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Ultrafast cooling reveals microsecond-scale
biomolecular dynamics

Mark E. Polinkovsky*, Yann GambinZ*¥, Priya R. Banerjee?*, Michael J. Erickstad’,
Alex Groisman'+ & Ashok A. Deniz?+

The temperature-jump technique, in which the sample is rapidly heated by a powerful laser
pulse, has been widely used to probe the fast dynamics of folding of proteins and nucleic
acids. However, the existing temperature-jump setups tend to involve sophisticated and
expensive instrumentation, while providing only modest temperature changes of ~10-15°C,
and the temperature changes are only rapid for heating, but not cooling. Here we present a
setup comprising a thermally conductive sapphire substrate with light-absorptive nano-
coating, a microfluidic device and a rapidly switched moderate-power infrared laser with the
laser beam focused on the nano-coating, enabling heating and cooling of aqueous solutions
by ~50°C on a 1-us time scale. The setup is used to probe folding and unfolding dynamics of
DNA hairpins after direct and inverse temperature jumps, revealing low-pass filter behaviour
during periodic temperature variations.
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acids depend on techniques to rapidly change physical

conditions or chemical composition of the medium. To
rapidly exchange the medium, microfluidic devices with tight
hydrodynamic focusing of a narrow stream of protein solution in
a continuous laminar flow have been used, reaching temporal
resolutions as high as ~1ps"2 Microfluidic systems require
small sample volumes and are compatible with high-resolution
optical microscopy, making them well suited for experiments
with  fluorescently labelled biomolecules®®. Nevertheless,
hydrodynamic focusing systems require delicate adjustment and
careful measurements of high-speed microscopic flows,
complicating their practical application.

A widely used technique to change physical conditions is the
temperature jump (T-jump)®~’. Standard T-jump setups tend to
be relatively complex, involving powerful pulsed lasers and
special Raman converters. Heating during a T-jump occurs by
direct deposition of the energy of a laser pulse into the solution
on a nanosecond scale. The heated region cools down by thermal

E xperimental studies of fast dynamics of proteins and nucleic

IR

conduction, on a time scale proportional to the square of its
diameter. For a typical diameter of ~ 100 pm, the cooling time is
~10ms’. Hence, studies of ultrafast dynamics with the T-jump
technique are limited to processes triggered by heating rather
than cooling. Moreover, the typical temperature change
achievable with the T-jump technique is relatively small (10-
15°C)>, further restricting its functionality.

Here we present an experimental setup consisting of a light-
absorptive thermally conductive substrate, a microfluidic device
and an inexpensive near-infrared laser, enabling heating
(T-jump) as well as cooling (inverse T-jump) of aqueous
solutions by ~50°C on a 1-ps time scale (Fig. 1). The setup is
used on a confocal fluorescence microscope to monitor
conformational changes of two DNA hairpins, one short
and one moderate length, after direct and inverse T-jumps
(iT-jumps), revealing conformational dynamics with folding and
unfolding times as short as 3-4ps. Experiments at different
concentrations of salt in the solution indicate that ionic strength
has a strong effect on the folding but not on the unfolding rate of
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Figure 1 | Direct and inverse T-jump setup. (a) A moderate-power infrared laser beam is incident from above and focused on the surface of a gold-coated
sapphire substrate at the bottom of a 0.4- or 0.7-um-deep microchannel fabricated in PDMS. Fluorescence imaging is performed on an inverted
microscope. (b) Schematic of the microfluidic device used in the experiments. Observation channel depth: 0.4 or 0.7 um; flow channel depth: 20 um.
(e) Wide-field fluorescence image of the laser-heated spot in a 0.4-um-deep observation channel filled with HPTS dye taken with a 40X/0.9 objective.
(d) Cross-section of an observation channel during a T-jump cycle. (e f) Temperature as a function of time in the middle of the laser-heated spot in

a 0.4-um-deep channel during a cycle of heating and cooling (average of ~10° cycles in each case). Different curves correspond to varying laser
powers for 5-us-long laser pulses (starting at 0.4 us) (e) and different laser pulse durations with the same power (starting at 5 us) (f). The temperature is

assessed by HPTS fluorescence.
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the moderate-length DNA hairpin. The setup also enables a
conceptually new type of test, in which square waves of
temperature are applied and the amplitude of changes in the
conformations of DNA hairpins is measured as a function of
frequency of the temperature waves.

