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Gluteus medius: an intramuscular EMG investigation of anterior, middle and posterior 

segments during gait 

 

1 Introduction 

The gluteus medius (GMed) muscle is considered the prime abductor of the hip joint 

(Standring et al., 2005), with its main function in weight bearing to stabilise the pelvis in 

unilateral stance against the effects of gravity (Al-Hayani, 2009; Gottschalk et al., 1989). 

Cadaveric studies suggest that gluteus medius (GMed) is comprised of three structurally 

unique regions (anterior, middle and posterior) (Al-Hayani, 2009; Gottschalk et al., 1989; 

Semciw et al., 2012a) with potential for independent control from the central nervous 

system (CNS) (Gottschalk et al., 1989; Soderberg and Dostal, 1978). This has led 

researchers to consider a broader role of GMed, by attributing a role of pelvic rotation, in 

addition to pelvic stability for anterior and posterior GMed (Al-Hayani, 2009; Gottschalk 

et al., 1989).   

 

There are a number of studies that have attempted to assess the function of three segments 

of GMed with electromyography (EMG) (Gottschalk et al., 1989; O'Dwyer et al., 2011; 

O'Sullivan et al., 2010; Soderberg and Dostal, 1978). By using surface electrodes, three 

studies concluded that each segment has the capacity for independent activity in isometric 

tasks (O'Dwyer et al., 2011), weight-bearing exercises (O'Sullivan et al., 2010) or gait 

(Gottschalk et al., 1989). Unfortunately a number of methodological limitations bring into 

question these conclusions. First, the use of surface electrodes for all three segments 

(Gottschalk et al., 1989; O'Dwyer et al., 2011; O'Sullivan et al., 2010) is inappropriate 

since posterior GMed is completely covered by gluteus maximus (GMax) (Hodges et al., 
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1997; Semciw et al., 2012a). Furthermore, myoelectric activity recorded from surface 

electrodes may be contaminated by cross talk from surrounding muscles (Bogey et al., 

2000; Chapman et al., 2006; 2010; Johnson et al., 2011; Perry et al., 1981), therefore 

activity from middle or anterior segments may be contaminated given their proximity to 

the surrounding GMax and tensor fascia latae (TFL) muscles (Semciw et al., 2012a). The 

investigators of a fourth study partitioned GMed into three segments, and inserted 

intramuscular electrodes into these regions without real time ultrasound (RTUS) guidance 

(Soderberg and Dostal, 1978). Although the authors reported phasic activity of GMed in a 

range of functional tasks, verified guidelines for unique segments of GMed were not used. 

It is therefore unclear as to whether electrodes were accurately inserted into functionally 

unique segments of GMed or possibly other muscles. 

 

Two recent reviews report on GMed function, as determined by EMG, in a range of 

commonly prescribed rehabilitation exercises (French et al., 2010; Reiman et al., 2012). 

However, the studies included in both reviews reflect the three major shortcomings of 

GMed EMG research in general. First, all included studies used surface electrodes. Second, 

all studies used one electrode to assess the function of the whole muscle.  Finally, at least 

six different electrode placement sites have been described between the studies, therefore 

each study may potentially be recording myoelectric activity from functionally unique 

segments of GMed, making it difficult to compare results between studies. 

 

A clearer understanding of the function of GMed is considered essential since GMed is 

believed to have a major role in lower limb dysfunction (Grimaldi et al., 2009; Müller et 

al., 2010; Pfirrmann et al., 2005). Hip abductor weakness has been reported in lateral hip 

pain (Strauss et al., 2010); patello-femoral pain syndrome (PFPS) (Magalhaes et al., 2010; 
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Nakagawa et al., 2012); osteoarthritis of the hip (Arokoski et al., 2002) and knee (Hinman 

et al., 2010); and ankle dysfunction (Friel et al., 2006; Kulig et al., 2011).  

 

The aim of this study was therefore to apply recently developed, verified intramuscular 

EMG guidelines (Semciw et al., 2012a) to determine whether GMed is comprised of 

functionally independent segments in healthy young adults. This will have implications for 

our theoretical understanding of the broad function of GMed and may influence future 

work aimed at assessing the role of GMed in a range of clinical populations.  
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Methods 

1.1 Participants 

Fifteen health young adults (9 male, 6 female) volunteered for this study, with a mean (SD) 

age, height and weight of 22.5 (2.4) years, 177.4 (9.9) cm and 76.9 (12.8) kg respectively. 

