vectors.

• HRZ lumping has been added and some clarification on how to use it.

• Data objects populated with “random” values can be created.

3.0 to 3.1

• The escript launcher has been renamed to run-escript. The old name will still work in this version but will
be removed in the future.

• Lazy evaluation features have been improved and documented (see Section 2.5).

• The escript documentation now includes a new Cookbook which demonstrates how to solve sample prob-
lems using escript.

• Macro elements have been introduced.

• The saveDataCSV method allows one or more Data objects to be exported in CSV format (see Sec-
tion 3.2.9).

• Data objects can be populated by interpolating from values in a table.

• The new getInfLocator and getSupLocator functions in esys.escript.pdetools return Lo-
cators to a minimal/maximal point over the data.

• There is a new class to model fault systems (esys.escript.faultsystems.FaultSystem).

• A beta version of an Algebraic Multigrid (AMG) solver is included.

• Inverting square matrices larger than 3x3 is now permitted if escript is compiled with Lapack support.

• If escript is compiled with a modern compiler, then inf/sup/Lsup will now report NaN, +/-inf as appropriate
if those values appear in the data.

• Data.setTags will take tag names as well as tag numbers.

• The Scalar, Vector, Tensor, Tensor3, Tensor4 factory methods can now take arrays/nested sequence like
objects as their initial values.

• escript.util.mkDir can now take a list of directories to create.

• Behind the scenes, python docstrings have been rewritten from epydoc to restructured text.

• Various other bug fixes and performance tweaks.

Appendix B. Changes from previous releases 133

2.0 to 3.0
• The major change here was replacing numarray with numpy. For general instructions on converting

scripts to use numpy see http://www.stsci.edu/resources/software_hardware/numarray/
numarray2numpy.pdf. The specific changes to esys.escript are:

– getValueOfDataPoint() which returned a numarray.array has been replaced by getTupleForData-
Point() which returns a python tuple containing the components of the data point. In the case of matri-
ces or higher ranked data, the tuples will be nested. Use numpy.array(data.getTupleForDataPoint()) if
a numpy.ndarray object is required.

– getValueOfGlobalDataPoint() has similarly been replaced by getTupleForGlobalDataPoint().

– integrate(data) now returns a numpy.ndarray instead of a numarray.array.

Any python methods which previously accepted numarray objects now accept numpy objects instead.

• The way to define solver options for LinearPDE objects has changed. There is now a SolverOptions
object attached to the LinearPDE object which handles the options of solvers used to solve the PDE. The
following changes apply:

– The setTolerance and setAbsoluteTolerance methods have been removed. Instead use
setTolerance and setAbsoluteTolerance on the SolverOptions object. For example:
getSolverOptions().setTolerance(...)

– The setSolverPackage and setSolverMethod methods have been removed. Instead use
the methods setPackage, setSolverMethod and setPreconditioner. For example: get-
SolverOptions().setPackage(. . .).

– The static class variables defining packages, solvers and preconditioners have been removed and are
now accessed via the corresponding static class variables in SolverOptions. For instance use
SolverOptions.PCG instead of LinearPDE.PCG to select the preconditioned conjugate gradient
method.

– The getSolution now takes no argument. Use the corresponding methods of the SolverOptions
object returned by getSolverOptions() to set values,
e.g. use getSolverOptions().setVerbosityOn() instead of argument verbose=True
and getSolverOptions().setIterMax(1000) instead of argument iter_max=1000.