Results

The experimental setup. The short cooling time is achieved by
minimizing the dimensions of the region into which the laser
energy is deposited. To this end, we use a microfabricated silicone
chip sealed against a thin sapphire substrate with a 20- to 25-nm
layer of gold on its surface and focus the beam of a 980-nm
infrared laser to a small spot on the substrate. The nanolayer of
gold absorbs ~40% of the incident laser power (with ~20%
being reflected), thus limiting the lateral and axial dimensions of
the heated region to the diameter of the focused beam and the
thickness of the gold coating, respectively. The deposition of a
large fraction of the laser energy into a microscopically small
volume provides high local temperatures with a moderate-power
(~160 mW), continuous wave heating laser. Cooling of the
heated region is accelerated by the high thermal conductivity of
the sapphire substrate, which is ~20 times greater than that of
common borosilicate glass (see Methods). To limit the axial
extension of the region from which the fluorescence signal is
collected, we performed the experiments in microchannels with
depths of 0.4 or 0.7 um. Importantly, unlike the flow-focusing
microfluidic devices previously used for protein-folding studies,
the folding reaction time is evaluated using optics and electronics
only, with measurements performed at a single spot, and without
the need for precise control or extensive calibration of the flow.
Low-velocity perfusion (10-100 pms ~!) is used only to prevent
evaporation and excessive photobleaching of the sample.

Measurements of temperature. The temperature in the micro-
channels has been evaluated using a pH-sensitive fluorescent dye,
8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), in 50 mM Tris
buffer, whose pH has a strong dependence on the solution tem-
perature. The temperature dependence of HPTS fluorescence has
been measured under a fluorescence microscope using a modified
version of the microfluidic device and has been found to be nearly
linear (Supplementary Fig. 1). The spatial distribution of fluor-
escence in the 0.4-pum deep microchannel under the infrared laser
heating indicates that the heated region has a full width at half
maximum of ~3um (Supplementary Fig. 2). With the infrared
laser periodically switched on and off, with different powers, duty
cycles, and periods, under stroboscopic wide-field fluorescence
illumination, we have consistently found the iT-jump time,
defined as the cooling time to 50% of the initial T-jump (half-
decay time), at ~0.45 s, in good agreement with our numerical
simulations. A more conservative estimate of the temperature
half-decay time, taking into account the non-uniformity of the
temperature in the sampling region before and during an iT-
jump, is ~0.80 ps (see Supplementary Note 1 and Supplementary
Fig. 5ab). In the beginning of a T-jump, the temperature
increases nearly linearly in time at a rate proportional to the laser
power, reaching ~93°Cus~! for the highest power tested
(Fig. le and Supplementary Table 1).

Folding and unfolding dynamics of DNA hairpins. To further
test the functionality of the setup, we have used it to study the
folding and unfolding dynamics of an 8-nucleotide-long
single-stranded DNA (ssDNA) hairpin, HP1, which are expected
to be rapid®. Hairpins are dynamic secondary structural elements
of nucleic acids that participate in numerous important biological
processes’ !, Whereas hairpin folding landscapes have been

extensively  studied wusing stopped-flow and = T-jump
techniques®12-16, much about their dynamics remains
unknown. HP1 is fluorescently labelled with tetramethyl-
rhodamine (TMR; Fig. 2a), such that in the folded state the dye
fluorescence is significantly quenched by a proximal guanosine.
The T-jump experiments are performed in 0.7-um-deep
microchannels under a confocal microscope focused at the
gold-coated substrate. The iT-jump time is measured at 0.6 s, in
good agreement with numerical simulations. The T-jump is from
room temperature, T, =22°C to ~55°C, well above the melting
temperature of HP1 at 600 mM NaCl, T;,~ 38 °C. On both direct
and inverse T-jumps, the fluorescence of HP1 is detectably
different from the fluorescence of a non-hairpin control (Fig. 2a).
The data can be fitted with single-exponent kinetics for both
T-jump and iT-jump, with time constants of 3.5 and 4.3 ps,
respectively (Supplementary Table 2), consistent with an apparent
two-state mechanism. When corrected for the finite time of the
temperature changes using the numerical simulations, the values
of characteristic relaxation times after the T-jump and iT-jump
are found at 2.4 and 3.4ps, respectively, corresponding to
unfoldinsg and folding rates (k_ and k) of 3.5 10° and
2.5x10°s ™!, respectively (see Supplementary Table 2 and
Supplementary Fig. 8). These rates are in reasonable agreement
with the values k_ =1.8x10°s~ ! and k. =2.9x10°s "1, as
previously measured for HP1 at room temperature using
fluorescence correlation spectroscopy®. The short time scale of
the iT-jump and large temperature changes provided by our
setup are essential for resolving the kinetics of folding and
unfolding of HPI.