Volunteers were active with an average (SD) of 6.3 (4.4) hours/week of land based 

exercise and a Tegner Activity Score (Tegner and Lysholm, 1985) of greater than three. 

Participants were free of hip and lumbar spine disease, pain and injury. This study was 

approved by the University Human Ethics Committee (UHEC 10-065), and all participants 

gave informed consent.   

 

1.2 Instrumentation and electrode insertions 

Stainless steel, Teflon® coated bi-polar fine wire (A-M Systems, Washington, USA) 

electrodes were prepared as described by earlier reports (Basmajian and Stecko, 1962; 

Semciw et al., 2012b). All testing was performed on the stance dominant limb (Bullock-

Saxton et al., 2001). Participants were positioned in side lying with their hips and knees in 

45° flexion. Anterior, middle and posterior segments of GMed were marked using 

previously verified guidelines (Semciw et al., 2012a) and real time ultrasound (HDI 3000; 

Advanced Technology Laboratories, Washington, USA) was used to guide the depth of 

electrode insertion into the belly of each segment as described previously (Semciw et al., 

2012b). A two-inch Dermatrode reference electrode (American Imex, CA, USA) was 

placed dorsally on the contra-lateral hand. Force sensitive resisters (footswitches) (Model: 

402, Interlink Electronics, California, USA) were placed over the heel and great toe to 

determine the temporal components of the gait cycle (Murley et al., 2009b). Raw signals 
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from the footswitches, reference electrode and intramuscular electrodes were received by a 

Delsys® Bagnoli-16 EMG system (Delsys Inc., Boston, USA).  

 

1.3 Experimental protocol 

There were two components to the experimental protocol. The first was a series of six 

walking trials (Murley et al., 2009b) at comfortable self-selected walking speed (Latt et al., 

2008) along a 9 m walkway. The last four trials were recorded for analysis, and trials were 

repeated if they exceeded ± 5% of the average walking speed (established during warm-

up).  

 

The second component of the experimental protocol consisted of a series of maximum 

voluntary isometric contractions (MVICs). It has been recommended that multiple tests be 

performed in order to obtain the optimum maximum value for a muscle’s MVIC (Burden, 

2010; Ekstrom et al., 2005; Vera-Garcia et al., 2010), and that a compromise be made on 

the number of tests performed in order to minimize participant fatigue (Vera-Garcia et al., 

2010). Pilot work on eight different positions revealed that external rotation, flexion, and 

abduction in external rotation were least likely to record a true maximum for any of the 

GMed segments (Semciw et al., 2011). These three actions were therefore excluded from 

the testing protocol in this study in order to minimize participant fatigue. MVICs for this 

study therefore comprised of open chain hip abduction, hip internal rotation, hip abduction 

in internal rotation, hip extension and the clam exercise. The clam was performed by 

moving the knees apart against a resistance while keeping feet together in a position of 45º 

hip and knee flexion (modified from Distefano et al., 2009). All actions were performed in 

side-lying, except for extension which was performed in prone. The hip remained in the 
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anatomical position for all actions except the clam. Resistance was applied by a Velcro® 

strap secured to the plinth and positioned over the participants knee for all actions except 

internal rotation. Internal rotation was resisted by an investigator, who provided manual 

resistance at the participants foot while the knee was in 90º of flexion. For each MVIC 

action, participants were instructed to slowly increase muscle contraction against the 

resistance, and sustain maximum effort for three seconds. Participants performed three 

MVIC’s for each action and were given a three minute rest in between each contraction. 

Consistent verbal encouragement was provided by the investigators and the order of MVIC 

testing was randomly assigned.  

 

1.4 EMG data processing and analysis 

Raw EMG signals (Fig. 1A) were passed through a differential amplifier (Delsys Inc., 

Boston, USA; input impedance = 1015ȍ//0.2 pF, CMRR = 92 dB @ 60 Hz) at a gain of 

1000, band pass filtered (built into the amplifier) at 20-2000 Hz and sampled at 2000 Hz. 

