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Abstract  13	

Accurately predicting relative binding affinities and biological potencies for 14	
ligands that interact with proteins remains a significant challenge for computational 15	
chemists. Most evaluations of docking and scoring algorithms have focused on 16	
enhancing ligand affinity for a protein by optimizing docking poses and enrichment 17	
factors during virtual screening. However, there is still relatively limited information 18	
on the accuracy of commercially available docking and scoring software programs for 19	
correctly predicting binding affinities and biological activities of structurally related 20	
inhibitors of different enzyme classes. Presented here is a comparative evaluation of 21	
eight molecular docking programs (Autodock Vina, Fitted, FlexX, Fred, Glide, 22	
GOLD, LibDock, MolDock) using sixteen docking and scoring functions to predict 23	
the rank-order activity of different ligand series for six pharmacologically important 24	
protein and enzyme targets (Factor Xa, Cdk2 kinase, Aurora A kinase, COX-2, 25	
pla2g2a, β Estrogen receptor). Use of Fitted gave an excellent correlation (Pearson 26	
0.86, Spearman 0.91) between predicted and experimental binding only for Cdk2 27	
kinase inhibitors. FlexX and GOLDScore produced good correlations (Pearson > 0.6) 28	
for hydrophilic targets such as Factor Xa, Cdk2 kinase and Aurora A kinase. By 29	
contrast, pla2g2a and COX-2 emerged as difficult targets for scoring functions to 30	
predict ligand activities. Albeit possessing a high hydrophobicity in its binding site, β 31	
Estrogen receptor produced reasonable correlations using LibDock (Pearson 0.75, 32	
Spearman 0.68). These findings can assist medicinal chemists to better match scoring 33	
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functions with ligand-target systems for hit-to-lead optimization using computer-1	
aided drug design approaches.   2	

 3	
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1. Introduction 8	
 Lead optimization is important for drug discovery and involves making 9	
substantial improvements in ligand specificity, potency and pharmacokinetic 10	
properties over weakly potent hits typically identified from virtual or high throughput 11	
screening. Lead development via chemical modification is often guided by available 12	
ligand SAR, 2D or 3D similarity-based fragment searches, 3D-pharmacophore model 13	
building and structure-based design. To accelerate lead optimization, reduce labor and 14	
minimize costs, reliable computational methods that accurately predict compound 15	
binding affinity and/or functional potency are highly desirable. A variety of 16	
approaches to calculate ligand binding affinity have been developed and reviewed[1, 17	
2]. Molecular dynamic (MD) simulations, Monte Carlo (MC) simulations, free energy 18	
perturbation (FEP) and thermodynamic integration methods can all be used to 19	
calculate binding free energies that are similar to experimentally determined values[3-20	
5]. MM/PBSA calculations, pioneered by Kollman and coworkers, use a combination 21	
of molecular mechanics and continuum solvation to compute binding free energies for 22	
the binding complexes between bound and unbound states[6]. A related approach, 23	
MM/GBSA, has been used in studies of protein-ligand interactions and applied to 24	
diverse targets[7, 8]. Although some encouraging results have been produced[9] from 25	
free energy calculations, these approaches are computationally expensive and 26	
impractical for routine evaluations of binding affinity predictions. Comparing ligands 27	
is therefore mainly done using molecular docking and scoring functions to identify 28	
and rank ligand binding poses in a binding pocket. Scoring functions rank each pose 29	
of a ligand relative to other poses typically that corresponding to a crystal structure. 30	
These scores are commonly used not only to rank individual ligand poses, but also to 31	
compare different ligand scores for identifying the potentially more potent ligands 32	
(some scoring functions produce a binding energy value).  Computational methods 33	
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are useful tools in medicinal chemistry, but suffer from difficulties in predicting 1	
protein conformational changes and still require considerable further refinements to 2	
improve their effectiveness in drug design and ligand optimization strategies in 3	
silico[10].  4	

In the last decade, evaluation of the performance of docking and scoring 5	
functions has focused predominantly on two measures. Firstly, it has sought accurate 6	
reproductions of co-crystalized ligand binding poses in protein crystal structures. 7	
Ligand docking is most accurate if the top ranked pose has a heavy atom root-mean-8	
square deviation (RMSD) < 2.0 Å from the location of the crystalized ligand[11]; and 9	
this has been shown to be achievable with several common docking programs[12-14]. 10	
Software programs for ligand docking are constantly improving and can now achieve 11	
heavy atom rmsd values within 1 Å for some targets[15]. A second approach to 12	
validate docking and scoring algorithms involves examining the enrichment factor 13	
(EF) after virtual screening. The EF is defined as the accumulated ratio of active 14	
ligands found above a certain percentile of the ranked database containing active and 15	
inactive ligands. A higher EF value at a defined percentile (e.g. EF2%) usually 16	
indicates a better scoring function[11]; this measure has been used many times to 17	
evaluate scoring functions[16-19]. The area under the curve (AUC) of receiver 18	
operator[20] characteristics is usually employed to reflect the enrichment (CSAR 19	
2011-2012)[21]. Scoring functions have also been evaluated for accuracy in 20	
predicting experimental binding affinity or biological activity. This is still challenging 21	
due to the reproducibility of ligand binding or activity data measured experimentally 22	
(often under different conditions) in different laboratories[11], and especially because 23	
some scoring functions lack terms such as solvation energy and configurational 24	
entropy which affect affinity of ligand binding[2], and uncertainties in protein 25	
conformations which are extraordinarily difficult to computationally predict at the 26	
present time. 27	
 A large number of docking and scoring comparisons have been reported, 28	
comparing RMSD values, EF values[12, 14-16, 19, 22-34] and less frequently 29	
predicting and ranking ligand binding affinity[35-38]. Wang et al. comparatively 30	
evaluated 11 scoring functions (four scoring functions in LigFit module in Cerius2: 31	
LigScore, PLP, PMF, and LUDI; four scoring functions implemented in CScore 32	
module in SyByl: F-Score, G-Score, D-Score, ChemScore, scoring functions in 33	
AutoDock program, and two standalone scoring functions: Drug-Score and X-Score) 34	
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for effectiveness in molecular docking, by assessing their ability to reproduce 1	
experimentally determined binding conformations and affinities of 100 protein-ligand 2	
complexes[15]. Autodock was used to generate docking conformations and re-scored 3	
by other scoring functions. Results showed that six scoring functions achieved a 4	
success rate of 66%-76% using RMSD 2.0 Å as the chief criterion. However, only 5	
four scoring functions were able to give a ranking correlation of 0.5 – 0.7 when they 6	
were applied to predict the experimentally determined binding affinities for the 7	
protein-ligand complexes. Warren et al. evaluated 10 different docking programs 8	
incorporating 37 scoring functions against 8 proteins of 7 protein families with 9	
aproximately 1300 ligands; binding mode, virtual screening and binding affinity 10	
prediction were examined[19]. Nineteen docking protocols were able to predict 11	
accurate ligand conformations of 136 protein ligand complexes for which crystal 12	
structures were available. However, none of the scoring functions usefully predicted 13	
ligand-binding affinity. The study indicated that the goal of accurately predicting 14	
ligand affinities was beyond the capacity of all of the scoring functions at that time.  15	
 There have been relatively limited reports on comparisons of docking, scoring 16	
and binding affinity predictions on multiple defined series of congeneric compounds. 17	
A few representative examples are referred to herein. Pearlman and Charifson[39] 18	
examined a series of p38 MAP kinase inhibitors and found a good correlation 19	
between experimental ligand binding affinities determined via free energy grid 20	
calculations compared to Chemscore, PLPScore and Dock energy ligand scores. 21	
Lyne[40] accurately predicted relative inhibitory potencies of members of a series of 22	
kinase inhibitors (p38, Aurora A, Cdk2 and Jnk3) using molecular docking followed 23	
by MM-GBSA scoring (Pearson correlation: 0.71 – 0.84). Rapp et al.[41] applied a 24	
molecular mechanics approach when examining 12 protein targets with their 25	
congeneric inhibitors. Prime energy calculations were included in the scoring and 26	
produced good correlations between predicted binding scores and experimental 27	
binding affinities (r2: 0.25 – 0.82). These reports suggest that the inclusion of MM-28	
GBSA based scoring correlates well with ligand binding affinity. It is not clear how 29	
broadly applicable this method is though, as reports have generally examined only 30	
kinase proteins with a small number of congeneric ligands.  31	

