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Abstract 
 

This thesis addresses questions on sex allocation, life history strategies and costs of 

reproduction using experimental manipulations of litter sex ratios and field data on ecology 

and behaviour of the subtropical antechinus (Antechinus subtropicus). 

 

In chapter 2, I investigate two major adaptive hypotheses to explain sex ratio bias at birth: 

the Trivers-Willard Hypothesis (TWH) and the Local Resource Competition Hypothesis 

(LRCH). I show that sons are more costly to produce than daughters because they have 

fast growth rates and there are greater survival costs to mothers when they wean more 

sons. Mothers that naturally produced male-biased litters were slightly heavier than 

mothers that gave birth to female-biased litters. These results are consistent with the 

TWH, which states that mothers with more resources to invest benefit by producing high 

quality competitive sons that will reproduce. However, after increasing the natural bias of 

litter sex ratios, mothers were able to increase investment to meet demands of rearing 

more sons than they had naturally produced, without compromising offspring growth. 

These results are inconsistent with a key prediction of the TWH, that females give birth to 

the number of sons that they can afford to raise. Also inconsistent with the TWH, male-

biased litters grew more quickly after the sex ratio manipulation and, were more likely to 

survive to weaning. The LRCH predicts that mothers in poor condition should reduce 

competition from the sex that competes the most, by allocating more to sons than to 

daughters, as females often remain in their natal home range after weaning. In support of 

the LRCH, large litter size was associated with slower growth rate in daughters, but not 

sons. These results differ from previous cross fostering manipulations to test sex allocation 

in mammals, which have unequivocally supported the TWH. 

 

In chapter 3 I examine changes in reproductive performance and survival with age in 

females. Senescence and terminal investment are two major models to understand effects 

of age on reproduction. Reproductive investment and success declines with age if 

senescence occurs, and investment in young increases near the end of life if terminal 

investment occurs, improving offspring performance at a cost to mothers. I show that older 

subtropical antechinuses females are not reproductively senescent. On the contrary, 

females had a greater investment ability and an overall improvement in reproductive 

performance with age. Older mothers increased investment in their second litters, and 

were able to produce high quality, large, fast growing offspring that were also more likely 
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to survive that the offspring from younger females. However, this greater maternal reduced 

their own survival. These results provide support for the terminal investment hypothesis 

(Cockburn 1994, Fisher & Blomberg 2011). Consistent costs of reproduction and terminal 

investment have often been difficult to demonstrate in wild mammals. My results confirm 

that marsupials are excellent models to address questions in life history evolution. 

 

In chapter 4 I investigate how rainfall patterns in relation to the reproductive cycle affects 

demography. I find that reproductive success of subtropical antechinuses is extremely 

sensitive to changes in environmental conditions, and that both the timing and magnitude 

of drought are important and may cause severe declines in the whole population. I show 

that growth, survival and body condition of individuals of this species are driven by rainfall, 

especially during lactation and weaning. During this study, the pattern of rainfall varied 

caused by strong effects of La Niña during 2010 and 2011, that ended 14 years of drought. 

Rainfall peaks varied in relation to the different stages of the reproductive season (mating, 

pregnancy, lactation and weaning) of subtropical antechinuses at Springbrook National 

Park.   

 

Overall, low rainfall during lactation reduced maternal condition and investment abilities 

that were evident by their reduced body mass, offspring growth, weaning success and 

survival of both mothers and offspring. Younger mothers and male offspring were most 

affected. In contrast, high rainfall throughout lactation increased maternal investment 

abilities as they were able to produce high quality, large offspring that were more likely to 

survive and breed. These high quality offspring also showed a greater investment ability 

themselves, by producing large, fast growing offspring, suggesting that the resulting 

increase in quality persisted throughout their lives. Younger mothers were the most 

favoured by good environmental conditions during lactation as their survival was greatly 

increased. However, survival of offspring as independent juveniles relies heavily on the 

predictability and abundance of rainfall during summer at weaning time. Low rainfall at the 

time when juveniles start to fend for themselves drastically reduced their survival, even if 

there was high rainfall during lactation. I conclude that growth and survival are determined 

by fluctuating environmental conditions in this species, in addition to sex allocation and 

maternal investment which depend on resource availability.  
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 2 

General Introduction 

1. Trade-offs between growth and survival during lactation in mammals   

Reproduction is the most demanding task for a female mammal, because energy 

expenditure reaches a peak during lactation (Loudon & Racey 1987, Bronson 1989, 

Speakman 2008). Consequently, its success depends on access to enough resources to 

sustain these high demands, that increase with litter size (Gittleman & Thompson 1988, 

Kenagy et al. 1989, Fletcher et al. 2013). During this phase, females usually increase their 

food intake substantially (Randolph et al. 1977, Kenagy et al. 1989, Koenig et al. 1997, 

Degen et al. 2002). However, there seems to be a physiological limit that prevents 

mothers from increasing their food intake past a certain limit (Kenagy et al. 1990, 

Hammond & Diamond 1992, Speakman 2008). Milk production is limited by the capacity of 

the mammary glands (Speakman 2008). Therefore, pronounced weight loss of mothers 

during lactation is common as maternal energy stores are converted to milk (Millar 1978, 

Loudon & Racey 1987, Green et al. 1991, Fisher & Blomberg 2011). In polytocous 

mammals, the amount of mass loss is generally related to litter size (Kenagy et al. 1990, 

Sikes 1995, Millesi et al. 1999, Kunkele 2000).  

The environment that the mother provides to her offspring modulates their development 

and responses of the offspring to this are known as maternal effects (Maestripieri & Mateo 

2009). Mothers in good body condition can transfer more milk to their offspring and 

therefore produce larger offspring at weaning (Bernardo 1996, Wauters et al. 1993, 

Andersen et al. 2000, Ylönen et al. 2004). Milk transfer depends primarily on food 

availability, the success with which the female has acquired and stored resources, and 

how efficiently she transfers resources to her offspring (Boydi & McCannt 1989, Kenagy et 

al. 1990, Clutton-Brock & Godfray 1991, Fairbanks & McGuire 1995). Therefore, reduced 

food availability and increased competition or interference from group members and/or 

litter-mates lead to juvenile mortality, low growth rates, delayed maturity and reduced 

reproductive success (McClure 1987, Festa-Bianchet 1988, Fairbanks & McGuire 1995, 

McMahon et al. 2000). For example, in marmots and baboons, increased maternal body 

condition, experience, and dominance rank have positive effects on offspring survival 

(Allainé 2000, King & Allainé 2002 Altmann & Albert 2005). 

Young that are heavier at weaning are more likely to survive and to reproduce successfully 

than lighter ones (Wauters et al. 1993, Lenihan & Van Viuren 1996, Millesi et al. 1999, 
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Lindström 1999, McMahon et al. 2000, Festa-Bianchet et al. 2000, Clutton-Brock et al. 

2001, Bautista et al. 2005, Rödel et al. 2008a,b). Offspring growth in mammals during 

lactation depends on maternal provisioning, including lactating performance, and other 

environmental factors such as litter size, as each young’s share of milk is reduced with 

increasing number of littermates (Rödel et al. 2008a, Rutkowska et al. 2011). Sibling 

competition, either by interference or scramble competition, seems to be common among 

littermates, and to increase with litter size (Hudson & Trillmich 2008). Under competition, 

larger/heavier offspring would have a clear advantage over the smaller/lighter ones as 

they would have improved motor abilities and increased efficiency in energy assimilation 

(milk conversion into body mass) and be better at maintaining their body temperature 

(Bautista et al. 2005, Rödel et al. 2008a). For example, in his experimental research with 

bank voles (Myodes glareolus), Koskela (1998) showed that pups from enlarged litters 

were smaller at weaning than those from smaller litters, and that this effect persisted until 

the reproductive season. Females that were heavier in winter had a higher probability of 

reproducing in the next spring. In another study, litter enlargements did not increase the 

number of weanlings, but significantly decreased weanling's weight and reduced survival 

and fecundity of mothers (Koivula et al. 2003), showing a high cost of reproduction. In 

domestic rats and rabbits, pups are smaller when growing in large litters, regardless of 

maternal size and growth rates (Rödel et al. 2008b). In Antechinuses, low food availability 

causes slow offspring growth, and offspring that grow more slowly have lower survival 

(Dickman 1989, Cockburn 1994, Fisher & Cockburn 2006, Parrott et al. 2007, Fisher & 

Blomberg 2011). 

In antechinuses, the energy investment that mothers make during gestation is small, as in 

all marsupials, since neonates are born at a very early stage of development weighing 

only ~0.016 g at birth (Marlow 1961). However, investment during lactation is very high, 

especially during the last month (the final third of the lactation period) (Cockburn 1994), 

because of the extremely high energy requirements of their large litters (Green et al. 

1991). Litters can weight up to five times the weight of the mother at weaning (Cockburn 

1994), and as a result, mothers lose on average 21% of their body mass by the end of 

lactation (Fisher & Blomberg 2011). Increasing litter size has been shown to have a 

negative effect on the body mass of male and female young yellow-footed antechinuses; 

young of either sex are smaller in large litters (Coates 1995). Female agile antechinuses 

with larger litters took longer to wean their offspring than mothers with smaller litters 

(Cockburn 1992) and generally failed to wean all of their young (Cockburn 1990).  
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2. The effects of litter sex ratio on maternal care and investment 

2.1. Adaptive hypotheses to explain biased sex allocation  

Evolutionary theory predicts that parents should invest equally in their progeny regardless 

of sex (Fisher 1930), however biased sex ratios occur in a wide range of animals including 

many mammals (Charnov 1982, Hardy 2002, Wild & West 2007). The main reason for this 

phenomenon is thought to be that the sexes are not equally costly to produce. Sex 

allocation theory aims to explain why parents invest differentially in sons and daughters 

based on either differential allocation of resources, or behavioural facilitation (West 2009, 

Monclús & Blumstein 2012. In mammals, it is likely that multiple maternal and 

environmental effects contribute to strategies of biased sex allocation (Cockburn et al. 

2002, Wild & West 2007). Wild marsupials frequently produce unbalanced offspring sex 

ratios (Cockburn 1990, Robert & Schwanz 2011). 

There are two main hypotheses that aim to explain sex ratio variation in mammals: the 

Trivers-Willard hypothesis (TWH) and the local resource competition hypothesis (LRCH) 

(Cockburn et al. 2002, Wild & West 2007). The TWH hypothesis is the one that has 

received the most support and states that parents in good condition will invest more in the 

sex with greater fitness returns (Trivers & Willard 1973). In polygynous species, mothers in 

good condition should invest more in sons, because such mothers are expected to have 

the ability to produce large, high quality offspring, and having large, competitive sons will 

give them greater fitness returns than they would obtain by producing high quality 

daughters (Lee & Moss 1986, Hewison & Gaillard 1999, Cockburn et al. 2002, Cameron 

2004, Sheldon & West 2004). In polygynous species, reproductive success of males 

depends on their size and competitive abilities, and large males will usually outcompete 

small ones (Meikle et al. 1995, Fisher & Cockburn 2006). However, males are more costly 

to produce than females as they grow bigger and faster in dimorphic species (Clutton-

Brock et al. 1981, Redondo et al. 1992). In contrast, mothers in poor condition, such as 

those that are thin or small for their age, or young, would benefit by investing more in 

daughters, as they would be unable to produce large, high quality offspring. Most of their 

daughters will breed successfully even if they are small because there is reduced or no 

competition for mates in female mammals and size is less important for reproductive 

success than it is for males. Daughters are expected to be cheaper to produce because 

they have slower growth rates compared to males (see below) and they are usually 

smaller (Clutton-Brock et al. 1981, Lee & Moss 1986, Redondo et al. 1992, Robert et al. 
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2010). 

The LRCH hypothesis states that when one sex remains philopatric and the other 

disperses, competition for local resources will occur among the philopatric sex. Therefore, 

mothers should produce more of the dispersing sex (Clark 1978, Greenwood 1980, Silk 

1983, Wild & West 2007). In societies with strong female-biased philopatry, as in most 

mammals, mothers should invest more in sons than in daughters to avoid future 

competition, especially in high density populations or at sites and times with resource 

scarcity (Chapman et al. 1989, Komdeur et al. 1995, 1997, Johnson et al. 2001, Cockburn 

et al. 2002, Isaac et al. 2005). This hypothesis also suggests that under those conditions, 

mothers should delay the production of the philopatric sex until later in life, when the 

chances of daughters competing with their mothers are reduced and the mothers’ chances 

of being replaced are higher (Clutton-Brock et al. 1982, Cockburn et al. 2002, Lambin et 

al. 2001). However, when the philopatric sex provides fitness benefits to the breeders, 

overproduction of the philopatric sex should be favoured (Cockburn et al. 2002). For 

example in societies based on dominance rank with matrilineal inheritance of female rank, 

high ranking females invest more in daughters, whereas low ranking mothers invest more 

in sons, as they disperse (Simpson & Simpson 1982, Silk 1983, Hiraiwa-Hasegawa 1993, 

Cockburn et al. 2002). Females are the typical philopatric sex in mammals, and in social 

species of mammals and other taxa that tend to form strong social bonds with their mother 

and sisters (Curley & Keverne 2005, Broad et al. 2006, Dunbar & Shultz 2010), but this 

does not necessarily means that daughters confer fitness benefit to their parents. It is 

therefore important to understand the costs and benefits experienced by females living in 

matrilineal groups to better understand sex allocation. 

In general, male mammals weigh more than females and grow faster as juveniles (e.g. 

elephants: Lee & Moss 1986;, seals: Ono & Boness 1996, McMahon et al. 2000; 

ungulates: Kojola 1993, Birgersson et al. 1998, Hewison & Galliard 1999; and primates: 

Bercovitch et al. 2000, Johnson 2003). Therefore the energy that mothers need to allocate 

to raise a son is greater than when raising a daughter. For example, male elephants 

attempt to suckle more frequent and their suckling bouts are longer than those of females, 

therefore it is assumed that males have a higher milk intake rate and grow faster than 

females (Lee & Moss 1986). Low food availability has a strong effect on the survival of 

male yearlings and mothers have longer interbirth intervals when raising a son (Lee & 

Moss 1986). In agile antechinuses, sons weigh more even though they are weaned earlier 

than females (Cockburn 1992), and females are always able to wean some daughters 
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even if the health or quality of the mother is poor (Cockburn 1994). This suggests that 

males are energetically more expensive to produce than daughters. Moreover, Cockburn 

(1994) observed that mothers with a high proportion of sons were more likely to die during 

lactation. This suggests that if the Trivers-Willard effect is operating in antechinuses, 

mothers in better condition should overproduce sons. 

Litter sex ratios sometimes vary with population density (Kruuk et al. 1999, Johnson et al. 

2001). For example, dominant female red deer have been described to produce 

consistently more sons than daughters as male reproductive performance increases with 

maternal dominance. However, Kruuk et al. (1999) found that this pattern disappear in 

high population densities. Lambin (1994) studied sex ratio variation in Townsend's voles 

(Microtus townsend’s) and observed that when population density was high, litter sex 

ratios were unbiased. When population density was low, mothers produced female-biased 

litters. Females born in these female-biased litters formed close associations with their 

mothers, were more likely to reproduce when the mother was alive (kin facilitation), and 

produced more female-biased litters. Females born at high population density were less 

likely to reproduce due to intense competition for space from their female relatives, so 

competition reduced the benefits of producing philopatric females. In antechinuses, males 

disperse as soon as they are weaned and females are highly philopatric, so it is very likely 

that competition for limited resources will occur among females, between the mothers and 

daughters and among siblings (Chapman et al. 1989). Competition for food resources 

between group members is one of the main disadvantages of sociality, and can occur 

through direct interference when individuals directly compete for resources, or when other 

individuals cause resource depletion (van Schaik 1989). High levels of competition among 

philopatric females might have a negative effect on many aspects of an individual's 

survival, sociality, home range and reproductive performance. Dickman (1988) evaluated 

the effects of interspecific competition and food abundance on litter sex ratios of the agile 

antechinus in areas where this species coexists with a larger hypothesized competitor 

species, the dusky antechinus (A. swainsonii), using food supplementation. He found that 

in most locations, the litter sex ratio of agile antechinuses was female-biased, especially 

where there was an unusually high density of the dusky antechinus. When food was 

superabundant (either naturally or when supplementary food was provided) or when the 

intensity of interspecific competition was reduced (when dusky antechinus was removed) 

pouch-young were biased towards males. This confirmed that competition is a cause of 

biased sex allocation. Philopatric females not only compete for food resources. For 
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example, common brushtail possums are known to defend access to dens with their 

philopatric daughters, and when population density is high, especially in areas with high 

food density, and den availability is reduced, females produced more sons than daughters 

(Johnson et al. 2001). 

 

2.2. Experimental manipulations of sex ratios 

Understanding the vast variety of birth sex ratios in mammals has been difficult due to 

their complex life histories and even more complex social interactions (Robert et al. 2010, 

Robert & Schwanz 2011). Furthermore, the TWH and the LRCH are not mutually exclusive 

and both could be operating in natural population of animals (Robert & Schwanz 2011). An 

ideal way to test sex allocation hypotheses is to experimentally manipulate offspring sex 

ratios via cross-fostering, to evaluate if mothers invest more in one sex or the other. This 

experimental approach permits researchers to disentangle the effects of maternal 

condition and environmental quality from sex differences in offspring ability to acquire milk 

on their growth and survival (Koskela et al. 2009, Roberts et al. 2010, Robert & Schwanz 

2011). Koskela et al. (2009) conducted a cross-fostering experiment in bank voles in which 

they manipulated postnatal sex ratio and the quality of the rearing environment by creating 

litters with only sons or only daughters, with large or small litters (-2 or +2 pups). This 

species is polygynandrous (multi-male, multi-female mating system) with no or reverse 

sexual size dimorphism. They observed that daughters grew faster than sons, 

demonstrating that maternal allocation was biased towards daughter regardless of 

maternal condition; sons from the enlarged litters were the smallest individuals. Mothers 

produced more milk for female litters and defended them more intensively. Robert et al. 

(2010) also performed a cross-fostering experiment in tammar wallabies (Macropus 

eugenii) to test if offspring sex is correlated with maternal investment. The weight of 

surviving offspring was not influenced by the sex of the offspring originally produced by the 

mother or the sex of the foster offspring. Females that gave birth to a son had higher 

investment ability, regardless of the sex of the cross-fostered offspring. This experimental 

approach shows that the correlation between maternal condition and male-biased sex 

ratios seen in these mammals does not occur because mothers with more daughters lose 

condition. Both of these experiments support the Trivers-Willard hypothesis, that maternal 

condition and ability to allocate energy cause biased sex allocation. Hager and Johnstone 

(2006) investigated the genetic and phenotypic factors that affect both maternal 



Chapter 1 

 8 

provisioning and offspring fitness in the house mouse (Mus musculus). They conducted a 

cross-fostering experiment to see if the presence of non-kin litter-mates affected the 

overall maternal provisioning of the litter. They found that the most important predictor for 

offspring weight gain was the mother’s weight: large mothers had larger offspring, 

regardless of relatedness. Male-biased litters gained less weight, because males are 

larger than females and were energetically more costly to produce, and there was 

increased competition within litters of males.  

 

3. Maternal investment and the costs of reproduction for female mammals 

Life history theory predicts a decline in reproduction and survival with age in iteroparous 

animals (Stearns 1992). The reason for this is that organisms only have limited resources 

that must be allocated to different essential requirements such as growth, self-

maintenance, survival and reproduction (Stearns 1992). Their reproductive success will 

depend on trade-offs among these, and how these constraints are dealt with (Williams 

1966). Therefore, the investment that an individual makes in each reproductive event 

would reflect the trade-offs between the costs of reproduction (physiological and 

ecological), offspring quality, their own survival and their future breeding potential 

(Williams 1966, Clutton-Brock 1984, Speakman 2008).  

Investment in current reproduction should also depend on individuals’ lifespans. Animals 

that have a long lifespan should favour their own survival over reproduction, while short-

lived ones should favour allocation to reproduction over their own survival (Hamel et al. 

2010). Heavy investment in current reproduction typically reduces both the future breeding 

potential and survival of the mother (Stearns 1992, Speakman 2008). Due to the high 

energetic requirements of reproduction, particularly during lactation, mammals are an 

excellent model taxon for studying the costs of reproduction (Hamel et al. 2010).  

Senescence and terminal investment are the main hypotheses that attempt to explain age-

specific variation in the reproductive performance of organisms (Weladji et al. 2010). The 

senescence hypothesis states that older females should reduce their investment in 

reproduction due to progressive deterioration of condition with ageing (Kirkwood & Austad 

2000, Selman et al. 2012). The terminal investment hypothesis states that because of the 

reduction in the possibility of successfully reproducing in the future, older mothers should 

increase their investment in current reproduction (Williams 1966, Clutton-Brock & Godfray 
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1991, Stearns 1992), suggesting that older mothers should invest more in reproduction 

than younger ones. These hypotheses are also not mutually exclusive, despite their 

opposite predictions (Weladji et al. 2010).  

The age of a mother can affect sex allocation because of age-related changes in a 

female’s body condition, experience, or the likelihood of competition between mothers and 

offspring (Isaac et al. 2005, Martin & Festa-Bianchet 2011). For example, in the bighorn 

sheep, reproduction frequency and offspring sex ratio of older mothers depends on 

environmental conditions. In good conditions, old females produce daughters every year, 

but when conditions were bad, old females produced more sons but not every year (Martin 

& Festa-Bianchet 2011). Young female reindeer were more likely to produce a son, while 

older females had shorter gestation times, lighter calves (suggesting that they were in 

poorer condition) and were more likely to produce a daughter (Holand et al. 2006). In the 

common brushtail possum, young females produce more sons in their first breeding event 

and thereafter, their offspring sex ratio is more dependent on their body condition. Mothers 

in good condition seem to be more likely to produce sons (Isaac et al. 2005). In some 

species including macropods and antechinuses, older females produce more daughters, 

and young females that produce daughters suffer poorer reproductive performance, 

suggesting a negative effect of competition from philopatric daughters on mothers (Stuart-

Dick 1987, Cockburn 1992). Cockburn et al. (1985a) measured the litter sex ratios of three 

species of antechinuses; although there was substantial interpopulation variability with 

little year-to-year variation, they found different patterns in each species. Litters were 

female-biased in the brown antechinus A. stuartii, close to parity in the yellow-footed 

antechinus A. flavipes and male-biased in the dusky antechinus A. swainsonii. They 

proposed that the extent of bias in litter sex ratios was related to the probability of females 

breeding twice (degree of female iteroparity). In populations where female semelparity is 

common and almost all females die after breeding once, females produced female-biased 

litters, and in populations where mothers have a high probability of breeding twice, as in A. 

swainsonii (Cockburn et al. 1983), females usually produced male-biased litters in their 

first breeding attempt and female-biased litters in their second breeding season.  The 

authors suggested that as females that breed a second time usually share their nests and 

home range with their daughters (or at least with one) until the next mating season 

(Cockburn et al. 1985b), so producing male-biased litters in the first breeding season 

would reduce long term competition with daughters (Smith 1968, Clutton-Brock et al. 

1982). This explanation fits with the local resource competition hypothesis, and assumes 
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that the negative effect of sharing between females would be worse than the negative 

effect of raising sons on the mother (Cockburn 1992). Fisher and Blomberg (2011) 

compared the reproductive allocation and fitness of semelparous and iteroparous female 

brown antechinuses. Litters of semelparous mothers and from the second litter of 

iteroparous mothers showed a faster growth rates and were more likely to survive than the 

first litters from iteroparous mothers. Mothers with fast growing offspring significantly 

reduced their body weight by the end of lactation, and did not survive more than three 

months after weaning their offspring. This suggests extremely high reproductive costs for 

mothers that invest heavily in their offspring, compromising their own survival. 

 

4. Environmental effects on maternal investment and sex allocation 

Variation in environmental conditions is an important confounding factor affecting the 

relationship between maternal condition, investment ability and sex allocation in wild 

population of mammals. In poor environmental conditions, mothers are expected to trade-

off between reproduction and their own survival, especially in mammals as reproduction 

involves extremely high energetic demands during lactation (Speakman 2008). Reduced 

offspring growth (Festa-Bianchet & Jorgenson 1998) or increasing the production of 

daughters (Kruuk et al. 1999, Koskela et al. 2004) in poor environmental conditions have 

been described different species. Furthermore, individual differences in their ability to 

acquire and allocate resources to different activities and requirements also vary with 

environmental conditions. This is a major confounding factor affecting maternal investment 

and sex allocation (Reznick et al. 2000). 

Some dasyurids including antechinuses have an extreme life history. They have just a 

single, extremely short and highly synchronous mating event per year that ends with 

complete male die-off  (obligate male semelparity) leaving a population of pregnant 

females (Braithwaite & Lee 1979, Oakwood et al. 2001, reviewed in Fisher et al. 2013) 

(see below). Braithwaite and Lee (1979) suggested that the evolution of such an extreme 

reproductive strategy was driven by the need of females to secure enough food to sustain 

the high energetic requirements of lactation and the weaning of large litters combined with 

long lactation time. Late lactation is the most energetically demanding time for a small 

female mammal. Lactation in marsupials lasts much longer than in eutherian mammals 

because young are born after a very brief gestation, and marsupials have a lower 
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metabolic rate than eutherian mammals (Tyndale-Biscoe & Renfree 1987). Lactation in 

antechinuses lasts for almost 4 months (~14 weeks: 95-110 days; Wood 1970, Cockburn 

1992), which is extremely long for a small female mammal that lives for 16-20 months.  

Braithwaite and Lee (1979) suggested that antechinuses inhabit highly seasonal, 

predictable environments such as coastal Australian forests, and that they matched the 

end of lactation and the time of juvenile independence with the highest annual peak of 

arthropod abundance (Braithwaite & Lee 1979). They hypothesized that species with 

semelparous males need to wean young at the time of year when food availability peaks, 

so they need to mate synchronously and can only raise a single litter in this period of high 

food availability because of their long lactation time. However, variability in the seasonality 

of arthropod abundance at different habitats where these dasyurids live has only been 

explored recently by Fisher et al. (2013). These authors found that the seasonal 

predictability of arthropod abundance increased with latitude, and that at sites with higher 

seasonal predictability the duration of the mating season was shorter, males had the 

lowest post-mating survival, extremely long copulation durations and also the largest 

testes. In contrast, species of carnivorous marsupials inhabiting tropical areas (where 

seasonal predictability is reduced) have longer mating seasons and higher post-mating 

survival of males. These findings support the idea that females synchronize late lactation 

and weaning to the time of year with the highest abundance of prey by restricting the 

mating season, causing males to increase their reproductive effort through sperm 

competition, at the expense of their own survival (Fisher et al. 2013).  

These carnivorous marsupials with semelparous life histories, extremely high energetic 

requirements during lactation and their high dependence on seasonal predictability of 

insect abundance makes them quite vulnerable to extreme changes of weather conditions. 

Australia has the highest number of modern extinctions of mammals of any country (22-25 

species depending on which islands are counted). Medium-sized mammals in drier 

mainland climate zones have been worst affected. The main causes are the introductions 

of exotic predators and competitors, and destruction and fragmentation of habitat. 