134

http://www.stsci.edu/resources/software_hardware/numarray/numarray2numpy.pdf
http://www.stsci.edu/resources/software_hardware/numarray/numarray2numpy.pdf

APPENDIX
C

Escript researchers and developers by
release

Releases
Cihan Altinay 2.0 Current

Artak Amirbekyan 2.0 3.2.1
Vince Boros 3.2.1 Current

Joel Fenwick 2.0 Current
Lin Gao 2.0 3.3

Lutz Gross 1.0 Current
Peter Hornby 1.0 2.0

Ken Steube 1.0 2.0
Elspeth Thorne 1.0 2.0

Matt Davies 1.0 2.0
Brett Tully 2.0 2.0

Azadeh Salehi 3.2.1 3.4
Simon Shaw 3.4.1 Current
John Smilie 1.0 1.0

Cochrane 1.0 1.0
Rob Woodcock 1.0 2.0

Derek Hawcroft 1.0 2.0
Jon Gui 2.0 2.0

Appendix C. Escript researchers and developers by release 135

136

APPENDIX
D

Escript references

If you use escript in your research we would appreciate a citation (of course we do not require this). Possible
references include:

@InProceedings{GROSS2010,
author = {L. Gross and A. Amirbekyan and J. Fenwick and L. Gao

and A. Mohajeri and H. M\"uhlhaus},
title = {On lazy evaluation as a tool to optimize the

efficiency of large scale numerical simulations in Python},
booktitle = {ICCS 2010: Proceedings of the International

Conference on Computational Science},
pages = {2145--2153},
year = {2010},
editor = {Michael Blackman},
publisher = {Elsevier}
series = {Procedia Computer Science},
month = {May},
issn = {1877--0509},
doi={doi:10.1016/j.procs.2010.04.240}

}

@InProceedings{lazyauspdc,
author = {Joel Fenwick and Lutz Gross},
title = {Lazy Evaluation of PDE Coefficients in the EScript System},
booktitle = {Parallel and Distributed Computing 2010 (AusPDC2010)},
pages = {71--76},
year = {2010},
editor = {Jinjun Chen and Rajiv Ranjan},
volume = {107},
series = {Conferences in Research and Practice in Information Technology},
month = {January},
issn = {1445--1336}

}

@article{GROSS2006,
author = {L. Gross and L. Bourgouin and A. J. Hale and H.-B Muhlhaus},
title = {Interface Modeling in Incompressible Media
using Level Sets in Escript},
journal = {Physics of the Earth and Planetary Interiors},
year = 2007,
volume = {163},
pages = {23--34},
month = {August},
doi = {doi:10.1016/j.pepi.2007.04.004},

}

Appendix D. Escript references 137

@article{GROSS2007,
author = {L. Gross and B. Cumming and K. Steube and D. Weatherley},
title = {A Python Module for PDE-Based Numerical Modelling},
journal = {PARA},
year = {2007},
volume = {4699},
pages = {270--279},
doi = {doi:10.1007/978-3-540-75755-9},
publisher = {Springer}

}

138

APPENDIX
E

Python3 Support

We are not dropping support for recent python2 releases. (2.6 or later is still supported)
All we are doing is preparing for the time when python3 is used more widely.

esys.escript compiles and passes tests under python3. However, it depends on a number of other packages
for its operation. At the moment, there are no precompiled versions of these packages available for python3. This
can be because the changes needed to support python3 have not made it into the release branch yet. In the case of
some Linux distributions, some packages are not built for python3 yet.

Regardless, if you wish to use esys.escript with python3, you will need to compile it (and some of its
dependencies) yourself. See the install guide for more details.

E.1 Impact on scripts
We have attempted to minimise disruption and caused by supporting both python2 and python3. As long as your
scripts work under the python2 you don’t need to change anything. However, you might consider the following:

• Use // for division where you expect an integer answer. In python3, / always produces a floating point
answer1. To use this behaviour now, add the following to the top of your script:
from __future__ import division

• Use print as a function rather than a statement. That is: print("x", x) instead of print "x",x.
To enable this in python2 add from __future__ import print_function to the top of your
script.

• Don’t use <tabs> for indentation. The expand utility can help here.

In our experience, many (but not all) changes required to get simple scripts working under python3 will also
work under python2. For more information about the differences in the languages see http://wiki.python.
org/moin/Python2orPython3 or http://docs.python.org/py3k/whatsnew/3.0.html.

1Division involving escript types (eg Data) has always produced floating point answers. .