Recently, the Community Structure-Activity Resource (CSAR) conducted a 32	
blinded exercise in evaluating the docking and relative ranking of congeneric 33	
compounds against four different protein targets; 20 groups worldwide being invited 34	
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to submit their hypothesis on the choice of the best scoring functions for both ligand 1	
docking and ranking[21]. It was found that relative ranking was the most difficult and 2	
most groups did not achieve a high correlation between computationally predicted 3	
ligand pose scores and experimental binding activity data. However, many docking 4	
programs were able to differentiate between active and inactive compounds against 5	
one target, the urokinase protein.  6	

The current study is aimed at comparing the performance of several scoring 7	
functions from eight different molecular docking programs (commercially available 8	
and free trial versions) in predicting experimental biological activities of ligands for 9	
their protein targets. The scoring functions were applied to six pharmaceutically 10	
important protein targets each against a set of ligands for which biological activities 11	
have been reported in the literature. Table 1 summarizes these six target proteins, the 12	
number of ligands to be used for this computational study, the range of experimental 13	
inhibition constants covered by the ligand set, and the literature references from 14	
which the data was taken. We chose proteins considered to be difficult targets for 15	
ligand docking and for which experimental data on ligand binding affinity or protein 16	
inhibition was available based on similar experimental conditions. The aim of this 17	
study was to examine a variety of docking and scoring functions for their capacity to 18	
correctly predict relative rank order of biological activity or binding affinity of 19	
ligands to hydrophilic and hydrophobic protein targets. As well we wanted to examine 20	
whether possible correlations between predicted and experimental results were useful 21	
in “lead” optimization studies and to identify an optimized docking scoring protocol 22	
for virtual screening across different target proteins. 23	

 24	
Table 1: Selected Literature Compounds 25	
Target protein Number of Compounds Experimental data 

(pKi and pIC50 range) 
Reference 

Factor Xa 33 5.8-10.9 (pKi) [42-45] 
cdk2 kinase 24 5.3-8.3 (pIC50) [46] 
Aurora A Kinase  21 5.1-8.4 (pIC50) [47] 
COX-2 22  5.1-8.1 (pIC50) [48-50] 
pla2g2a 29 4.7-7.7 (pIC50) [51] 
β Estrogen Receptor  25 5.7-8.9 (pIC50) [52] 

 26	
 27	
2. Materials & Methods 28	
2.1. Protein targets  29	
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Factor Xa: Factor Xa is a trypsin-like serine protease enzyme that is an 1	
important target for antithrombosis due to its role in the coagulation cascade[53]. The 2	
crystal structure shows the ligand binding site is a shallow solvent-exposed groove, 3	
except for a deep S1 pocket that prefers to bind positively charged or basic 4	
groups[43]. Factor Xa has been reported in several studies on scoring functions[19, 5	
31, 41].  6	
 Cyclin-Dependent Kinase 2: The cyclin-dependent kinases (Cdks) are a 7	
family of serine-threonine protein kinases which control cell cycle proliferation in 8	
eukaryotic cells[54]. Abnormal activity of Cdks can lead to a loss of cell function 9	
checkpoints and are linked to cancer pathology,[55] and are cancer therapeutic 10	
targets[56]. The crystal structure of Cdk2 with a bound potent inhibitor: NU6102 11	
shows two key hydrogen bonds are essential for strong binding[57]. This target has 12	
also been included in a few previous comparative assessments of scoring functions[5, 13	
24, 40, 41]. 14	

Aurora A kinase: Aurora A kinase is a member of the Aurora family of 15	
serine/threonine kinase enzymes[58, 59]. It is a key regulator of mitosis in eukaryotic 16	
cells and has been shown to be strongly involved in the onset and progression of 17	
cancer[60, 61]. Aurora A is over-expressed in human cancers such as pancreatic, 18	
breast, colon and ovarian tumors. The search for new inhibitors of Aurora A kinase 19	
has been driven by clinical success of current inhibitors in oncological studies[62-65]. 20	
Aurora A has a hydrophilic binding site, containing charged amino acids which form 21	
salt bridges to ligands[47]. 22	
 COX-2: Cyclooxygenase-2 is an enzyme involved in the synthesis of 23	
eicosanoids from C20 polyunsaturated fatty acids in the cyclooxygenase pathways[66]. 24	
Over-expression of COX-2 is usually responsible for production of pro-inflammatory 25	
prostaglandins. Hence, COX-2 is an attractive target for drug design to combat 26	
inflammatory diseases and physiological disorders. The active site of COX-2 contains 27	
mainly hydrophobic residues[67].  28	

sPLA2: Human secretory phospholipases A2 (sPLA2) are enzymes that 29	
catalyze the hydrolysis of the 2-acyl ester of 3-sn-phosphoglycerides to produce 30	
arachidonic acid and lysophospholipid. The arachidonate is then metabolized to 31	
eicosanoids by cyclooxygenase and lipoxygenase and the later is converted to platelet 32	
activating factor[68]. Human sPLA2 group IIa (pla2g2a) has been shown in 33	
abnormally high concentrations in synovial fluid from patients with rheumatoid and 34	
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osteoarthritis[51]. A high level of pla2g2a has been found to be associated with the 1	
severity of arthritis and sepsis[51]. The crystal structure[51] of pla2g2a revealed that 2	
the active site is lined by a series of hydrophobic residues Phe5, Ile9, Ala18, Ala19, 3	
Try22, Gly23 and Cys45.  4	

β Estrogen Receptor: Estrogens belong to a family of naturally occurring 5	
steroid hormones that mediate the growth, development and maintenance of different 6	
tissues in human body[52]. The action of estrogen on different cell types is mediated 7	
via estrogen receptors that are members of a superfamily of nuclear receptors that 8	
play a role as ligand-activated gene transcription factors. There are two types of 9	
estrogen receptors: ERα and ERβ. Although widely expressed in many tissues, ERα is 10	
found mainly in uterus, kidney, and ovarian theca cells, whereas ERβ is 11	
predominantly expressed in ovarian granulosa cells, lung, bladder, and prostate[52]. 12	
Selective ERβ ligands have been found to have utility in treatment of diseases such as 13	
inflammatory bowel disease and rheumatoid arthritis[52].  14	
 15	
2.2 Preparation of Protein Structures 16	

Target protein crystal structures for Factor Xa (pdb code: 2P16), cdk2 kinase 17	
(pdb code: 1H1S), Aurora kinase A (pdb code: 3D14), COX-2 (pdb code: 6COX), 18	
Estrogen receptor (pdb code: 1YY4) and Pla2g2a (pdb code: 1J1A) were chosen as 19	
their co-crystalized ligands had a corresponding identical or similar ligand in the 20	
congeneric ligand set; crystal structures were appropriate for docking with resolution 21	
values <3Å and R-values <0.3. Structures were retrieved from the Protein 22	
Databank[69, 70] (www.rscb.org) and coordinates of chain “A” from each protein 23	
were imported into Maestro (Schrödinger software version 9.4) interface and then 24	
prepared using the Protein Preparation Wizard. Missing side chains and hydrogens 25	
were added, bond orders were corrected, and disulfide and zero order bonds to metals 26	
were created. Remote metal ions not involved in ligand binding were removed, since 27	
we considered that their stabilization roles were unlikely to affect ligand docking. H-28	
bond assignments, tautomer and protonation states of amino acids at pH 7.4, were 29	
optimized. The prepared structures were then saved for use in docking programs that 30	
did not internally prepare proteins (e.g. GOLD). 31	
 32	
2.3 SiteMap Calculation for Hydrophobicity of Protein Binding Sites 33	
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SiteMap is a tool that defines putative binding sites by analyzing several 1	
parameters contributing to binding between a ligand and its receptor[71]. Parameters 2	
included in calculations are: site score, size, exposure score, contact, 3	
hydrophobic/hydrophilic property[72]. Once protein targets were prepared, the 4	
program SiteMap (Schrödinger software version 9.4) was used to evaluate and 5	
quantify the hydrophobic and hydrophilic nature of the binding site. Default 6	
parameters were used with a single binding site defined as the region of 6 Å about the 7	
binding ligand atoms. 8	
 9	
2.4 Test Compounds 10	