Next, we have examined a 40-nucleotide ssDNA hairpin, HP2,
labelled with a Forster (fluorescence) resonance energy transfer
(FRET) dye pair (Fig. 2b). In these experiments, the sampling
region is heated to ~70°C, well above T,,~45°C for HP2 at
600 mM NaCl. As anticipated, HP2 has slower kinetics than HP1,
with relaxation times of 42 and 110 ps during the T-jump and
iT-jump, respectively (Fig. 2b). Numerical simulations indicate
that the diffusion of either HP1 or HP2 into and out of the
sampling region during the T-jump/iT-jump experiments has no
appreciable effect on the experimental results.

We have next probed the effect of NaCl concentration on the
folding and unfolding of the DNA hairpins. For HP2, at all tested
[NaCl] the calculated folding times at 22 °C and unfolding times
at 70 °C are very close to the relaxation times measured in the
iT-jump and T-jump experiments, respectively, (Supplementary
Table 3). The unfolding time of HP2 at 70 °C remains nearly
constant, while its folding time at 22 °C decreases substantially
with [NaCl] in the range from 100 to 800mM, showing an
inverse correlation with Ty, (Fig. 2c and Supplementary Table 3).
This result suggests that increased ionic strength has similar
stabilizing effects on the folded hairpin and the transition state,
but not on the unfolded ssDNA, leading to a significant [NaCl]
dependence for folding but not unfolding. The considerable
increase of the HP2 folding rate with [NaCl] at 22°C and the
near lack of dependence of the HP2 unfolding rate on [NaCl]
at 70°C are both in agreement with what was found for a
similar hairpin'”. In addition, the rates of HP2 unfolding and
folding at 100 mM NaCl and 22°C, 0.13 x 10* and 1.7 x 10°s ~ !
(Supplementary Table 3), agree reasonably well with previously
measured  values for that hairpin (~0.4x 10> and
4.0 x 103s~ 117, For HP1, there is no substantial difference in
the hairpin stability and in either folding or unfolding rates
between [NaCl] of 100 and 600 mM (Supplementary Table 2).
This difference between the dependence of HP1 and HP2 folding
parameters on [NaCl] can be attributed to Na ™ -dependent loop
stability, as previously proposed'8, because HP2 has a
significantly larger loop size than HP1.
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Figure 2 | Folding and unfolding dynamics of hairpin DNA. Normalized fluorescence of TMR-labelled HP1 (a) and normalized donor fluorescence of
Alexa488/Cy5-labelled HP2 (b) as functions of time at 600 mM NaCl. The infrared laser is on/off for 100/100 pus in a and 400/1,600 ps in b. The black
line in a is the T-jump/iT-jump response of a TMR-tagged non-hairpin ssDNA control. The insets in a and b (same axis labels) show single-exponential fits
of the unfolding (left) and refolding (right) data (see Supplementary Tables 1 and 2). The initial burst phases in the insets in b are the T-jump/iT-jump
response of Alexa488 in a hairpin control without the acceptor fluorophore (Supplementary Fig. 10). (¢) The effect of [NaCl] on the stability of HP2, as
measured by T, (left axis, black circles), and on the relaxation dynamics, as measured by o, 0 (1/kon o Supplementary Table 3) (right axis, red and blue
diamonds). (d) Schematic showing the cyclic occurrence of four states of the hairpins, when square waves of temperature are applied. (e) Dynamic
response of HP2 at 200 mM NaCl to square waves of temperature. Temperature waves (input) with periods of 0.1, 0.2, 0.4, 1.0 and 2.0 ms are

shown by black, red, green, blue and cyan curves, respectively. Normalized donor fluorescence response (output) during these temperature waves.