To remove low frequency movement artefact, with minimal interruption to the raw EMG 

signal, a high-pass 4th order Butterworth filter with phase lag was applied (cut-off 

frequency of 50 Hz) (Chapman et al., 2010). Finally, the signals were full wave rectified 

and further filtered with a low-pass 4th order Butterworth filter with phase lag, at a cut-off 

frequency of 6 Hz to generate a linear envelope that would best represent muscle tension 

through the gait cycle (Murley et al., 2009a; Winter, 1990) (Fig. 1B).  

 

Insert Figure 1 here   
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Two consecutive strides from the 3rd or 4th stride of each walking trial were further 

processed for analysis (2 strides x 4 trials = 8 strides per participant) (Murley et al., 2009a). 

These strides were chosen to ensure participants were not accelerating or decelerating at 

the point of analysis. For each muscle segment and participant, an ensemble average was 

generated from the eight strides. All participants ensemble averages were summed and 

averaged to produce a grand ensemble for GMed anterior, middle and posterior, and 

establish an EMG profile for each segment across the gait cycle. Consistent bursts of EMG 

activity were identified in the grand ensemble curve at early stance (0%-20% gait cycle) 

and mid to late stance (20%-60% gait cycle). Data were therefore acquired from three 

phases of the gait cycle: 0% to 20%; 20% to 60% and total stance (heel strike to toe-off, 

0% to 60% gait cycle). Analysing phases of the gait cycle according to this methodology is 

consistent with past research where gluteus medius EMG has been analysed in early stance 

(0% to 20% gait cycle) and mid-stance (20% to 40% gait cycle) (Rutherford and Hubley-

Kozey, 2009)  

 

Delsys EMGworks 4.0 signal analysis software was used to acquire the dependant 

variables from each phase of the gait cycle. These were established from the linear 

envelopes of each participant’s individual trials. For each muscle segment, values were 

obtained for peak amplitude (%MVIC), average amplitude (%MVIC) and time to peak 

(TTP, % of gait cycle) from each phase of the gait cycle (0-20%, 20-60%, and total 

stance).  

 

Data from the five MVIC positions were used for amplitude normalization of gait 

variables, and for further comparisons between anterior, middle and posterior segmental 

function. The muscle intensity (RMS amplitude) during an MVIC was calculated from the 
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middle 1s of each MVIC trial. The highest amplitude value across all five positions was 

considered MVIC for each segment and for each participant. 

 

The means of amplitude (peak and average) and temporal (TTP) gait variables were 

compared between muscle segments (anterior, middle and posterior) within each phase of 

the gait cycle (0% to 20%; 20% to 60%; and total stance) using a one way analysis of 

variance (ANOVA). Logarithm transformed variables were used where assumptions of 

normality were not met. Where significant differences were detected (p<0.05), post-hoc 

comparisons were performed with independent samples t-test, and a Bonferroni correction 

was made to account for multiple comparisons (Field, 2009). Significance for post-hoc 

analysis was therefore set at Į = 0.017 (0.05 / 3 comparisons). A standardised mean 

difference (SMD = mean difference / pooled SD) was calculated for all post-hoc 

comparisons to provide a measure of the magnitude of difference (effect size, ES) between 

segments (Borenstein et al., 2009), and illustrated with 98% confidence intervals (CI’s) to 

account for Bonferroni adjustments. An ES threshold of 0.2, 0.5 and 0.8 was considered 

small, medium and large respectively (Cohen, 1988). 

   

The Kruskal-Wallis (K-W) test was used to examine whether GMed segments (x3) were 

contracting at different relative intensities during each MVIC position (x5). Separate K-W 

tests were performed for each MVIC using an Į of 0.05 to determine significance. Post-hoc 

comparisons were made with Mann-Whitney U tests (Į = 0.017, Bonferroni adjustment). A 

standardised ES was calculated for all post-hoc comparisons by dividing the z-score of the 

Mann-Whitney U test by the square root of the total sample size (Field, 2009). All 

statistical comparisons were performed using the SPSS statistical software package 

(version 19, IBM SPSS Inc., Chicago, IL, USA) 
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2 Results 

All electrode insertions except one remained in-situ for the entire testing session. Analysis 

was therefore conducted on 14 anterior segments, and 15 middle and posterior segments. 

The mean (±SD) walking speed was 1.17 (0.15) m s-1. 