Compounds for target proteins were selected from each particular research 11	
group, either in an original research paper or several papers published on the same 12	
target, to ensure consistency of experimental conditions used to determine biological 13	
activities. Each compound series contained at least twenty ligands. In addition, except 14	
for the COX2 compound set, at least one compound belonging to the series had been 15	
co-crystallized with the target protein. Table 1 lists the reference for each compound 16	
series, the number of compounds, and the range of the experimental data. When pKi 17	
was not reported, pIC50 was used based on a general premise that compounds sharing 18	
a similar scaffold should bind to the protein at a site similar to the one identified in the 19	
crystal structure. pKi or pIC50 of the compounds spanned a magnitude of at least four 20	
fold for biological activities of the compounds. 21	

 22	
2.5. Preparation of Ligands 23	

Structures for all ligands were drawn in ChemBioDraw13.0 as a neutral 24	
species with the correct stereochemistry and then saved as a 2D sdf file. LigPrep in 25	
Schrödinger Suite software (version 9.4) was then used to convert the 2D sdf files into 26	
3D maestro and sdf files. LigPrep generated a single 3D structure per ligand with that 27	
was minimized using the OPLS2005 force field and protonation state corrected to pH 28	
7.4 using Epik.   29	

 30	
2.6. Molecular Docking: 31	

GOLD: GOLD[73] uses a genetic algorithm and takes into account partial 32	
receptor flexibility with full ligand flexibility during conformational searches and 33	
docking. Each ligand conformation is analogously encoded as evolution of a 34	
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population of possible solutions via genetic operators (viz. mutations, crossovers and 1	
migrations) to a final population. The degree of freedom of the ligand is represented 2	
as binary strings called genes. These genes make up the “chromosome” which reflects 3	
ligand binding pose. In GOLD, the docking site was defined by a search radius of 15 4	
Å around Asp 48 in Factor Xa, 10 Å around Phe 80 in cdk2 kinase, 10 Å around Glu 5	
194 in aurora A kinase, 10 Å around Phe 518 in COX-2, 10 Å around Asp 48 in 6	
sPLA2, and 10 Å around Leu 298 in β estrogen receptor. Default parameters were 7	
applied with 100% ligand search efficiency. All other parameters were set as default. 8	
Each ligand was docked for 10 GA runs but the top 3 poses were saved as final 9	
solutions. 10	

GLIDE: Glide[13] uses a series of hierarchical filters to search for possible 11	
locations of a ligand in the binding site using a pre-defined grid representation of the 12	
rigid receptor. The grid-enclosing box was placed on the centroid of a selected amino 13	
acid in the binding site and all other residues within 14 Å were included in 14	
considering the binding site. The scaling factor was set to 0.8 according to the default 15	
setting and GLIDE was run in extra precision (XP) mode with 10 poses per ligand 16	
kept. Docked poses from GLIDE XP were submitted to a PRIME/MM-GBSA 17	
calculation using default parameters to determine binding free energies between 18	
ligands and receptor. MM-GBSA, energies were estimated based on OPLS-AA force 19	
field for molecular mechanics energy (EMM) and the surface-generalised borne 20	
model for polar solvation energy, and a non-polar solvation term were also taken into 21	
account[74]. 22	

FlexX: FlexX is one of the most frequently used docking software programs. 23	
It is based on an incremental fragment-based docking approach developed from the 24	
Leach and Kuntz algorithm[75]. During the docking process, the whole ligand is 25	
broken into small fragments. All base fragments generated from a given ligand serve 26	
as starting point for docking[76]. The complete ligand is constructed and mapped into 27	
the protein active site after placement of a single base fragment by taking into account 28	
entropy, hydrogen bonds, metal acceptor, amide, methyl and aromatic ring[31]. In the 29	
current study, the FlexX package was part of the software package LeadIT 30	
(BioSolveIT GmbH). For FlexX, the docking set up was prepared according to 31	
standard workflow and the binding site was defined as 6.5 Å around the ligand in the 32	
crystal structure. 33	
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Autodock Vina:	 Autodock tools were used to convert the Schrödinger 1	
prepared target protein pdb files to the Autodock Vina required pdbqt file type.  2	
Ligand sdf files were converted to pdb files using OpenBabel and converted to 3	
Autodock Vina required pdqt files using Autodock tools. Autodock Vina[77] uses a 4	
grid-based approach with the center of the search set as a 20 Å box about the center of 5	
the protein bound ligand. Vina search exhaustiveness was set to ten and ten dockings 6	
per ligand were performed. 7	

Fitted: FITTED Suite 3.6[78] was used for molecular docking; files were 8	
prepared and docking procedures performed as described in the user guide using 9	
default parameters unless noted. The grid center for docking was defined by 10	
automatic search using the center of the crystallized ligand. The grid size was retained 11	
as the default parameters (15 Å) in Fitted. FITTED used a GA based docking 12	
approach to dock ligands into a binding site defined as spheres and used RankScore as 13	
scoring function. Initially, PREPARE was used to download and prepare the target 14	
protein adding hydrogens, optimizing tautomers and water molecules. SMART was 15	
used to prepared ligands, ProCESS to setup the proteins for docking and FITTED 16	
used to perform the docking. FITTED docked ligands three times by default using the 17	
default rigid protein.  18	

Molegro: Molegro Virtual Docker 6.0 (MVD) was used for the preparation of 19	
ligand and protein files and for docking with MolDock[79]. MolDock used a hybrid 20	
guided differential evolution (DE) algorithm combined with a cavity prediction 21	
algorithm for ligand docking. The MolDock scoring function was based on a 22	
piecewise linear potential (PLP) modified to take into account H-bond directionality. 23	
Top ranked poses were re-ranked using a more complex scoring function that added 24	
an sp2-sp2 torsion term and a Lennard-Jones potential term to the score. Protein and 25	
ligand files were prepared and the docking performed as described in the Docking 26	
Tutorial in the MVD manual. The docking site was set by choosing the bound ligand 27	
in the crystal structure and a radius of 15 Å was applied. Docking was run with 10 28	
poses per ligand, with similar poses within 1 Å RMSD being ignored. 29	

Fred: Fred[80] was supplied as part of the OpenEye suite of programs, it 30	
docks a multi-conformer library of ligands into the binding site using an exhaustive 31	
search algorithm that systematically searches rotations and translations of the 32	
conformers with in the binding site. The default scoring function used by Fred is 33	
Chemgauss4 a shape based complementarity score between the ligand pose and 34	
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binding site. Docking was performed as described in the OpenEye OEDocking[81] 1	
manual using the default parameters unless noted. Omega[82, 83] was used with 2	
default settings to generate a library of 200 conformers per ligand for docking. 3	
Receptor files were prepared by reading the Maestro prepared pdb files into the 4	
make_receptor GUI supplied with Fred. A 20 Å box was centred on the co-crystalized 5	
ligand to define the binding site, the shape potential of the binding site was defined as 6	
balanced, no constraints were used. Fred was then used to dock the multi-conformer 7	
ligand library into the protein receptor file with poses scored by Fred Chemgauss4 8	
score. 9	