Appendix E. Python3 Support 139

http://wiki.python.org/moin/Python2orPython3
http://wiki.python.org/moin/Python2orPython3
http://docs.python.org/py3k/whatsnew/3.0.html

140 E.1. Impact on scripts

Index

*, 49
**, 49
+, 49
-, 49
/, 49

algebraic Multi-grid, 69, 75, 76, 79
AMG, 69, 75, 76, 79
atmosphere, 62

backward Euler, 17
BiCGStab, 78, 122
boundary condition

natural, 18, 28, 67, 68
boundary conditions

periodic, 119
boundary value problem, 10

BVP, 10–12

Celsius, 61
CFL condition, 26, 31
characteristic function, 12, 18, 67
cohesion factor, 107
constraint, 18, 28, 67
contact conditions, 116
Courant condition, 25, 80, 82
Courant number, 26, 31
CSV, 60

Darcy flow, 104, 106
Darcy flux, 104, 105
data sample

points, 43, 47–53, 113, 114
diffusion equation, 16
dip, 111
Dirichlet boundary condition, 12

homogeneous, 10, 12
discontinuity, 42, 68
displacement, 33
Druck-Prager, 107

element, 115
contact, 116, 124
face, 116
reference number, 116

empty Data, 50, 51
Environment

ESCRIPT HOSTFILE, 38
ESCRIPT NUM NODES, 38
ESCRIPT NUM PROCS, 38
ESCRIPT NUM THREADS, 38
ESCRIPT STDFILES, 38, 39
MPI COMM WORLD, 65
OMP NUM THREADS, 11
PATH, 37, 38

explicit scheme, 25
Courant condition, 25, 80, 82

fault, 33
faults, 110
FEM

elements, 115
isoparametrical, 115
mesh, 115

finite element method, 11
element, 11
FEM, 11
mesh, 11
nodes, 11

finley
Hex20, 118, 124
Hex20Face, 118, 124
Hex20Face Contact, 118
Hex20Macro, 124
Hex27, 118
Hex27Macro, 118
Hex8, 118, 124
Hex8Face, 118, 124
Hex8Face Contact, 118
Line2, 116, 118, 123
Line2 Contact, 116, 118
Line2Face, 118
Line2Face Contact, 118
Line3, 118, 123
Line3 Contact, 118
Line3Face, 118
Line3Face Contact, 118
Line3Macro, 118, 121, 123
Point1, 118

Index 141

Point1 Contact, 118
Rec4, 117, 118, 123, 124
Rec4 Contact, 118
Rec4Face, 118, 123
Rec4Face Contact, 116, 118
Rec8, 118, 123, 124
Rec8 Contact, 118
Rec8Face, 118, 123
Rec8Face Contact, 118
Rec8Macro, 123, 124
Rec9, 118, 121
Rec9Face, 118
Rec9Face Contact, 118
Rec9Macro, 118, 121
Tet10, 118
Tet10Face, 118
Tet10Face Contact, 118
Tet10Macro, 118, 121
Tet4, 118
Tet4Face, 118
Tet4Face Contact, 118
Tri3, 116, 118
Tri3Face, 116, 118
Tri3Face Contact, 118
Tri6, 118
Tri6 Contact, 118
Tri6Face, 118
Tri6Face Contact, 118
Tri6Macro, 118
Tri9, 118
Tri9 Contact, 118

flux, 70
force, internal, 99

Gauss-Seidel Scheme, 76
generalized minimal residual method

GMRES, 103
GMRES, 75, 78
Gmsh, 85, 86, 93, 95, 123
gnuplot, 26, 27
GOCAD, 126

Helmholtz equation, 16–18
HRZ lumping, 78, 80

ILU0, 79
implicit scheme, 25
incompressible fluid, 99
integration order, 122–124
interpolateTable, 57
interpolation, 42, 72