Globally, species with small distributions and specialised habitat requirements are most at 

risk, which can also vary depending on their life history traits, population density, and 

overlap with human populated areas.. Interactions between risk factors are also important   

(Davidson et al. 2009). Although larger-bodied mammals (>3 kg or >5.5 kg, depending on 

the authors’ criteria) are at higher risk of extinction (Cardillo et al. 2005, Davidson et al. 
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2009), globally, from the extant species of mammals, 25% of them are at risk of extinction, 

more than 50% are in decline and 15% weigh more than 5.5 kg (Davidson et al. 2009).  

Climate change is now considered to be the major threat to biodiversity during the next 

100 years (Isaac 2009, Cahill et al. 2013). Vulnerability to climate change is associated 

with geographical distribution and life history traits, and risk is higher for species restricted 

to small areas with short generation times (Jiguet et al. 2007, Pearson et al. 2014), 

especially if climatic changes occur rapidly and include extreme events (Isaac 2009). 

Disruption of species interactions, in particular decline in food availability, is likely to be a 

major cause of species declines and extinction due to climate change (Cahill et al. 2013). 

Subtropical antechinuses have a very small range, extreme life history and extremely high 

energetic demands of lactation. These traits make them quite vulnerable to climate 

change. Droughts that reduce food supply can cause severe population decline (Parrott et 

al. 2007). This is of a special concern because extreme changes in weather conditions are 

expected to increase in Australia and worldwide, and drought events are likely to increase 

in frequency and intensity, which can have devastating consequence for small carnivorous 

marsupials (Rhind & Bradley 2002, Parrott et al. 2007, Recher et al. 2009). 

 

5. Background on Antechinus subtropicus, a small carnivorous marsupial 

5.1. Taxonomy of the study animal and location of the study 

The genus Antechinus (Order Dasyuromorphia, family Dasyuridae) was until recently 

thought to consist of ten species of small marsupials endemic to Australia (Van Dyck 

2002). However, during the past three years three new species have been discovered 

(Baker et al. 2012, 2013, 2014). Populations formerly considered to be the brown 

antechinus have been divided into four different species based on morphological and 

genetic evidence in the last 16 years (Dickman et al. 1998, Van Dyck & Crowther 2000, 

Crowther et al. 2003). The brown antechinus complex (the name given to this group of 

closely related species) consists of A. stuartii, A. agilis, A. adustus and A. subtropicus, 

found in eastern Australia. The brown and agile antechinus (A. stuartii and A. agilis) are 

the best studied species of this group (Naylor et al. 2008). These four species of 

antechinus are closely related to the yellow-footed antechinus (A. flavipes) and together 

are referred as the stuartii-flavipes complex. Two of the new species, the buff-footed 

antechinus (A. mysticus) and the silver-headed antechinus (A. argentus) are more closely 
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related to A. flavipes (Baker et al. 2012, Baker et al. 2013). 

This study was carried out on the subtropical antechinus (Antechinus subtropicus), which 

is found only in a small geographic range from south-eastern Queensland (south of  

Gympie) to north-eastern New South Wales. The species is restricted to high altitude 

subtropical rainforests where it inhabits areas with dense understorey of tangled vines and 

fallen, rotten  logs and is abundant near Brisbane at Mt Glorious (D'Aguilar Range) and 

Springbrook National Park (Springbrook Plateau). It is the largest of the brown antechinus 

complex (Menkhorst & Knight 2001). Wood (1970), Braithwaite (1974) and Braithwaite and 

Lee (1979) studied A. subtropicus (then named A. stuartii).  

 

5.2. Nesting and diet 

Antechinuses are common, forest dwelling, insectivorous marsupials that inhabit a wide 

diversity of habitats, from tropical and temperate forest to alpine regions (McAllan et al. 

2006). Three species, the dusky antechinus (A. swainsonii), the swamp antechinus (A. 

minimus) and the newly described black-tailed antechinus (A. arktos: Baker et al. 2014) 

are ground dwelling (not good climbers), have long and strong foreclaws modified for 

digging, and are adapted to fossorial habits. However, the species belonging to the 

stuartii-flavipes complex are arboreal, with specialised adaptations for climbing such as 

short, hooked claws (Nowak 1999).  

Antechinuses  are the most social genus of carnivorous marsupials, nesting communally in 

tree hollows (the stuartii-flavipes complex) or terrestrial nests (A. minimus, A. swainsonii 

and most likely A. arktos), where they form groups composed of individuals of both sexes 

(A. stuartii: Lazenby-Cohen 1991, A. flavipes: Coates 1995, A. subtropicus: Fisher et al. 

2011; A. minimus: Sale et al. 2009, A. swainsonii: Cockburn et al. 1985b), although two 

studies have documented no nest sharing in A. swainsonii (Green & Crowley 1989, 

Sanecki et al. 2006). 

These small marsupials (20-40 g) have been described as crepuscular or nocturnal (Wood 

1970, Naylor et al. 2008), but yellow-footed antechinuses (A. flavipes), dusky 

antechinuses (A. swainsonii) and subtropical antechinuses (A. subtropicus) are also active 

during the day (Coates 1995, Green & Crowley 1989, Fisher et al. 2011, Rojas et al. 2014, 

personal observations). These solitary foragers occupy stable home ranges (Lazenby-
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Cohen & Cockburn 1991) that overlap with each other, as they are not territorial (Fisher et 

al. 2011). Males’ home ranges are larger than those of females (Lazenby-Cohen & 

Cockburn 1991, Fisher et al. 2011) with males increasing the sizes of their home ranges 

during the rut (mating season) to overlap with more females, as they are highly 

promiscuous (Fisher et al. 2011).  

These insectivorous marsupials are opportunistic predators consuming predominantly 

terrestrial invertebrates (Hall 1980, Fox & Archer 1984, Lunney et al. 2001) and the 

occasional small vertebrate (Fox & Archer 1984, Lunney et al. 2001). Antechinuses 

consume ~ 60% of their mass in arthropods each day (Nagy et al. 1978) increasing their 

food consumption in late autumn, presumably to increase their body reserves for 

reproduction (Green et al. 1991). Males reduce feeding to the minimum during the mating 

period, if they hunt at all, while females increase food intake to the maximum during late 

lactation (Green et al. 1991). 

 

5.3. Life history  

Species in the genus Antechinus have an extremely unusual life history for a mammal; 

after a brief annual mating season, all males die and the population consists entirely of 

pregnant females (section 4 above, Braithwaite & Lee 1979, McAllan et al. 2006, Naylor et 

al. 2008). Male mortality occurs synchronously due to an increased level of stress caused 

by high levels of testosterone and cortisol, which provokes the collapse of the immune 

system, causing internal ulceration increase of infections and parasite loads (Bradley et al. 

1980, Scott 1987). Males reach maturity at around 10.5 months and live for 11.5 months 

(Braithwaite & Lee 1979, Naylor et al. 2008). The mating season or rut occurs for ~ 2-3 

weeks each year in late winter or early spring on predictable dates for each population 

(Braithwaite & Lee 1979). The timing of the rut is triggered by the rate of change of 

photoperiod (McAllan et al. 2006) together with pheromonal cues, on predictable dates 

that vary with latitude for different populations and species (Naylor et al. 2008). In 

subtropical antechinuses, the rut occurs in late August at Springbrook, and late September 

at Mt Glorious.  

Females usually live for 16 to 20 months (Lee & Cockburn 1985, Coates 1995) and most 

(80 – 95%, depending on the population) breed only once (i.e. produce only one litter in 

their lifetime) (Wood 1970, Fisher & Cockburn 2006, Fisher & Blomberg 2011). The 
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proportion of iteroparous females, those that manage to survive weaning their first litter to 

reproduce a second time, not only varies in different populations and species, but also 

seems to be higher in those species with larger body sizes (Cockburn et al. 1983). 

Females produce only one litter per year of 6-14 young, limited by the number of teats, 

which depends on the species (Woolley 1966) and on factors that affect habitat 

productivity and therefore the number of young that mothers can raise, including the 

geographic location (Cockburn et al. 1983), and the type of habitat (Beckman et al. 2007). 

Teat number increases with latitude, altitude and in inland populations (Cockburn et al. 

1983) and with greater environmental seasonality (Beckman et al. 2007). In the subtropical 

antechinus the number of teats is eight, so females can wean up to eight young.  

Gestation lasts around 28 days, and young antechinuses are born in spring 

(synchronously within a population, most within a week of one another) at an immature, 

embryonic stage (~0.016 g). Each neonate fuses to a teat in the pouch at birth and 

remains attached for 5 - 6 weeks (the pouch-young stage) before detaching (Marlow 1961, 

Fisher & Blomberg 2009). The nestling stage follows, when the mother leaves the young in 

a nest woven from leaves, usually in a tree hollow, while she goes out to hunt. She 

intermittently returns to the nest for a suckling bout. Young are weaned in summer, after a 

further 7 – 8 weeks (Marlow 1961, Fisher 2005). During the last weeks of lactation, 2-4 

weeks before weaning, young commence to emerge from the nest to explore their 

immediate surroundings and begin to learn to feed themselves, but rush back to the nest 

when disturbed or when the mother returns from hunting (Coates 1995). 

 

5.4. Social organization and mating system 

In late summer, when the young become independent, sons disperse away from their 

birthplace, whereas females stay at the natal site (philopatry) and continue to share a 

home range and nest sites with their mother and sisters (matrilineal social organization), 

as well as unrelated females and males. Strongly male-biased dispersal has been 

described in detail in the agile antechinus, yellow-footed antechinus, dusky antechinus and 

brown antechinus, and also occurs in the subtropical antechinus (Cockburn et al. 1985a, 

Coates 1995, Lazenby-Cohen 1991, Kraaijeveld-Smit et al. 2002, Fisher 2005, Fisher & 

Blomberg 2011). Inbreeding avoidance and the probability of finding a site with more 

mating opportunities appear to be the main benefits of dispersal for males (Cockburn et al. 
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1985b, Fisher 2005). Males disperse more frequently and further away than females, and 

this effect can be accentuated in low density populations (Fisher 2005). Male dispersal 

means that mark-recapture studies can only estimate survival and lifetime fitness in 

females, not males (Fisher et al. 2006). 

Trapping and radio-tracking data have shown that dispersing males join a matrilineal 

group that is unrelated to them, and are replaced in their own natal group by immigrating 

males from other families. Therefore, it seems that male dispersal does not reduce 

population density, and therefore does not reduce potential competition for resources 

(Cockburn et al. 1985b, Fisher 2005). It is thought that the mother exerts tight control over 

the sex and relatedness composition of groups by enforcing the dispersal of newly weaned 

sons, because normal patterns of male dispersal and social organization are disrupted if 

the mother dies prior to weaning time (Cockburn et al. 1985b, Fisher 2005). Because 

daughters remain in their natal site and keep living with their mother as independent 

adults, sharing nests and home ranges, there might be fitness benefits for females that live 

in large matrilineal groups. Nothing is currently known about the potential benefits and 

costs of extended families in these species. 

The social structure of antechinuses is cyclic and changes through the year. Pregnant and 

lactating females nest solitarily during spring until mid summer (A. stuartii: Lazenby-Cohen 

1991, A. flavipes: Coates 1995). Communal nesting occurs during the part of the year 

when males are alive, from the time of weaning until the mating season: from late summer 

until late winter (Fisher et al. 2011). Individuals of both sexes share these communal nests 

and individuals frequently join and leave temporary nesting groups between foraging 

bouts, and thus Antechinus exhibit a fission-fusion social system characterized by groups 

of fluid composition (see below). Radio-tracking studies have shown that these species 

communally nest in tree cavities, and that they change nests often (brown antechinus: 

Cockburn et al. 1985b, Lazenby-Cohen 1991; agile antechinus: Banks et al. 2005; 

subtropical and brown antechinus: Fisher et al. 2011; dusky antechinus: Cockburn et al. 

1985b). Genetic analysis has shown that nesting groups of agile antechinuses (Banks et 

al. 2005) and subtropical antechinuses (Fisher et al. 2011) are composed of related 

females, unrelated females and unrelated males, and females in nests have higher 

relatedness than would be expected if the population shared nests at random. Because 

antechinuses regularly switch nests (Cockburn & Lazenby-Cohen 1992), these results 

suggest that groups of related females might be more likely to move together between 

nests, but this has not been determined. Lorch (2004) suggested that regularly changing 
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nests might be a strategy to avoid predation and parasites. 

Antechinuses of both sexes are highly promiscuous with a mating system of scramble 

polygyny. Males as well as females always share nests during the mating season (Fisher 

et al. 2006, Sale et al. 2009, Fisher & Blomberg 2011) and group size is greatest during 

the winter mating season. Lazenby-Cohen and Cockburn (1988) hypothesized that this is 

because groups of males congregate at leks (arenas to which females are attracted to 

choose a mate), but Fisher et al. (2011) showed that thermoregulation is a better 

explanation for the correlation between group size and time of year, because antechinus 

groups were larger on colder days, and group size was unrelated to the days until mating. 

Conservation of heat by huddling is a benefit of grouping in many small animals (Krause & 

Ruxton 2002). Small mammals can reduce heat loss by reducing the fraction of their 

surface area that is exposed to colder surroundings when they huddle together (Canals et 

al. 1989). At low temperatures, small mammals increase their metabolic rate in order to 

maintain their body temperature, but huddling allows individuals to lower their metabolic 

rate, reducing their energetic requirements and increasing survival in colder environments 

(Canals et al. 1989). Huddling also increases the temperature of the surrounding air, if it 

occurs in a confined space, such as a tree cavity or a burrow (Hayes et al. 1992, Krause & 

Ruxton 2002). In small mammals that usually forage solitarily such as antechinuses, 

thermoregulatory benefits can be so crucial for survival in winter that unrelated animals 

that are usually antagonistic will huddle together in nests between foraging bouts when 

there is a shortage of relatives (Schradin et al. 2006), and this may be the reason why 

agile and brown antechinuses were found to share nests at one of the few sites where two 

species in the stuartii-flavipes complex overlap geographically (McNee and Cockburn 

1992). Antechinuses exhibit several other physiological and behavioural adaptations to 

conserve energy: frequent torpor; construction of nests in tree cavities with a small 

entrance with increased insulation by using leaf litter as nesting material; and spending a 

large proportion of time in these nests (Geiser 1988, Fisher et al. 2011, Rojas et al. 2014). 

Fisher et al. (2011) provides one reason for changes in group size in the fission-fusion 

social system of antechinuses, but does not explain the relatedness structure of groups. 

The costs and benefits of grouping within matrilines are unknown. 
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6. Thesis aims 

The principal aim of this thesis was to study the life-history trade-offs associated with 

reproduction in a wild population of subtropical antechinuses. In particular, I evaluated how 

maternal investment varies in relation to offspring sex (sex allocation) and in relation to 

age (costs of reproduction). By using a cross-fostering experimental design, I swapped 

some young between mothers to enhance the natural sex ratios of their litters and 

evaluated the effects of their performance in terms of growth and survival, in the wild. The 

data collected during the three years of this field study showed how life-long fitness was 

affected by this manipulation and interactions with environmental conditions. Results are 

presented in three data chapters (chapters 2 to 4). 

 

Chapter 2 

An experimental test of the Trivers Willard and Local Resource Competition hypotheses 

using three generations of cross fostering in the subtropical antechinus. 

In this chapter I provide support for the LRCH and reject some key predictions of the TWH. 

I show that in this species, producing sons is effectively more costly than producing 

daughters. However, at the expense on their own survival, mothers were able to increase 

their investment and raise more sons than the number naturally produced without 

compromising their offspring’s fast growth rates. In addition, mothers that naturally 

produced female-biased litters, despite being smaller, were able to produce large and fast 

growing daughters. I also show that litter size only affected the growth of daughters and 

not sons.  

 

Chapter 3 

Age-specific reproductive trade-offs in female subtropical antechinuses. 

In this chapter I provide support for the terminal investment hypothesis. I show that older 

females have a greater maternal investment ability and improved survival than younger 

females, despite the fact that they have no chance to breed in a third season. Additionally, 

their large, fast growing offspring were more likely to survive than the offspring from 

younger females. 
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Chapter 4 

Environmental constraints and their effects on maternal investment in subtropical 

antechinuses. 

In this chapter I show that subtropical antechinuses are extremely sensitive to changes in 

environmental conditions. Not only the severity but also the timing of events such as 

droughts are important. Environmental variability that disrupts the seasonal predictability of 

insect abundance can have serious effects on many aspects of demography and individual 

fitness, because antechinuses synchronise their reproductive season to match the end of 

lactation with an annual peak of arthropod abundance that is highly dependent of rainfall.  

I show that low and delayed rainfall severely impair growth, maternal investment ability 

and survival. Conditions experienced early in life persist into adulthood: high rainfall 

throughout lactation and weaning maximises growth, survival and reproductive success, 

and therefore fitness in this short-lived species. 

 

Chapter 5 

General Discussion. 

This last chapter provides a general overview of the previous chapters presented in this 

thesis while highlighting the significance of the results presented and areas for future 

research.  

 

 

7. Research plan and Methodology 

7.1. Study Site 

This study was carried out at the Springbrook Plateau section of the Springbrook National 

Park. This park is part of the Gondwana Rainforests of Australia World Heritage with a 

subtropical rainforest located at around 100km south of Brisbane in the Gold Coast 

Hinterland in south-east Queensland, Australia (-28.23ºS, 153.28ºE). This is a montane 
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rainforest with emergent eucalypts located at relatively high altitude (~900 m above see 

level). The climate is subtropical, with maritime influence due to its proximity to the coast, 

frequent cloud immersion and fog events caused by the relatively high altitude and the 

interactions between topography (vertical cliffs) and canopy rainforest with an average 

rainfall of more than 3000 mm per year.  

I established two field study sites where Antechinus subtropicus were relatively abundant 

on the Springbrook plateau between August 2010 and August 2013. The largest site was 

located adjacent to the QNPWS rangers’ barracks and the second one next to 

Goomoolhara falls. Subtropial antechinus is considered a subtropical rainforest specialist 

and prefer habitats with dense understorey, vine tangles with fallen and rotten logs on the 

ground and abundant leaf litter. Two previous ecological studies (undergraduate projects 

supervised by Diana Fisher, Fisher et al. 2011) were carried out at this site with the same 

population of antechinuses in 2008 - 2009. At this location, the mating season for this 

species occurs at the end of August each year. 

 

7.2. General field methods: individual identification and measurements 

Animals were trapped using aluminium Elliot traps placed 5-10 m apart at marked 

locations along a disused walking track and adjacent areas. The location of each trap is 

permanently marked and labelled with coloured flagging tape. Old location marks, derived 

from previous studies on this species at this site, were used, as well as new ones. Traps 

were waterproofed by placing each trap in a plastic bag, open at the entrance, and non-

absorbent Dacron fibre (pillow stuffing) was provided for bedding. Traps (N=200) were set 

before dusk and checked every four to six hours, and I used a mixture of peanut butter 

and rolled oats and two soaked dog kibbles (dog chow) as bait. 

Each captured animal was sexed, weighed and microchipped with a unique passive 

integrated transponder (Trovan, ID-100, 11 x 2.2 mm or 7 x 1.25 mm) for individual 

identification. The microchip was injected under the skin between the shoulders (as in 

Fisher 2005). Determination of age in this species is easy, due to the species life history 

and population structure (males only live for 11.5 months and second year females can be 

visibly distinguished from juveniles / first-year females by the presence (post-reproductive 

or second year females) or the absence (pre-reproductive or first-year females) of teats or 

pouch development (i.e. teats are not visible in first year females until the breeding 
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season) (Cockburn et al. 1983, Lada et al. 2008. All animals were released after handling 

at the point of capture. If new individuals were trapped, a small sliver of ear tissue (~2mm 

diameter) was taken using a sterile biopsy punch and stored in 70% ethanol for possible 

later genetic analysis. I estimated growth and survival of antechinuses from monthly trap-

recapture data (as in Fisher et al. 2006). 

 

7.3. Design of the cross-fostering experiment to manipulate the number of females 

in family groups 

I created matrilines of subtropical antechinuses with different numbers of females through 

cross-fostering (swapping some young between litters). Lactating females were captured 

from the field site during the second and third week of October (at this location, females 

give birth at the end of September) and brought into temporary captivity for up to seven 

weeks. At the time of capture, young were around two to three weeks old and strictly 

attached to the teat (permanently). The whole idea was to capture the mothers with their 

entire litter. Mothers were maintained individually (as they nest alone at this stage) in 30 

litres plastic containers (45 X 35 X 20 cm, of clear polyurethane) with wire mesh lids. Each 

container had a wooden nest-box (22 cm3 with a 3 cm diameter entrance hole) and a 

mouse running wheel for exercise. Wood shavings, shredded paper and leaf litter were 

provided as bedding (as in Fisher 2005, Fisher & Blomberg 2009). Water was provided ad 

libitum in an inverted drip bottle. A mixture of beef and kangaroo mince, supplemented 

with calcium powder, Pentavite drops and dry dog food was given once a day (~40g), 

supplemented with live insects such as mealworms and crickets (~5 of each). Animals 

were kept in a well-lit building at the Queensland National Parks and Wildlife Services’ 

barracks (a cottage for environment agency staff, contractors, volunteers and researchers) 

at Springbrook in 2010 and 2012, adjacent to the study area. In 2011 they were kept in an 

isolated and air conditioned animal room with natural light at the University of Queensland.  

Young voluntarily drop the tea when they are around five to six weeks old and the mother 

starts leaving them in the nest, instead of carrying them around constantly (end of pouch 

phase and the beginning of the nestling phase). At this age, young are sufficiently 

developed to be sexed and individually marked. Each offspring were sexed by visually 

inspecting their genital area: males are easily distinguishable by the presence of testicles 

while in females their mammary glands, although very undeveloped (looked like little dots 
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in a circle arrange), were also visible especially with the use of a magnifier. To 

permanently identify individual young, one to two toe buds were removed, with tiny eye 

surgery scissors (~3mm blade) under a magnifier (Fisher & Blomberg 2009). The removal 

of the tiny (< 1 mm) toe-bud tips was quick and causes very little or no bleeding; as it done 

at a very immature stage, the perception of pain and memory was unlikely to be a problem 

(actually, young do not even react to the clipping). As a result, the marked toe develops 

without a nail and was slightly shorter than the others. Thumbs (toe number one) on front 

and back feet were not clipped, because this toe has no nail. A standardised marking 

scheme was used and sex of young was part of the code, so each mark can be used 

twice. Clipping two toes from the same foot was avoided. Fisher and Blomberg (2009) 

documented that toe-bud clipping in the brown antechinus has no harmful effect on 

growth, survival and recapture probability, either in captivity or in the wild. Toe bud clipping 

was performed on late pouch young/early nestlings, when they were still blind and naked 

at around 5-6 weeks old.  

Once all young had been sexed and individually marked (~40 days old), some of them 

were cross-fostered between mothers to experimentally create litters with skewed sex 

ratios. Some litters then had a high proportion of females, and the others a high proportion 

of males. To be able to manipulate the sex ratio and achieve a high bias towards one sex 

or the other without changing the litter size, cross-fostered pups must be of opposite sex. 

For example, if the cross-fostering was done between two mothers with 8 pups each, but 

one of them has 5 daughters and 3 sons and the second mother has 3 daughters and 5 

sons, to create two litters with a high sex ratio skew from these two families, 2 males from 

the first litter were swapped with 2 females of the second litter. The first litter will end up 

with 7 females and 1 male (litter highly skewed towards females), whereas the second one 

will end up with 1 female and 7 males (highly skewed towards males).  

No more than two pups were cross-fostered from any one litter. This means that each litter 

contained both pups that were related and unrelated to the mother, so I could determine 

effects of relatedness in addition to litter sex ratio on maternal allocation, individual growth, 

behaviour and survival. 

Once all families were settled, and it was certain that all young were suckling and gaining 

weight, all families were released back into the wild in their nest-boxes (~75 days old). 

Each nest-box, with the mother and her litter, was strapped to a tree at the place where 

the female was originally captured. This timeframe and soft release method have been 
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successfully used before in similar studies with antechinuses (Fisher 2005, Fisher et al. 

2006). In those previous studies, more than half of the families kept using their nest-boxes 

throughout lactation and the rest moved to nearby trees. These results showed that 

antechinuses were able to settle back into the wild almost immediately with high survival 

and normal home ranges. Because only newly weaned individuals disperse (once a year), 

the females’ original home ranges were vacant when they returned to them after captivity. 

Survival and growth were monitored using nest-box checking and monthly trapping. 

Nesting group compositions and sizes were recorded. The following year, the females that 

were cross-fostered as juveniles, together with new individuals in the population, were 

trapped when they had young attached to teats in the pouch, to evaluate breeding success 

and their litter sex ratios. The same experimental design was repeated again in 2011 and 

2012, except that in the latter, the cross-fostering experiment was not performed as 

females were in extremely bad condition (see Chapter 3). 
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An experimental test of the Trivers Willard and Local Resource Competition 
hypotheses using three generations of cross fostering in the subtropical antechinus  

Abstract 

In sexually dimorphic mammals, sons are often energetically more expensive to produce 

than daughters because they grow bigger and faster. The Trivers-Willard Hypothesis 

(TWH) predicts that in species with size-based male competition for mates and high 

variance in male mating success, mothers in good condition should give birth to more sons 

because such mothers are able to invest in offspring growth, whereas mothers in poor 

condition cannot produce competitive sons and should produce more daughters that will 

breed anyway. In contrast, the Local Resource Competition Hypothesis (LRCH) predicts 

that mothers in poor condition should reduce competition between female relatives for 

dwindling resources by producing more sons, as females often remain in their natal home 

range after weaning (philopatry). Experimental tests of these hypotheses are rare and 

have not been carried out previously on wild mammals. I experimentally manipulated 

offspring sex ratio in subtropical antechinuses (Antechinus subtropicus) to disentangle 

these multiple effects on sex allocation. I created families with either enhanced female- or 

male- bias by cross-fostering young between litters, to test assumptions and predictions of 

the TWH and the LRCH. The results support aspects of both hypotheses in antechinus. In 

agreement with the TWH, mothers that naturally produced male-biased litters were slightly 

heavier than mothers that naturally produced female-biased litters. However, in 

disagreement with the TWH, mothers rearing male-biased litters were able to increase 

allocation of resources to offspring and rear more sons than they had naturally produced, 

after cross fostering, without compromising offspring growth. Consistent with the LRCH, 

male-biased litters grew more quickly after increasing their sex ratio bias and not more 

slowly as expected according to TWH. Mothers raising more sons were also more likely to 

wean their larger and fast growing offspring than mothers with female-biased litters, by 

compromising maternal survival. Mothers apparently reduced investment in offspring in 

favour of their own survival when large female-biased litters were imposed on them, 

consistent with LRCH. These results differ from previous cross fostering manipulations to 

test sex allocation, which have unequivocally supported the TWH. 

Key words: sex allocation, sex ratio, cross-fostering, maternal investment, Trivers-Willard 

hypothesis, Local Resource Competition, offspring growth, subtropical antechinus. 
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Introduction 

According to sex allocation theory, differential allocation occurs when parents produce 

more offspring of one sex or the other, or invest differentially in sons and daughters in 

terms of parental care, through resource allocation or other behaviours favouring one sex 

over the other (Armitage 1987, Monclús & Blumstein 2012). Fisher’s theory (1930) states 

that if males and females are equally costly to produce, then parents should invest equally 

in them. However, when one sex is more costly to produce than the other, the cheaper sex 

should be favoured (West 2009). Despite chromosomal sex determination in mammals, 

which ought to result in equal proportions of males and females through random 

segregation of chromosomes at meiosis (West 2009), biased offspring sex ratios are 

common (Cockburn et al. 2002, Wild & West 2007, Robert & Schwanz 2011).  