The orange envelope is the frequency response of HP2 from the model presented in Supplementary Note 2.

Finally, we have tested the dynamic response of HP2 to
temperature periodically varying between 22 and 70°C in a
square wave with equal on and off times, and with frequencies
ranging from 1,000 to 20,000 Hz. At low frequencies, complete
folding and unfolding transitions are observed, as evidenced by
full amplitudes of variation in FRET. However, as the frequency is
increased (Fig. 2e), the amplitude of FRET variations gradually
decreases, consistent with a model in which HP2 molecules do
not have sufficient time to fully unfold and refold within a period
of the temperature wave (Supplementary Note 2). Therefore, the
folding of HP2 responds to temperature variations similar to low-
pass filters in electronics and cellular signalling networks!®21,
However, in contrast to electronic low-pass filters, the folding
and unfolding times of HP2 are not equal. As a result, the
frequency response of HP2 mostly depends on the folding

transition, which has a longer time scale (Supplementary Note 2
and Supplementary Fig. 12). Whereas the folding dynamics of
proteins and nucleic acids after one-off changes in temperature
or medium composition can be studied with the existing
techniques, our setup enables studies of folding when the
medium conditions have a complex temporal pattern.

Discussion

We present an experimental setup enabling cooling (iT-jump)
on a 1l-pus time scale, several orders of magnitude
faster than with existing T-jump systems. The setup uses an
inexpensive, moderate-power infrared laser, which is switched on
and off with a home-made driver. The setup is based on a simple
and easy-to-operate microfluidic device and does not require
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fine-tuning or careful calibration of flow rates for accurate
evaluation of the folding reaction time. The large range of
temperature variation provided by the setup (>70°C) makes it
potentially applicable to probing the folding of a wide variety of
proteins and nucleic acids under native medium conditions. The
setup is applied to study the rapid dynamics of folding and
unfolding of DNA hairpins in solutions with different ionic
strengths. Another novel functionality of the presented setup is
the periodic variations of temperature with different amplitudes,
frequencies and duty cycles, which may reveal hidden features in
the folding landscapes of proteins and nucleic acids.

Methods

Microfluidic setup. The microfluidic device consists of a microfabricated poly-
dimethylsiloxane (PDMS) chip and an ~ 0.15-mm-thick gold-coated sapphire
coverslip. Cooling of the heated region is accelerated by the high thermal con-
ductivity of the sapphire substrate, which is ~20 times greater than that of
common borosilicate glass (http://www.mateck.com/index.php?option=com_con-
tent&view=article&id=66&Itemid=21). The PDMS chip is cast using a photo-
lithographically fabricated master mould and has channels of two different depths,
20 and 0.7 pm (or 0.4 pm). To make the master mould, a silicon wafer is spin-
coated with a 0.7 (or 0.4)-pum layer of an ultraviolet-curable epoxy (SU8 by
MicroChem, Newton, MA), exposed to ultraviolet light through a photomask, spin-
coated with a 20-pm layer of the SU8 epoxy, exposed to ultraviolet light through
another photomask and, finally, baked and developed. The microfluidic device has
two mirror-symmetric channel networks. Each network has two 20-pm-deep
perfusion channels with widths between 200 and 300 jim, each connecting an inlet
and an outlet, and an array of parallel, 0.75-mm-long, 10-um-wide and 0.7 (or 0.4)-
pm-deep observation channels between parallel segments of the perfusion channels
(Supplementary Fig. 1a). The T-jump and iT-jump experiments were performed in
the shallow observation channels. The relatively deep perfusion channels are used
to rapidly fill the observation channels with solutions of fluorescent dyes and
biomolecules, and to maintain a continuous, low-speed perfusion through the
observation channels to prevent excessive photobleaching and drying (caused by
evaporation through porous PDMS). After all channels in the channel network on
the left are filled, inlet 2 and outlet 1 are blocked and the pressure at inlet 1 is set at
~1.0kPa above the pressure at outlet 2, thus providing a continuous perfusion
through the observation channels at a mean flow velocity of ~20 and ~50 ums ™
in 0.4- and 0.7-um-deep observation channels, respectively. (The differential
pressure of 1.0 kPa is set by placing the solution in the reservoir connected to inlet
1 at ~100 mm above the solution at the reservoir connected to outlet 2.) The two
mirror-symmetric copies of the channel network present in the device make it
possible to test the dynamics of cooling and heating during T-jumps with tem-
perature-sensitive fluorescent dye (HPTS in Tris buffer) at the same conditions as
in the experiments on fluorescently labelled DNA hairpins.