Hybrid: Hybrid[84] was supplied as part of the OpenEye suite of programs. 10	
Hybrid pose scoring takes into account ligand similarity during the docking process. 11	
Protein and ligand file preparation as well as docking were performed in a similar 12	
manner to that described for the Fred docking program. Like Fred, Hybrid uses an 13	
exhaustive search algorithm that systematically searches rotations and translations of 14	
the ligand conformers with in the binding site. During the exhaustive search, ligand 15	
poses were scored using the Chemical Gaussian Overlay (CGO) function that takes 16	
into account the shape and chemistry of the docked ligand pose relative to the co-17	
crystalized protein ligand. The top ranked CGO poses are then optimized and rescored 18	
using the Fred Chemgauss4 score. 19	

Discovery Studio: The LibDock[85] module of Discovery Studio was used 20	
for ligand docking. LibDock is based on the algorithm developed by Diller and Merz 21	
and this algorithm uses protein binding site features to guide docking. This software is 22	
part of Discovery Studio (Accelrys Software Inc). The receptor binding site was 23	
automatically searched and determined within LibDock during docking set up. The 24	
top 3 poses were kept and re-scored using two empirical scoring functions Jain and 25	
Ludi1.  26	
 27	
2.7. Statistical Analysis: 28	
 Statistical analyses including Pearson and Spearman correlation calculations 29	
and outlier identification (ROUT method) were performed using GraphPad Prism 30	
version 5.00 for Mac OS X, GraphPad Software, San Diego California USA, 31	
www.graphpad.com. 32	
 33	
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3. Results 1	
 An important property of a scoring function is how accurately it predicts the 2	
activity of a docked compound. In our comparison of different docking and scoring 3	
functions for sets of congeneric ligands against six selected protein targets (Table 2), 4	
we aimed to gauge the general performance of some of the more readily accessible 5	
scoring functions in predicting both absolute and relative ranking of biological 6	
activities for selected ligands against their reported protein targets, five enzymes and 7	
one protein receptor. It is notable that, for a virtual screening approach, this 8	
correlation does not have to be linear. A scoring function can work well as long as it 9	
can provide the correct ranking of candidate molecules[15]. Hence, two commonly 10	
used parameters to measure the goodness of correlation between scores from docking 11	
and tested biological activities are the Pearson correlation coefficient (Rp) and the 12	
Spearman correlation coefficient (Rs). The Pearson correlation is typically employed 13	
to provide a linear relationship, whereas the Spearman correlation provides a 14	
measurement of the non-parametric relationship between ranks of data. Therefore, the 15	
Pearson coefficient is generally a better measurement for absolute predictions while 16	
the Spearman coefficient is more appropriate for relative ranking[21]. The Pearson 17	
correlation coefficient is calculated as follows: 18	

!" =
(%& − %(

&)* )(,& − ,)

(%& − %)-(
&)* (,& − ,)-(

&)*

 19	

N is the number of tested complexes, xi and yi are the experimentally determined 20	
binding energy and the calculated score for the i-th complex, respectively; % is an 21	
arithmetic average over all the complexes.  22	

The Spearman correlation coefficient measures the correlation between two 23	
sets of rankings to provide an index for ranking complexes and is calculated as 24	
follows: 25	

!. = 1 −	6	×	 (!& − 3&)-(
&)*
45 − 4  26	

where Ri is the rank of complex i determined by its experimental binding constant, 27	
while Si is the rank reflected by a scoring function. N is the total number of tested 28	
complexes. For both the Pearson and Spearman coefficients, the values can vary from 29	
-1 to 1, while -1 suggests an inverse correlation between two set of ranking variables 30	
and 1 suggests a strong positive correlation between them. 31	
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It was found that most of the docking packages examined here docked the 1	
congeneric ligands into the correct binding site of their targets, with the core 2	
structural features of each ligand tending to superimpose (Fitted docked ligands, 3	
Figure 1). The capacity of each docking program to successfully re-dock the bound 4	
crystal structure ligand into the native-binding conformation was tested using rmsd of 5	
heavy atoms against the bound crystal structure ligand. It was found that most of the 6	
docking programs were able to reproduce acceptable native ligand conformations 7	
with heavy atom rmsd ≤ 2 Å (Supporting Information Table S7), most successfully 8	
achieving re-docking poses of crystal ligands with rmsd < 1 Å (Table S7). Only a 9	
small number of exceptions were noted in particular, Autodock-Cdk2 kinase rmsd 2.2 10	
Å, DS Libdock-Aurora kinase rmsd 2.5 Å, DS Libdock-Pla2g2a rmsd 3.3 Å and 11	
GoldScore-Pla2g2a rmsd 5.2 Å. Only GOLDScore failed to consistently reproduce 12	
ligand docking poses found in crystal structures for pla2g2a. However, it should be 13	
noted that even ligands that poorly reproduce the native ligand pose as defined by a 14	
crystal structure (and measured by rmsd threshold values) can still provide valuable 15	
information to a medicinal chemist. Alternative ligand poses in an active site may 16	
provide other plausible space-filling orientations or alternative contacts with active 17	
site residues that suggest further chemical modifications to the ligand [31].	18	

Furthermore, crystal structures often only capture a single snapshot of the 19	
ligand bound protein complex, and whether such a static structure is always a real 20	
reflection of the ligand efficiency data obtained in solution is questionable. Instead of 21	
targeting a single docking pose of a given ligand on a single receptor, looking for the 22	
most populated alternatives from an ensemble of docking solutions within the active 23	
binding site may be more effective.	 It was beyond the scope of this study to fully 24	
examine the “docking power” of each program through parameter manipulation, but 25	
we provide here the docked poses of the two best performing and two worst 26	
performing scoring functions on a compliant target: cdk2 kinase (Figure 2) and a 27	
difficult target: COX-2 (Figure 3).  When scoring functions gave a negative value, 28	
these were made positive to ensure a more positive score represented a higher pKi or 29	
pIC50. Correlation plots between docking scores (representing binding affinity) and 30	
pKi or pIC50 (representing experimental inhibitor potencies) were calculated and 31	
Figure 4 displays the best correlating scoring function for each target protein. 32	
Correlation plots of all the scoring functions are included in Supporting Information. 33	
Pearson correlation coefficients and Spearman ranking correlation coefficients are 34	
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listed for each series in Table 3. In addition, a correlation heatmap of all scoring 1	
functions on each target is depicted in Figure 5.	2	
 3	
Table 2: Six Protein Targets and Relative Hydrophobicities 4	
Sitemap calculated relative hydrophobicity of active sites from 6 targets in this study. A balance of > 5	
6.0 indicates high hydrophobicity and likely lipophilicity. 6	
	7	

Protein Targets Hydrophobic Hydrophilic Balance 
Factor Xa 1.3 0.7 1.8 
Cdk2 Kinase 1.4 1.0 1.4 
Aurora A Kinase 1.8 1.1 1.6 
COX-2 3.4 0.5 6.8 
pla2g2a 1.6 0.9 1.8 
Estrogen Receptor 4.4 0.3 13.3 