The Trivers-Willard hypothesis (TWH) (Trivers & Willard 1973) has been one of the most 

supported hypotheses to explain sex ratio variation in mammals (Hewison & Gaillard 1999, 

Cockburn et al. 2002, Cameron 2004, Sheldon & West 2004,  Wild & West 2007). Most 

mammals are polygynous, and male reproductive success depends on size; large and 

strong males will thus outcompete small, weak ones (Meikle et al. 1995, Fisher & 

Cockburn 2006). Males of sexually size dimorphic species are costly to produce, as they 

usually grow bigger and faster than females (Clutton-Brock et al. 1981, Redondo et al. 

1992). Therefore, mothers with the ability to produce high quality offspring (i.e. large, 

heavier mothers) should invest more in sons, because this will give them greater fitness 

returns than producing high quality daughters. Mothers in poor condition (e.g.  thin, small 

for their age or young) that cannot invest heavily in their offspring will benefit most by 

producing females, as most daughters will breed, rather than producing small sons that 

may not reproduce. Female mammals typically experience less reproductive competition 

and are expected to be cheaper to produce as they reach smaller sizes than males and 

usually at a slower growth rate (Robert et al. 2010). The TWH operates at the level of the 

individual mother, but may produce biased sex ratios at the population level (Charnov 

1982, Frank 1987). Variation in sex ratios has been reported in populations of mammals at 

different times, and also in different populations of the same species (Cockburn et al. 

2002, Cameron 2004). 

Unlike correlative studies of maternal body condition or studies that manipulate food 

availability, cross-fostering experiments that alter offspring sex ratio at an early stage of 

development in birds and mammals can directly test the investment capacity of parents. If 
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the Trivers-Willard effect is operating and parents produce the sex ratios according to their 

(current) investment abilities, parents that originally produced male-biased sex ratios are 

expected to produce heavier and fast growing offspring, but those that gave birth to 

female-biased sex ratios should not be able to do so (Bowers et al. 2013). There have 

been only a handful of such experiments, and only two using mammals, which both 

supported the TWH (Bowers et al. 2013, Robert et al. 2010, Rutkowska et al. 2011). 

Mothers that naturally produced male-biased sex ratios were able to raise heavier, fast 

growing offspring and were more successful at weaning their young (their own and foster 

young) than mothers that originally gave birth to female-biased sex ratios. 

The other major hypothesis to explain primary sex ratio biases in non-cooperatively 

breeding mammals is the Local Resource Competition Hypothesis (LRCH) (Silk 1983, 

Clark 1978, Chapman et al. 1989 a,b, Wild & West 2007, Silk & Brown 2008), which 

proposes that the fitness advantage gained from a male versus female-biased birth sex 

ratio depends on which sex disperses, and the effects of intraspecific competition on the 

philopatric sex (Greenwood 1980, Pusey 1987). The LRCH states that when resources are 

scarce or there is a high-density population, mothers should invest more in the dispersing 

sex in order to avoid or reduce the cost of future competition for local resources with their 

kin and between their offspring, and they should delay the production of the philopatric sex 

until later in life (Clutton-Brock et al. 1982, Cockburn et al. 2002, Lambin et al. 2001, Isaac 

et al. 2005). Female mammals are typically philopatric and often form long term social 

bonds with their mother and sisters (Curley & Keverne 2005, Broad et al. 2006, Dunbar & 

Shultz 2010), while males disperse more frequently and over longer distances, especially 

in promiscuous and polygynous species (Greenwood 1980, Dobson 1982, Pusey 1987).  

Originally, the LRCH was proposed to operate solely at the population level (i.e. birth sex 

ratios should track population density: mothers should produce more sons in dense 

populations). It is now thought to apply differentially to individual mothers (Silk 1983, Isaac 

et al.  2005, Wild & West 2007). When resources are limited and mothers are in poor 

condition, producing philopatric daughters will increase the competition among them (kin) 

for the already scarce resources. Thus, if the LRCH is operating, such mothers would 

benefit more by investing greatly in their dispersing sons.  

Both hypotheses, the TWH and LRCH, are based in the assumption that an individual’s 

survival and reproductive success rely ultimately on resource availability. The TWH 

emphasizes the importance of resource availability during the period of parental 
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investment (gestation and lactation in mammals; i.e. pre-weaning), whereas the LRCH 

highlights the importance of post-weaning resources. Therefore, if resource abundance 

during lactation is correlated with its post-weaning abundance, concurrent operation of 

both hypotheses is highly likely, and this has restricted our understanding of mammalian 

sex allocation in natural populations (Schwanz & Robert 2014; see also Kruuk et al. 1999, 

Isaac et al. 2005, Robert & Schwanz 2011).  

Although the TWH and LRCH are not mutually exclusive, they often make opposite 

predictions of how individual mothers should invest in each sex: in polygynous species 

with males larger than females and male-biased dispersal, females with poor capacity to 

invest in offspring in their earlier breeding seasons should overproduce sons under the 

LRCH (to avoid competition with them, as sons leave), and overproduce daughters under 

the TWH (as they lack enough energy to produce competitive sons). In marsupials, biased 

offspring sex ratios are common (Cockburn 1990, Isaac et al. 2005), and both hypotheses 

have found support (Robert & Schwanz 2011, Schwanz & Robert 2014). In antechinus 

species with a higher occurrence of female iteroparity, which are thus more likely to 

experience competition with their philopatric daughters, mothers tend to produce more 

dispersing sons, supporting LRCH (Cockburn et al. 1985). In contrast, Dickman (1988) 

experimentally varied the level of competition by removing interspecific competition (a 

sympatric larger species) and by providing access to supplementary food. In his study, 

agile antechinus mothers produced more daughters in the presence of the larger dusky 

antechinus and produced more sons when the competition was reduced by experimentally 

removing the dusky antechinus, providing support for TWH (Robert & Schwanz 2011). 

Experiments that test maternal capacity to invest by manipulating offspring sex ratio are 

needed to better understand sex allocation in marsupials. 

I conducted such an experiment using a small marsupial, the subtropical antechinus, 

Antechinus subtropicus (Crowther et al. 2003), which produces only one litter of up to 8 

young a year (Cockburn et al. 1985). Young are born at an embryonic stage, and remain 

attached to a teat in the pouch for 5 weeks (Marlow 1961), enabling experimental 

manipulations of litter sex ratios at a very early stage of development, and evaluation of 

potential costs, their timing, and trade-offs involved in rearing sex-biased litters (Robert & 

Schwanz 2011). Some populations of antechinus produce strongly sex-biased litters 

(Cockburn et al. 1985, Dickman 1988, Davison & Ward 1998). This bias is generated 

before birth, not by selective infanticide or sex-specific failure to attach to a teat  (Davison 

& Ward 1998). Antechinus females usually have a lifespan of 16-20 months and almost 
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never breed a third time (Fisher & Blomberg 2011). In some species, populations in which 

almost all females die after breeding once produce female-biased litters, but in populations 

where females often breed twice (i.e. live for two years), females often produce male-

biased litters in their first breeding season and female-biased litters in their second, 

consistent with the LRCH. Cockburn et al. (1985b) interpreted this as strong support for 

LRCH: females that will breed a second time face competition from daughters from the first 

litter but will not survive to face competition from a second litter. However, consistent with 

the TWH, several lines of evidence have shown that sons are more expensive to raise 

than daughters. For example in a study of agile antechinuses (A. agilis), sons weighed 

more and were weaned earlier than daughters (Cockburn 1992), mothers with male-

biased litters were less likely to survive lactation, mothers in poor condition were able to 

wean at least some daughters but no sons (Cockburn 1994), and older females that 

tended to produce female-biased litters were senescent and in poor condition (Cockburn 

1992). Mothers always lose weight in late lactation, and in the brown antechinus, those 

with faster growing litters lose a substantial amount of weight and do not survive more 

than three months after weaning their offspring (Fisher & Blomberg 2011), indicating an 

extremely high cost of reproduction and a trade-off between maternal survival and 

offspring quality. 

The aim of the present study was to test the following key assumptions and predictions of 

the TWH and LRCH by examining natural patterns of sex ratios and conducting an 

experimental manipulation of litter sex ratios in Antechinus subtropicus, by either 

increasing, decreasing or maintain their natural bias. The TWH is based on two main 

assumptions: that sons are more expensive to raise than daughters and that offspring 

growth depends on maternal investment ability. The TWH predicts that mothers that are in 

good condition have the capacity to produce high quality offspring and thus should invest 

more in their sons than in their daughters. While mothers that do not have the capacity to 

produce high quality offspring, such a small, young or mothers in poor condition, should 

invest more in their daughters as they will not be able to produce competitive sons (small 

males usually not successful at breeding). This implies that heavier mothers should 

produce more sons than lighter ones. Therefore, if this is true and this mechanism is 

operating, I expect the following to occur:  

1) If sons are more expensive to produce than daughters, then: 

1.1) Sons should grow bigger (weigh more at the same age) and faster (have higher 
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growth rates) than daughters. 

2) If offspring growth depends on maternal energy reserves, then:  

2.1) Offspring mass should be correlated with maternal mass, especially in sons. 

2.2) Lighter and younger mothers should (A) naturally produce female-biased litters and 

(B) be less likely to wean their offspring than heavier or older mothers that are presumed 

to have a greater investment ability. 

3) If sons are more expensive to produce than daughters and the number of sons that a 

mother produce depends on her current investment abilities, after sex ratio manipulation, 

mothers that reared more sons than they naturally produced would not be able to keep up 

with demand, and should (A) have slower growing offspring, especially sons, (B) lose more 

mass during lactation, (C) be less likely to wean their offspring successfully and (D) have 

reduced survival relative to mothers whose natural sex ratios bias were either decreased 

or maintained. 

If the LRCH applies rather than the TWH, I expect to find that light and young mothers 

have male-biased natural birth sex ratios, while, heavier and older mothers should 

produce female-biased litters. Moreover, if females respond by trading off current 

investment against their own future survival, then young mothers rearing female-biased 

litters should reduce their investment and have slower offspring growth to increase their 

chances of survival to breed again, while also reducing competition with their philopatric 

daughters. Increasing female bias is not expected to increase offspring growth, as this 

would increase competitiveness of daughters, which would compete with these mothers, 

at the expense of maternal survival (Fisher & Cockburn 2011). Rigorous experimental 

tests of either the TWH or LRCH are rare (Robert & Schwanz 2011). No such manipulation 

involving cross-fostering has been done on mammals in the wild previously. 

 

Methods 

Sites, trapping and husbandry 

In October 2010, 2011 and 2012, I trapped mothers with pouch young that were 2-3 weeks 

old (see general methods, Chapter one). Second-year females were visually distinguished 
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from first-year females early in the year (prior to the breeding season) by differences in 

body mass and by the presence of teats and pouch development, as teats are not visible 

in first year females until the breeding season (Cockburn et al. 1983, Lada et al. 2007, 

Fisher & Blomberg 2011). Of the 56 breeding females included in this study, 42 were first-

year mothers and fourteen were second-years; 28 raised female-biased litters, and 28 

raised male-biased litters after cross-fostering. Only four females were trapped in their 

both breeding events, and one of them only bred on her second attempt (empty pouch in 

her first breeding season). Each family (the mother and her litter) were kept in captivity for 

a maximum time of seven weeks, during mid-lactation, before returning them back to the 

wild at the point of capture. During the captivity time, each offspring was sexed and 

individually marked (~40 days old) before performing the cross-fostering experiment. 

Please refer to the methodology section in Chapter 1 for more details.  

 

Experimental design 

A total of 351 young were included in this study, 167 females and 184 males, of 56 

mothers (12 in 2010, 22 in 2011 and 22 in 2012). 256 young (117 females and 139 males) 

had a first-year mother, while only 95 young (47 females and 48 males) had a second-year 

mother. When young were around 59-62 days old, some litters were manipulated by 

swapping (cross-fostering) up to two young per litter between mothers without changing 

litter size to experimentally manipulate litter sex ratios. I aimed to create litters with either 

one or two males or one or two females, with the remainder of the litter the opposite sex. A 

total of 24 (12 in 2010, 12 in 2011 and 0 in 2012) litters were manipulated and 32 were not 

manipulated (0 in 2010, 10 in 2011 and 22 in 2012). A total of 14 litters had their natural 

sex ratio bias exaggerated, 3 litters experienced a reduction of their natural sex ratio bias 

and 7 litters had their natural sex ratios maintained with litter manipulation (Table S12). 

Mothers were assigned to each treatment randomly and paired up with mothers with 

offspring of similar size. A total of 159 young grew up in manipulated litters, 98 of them in 

litters which their natural sex ratio bias was increased (42 were female-biased and 56 were 

male-biased), 12 in litters whose natural sex ratio bias were decreased (4 were female-

biased and 8 male-biased) and 49 in litters whose their natural sex ratios were maintained 

(13 were female-biased and 36 were male-biased). 192 young grew up in un-manipulated 

litters. Totals of 108 and 59 young females were raised in either female- or male-biased 

litters, respectively. A total of 132 and 52 males were raised in either male- or female-



Chapter 2 

	   47	  

biased litters (see Table S12). Overall, 323 young (151 females and 172 males), were 

raised by their natural mother and 28 (13 females and 15 males) were cross-fostered and 

raised by an adoptive mother. Cross-fostering was not performed in 2012. I monitored 

body mass, and foot and crown-rump length measurements of the mother and their 

offspring, respectively, every three-five days during captivity. All mothers that were given 

foster young readily accepted them. 

One week after cross-fostering, when young were ~75 days old, families were released 

back into the wild in their nest-boxes by strapping the box to a tree at the place where the 

female was originally captured (as in Fisher 2005, Fisher et al. 2006a,b). The survival and 

growth of mothers and their young were monitored via checking nest-boxes and trapping 

sessions performed every month for 3-5 nights until the following breeding season. As 

most male antechinuses disperse away from their birthplace once weaned, their fate is 

often uncertain. A total of 119 male young were never seen or trapped again after they 

were released back to the wild and were considered to be dispersed individuals with 

unknown fates. Therefore, young males were only considered for weaning survival 

analyses (i.e. survival to soon after weaning as independent young) and were not 

considered in the breeding survival analyses of individuals (i.e. survival until the following 

breeding season; see below). 

 

Data analyses 

All statistical analyses were conducted in R Studio (v. 0.98.501 R Development Core 

Team, 2013) and their results summarised in Tables S1 to S11. I used separate linear 

mixed effects models to assess the effects of litter sex ratio manipulation on individual 

growth, in mothers (Tables S4-S6) and offspring (Tables S1-S3), during the time they were 

in captivity, when young were between 40 to 70 days old. I used the R function ‘lmer’ to 

perform these analyses using individual ID and the time the measurements were 

performed (as offspring age) because measurements were not carried out at exactly the 

same time across the years. In particular, I used ‘(offspring age | mother ID)’ on body 

mass analyses for mothers and ‘(offspring age | young ID) + (age | donor mother ID) + 

(age | recipient mother ID)’ on body mass analyses for offspring. These sets of random 

factors allow intercept (different starting points) and slope variation (different growth rates) 
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in the growth curves. I also used unpaired t-tests (no repeated measures) to compare 

differences between means (see text below). 

I used the R functions ‘glm’ and ‘glmer’ in package lme4 for dichotomous variables to 

analyse the survival of mothers and offspring, respectively, as there were no repeated 

measures for mothers and maternal ID had to be controlled in offspring survival analyses. I 

evaluated the potential effects of litter sex ratio manipulation on maternal weaning success 

(if the mother successfully weaned their offspring or not, Table S7), maternal weaning 

survival (if the mother survived lactation and was seen alive within the next two months 

following weaning, Table S8), maternal breeding survival (if the mother survived to breed 

again to the following mating season, Table S9), offspring weaning survival (if the young 

survived after weaning as independent individuals and was seen alive within the next two 

months after weaning, Tables S10) and the breeding survival for female offspring (males 

disperse away from their birthplace, so their breeding survival is unknown, Table S11). I 

also used contingency tables to evaluate if there were any differences in the survival of 

individuals while controlling for one factor at a time using χ2 or Fisher test. 

I tested the potential effects of the experimental manipulation on individual growth (body 

mass) using three different approaches. First, I treated litter sex ratio as a dichotomous 

variable: I compared animals with male-biased final litter sex ratios to those with female-

biased litter sex ratios. Second, I tested if there was a significant effect of the type of 

manipulation on growth, i.e. if there was an effect of having the natural sex ratio bias either 

increased, decreased or maintained as natural (litter sex ratio change). Third, I tested if 

there was an effect of the proportion of males per litter on growth. For maternal weaning 

success and survival, I used the same three approaches. I only report the litter sex ratio 

change results, as there were no differences between approaches (see Tables S7 and S8, 

respectively). For offspring survival, I report the results from the models using final litter 

sex ratio (Table S10a and S11a for weaning and breeding survival, respectively) and litter 

sex ratio change (Table S10b and S11b for weaning and breeding survival, respectively). 

In the offspring survival models using the final litter sex ratio, I also included the interaction 

between litter sex ratio and maternal age class (Table 11a).  

I defined a litter as male-biased if the proportion of males in the litters was higher than 0.5. 

I treated the following as fixed factors in the models with body mass: offspring age, 

maternal foot length (as a measurement of skeletal size), litter size and maternal age class 

(first- or a second-year female). To assess if there was any sex difference in growth and 
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between treatments, I also included the interactions between offspring sex and age, sex 

ratio change and age and sex ratio change and sex in the models with body weight (see 

Tables S2b and S2c). I could include the variable of ‘year’ only in the models that tested 

the effect of the proportion of males (Tables S3 for offspring mass and Table S8 for 

maternal mass) because in 2012 the experimental manipulation was not performed. I 

treated litter size as a continuous variable. When the effect of litter size was significant, I 

repeated the analyses treating litter size as a categorical variable, instead of a continuous 

variable to clarify its effects (see Table S2b and S2c).  

 

Results 

The success of the cross-fostering experiment 

The cross-fostering experiment did not hinder offspring growth or survival. The mean body 

mass of natural offspring was not significantly different from the mean mass of cross-

fostered offspring, and the effect of type of manipulation was not significant in any of the 

models (type of offspring: t<0.53, p>0.53. See Tables S1a, S2a and S3). The proportions 

of adopted and natural offspring that survived to weaning were not significantly different 

(type of offspring: z=-1.37, p=0.18; see Table S10b). From 351 offspring, 323 were raised 

by their original mother and 28 by an adoptive one; 64% (N=207) of the natural offspring 

and 71% (N=20) of the adopted ones survived to weaning.  

The analyses that investigated final litter sex ratio were evaluating the effects of producing 

(for mothers) or growing (for the young) in either a female- or a male-biased litter, 

regardless of whether effects were due to natural or manipulated conditions. The analyses 

that investigated sex ratio change directly evaluated the effects of the experimental 

manipulation. Overall, the statistical results appeared to be consistent across the different 

models, expect for the effect of litter size that showed some variation (see below). 

Maternal growth and survival were not affected by the proportion of sons, regardless of 

whether or not their litters were manipulated. Male offspring grew bigger and faster than 

female offspring, and did better in male-biased litters. Under those conditions, sons were 

more likely to be weaned than daughters. Female offspring grew bigger and faster than 

their brothers in female-biased litters, and this was also supported by the models that 

evaluated the effects of litter sex ratio change. Increasing the natural sex ratio bias of 

litters increased offspring growth while decreasing the bias reduced offspring growth rates. 



Chapter 2 

	   50	  

Female offspring increased their chances of survival with a second-year mother (See 

below). 

 

1) Are sons more costly to produce than daughters? Do sons grow bigger and 
faster than daughters? 

My results were consistent with the premise of the TWH that sons grow bigger and faster 

than daughters, but these effects were weak. Male offspring grew slightly faster than 

females (Table 1) and this was consistent across models (sex: t>2.71, p<0.01; sex x age: 

t=2.71, p=0.0098; Figure 1, Table S1 to S3). Mean body mass of males (mean ± SE, 2.59 

± 0.047g; N=184) was not significantly different from that of females (2.53 ± 0.044g; 

N=167) at the age of 49-51 days old (t=0.92, df=349, p=0.36) or when young were 60-63 

days old (t=0.16, df=161, p=0.87). Females at that age weighed on average 5.16 ± 0.12g 

(N=70) while male offspring had a mean body mass of 5.13 ± 0.18 g (N=93). However, 

sons were significantly heavier than daughters once weaned (t=11.79, df=226, p<0.0001). 

The mean body mass of daughters was 18.45 ± 0.19 g, and sons weighed 22.92 ± 0.34 g 

around a month after weaning (data were collected within two months after release, when 

juveniles were ~100-120 days old). This suggests that although sexual size dimorphism in 

offspring failed to occur during my study (at 35 and 70 days old), sons did later grow 

bigger than daughters. Such sexual size dimorphism should have been noticeable at the 

end of lactation, closer to weaning. 

2.1) Is offspring growth rate correlated with maternal mass, especially growth of 

sons? 

Offspring mass was strongly associated with maternal mass (maternal body mass: t=15.6, 

p<0.0001; Figure 2; Table S2c). Lighter mothers had lighter offspring, supporting the TWH 

premise. Moreover, second-year mothers were significantly heavier than first-year mothers 

(maternal age class: t>5.33, p<0.0001; Figure 3A, Table S4-S6) and had heavier offspring 

(t>5.98, p<00001; Figure 3B, Tables S1-S5). However, this strong association between 

the mass of mothers and their offspring was similar in sons and daughters (maternal mass 

x offspring sex: t=-0.95, p=0.35. See Figure 2, Table S1b). 

 

When I used the proportion of males per litter and year to analyse the effects on offspring 

mass, the significant effect of maternal age class disappeared (maternal age class was 
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significantly associated with offspring mass when year was not included, as in the other 

models. See Table S3). The offspring from second-year females were heavier than the 

offspring from first-year mothers in 2010 and 2012, but not in 2011 (Figure 3C). For a 

deeper analysis of the effects of maternal age class and year on individuals growth and 

survival, please refer to Chapters 3 and 4. 
 

2.2.A) Does a mother’s body size predict the sex ratio bias of her young?  

Inconsistent with the TWH premise that mothers produce offspring with sex ratios 

according to their investment ability, mean maternal mass did not significantly differ 

according to the natural sex ratio of their litters (original sex ratio: t=1.7, p=0.097; Table 

S4B). However, mothers that naturally produced male-biased litters were slightly heavier 

(33.88 ± 0.98 g, N=29, 52% of the mothers) than mothers that naturally produced female-

biased litters (31.10 ± 0.93 g, N=23, 41% of the mothers; t=2.013, df=50, p=0.049), when 

young were ~45 days old (based on unpaired t-test). 

 

2.2.B) Did maternal mass affect the probability of weaning young? 

According to the TWH, small / thin mothers should be less likely to wean their offspring 

than large / heavier ones, as they have reduced investment ability. I did not find evidence 

to support this prediction. Mothers that were able to wean their offspring were not 

significantly heavier than the ones that failed to wean them (33.40 ± 0.71 g (N=40) for 

mothers that weaned their offspring successfully and 31.29 ± 1.73 g (N=16) for mothers 

that did not wean their young (t=1.35, df=53, p=0.18). 

None of the factors, including sex ratio change, maternal and offspring mass, maternal 

age class or litter size, had a significant effect on maternal weaning success (Table S7). 

However, second-year mothers apparently had a greater capacity to rear their offspring 

compared to first-year mothers. Forty of 56 mothers in this study (71.4%) weaned their 

offspring. Ninety three percent of the second-year mothers weaned their young, only one 

second year mother died along with her young before she weaned them. Sixty-four 

percent of the first-year mothers weaned their young (χ2=2.92, df=1, Fisher test: p=0.047).  
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Litter size had a slight effect on maternal weaning success (t=-1.77, p=0.076; Table S7). 

Mothers that weaned their young had a mean litter size of seven young while mothers that 

failed to wean their offspring had eight young on average (Figure 11A). Although the 

mixed effect models did not support this, mothers that weaned their offspring had litter 

sizes of 5.5 ± 0.5 and 7.1 ± 0.2 young in female- and male-biased litters, respectively 

(F=5.17, p=0.003; based on unpaired t-test, Figure 11B). 

 

3. A. Is the sex ratio of litters related to growth rate of offspring? 

At first glance, it seemed that offspring growth rates did not conform to expectations of the 

TWH in the analysis of final litter sex ratio. Final litter sex ratio refers to whether offspring 

grew up in either a female- or a male-biased litter, regardless of whether or not their 

natural litter sex ratio was manipulated (Table S1a, Figure 5A). Male-biased litters had 

slightly higher offspring growth rates than female-biased litters (final litter sex ratio x 

offspring age: t=-6.60, p<0.0001), more consistent with predictions of LRCH than the 

TWH. At 49-51 days old, young from male-biased litters were heavier than young from 

female-biased litters, weighing on average 2.63 ± 0.047 g (N=191) and 2.49 ± 0.045 g 

(N=160), respectively (t=2.16, df=349, p=0.032), regardless of their sex (offspring sex x 

final litters sex ratio: t=-0.02, p=0.094).  

Offspring not only grew bigger in male-biased litters but they also grew faster (final litter 

sex ratio x offspring age: t=6.68, F=3.86, p<0.0001, Table S1), however, this effect 

depended on offspring sex (offspring sex: t=3.48, p=0.0012). In female-biased litters, 

female young grew bigger and faster than males, while the opposite was observed in 

male-biased litters, in which males grew bigger and faster (Figure 6). When young were 

49-51 days old, the mean body mass of male offspring was 2.51±0.08g (N=52) and 

2.63±0.06 (N=132) in female- and male-biased litters, respectively. Female offspring at 

that age weighed on average 2.48±0.05g (N=108) and 2.63±0.08g (N=59) in female- and 

male-biased litters, respectively, but none of these values were significantly different from 

each other (F=1.56, p=0.2). However, at 65 days old, the difference in mean body mass 

increased and was marginally significant (F=0.83, p=0.072): daughters weighed 5.22 ± 

0.15 g and 5.05 ± 0.23 g in female- and male-biased litters respectively, and sons weighed 

4.67 ± 0.23 g in female-biased litters and 5.20 ± 0.15 g in male-biased litters.  
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Surprisingly, increasing the natural sex ratio bias of litters increased offspring growth, while 

decreasing the natural bias reduced their growth rates compared to litters with natural sex 

ratio bias (sex ratio change: t>4.8, p<0.0001; sex ratio change x offspring age: t<-2.13, 

p<0.04; Figure 5B. See Tables S2b and S2c). Mean offspring mass was higher in litters 

that had their sex ratio bias increased, and lower in those that had the bias reduced, in 

comparison with natural litters (Figure 7A). However, this effect depended on offspring sex 

(Figure 7B) sons were more negatively affected by decreasing the natural sex ratio bias of 

their litters than daughters (sex ratio change x offspring sex: t<-2.1, p<0.04. See Table 

S2c).  