The devices with 0.7-um-deep observation channels are made from Sylgard 184
silicone elastomer (by Dow Corning). As microchannels made of Sylgard 184 are
prone to spontaneous collapse when their depth is <0.6 pm, the 0.4-um-deep
observation channels are fabricated in a harder version of PDMS (hPDMS). To
prepare hPDMS prepolymer, first, vinyl-substituted PDMS (VDT-731; Gelest,
Morrisville, PA) is mixed with 35 p.p.m. platinum catalyst (platinum-
divinyltetramethyldisiloxane complex in xylene; Gelest) and 0.25% modulator
(2,4,6,8-tetramethyltetravinylcyclotetrasiloxane; Fluka Chemie, Switzerland) is
added to it. It is then mixed with hydrogen-substituted PDMS (HMS-301; Gelest)
in a 3.4:1 ratio. As hPDMS has poor mechanical properties and readily cracks when
bent or perforated, a piece of hPDMS with 0.4-pm channels on its surface is
imbedded in a tougher Sylgard 184 matrix. To this end, droplets of hPDMS
prepolymer are dispensed onto regions of the master mould with the 0.4-pm-tall
relief and partially cured, making soft, dome-shaped solid structures. An ~3-mm
layer of Sylgard 184 PDMS prepolymer is then poured onto the master mould and
partially cured (to make a soft solid as well). The composite hPDMS-PDMS layer is
separated from the mould, cut into individual chips, and the inlet and outlet holes
are punched in the chips using blunt Luer needles. The chips are hard baked to
completely cure the silicones and are subsequently bonded to the gold-coated
sapphire coverslip substrates by overnight baking at 80 °C in an oven. The coating
of the sapphire coverslips with an ~20-nm layer of gold is performed on a
sputtering machine (Discovery 18, Denton Vacuum) using a standard protocol
with a 5-nm priming layer of titanium.

1

The design of the DNA hairpins. The temperature-dependent conformational
dynamics of two DNA hairpins with distinct folding properties, HP1 and HP2, have
been investigated in this study. HP1 is an 8-nucleotide-long ssDNA with compli-
mentary CC and GG sequences on its 5'- and 3'-end, respectively, forming the stem
of the hairpin, and TTTT in the middle, forming the loop (Fig. 2a). The 5'-end of
HP1 is labelled with a TMR fluorophore, whose fluorescence is quenched in the
folded state by an adjacent guanosine nucleotide in the 3'-end?2. The quenching
provides an effective means of monitoring the conformation of HP1 by recording

the fluorescence intensity of the TMR dye. HP2 is a 40-nucleotide-long ssDNA, 5'-
AACCC-(T)3p-GGGTT-3', which has 5-nucleotide-long complimentary sequences
on its ends. The 5'-end of HP2 is labelled with Alexa488 dye (FRET donor) and the
3'-end is labelled with Cy5 dye (FRET acceptor). As a result, the folded state has
maximal FRET efficiency and minimal donor fluorescence, while the reverse is true
for the unfolded state. In our experiments, we monitor the conformation of HP2 by
measuring the intensity of fluorescence of Alexa488, with Cy5 dye playing the role
of a quencher that is active in the folded state (akin to the quenching of TMR dye by
guanosine in HP1). To distinguish between changes in the dye fluorescence caused
by the hairpin folding (and resulting changes in the quenching) and the direct effect
of temperature on the fluorescence of the fluorophores attached to ssDNA, the
following DNA constructs are used as negative controls: 5'-TMR-CCTTTT-3' for
HP1 and 5'-amino modifier (C6)-AACCC-(T)3p-GGGTT-Cy5-3' and 5'-Alexa488-
AACCC-(T)3p-GGGTT-3' for HP2.