 

2.1 Gait 

The grand ensemble curves demonstrated two consistent bursts of activity for all GMed 

segments within the stance phase of gait (Fig. 2). There were no significant differences in 

amplitude variables (peak and average) between segments of GMed (Table 1). However, 

GMed segments did demonstrate significant differences in TTP for the first (F2,41=4.65, 

p=0.02) and second burst (F2,41=6.16, p<0.01) (Table 1). The anterior segments first burst 

peaked later than the middle segment (p=0.014); and its second burst peaked later than 

middle and posterior segments (p<0.006) (Fig. 3). These findings were large in magnitude 

(ES>0.80).  

 

Insert Figure 2 here 

 

Insert Table 1 here 

 

Insert Figure 3 here 

2.2 MVIC 

During MVIC testing (means and SD’s available as supplementary data), GMed segments 

were contracting at significantly different intensities for hip abduction (H2=8.218, 
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p=0.016), internal rotation (H2=24.324, p<0.001), extension (H2=6.874, p=0.032) and clam 

(H2=30.306, p<0.001). No significant difference between segments were apparent during 

abduction in internal rotation (H2=3.880, p=0.144). Post-hoc comparisons (Fig. 4) revealed 

that posterior GMed was contracting at a greater intensity than anterior GMed in abduction 

(U=168.0, p=0.005); a lower intensity than both other segments in internal rotation (U�6.0, 

p<0.001); and a lower intensity than middle GMed during extension (U=51.5, p=0.010). 

Finally, all pairs of segmental comparisons were significantly different during the clam 

manoeuvre (U�187.5, p�0.001).  

 

Insert Figure 4 here  
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3 Discussion 

This is the first study to characterise EMG profiles of segments of GMed with uniquely 

oriented muscle fibres using verified electrode insertion guidelines during gait. All three 

segments display two bursts of activity within the stance phase of gait. The results suggest 

that three segments are capable of independent function. This was apparent in both the gait 

and MVIC variables.  

 

3.1 Muscles within muscles 

The most convincing evidence of independent functional segments within GMed is 

demonstrated during a maximum resisted clam manoeuvre (Fig. 4). When segmental 

muscle activity is classified according to previously described criteria (Reiman et al., 

2012), muscle activation during this manoeuvre ranged from a high relative intensity in 

posterior GMed (mean 47.8% MVIC, refer to supplementary table for segment means) to 

low intensity in anterior GMed (mean 1.8% MVIC). With moderate to large differences 

(ES�0.57) between all segments during a clam exercise, GMed can confidently be 

described as being composed of muscles within muscles (Wickham and Brown, 1998). 

This suggests that caution should be used when interpreting prior research that generated 

conclusions of GMed function based on one electrode recording (French et al., 2010; 

Reiman et al., 2012).  

 

There is some evidence of segmental activation during the gait cycle as well; however this 

is restricted to anterior GMed. The peak of anterior GMed occurred later than middle 

GMed for the first burst and later than both segments in the second burst (Fig 2). This is 

consistent with the later activity of anterior GMed reported by an earlier fine wire 
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investigation based on qualitative analysis (Soderberg and Dostal, 1978). Conversely, and 

in contradiction to prior work (Gottschalk et al., 1989), there was no evidence of phasic 

activation between posterior and middle GMed during gait. The early activation of 

posterior relative to middle GMed recorded by Gottschalk et al’s surface electrodes is more 

likely to reflect activity of GMax rather than posterior GMed (Winter and Yack, 1987), 

particularly given that posterior GMed is completely covered by GMax (Hodges et al., 

1997; Semciw et al., 2012a). The current study suggests that middle and posterior 

segments act synchronously (Fig. 1 and 3), while anterior GMed’s first burst peaks later 

than middle GMed, and the second burst peaks later than both other segments.  

 

3.2 The functional role of gluteus medius during gait 

The functional role of each GMed segment across the gait cycle can be viewed in the 

context of their role as either pelvic stabilisers, or femoral head stabilisers. Muscle 

segments with a large physiological cross sectional areas (PCSA) and a moment arm in the 

coronal or transverse plane are better able to generate a high torque for maintaining pelvic 

equilibrium, or produce pelvic rotation in the transverse plane (on a fixed lower limb) 

respectively (Neumann, 2010; Ward et al., 2010). Segments with a small PCSA and 

moment arm, and fibers aligned parallel to the neck of femur (NOF) are likely to contribute 

to femoral head stability, by drawing the head of femur into the acetabulum (Gottschalk et 

al., 1989).  