 8	

 9	
Figure 1: Superimposed view of docked ligands in protein active site derived by Fitted docking 10	
program. Ligands for A: Factor Xa ligands; B: cdk2 kinase ligands; C: Aurora A kinase ligands; D: 11	
COX-2 ligands; E: pla2g2a ligands; F: Estrogen receptor ligands. 12	
 13	
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1	
Figure 2: Docked poses of cdk2 kinase ligands by A: GOLDScore, B: GLIDE XP, C: Hybrid, D: 2	
LibDock 3	
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	1	
Figure 3: Docked poses of COX-2 ligands by A: GOLDScore, B: GLIDE XP, C: Hybrid, D: LibDock 2	
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 1	
Figure 4: Plot of best performing scoring function values vs experimental protein inhibition by ligands 2	
for 6 protein targets. A: FlexX vs pKi  for Factor Xa. B: Fitted vs pIC50 for Cdk2 kinase. C: FlexX vs 3	
pIC50 for Aurora A kinase. D: Plant vs pIC50 for COX-2. E: Molegro vs pIC50 for pla2g2a. F: LibDock 4	
vs pIC50 for Estrogen Receptor. Pearson (Rp) and Spearman (Rs) coefficients. 5	
	6	
	7	
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	1	
Figure 5: Heatmap correlations of selected scoring functions on protein targets. A: Pearson correlation 2	
coefficient. B: Spearman ranking coefficient. Y axis: Scoring functions (strongest to weakest) as 3	
ranked from top to bottom. X axis: Protein targets gaining summative correlations (lowest to highest) 4	
as ranked from left to right. Pearson correlation coefficient (Rp): linear correlation; Spearman 5	
correlation coefficient (RS): non-parametric relative correlation. Both range from -1 to 1, indicating 6	
negatively correlated and positively correlated. 7	
	8	
	9	
For Factor Xa, FlexX (Rp = 0.72, Rs = 0.74) performed best with relative values for 10	
other programs being: GOLDScore (Rp = 0.62, Rs = 0.60), Fitted (Rp = 0.58, Rs = 11	
0.58), ASP (Rp = 0.55, Rs = 0.50), MM-GBSA (Rp = 0.56, Rs = 0.50) and GLIDE XP 12	
(Rp = 0.47, Rs = 0.49) generated moderate correlations in both Pearson coefficient and 13	
Spearman ranking coefficient. Autodock Vina (Rp = 0.48, Rs = 0.36), Molegro (Rp = 14	
0.18, Rs = 0.34), Plant (Rp = 0.39, Rs = 0.44), Fred (Rp = 0.18, Rs = 0.16), Hybrid (Rp = 15	
0.02, Rs = 0.04), LibDock (Rp = 0.29, Rs = 0.41) and Jain (Rp = 0.16, Rs = 0.15) gave 16	
low correlations. In comparison, two empirical based scoring functions in GOLD 17	
software, ChemScore (-ve correlations) and ChemPLP (correlations < 0.15) failed to 18	
produce comparable correlations as compared to GOLDScore and ASP score. Ludi1 19	
(Rp = -0.01, Rs = -0.18) also produced negative correlation for this target.  20	

 21	
For Cdk2 kinase, positive correlations between the predicted scores from 22	

docking and experimentally measured activities were obtained by most of the scoring 23	
functions applied. Fitted (Rp = 0.86, Rs = 0.91) gave the best correlations for Cdk2 24	
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kinease. GOLDScore and ASP outperformed the rest by achieving a Pearson 1	
correlation of 0.75 and 0.74 and a high Spearman correlation of 0.80 and 0.88 2	
respectively. Both FlexX (Rp = Rs = 0.63) and ChemPLP (Rp = 0.57, Rs = 0.55) gave 3	
reasonable correlations. Autodock Vina (Rp = 0.49, Rs = 0.38), Molegro (Rp = 0.48, Rs 4	
= 0.54), Plant (Rp = 0.46, Rs = 0.30), Fred (Rp = 0.46, Rs = 0.19), Hybrid (Rp = 0.46, Rs 5	
= 0.19) and LibDock (Rp = 0.45, Rs = 0.39) achieved lower correlations. GLIDE XP 6	
(Rp = 0.16, Rs = 0.34) gave very poor correlation but rescoring with MM-GBSA (Rp = 7	
0.44, Rs = 0.36) significantly improved the observed correlation. GLIDE XP 8	
incorrectly scored compounds 52 and 53, giving these two ligands as outliers. 9	
However, MM-GBSA rescoring eliminated the outliers, possibly accounting for the 10	
improved performance of MM-GBSA over GLIDE XP. Chemscore produced a weak 11	
correlation (Rp = 0.23, Rs = 0.22) for cdk2 kinase. The only two scoring functions 12	
generating negative correlations on this target were Jain (Rp = -0.25, Rs = -0.32) and 13	
Ludi1 (Rp = -0.13, Rs = -0.11).	14	
 For Aurora A kinase, FlexX produced the best linear correlation and second 15	
best ranking correlation (Rp = 0.72, Rs = 0.65). Fitted Score performed reasonably 16	
well on this target by achieving a Pearson correlation of 0.70. Prime: MM-GBSA (Rp 17	
= 0.68, Rs = 0.66), GOLDScore (Rp = 0.67, Rs = 0.48) and GOLD: ChemScore (Rp = 18	
0.61, Rs = 0.57) also generated good correlations on this target by achieving Rp > 0.6. 19	
The highest Spearman correlation was achieved by MM-GBSA. GLIDE XP (Rp = 20	
0.28, Rs = 0.37), Autodock Vina (Rp = 0.20, Rs = 0.26) and the 3 scoring functions 21	
from DS: LibDock (Rp = 0.1, Rs = 0.0), Jain (Rp = 0.23, Rs = 0.15), and Ludi1 (Rp = 22	
0.26, Rs = 0.23) all produced weak correlations on this target. ASP (Rp = -0.1, Rs = -23	
0.1), Molegro (Rp = -0.07, Rs = 0.07), Plant (Rp = -0.21, Rs = -0.34), Fred (Rp = -0.31, 24	
Rs = -0.12) and Hybrid (Rp = -0.37, Rs = -0.23) generated negative correlations. 25	
Compound 74 was a notable outlier in Fred, Hybrid. 26	
 COX-2 appeared to be the most difficult target for scoring functions to predict 27	
both absolute activities and relative ranking between activity and scores in this study. 28	
Shown in Table 2, Pearson correlation and Spearman ranking coefficients each 29	
received six negative results from all scoring functions applied. Almost half of the 30	
scoring functions negatively correlated with compounds biological activities. For the 31	
scoring functions which gave positive correlations, none of them achieved a Pearson 32	
correlation higher than 0.5 (Rp > 0.5), with the highest of 0.47 achieved by Plant from 33	
Molegro. Unfortunately, the highest Spearman ranking coefficient obtained from 34	
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Plant and Fred scores was only 0.16, indicating poor ranking ability of scoring 1	
functions for COX-2 ligands. Furthermore, Discovery Studio was only able to 2	
successfully dock 15 of 22 ligands due mainly to steric clashes between the ligands 3	
and active site receptor residues. Compared to other targets evaluated here, COX-2 4	
was characterized by 92% hydrophobic residues in its active site[24], reflecting a 5	
bottleneck faced by all scoring functions to deal with protein-ligand interactions 6	
mainly involving mainly hydrophobic contacts. 7	
	 For pla2g2a, none of the scoring functions produced a correlation or ranking 8	
coefficient >0.5 for the docking of flexible, lipid-like, hydrophobic inhibitors that 9	
were also substrate analogues. Molegro produced the highest Pearson correlation (Rp 10	
= 0.41, Rs = 0.45). Autodock Vina (Rp = 0.40, Rs = 0.35) and FlexX (Rp = 0.40, Rs = 11	
0.49) generated equivalent second highest Pearson correlations for this target. Fitted, 12	
Fred, Hybrid and all scoring functions from GOLD produced slightly positive 13	
correlations. GLIDE XP score (Rp = -0.06, Rs = -0.03), together with the 3 scoring 14	
functions from Discovery Studio, negatively correlated with biological activities of 15	
the ligands. Although MM-GBSA rescoring increased the Rp and Rs, the overall low 16	
correlation indicated the scoring functions in GLIDE did not perform well for this 17	
target. 18	