Preparation of the DNA hairpins. All of the HPLC-grade synthetic oligonu-
cleotides have been purchased from IDT (San Diego, CA) and used as received,
unless otherwise stated. The sequences for HP1 and HP2 are 5-TMR-
CCTTTTGG-3' and 5'-Alexa488-AACCC-(T);3o-GGGTT-Cy5-3/, respectively.
HP1 has been purchased with TMR dye at the 5'-end. For HP2, the purchased
sequence contains a 5'-amino modifier (C6) and a 3'-Cy5 fluorophore. The 5'-end
of the ssDNA is labelled with Alexa488 by coupling the amino group with the
N-hydroxysuccinimidyl ester of the dye (Alexa488-NHS ester, Molecular Probes).
The labelling reaction is carried out in a freshly prepared 100-mM bicarbonate
buffer (pH 8.9). The DNA to dye molar ratio is 1:50 and the reaction mixture is
incubated overnight in the dark at room temperature. The labelled DNA is sepa-
rated from unreacted dye by multiple ethanol precipitations. Absorption mea-
surements show >90% labelling efficiency. As Alexa488 serves as the donor in the
resulting FRET pair, this degree of labelling has been deemed satisfactory and no
further purification steps have been performed. The 5'-Alexa488-AACCC-(T)3o-
GGGTT-3'-negative control has been purchased with the 5'-amino modifier (C6)
and labelled with Alexa488 as HP2.

Bulk fluorescence measurements. Bulk fluorescence measurements have been
performed in an ISS fluorimeter, equipped with a Peltier-type temperature con-
troller. DNA concentrations of 200 nM in 10 mM phosphate buffer (pH 7.4) are
used for all of the experiments. Excitation wavelengths of 547 nm for TMR (HP1)
or 470 nm for Alexa488 (HP2) are used, and the fluorescence intensities at 565 and
518 nm are measured for HP1 and HP2, respectively. To determine the melting
temperatures, Ty, of the hairpins, the fluorescence of either TMR (HP1) or
Alexa488 (HP2) is recorded in a temperature range of 10-75°C with 2-5°C
intervals. To probe the effect of salt concentration on T}, the following [NaCl] are
used: 100 and 600 mM for HP1 and 100, 200, 400, 600 and 800 mM for HP2. The
tests are repeated for the three negative controls (see above) to evaluate the
inherent (not folding-specific) temperature dependences of fluorescence of the
ssDNA-bound fluorophores at each [NaCl]. The fluorescence of the negative
controls is fitted with a third-order polynomial of temperature (A +B;T +

B, T2+ B5T?). The fits are then used to obtain corrected melting curves of the two
hairpins. The corrected melting curves are fitted using a two-state model with the
midpoint of the transitions corresponding to the melting temperatures, Ty,

Optical setup. For local heating of the gold nanolayer on the sapphire substrate,
we use a 160-mW, single-mode, fibre-coupled, 980-nm continuous wave infrared
laser (Nortel LC92JG74-20). The laser is powered by a home-built driver, making it
possible to adjust the power of the laser and switch it on and off on a time scale of
~0.1 ps. The laser light is collimated using an achromatic lens with a focal length
of 30 mm and focused using an aspheric lens with focal length of 8 and numerical
aperture of 0.50, both of which are assembled inside a tube (all parts by Thorlabs).
The assembly is mounted on an XYZ translational stage (Newport), which is
attached to the frame on an inverted fluorescence microscope.

We note that aqueous solutions in microchannels can also be directly heated
using an infrared laser with a wavelength of ~ 1,455nm, where water has a
relatively strong absorption, with an attenuation length of 305 pm?3. Nevertheless,
the direct heating approach becomes increasingly impractical for shallow channels,
with only ~0.13 and 0.23% of light absorbed in 0.4- and 0.7-um-deep channels,
respectively, requiring very powerful lasers and potentially making the heating less
localized along the z-axis because of the residual absorption of the infrared light in
PDMS. The gold nanolayer coating used in the present study absorbs > 2 orders of
magnitude greater part of the light (~40%), thus making it possible to use
moderate-power infrared lasers with a range of wavelengths. Moreover, the use of
the gold nanolayer minimizes the z-axis dimension of the heated region.