 

Findings of the current study indicate that posterior and middle GMed act synchronously 

across the gait cycle. However, each segment may serve a different purpose when the 

current EMG findings are supplemented with biomechanical and morphological muscle 



14 

 

data. The combination of middle GMed’s vertical fiber orientation (Al-Hayani, 2009; 

Gottschalk et al., 1989; Semciw et al., 2012a; Sparks, 2011), large moment arm in the 

coronal plane (Dostal et al., 1986; Neumann, 2010) and large PCSA (Sparks, 2011) 

suggest that it has a high potential to generate a large abduction torque in the anatomical 

position. On a fixed lower limb, this would facilitate pelvic stability. In contrast, posterior 

GMed has a coronal moment arm, smaller PCSA (Dostal et al., 1986; Neumann, 2010; 

Sparks, 2011), and its fibers are arranged parallel to the NOF (Al-Hayani, 2009; Gottschalk 

et al., 1989). These features would facilitate its role as a stabiliser of the head of femur (Al-

Hayani, 2009; Gottschalk et al., 1989).  

 

The role of anterior GMed is potentially two-fold. Its relatively vertical fiber orientation 

(Al-Hayani, 2009; Gottschalk et al., 1989; Semciw et al., 2012a), large moment arm 

(coronal plane, Dostal et al., 1986; Neumann, 2010) and PCSA (Sparks, 2011) would 

enable it to assist middle GMed with maintaining pelvic stability across the stance phase of 

gait (Gottschalk et al., 1989). Additionally, the later peak in EMG activity of anterior 

GMed during the second burst (late mid-stance) could reflect a supplementary role in two 

other domains. Anterior GMed may potentially be recruited to minimize anterior hip joint 

forces associated with an extending hip joint (Lewis et al., 2007), or it may be recruited to 

contribute to forward contralateral rotation of the pelvis in the transverse plane (Al-Hayani, 

2009; Gottschalk et al., 1989; Neumann, 2010). However, given the large PCSA (Sparks, 

2011) and favourable moment arm in the transverse plane (Dostal et al., 1986; Neumann, 

2010), it is more likely that the latent peak EMG activity (second burst) reflects a 

contribution to contra-lateral forward rotation of the pelvis (Al-Hayani, 2009; Gottschalk et 

al., 1989; Neumann, 2010); while anterior GMin (which also has latent peak activity; 
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Semciw et al., submitted 2013) is better suited morphologically for stabilising the head of 

femur in mid to late stance.  

 

3.3 Clinical implications 

Hip abductor dysfunction has been associated with a range of lower limb disorders 

(Arokoski et al., 2002; Cowan et al., 2009; Friel et al., 2006; Hinman et al., 2010; 

Magalhaes et al., 2010; Nakagawa et al., 2012; Strauss et al., 2010). Furthermore, specific 

localised fatty atrophy has been identified in the anterior third of GMed from 3 to 12 

months after a total hip arthroplasty (THA) (Bremer et al., 2011; Müller et al., 2010; 

Müller et al., 2011). The specific atrophy of anterior GMed in this population is similar to 

that observed in anterior GMin (Bremer et al., 2011; Pfirrmann et al., 2005), however the 

potential mechanism may differ. There is kinematic evidence of reductions in peak hip 

extension range in people following THA (Beaulieu et al., 2010), which may theoretically 

reduce the stimulus for anterior GMed to provide the rotary torque for contralateral pelvic 

rotation. Further investigation of segmental function of GMed in clinical populations may 

determine whether the structural deficits observed in some conditions translate to 

functional deficits, and what the potential mechanisms of these deficits may be. This 

knowledge will enable physiotherapists to develop specific and targeted rehabilitation 

programs for each muscle segment and clinical condition. 

 

3.4 Limitations 

The optimal method for normalizing GMed EMG signals recorded from our insertion 

protocol is unknown. However, a recent review has endorsed the use of MVIC as a 

normalization method that would enable comparisons between muscles, groups, 
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interventions or testing conditions in pain free healthy participants (Burden, 2010), and a 

further study specifically advocates its use in gait normalization (Burden et al., 2003).  

 

It is possible that GMed muscle activation patterns in this study may have been affected by 

factors such as walking speed and body mass index (Rutherford and Hubley-Kozey, 2009); 

levels of discomfort associated with the intramuscular electrodes (Henriksen et al., 2009); 

and lower limb kinematics or kinetics (Beckman and Buchanan, 1995; Bird et al., 2003). 