Litter size appeared to have a significant effect on offspring mass, but this effect was not 

consistent across the different models (see Tables S1 to S3). When I evaluated its effect 

as a categorical factor, the only significant difference in offspring mass was between litter 

sizes of one and seven young (Figure 8. See Table S2c). However, 64% of mothers had a 

litter of 7-8 young and only one female produced a single young (Figure 4). Offspring mass 

was not only positively affected by the number of litter mates but also by male proportion 

in their litters (male proportion: t=6.24, p<0.0001; Figure 9, Table S3). 

 

3. B. Did mothers rearing more sons lose more mass during lactation than mothers 

with more daughters?  

This prediction was not upheld during mid-lactation (when their offspring were 45 to 75 

days old). Maternal mass was not affected by any factor other than maternal age class 

and year (Tables S4 to S6). 

 

3. C. Did male biased litter sex ratio reduce the probability of weaning young? 

As sons are more costly to produce than daughters (above), when I increased natural sex 

bias, mothers rearing male-biased litters should have been less likely to wean their young. 

This prediction of the TWH was also not supported. There were no significant effects on 

maternal weaning success (Table S7). Mothers had the same probability of successfully 

weaning their young, regardless of whether they were rearing more sons or more 

daughters (t=-0.26, p=0.80).  
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3. D. Do mothers have reduced survival when rearing more sons?  

Considering that in antechinuses most mothers die soon after weaning their young and 

only a few of them manage to survive to reproduce again, maternal survival after weaning 

their offspring may be a good indicator of maternal condition and their investment ability in 

this species. The significant effect of maternal foot length (as a measure of skeletal size) 

on weaning survival supports this. Mothers that weaned their offspring had longer feet 

than mothers that were not able to wean their young, and died along with them during 

lactation (maternal foot length: z=2.34, p=0.02; Figure 10 and Table S8).  

Thirty four of the 56 mothers in the study (61%) died within two months of weaning their 

offspring. Overall, half of the mothers that reared female-biased litters survived lactation 

(14 of 28), while only 29% of the mothers with male-biased litters did (8 of 28; χ2=1.87, 

p=0.17). This effect was not significant according to the mixed effect models that 

evaluated the effects of litter sex ratio manipulation on maternal weaning survival, (sex 

ratio change: z=-0.28, p=0.78; Table S8).  The same occurred with maternal breeding 

survival (sex ratio change: z=-0.33, p=0.74; Table S9), although the proportion of mothers 

that survived to breed again was slightly higher for mothers that reared female-biased 

litters compared mothers with male-biased litters (χ2=3.28, p=0.07) with a with 39% (N=11) 

and 14% (N=4), respectively. 

Litter size appeared to have a significant effect in both maternal weaning and breeding 

survival (Table S8 and S9). Having large litters reduced maternal survival. Mothers that 

were seen alive after weaning their young had a mean litter size of seven young (Figure 

12A), while mother that survive to breed again had a mean litter size of six young (Figure 

12B).  

 

Did sex ratio manipulation affected offspring survival? 

When I analysed offspring survival based on litter sex ratio change, I found no significant 

effects, except that litter size apparently affected female breeding survival (see below and 

Table S10b and S11b).  

However, interesting results appeared when I evaluated the effects of final litter sex ratio (if 

offspring grew up in either a female- or a male-biased litter, Tables S10a and S11a). 
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Offspring survival was not compromised in male-biased litters as they were more likely to 

survive to wean than young from female-biased families (final litter sex ratio: z=3.33, 

p=0.002) (Table S10a). Sixty eight percent of the offspring from male-biased litters 

(N=130) survived to wean, and 61% of female-biased offspring (N=97). However, litter sex 

ratio by itself did not affect their survival to breed (final litter sex ratio: z=-0.89, p=0.38; 

Table S11a). Regardless of their litter sex ratios, only 15% of the female offspring survived 

to breed (N=25 from a total of 167; 18 were from female-biased litters and 7 from male-

biased litters; χ2=0.17, df=1, Fisher test: p=0.69). 

Offspring from female-biased litters were more likely to survive weaning if they had a 

second-year mother (100%) than a first-year one (48%). Young from male-biased litters 

had the same probability to be weaned if they were raised by a first- or a second-year 

mother (68%; final litter sex ratio x maternal age class: z=-2.77, p=0.009; Table S10a). 

This effect on offspring survival was maintained until the following breeding season: 

female offspring that had a second-year mother were more likely to survive to breed than 

female offspring with a first-year mother (maternal age class: z=2.44, p=0.02), especially if 

they grew up in female-biased litters (final litter sex ratio x maternal age class: z=-2.11, 

p=0.041). While 23% of all the offspring that had a second-year mother survived to 

reproduce, only a 12% of the offspring of first-year mothers reproduced (see Table S11a).  

Offspring that survived to weaning had a mean litter size of seven compared to an average 

litter size of eight for those ones that were not weaned (Figure 12C).  This effect was 

significant in the mixed effects model using final litter sex ratio (t=-2.37, p=0.02, Table 

S10b) and marginally non-significant in the model using sex ratio change (t=-1.8, p=0.08, 

Table S10b). In contrast, the effect that litter size had on offspring breeding survival was 

significant in the model using sex ratio change but not with final litter sex ratio (Table S11a 

and S11b). Female offspring that survive to breed came from litters that had a mean size 

of 6 young, while the mean litter size for female offspring that disappear before the 

breeding season was 7 (Figure 11B).  

 

Discussion 

The Trivers-Willard hypothesis states that small or thin mothers benefit by producing more 

daughters, and this mechanism has been supported in some studies of mammals that 

have focused on food availability and maternal nutrition. Dickman (1988) found in his study 
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of agile antechinuses that mothers produced male-biased litters when food was abundant, 

either because food was artificially supplemented or competition was reduced by the 

removal of a larger competitor from the area (the dusky antechinus). This positive 

correlation between the nutrititional state of mothers and sons’ growth and survival has 

also been reported in other marsupials such as brushtail possums (Isaac et al. 2005), 

allied rock-wallabies (Delean et al. 2009) and in other mammals including field voles 

(Koskela et al. 2004). Overall, fast growth rates of male young together with increased 

nutritional requirements have been associated with greater sensitivity to reduced maternal 

condition and food restrictions in most mammals (Clutton-Brock et al. 1985; McClure 1981, 

Labov et al. 1986, Kraus et al. 2013). For example, undernourished hamster mothers 

produced female-biased litters (Labov et al. 1986) 

Experimental manipulation of offspring sex ratio in marsupials offers an opportunity to test 

the advantages of producing one sex over the other, especially when performed before 

major maternal investment has occurred through lactation. Studies of sex allocation based 

on maternal nutrition are less direct tests of maternal allocation, as it has been shown that 

even with unlimited food supply, maternal investment does not necessarily increase 

(Speakman & Król 2005), even under greater imposed demand for milk (increased litter 

size, Johnson et al. 2001). In his review of the costs of reproduction in small mammals, 

Speakman (2008) found that milk production appears to be limited by the physiological 

capacity of the mammary glands and tended to be fairly constant across studies that he 

reviewed. Lactating mothers did not increase food consumption when their litters were 

artificially increased, but they did when the same experiment was carried out with low 

ambient temperatures, suggesting that maternal demands were increased by 

thermoregulation; (Speakman 2008).  

Cross-fostering offspring between mothers did not affect growth or survival of young 

subtropical antechinuses, confirming the suitability of marsupials for offspring sex ratio 

manipulation. Confounding factors that may affect offspring growth and survival in 

placental mammals include exposure to sibling hormones during much of development in 

utero. This complication is avoided in marsupials. Experimental cross fostering allowed me 

to test maternal investment ability and to separate this from sex differences in offspring 

ability to acquire milk (Robert & Schwanz 2011, Monclús & Blumstein 2012).  

Although my results were mainly inconsistent with a Trivers-Willard mechanism to explain 

sex allocation, my experiments did support one of its central assumptions, that sons are 
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more expensive to produce than daughters, and this was consistent across all the models 

used. Sons grew faster than daughters, and mothers weaning more sons were less likely 

to survive lactation and breed again than mothers rearing more daughters.  

Growth of young is consistent with assumptions of the TWH, but might also reflect 

sibling competition 

Although the mean mass of sons and daughters was not different at ~50 or 60 days old, 

male offspring were heavier at independence (~100-120 days old). In other species of 

antechinuses, the difference in mass between male and female offspring is evident close 

to weaning (Cockburn 1992), when mothers also suffer major weight loss associated with 

the increased demands of lactation (Fisher & Blomberg 2011). In mammals generally, 

offspring mass at weaning often correlates with mass of adults (Altmann & Alberts 2005) 

and consistent with assumptions of the TWH, body sizes in males are correlated with 

reproductive success and survival in antechinuses and other promiscuous and polygynous 

mammals (Fisher & Cockburn 2006, Clutton-Brock et al. 1981, Roff 1992, Redondo et al. 

1992).  

Surprisingly, when young in my experiments were ~60 days old, the smallest of all were 

male offspring, but only when females outnumbered them. Sons growing in female-biased 

litters had the slowest growth rates, while their sisters and foster sisters were almost as 

large and as fast-growing as males growing in male-biased litters. Consistent with 

assumptions of the TWH, this might suggest that female offspring require less energy to 

grow despite having smaller mothers. Additionally, in spite of the increased investment 

ability of mothers rearing male-biased litters (not only they were heavier but they were also 

more likely to wean their offspring), their daughters (i.e. females growing in male-biased 

litters) did not grow as big or as fast as their sons. This is consistent with the assumption 

that female young do not require as much energy to grow as males. In many size 

dimorphic mammals, females are more able to compensate undernourishment or poor 

growth rates than males once independent (Töigo et al. 1999, Festa-Bianchet et al. 2000, 

Gendreau et al. 2005).  

In mammals, sons are often more susceptible to harsh environmental conditions 

(especially resource/food scarcity), and exhibit higher mortality rates than daughters 

(Clutton-Brock et al. 1985, van Schaik & de Visser 1990). The main explanation has been 

their greater energetic requirements and fast growth rates compared to females. Sexual 
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size dimorphism is sometimes lost when mothers lack food during reproduction. For 

example, male hamster pups are usually heavier than female pups throughout lactation, 

but when mothers experience food restriction during pregnancy and lactation, their 

daughters become heavier than their sons (Labov et al. 1986). The same has been 

described in guinea pigs (Laurien-Kehnen & Trillmich 2004). Consistent with this, in my 

study, male offspring being raised by a mother with a female-biased litter (lighter than 

mothers rearing male-biased litters) seem to be equivalent to male offspring being raised 

by an undernourished mother with decreased investment ability. 

The extremely slow growth rates, along with the small sizes of sons in female-biased litters 

in my experiments might also be explained by scramble competition among littermates, 

rather than maternal investment strategy that depends on litter sex ratios. In eutherian 

mammals (and in marsupials after detachment from the teat), pups compete energetically 

for their mother’s teats, pushing their way through their siblings until finding one to latch 

onto. Therefore, usually larger and heavier offspring have a clear advantage (Bautista et 

al. 2005). Heavier pups not only reach the teat sooner and grasp the nipple more strongly 

due to their enhanced motor and competitive abilities (Bautista et al. 2005), but also have 

greater milk intake and improved milk assimilation (i.e. efficiency in milk conversion into 

body mass) than their lighter littermates (Rödel et al. 2008a). Heavier pups also seem to 

be better at maintaining their body temperature, not only due to their relative reduced heat 

loss (larger body sizes lose less heat through their surface), but also they are usually 

found in central positions in the huddle group (Rödel et al. 2008a).  

Offspring growth rate in my experiment depended both on offspring sex and the sex of 

littermates. Sons grew bigger and faster when maturing in male-biased litters, while 

daughters grew bigger and faster in female-biased litters. These differences in growth rate 

depending on litter sex composition might not only be explained by differential investment 

by mothers in their daughters and sons (Clutton-Brock et al. 1981, Cameron & Linklater 

2000, Robert & Braun 2012), but also by sex-specific differences in energy demands that 

young impose on their mother, especially in highly sex-biased litters. Dependent offspring 

are active recipients of maternal provisioning, so their sex-specific efficiency and 

behaviour at provisioning should also be considered in the context of offspring growth 

(Ono & Boness 1996). Milk provisioning in sea lions pups depends on their size and not 

their sex: large offspring received more milk, regardless if they were male or female (Ono 

& Boness 1996). Scramble competition for access to teat/milk among littermates has also 

been reported in rabbits, and usually bigger pups are the winners (Bautista et al. 2005). 
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Increased competition among siblings of opposite sex is also consistent with the results 

obtained from the models that analysed the effects of litter sex ratio change. Increasing 

bias had a positive effect on offspring growth while reducing the bias negatively affected 

offspring growth. These results are interesting and would worth exploring further. To my 

knowledge, this has not been described before. 

Monotocous mothers (those that produce one offspring at a time) could differentially 

allocate resources to one sex or the other by changing milk composition or production 

according to the sex of their offspring (Robert & Braun 2012), although it is unlikely that 

polytocous marsupials would be able to allocate differently to sons and daughters 

concurrently within a litter. In my study, offspring body mass influenced maternal body 

mass, but not the other way around, suggesting that dependent offspring influence 

maternal provisioning, imposing a cost on the mother. This explanation is plausible at the 

nestling stage in my study and might explain why females were negatively affected by  

increased numbers of males in their female-biased litters and  why males were so small 

when growing in female-biased litters.  

 

Costs to mothers are predominantly inconsistent with the TWH mechanism 

Female antechinuses typically continue to grow during most of the lactation period; for 

example brown and agile antechinus mothers increase their body mass during the first 70 

days of lactation and experience substantial weight loss during the last month, when 

energetic requirements peak (Cockburn 1994, Fisher & Blomberg 2011). Weight gain 

during early and mid lactation may be a strategy for mothers to better cope with the great 

demands of late lactation by increasing energy reserves, especially after the imposed 

demands of having to raise more sons. Studies on other small mammals support this. In 

rodents, for example, lactating mothers increase their food intake rate when their 

provisioning demands were increased by both rearing enlarged litters (Kunkele 2000, 

Rutkowska et al. 2011) and male-biased litters (Rutkowska et al. 2011). Increased food 

intake rate is a plausible explanation for this phenomenon and, because during the 

captivity time, females had access to ad lib food daily, I was expecting to observe some 

weight changes. However, in my experiments, maternal body mass did not vary during 

mid-lactation when young were between 45 to 75 days old, regardless if mothers were 

rearing more sons or more daughters. This is also inconsistent with the assumption of the 
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TWH that daughters cost less to produce than sons. If daughters are effectively cheaper to 

produce, then mothers with more daughters should be able to devote more energy to their 

own growth than mothers rearing more sons. 

Mothers may adopt alternative strategies to cope with the increased demands of lactation. 

Mothers, for example, could increase the length of lactation under harsh conditions. 

Guinea pigs extend their lactation by 40% under food restriction treatments (Laurien-

Kehnen & Trillmich 2004) and the same has been observed in deer mice (Perrigo 1990). 

Mothers could also reduce their litter sizes through cannibalism (König 1989, Perrigo 

1990). Several authors have suggested that mothers tend to prioritise their self-

maintenance over offspring growth (Leon &Woodside 1983, Perrigo 1990, Rogowitz 1996, 

Festa-Bianchet & Jorgenson 1998), although the opposite have been found in some 

altricial species (Dobson & Michener 1995, König 1989). I did not find support for any of 

these possible explanations, although I am not certain that mothers did not extend their 

lactation periods, as they were back in the wild at this stage.  

High maternal body mass in mammals indicates sufficient body reserves to raise young 

successfully, and has been associated with improved offspring condition at weaning 

(Bernardo 1996). Offspring mass gain reflects milk transfer and is often related to maternal 

weight loss, because mothers use stored energy to maintain lactation (Bowen et al. 2001, 

Speakman 2008). Large/heavier mothers produce large/heavier offspring compared to 

smaller/lighter mothers (Wauters et al. 1993, Arnbom et al. 1994, Taillon et al. 2012). The 

opposite is observed when access to food is restricted during reproduction. In golden 

hamsters, undernourished mothers produced stunted offspring, and sons were the most 

affected (Labov et al. 1986). Another example is Laurien-Kehnen and Trillmich’s (2004) 

study of guinea pigs. When these mothers experienced food restrictions during 

reproduction, they did not seem to be affected directly, as they did not lose weight during 

lactation. However, young of both sexes were small and had slow growth rates, persisting 

into adulthood. Lim et al. (2014) performed a meta-analysis and found consistent support 

across taxa for all of this, describing that within a certain species, maternal size is 

positively correlated with offspring size and the number of young per litter and a negative 

correlation between offspring size and the number of young per litter when maternal mass 

was controlled for. Consistent with this general pattern in small mammals, I found support 

for this TWH assumption that maternal energy reserves are correlated with offspring 

growth in the subtropical antechinus during mid-lactation. Offspring growth during this 

period was strongly associated to maternal mass regardless of their sex. Also consistent 
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with this, larger mothers (with longer feet) were more likely to successfully wean their 

young. 

In my experiments, consistent with their better body condition higher initial body mass (at 

45 days old) and higher offspring growth rates, antechinus mothers that were rearing 

male-biased litters were more likely to wean their offspring than mothers rearing female-

biased litters, in both natural litters and those were manipulated to have more sons. Under 

the TWH, heavier mothers have resources to raise more sons, but this result also appears 

to contradict the TWH because mothers with added foster-sons should not be more 

capable of increasing investment than mothers with more daughters.  However, these 

mothers were clearly trading-off between offspring survival and their chances of future 

reproduction, as this greater maternal investment in their male-biased litters reduced 

maternal survival and thus their chances to breed again (p=0.07). This is consistent with 

has been previously reported in other species of antechinuses (Cockburn 1994, Fisher & 

Blomberg 2011). In those studies, mothers that weaned more sons or had fast growing 

offspring were less likely to breed a second time. Mothers incurred more of the high cost of 

raising sons, but less of the lower cost of raising daughters, which was born to a greater 

extent by offspring. In agreement with the assumption that sons are more costly to 

produce than daughters, mothers rearing male-biased litters were less likely to survive and 

breed again. In contrast, mothers rearing female-biased litters had poor quality (small) 

sons, were more likely to survive to breed again, indicating a trade-off between the cost of 

son’s growth and mother’s survival. 

 

Support for the TWH prediction that small mothers have reduced investment ability 

Mothers that naturally produced female-biased litters were slightly lighter in mass than 

mothers producing male-biased litters at 45 days old.  However, this difference was not 

significant in any of the mixed effect models. These results are inconsistent with the TWH 

premise that mothers produce offspring sex ratio according to their investment abilities.  

Mothers with female-biased litters were unable to produce high quality sons. Therefore, it 

seems that maternal condition is only relevant to sons and not to daughters. This is 

consistent with findings in experiments on agile antechinuses. Mothers produce male-

biased litters when supplementary food is provided and when competition for food is 

reduced by the removal of competitors (Dickman 1988). This positive correlation between 
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maternal condition and sons’ growth and survival has also been reported in other 

mammals (e.g. Koskela et al. 2004, Isaac et al. 2005, Delean et al. 2009).  Overall, fast 

growth rates of male young together with their increased nutritional requirements have 

been associated with their greater susceptibility to reduced maternal condition and food 

restriction in most mammals (Clutton-Brock et al. 1985; McClure 1981, Labov et al. 1986, 

Kraus et al. 2013).  

 

Rejection of the TWH prediction that mothers cannot rear more high quality males 
than they give birth to 

The key prediction of the TWH is that females give birth to more sons if they can provide 

them with resources to produce large and competitive adults. My data do not support this 

mechanism in the subtropical antechinus. Mothers rearing male-biased litters were able to 

increase allocation of resources to more sons than they gave birth to without 

compromising offspring growth; sons from mothers in litters manipulated to be more male-

biased grew faster, rather than more slowly. In addition, mothers rearing female-biased 

litters produced daughters that were as heavy as males from male-biased litters, which 

contradicts the key prediction of the TWH that mothers producing male-biased litters 

naturally have more to invest than mothers with female-biased litters (Robert et al. 2010). 

Mothers that reared female-biased litters apparently had similar investment abilities to 

allocate resources into their female offspring than mothers from male-biased litters, in spite 

of their reduced body mass (although their sons had stunted growth). This is in part 

opposite to what was expected according to the TWH. In previous studies that have 

manipulated sex ratio, heavier mothers that naturally produced male-biased sex ratios 

were the only ones with the ability to raise large offspring, regardless their sex (Bowers et 

al. 2013, Robert et al. 2010). 

Mothers may also been trading-off energy allocation between current reproduction and 

self-maintenance, depending on the chance of future reproductive events. In 

antechinuses, as the chances for a second-year to reproduce a third time are nil, first-year 

mothers may have been restricting their current reproductive investment in favour of their 

own survival when rearing a female-biased litter in their first breeding attempt. Consistent 

with this, mothers that reared female-biased litters had higher chances to survive to breed 

again than mothers that reared male-biased litters (although the p-value was only 
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marginally significant; p=0.07). In this study, as mothers were  kept in captivity with access 

to food ad libitum, giving them the opportunity to increase their maternal investment. In 

particular, mothers seemed to have increased their investment in sons when rearing male-

biased litters and in their daughters in female-biased litters, as if they would only increase 

investment in their sons when rearing a good group of high quality competitive males – 

sons in female-biased litters were stunted. 

Most studies that have addressed sex allocation in mammals have been carried out in 

species that produce very small litters (one or two young) such as primates and ungulates 

(Koskela et al. 2009). Very few have been inconsistent with predictions of the TWH (but 

see Gedir & Michener (2014), who found that in Richardson’s squirrels sons are heavier 

than daughters at birth and at weaning, but litter sex ratios were not related to maternal 

body mass or to maternal investment ability). In animals that produce litters rather than 

single offspring, interpretation of the mechanism is complicated by the fact that mothers 

might not only control their sex ratios but also litter size (Dusek et al. 2011) and these 

multiple offspring will have to share maternal resources (Carranza & Polo 2012). In 

European rabbits and laboratory rats, for example, pup growth was reduced by increasing 

litter size (Rödel et al. 2008b). The TWH states that mothers with fewer resources should 

wean more of the cheaper sex (Dusek et al. 2011). Subtropical antechinus mothers in my 

study did not conform to this prediction of the TWH, because mothers with male-biased 

litters weaned litters of eight on average (the maximum possible), but mothers with female-

biased litters weaned litters of six on average. I found that large litters were male-biased, 

but small litter sizes were nearly always naturally biased toward females. This is opposite 

to expectations of the TWH, for example Ryan et al. (2012) found that large litters of 

ground squirrels tended to be female-biased and sons reared in smaller litters of ground 

squirrels grew larger than sons reared in large litters, while daughter’s growth was not 

affected by litter size.  

 

Support for the Local Resource Competition hypothesis 

The LRCH predicts that lighter mothers were more likely to have male-biased natural birth 

sex ratios as a way to avoid future competition with their philopatric daughters and 

improve their own chances of survival to breed again. Heavier, older mothers were more 

likely to invest heavily in their daughters. Female offspring were more likely to survive to 
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breed if their mother was a second-year mother, which seems to indicate that mothers 

indeed are able to anticipate future competition with their daughters. Older mothers might 

be willing to incur in the cost of competition with their daughters because of their advanced 

age, as they will not survive to breed again (the chances for a female antechinus to breed 

on third occasion is null) and their daughters may be advantaged as they will be large 

(Cockburn et al. 2002). In my study, mothers rearing female-biased litters were just as able 

to raise large, high quality offspring as mothers rearing male-biased litters. Their daughters 

and sons were as heavy and grew almost at the same rate, regardless of the fact the 

mothers with more daughters were lighter than mothers rearing more sons initially. 

However, it is important to consider that in this experimental manipulation, the natural bias 

of litter sex ratios was increased, decreased or maintained and not reversed. Therefore, 

mothers that reared male-biased litters may have been good quality mothers with greater 

investment ability and that the access to ad libitum food during mid-lactation may have 

allowed increase maternal investment on these antechinus mothers. 

Litter size seemed to have affected daughters’ growth and survival more negatively than 

sons’. This is opposite to expectations of the TWH. If sons are more expensive to produce 

than daughters, increasing litter size should have affected son’s growth more negatively 

than daughter’s growth. In wild boars, also a polytocous species, only small litters were 

male-biased and large litters tended to be biased towards females (Servanty et al. 2007). 

The same has been observed in ground squirrels, in which also sons where heavier when 

growing in small litters compared to large litters (Ryan et al. 2012).  In this study, I did not 

manipulate the size of the litters and the opposite was observed. Female-biased litters 

were on average composed of seven young while male-biased litters had on average 

eight. This, along with the fact that female offspring were more likely to survive (both to 

weaning and to breed) if their mother was a second-year, may suggest that female 

antechinuses were actively investing less in their daughters, at least in their first breeding 

attempt - evidence to support LRCH rather than the TWH. 

Competition among adult females for resources such as food and nest sites often has 

important consequences for survival and reproductive performance (Stockley & Bro-

Jorgensen 2011). Consistent with the LRCH prediction that females facing fitness costs of 

competition from daughters postpone investment in daughters until later in life, mothers 

reduced investment in offspring in favour of their own survival when large female-biased 

litters were imposed on them. Offspring of these mothers showed reduced growth and 

survival with increasing litter size. This may be because mothers traded off investment in 



Chapter 2 

	   65	  

offspring for their own survival to a second year of reproduction, and offspring with more 

competition from littermates (in larger litters) and greater energy needs (males) suffered 

most.  

 

Conclusion 

I tested the main hypotheses to explain sex allocation in subtropical antechinuses, by 

manipulating the sex ratio bias of litters, in order to test the investment ability of mothers. 

To my knowledge, this is the first field experiment using cross-fostering to study sex 

allocation in a wild population of a polytocous marsupial. There has been only one 

experimental manipulation of sex ratio via cross-fostering in a wild birds (flycatchers, 

Bowers et al. 2013), which supported only the TWH, as parents that originally produced 

male-biased sex ratios were the only ones to produce high quality, fast growing offspring. 

This study is the first experimental rejection of key predictions of the TWH, in conjunction 

with support for the LRCH in a wild mammal. It would be interesting to explore what 

happens if litter sex ratios are reversed rather than exaggerated, and how that 

experimental manipulation affects individuals growth and survival. 
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Figures and Tables  
 

Table 1. Regression parameters for offspring growth (offspring mass in g per day) in 

relation to offspring sex, litter sex ratio and maternal age. 