For β estrogen receptor, most of the scoring functions were able to give good 19	
correlations with the exception of Chemscore, Autodock Vina, and Jain score. Seven 20	
scoring functions, LibDock (Rp = 0.75, Rs = 0.68), Molegro (Rp = 0.74, Rs = 0.77), 21	
Plant (Rp = 0.72, Rs = 0.73), MM-GBSA (Rp = 0.74, Rs = 0.62), Fitted (Rp = 0.72, Rs = 22	
0.66), GOLDScore (Rp = 0.66, Rs = 0.67) and ASP (Rp = 0.63, Rs = 0.72) performed 23	
well compared to the rest by achieving both Pearson and Spearman correlation over 24	
0.6. GLIDE XP (Rp = 0.38, Rs = 0.47), FlexX (Rp = 0.39, Rs = 0.43), Fred (Rp = 0.36, 25	
Rs = 0.32), Hybrid (Rp = 0.38, Rs = 0.38) and Ludi1 (Rp = 0.30, Rs = 0.34) generated 26	
weak correlations for this target. Both Pearson and Spearman coefficients from 27	
Chemscore (Rp = -0.35, Rs = -0.4) and Autodock Vina (Rp = -0.16, Rs = -0.20) were 28	
negative, reflecting an inverse correlation with the binding afinities of the ligands. 29	
Compound 146 was an outlier from GLIDE XP scoring, but rescoring from MM-30	
GBSA improved correlations. 31	
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Table 3. Correlations between docking scores and experimentally determined binding affinity/biological activity given by 16 scoring functions. 

	
 Factor Xa CDK2 Aurora kinase COX-2 Pla2g2a Estrogen Suma 

scoring functions Rp Rs Rp Rs Rp Rs Rp Rs Rp Rs Rp Rs Rp Rs 
GOLD: GOLDScore 0.62 0.60 0.75 0.80 0.67 0.48 -0.07 -0.12 0.34 0.37 0.66 0.67 2.97 2.80 
GOLD: Chemscore -0.10 -0.10 0.23 0.22 0.61 0.57 -0.09 -0.04 0.35 0.24 -0.32 -0.38 0.68 0.51 
GOLD: ChemPLP 0.14 0.10 0.57 0.55 0.38 0.39 -0.10 -0.04 0.16 0.04 0.48 0.48 1.63 1.52 

GOLD: ASP 0.55 0.50 0.74 0.88 -0.10 -0.10 0.22 0.08 0.27 0.19 0.63 0.72 2.31 2.27 
GLIDE: XP 0.47 0.49 0.16 0.34 0.28 0.37 0.15 0.06 -0.06 -0.03 0.38 0.47 1.38 1.70 

Prime-mmGBSA 0.56 0.50 0.44 0.36 0.68 0.66 0.32 -0.04 0.08 0.12 0.74 0.62 2.82 2.22 
FlexX 0.72 0.74 0.63 0.63 0.72 0.65 -0.17 0.13 0.40 0.49 0.39 0.43 2.69 3.07 

Autodock Vina 0.48 0.36 0.49 0.38 0.20 0.26 -0.03 0.01 0.40 0.35 -0.16 -0.20 1.38 1.16 
Fitted 0.58 0.58 0.86 0.91 0.70 0.50 0.01 -0.02 0.14 0.12 0.72 0.66 3.01 2.75 

Molegro 0.18 0.34 0.48 0.54 -0.07 0.07 -0.10 -0.12 0.41 0.45 0.74 0.77 1.64 2.05 
Plant 0.39 0.44 0.46 0.30 -0.21 -0.34 0.47 0.16 0.22 0.04 0.72 0.73 2.05 1.33 

Fred: Chemgauss4 0.18 0.16 0.46 0.19 -0.31 -0.12 0.31 0.16 0.26 0.20 0.36 0.32 1.26 0.91 
Hybrid: Chemgauss4 0.02 0.04 0.46 0.19 -0.37 -0.23 0.17 0.07 0.35 0.34 0.38 0.38 1.01 0.79 

DS: LibDock 0.29 0.41 0.45 0.39 0.1 0 0.07 -0.06 -0.05 -0.11 0.75 0.68 1.61 1.31 
DS: Jain 0.16 0.15 -0.25 -0.32 0.23 0.15 -0.14 -0.09 -0.18 -0.25 -0.07 -0.03 -0.25 -0.39 

DS: Ludi1 -0.01 -0.08 -0.13 -0.01 0.26 0.23 -0.08 -0.22 -0.26 -0.25 0.3 0.34 0.08 -0.09 
Sumb 4.79 4.75 6.73 6.29 3.18 3.16 1.09 0.29 3.32 2.92 5.72 5.67   

       aSum of Pearson and Spearman correlations of individual scoring function on all targets.  

       bSum of Pearson and Spearman correlations for each target from all scoring functions. 
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4. Discussion 1	
In this study, eight different docking programs and sixteen scoring functions 2	

accessible to most researchers were compared and assessed through an examination of 3	
six proteins and individual ligand sets for which experimental biological activities 4	
have been reported by individual research groups used a well-defined set of 5	
conditions.  Most of the ligands examined were not reported in crystal structures with 6	
their target protein. Where they were, the top ranked ligand binding poses derived 7	
from each docking method were compared to the ligand orientation in the crystal 8	
structure. Most ligands in each sample set docked in a very similar orientation to that 9	
found in the crystal structure, except in the large hydrophobic cleft of pla2g2a (Figure 10	
1). However, even unexpected ligand binding modes can be used to explore 11	
alternative ligand protein contacts and lead to design of novel new ligands for 12	
medicinal chemistry[31]. Furthermore, docking poses and predictions of ligand 13	
binding affinities might be improved by introducing protein flexibility via protein 14	
ensemble docking[86]. 15	

Factor Xa is a serine protease considered to have a hydrophilic binding site 16	
and high affinity binding is often achieved by ligands that make hydrogen bonds with 17	
the enzyme. The best performing scoring functions were FlexX and GOLDScore 18	
(Table 3). FlexX was previously shown to perform well for other hydrophilic protein 19	
binding sites (e.g. p38 MAP kinase, thrombin, neuraminidase, gelatinase A) that 20	
typically make multiple hydrogen bonds to the ligand[16]. It was encouraging that 21	
guanidine-containing compounds (compounds 27-33 from SI: Table1) ranked at the 22	
top of ligands scored by FlexX.  The most potent compound 7 (Ki = 0.013 nM) 23	
assessed in an enzyme assay ranked as the 3rd top compound in the FlexX scoring list, 24	
indicating a satisfying enrichment effect in the series of compounds chosen. It has 25	
been noted that some outliers can significantly impair the performance of some 26	
scoring functions, for example as in GOLDScore which ranked compound 7 only 10th, 27	
giving GOLDSocre a poorer differentiation for the most active compounds. 28	
Chemscore (Rp = -0.10, Rs = -0.10) and ChemPLP (Rp = 0.14, Rs = 0.10) produced the 29	
lowest correlation for Factor Xa ligand activity. Chemscore did not differentiate 30	
between different types of hydrogen bonds[87], and this may explain why it 31	
performed so poorly for Factor Xa. 32	
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 Docking of congeneric inhibitors of Cdk2 gave good activity correlations with 1	
the scoring functions Fitted, GOLDScore, ASP and FlexX. MM-GBSA has been 2	
reported to perform well against Cdk2 with a correlation of 0.71 (Rp = 0.71) using 11 3	
ligands[46] by Lyne et al.[40], however, for the 24 ligands and protocol used by us 4	
there was a lower correlation (Rp = 0.44) using the same scoring functions. Fitted 5	
score (Rp = 0.86), GOLDScore (Rp = 0.75) and ASP (Rp = 0.74) score achieved better 6	
correlations compared to Prime: MM-GBSA in Lyne’s study. Rapp et al. reported a 7	
“Prime-ligand” molecular mechanics approach to correlate the calculated binding 8	
energies with the biological activities of the same series of Cdk2 ligands from Lyne’s 9	
study[41]. They achieved a Spearman correlation (Rs) of 0.75. The high Spearman 10	
correlations achieved herein in our study containing more than double of compounds 11	
(including the same 11 ligands in both Lyne’ and Rapp’s study) by Fitted (Rs = 0.91), 12	
GOLDScore (Rs = 0.80) and ASP (Rs = 0.88) indicate these scoring functions predict 13	
relative potencies of inhibitors for this target more accurately compared to the scoring 14	
functions from GLIDE. Meanwhile, FlexX produced 0.63 for both Rp and Rs, 15	
suggesting that it is effective for this target protein as well. The mildly hydrophilic 16	
nature of the active site of cdk2 may account for the poorer relative predictive value 17	
of Chemscore, Glide and Autodock Vina in matching experimental data ranking 18	
 Twenty potent and selective Aurora kinase inhibitors derived by converting a 19	
3-trifluoromethyphenyl ring to an aminothiazole central ring[47] were also examined 20	
here. The scoring functions FlexX (Rp = 0.72) Fitted, GOLDScore, MM-GBSA, and 21	
Chemscore each showed a good correlations (>0.6) with enzyme inhibition data. Two 22	
previous studies using MM-GBSA by Lyne and molecular mechanics method by 23	
Rapp used compound congeners with differing core structures. Lyne et al. docked 24	
only 8 compounds from the series they selected and generated a Pearson correlation 25	
of 0.75[40] while Rapp et al. docked 12 compounds from the same series and 26	
achieved a stronger correlation of 0.8 and a Spearman ranking correlation (Rs) of 0.83. 27	
Rapp et al. also chose a series of compounds similar to those included here and 28	
achieved R2 of 0.49 (Rp of 0.7) and Rs of 0.59. By comparison, our study involved the 29	
docking of 21 ligands, for which we found that MM-GBSA achieved a similar Rp 30	
(0.68) but a slightly higher Rs (0.66).  Notably, FlexX score produced Rp 0.72 and Rs 31	
0.65, which are both better compared to “Prime-ligand” scoring in Rapp’s study over 32	
a smaller compound series. It was noted that in the crystal structure of Aurora kinase 33	
bound to its ligand, hydrogen bonding appears to play an important role to stabilize 34	
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high affinity ligand binding to the receptor. This further supports the rationale that 1	
FlexX performs well for target proteins in which the active site has a degree of 2	
hydrophilic character. 3	