The experiments on the visualization of the hot spot and rapid cooling
(iT-jump) in 0.4-pm-deep observation channels are performed on a Nikon TE300
microscope under widefield fluorescence illumination. The illumination is provided
by a high-power 455-nm light-emitting diode (LED; CBT-40 by Luminous
Devices), which is mounted in a modified Nikon fluorescence lamp house and
powered by another home-built driver that enables switching the LED on and off
on an ~0.1-us time scale. Both drivers are controlled via a National Instruments
PCI-6111 Data Acquisition computer interface card, with a LabView (National
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Instruments) code. Fluorescence images are taken with a fluorescein
isothiocyanate filter set, 40X/0.90 Nikon objective and cooled CCD Camera
(Cooke SensiCam QE).

To visualize fluorescence of the HPTS dye in the observation channel at a certain
interval after the infrared laser is switched on or off, stroboscopic fluorescence
illumination is used. The infrared laser is pulsed with a controlled duty cycle and
period, 7. The fluorescence illumination is phase locked with respect to the infrared
pulsing and switched on for A¢t=100-200 ns at a time, with a temporal resolution of
100 ns, using the Data Acquisition computer interface card and the LabView code.
The exposure time of the camera is set to a value, f,, (typically, 1-10s),
corresponding to ~ 10° periods of infrared pulsing, such that the cumulative time of
the fluorescence illumination, ¢ .y, - 4t/7, provides sufficient fluorescence signal. With
this imaging technique, every micrograph shows the distribution of fluorescence
within a time window At at a certain time point, t, of the infrared laser pulsing cycle.
The micrographs are taken with values of t covering the entire period of the infrared
laser cycle to obtain the intensity of fluorescence in the central 0.8-pum diameter area
of the laser-heated spot as a function of time, ¢. The calibration of the intensity of
fluorescence of HPTS as a function of temperature (see below) is then used to plot
the apparent temperature in the centre of the laser-heated spot as a function of time,
t, during the laser-heating cycles (Fig. le.f).

Temperature calibration. To measure the local temperature in an observation
channel, we have filled the device with a 100-p.p.m. solution of HPTS in 50 mM Tris
buffer, pH = 7.5, at room temperature (22 °C). The intensity of HPTS fluorescence is
a rapidly increasing function of pH of the solution. As the temperature increases, pH
of the Tris buffer decreases, leading to ~ 2-fold reduction of the HPTS fluorescence,
as the temperature is raised from 20 to 80 °C (Supplementary Fig. 1b). To obtain the
dependence of HPTS fluorescence on temperature in an observation channel, we
have used a modified version of the T-jump microfluidic device, which has a PDMS
chip with two layers of channels (Supplementary Fig. 1a). The first layer of channels
engraved on the surface of PDMS is the same as in the T-jump microfluidic device
with 0.7-um-deep observation channels. The second layer consists of a single water-
circulation channel with a depth of 2.5 mm, width of 4.2 mm and a length of 14 mm,
which is positioned above the array of observation channels, with its bottom 160 pm
above the surface of the PDMS chip. The PDMS chip is sealed against a standard 1.5
microscope cover glass, the first-layer channels are filled with the 100-p.p.m. solution
of HPTS in Tris buffer and the water-circulation channel is connected to a com-
mercial circulating water bath (Fisher Scientific 9101).

The water circulation tubing consists of two long (~1m) thermally insulated
segments with internal diameter (ID) of 1/4", which are connected to the inlet and
outlet of the circulating bath, and short (~10cm) segments of tubing with
ID = 1/16" connecting the 1/4" tubing and the microfluidic device?®. The flow rate of
the temperature-controlled water through the microfluidic device is measured at a
high value of ~2.5mls ™!, suggesting that the heat losses by thermal conductivity
through the microfluidic device have minimal effect on the temperature of water in
the circulation channel. Two calibrated thermistors are inserted into the 1/4”" ID
tubing segments at equal distances upstream and downstream of the microfluidic
device and the temperature in the circulation channel, T, is evaluated as the average
of the temperature readings from the two thermistors?%. The difference between the
temperature readings of the two thermistors has followed a trend of being ~ 1% of
the difference between their mean temperature and room temperature.