 Slope (g/day) R2 F p 

Female offspring 0.19±0.005 0.76 1587 <0.0001 

Male offspring 0.20±0.005 0.71 1458 <0.0001 

Female-biased litters 0.18±0.004 0.79 1721 <0.0001 

Male-biased litters 0.20±0.005 0.70 1455 <0.0001 

Females in female-biased litters 0.19±0.005 0.80 1338 <0.0001 

Females in male-biased litters 0.18±0.010 0.66 308.3 <0.0001 

Males in female-biased litters 0.16±0.009 0.72 312.3 <0.0001 

Males in male-biased litters 0.20±0.006 0.71 1129 <0.0001 

First-year mothers’ offspring 0.15±0.004 0.64 1152 <0.0001 

Second-year mothers’ offspring 0.21±0.005 0.80 1724 <0.0001 

 

 

 

Figure 1. Offspring growth per sex of the young during mid-lactation: females (black dots, 

continuous line) and males (black open squares, dashed line). See Tables 1, S1 to S3.  
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Figure 2. Correlation between offspring body mass and maternal mass per offspring sex: 

females (black dots, continuous line) and males (black open squares, dashed line) when 

young were between 45-75 days old (mid-lactation). The effect of maternal mass on 

offspring body mass was strongly associated in all the models (see Table S1 to S7; t>15, 

p<0.0001). However, the effect of the interaction between offspring sex and maternal 

mass was not significant (t=-0.95, p=0.35; Table S1b). 
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Figure 3. Boxplot showing the effect of maternal age class (first- and second-year 

females) on (A) maternal mass, (B) offspring mass and  (C) its interaction with year on 

offspring body mass when young were between 45-75 days old (mid-lactation). The dark 

horizontal line represents the mean value, the box represents the 25th and 75th percentiles, 

the whiskers represent the 5th and the 95th percentiles and the outliers are represented as 

open circles. See text and Table S6 to S8 for more details in statistical model used. 

 

 

 

A	   B	  

C	  
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Figure 4. Number of females that were not successful at weaning their young (gray bars) 

and the ones that did (black bars) per litter size. 
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Figure 5. Offspring growth rate during mid-lactation (A) per final litter sex ratio (female-

biased litters in black dots with a continuous line and male-biased litters in black open 

squares with a dashed line) and (B) per litter sex ratio change: decreased natural bias 

(black filled dots, continuous line), increased bias (black open squares, dashed line) and 

natural sex ratio bias (red open circles, red dotted line). See Table S2b, S2c. 

 

B	  

A	  
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Figure 6. Growth of young during mid-lactation in relation to  sex ratio treatment (female-

biased litters on left and male-biased litters on right) and sex of the young: females (black 

dots, continuous line) and males (black open squares, dashed line). 
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Figure 7. Boxplots showing the effects of (A) litter sex ratio manipulation on offspring body 

mass (when their natural litter sex ratio was either decreased, increased or maintained as 

natural) and (B) its interaction with offspring sex (white boxes for females and grey boxes 

for males) when young were between 45-75 days old (mid-lactation). The dark horizontal 

line represents the mean value, the box represents the 25th and 75th percentiles, the 

whiskers represent the 5th and the 95th percentiles and the outliers are represented as 

open circles.  

B	  

A	  
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Figure 8. Boxplot showing the effect of litter size on offspring body mass when young 

were between 45-75 days old (mid-lactation). The dark horizontal line represents the mean 

value, the box represents the 25th and 75th percentiles, the whiskers represent the 5th and 

the 95th percentiles and the are outliers represented as open circles.  

 
Figure 9. The effect of male proportion per litter on offspring growth when young were 

between 45-75 days old (mid-lactation). 
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Figure 10. Effects of maternal foot length as a measure of skeletal size and on maternal 

weaning survival. The dark horizontal line represents the mean value, the box represents 

the 25th and 75th percentiles, the whiskers represent the 5th and the 95th percentiles and 

the are outliers represented as open circles. 

 

 

  
 

 

Figure 11. Effect of litter size on (A) maternal weaning success and (B) its interaction with 

litter sex ratio: white boxes for mothers that were not successful at weaning their young 

and grey boxes for mothers that weaned their offspring. The dark horizontal line 

represents the mean value, the box represents the 25th and 75th percentiles, the whiskers 

represent the 5th and the 95th percentiles and the outliers are represented as open circles. 

 

A	   B	  
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Figure 12. Effects of litter size on (A) maternal weaning, (B) maternal breeding survival, 

(C) offspring weaning survival and (D) female offspring weaning survival. White boxes for 

mothers that were not successful at weaning their young and grey boxes for mothers that 

weaned their offspring. The dark horizontal line represents the mean value, the box 

represents the 25th and 75th percentiles, the whiskers represent the 5th and the 95th 

percentiles and the outliers are represented as open circles. 

 

A	   B	  
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Supplementary information Chapter 2 
 

Table S1a. LMER results for the effects on offspring body mass (log(Wt)) of the following 

fixed factors: maternal mass (g), offspring sex, type of offspring (natural or adopted 

offspring), offspring age (days when measurements were performed), final litter sex ratio 

(female- or male-biased litter), maternal age class (if mother was a first- or a second-year 

female) and litter size. Random factors: (offspring age|donor mother ID), (offspring 

age|recipient mother ID), (offspring age|offspring ID). 

 

Factor Estimate Std. Error t p 

Intercept -2.66 0.194 -13.69 1.11x10-16 

Maternal mass 0.020 0.001 17.24 4.04x10-20 

Offspring sex 0.030 0.009 3.48 1.24x10-03 

Offspring age 0.052 0.003 16.47 2.01x10-19 

Type of offspring 0.001 0.007 0.15 8.79x10-01 

Final sex ratio – male-biased 0.511 0.077 6.68 5.19x10-08 

Maternal age class 0.271 0.019 14.36 2.24x10-17 

Litter size 0.023 0.005 5.09 8.83x10-06 

Final sex ratio x offspring age -0.009 0.001 -6.60 6.89x10-08 

Final sex ratio x offspring sex -0.020 0.011 -1.72 9.38x10-02 

 

AIC: -2217; BIC: -2123, logLik: 1128, deviance: -2331, REMdev: -2255 
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Table S1b. LMER results for the effects on offspring body mass (log(Wt)) of the following 

fixed factors: maternal mass (g), offspring sex, type of offspring (natural or adopted 

offspring), offspring age (days when measurements were performed), final litter sex ratio 

(female- or male-biased litter), maternal age class (if mother was a first- or a second-year 

female) and litter size. To evaluate if there was any sex differences in offspring growth, I 

included in the model the interaction between offspring sex, age, maternal mass and final 

litter sex ratio.  Random factors: (offspring age|donor mother ID), (offspring age|recipient 

mother ID), (offspring age|offspring ID). 

 

Factor Estimate Std. Error t p 

Intercept -2.65 0.196 -13.48 1.83x10-16 

Maternal mass 0.021 0.001 15.34 2.36x10-18 

Offspring sex -0.057 0.067 -0.85 4.00x10-01 

Offspring age 0.052 0.003 16.21 3.49x10-19 

Final sex ratio – male-biased 0.579 0.083 7.00 1.71x10-05 

Maternal age class 0.272 0.019 14.36 2.25x10-17 

Litter size 0.023 0.005 4.88 1.71x10-05 

Offspring sex x maternal mass -0.001 0.001 -0.95 3.51x10-01 

Offspring sex x offspring age 0.002 0.001 2.08 4.38x10-02 

Final sex ratio x offspring age -0.009 0.001 -6.92 2.44x10-08 

Final sex ratio x offspring sex -0.019 0.011 -1.65 1.07x10-01 

 

AIC: -2217; BIC: -2123, logLik: 1128, deviance: -2331, REMdev: -2255 
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Table S2a. LMER results for the effects on offspring body mass (log(Wt)) of the following 

fixed factors:  maternal mass (g), offspring sex, type of offspring (natural or adopted 

offspring), offspring age (days when measurements were performed), sex ratio 

manipulation (decreased, increased or natural bias: if their litter was manipulated by either 

decreasing, increasing or maintained their natural sex ratio bias, respectively maternal age 

class (if mother was a first- or a second-year female) and litter size. Random factors: 

(offspring age|donor mother ID), (offspring age|recipient mother ID), (offspring 

age|offspring ID). 

  

Factor Estimate Std. Error t p 

Intercept -2.64 0.19 -13.77 9.00x10-17 

Maternal mass 0.019 0.001 16.39 2.41x10-19 

Offspring sex 0.015 0.006 2.74 9.12x10-03 

Type of offspring  0.001 0.008 0.15 8.79x10-01 

Offspring age 0.049 0.003 15.23 3.05x10-18 

Sex ratio change – Increased bias 0.48 0.045 10.54 4.18x10-13 

Sex ratio change – Natural bias 0.47 0.038 12.36 3.05x10-15 

Maternal age class 0.134 0.019 7.06 1.56x10-08 

Litter size -0.003 0.005 -0.55 5.85x10-01 

 

AIC: -2338; BIC: -2244, LogLik: 1188, deviance: -2445, REMdev: -2376 
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Table S2b. LMER results for the effects on offspring body mass (log(Wt)) of the following 

fixed factors: maternal mass (g), offspring sex, type of offspring (natural or adopted 

offspring), offspring age (days when measurements were performed), sex ratio change 

(SRCH: decreased, increased or natural bias, if their litter was manipulated by either 

decreasing, increasing or maintained their natural sex ratio bias, respectively), maternal 

age class (if mother was a first- or a second-year female) and litter size. Three interaction 

factors between: sex ratio change (SRCH) and offspring age, SRCH and offspring sex and 

between offspring sex and offspring sex. Random factors for this model were: (offspring 

age|donor mother ID), (offspring age|recipient mother ID), (offspring age|offspring ID). 

 

Factor Estimate Std. Error t p 

Intercept -3.519 0.281 -12.52 2.04x10-15 

Maternal mass 0.019 0.001 16.27 3.10x10-19 

Offspring sex 0.585 0.096 6.07 3.74x10-07 

Offspring age 0.064 0.005 12.72 1.23x10-15 

SRCH  – Increased bias 1.39 0.288 4.82 2.09x10-05 

SRCH – Natural bias 1.42 0.270 5.26 5.13x10-06 

Maternal age class 0.108 0.018 5.98 5.02x10-07 

Litter size -0.015 0.005 -2.81 7.68x10-03 

SRCH-increased bias x age -0.014 0.005 -2.62 1.25x10-02 

SRCH-natural bias x age -0.015 0.005 -3.06 3.94x10-03 

SRCH-increased bias x male -0.668 0.075 -8.92 4.67x10-11 

SRCH-natural bias x male -0.653 0.075 -8.73 8.39x10-11 

Offspring sex x age 0.002 0.001 1.36 1.83x10-01 

 

AIC: -2339; BIC: -2125, LogLik: 1143, deviance: -2387, REMdev: -2285 
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Table S2c. LMER results for the effects on offspring body mass (log(Wt)) of the following 

fixed factors: maternal mass (g), offspring sex, type of offspring (natural or adopted 

offspring), offspring age (days when measurements were performed), sex ratio change 

(SRCH: decreased, increased or natural bias, if their litter was manipulated by either 

decreasing, increasing or maintained their natural sex ratio bias, respectively), maternal 

age class (if mother was a first- or a second-year female) and litter size as a categorical 

factor. Three interaction factors between: sex ratio change (SRCH) and offspring age, 

SRCH and offspring sex and between offspring sex and offspring sex. Random factors for 

this model were: (offspring age|donor mother ID), (offspring age|recipient mother ID), 

(offspring age|offspring ID). 

 

Factor Estimate Std. Error t p 

Intercept -3.07 0.344 -8.90 4.92x10-11 

Maternal mass 0.018 0.001 15.60 1.32x10-18 

Offspring sex 0.106 0.113 0.94 3.55x10-01 

Offspring age 0.059 0.006 10.30 8.43x10-13 

SRCH  – Increased bias 1.18 0.344 3.41 1.49x10-03 

SRCH – Natural bias 1.24 0.288 4.32 1.02x10-04 

Maternal age class 0.157 0.021 7.50 3.84x10-09 

Litter size N2 0.137 0.105 1.30 2.01x10-01 

Litter size N3 -0.018 0.231 -0.08 9.40x10-07 

Litter size N4 -0.075 0.081 -0.92 3.61x10-01 

Litter size N5 -0.065 0.081 -0.80 4.27x10-01 

Litter size N6* -0.148 0.080 -1.85 7.16x10-02 

Litter size N7 -0.248 0.080 -3.12 3.33x10-03 

Litter size N8 -0.068 0.080 -0.88 3.86x10-01 

SRCH-increased bias x age -0.013 0.005 -2.13 3.90x10-02 

SRCH-natural bias x age -0.015 0.006 -2.75 8.81x10-02 

SRCH-increased bias x male -0.231 0.101 -2.29 2.76x10-02 

SRCH-natural bias x male -0.213 0.101 -2.10 4.23x10-02 

Offspring sex x age 0.002 0.001 2.71 9.76x10-03 

 

AIC: -2323; BIC: -2179, LogLik: 1191, deviance: -2506, REMdev: -2381 
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Table S3. LMER results for the effects on offspring body mass (log(Wt)) of the following 

fixed factors: maternal mass (g), offspring sex, type of offspring (natural or adopted 

offspring), offspring age (days when measurements were performed), final proportion of 

males per litter, maternal age class (if mother was a first- or a second-year female), litter 

size and year (2010, 2011, 2012). Random factors: (offspring age|donor mother ID), 

(offspring age|recipient mother ID), (offspring age|offspring ID). 

 

Factor Estimate Std. Error t p 

Intercept -2.79 0.154 -18.15 6.47x10-21 

Maternal mass 0.020 0.001 17.09 5.56x10-20 

Offspring sex 0.018 0.006 3.18 2.85x10-03 

Type of offspring  0.003 0.008 0.41 6.83x10-01 

Offspring age 0.055 0.003 21.59 1.18x10-23 

Male proportion 0.261 0.042 6.24 2.21x10-07 

Maternal age class* 0.017 0.029 0.58 5.68x10-01 

Litter size -0.001 0.006 -0.24 8.12x10-01 

Year 2011 -0.064 0.025 -2.51 1.61x10-02 

Year 2012 0.312 0.038 8.20 4.25x10-10 

 

AIC: -2304; BIC: -2204, logLik: 1172, deviance: -2418, REMdev: -2344 

 

* maternal age class effect is significant if year is not included as factor, just as in the 

previous two models. The main reason for this to occur is that in 2011 the difference in 

offspring body mass between first- and second-year females was not observed. See 

Figure 3. 

 

 

 
 
 

 
 
 
 

 



Chapter 2 

	   90	  

Table S4a. LMER results for the effects on maternal body mass (log(Wt)) of the following 

fixed factors: maternal foot length (mm), offspring age (days when measurements were 

performed), final litter sex ratio (female- or male-biased), maternal age class (if mother 

was a first- or a second-year female) and litter size. Random factors: (offspring age|mother 

ID). 

  

Factor Estimate Std. Error t p 

Intercept 3.52 1.122 2.88 6.43x10-03 

Maternal foot length -0.005 0.092 -0.059 9.54x10-01 

Offspring age -0.0006 0.0009 -0.74 4.65x10-01 

Final litter sex ratio – male-biased 0.054 0.028 1.91 6.29x10-02 

Maternal age class 0.192 0.031 6.16 2.82x10-07 

Litter size -0.002 0.008 -0.25 8.07x10-01 

 

AIC: -284; BIC: -252.9, logLik: 152, deviance: -344.4, REMdev: -304 

 

 

 
Table S4b. LMER results for the effects on maternal body mass (log(Wt)) of the following 

fixed factors: maternal foot length (mm), offspring age (days when measurements were 

performed), original litter sex ratio (f the natural sex ratio of their litters was either female- 

or male-biased), maternal age class (if mother was a first- or a second-year female) and 

litter size. Random factors: (offspring age|mother ID). 

  

Factor Estimate Std. Error t p 

Intercept 3.40 1.224 2.78 8.27x10-03 

Maternal foot length 0.026 0.093 0.028 9.78x10-01 

Offspring age -0.0006 0.0009 -0.70 4.86x10-01 

Original sex ratio – male-biased 0.046 0.028 1.70 9.70x10-02 

Maternal age class 0.190 0.031 6.10 3.45x10-07 

Litter size -0.0002 0.008 -0.03 9.79x10-01 

 

AIC: -283.2 BIC: -252.1, logLik: 151.6, deviance: -343.6, REMdev: -303.2 
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Table S5. LMER results for the effects on maternal body mass (log(Wt)) of the following 

fixed factors: maternal foot length (mm), offspring age (days when measurements were 

performed), sex ratio manipulation (decreased, increased or natural bias: if their litter was 

manipulated by either decreasing, increasing or maintained their natural sex ratio bias, 

respectively), maternal age class (if mother was a first- or a second-year female) and litter 

size. Random factors: (offspring age|mother ID). 

 

Factor Estimate Std. Error t p 

Intercept 2.89 1.34 2.16 3.71x10-02 

Maternal foot length 0.032 0.102 0.32 7.52x10-01 

Offspring age 0.0005 0.0009 0.54 5.90x10-01 

Sex ratio change – Increased bias 0.020 0.079 0.25 8.02x10-01 

Sex ratio change – Natural bias 0.098 0.060 1.65 1.06x10-01 

Maternal age class 0.181 0.034 5.33 4.17x10-06 

Litter size 0.002 0.008 0.25 8.01x10-01 

AIC: -284.1; BIC: -249.9, logLik: 153.1, deviance: -350, REMdev: -306.1 

 

 

 
Table S6. LMER results for the effects on maternal body mass (log(Wt)) of the following 

fixed factors: maternal foot length (mm), offspring age (days when measurements were 

performed), male proportion, maternal age class (if mother was a first- or a second-year 

female), litter size and year. Random factors: (offspring age|mother ID). 

 

Factor Estimate Std. Error t p 

Intercept 1.93 1.28 1.52 1.38x10-01 

Maternal foot length 0.098 0.095 1.03 3.08x10-01 

Offspring age 0.0002 0.0009 0.22 8.27x10-01 

Male proportion 0.044 0.040 1.09 2.81x10-01 

Maternal age class 0.240 0.034 7.00 1.87x10-08 

Litter size 0.008 0.007 1.07 2.90x10-01 

Year-2011 0.136 0.038 3.60 8.67x10-04 

Year-2012 0.067 0.040 1.67 1.02x10-01 

 

AIC: -283.3; BIC: -245.9, logLik: 153.6, deviance: -357.1, REMdev: -307.3 
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Table S7. GLM results for the effects on maternal weaning success (if the mother weaned 

or not their young) of the following fixed factors: maternal mass (g), maternal foot length 

(mm), offspring body mass (g), sex ratio change (SRCH: for this analysis litters that 

experienced a decreased in their natural sex ratio bias were not included), maternal age 

class (if mother was a first- or a second-year female) and litter size.  

 

Factor Estimate Std. Error z p 

Intercept -42.35 30.29 -1.40 0.16 

Maternal body mass 0.062 0.094 0.66 0.51 

Maternal foot length 3.38 2.269 1.49 0.14 

Offspring body mass -0.35 0.704 -0.49 0.62 

SRCH-natural bias -0.27 1.048 -0.26 0.80 

Maternal age class 1.17 1.392 0.84 0.40 

Litter size -0.44 0.249 -1.77 0.076 

 

AIC: 65.98 

 

 
 
Table S8. GLM results for the effects on maternal weaning survival (if the mother survive 

after weaning their offspring) of the following fixed factors: maternal mass (g), maternal 

foot length (mm), offspring body mass (g), sex ratio change (SRCH: for this analysis litters 

that experienced a decreased in their natural sex ratio bias were not included), maternal 

age class (if mother was a first- or a second-year female) and litter size.  

 

Factor Estimate Std. Error z p 

Intercept -61.91 27.91 -2.22 0.027 

Maternal body mass 0.02 0.083 0.25 0.81 

Maternal foot length 5.03 2.15 2.34 0.019 

Offspring body mass -1.03 0.66 -1.56 0.12 

SRCH-natural bias -0.25 0.88 -0.28 0.78 

Maternal age class 0.50 1.06 0.47 0.64 

Litter size -0.62 0.23 -2.70 0.007 

 

AIC: 65.98 
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Table S9. GLM results for the effects on maternal breeding survival (if the mother survive 

to the following breeding season) of the following fixed factors: maternal mass (g), 

maternal foot length (mm), offspring body mass (g), sex ratio change (SRCH: for this 

analysis litters that experienced a decreased in their natural sex ratio bias were not 

included), maternal age class (if mother was a first- or a second-year female) and litter 

size.  

 

Factor Estimate Std. Error z p 

Intercept -23.51 25.44 -0.92 0.36 

Maternal body mass -0.005 0.086 -0.05 0.96 

Maternal foot length 1.85 1.92 0.97 0.34 

Offspring body mass 0.22 0.63 0.35 0.73 

SRCH-natural bias -0.31 0.93 -0.33 0.74 

Maternal age class -0.30 1.08 -0.21 0.83 

Litter size -0.39 0.19 -2.00 0.05 

 

AIC: 71.85 
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Table S10a. GLMER results for the effects on offspring weaning survival (if the young 

survive for a while after weaning as independent individuals) of the following fixed factors: 

offspring body mass (g), offspring sex, maternal mass (g), final litter sex ratio (male- or 

female-biased litter), maternal age class (if mother was a first- or a second-year 

female)and  litter size. 

 

Factor Estimate Std. Error z p 

Intercept 6.15 5.32 1.16 0.25 

Offspring body mass -0.17 1.08 -0.16 0.88 

Offspring sex 0.30 0.59 0.52 0.61 

Maternal body mass 0.04 0.16 0.27 0.79 

Litter sex ratio – male-biased 4.27 1.28 3.33 0.002 

Maternal age class* 3.94 2.06 1.91 0.063 

Litter size -1.14 0.48 -2.37 0.023 

Sex ratio x maternal age class -4.78 1.73 -2.77 0.009 

 

AIC: 196.2; BIC: 230.9, logLik: -89.1, deviance: 178.2 
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Table S10b. GLMER results for the effects on offspring weaning survival (if the young 

survive for a while after weaning as independent individuals) of the following fixed factors: 

offspring body mass (g), offspring sex, maternal mass (g), type of offspring (adopted or 

natural), sex ratio change (SRCH: for this analysis litters that experienced a decreased in 

their natural sex ratio bias were not included), maternal age class (if mother was a first- or 

a second-year female)and  litter size. 

 

Factor Estimate Std. Error z p 

Intercept 5.17 6.10 0.85 0.40 

Offspring body mass -0.22 1.18 -0.19 0.85 

Offspring sex 0.94 0.54 1.72 0.09 

Maternal body mass 0.12 0.18 0.66 0.52 

Type of offspring -1.07 0.78 -1.37 0.18 

SRCH-natural bias 0.86 1.79 0.48 0.63 

Maternal age class 2.52 2.39 1.05 0.30 

Litter size -1.04 0.58 -1.80 0.08 

 

AIC: 205.9; BIC: 240.6, logLik: -93.93, deviance: 187.9 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 



Chapter 2 

	   96	  

Table S11a. GLMER results for the effects on female offspring breeding survival (if the 

young survive for a while after weaning as independent individuals) of the following fixed 

factors: offspring body mass (g), offspring sex, maternal mass (g), type of offspring 

(adopted or natural), final litter sex ratio (female- or male-biased litter), maternal age class 

(if mother was a first- or a second-year female), litter size and the interaction between litter 

sex ratio and maternal age class. 

 

Factor Estimate Std. Error z p 

Intercept -7.06 4.00 -1.77 0.09 

Offspring body mass -0.03 0.16 -0.19 0.85 

Maternal body mass 0.13 0.11 1.16 0.25 

Litter sex ratio-male-biased -1.30 1.46 -0.89 0.38 

Maternal age class 4.75 1.94 2.44 0.02 

Litter size -0.39 0.32 -1.25 0.22 

Sex ratio x maternal age class -4.37 2.07 -2.11 0.041 

 

AIC: 277.5; BIC: 311, logLik: -130.7, deviance: 261.5 

 
 
Table S11b. GLMER results for the effects on female offspring breeding survival (if 

survived or not to breed) of the following fixed factors: offspring body mass (g), maternal 

mass (g), sex ratio change (SRCH: for this analysis litters that experienced a decreased in 

their natural sex ratio bias were not included), maternal age class (if mother was a first- or 

a second-year female) and  litter size. 

 

Factor Estimate Std. Error z p 

Intercept -0.96 2.55 -0.38 0.71 

Offspring body mass -0.005 0.086 -0.05 0.82 

Maternal body mass 0.22 0.63 0.35 0.87 

SRCH-natural bias -0.31 0.93 -0.33 0.10 

Maternal age class* -0.30 1.08 -0.21 0.06 

Litter size -0.39 0.19 -2.00 0.006 

 

AIC: 295.4; BIC: 324.7, logLik: -140.7, deviance: 281.4 
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Table S12. List of all the females captured with their pouch young when they were two to 

three weeks old in 2010, 2011 and 2012. Mothers and their young were kept in captivity 

until they voluntarily detach from the teat to be individually sex and marked to then 

released them back to the wild at the site of capture. Mothers in bold were the ones that 

were subject to cross-fostering. 