However, the mean (± SD) walking velocity of our sample (1.17 ± 0.15 m s-1) is 

comparable to those reported for other samples of healthy participants ambulating at 

comfortable walking speed (Latt et al., 2008; Murley et al., 2009a; Rutherford and Hubley-

Kozey, 2009), therefore unlikely to be a source of difference between other study 

populations. Furthermore, the level of discomfort associated with this protocol in this 

sample of participants was mild (Semciw et al., 2012b), and not considered to significantly 

affect muscle activity. Finally, altering lower limb biomechanics has influenced GMed 

muscle activity previously (Beckman and Buchanan, 1995; Bird et al., 2003). It is therefore 

possible that individual variation in kinematics, kinetics and posture will have influenced 

EMG recordings of our participants. Further research with concurrent kinematic and 

kinetic data will be valuable for determining the extent of the association between these 

variables 
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4 Conclusion 

Validated intramuscular EMG has confirmed that the anterior, middle and posterior 

segments of GMed have unique functional characteristics. Caution should be used in 

interpreting results of previous EMG studies of GMed using a single, or only surface 

electrodes. These results improve the understanding of the function of GMed and pave the 

way for further research into the role of segments of GMed in clinical populations. 

 

Conflict of interest: none declared 

 

Acknowledgements: Funding for this study has kindly been provided by the Sports 

Medicine Australia Research Foundation, and the Faculty of Health Sciences, La Trobe 

University. Funding was provided to support participant reimbursement for costs 

associated with time and travel. 

 



18 

 

5 References 

Al-Hayani A. The functional anatomy of hip abductors. Folia Morphol 2009;68:98-103. 

Arokoski MH, Arokoski JPA, Haara M, Kankaanpää M, Vesterinen M, Niemitukia LH, et 

al. Hip muscle strength and muscle cross sectional area in men with and without hip 

osteoarthritis. J Rheumatol 2002;29:2185-95. 

Basmajian JV, Stecko G. A new bipolar electrode for electromyography. J Appl Physiol 

1962;17:849. 

Beaulieu ML, Lamontagne M, Beaulé PE. Lower limb biomechanics during gait do not 

return to normal following total hip arthroplasty. Gait Posture 2010;32:269-73. 

Beckman SM, Buchanan TS. Ankle inversion injury and hypermobility: Effect on hip and 

ankle muscle electromyography onset latency. Arch Phys Med Rehabil 1995;76:1138-43. 

Bird AR, Bendrups AP, Payne CB. The effect of foot wedging on electromyographic 

activity in the erector spinae and gluteus medius muscles during walking. Gait Posture 

2003;18:81-91. 

Bogey R, Perry J, Bontrager E, Gronley J. Comparison of across-subject EMG profiles 

using surface and multiple indwelling wire electrodes during gait. J Electromyogr Kinesiol 

2000;10:255-9. 

Borenstein M, Hedges LV, Higgins JP, Rothstein HR. Introduction to meta-analysis. West 

Sussex: Wiley, 2009. 

Bremer AK, Kalberer F, Pfirrmann CW, Dora C. Soft-tissue changes in hip abductor 

muscles and tendons after total hip replacement. J Bone Joint Surg Br 2011;93-B:886-9. 



19 

 

Bullock-Saxton JE, Wong WJ, Hogan N. The influence of age on weight-bearing joint 

reposition sense of the knee. Exp Brain Res 2001;136:400-6. 

Burden AM. How should we normalize electromyograms obtained from healthy 

participants? What we have learned from over 25 years of research. J Electromyogr 

Kinesiol 2010;20:1023-35. 

Burden AM, Trew M, Baltzopoulos V. Normalisation of gait EMGs: a re-examination. J 

Electromyogr Kinesiol 2003;13:519-32. 

Chapman AR, Vicenzino B, Blanch P, Knox JJ, Hodges PW. Leg muscle recruitment in 

highly trained cyclists. J Sports Sci 2006;24:115-24. 

Chapman AR, Vicenzino B, Blanch P, Knox JJ, Hodges PW. Intramuscular fine-wire 

electromyography during cycling: Repeatability, normalisation and a comparison to 

surface electromyography. J Electromyogr Kinesiol 2010;20:108-17. 

Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence 

Erlbaum, 1988. 

Cowan SM, Crossley KM, Bennell KL. Altered hip and trunk muscle function in 

individuals with patellofemoral pain. Br J Sports Med 2009;43:584-8. 

Distefano LJ, Blackburn JT, Padua DA, Marshall SW. Gluteal muscle activation during 

common therapeutic exercises. J Orthop Sports Phys Ther 2009;39:532-40. 

Dostal WF, Soderberg GL, Andrews JG. Actions of hip muscles. Phys Ther 1986;66:351-

9. 



20 

 

Ekstrom RA, Soderberg GL, Donatelli RA. Normalization procedures using maximum 

voluntary isometric contractions for the serratus anterior and trapezius muscles during 

surface EMG analysis. J Electromyogr Kinesiol 2005;15:418-28. 

Field AP. Discovering statistics using SPSS. London: SAGE, 2009. 

French HP, Dunleavy M, Cusack T. Activation levels of gluteus medius during therapeutic 

exercise as measured with electromyography: a structured review. Phys Ther Rev 

2010;15:92-105. 

Friel K, McLean N, Myers C, Caceres M. Ipsilateral Hip Abductor Weakness After 

Inversion Ankle Sprain. J Athlet Train 2006;41:74-8. 

Gottschalk F, Kourosh S, Leveau B. The functional anatomy of tensor fasciae latae and 

gluteus medius and minimus. J Anat 1989;166:179-89. 

Grimaldi A, Richardson C, Stanton W, Durbridge G, Donnelly W, Hides J. The association 

between degenerative hip joint pathology and size of the gluteus medius, gluteus minimus 

and piriformis muscles. Manual Ther 2009;14:605-10. 

Henriksen M, Aaboe J, Simonsen E, Alkjaer T, Bliddal H. Experimentally reduced hip 

abductor function during walking: Implications for knee joint loads. J Biomech 

2009;42:1236-40. 

Hinman RS, Hunt MA, Creaby MW, Wrigley TV, McManus FJ, Bennell KL. Hip muscle 

weakness in individuals with medial knee osteoarthritis. Arthritis Care Res 2010;62:1190-

3. 



21 

 

Hodges PW, Kippers V, Richardson CA. Validation of a technique for accurate fine-wire 

electrode placement into posterior gluteus medius using real-time ultrasound guidance. 

Electromyogr Clin Neurophysiol 1997;37:39-47. 

Johnson VL, Halaki M, Ginn KA. The use of surface electrodes to record infraspinatus 

activity is not valid at low infraspinatus activation levels. J Electromyogr Kinesiol 

2011;21:112-8. 

Kulig K, Popovich JM, Noceti-Dewit LM, Reischl SF, Kim D. Women with posterior 

tibial tendon dysfunction have diminished ankle and hip muscle performance. J Orthop 

Sports Phys Ther 2011;41:687-94. 

Latt M, Menz H, Fung V, Lord S. Walking speed, cadence and step length are selected to 

optimize the stability of head and pelvis accelerations. Exp Brain Res 2008;184:201-9. 

Lewis CL, Sahrmann SA, Moran DW. Anterior hip joint force increases with hip 

extension, decreased gluteal force, or decreased iliopsoas force. J Biomech 2007;40:3725-

31. 

Magalhaes E, Abdalla RJ, Fukuda TY, Sacramento SN, Forgas A, Cohen M. A comparison 

of hip strength between sedentary females with and without patellofemoral pain syndrome. 

J Orthop Sports Phys Ther 2010;40:641-7. 

Müller M, Tohtz S, Perka C, Dewey M, Springer I. Evidence of reduced muscle trauma 

through a minimally invasive anterolateral approach by means of MRI. Clin Orthop Relat 

Res 2010;468:3192-200. 

Müller M, Tohtz S, Springer I, Dewey M, Perka C. Randomized controlled trial of 

abductor muscle damage in relation to the surgical approach for primary total hip 



22 

 

replacement: minimally invasive anterolateral versus modified direct lateral approach. 

Arch Orthop Trauma Surg 2011;131:179-89. 

Murley GS, Buldt AK, Trump PJ, Wickham JB. Tibialis posterior EMG activity during 

barefoot walking in people with neutral foot posture. J Electromyogr Kinesiol 

2009a;19:e69-e77. 