In contrast with hydrophilic targets such as Factor Xa, where the active 4	
binding pocket is quite solvent exposed, the active site of COX-2 has a deeply buried 5	
hydrophobic ligand-binding site that makes predominantly hydrophobic van der 6	
Waals contacts with its ligand through residues such as F518, W387, Y385, L384, 7	
V523, F381, L352, V349, Y355, L359, L531, and V116. None of the scoring 8	
functions examined here for COX-2 ligands gave a good correlation between docking 9	
score and experimental inhibitor potency. In previous COX-2 inhibitor docking 10	
enrichment studies, FlexX scoring was found to be ineffective as compared to 11	
knowledge-based scoring functions such as Drugscore[16], while ICM has been 12	
reported to be better for COX-2 ligand enrichment than GOLD, GLIDE and FlexX in 13	
Chen’s study[31], but was not examined here. Hydrogen bonds do not play a major 14	
role in the strong binding of ligands to COX-2, and scoring functions (e.g. FlexX, 15	
GOLDScore, Fitted) that performed well on other protein targets did not perform 16	
nearly as well with COX-2. An explanation for this may be that for compounds to 17	
penetrate deep into a hydrophobic ligand-binding pocket, they need to overcome a 18	
large entropy penalty to desolvate. Such desolvation terms are either not explicitly 19	
included in the scoring functions or are not currently accurate enough to correctly 20	
contribute to the score. Furthermore, the poor performance of all scoring functions 21	
examined here may highlight the lack of optimal terms in equations used to calculate 22	
predicted protein-ligand interactions that have strong hydrophobic contributions. 23	
Finally, the difference in pIC50 lies mostly within 1 to 1.5 units, which is within the 24	
error range of scoring functions. This could be another cause of COX-2 being less 25	
compliant with scoring functions. 26	

For pla2g2a, SiteMap calculations predicted that this target is hydrophilic 27	
(balance of 1.80), but its active site is extremely hydrophobic and accommodates 28	
highly flexible phospholipid substrates. The SiteMap calculations may take into 29	
account the degree of exposure of the active site to the solvent of this enzyme and 30	
hence tends to assign too much hydrophilicity. The pla2g2a inhibitors were all 31	
synthesized and tested for activities within our group and so we are confident in 32	
comparisons of experimental inhibitory data between compounds in the series. This 33	
enzyme tends to catalyze aggregated substrates such as micelles, vesicles, membranes 34	
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and monolayers [88]. Twenty-nine small organic inhibitors, that were structural 1	
analogues of the native glycerolphospholipid substrates and contained long chain aryl 2	
groups, were docked into pla2g2a. The two best performing scoring functions, 3	
Molegro (Rp = 0.41, Rs = 0.45) and FlexX (Rp = 0.40, Rs = 0.49), did not generate 4	
impressive Pearson or Spearman correlation coefficients for this target. Autodock 5	
Vina produced the same Pearson correlation (Rp = 0.40) as FlexX, but with a lower 6	
ranking correlation coefficient (Rs = 0.35). Several factors might conceivably affect 7	
the performance of the scoring functions for this target. First, the presence of a central 8	
catalytic Ca2+ ion, which coordinates to a carboxylate and an amide oxygen from each 9	
inhibitor as well as Asp 49 and Gly 30 enzyme residues in the active site, could 10	
present a challenge to scoring functions. Evaluating interactions with a metal ion 11	
involves estimating force field parameters that are still somewhat uncertain for metal-12	
ligand protein complexes. Second, the relatively high number of rotatable C-C bonds 13	
enhances ligand flexibility and hence poses uncertainties for scoring functions in 14	
conformational sampling of different ligands. Third, there are few interactions made 15	
between the inhibitor and the very greasy active site of the enzyme, so any error in 16	
ligand orientation or enzyme residue location can profoundly affect affinity 17	
predictions for inserted ligands. 18	

Based on SiteMap calculations of relative hydrophobicity of protein targets 19	
selected here, the binding site of the estrogen receptor was shown to be the most 20	
hydrophobic. Estrogen receptor inhibitors tend to be planar, low molecular weight 21	
phenyl-naphthalene derivatives. LibDock (Rp = 0.75) performed best in the 22	
correlation of docking scores with activities for the examined ligands followed by 23	
Molegro and MM-GBSA (Rp = 0.74). Glide has been shown to be effective for 24	
enrichment studies with the Estrogen receptor[31]. However, we found that GLIDE 25	
XP score generated a low correlation (0.38) with ligand activity, although this 26	
improved upon rescoring with MM-GBSA (Rs = 0.74). In discordance with the poor 27	
performance from GOLD in enriching ER ligands concluded by Chen et al.[31], 28	
GOLDScore (Rp = 0.66, Rs = 0.67) and ASP (Rp = 0.63, Rs = 0.72) produce good 29	
correlations in our hands. It is a bit surprising that, being the most hydrophobic target, 30	
scoring functions were able to give reasonable correlations with activities for the 31	
ligands examined. The ligands used were relatively more rigid and smaller molecules 32	
compared to those for the other five targets, consistent with the performance of 33	
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scoring functions not only being affected by the nature of the protein binding site but 1	
also by the nature of the ligands being docked. 2	

The docking programs examined here have thus produced better correlations 3	
between pose scores and biological activity for the more hydrophilic vs hydrophobic 4	
protein targets. The Estrogen receptor was the exception with the ligands being 5	
smaller and more rigid, whereas for COX-2 and pla2g2a targets, their ligands were 6	
generally larger with more rotatable bonds contributing to higher ligand flexibility. 7	