 

Year Mother Natural 

litter sex 

ratio 

Final 

litter 

sex 

ratio 

Original 

litter 

size 

Final 

litter 

size 

Natural bias Final bias 

2010 8C58 3f-5m 0f-6m 8 6 male-biased male-biased 

2010 6F87 2f-5m 1f-6m 7 7 male-biased male-biased 

2010 947E 2f-5m 1f-6m 7 7 male-biased male-biased 

2010 D524 5f-2m 6f-1m 7 7 female-biased female-biased 

2010 6140 2f-2m 3f-0m 4 3 unbiased female-biased 

2010 8032 2f-6m 1f-7m 8 8 male-biased male-biased 

2010 8FB0 6f-1m 7f-0m 7 7 female-biased female-biased 

2010 7BE5 4f-3m 5f-2m 7 7 female-biased female-biased 

2010 8BBD 5f-3m 7f-1m 8 8 female-biased female-biased 

2010 7953 2f-0m 2f-0m 2 2 female-biased female-biased 

2010 92F7 2f-4m 1f-5m 6 6 male-biased male-biased 

2010 75CA 2f-5m 1f-6m 7 7 male-biased male-biased 

2011 B7DF 4f-4m 5f-3m 8 8 female-biased female-biased 

2011 C641 0f-6m 1f-5m 6 6 male-biased male-biased 

2011 8C58 2f-2m 2f-2m 4 4 unbiased unbiased 

2011 82CE 4f-0m 3f-1m 4 4 female-biased female-biased 

2011 frf2-rb3 3f-4m 3f-4m 7 7 female-biased female-biased 

2011 BBFF 3f-5m 3f-5m 8 8 male-biased male-biased 

2011 D435 2f-4m 0f-2m 6 2 male-biased male-biased 

2011 E36F 3f-5m 3f-5m 8 8 male-biased male-biased 

2011 9887 2f-1m 2f-1m 3 3 female-biased female-biased 

2011 90CA 5f-2m 5f-2m 7 7 female-biased female-biased 

2011 frb4 3f-1m 3f-1m 4 4 female-biased female-biased 

2011 8339 3f-4m 2f-5m 7 7 male-biased male-biased 

2011 7BE5 4f-2m 4f-2m 6 6 female-biased female-biased 
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2011 C123 5f-3m 5f-3m 8 8 female-biased female-biased 

2011 8691 0f-1m 1f-0m 1 1 male-biased female-biased 

2011 7E95 1f-7m 1f-7m 8 8 male-biased male-biased 

2011 DE99 2f-6m 2f-6m 8 8 male-biased male-biased 

2011 frf3-rb4 2f-5m 2f-5m 7 7 male-biased male-biased 

2011 BBD6 3f-2m 3f-2m 5 5 female-biased female-biased 

2011 D899 3f-5m 3f-5m 8 8 male-biased male-biased 

2011 A144 3f-5m 3f-5m 8 8 male-biased male-biased 

2011 A91E 1f-4m 1f-4m 5 5 male-biased male-biased 

2011 frf3-rb3 - - 6 6 undetermined undetermined 

2011 7CEB - - 8 8 undetermined undetermined 

2011 6E70 - - 6 6 undetermined undetermined 

2011 NN1 - - 7 7 undetermined undetermined 

2011 NN2 - - 6 6 undetermined undetermined 

2011 7B53 - - 6 6 undetermined undetermined 

2011 7229 - - 8 8 undetermined undetermined 

2011 8B71 - - 7 7 undetermined undetermined 

2012 82CE 3f-5m 3f-5m 8 8 male-biased male-biased 

2012 flb5-

rb3 

3f-1m 3f-1m 4 4 female-biased female-biased 

2012 flb4-rf2 3f-5m 3f-5m 8 8 male-biased male-biased 

2012 flb4-lf5 - - 8 8 undetermined undetermined 

2012 flb4-

rb3 

2f-2m 2f-2m 4 4 unbiased unbiased 

2012 flb3-

lb4 

- - 7 7 undetermined undetermined 

2012 flb2-

rb3 

2f-5m 2f-5m 7 7 male-biased male-biased 

2012 A144 7f-1m 7f-1m 8 8 female-biased female-biased 

2012 3A9D 2f-4m 2f-4m 6 6 male-biased male-biased 

2012 flb3 2f-6m 2f-6m 8 8 male-biased male-biased 

2012 B717 2f-4m 2f-4m 6 6 male-biased male-biased 

2012 NNJ1 2f-6m 2f-6m 8 8 male-biased male-biased 

2012 flb3-

rb3 

4f-3m 4f-3m 7 7 female-biased female-biased 
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2012 frb2 3f-5m 3f-5m 8 8 female-biased female-biased 

2012 44AB 4f-3m 4f-3m 7 7 female-biased female-biased 

2012 frf5 6f-2m 6f-2m 8 8 female-biased female-biased 

2012 20EC 2f-6m 2f-6m 8 8 male-biased male-biased 

2012 flf3 - - 0 0 - - 

2012 flb2-lf3 6f-2m 6f-2m 8 8 female-biased female-biased 

2012 frf2 2f-6m 2f-6m 8 8 male-biased male-biased 

2012 95F9 5f-2m 5f-2m 7 7 female-biased female-biased 

2012 E056 5f-2m 5f-2m 7 7 female-biased female-biased 

2012 27DA 2f-2m 2f-2m 4 4 unbiased unbiased 

2012 8745 5f-3m 5f-3m 8 8 female-biased female-biased 

2012 46A2 5f-3m 5f-3m 8 8 female-biased female-biased 
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Age-specific reproductive trade-offs in female subtropical antechinuses 

Abstract 

Determining how costs of reproduction vary with age is crucial to understanding life history 

evolution. Reduced survival or success in future breeding events are the main costs of 

current reproduction. Such costs are expected to increase with maternal age. Two main 

non mutually exclusive hypotheses might explain the variation in reproductive effort of 

individuals as they grow old: the terminal investment hypothesis and the senescence 

hypothesis. The former predicts that mothers should increase their investment when the 

chances of breeding again are reduced as they age, and the latter predicts a decrease in 

maternal reproductive effort due to physiological deterioration with age. In this study, I 

assessed age-specific trade-offs with reproduction in subtropical antechinus females. 

Older females increased their maternal investment. Mothers breeding for the second time 

(in their second year) were able to produce high quality, large offspring that were more 

likely to survive at the expense of their own survival.  

Key words: maternal investment, sex ratio, cross-fostering, terminal investment, 

senescence, offspring growth, age, subtropical antechinus. 

 

 

Introduction 

The way that individuals allocate limited resources to growth, survival and reproduction is 

fundamental to their reproductive success (Stearns 1992). Thus, investment in each 

breeding event results from trade-offs between the high energetic costs of reproduction, 

offspring quality (size versus number), their own survival and future breeding potential 

(Williams 1966, Clutton-Brock 1984, Speakman 2008). Due to the extremely high 

energetic requirements associated with gestation and more importantly with lactation, 

female mammals are good subjects for studying the costs of reproduction (Hamel et al. 

2010).  

In female mammals that experience more than one reproductive event in their lifetime (i.e. 

iteroparous females), current investment in reproduction usually decreases both their 
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future breeding attempts, and survival (Stearns 1992, Speakman 2008). This may be 

because limited resources such as body fat stores are depleted (Green et al. 1991), or 

there is a reduced immunological and stress response (Harshman & Zera 2006). The 

mechanisms may be hormonal regulation interacting with intermediary metabolism that 

control differential resource allocation, the production of damaging by-products, draining of 

somatic reserves which might compromise immunological function and decrease 

protection against stress and toxicity (Harshman & Zera 2006).  

There are two main hypotheses to explain the changes in reproductive performance with 

age in iteroparous females (Weladji et al. 2010): the terminal investment and the 

senescence hypothesis. Although their predictions are opposite in terms of maternal 

investment, they are not mutually exclusive and both could operate concurrently in an 

organism. The terminal investment hypothesis predicts that older mothers should increase 

their investment in current reproduction when their chances of breeding successfully in the 

future are reduced or when their mortality risk rises with age (Williams 1966, Clutton-Brock 

1991, Stearns 1992). The senescence hypothesis predicts a reduced investment in 

reproduction in older females due to lack of resources and an overall progressive 

deterioration of physiological and molecular functions associated with ageing (Kirkwood & 

Austad 2000, Selman et al. 2012). The duration of lactation and specific life expectancies 

are thought to determine the timing of such reproductive senescence (Packer et al. 1998). 

Several studies with ungulates and pinnipeds have shown that breeding success of 

females increases as they age (Packer et al. 1998, Coté & Festa-Bianchet 2001) before 

undergoing reproductive senescence in the last stages of their lives (Kirkwood & Austad 

2000). However, most studies have not supported the terminal investment hypothesis, 

because they have failed to show that improvement in older mothers’ breeding success is 

caused by an increase in their reproductive effort. Instead, in most cases, improved 

breeding success with maternal age is associated with enhanced parental skills through 

experience (Cameron et al. 2000, Coté & Festa Bianchet 2001, Weladji et al. 2002, 

Weladji et al. 2006).  

There are many confounding factors that may mask the costs of reproduction and the 

effects of age on the investment ability of mothers. For example, female mammals may 

compensate for a decline in reproductive performance as they age by extending the 

duration of lactation or reducing litter sizes, before reaching complete reproductive 

cessation at the end of their lives (Packer et al. 1998). Increased body mass, improved 



Chapter 3 

	   103	  

access to resources, previous maternal experience (including improved parental skills) or 

the aquisition of higher social rank with age may also account for increased  reproductive 

success in older mothers (Coté & Festa-Bianchet 2001). Variation in quality of individuals 

may also conceal the cost of reproduction, as positive correlations between breeding 

success and survival are also common in female mammals (Clutton-Brock 1984). Maternal 

investment strongly affects offspring growth and survival during the period of dependency 

(Mousseau & Fox 1998) and such effects may persist into adulthood (Kerr et al. 2007). 

However, this is not always the case, and offspring growth, survival and reproduction may 

be unrelated to maternal allocation (Ylönen et al. 2004). Juveniles may compensate for 

undernourishment or slow growth rates in their earlier life once they are independent, if 

they have adequate access to resources (Töigo et al. 1999, Festa-Bianchet et al. 2000, 

Gendreau et al. 2005). 

Most studies on costs of reproduction in mammals have focused on rodents and ungulates 

(see review in Hamel et al. 2010), and have often yielded ambiguous results due to the 

many confounding factors affecting life history trade-offs (Nussey et al. 2008). Marsupials 

are good model species to study the costs of reproduction, as maternal investment occurs 

mainly through lactation, which is substantially controlled by the mother (Isaac & Johnson 

2005, Fisher & Blomberg 2011). Species that have evolved fast life history strategies, such 

as short-lived mammals, are also particularly appropriate for addressing reproductive costs 

and trade-offs. Their reproduction is generally less variable compared to their survival than 

longer-lived animals, suggesting that they maximise their reproductive effort at each 

breeding attempt. This is expected to favour reproduction at the expense of survival, 

presumably because they may not have many opportunities to breed again (Hamel et al. 

2010). 

Antechinuses are small carnivorous marsupials with extreme life history traits (Braithwaite 

& Lee 1979). Most females breed only once dying soon after weaning their young (ie. most 

are semelparous) and a minority manage to reproduce a second time, but rarely live for 

more than two years and never reproduce a third time (Fisher & Blomberg 2011). 

Therefore, females belong to one of two cohorts:  they have either been born in that year 

or are in their second year of life. The proportion of iteroparous females (second-year 

females) appears to vary among populations and also species (Cockburn et al. 1983) and 

to depend on environmental conditions and food abundance (see Chapter 1 for more 

details).  
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Previous studies on agile (Antechinus agilis; Cockburn 1994) and brown antechinuses (A. 

stuartii; Fisher & Blomberg 2011) have shown opposite results. The first study, on agile 

antechinuses, found that mothers rearing fast-growing offspring were less likely to survive 

lactation, suggesting high reproductive costs for such mothers. Cockburn (1994) 

concluded that second-year mothers were senescent, as they were less likely to survive 

lactation and produced low quality offspring with low survival rates. In contrast, Fisher and 

Blomberg (2011), showed that although second-year brown antechinus mothers were less 

likely to survive lactation and lost much more weight, they produced fast-growing offspring 

with higher survival rates. This suggests a greater investment ability in older mothers than 

in younger ones. First-year mothers that produced fast growing offspring were also less 

likely to survive lactation whereas young mothers with a poorer breeding performance in 

their first breeding attempt were able to compensate by breeding a second time.  

The aim of this chapter is to assess the costs of reproduction in a wild population of 

subtropical antechinus (Antechinus subtropicus) by testing whether the terminal 

investment hypothesis and/or senescence hypothesis applies to females of this species. 

The subtropical antechinus is considered to be the largest of the brown antechinus 

complex, which is composed of four closely related species (in size order from smallest to 

largest: A. agilis, A. adustus, A. stuartii, and A. subtropicus); a group also closely related to 

the yellow-footed antechinus (A. flavipes). Agile, brown and yellow-footed antechinuses 

are the best-studied species of this group (Naylor et al. 2008). 

In this chapter, I quantify maternal body mass changes and offspring growth during mid-

lactation in captivity and the survival of mothers from this stage until the following mating 

season, after they were released back to the wild. I compare maternal investment between 

mothers that were breeding for the first time (first-year mothers) versus mothers breeding 

for a second time (second-year mothers). The terminal investment hypothesis states that 

there should be survival or reproductive costs associated with increased investment in 

current reproduction. Therefore, I expect second-year mothers to have better reproductive 

performance (large, fast-growing offspring and increased weaning success) than younger 

mothers, at the expense of maternal growth (older mothers should have greater weight 

loss during lactation) and survival (older mothers should have a reduced post-weaning 

survival). In contrast, first-year mothers are expected to have a higher post-weaning 

survival in their first-breeding attempt and to be more likely to survive to breed again in the 

following mating season than older mothers (as in brown antechinuses, Fisher & Blomberg 

2011). Thus first year mothers should have a reduced breeding performance (smaller, 
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slower growing offspring, and a lower probability of successfully weaning their young), 

compared to second-year mothers, as a way to maximise their chances of survival. First-

year mothers that invest more in their offspring should be less likely to survive lactation 

than young mothers that are more restrained in their reproductive investment (favouring 

survival over reproduction). I also expect that offspring from older mothers should be larger 

and grow faster, have higher survival, and thus should be more likely to reproduce. If the 

terminal investment hypothesis applies, negative effects of raising a larger litter on 

maternal growth and survival should be greater in younger mothers.  

 

Methods 

Late lactation and weaning in the subtropical antechinus 

In this species, the pouch phase lasts for five to six weeks, after which young are no 

longer attached permanently to a teat, and the nestling phase begins. This final phase of 

lactation lasts for another seven to eight weeks, during which mothers leave their young in 

their nest while foraging and come back intermittently for a suckling bout. During the last 

two weeks of lactation, when young start to explore more outside their nest, is when the 

highest mortality of young has been recorded in other studies (e.g. Coates 1995). 

Predation of naive young and other kinds of misadventures occur when young start to 

explore their surroundings, learn how to forage for themselves, and improve their hunting 

skills, at the same time as they need to acquire enough energy to support the high 

energetic demands of growing. Once completely independent, males disperse away from 

their birthplace and females remain philopatric, sharing home ranges with their mother and 

sisters (Cockburn et al. 1985, Fisher 2005). 

 

Study site, trapping and husbandry 

This field study was carried out at Springbrook National Park using two sites where 

subtropical antechinuses were relatively abundant. Both sites were at ~900 m above sea 

level and consist of montane subtropical rainforest with dense understorey, vine tangles 

with fallen and rotten logs on the ground. A total of 200 Elliot traps were used per night, 

mainly along a disused track to facilitate inspection. Trap locations, separated by 5-10 m, 
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were permanently marked with flagging tape, and in each spot between one to three traps 

were placed, depending on the presence of clear runways (Tasker & Dickman 2002). 

Trapping details are described in the general methods (chapter one). 

Seventy six subtropical antechinus females were trapped when their young were two to 

three weeks old, when the mothers still carry them around constantly (pouch phase). 

However, only 56 of them were included in this study as the rest died within a few days of 

being in captivity (12 in 2010, 30 in 2011 and 24 in 2012). I aimed to capture the mothers 

with their entire litters to determine their natural litter sizes, sex ratios, and to individually 

mark each one of their offspring, before returning them all back to the wild. Mothers and 

young were kept in captivity for five to seven weeks (see general methods above for 

details of husbandry). 

During captivity, I measured each animal’s growth (body mass and length) every three to 

five days. At the beginning, when young were still attached to the teat, mothers were 

weighed (nearest 0.01 g) with young attached and three pictures were taken with a 

measuring ruler next to them to calculate the mean crown-rump length for the young and 

the length of left hind foot of the mother using ImageJ (nearest 0.01 mm) (Rasband 2013). 

This method was preferred to reduce stress due to excessive manipulation of the animals, 

after confirming the measurements were the same if using the calipers (data not 

presented). Once the young detached from the teat, individual measurements of their body 

mass were taken after young were individually marked. When young were ~62 days of 

age, a cross-fostering experiment was performed, which consisted in swapping one or two 

young between some of the mothers in order to study maternal sex allocation (see chapter 

1) and benefits of matrilineal social structure. However, the cross-fostering experiment did 

not affect offspring growth or survival (see chapter 1 and supplementary information). A 

week after the cross-fostering experiment was performed, when young were ~75 days old, 

I released the mothers and their young in the wild by strapping their nest-box to a tree at 

the site of capture. Growth and survival of mothers and their young was determined in the 

wild, after they were released into their original home ranges two to three weeks before 

weaning. Around weaning is the period when young antechinuses suffer from the highest 

mortality rates, according to previous studies. Therefore, it is around this time when 

differences in survival between treatments are expected to be detected. I monitored this 

via nest-boxes inspections and trapping sessions performed every month for 3-5 

consecutive nights until the following breeding season following the procedures described 

above. Female antechinuses have stable home ranges with extreme site fidelity (Lazenby-
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Cohen & Cockburn 1988, Lazenby-Cohen & Cockburn 1991, Fisher 2005), therefore, 

detecting and following the fate of females, both mothers and newly weaned young, to 

monitor their survival and growth is feasible once released back to the wild. In contrast, as 

males usually disperse away once independent, their fate is uncertain. In this study, 56 

mothers with litters were included in the analysis (12 in 2010, 22 in 2011 and 22 in 2012). 

A total of 256 young (120 females and 136 males) had a first-year mother, while 95 young 

(47 females and 48 males) had a second-year mother. 

 

Data analyses 

I used separate generalized linear mixed effects models (GLMM) to assess the effects of 

maternal age on growth (in mass) and survival of mothers and offspring. I evaluated the 

effects of maternal age on weaning success (if the mother successfully weaned their 

offspring or not), maternal post-weaning survival (if the mother was known to be alive 

during the first two months after weaning her young) and maternal breeding survival (if the 

mother survived to breed again the following year, i.e. survived at least six months after 

young were weaned) and also on offspring growth, offspring weaning survival (if young 

survived to weaning and were seen alive as independent individuals) and daughter’s 

breeding survival (if there was a difference in their daughters breeding survival. Males 

disperse once independent, so they fate is uncertain).  

Maternal age class (first- or second- year mother), maternal foot length (as a 

measurement of their skeletal size), offspring age, offspring crown-rump length, offspring 

sex, litter size (as the number of young per litter can influence maternal investment ability), 

litter sex ratio treatment (either female- or male-biased), the proportion of males per litter 

(as a continuous measure of sex ratio bias per litter), manipulation (if natural litter sex ratio 

was manipulated or kept as natural) and year were treated as fixed factors in the models. I 

also evaluated the effects of type of offspring (natural or cross-fostered to test whether 

fostered young were treated differently than natural offspring) on the different models, but 

in all of them, type of offspring was not significant (t < 0.05, p > 0.9).  Although I performed 

body mass measurements every three to five days while the animals were in captivity, this 

was not done at exactly the same age across the three years of this study. Therefore, 

offspring age as in days when the measurements were done (for both mothers and 

offspring) along with the identities of mothers and offspring were random factors in the 
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mixed effect models (see Tables S1 to S2). The use of these random factors allowed 

variation in both intercepts and slopes in the growth curves (as in Chapter 2). I used the R 

function ‘lmer’ for body mass analyses of mothers and offspring, while the functions ‘glm’ 

and ‘glmr’ were used for survival analyses of mothers and offspring, respectively (see 

Chapter 2).  

I used different mixed effect models to analyse the effects of individual growth in mass, 

because the different approaches to classifying litter sex ratio cannot be included at the 

same time. I used the proportion of males per litter and year together as factors and litter 

sex ratio (either female- or male-biased litter) and manipulation (if the natural sex ratio of 

the litter was manipulated or not) together in a separate model. The manipulation was not 

performed in in 2012, so year can only be included as a factor in the model using male 

proportion as the measure of sex ratio bias (see Chapter 2). Year effects are not 

discussed in this current chapter as they are addressed in Chapter 4. 

When appropriate, I also used an unpaired t-test (no repeated measures) to compare 

differences between means, and contingency tables to evaluate differences in survival 

while controlling for one factor at a time using χ2 or Fisher test.  All statistical analyses 

were conducted in R Studio (v. 0.98.501 R Development Core Team, 2013) and their 

results summarised in Tables S1 to S7 

 

Results 

If terminal investment is operating, second-year mothers will have better reproductive 

performance than first-year mothers, at a cost to maternal growth and survival. If so, I 

predicted that second year mothers should be heavier (a), have large and fast growing 

offspring (b), have increased weaning success (c) lose more mass during lactation (d), be 

less likely to survive weaning their offspring (e) and be less likely to survive to the next 

breeding season (f). 

In agreement with the terminal investment hypothesis, older mothers were demonstrated 

to have a greater investment ability than younger mothers, not only because they were 

heavier, but they also because they had large, fast growing offspring and were more likely 

to wean their young than mothers in their first breeding attempt. Unexpectedly, this 

increased maternal investment of older mothers was not reflected in maternal weight loss 
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during mid-lactation, at least during mid lactation. Also in agreement with the terminal 

investment hypothesis, first-year females had higher post-weaning survival than second-

year mothers, and offspring mass only negatively affected post-weaning survival of older 

mothers. Accordingly, the higher investment ability of second-year mothers was also 

reflected on the higher survival rates of their offspring that were more likely to survive to 

breed than first-year mothers’ offspring. 

 

a) Second year mothers were 22% heavier than first year mothers in mid lactation. 

Second- and first-year mothers weighed on average (mean ± SE) 37.83 ± 1.46 (N = 14) 

and 31.13 ± 0.59 (N = 42), respectively, when young were 51 days old (maternal age: t = 

2.45, p = 0.002; see Table S1a). 

 

b) Second-year mothers had larger, heavier offspring (maternal age class: t = 6.33, p < 

0.0001; Table S2a) and they also grew at a faster rate than offspring from first-year 

mothers (maternal age class x offspring age: t = -5.23, p < 0.001; Figure 1; see also Table 

S2a). When offspring were ~51 days old, their mean body mass was 21% greater if their 

mother was a second year female: 2.43 ± 0.036 g (N = 256) if their mother was a first-year 

female and 2.94 ± 0.055 g (N = 95) if their mother was a second-year female (t = 7.51, df = 

349, p < 0.0001). Sons grew slightly faster than daughters, regardless the age class of the 

mother (t > 2.5, p < 0.02. See Tables S2 and Figure 1). There was also a significant effect 

of sex ratio manipulation affecting offspring body mass (Table S2a), thus I also used a 

model evaluating the effect of sex ratio change (if the natural sex ratio was increased or 

maintained. Table S2b). However, its effect was not significant. 

 

 

c) From 56 mothers studied, 71% (N = 40) weaned their offspring while 29% (N = 16) died 

along with their young during mid-lactation while in captivity (i.e. before weaning their 

litter). Second-year mothers were more likely to wean their young than first-year mothers 

(Fisher test p = 0.047). While 93% of the second-year females weaned their offspring (N = 

13 from a total of 14), only 64% of the first-year females were able to wean their litters (N = 

27 from a total of 42). Moreover, from the sixteen mothers that died before weaning their 

young, fifteen of them (94%) were first-year mothers and only one was a second-year 

female. Surprisingly, the mixed effect model did not find any significant effect other than 

litter size, which was discussed in Chapter 2 (see Table S3).  
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d) Regarding maternal weight loss in mid to late lactation for antechinus mothers, my 

results did not conform with expectations under the terminal investment hypothesis. 

Maternal body mass did not vary with offspring age, at least during mid-lactation when 

animals were in captivity, when young were between 45 to 75 days old (Table S1). 

 

However, offspring mass negatively affected the body mass of older mothers. I found 

strong support for the terminal investment hypothesis in the effects of sex ratio 

manipulation on individual body mass. Sex ratio manipulation had a positive effect on 

offspring body mass. Manipulated litters were heavier than natural litters, regardless of the 

age class of the mother (manipulation: t = 3.79, p = 0.0005. Table S2c). Maternal body 

mass was also positively affected by manipulation, but only in younger mothers. First-year 

mothers had a higher mean body mass in manipulated litters than unmanipulated litters. In 

contrast, second-year mothers had a lower mean body mass in manipulated litters than in 

unmanipulated ones while having the offspring with the highest mean body mass 

(manipulation x maternal age class: t = 4.13 p = 0.0002). In agreement with the terminal 

investment hypothesis, older females used their own body reserves to sustain their 

offspring growth when their litter sex ratios where increased (Figure 2. Table S1b. See 

Chapter 2). 

 

 

e) From the 40 mothers that weaned their young successfully, 55% of them (N = 22) were 

seen alive within the next two months after weaning their offspring (confirming post-

weaning survival), while the rest (N = 18, 45%) died soon after weaning their young. In 

support of the terminal investment hypothesis, first-year mothers had higher post-weaning 

survival than older mothers (maternal age class: t = 1.98, p = 0.05. Table S4). From those 

40 females that weaned their young, fifteen were first-year mothers (68%) and seven 

(32%) were second-year females. In this study, of the 56 mothers studied, only 14 were 

second-year mothers and half of them were seen alive after weaning their young. 

 

f) Thirty eight percent of the 15 mothers that weaned their young managed to survive to 

the following mating season. Eleven were first-year mothers (73%). The four second-year 

mothers that were seen alive at least during July (mating season occurs in August) 

represented 30% of the older mothers that weaned their young (none of these females 

were seen alive after the mating season). However, the model did not find these values to 
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be significant (maternal age class: t = 0.96, p = 0.34. Table S5). According to the model I 

used for maternal breeding survival, the only significant effect was litter sex ratio (t = -2.11, 

p = 0.04. Table S5). Mothers that raised female-biased litters were more likely to survive to 

the next breeding season than mothers with male-biased litters. Eleven of 19 mothers that 

reared a female-biased litter survived to the next breeding season, only four of 21 mothers 

that reared a male-biased litter did. This result supports the conclusion that producing 

more sons is costly to the mothers as it reduces their chances of future reproduction (see 

Chapter 2). 

 

If offspring growth negatively affects maternal survival, then mothers with small offspring or 

with slow growth rates should be more likely to survive lactation (higher post-weaning 

survival) and to breed again than mothers with larger, fast growing offspring, especially if 

the mother is a first-year female.  Second-year females were not expected to survive long 

enough to raise young a third time: no cases of third year females with litters are known in 

this species or other related species of antechinus. My results support terminal investment 

in old antechinus mothers. Offspring mass negatively affected post-weaning survival but 

only in second-year females (maternal age class x offspring mass: t = -2.03, p = 0.04. 

Figure 3. Table S4). While first-year mothers that survived for a while after weaning their 

young had heavier offspring than those young mothers that died soon after the end of 

lactation, the opposite was observed in second-year mothers. Older mothers that died 

soon after weaning their young had heavier offspring than those second-year mothers that 

were still alive within the next two months after weaning their young. This result suggests a 

high survival cost of producing heavier offspring for older mothers. Offspring mass did not 

affect maternal breeding survival (t = 1.19, p = 0.23. Table S5). 

 

If terminal investment is operating, I expected that the higher investment in young would 

mean that offspring from older mothers would be more likely to survive to independence 

(post-weaning survival) and to reproduce (breeding survival) than offspring from younger 

mothers. My results match this expectation. While 81% (N = 77 from a total of 95) of young 

whose mother was a second-year female survived to independence, only a 51% of the 

offspring from first-year mothers (N = 150 from a total of 256) were seen alive within the 

next two months after weaning (maternal age class: t = 2.20, p = 0.03). 
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Only 35 individual young managed to survive until the next reproductive event, which is 

equivalent to only a 10% of the total number of offspring studied. Twenty five of them 

(71%) were females and only 10 (29%) were males. However, considering that from a total 

of 164 juvenile females included in this study, only 25 (15.2%) survived long enough to be 

able to reproduce, the number of male young surviving to breeding age (15% of the 68 

with a known fate) appears to be identical to the proportion of females. As males disperse 

away from their birthplace once independent, I removed them from the breeding survival 

analyses of offspring, focusing only in the breeding survival of daughters (those ten males 

had very low re-capture rates and were mainly trapped once or twice sporadically). 

Daughters from second-year mothers were more likely to survive to reproduce than 

daughters from first-year mothers (maternal age: t = 2.44, p = 0.01). Moreover, female 

offspring were more likely to survive to breed if they had a second-year mother (maternal 

age x sex ratio: t = -2.11, p = 0.04). Fourteen of the 25 daughters that survived to the 

mating season had a first-year mothers, and eleven were reared by a second-year mother. 

This is 12% of 117 female young that were raised by a first-year mother, and 23% of 47 

female young raised by a second-year mother.  

I also expected that litter size should negatively affect younger mothers more than older 

mothers. This prediction was not upheld. Mothers that were successful in weaning their 

offspring had a mean litter size of 6.35 ± 0.3 young per litter (median value of seven; N = 

40), while the mean litter size for mothers that died during mid-lactation along with their 

young was 7.13 ± 0.3 young per litter (median value of eight- a saturated pouch; N = 16; 

litter size: t = -2-04, p = 0.04. Table S3). However, this effect did not depend on the 

mother’s age. Because the maximum litter size is eight, this indicates that mothers 

increased their chance of survival by losing one or two young early in their pouch life. 