Murley GS, Menz HB, Landorf KB. Foot posture influences the electromyographic activity 

of selected lower limb muscles during gait. J Foot Ankle Res 2009b;2:35. 

Nakagawa TH, Moriya ET, Maciel CD, Serrão FV. Trunk, pelvis, hip, and knee 

kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males 

and females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther 

2012;42:491-501. 

Neumann DA. Kinesiology of the hip: A focus on muscular actions. J Orthop Sports Phys 

Ther 2010;40:82-94. 

O'Dwyer C, O'Sullivan K, Sainsbury D. Gluteus medius muscle activation during isometric 

muscle contractions. J Sport Rehabil 2011;20:174-86. 

O'Sullivan K, Smith S, Sainsbury D. Electromyographic analysis of the three subdivisions 

of gluteus medius during weight-bearing exercises. Sports Med Arthrosc Rehabil Ther 

Technol 2010;2:17. 

Perry J, Easterday CS, Antonelli DJ. Surface versus intramuscular electrodes for 

electromyography of superficial and deep muscles. Phys Ther 1981;61:7-15. 



23 

 

Pfirrmann CW, Notzli HP, Dora C, Hodler J, Zanetti M. Abductor tendons and muscles 

assessed at MR imaging after total hip arthroplasty in asymptomatic and symptomatic 

patients. Radiology 2005;235:969-76. 

Reiman MP, Bolgla LA, Loudon JK. A literature review of studies evaluating gluteus 

maximus and gluteus medius activation during rehabilitation exercises. Physiother Theory 

Pract 2012;28:257-68. 

Rutherford DJ, Hubley-Kozey C. Explaining the hip adduction moment variability during 

gait: Implications for hip abductor strengthening. Clin Biomech 2009;24:267-73. 

Semciw AI, Green RA, Murley G, Pizzari T. Glutues minimus: an intramuscular EMG 

investigation of anterior and posterior segments during gait submitted 2013. 

Semciw AI, Green RA, Pizzari T, Briggs C. Verification of a standardized method for 

inserting intramuscular EMG electrodes into uniquely oriented segments of gluteus 

minimus and gluteus medius. Clin Anat 2012a. http://dx.doi.org/10.1002/ca.22055. 

Semciw AI, Pizzari T, Green RA. Intramuscular EMG placement for two segments of 

gluteus minimus and three segments of gluteus medius with unique orientation and 

function. J Sci Med Sport 2011;14:S189. 

Semciw AI, Pizzari T, Green RA. Technical application and the level of discomfort 

associated with an intramuscular electromyographic investigation into gluteus minimus 

and gluteus medius. Gait Posture 2012b. 

http://www.sciencedirect.com/science/article/pii/S0966636212003839. 

Soderberg GL, Dostal WF. Electromyographic study of three parts of the gluteus medius 

muscle during functional activities. Phys Ther 1978;58:691-6. 



24 

 

Sparks N. The detailed anatomy of the hip abductor muscles and their role in lateral hip 

pain [doctoral thesis]. Dunedin: University of Otago, Dunedin, New Zealand; 2011. 

Standring S, Ellis H, Healy J, Johnson D, Williams A. Gray's anatomy: the anatomical 

basis of clinical practice. 39th ed. Edinburgh: Elsevier Churchill Livingstone, 2005. 

Strauss EJ, Nho SJ, Kelly BT. Greater trochanteric pain syndrome. Sports Med Arthrosc 

2010;18:113-9. 

Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin 

Orthop Relat Res 1985:43-9. 

Vera-Garcia FJ, Moreside JM, McGill SM. MVC techniques to normalize trunk muscle 

EMG in healthy women. J Electromyogr Kinesiol 2010;20:10-6. 

Ward SR, Winters TM, Blemker SS. The architectural design of the gluteal muscle group: 

Implications for movement and rehabilitation. J Orthop Sports Phys Ther 2010;40:95-102. 

Wickham JB, Brown JMM. Muscles within muscles: the neuromotor control of intra-

muscular segments. Eur J Appl Physiol Occup Physiol 1998;78:219-25. 

Winter DA. Biomechanics and motor control of human movement. 2nd ed. New York: 

Wiley, 1990. 

Winter DA, Yack HJ. EMG profiles during normal human walking: stride-to-stride and 

inter-subject variability. Electroencephalogr Clin Neurophysiol 1987;67:402-11. 

 

 