Jacobi, 76, 78

Kronecker symbol, 18, 21, 33

Lame coefficients, 21, 33

Lame equation, 28
Laplace operator, 9, 10
LBB condition, 103, 109
linear solver

AMG, 69, 75, 76, 79
BiCGStab, 78, 122
Gauss-Seidel, 76
GMRES, 75, 78
HRZ lumping, 78, 80
minimum fill-in ordering, 123
MINRES, 78
nested dissection ordering, 123
PCG, 69, 78, 100, 122
row sum lumping, 78, 80
TFQMR, 78

macro elements, 31, 41, 103, 109, 115, 122–124
matplotlib, 13–15, 27
Matrix Market, 61
mayavi, 13, 16, 32
Message Passing Interface

MPI, 15, 27, 37–40, 45, 47, 61, 64, 65, 122–124
minimum fill-in ordering, 123
MINRES, 78
MKL, 74, 78, 122, 123
momentum equation, 28, 33, 34

natural boundary conditions
homogeneous, 116
inhomogeneous, 116

nested dissection, 123
netCDF, 45, 46
Neumann boundary condition

homogeneous, 10, 12
Newton-Raphson scheme, 108
node

reference number, 116

OpenDX, 51
OpenMP, 115

threading, 37–39
outer normal field, 17

packages
MKL, 74, 78, 122, 123
PASO, 78, 122, 123
UMFPACK, 78, 122, 123

partial derivative, 10
partial differential equation, 9, 41, 48, 49

PDE, 9, 11
partial differential equations, 115
PASO, 78, 122, 123
PCG, 69, 78, 100, 122
periodic boundary conditions, 124
Poisson, 69
Poisson equation, 9–11
pounds, 61

142 Index

preconditioned conjugate gradient method
PCG, 103

preconditioner, 100
Gauss-Seidel, 76
ILU0, 79
Jacobi, 76, 78
RILU, 77

projection, 42, 72

rank, 51
RILU, 77
row sum lumping, 78, 80
run-escript, 37

saddle point problems, 42
saveDataCSV, 60
SciPy, 28
scripts

darcy.py.py, 106
diffusion.py, 20, 29
helmholtz.py, 19
lid_driven_cavity.py, 104
wave.py, 26

shape, 12, 43, 47, 49–51
SI units, 61
SILO, 15, 59, 60, 126, 127
slicing, 49
slip, 33
solution, 25, 48, 71–73

reduced, 49, 72, 73, 115
Stokes problem, 99, 103
stress, 21, 33
stress, initial, 99
strike, 111
summation convention, 10, 17
SUPG, 81
symmetric PDE, 18, 29
symmetrical, 68

tag, 94
tagging, 44, 86
Taylor-Galerkin scheme, 81
TFQMR, 78
time integration

explicit, 25
implicit, 25

UMFPACK, 78, 122, 123
Uzawa scheme, 100

velocity, 99
Verlet scheme, 22, 80
VisIt, 13, 15, 59, 60, 125–128, 133
visualization

gnuplot, 26, 27
GOCAD, 126
matplotlib, 13–15, 27

mayavi, 13, 16, 32
OpenDX, 51
SILO, 15, 59, 60, 126, 127
VisIt, 13, 15, 59, 60, 125–128, 133
Voxet, 126
VTK, 15, 21, 29, 46, 51, 59, 60, 126, 127

von-Mises stress, 29
Voxet, 126
VTK, 15, 21, 29, 46, 51, 59, 60, 126, 127

wave equation, 21

yield condition, 107

Index 143

144 Index

Bibliography

[1] A. Amirberkyan and L. Gross. Efficient Solvers for Incompressible Fluid Flows in Geosciences. ANZIAM
Journal, 50:C189–C203, 2008.

[2] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica, 14:1–
137, 2005.

[3] CGNS. http://cgns.sourceforge.net/.

[4] P. G. Ciarlet and J. L. Lions. Handbook of Numerical Analysis, volume 2. North Holland, Amsterdam, 1991.

[5] Scipy Community. Numpy and Scipy Documentation.