Litter size did not affect maternal post-weaning or breeding survival (p > 0.1. See Table S4 

and S5, respectively). 

  

Discussion 

My results do not support the hypothesis that older females are reproductively senescent. 

As in brown antechinuses (Fisher & Blomberg 2011), but in contrast to the smaller-bodied 

agile antechinuses (Cockburn 1994), I showed that female subtropical antechinuses have 

a greater investment ability and an overall improvement in reproductive performance with 
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age. My study supports the terminal investment hypothesis, because females in their 

second breeding season with no chance to breed successfully again increased their 

investment, resulting in higher quality offspring. As in the brown antechinus (Fisher & 

Blomberg 2011), I found evidence that maternal survival costs were closely associated 

with this increased reproductive investment of older mothers. The increased maternal 

investment of older breeding females to produce fast-growing large offspring reduced both 

their maternal mass and post-weaning survival. 

Clarifying the costs of reproduction is an essential part of understanding the evolution of 

life histories. One of the most common costs associated with increased reproductive effort 

is increased mortality or reduced success in future reproductive events. However, these 

costs have been difficult to demonstrate in wild populations. A major reason is likely to be 

the great variability in individual’s abilities to acquire and allocate resources to their 

different activities and requirements. Furthermore, those abilities will also depend on the 

circumstances, so a variable environment will also affect resource acquisition performance 

(Reznick et al. 2000). For example, under certain environmental conditions, some 

individuals may be better than others at acquiring certain resources or may have access to 

high quality resources, and hence have more to allocate in all aspects of their life history 

(Reznick et al. 2000). Subtropical antechinuses are the largest of the four closely related 

species that form the brown antechinus complex. It may be that their large body size 

allows them to build more fat reserves when conditions are good and have better 

endurance to survive longer after lactation, but their relatively great energy requirements 

might disadvantage larger individuals when food is scarce. 

Mothers did not experience any significant weight change during mid-lactation, which is 

not unexpected as the major weight loss associated with maternal investment in 

antechinuses is at the end of lactation (Fisher & Blomberg 2011).  In other species of 

antechinus, it has been described that mothers commonly grow during the first 70 days of 

lactation, regardless of their age (Fisher & Blomberg 2011; Lee et al. 1982). Stress related 

to captivity may be one explanation for not observing a substantial increase in maternal 

mass during mid-lactation, especially considering that this species of antechinus seems to 

be more susceptible to harsh conditions  (see Chapter 4). 

Second-year mothers were heavier than younger mothers, but their body mass decreased 

when they were forced to invest more heavily in their offspring by increasing their natural 

sex ratio bias (see Chapter 2). Sex ratio manipulation, regardless of the age of the 
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mothers, increased mean offspring body mass, and the heaviest young had a second year 

mother. This suggests that in order to sustain the fast growth rates of their large offspring, 

older mothers were also using their body reserves. This weight loss suggests that such 

mothers are allocating their stored fat to their offspring, despite the fact that during this 

time (captivity) they had access to ad-libitum food resources. Depletion of fat reserves, 

especially during the last stages of lactation is common in females (Green et al. 1991).  

This is consistent with the physiological costs of reproduction described for small 

mammals that usually are unable to sustain milk production with current food intake alone 

(Speakman 2008). In contrast, first-year mothers produced smaller, slow growing offspring 

and as they were lighter, it seems reasonable to assume that the reason for their slow 

growing offspring was the lack of sufficient body reserves to support high milk production 

rates and therefore fast offspring growth rates.  

In contrast, first-year females were able to increase their own body mass notwithstanding 

the increased demands of sex ratio manipulation and still produce heavier offspring than 

young unmanipuated mothers. This suggests that as in brown antechinus, younger 

mothers were trading-off between their own growth and current reproduction to favour their 

own survival over offspring’s growth, while older mothers prioritised reproduction over their 

own growth and self-maintenance. Brown antechinus females in their second breeding 

attempt can lose up to seven times the weight loss experienced by younger mothers at the 

end of lactation (Fisher & Blomberg 2011).  In my study, animals were released back to 

the wild at the end of mid-lactation and, in order to let them settle to the new conditions, I 

did not trap them until around weaning time onwards. Due to great variability in the data 

obtained and time it takes to trap the target animals once in the wild, it was not possible to 

evaluate maternal weight loss (this data was mainly used for survival analyses).  

If females are in poorer condition or when resources are in short supply, mammals face 

larger trade-offs between reproduction and their own survival, especially in polytocous 

mammals with high reproductive demands imposed by lactation (Speakman 2008). 

Therefore, depending on the chance of future breeding events, mothers should increase 

their allocation towards their own maintenance (if the chance of breeding again is high) or 

towards their current reproduction (if the chance is low). In my study, first-year females 

might have restrained their maternal investment in favour of their own survival, as their 

chances of breeding another time are higher than for second-year mothers (which never 

breed successfully a third time). A similar pattern was found in young brown antechinus 

mothers that reduced investment in their first breeding attempt, and had increased survival 
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enabling them to breed a second time. This compensated for their relatively poor initial 

breeding performance because lifetime production of offspring was equivalent in mothers 

that lived for one versus two years (Fisher & Blomberg 2011). These results agree with 

Cockburn’s (1994) suggestion that larger species are more likely to have iteroparous 

females than smaller ones. 

Festa-Bianchet and Jorgenson (1998) also found poor offspring development in ungulates 

under poor environmental conditions, and noted that it is difficult to determine if reduced 

offspring growth was caused by maternal restraint or constraint. In my study, this doubt is 

resolved, as first-year mothers did not take advantage of the increased access to food 

resources in captivity by increasing offspring growth, they used them to increase their own 

body reserves when higher demands were imposed on them (sex ratio manipulation). 

Young mothers may be actively restraining their maternal investment during this time in 

order to favour their own future survival over their offspring’s growth, although late 

lactation is the most demanding period. In their review of the adaptiveness of maternal 

effects, Marshall and Uller (2007) argued that it is incorrect to assess the adaptive value of 

maternal effects based only on outcomes for the offspring. These authors made the 

observation that maternal effects (i.e. anything that is part of the phenotype of the mother 

or in her environment that affects the phenotype of their offspring) affect simultaneously 

both the mother and her offspring, and that ultimately those effects should be more 

adaptive for the mother than the offspring. This idea would explain why in certain 

situations maternal effects have a positive effect on the offspring (Bernardo 1996, 

Mousseau & Fox 1998), but in others they seem to reduce offspring performance 

(Marshall & Uller 2007). This should be particularly important when mothers expect to 

have future breeding opportunities and maternal survival is compromised in the current 

reproductive circumstance, and also when maternal allocation is under control of the 

mother and not of her offspring, as in marsupials (Isaac & Johnson 2005). 

In this chapter, the greater investment ability of older mothers was not only revealed by 

their heavier, fast growing offspring, but also by their high likelihood of weaning young. 

First-year mothers were ~30% less likely to wean their young, and often died along with 

their entire litters before weaning. Moreover, the improved quality of the offspring from 

second-year mothers was maintained after independence as they were also more likely to 

survive to the following mating season. These results are consistent with results in female 

brown antechinuses (Fisher & Blomberg 2011), in which older females produce fast 

growing offspring with higher survival rates than mothers in their first breeding attempt. 
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This pattern is opposite to that in agile antechinuses (Cockburn 1994), in which older 

females appeared to be senescent with poor reproductive performance, and were unable 

to produce high quality offspring, compared to younger mothers. This might be again due 

to the difference in size between these two species. The agile antechinus is the smallest 

species of the complex, while subtropical antechinuses are the largest.  

The terminal investment hypothesis implies that there should be survival or reproductive 

costs associated with the increased maternal investment in older females. My results 

support this, as younger mothers were more likely to survive the process of weaning their 

young than older mothers that produced heavier, high quality. I also showed that maternal 

post-weaning survival of older mothers was negatively affected by offspring body mass, 

while this was not the case for younger mothers. These results are evidence of the 

reproductive costs associated with the higher maternal allocation to their second litter in 

subtropical antechinus mothers of producing high quality offspring, i.e. terminal maternal 

investment. Although not significant, first-year mothers also had a 16% greater chance of  

surviving to the next breeding season than older mothers, in agreement with the idea that 

younger mothers restrict their investment in their first breeding attempt. Females cannot 

raise a third litter, so they are investing more in their last chance of breeding. The same 

has been described in brown antechinuses with reduced lactation survival in older mothers 

associated to their increased maternal allocation (Fisher & Blomberg 2011).  

Factors that may have played a role in individual survival include individual quality, 

variation ability to acquire resources, ability to allocate resources to offspring, and 

variability in environmental quality, including rainfall (Reznick et al. 2000, Parrot et al. 

2007, Descamps et al. 2009). For example, the four second-year mothers that survived, 

but did not breed, up to a third mating season may have been a subset of high quality 

individuals (Descamps et al. 2007, Weladji et al. 2008). There were substantial year 

effects throughout the study (see Chapter four). For example, in 2010 high rainfall was 

associated with a positive effect on the survival of second-year females. It seems that 

greater abundance of food with higher rainfall increases the survival of females, especially 

older ones (Parrot et al. 2007, Chapter four).  

 

Both costs of reproduction and terminal investment are difficult to demonstrate in wild 

mammals (Fisher & Blomberg 2011). This study confirms that marsupials are suitable 
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models for such investigations of life history evolution because offspring development 

occurs mainly externally during lactation, under control of the mother (Isaac & Johnson 

2005). Second-year females showed greater investment ability, as they produced high 

quality offspring in their last breeding event. Because of the short lifespan of my model 

species, variation in reproductive success and survival between individuals in this study 

ultimately reflect lifetime fitness.  

 

References 

Bernardo J. 1996. Maternal effects in animal ecology. American Zoology, 36: 83-105. 

Bradley AJ, McDonald IR, Lee AK. 1980. Stress and mortality in a small marsupial 

(Antechinus stuartii Macleay). General and Comparative Endocrinology, 40: 188-200.  

Braithwaite RW, Lee AK. 1979. A Mammalian example of semelparity. The American 

Naturalist, 113: 151-155. 

Cameron EZ, Linklater WL, Stafford KJ, Minot EO. 2000. Aging and improving 

reproductive success in horses: declining residual reproductive value or just older and 

wiser? Behavioural Ecology and Sociobiology, 47: 243-249. 

Coates T. 1995. Reproductive ecology of the yellow-footed antechinus Antechinus flavipes 

(Marsupialia: Dasyuridae) in North East Victoria. PhD thesis. Monash University, 

Melbourne. 

Cockburn A. 1994. Adaptive sex allocation by brood reduction in antechinuses. Behavioral 

Ecology and Sociobiology, 35: 53-62. 

Cockburn A, Lee AK, Martin RW. 1983. Macrogeographic variation in litter size in 

Antechinus (Marsupialia: Dasyuridae). Evolution, 37: 86-95 

Cockburn A, Scott MP, Scotts DJ. 1985. Inbreeding avoidance and male-biased natal 

dispersal in Antechinus spp. (Marsupialia, Dasyuridae). Animal Behaviour, 33: 908-915. 

Coté SD, Festa-Bianchet M. 2001. Reproductive success in female mountain goats: the 

influence of age and social rank. Animal Behaviour, 62: 173-181. 



Chapter 3 

	   118	  

Clutton-Brock TH. 1984. Reproductive effort and terminal investment in iteroparous 

mammals. The American Naturalist, 123: 212-229. 

Clutton-Brock TH, Godfray HCJ. 1991. Parental investment. In: Behavioural ecology: an 

evolutionary approach. Krebs JR, Davies NB, eds. Oxford: Blackwell Scientific. Pp: 234-

262. 

Descamps S, Boutin S, Berteaux D, Gaillard JM. 2007. Female red squirrels fit Williams’ 

hypothesis of increasing reproductive effort with increasing age. Journal of Animal 

Ecology, 76: 1192-1201. 

Descamps S, Boutin S, McAdam A, Berteaux D, Gaillard JM. 2009. Survival costs of 

reproduction vary with age in North American red squirrels. Proceedings of the Royal 

Society of London B, 276: 1129-1135. 

Festa-Bianchet M, Jorgenson JT. 1998. Selfish mothers: reproductive expenditure and 

resource availability in bighorn ewes. Behavioural Ecology, 9: 144-150. 

Festa-Bianchet M, Jorgenson JT, Réale D. 2000. Early development, adult mass, and 

reproductive success sin bighorn sheep. Behavioural Ecology, 11: 633-639. 

Fisher DO 2005. Population density and presence of the mother are related to natal 

dispersal in male and female Antechinus stuartii. Australian Journal of Zoology, 53: 103-

110.    

Fisher DO, Blomberg SP. 2011. Costs of reproduction and terminal investment by females 

in a semelparous marsupial. PLoS ONE, 6: e1526. 

Gendreau Y, Côté SD, Festa-Bianchet M. 2005. Maternal effects on post-weaning physical 

and social development in juvenile mountain goats (Oreamnos americanus). Behavioural 

Ecology and Sociobiology, 58: 237-246. 

Green B, Newgrain K, Catling P, Turner G. 1991. Patterns of prey consumption and 

energy use in a small carnivorous marsupial, Antechinus stuartii. Australian Journal of 

Zoology, 39: 539–547. 



Chapter 3 

	   119	  

Hamel S, Gaillard JM, Yoccoz NG, Loison A, Bonenfant C, Descamps S. 2010. Fitness 

costs of reproduction depend on life speed: empirical evidence from mammalian 

populations. Ecology Letters, 13: 915-935. 

Harshman LG, Zera AJ. 2006. The cost of reproduction: the devil in the details. Trends in 

Ecology and Evolution, 22: 80-86. 

Isaac JL, Johnson CN. 2005. Terminal reproductive effort in a marsupial. Biology Letters, 

1: 271-275. 

Kerr TD, Boutin S, LaMontagne JM, McAdam AG, Humphries M. 2007. Persistent 

maternal effects on juvenile survival in North American red squirrels. Biology Letters, 3: 

289-291. 

Kirkwood TBL, Austad SN. 2000. Why do we age? Nature, 408: 233-238. 

Lazenby-Cohen KA, Cockburn A. 1988. Lek promiscuity in a semelmparous mammal, 

Antechinus stuartii (Marsupailia: Dasyuridae). 

Lazenby-Cohen KA, Cockburn A. 1991. Social and foraging components of the home 

range in Antechinus stuartii (Dasyuridae: Marsupialia). Australian Journal of Ecology, 16: 

301-307. 

Lee AK, Woolley P & Braithwaite RW. 1982. Life history strategies of dasyurid marsupials. 

In: Carnivorous Marsupials. Archer M, eds. Royal Zoological Society of New South Wales : 

Sydney. 

Marshall DJ, Uller T. 2007. When is a maternal effect adaptive? Oikos, 116: 1957-1963. 

Mousseau TA, Fox CW. 1998. The adaptive significance of maternal effects. Trends in 

Ecology and evolution, 13: 403-407. 

Nussey DH, Coulson T, Festa-Bianchet M, Gaillard JM. 2008. Measuring senescence in 

wild animal populations: towards a longitudinal approach. Functional Ecology, 22: 393-

406. 

Naylor R, Richardson S, McAllan BM. 2008. Boom and bust: a review of the physiology of 

the marsupial genus Antechinus. Journal of Comparative Physiology B: Biochemical, 



Chapter 3 

	   120	  

Systemic, and Environmental Physiology, 178: 545-562-562. 

Packer C, Tatar M, Collins A. 1998. Reproductive cessation in female mammals. Nature, 

392: 807-811. 

Parrott ML, Ward SJ, Temple-Smith PD, Selwood L. 2007. Effects of drought on weight, 

survival and breeding success of the agile antechinuses (Antechinus agilis), dusky 

antechinus (A. swainsonii) and bush rats (Rattus fuscipes). Wildlife Research, 34: 437-

442. 

R Development Core Team. 2013. R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. Available: 

http://www.R-project.org.  

Rasband, WS. 2013. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, 

USA. http://imagej.nih.gov/ij/  

Reznick D, Nunney L, Tessier A. 2000. Big houses, big cars, superfleas and the costs of 

reproduction. Trends in Ecology and Evolution, 15: 421-425. 

Selman C, Blount JD, Nussey DH, Speakman JR. 2012. Oxidative damage, ageing, and 

life-history evolution: where now? Trends in Ecology and Evolution, 27: 570-577. 

Speakman, JR. 2008. The physiological costs of reproduction in small mammals. 

Philosophical Transactions of the Royal Society B, 363: 375-398. 

Stearns SC. 1992. The evolution of life histories. Oxford: Oxford University Press. 

Tasker EM, Dickman CR. 2002. A review of Elliot trapping methods for small mammals in 

Australia. Australina Mammalogy, 23: 77-87. 

Töigo C, Galliard Jm, Michallet J. 1999. Cohort affects growth of males but not females in 

Alpine Ibex (Capra ibex ibex). Journal of Mammalogy, 80: 1021-1027. 

Van Dyck S, Crowther MS. 2000. Reassessment of northern representatives of the 

Antechinus stuartii complex (Marsupialia: Dasyuridae): A. subtropicus sp. nov. and A. 

adustus new status. Memoirs of the Queensland Museum, 45: 451–475. 

Weladji RB, Gaillard JM, Yoccoz NG, Holand O, Mysterud A, Loison A, Nieminen M, 



Chapter 3 

	   121	  

Stenseth NC. 2006. Good reindeer mothers live longer and become better in raising 

offspring. Proceedings of the Royal Society B, 273: 1239–1244. 

Weladji RB, Holand O, Gaillard JM, Yoccozz NG, Mysterud A, Nieminen M, Stenseth NC. 

2010. Age-specific changes in different components of reproductive output in female 

reindeer – terminal allocation or senescence? Oecologia, 162: 261-271. 

Weladji RB, Loison A, Galliard JM, Holand O, Mysterud A, Yoccoz NG, Nieminen M, 

Stenseth NC. 2008. Heterogeneity in individual quality overrides costs of reproduction in 

female reindeer. Oecologia, 156: 237-247. 

Weladji RB, Mysterud A., Holand O, Lenvik D. 2002. Age-related reproductive effort in 

reindeer (Rangifer tarandus): evidence of senescence. Oecologia 131, 79–82. 

Williams GC. 1966. Natural selection, the costs of reproduction, and a refinement of Lack’s 

principle. American Naturalist, 100: 687-690. 

Ylönen H, Horne TJ, Luukkonen M. 2004. Effect of birth and weaning mass on growth, 

survival and reproduction in the bank vole. Evolutionary Ecology Research, 6: 433-442. 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

	   122	  

Figures  
	  
	  

 

Figure 1. Offspring growth per sex (females on the left and males on the right) and 

maternal age: offspring of first-year mothers (black filled circles, continuous line) and 

second-year mothers (black open squares, dashed line). See Table S2 for statistical 

details. 
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Figure 2. The effect of sex ratio manipulation (white litters were manipulated, grey shaded 

litters were not manipulated) per maternal age class (first- or second-year mothers) on 

maternal body mass (A) and offspring body mass (B) when young were between 45-75 

days old (mid-lactation). See Tables S1b and S2c, respectively. The dark horizontal line 

represents the mean value, the box represents the 25th and 75th percentiles, the whiskers 

represent the 5th and the 95th percentiles and the outliers are represented as open circles. 

See text and Table S6 to S8 for more details of statistical model used. 

A	  

B	  
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Figure 3. The effect of the interaction between offspring mass during mid-lactation (when 

young were between 45-75 days old) and maternal age class (first- and second-year 

mothers) on maternal post-weaning survival. Mothers that died soon after weaning their 

young are represented in white, while mothers that were seen alive within the next two 

months after weaning their young are represented in grey. The dark horizontal line 

represents the mean value, the box represents the 25th and 75th percentiles, the whiskers 

represent the 5th and the 95th percentiles and the outliers are represented as open circles. 

See text and Table S6 to S8 for more details of statistical model. See Table S4. 
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Supplementary information Chapter 3	  

Table S1a. LMER results for the effects on maternal body mass (log(Wt)) of the following 

fixed factors: offspring age (days when measurements were performed), maternal foot 

length (mm), maternal age class (if the mother was a first- or a second-year female), litter 

size (1 to 8), the proportion of males per litter, year (2010, 2011, 2012) along with the 

interactions between maternal age class with offspring age and litter male proportion. 

Random factors: (offspring age|mother ID). 

 

Factor Estimate Std. Error t p 

Intercept 1.94 1.28 1.51 0.14 

Offspring age 0.0005 0.001 0.40 0.69 

Maternal foot length 0.097 0.096 1.02 0.32 

Maternal age class 0.27 0.11 2.45 0.02 
Litter size 0.008 0.008 1.02 0.31 

Male proportion 0.04 0.05 0.82 0.42 

Year 2011 0.14 0.04 3.50 0.001 

Year 2012 0.07 0.04 1.63 0.11 

Maternal age x offspring age -0.0006 0.002 -0.34 0.73 

Maternal age x male proportion 0.014 0.09 0.14 0.89 

AIC: -265.6; BIC: -222.1, logLik: 146.8, deviance: -357.3, REMdev: -293.6 
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Table S1b. LMER results for the effects on maternal body mass (log(Wt)) of the following 

fixed factors: offspring age (days when measurements were performed), maternal foot 

length (mm), maternal age class (if mother was a first- or a second-year female), litter size 

(1 to 8), final litter sex ratio (if litter was either female- or male-biased), manipulation 

(whether the litter was manipulated or not) along with the interactions between maternal 

age class with offspring age, litter sex ratio and manipulation. Random factors: (offspring 

age|mother ID). 

 

Factor Estimate Std. Error t p 

Intercept 2.75 1.18 2.32 0.025 

Offspring age -0.0006 0.001 -0.47 0.64 

Maternal foot length 0.056 0.09 0.63 0.53 

Maternal age class -0.001 0.13 -0.01 0.99 

Litter size -0.002 0.007 -0.19 0.85 

Sex ratio change 0.071 0.036 1.98 0.05 

Manipulation -0.089 0.037 -2.42 0.02 

Maternal age x offspring age 0.001 0.002 0.66 0.51 

Maternal age x sex ratio -0.011 0.064 -0.17 0.86 

Maternal age x manipulation 0.253 0.061 4.13 0.0002 

AIC: -272.3; BIC: -228.8, logLik: 150.2, deviance: -365.2, REMdev: -300.3 
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Table S2a. LMER results for the effects on offspring body mass (log(Wt)) of the following 

fixed factors: offspring age (days when measurements were performed), offspring sex, 

maternal mass (g), maternal age class (if mother was a first- or a second-year female), 

litter size, sex ratio change (if the natural sex ratio of litters was increased or maintained) , 

interactions between maternal age class, offspring age, and sex ratio change. Random 

factors: (offspring age|donor mother ID), (offspring age|recipient mother ID), (offspring 

age|offspring ID). Litters that experienced a decrease in their natural sex ratios were not 

included in this analysis. 

 

Factor Estimate Std. Error t p 

Intercept -2.33 0.17 -13.55 1.56x10-16 

Offspring age 0.05 0.002 20.50 7.90x10-23 

Offspring sex 0.01 0.008 2.52 1.59x10-02 

Maternal mass 0.02 0.001 14.85 7.28x10-18 

Maternal age class 0.52 0.16 3.18 2.88x10-03 

Litter size -0.007 0.006 -1.11 2.74x10-01 

Sex ratio change – natural bias 0.008 0.03 0.24 8.13x10-01 

Maternal age x offspring age -0.006 0.002 -2.60 1.29x10-02 

Maternal age x sex ratio change  -0.05 0.04 -1.22 2.31x10-01 

AIC: -2234; BIC: -2140, logLik: 1136, deviance: -2344, REMdev: -2272 
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Table S2b. LMER results for the effects on offspring body mass (log(Wt)) of the following 

fixed factors: offspring age (days when measurements were performed), offspring sex, 

maternal mass (g), maternal age class (if mother was a first- or a second-year female), 

litter size (1 to 8), the proportion of males per litter, year (2010, 2011, 2012) and 

interactions between maternal age class and offspring age, sex ratio change. Random 

factors: (offspring age|donor mother ID), (offspring age|recipient mother ID), (offspring 

age|offspring ID). 

 
 
Factor Estimate Std. Error t p 

Intercept -2.79 0.16 -17.84 1.21x10-20 

Offspring age 0.05 0.003 20.88 4.04x10-23 

Offspring sex 0.02 0.006 3.18 2.83x10-03 

Maternal mass 0.02 0.001 16.81 9.92x10-20 

Maternal age class 0.02 0.16 0.15 8.89x10-01 

Litter size -0.001 0.006 -0.19 8.49x10-01 

Male proportion 0.29 0.05 6.27 1.99x10-07 

Year - 2011 -0.06 0.03 -2.51 1.61x10-02 

Year - 2012 0.31 0.04 7.17 1.10x10-08 

Maternal age x offspring age 0.0004 0.003 0.15 8.82x10-02 

Maternal age x male proportion  -0.05 0.04 -1.34 1.89x10-01 

AIC: -2296; BIC: -2192, logLik: 1169, deviance: -2419, REMdev: -2338 
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Table S2c. LMER results for the effects on offspring body mass (log(Wt)) of the following 

fixed factors: offspring age (days when measurements were performed), offspring sex, 

maternal mass (g), maternal age class (if mother was a first- or a second-year female), 

litter size, litter sex ratio (if litter was either female- or male-biased), manipulation (whether 

the litter was manipulated or not) and interactions between maternal age class and 

offspring age, litter sex ratio and manipulation. Random factors: (offspring age|donor 

mother ID), (offspring age|recipient mother ID), (offspring age|offspring ID). 

 

Factor Estimate Std. Error t p 

Intercept -3.07 0.22 -14.13 3.84x10-17 

Offspring age 0.05 0.003 17.20 4.44x10-20 

Offspring sex 0.02 0.006 3.64 7.67x10-04 

Maternal mass 0.02 0.001 15.78 9.04x10-19 

Maternal age class 0.97 0.15 6.33 1.63x10-07 

Litter size 0.03 0.005 5.07 9.48x10-06 

Sex ratio 0.06 0.02 2.80 7.75x10-03 

Manipulation 0.26 0.07 3.79 4.97x10-04 

Maternal age x offspring age -0.01 0.002 -5.23 5.64x10-06 

Maternal age x sex ratio -0.04 0.03 -1.58 1.22x10-01 

Maternal age x manipulation -0.23 0.07 -3.07 3.83x10-03 

AIC: -2245; BIC: -2140, logLik: 1143, deviance: -2369, REMdev: -2287 
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Table S3. GLM results for the effects on maternal weaning success (if the mother weaned 

their young) of the following fixed factors: maternal mass (g), maternal foot length (mm), 

offspring body mass (g), maternal age class (if mother was a first- or a second-year 

female), litter size (1 to 8) and litter sex ratio. No random factors were used for this model.  