Predicting ligand binding affinity for protein targets with current pose scoring 8	
functions is limited[19, 33, 89]. The most recent CSAR 2012 exercise asked 20 9	
computational labs to submit binding affinity predictions for four protein targets. 10	
Overall success was measured using the sum of both Pearson correlation and 11	
Spearman ranking correlation (Rp and Rs) as measuring criteria, a total of Rp = 4.0 or 12	
Rs = 4.0 indicated a perfect prediction and a total of Rp or Rs> 2.0 was considered as 13	
good performance. Only one group produced a sum Rp > 2.0 and 2 groups were able 14	
to achieve a sum of Rs > 2.0[21]. In a similar fashion, we consider a total of 6.0 for 15	
both Pearson correlations and Spearman ranking correlations as perfect predictions 16	
since 6 targets were examined here. Hence, only values >3.0 were considered as 17	
acceptable performance from the scoring functions. Fitted gave the best Pearson 18	
correlations total Rp value of 3.07, followed by GOLDScore (total Rp = 2.97), MM-19	
GBSA (total Rp = 2.82) and FlexX (total Rp = 2.69). The highest Spearman correlation 20	
coefficient was achieved by FlexX (total Rs = 3.01), followed by GOLDScore (total 21	
Rs = 2.80) and Fitted (total Rs = 2.75). Overall, Fitted, FlexX and GOLDScore were 22	
the three best overall scoring functions in predicting the relative potencies for 23	
congeneric compounds whereas Jain score was the worst and generated anti-24	
correlations across all six targets.  25	

The correlation between docking scores and activities was also summarized 26	
(Table 2) for each protein target to assess the suitability of each target for ligand 27	
binding affinity prediction using a docking methodology. None of the protein targets 28	
gave a sum of correlations ≥8.0. Cdk 2 kinase obtained the highest sum of Rp (6.73) 29	
and Rs (6.29) values from all scoring functions. It also received the highest Pearson 30	
correlation from almost half of the scoring functions applied, indicating that this 31	
target is perhaps better suited for the prediction of ligand binding affinity by current 32	
scoring functions. β-estrogen receptor and factor Xa received the two highest Rp 33	
values from all scoring functions. Such results may suggest the applicability of the top 34	
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performing scoring functions on other protein targets belonging to the superfamilies 1	
of selected targets in this study. 2	
 GOLDScore was observed to generally perform better for hydrophilic targets. 3	
It achieved Pearson correlations > 0.6 for Factor Xa, cdk2 kinase and aurora A kinase. 4	
Our findings are in agreement with Kontoyianni’s evaluation of five docking 5	
programs using 69 diverse protein-ligand complexes[24]. On hydrophobic targets, 6	
GOLDScore did not produce as positive results as for hydrophilic targets. One 7	
possible reason for this may be the lack of an explicit term in its scoring functions for 8	
hydrophobic interaction, which is an important element for hydrophobic protein 9	
binding sites and complementary ligands[32]. The ASP scoring function performed 10	
well on all the targets except Aurora A kinase, the poor performance in this target 11	
impaired the overall performance of ASP scoring. However, it was still the second 12	
best scoring function after the GOLD package. ChemPLP was only able to produce 13	
minor correlations for some of the targets in this study. In GOLD software, 14	
Chemscore was found to be the weakest scoring function in predicting ligand binding 15	
affinity/biological activity. 16	
 GLIDE XP score was not as discriminatory as GOLDScore of the nature of 17	
the active site of the protein. This echoes Kontoyianni’s findings[24] in their 18	
comparative study in docking performance. Overall, XP score did not produce 19	
significant correlations for the targets here. However, one notable finding in this study 20	
is the performance of MM-GBSA for improving the predictive accuracy of compound 21	
binding or activity. In MM-GBSA, energies were estimated based on OPLS-AA force 22	
field for molecular mechanics energy (EMM) and the surface-generalised borne 23	
model for polar solvation energy, and a non-polar solvation term was also taken into 24	
account[74]. Although we observed a general trend that rescoring by MM-GBSA 25	
increased the correlation between predicted scores and biological activities, we were 26	
not able to obtain as dramatic an improvement as reported by Lyne [40]. Considering 27	
the larger number of ligands in the dataset used in our study, outliers may have 28	
impaired the performance of MM-GBSA scoring. Hence, further studies are needed to 29	
verify its usefulness against other ligands.    30	

FlexX was the only scoring function to perform better towards the three 31	
hydrophilic targets. This scoring function also produced the second highest Pearson 32	
correlation for inhibitors of pla2g2a. FlexX has previously been found to perform well 33	
on hydrophilic targets, such as neuraminidase[16]. FlexX may be the docking package 34	
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of choice if lead optimization is being performed on hydrophilic protein targets like 1	
serine protease or kinases that share similar binding sites to Factor Xa and Aurora A 2	
kinase respectively. 3	

Three scoring functions were evaluated from Discovery Studio software in 4	
this work. However, none performed impressively except for LibDock score on β 5	
estrogen receptor. Jain and Ludi1 produced low or negative correlations on the 6	
majority of the targets. 7	

This study has compared both free and low cost commercial docking software 8	
available for ligand docking and scoring. Autodock Vina (free), Fitted, Fred and 9	
Molegro (available for academic license) were also included in our studies. 10	
Encouragingly, Fitted software outperformed all others in generating a sum of 11	
Pearson correlation of 3.01. It also achieved the best result for cdk2 kinase (Rp 0.86, 12	
Rs 0.91). Intriguingly, Plant score from Molegro software performed best for COX-2, 13	
whereas Molegro re-rank score performed best for sPLA2. This suggests that it may 14	
be of potential use in scoring hydrophobic ligands for hydrophobic protein active 15	
sites. Scoring functions from Autodock Vina and Fred did not generate any 16	
correlation > 0.5 on any target, indicating that the scoring functions from these 17	
packages are not well suited for rank-ordering of compound potencies, at least for the 18	
protein-ligand sets chosen here. The use of these packages for lead ligand 19	
optimization based on predicted compound activities seems to require further scoring 20	
function optimization.   21	

As a final cautionary note, the currently available scoring functions do not 22	
usually include terms that take into account aromatic-aromatic or π-cation or halogen-23	
protien interactions[90-92]. Many drugs contain halogen atoms introduced during 24	
lead optimization for pharmacokinetic or metabolic reasons[93-96]. None of the 25	
scoring functions used here are able to accurately deal with halogens. Liu et al. 26	
recently developed the first halogen bonding scoring function and showed moderate 27	
success in docking, ranking and scoring power[94]. Future scoring function 28	
development and optimization should incorporate consideration of these interactions.  29	
 30	
5. Conclusion 31	
 Eight docking programs and sixteen scoring functions most accessible to 32	
medicinal chemists were compared for their accuracy in predicting experimental 33	



	 29	

inhibitory activities against six unrelated protein targets. Given the simplicity of 1	
sampling and scoring at lower computational cost compared to calculating free 2	
energies, the results were reasonably impressive for some of the scoring functions. 3	
However, the ability of scoring functions to correctly rank compounds remains 4	
challenging on the basis of results herein. Both commercial and free academic 5	
docking programs were able to produce good correlations on some targets like factor 6	
Xa, Cdk2 kinase, and Aurora kinase. We note that the nature of the active site of the 7	
proteins, the choice of scoring functions and the set of ligands used for comparisons, 8	
all affected the performance in scoring and ranking compounds. For targets with very 9	
hydrophobic active site cavities, such as COX-2 and Pla2g2a, none of the scoring 10	
functions examined were able to accurately predict or rank compounds according to 11	
experimentally reported inhibitor potencies. This may be a result of the types of 12	
ligands studied here. For medicinal chemists who use these approaches to optimize 13	
their leads for potency, docking programs like Fitted, FlexX, and GOLD are likely to 14	
be most effective for protein targets such as kinases and serine proteases. In general, 15	
the docking and scoring functions need to be matched to the protein target and ligand 16	
series for optimum results. No program used was effective for all six protein-ligand 17	
data sets sampled in this study.   18	
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