The intensity of fluorescence of HPTS is measured using the same light source
(455 nm LED), filter set (fluorescein isothiocyanate) and objective (Nikon 40X/
0.90) as in the T-jump experiments. The distance between the cover glass and the
front lens of the objective is ~0.50 mm. Given the thicknesses and thermal
conductivities of the layers of PDMS between the circulation and observation
channels, and of air between the objective and the cover glass (160 um and
0.15Wm ™% 0.5mm and 0.025 W/m, respectively), as well as the thickness and
thermal conductivity of the cover glass (170 pm and 1.0 W m ~ 1), we estimate the
temperature in the observation channel, T,, as Ty =T, +0.95 - (T, — T;), where
T, =22°C is the temperature of the front lens, which is assumed to be equal to the
room temperature. By varying the temperature in the circulator from 20 to 80 °C,
we have found that the HPTS fluorescence intensity, I, decreases nearly linearly
with T, (Supplementary Fig. 1b). A linear fit to the data is made and the resulting
linear calibration curve, I versus T}, is used to obtain the local temperature from the
local fluorescence intensity in the T-jump/iT-jump experiments. Importantly, the
use of the same temperature-sensitive fluorescent solution (100 p.p.m. of HPTS in
Tris), same optical setup and observation channels with similar depths (0.7 pm
versus 0.4 or 0.7 um) reduces to a minimum the experimental uncertainly in the
application of the calibration curve to the T-jump/iT-jump experiments (Fig. 1e, f;
Supplementary Figs 5, 9 and 11).

Measurements of hairpin dynamics in the iT-jump setup. The fluorescence of
the donor dyes attached to the DNA hairpins and respective controls (TMR for
HP1 and Alexa488 for HP2) as a function of time during T-jumps and iT-jumps in
the microfluidic device has been measured on a confocal setup (described in detail
elsewhere?®) with the Olympus 40X/0.90 objective lens. The observation channels
in these experiments have a depth of 0.7 um. The increased depth makes the
microfluidic device easier to work with, while still providing a very short cooling
time (0.6 ps half-decay time as compared with 0.45 pis for the 0.4-pum channel; see
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Supplementary Fig. 5 and Supplementary Note 1). The dynamics of temperature in
the sampling volume during T-jumps/iT-jumps is measured using the same
confocal setup, with the 100 p.p.m. solution of HPTS in 50 mM Tris buffer in the
observation channel (see Supplementary Figs 4 and 5, and the Supplementary Note
1 for further details).

All fluorescently labelled ssDNA samples are at a concentration 1 uM in 10 mM
phosphate buffer (pH 7.4). The fluorescence illumination is derived from a 543-
AP-AO01 tunable argon-ion laser (Melles-Griot, Carlsbad, CA), with the 514-and
488 nm lines used for TMR and Alexa488, respectively. The collected fluorescent
light is detected by an avalanche photodiode (SPCM-AQR-14; Perkin-Elmer,
Fremont, CA) with a time resolution of 100 ns. In the T-jump/iT-jump
experiments on HP1 (and its negative control), the infrared laser is switched on (at
~100mW) and off periodically, with both on and off times equal to 100 ps. The
infrared laser heating/cooling cycle is typically repeated ~ 50,000 times (~10s)
and the collected fluorescence signal is binned into 0.1-1.0 us intervals within the
200 ps period. The time point when the infrared laser is switched on serves as the
reference point within each cycle. To reach a satisfactory signal/noise ratio, the
cycling is typically repeated 50 times (2.5 x 10° periods; ~ 10 min total). For HP2
(and its negative control), the infrared laser pulse is on for 400 pis and off for either
1,600 or 9,600 ps, resulting in 2 or 10 ms periods. The binning intervals are 1-10 ps.
To reach a satisfactory signal/noise ratio, there are typically 50 temperature cycling
series with 10,000 heating/cooling cycles in each (0.5 x 10° periods; ~ 20-100 min
total). In the experiments on the dynamic response of HP2 to square waves of
temperature, we have varied the period of the infrared laser on/off cycles
(temperature wave) from 100 to 2,000 ps, with the on and off times always equal to
each other (and to one half of the period).
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