[6] The Scipy community community community community. Numpy and Scipy Documentation.

[7] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu. A supernodal
approach to sparse partial pivoting. SIAM J. Matrix Analysis and Applications, 20(3):720–755, 1999.

[8] Diffpack. http://www.diffpack.com/.

[9] Tim Edwards. Netgen 1.4. http://opencircuitdesign.com/netgen/.

[10] Joel Fenwick and Lutz Gross. Lazy Evaluation of PDE Coefficients in the EScript System. In Jinjun Chen and
Rajiv Ranjan, editors, Parallel and Distributed Computing 2010 (AusPDC2010), volume 107 of Conferences
in Research and Practice in Information Technology, pages 71–76, January 2010.

[11] Christophe Geuzaine and Jean-Francois Remacle. Gmsh Reference Manual, 1.12 edition, Aug 2003.

[12] V. Girault and P. A. Raviart. Finite Element Methods for Navier-Stokes Equations- Theory and Algorithms.
Springer Verlag, Berlin, 1986.

[13] Paradigm GOCAD homepage. http://www.pdgm.com/Products/GOCAD.

[14] P. Hénon, P. Ramet, and J. Roman. PaStiX: A High-Performance Parallel Direct Solver for Sparse Symmetric
Definite Systems. Parallel Computing, 28(2):301–321, January 2002.

[15] John Hunter, Michael Droettboom, and Darren Dale. matplotlib, July 2009.

[16] I DEAS. http://www.plm.automation.siemens.com/en
us/products/nx/.

[17] Mayavi2: The next generation scientific data visualization, 2009.

[18] Medit. http://www-rocq.inria.fr/OpenFEM/Doc/.

[19] INTEL’s Math Kernel Library.

[20] MPI. http://www.mpi-forum.org.

Bibliography 145

http://www.pdgm.com/Products/GOCAD

[21] Hans-Bernd Muhlhaus and Klaus Regenauer-Lieb. Towards a self-consistent plate mantle model that in-
cludes elasticity: simple benchmarks and application to basic modes of convection. Geophysical Journal
International, 163(2):788–800(13), November 2005.

[22] Nastran. http://simcompanion.mscsoftware.com/.

[23] netCDF. http://www.unidata.ucar.edu/software/netcdf.

[24] OpenDX. http://www.opendx.org/.

[25] OpenMP. http://openmp.org.

[26] Plot3D. http://www.plot3d.net/.

[27] Right-hand rule. http://en.wikipedia.org/wiki/Right-hand rule.

[28] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, 20 Park Plaza, Boston,
MA 02116, USA, 1996.

[29] Y. Shapira. Matrix-Based Multigrid. Springer, 2008.

[30] Hang Si. TetGen: A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator.
http://tetgen.berlios.de, Jan 2008.

[31] David Silvester, Howard Elman, David Kay, and Andrew Wathen. Efficient preconditioning of the linearized
navier-stokes equations for incompressible flow. Journal of Computational and Applied Mathematics, 128(1–
2):261–279, 2001.

[32] STL. http://en.wikipedia.org/wiki/STL (file format).

[33] B. Suchomel and Y. Saad. ARMS: an algebraic recursive multilevel solver for general sparse linear systems.
Numerical Linear Algebra with Applications, 9(5):1099–1506, 2002.

[34] http://www.cise.ufl.edu/research/sparse/umfpack/.

[35] VisIt homepage. https://wci.llnl.gov/codes/visit/home.html.

[36] VRML. http://www.w3.org/MarkUp/VRML/.

[37] R. Weiss. Parameter-Free Iterative Linear Solvers. Mathematical Research, vol. 97. Akademie Verlag,
Berlin, 1996.

[38] Thomas Williams and Colin Kelley. gnuplot homepage. http://www.gnuplot.info/, March 2009.

[39] O. C. Zienkiewicz. The Finite Element Method in Engineering Science. McGraw-Hill, London, second
edition, 1971.

146 Bibliography