 
 
Factor Estimate Std. Error z p 

Intercept -40.81 31.43 -1.30 0.19 

Maternal mass 0.02 0.10 0.23 0.82 

Maternal foot length  3.32 2.36 1.41 0.16 

Offspring mass -0.26 0.77 -0.34 0.73 

Maternal age class 4.02 6.29 0.64 0.52 

Litter size -0.50 0.25 -2.04 0.04 

Sex ratio 1.06 0.78 1.36 0.17 

Maternal age class x offspring mass -0.85 2.07 -0.40 0.68 
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Table S4. GLM results for the effects on maternal post-weaning survival (if the mother was 

seen alive in the wild within the next two months after weaning her young, when young 

were 100-120 days old) of the following fixed factors: maternal mass (g), maternal foot 

length (mm), offspring body mass (g), maternal age class (if mother was a first- or a 

second-year female), litter size (1 to 8), the proportion of males per litter, year (2010, 2011, 

2012) and interactions between maternal age class and offspring body mass and maternal 

foot length. No random factors were used for this model. This analysis excludes all the 

mothers that died during lactation along with their young in captivity.   

 
 
Factor Estimate Std. Error z p 

Intercept -74.68 34.48 -2.17 0.03 

Maternal mass -0.003 0.12 -0.02 0.98 

Maternal foot length  5.92 2.64 2.24 0.03 

Offspring mass -0.22 0.86 -0.26 0.80 

Maternal age class 9.75 4.92 1.98 0.05 

Litter size -0.47 0.32 -1.46 0.14 

Sex ratio -1.52 0.92 -1.66 0.10 

Maternal age x offspring mass -3.50 1.72 -2.03 0.04 
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Table S5. GLM results for the effects on maternal breeding survival (if the mother survived 

after weaning their offspring to the following breeding season) of the following fixed 

factors: maternal mass (g), maternal foot length (mm), offspring body mass (g), maternal 

age class (if mother was a first- or a second-year female), litter size (1 to 8), the proportion 

of males per litter, year (2010, 2011, 2012) and interactions between maternal age class 

and offspring body mass and maternal foot length. No random factors were used for this 

model. This analysis excludes all the mothers that died during lactation along with their 

young in captivity.   

 

 
 
Factor Estimate Std. Error t p 

Intercept -23.55 29.90 -0.79 0.43 

Maternal mass -0.02 0.11 -0.20 0.84 

Maternal foot length  1.70 2.22 0.77 0.44 

Offspring mass 0.96 0.80 1.19 0.23 

Maternal age class 3.72 3.87 0.96 0.34 

Litter size -0.06 0.24 -0.24 0.81 

Sex ratio – male-biased -1.87 0.89 -2.11 0.04 

Maternal age x offspring mass -1.61 1.39 -1.16 0.25 
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Table S6. GLMER results for the effects on offspring weaning survival (if the young 

survive for a while after weaning as independent individuals) of the following fixed factors: 

offspring body mass (g), offspring sex, maternal mass (g), litter sex ratio (male- or female-

biased litter), maternal age class (if mother was a first- or a second-year female) and litter 

size. 

 

Factor Estimate Std. Error z p 

Intercept 6.15 6.51 0.95 0.35 

Offspring body mass -0.61 1.24 -0.49 0.63 

Offspring sex 0.78 0.65 1.19 0.24 

Maternal body mass 0.04 0.19 0.21 0.83 

Maternal age class 5.57 2.54 2.20 0.03 

Litter size -1.14 0.56 -2.06 0.05 

Litter sex ratio – male-biased 4.58 1.55 2.96 0.005 

Maternal age class x sex ratio -5.80 1.99 -2.91 0.006 
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Table S7. GLMER results for the effects on offspring weaning survival (if survived or not to 

breed) of the following fixed factors: offspring body mass (g), maternal mass (g), litter sex 

ratio (male- or female-biased litter), maternal age class (if mother was a first- or a second-

year female) and litter size. 

 

Factor Estimate Std. Error z p 

Intercept -7.06 4.00 -1.77 0.08 

Offspring body mass -0.03 0.16 -0.19 0.85 

Maternal body mass 0.13 0.11 1.16 0.25 

Maternal age class 4.75 1.94 2.44 0.01 

Litter size -0.39 0.32 -1.25 0.21 

Litter sex ratio – male-biased -1.30 1.46 -0.89 0.37 

Maternal age class x sex ratio -4.37 2.07 -2.11 0.04 

AIC: 277.5; BIC: 311, logLik: -130-7, deviance: 261.5 
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Environmental constraints and their effects on maternal investment in subtropical 
antechinuses 

Abstract 

Subtropical antechinuses are extremely sensitive to changes in environmental conditions 

and their effects will depend on the severity and timing of those events. In particular, I 

show that the population dynamics of these rainforest specialists is strictly driven by 

rainfall. Their growth and survival depends on the seasonal predictability of arthropod 

abundance, and the disruption of those annual prey cycles may have dramatic 

consequences in their abundance and overall population sizes. Because antechinuses 

synchronise their breeding season to match the end of lactation and weaning with the 

annual peak of rainfall, their growth, reproductive success and survival greatly depends on 

the timing those rainfall events. Low rainfall when is needed the most, during lactation and 

at the time of juvenile independence, significantly affected their growth and their survival 

and the whole population was drastically reduced. High rainfall during lactation increased 

both maternal and offspring weaning survival as well as offspring growth, while high 

rainfall around and after weaning increased their breeding survival. I also show that the 

conditions experienced during development early in life have profound impacts on their 

future performance, as those traits acquired persist into adulthood. In this study I present 

evidence that confirms the high vulnerability of subtropical antechinuses to climate 

change. 

 

Keywords: Climate change, maternal investment, sex allocation, offspring growth, 

extinction risk, subtropical antechinus. 
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Introduction 

Mammal habitats around the world have been experiencing changes in weather conditions 

as a consequence of human-caused global warming (Preston & Jones 2006). Currently, a 

quarter of all mammal species are at risk of extinction and more than half of all mammal 

populations are in decline (Ceballos et al. 2005, Davidson et al. 2009). Climate change is 

considered to be one of the most severe and widespread threats to the survival of species 

(Walther et al. 2002, Thomas et al. 2004, Isaac 2009, Cahill et al. 2012); however, our 

understanding of the proximate causes of biodiversity declines due to climate change is 

very limited (Isaac 2009, Cahill et al. 2012). Extinction risk varies according to the life 

history of the species and other ecological factors, and is higher for species that have 

narrower requirements, small or restricted areas of distribution or are adapted to extremely 

stable environments (Isaac 2009).  

With climate change, drought events are likely to increase in frequency and intensity, and 

catastrophic events such as wild fires and tropical cyclones are also expected to occur 

more frequently, as well as extraordinary events of intense rainfall or extreme heat waves 

that may have dramatic consequences for the ecosystem. Such events may have severe 

effects on natural populations of animals (Welbergen et al. 2008, Recher et al. 2009). It is 

likely that species with different ecological traits and life histories may be affected, react, 

recover or adapt differently (Parrott et al. 2007, Jiguet et al. 2007, Recher et al. 2009). 

Declines in body mass, survival and in some cases overall population size are some of the 

effects that drought may cause in wild mammals (Lunney 1987, Fisher et al. 2001, Rhind 

& Bradley 2002, Parrott et al. 2007). Increased droughts are expected, especially during 

winter in the southern regions of Australia, during spring along the east coast and during 

autumn in the western regions (CSIRO & BOM 2007). According to several authors, the 

combined effects of drought, overgrazing, and the introduction of predators such as cats 

and foxes are responsible for causing shifts in vegetation structure and the decline and 

extinction of small to medium size mammals in inland Australia during the last two 

centuries (reviewed by Johnson 2006). 

Variation in environmental conditions has been suggested as one reason why evidence 

supporting sex specific allocation theories can vary between populations, years and 

species (see Chapter 2), and a reason why costs of reproduction and life-history trade-offs 

in wild populations of animals are often difficult to observe (see Chapter 3). Individual 

quality varies in populations of animals, along with their ability to acquire resources. A 
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difference in the ability of individuals to acquire food, high quality nest sites and other 

resources might be absent in a good year, and it might be exacerbated in a bad one. This 

effect is thought to be the main reason of why life-history trade-offs are so difficult to 

demonstrate in wild population of animals (Reznick et al. 2000). Changes in environmental 

conditions (alternating between benign and hostile conditions) can also explain some 

components of life history variability in animals, because the same life history response at 

the same life stage may not always be adaptive (Reznick et al. 2000).  

Some carnivorous marsupials, such as antechinuses (Antechinus spp.), have evolved 

extreme life histories in which all males die after the single, extremely short and highly 

synchronized breeding event that occurs each year (Braithwaite & Lee 1979), during which 

males mate promiscuously with as many females as possible (Fisher et al 2006). Most 

females breed only once and die soon after weaning a single litter of young, but a small 

proportion of females survive to breed a second time in the following mating season 

(Wood 1970). This proportion is between 8-20% depending on the species; for subtropical 

antechinuses (Antechinus subtropicus) the proportion of second year females in an earlier 

study was ~17%, (Fisher et al. 2013). Lactation is long in marsupials compared to 

placental mammals (Tyndale-Biscoe & Renfree 1987) and for antechinuses it lasts for ~4 

months; this is particularly long for a small, short lived mammal. Males live for 11 months 

and females between 16  and 20 months (Braithwaite & Lee 1979, Lee & Cockburn 1985). 

Species with short life spans are presumed to be favoured in constant, stable 

environments, and are more likely to be affected by drastic environmental changes 

(Benton & Grant 1996; Jiguet et al. 2007). 

Most species of antechinus inhabit highly seasonal, predictable habitats in the southern 

regions of Australia. They synchronize their annual short mating season, which is triggered 

by the rate of change in photoperiod (McAllan et al. 2006) to match the end of lactation 

and weaning with the annual peak of insect abundance that follows the seasonal pattern of 

rainfall (Braithwaite & Lee 1979). The mating season occurs on predictable dates that vary 

with latitude for each population (McAllan et al. 2006). These insectivorous marsupials 

usually breed in winter, lactate during spring and wean their young at the beginning of 

summer, when the abundance of arthropods reaches its maximum. Their reproductive 

success and survival relies on this period of resource abundance (Lee et al. 1982). The 

energetic requirements for a lactating mammal are the highest during late lactation, 

especially for predatory species rearing large litters, and at the time of juvenile 

independence (weaning and few more weeks after that), when juveniles are most 
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vulnerable and inexperienced at hunting. At this time, high abundance of prey should 

maximise their survival (Speakman 2008, Fisher et al. 2013). Depletion of fat reserves, 

especially during the last stages of lactation, are common in females (Green et al. 1991). 

Their extreme and highly synchronous life history and their great dependence on 

seasonally predictable resources make antechinuses vulnerable to extreme changes in 

rainfall, which in some cases may even lead to complete population collapses (Parrott et 

al. 2007). The overall richness and abundance of arthropods depends greatly on rainfall, 

reaching a maximum in wet and warm conditions, and declining rapidly in drier conditions 

regardless of season (Recher et al. 1996, Majer et al. 2003, Recher et al. 2009). 

Invertebrate communities are highly affected by changes in environmental conditions, and 

the lack of rainfall during a drought event produces a decline in abundance and richness of 

species (Strehlow et al. 2002). In dry years, some species of arthropods may even 

disappear completely (Bell 2006).  In addition to making it difficult for individuals to find 

sufficient food, a shortage of food is also likely to increase intra-and inter-specific 

competition, and may increase  predation risk, because animals must hunt for longer to 

find enough food in unfavourable conditions and thus are exposed to predators for longer.  

If food shortages occurs when a high abundance of food is needed the most (during 

lactation and weaning), the consequences may be dire for antechinus populations (Parrott 

et al. 2007). Food availability limits maternal investment ability, so lactating mothers may 

not be able to sustain lactation, reducing the chances of survival for both the mother and 

her young (Braithwaite & Lee 1979). When access to supplementary food is provided, 

mothers increase their body mass and are able to produce large, fast growing offspring 

(Dickman 1989). In the brush-tail phascogales (Phascogale tapoatafa), another 

semelparous insectivorous marsupial closely related to Antechinus, drought caused poor 

maternal condition, reduced growth of young, reduced body sizes and increased mortality 

of lactating mothers, delayed male dispersal, increased production of female-biased litters, 

reduced sexual size dimorphism and increased communal nesting, apparently because 

huddling conserved energy (Rhind 2002, Rhind & Bradley 2002, Rhind 2003).  As a 

consequence, populations declined severely in all the sites studied and took at least two 

years to recover in one of them, while in another area studied, phascogales were still 

absent five years later (Rhind & Bradley 2002).  Although it is clear that droughts can 

seriously impact populations of small dasyurids, authors have called for more studies to 

better understand the extent of the impacts of drought at the community and ecosystem 

level, as well as the ability of these species to recover from droughts, especially with the 
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increasing rate of climate change now occurring around the world (Krajewski et al. 2000, 

Oakwood et al. 2001, Fisher et al. 2013).   

It has been suggested that the insectivorous antechinuses are more seriously and more 

rapidly affected by drier conditions, especially compared to the sympatric omnivorous bush 

rats (Recher et al. 2009). Recher and colleagues attributed this phenomenon to their diets, 

as insects decline more rapidly in dry conditions than does vegetation. Parrott et al. (2007) 

evaluated the effects of a severe drought in three sympatric species of small mammals: 

two different antechinuses that differ greatly in body size, habits and breeding season (A. 

agilis and A. swainsonii) and bush rats that breed all year round (Rattus fuscipes). The 

agile antechinus is the smallest of all the antechinus species, with scansorial and ground 

dwelling habits, and usually nests in tree hollows, while the dusky antechinus is the largest 

of the genus, a ground dweller with fossorial habits that consumes soil arthropods. 

Surprisingly, only the agile antechinus was severely affected by the drought. Drought 

reduced their body mass, survival (especially of lactating females) and litter size. In 

contrast, the larger dusky antechinuses and bush rats were not affected at all by the drier 

conditions in that year (study lasted for three years). These contrasting results highlight the 

importance of timing as well as severity when considering the effects of climate change on 

different species. The period of low rainfall, during that particular drought, coincided with 

pregnancy and lactation in the agile antechinuses, while the breeding season of the dusky 

antechinuses occurred during a higher period of rainfall, earlier in the year. 

The aim of this study was to determine the effects of rainfall pattern during the breeding 

season of subtropical antechinuses (A. subtropicus). In particular, I aimed to evaluate the 

effects of changes in rainfall during lactation and weaning on maternal investment ability 

and survival of this rainforest-restricted insectivorous marsupial. Subtropical antechinuses 

are the largest of the brown antechinus complex and are considered to be abundant within 

their restricted distribution in south-east Queensland. Data for this study were collected 

during three consecutive years that showed extreme variation in amount and timing of 

rainfall in relation to the breeding season of this species. Low rainfall during lactation and 

weaning is expected to reduce maternal condition and mother’s investment ability and 

should be reflected in the body mass and survival of both mothers and offspring. In 

particular, I expected that low rainfall during the months of lactation (October to January) 

to have strong negative effects on maternal investment ability that should be reflected in 

the following:  
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a) Reduced maternal body mass during lactation, but increased weight gain when access 

to resources was artificially increased during captivity. Younger mothers should be most 

affected than second-year mothers (in agreement with Chapter 3). 

b) Reduced maternal weaning success as mothers should be less likely to wean their 

offspring, especially small, younger mothers (in agreement with Chapter 3). 

c) Reduced offspring growth, with sons being more affected than daughters (in agreement 

with Chapter 2). 

d) Reduced maternal post-weaning survival. Mothers should be less likely to survive 

lactation (maternal weaning survival) and to breed again (maternal breeding survival). 

I also expected that low rainfall at weaning (end of lactation - January) and during the 

short time afterwards (when offspring start to fend for themselves living as newly 

independent juveniles) to strongly affect offspring survival: 

e) Low rainfall in January-February should reduced offspring survival, both as newly 

weaned juveniles (offspring weaning survival) and their chances to survive to the following 

breeding season (offspring breeding survival). Sons should be more affected than 

daughters (in agreement with Chapter 3). 

 

Methods 

Site, study animal and husbandry 

This study was carried out at the Springbrook Plateau section of the Springbrook National 

Park, which is located around 100km south of Brisbane in the Gold Coast Hinterland in 

south-east Queensland, Australia (-28.23ºS, 153.28ºE) between August 2010 and August 

2013. Springbrook is part of the Gondwana Rainforests of Australia World Heritage with a 

subtropical rainforest located at relatively high altitude (~900 m above see level). The 

climate is subtropical, with maritime influence due to its proximity to the coast, frequent 

cloud immersion and fog events caused by the relatively high altitude and the interactions 

between topography (vertical cliffs) and canopy rainforest. Maritime influence is thought to 

increase rainfall up to a 40% (Hutley et al. 1997). The site is characterised by warm and 

wet summers and cool and dry winters with the autumn and spring as intermediates. Due 
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to the relatively high altitude, Springbrook Plateau is consistently around five to ten 

degrees colder than adjacent lowland, and annual rainfall can reach up to 3000 mm in the 

higher altitudes, which is around six times higher than the national annual rainfall in 

Australia (~500 mm). The plateau is the wettest area in mainland Australia outside the wet 

tropics region of north Queensland, and Tasmania.  

The subtropical antechinus (Antechinus subtropicus) is a small carnivorous marsupial from 

the family Dasyuridae, native to south-east Queensland and north-east New South Wales, 

where it is restricted to small areas of subtropical vine rainforests. This species is the 

largest of four very closely related species known as the brown-antechinus complex 

(Menkhorst & Knight 2001), that formerly were considered as a single species with 

different morphs, but today are recognise as four different species (by ascending order: A. 

agilis, A. adustus, A. stuartii, A. subtropicus; Dickman et al. 1998, Van Dyck & Crowther 

2000, Crowther et al. 2003). The best-known species are A. agilis and A. stuartii (Naylor et 

al. 2008). These forest dwelling insectivorous marsupials nest communally in tree hollows 

and other cavities (Lazenby-Cohen & Cockburn 1991) and forage solitary in stable home 

ranges opportunistically hunting arthropods (Hall 1980) and consuming at least ~60% of 

their body mass daily (Nagy et al. 1978).  

Antechinuses at Springbrook mate in late August, give birth at the end of September, and 

wean their offspring during early-mid January. January and February are usually the 

months with the highest rainfall at this location (according to mean patterns over the last 

three decades, Figure 1B). Females with their pouch young were trapped in mid October 

each year, when young were around two to three weeks old and strictly attached to the 

teat, to make sure that mothers were caught with their entire litters. Mothers and their 

young were kept in temporary captivity (~7 weeks) until the young voluntarily detached 

from the teat (at 5-6 weeks old) and were able to be sexed and individually marked by toe-

bud clipping (Fisher & Blomberg 2009). Mothers were microchipped for individual 

recognition (Trovan, ID-100 transponder, 11 x 2.2 mm or 7 x 1.25mm). Once all individuals 

were permanently marked, I swapped some young between litters (the cross-fostering 

experiment) to manipulate litter sex ratio and assess maternal sex allocation (Chapter 2) 

and the costs of reproduction (Chapter 3) in this species. Two to three weeks after, 

mothers and young were released back to the wild at the site of capture. During their time 

in captivity, mothers were housed individually with their offspring (as they do in the wild) in 

plastic enclosures (45 x 35 x 20 cm, of clear polyurethane) with wire mesh lids, in which a 

wooden nest-box lined with leaf litter and shredded paper, an exercise wheel and an 
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inverted drip water bottle was provided (as in Fisher & Blomberg 2009). A mixture of beef 

and kangaroo mince, wet cat food, soaked dog kibble (~40g in total) was provided daily as 

well as live insects such as mealworms and crickets (~5 of each). During their time in 

captivity, growth and survival of mother and young were monitored every three to five 

days. Once in the wild, I continued to monitor their growth and survival by performing 

capture-recapture sessions with Elliot trapping, and checking the nest-boxes in which they 

were released, monitoring them every month until the following mating season. 

Animals were trapped using Elliot traps that were baited with a mixture of peanut butter 

and rolled oats with soaked dog kibbles (dog chow) that were placed along a disused 

walking track. Traps were waterproofed by covering them with a plastic bag and a handful 

of Dacron fibre (pillow stuffing material) was provided inside traps as bedding to keep them 

warm. During each trapping session, I set 200 traps around 3pm and checked them every 

4 to 6 hours. Trapping sessions usually lasted around fifteen days in October and three to 

five days during the other months, except around the mating season (~ end of August) and 

when females were expected to be giving birth (~ end of September) when I did not trap to 

avoid interrupting the mating season and to avoid females giving birth in the traps or stress 

them around that time. 

In total, 66 subtropical antechinus mothers were trapped during these three years: 12 in 

2010, 30 in 2011 and 24 in 2012. However, data from only 56 were included in the final 

analyses, because ten of them died soon after being brought to captivity (within a few 

days): 12 in 2010, 22 in 2011 and 22 in 2012. A total of 351 young were studied, 256 (120 

females and 136 males) had a first-year mother and 95 (47 females and 48 males) had a 

second-year mother (Table 1). 

During the three years of this study, one of the strongest La Niña events on record 

occurred between 2010 and 2011 (Australian Bureau of Meteorology 2012). From spring 

2010 to autumn 2011 and also in late 2011, la Niña brought events of heavy rainfall and 

severe flooding that affected many areas of Australia including south east Queensland, 

and put an end to a severe drought that had affected Australia for the previous 14 years 

(since 1996). National rainfall was almost three times above average in September 2010, 

the wettest September on record; 2010 was the third wettest year and 2010-2011 was the 

wettest two-year period on record since 1900. In 2012, national rainfall was overall below 

average, especially in winter and spring, although in summer 2013, the east coast of 

Queensland  and New South Wales experienced heavy rainfall associated with the tropical 
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cyclone Oswald that ended with severe flooding in many areas. Additionally, eastern 

Australia was severely affected by spring heatwaves in November 2012, when 

temperatures reached extremely high levels not previously recorded at that time of the 

year in many areas of Queensland, New south Wales and Victoria. Summer 2012-2013 

was the warmest on record, and rainfall was below average for the rest of the year 

(Australian Bureau of Meteorology 2006, 2010, 2012a,b,c, 2013).  

It is very likely that these extreme fluctuations in weather conditions had strong effects on 

natural populations of animals. I used data from the Australian Bureau of Meteorology to 

assess the pattern of rainfall during the three years of this study, from August 2010 to 

August 2013 at Springbrook, in relation to the breeding season of subtropical 

antechinuses (mating, pregnancy, lactation and weaning) and assessed the potential 

effects on individual growth, survival and overall condition. 

Weather data were obtained from the Australian Bureau of Meteorology - Springbrook 

Road Station, nº 040607; 28.20ºS, 153.27ºE; 681 m above sea level for rainfall data. Daily 

temperature data was obtained from Murwillumbah Station (nº 058158; 28.34ºS, 153.38ºE; 

8 m above sea level) located at Bray Park, New South Wales, 19.2 km away from 

Springbrook. 

 

Data Analysis  

I used two different approaches to asses year effects on individual body mass. First, I 

wanted to compare if there was any difference on individuals mass at the same stage 

(mid-lactation, when young were ~51 days old – no repeated measures) across the three 

years of this study. To do this, I used a generalized linear model (GLM) for mothers (Table 

S1a) and a linear mixed effect model (LMER) for their offspring using as a random factor 

mother ID (Table S2a). Mean offspring body mass (g), maternal foot length (mm), maternal 

age class (if the mother was a first- or a second-year female), litter sex ratio (either female- 

or male-biased), litter size (1 to 8), year (2010, 2011, 2012) were used as fixed factors for 

maternal model along with the interactions between year with maternal age class, sex ratio 

and litter size. The same factors were used for the offspring model except for offspring 

mass (response variable), which was replaced with maternal body mass, and offspring sex 

was also added to this model.  
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I also used two different generalized mixed effect models (GLMM) to assess whether there 

were any differences between years on individual growth (one for mothers and one for 

offspring, Table S1b and S2b, respectively) similar to my approach in the previous two 

chapters of this thesis, using repeated measures for body mass, and individual ID and 

offspring age at the time when the measurements were performed as random factors. The 

fixed factors were the same as described above, except for offspring age.  

I used contingency tests to evaluate differences across years on maternal weaning 

success (if the mother successfully weaned her offspring or not) and also on individual 

survival after weaning (if individuals were seen within the next two months after weaning) 

and to the following breeding season for both mothers and offspring. Breeding survival, as 

described in the previous chapter, could also be assessed for female offspring, as males 

disperse away once weaned. I also complemented these results by using mixed effects 

models for each one of these response variables (see Tables S3 to S7). All statistical 

analyses were conducted in R Studio (v. 0.98.501 R Development Core Team, 2013). 

 

Results 

I found significant differences in growth and survival of subtropical antechinuses across 

the three years of this study. These years differed in both the total annual amounts of 

rainfall (Figure 1A), and, more importantly, they varied in the timing of rainfall peaks in 

relation to the different stages of the breeding season (Figure 1B). At Springbrook, 2010 

was the wettest, receiving 40% above the annual average; 2011 was the driest, although 

the annual rainfall received was the closest to the average of the last thirty years; and, in 

2012 annual rainfall was 15% above average (Figure 1A).  

High rainfall occurred during the whole duration of lactation in 2010, especially during the 

first (October) and third month (December) of lactation, when rainfall was four and three 

times higher than the average observed during the last 30 years. Rainfall during lactation 

in 2011 was around average, while in 2012 was below average.  

Rainfall at weaning had a different pattern. High rainfall in January – February (weaning 

and the short time afterwards) was high in 2011 and 2012 (more that two times higher 

than the average), but not as high in 2010. Even though, rainfall in January 2010 was still 

50% above average, in February was 20% below average. 
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Reduced maternal investment ability in dry years 

a) Maternal mass 

Overall, mothers were significantly lighter during mid-lactation in 2012, when rainfall was 

extremelly low throughout the year and especially during the whole breeding season, 

including lactation. This difference was significant according to the mixed effect model 

(year 2012: t = 2.36, p = 0.02. Table S1b) but not according to the GLM (year: t < 1.10, p > 

0.28. Table S1a). The mean maternal body mass (mean ± SE) in 2010 (N=12), 2011 

(N=22) and 2012 (N=22) was, respectively, 33.21 ± 1.2 g, 33.66 ± 1.0 g and 31.73 ± 1.29 

g, when their offspring were ~51 days old. 

In agreement with my prediction that younger mothers should be more affected by low 

rainfall during lactation, in 2012 first-year mothers had the lowest mean mass when young 

were ~51 days old (mid-lactation), while second-year mothers were the heaviest on 

average (N=4) than in the previous two years. These results were supported by both the 

GLM and LMER (year x maternal age: t > 2.06, p < 0.05. Figure 2B. Table S1a and S1b). 

Extraordinarily high rainfall during the first-month of lactation in 2010 seem have favoured 

first-year mothers more than second-year mothers. When young were ~51 days old, the 

difference in mass between first and second-year mothers was not significant in 2010, but 

in the following two years the difference in mass between young and old mothers was 

significant. The difference between first- and second-year mother’s mass increased from 

~4 g in 2010 to 8 g in 2011 and up to 14 g in 2012. First-year mothers were heaviest in 

2011, while second-year mothers were heaviest in 2012 (see Table 2 for details). These 

results also support the correlation between rainfall and overall condition in antechinuses, 

as first-year mothers from 2011 and second-year mothers from 2012 were all born in 2010, 

when offspring growth was the highest observed. This means that improved condition 

acquired by offspring in 2010 persisted into adulthood (see below).  

According to the mixed effect model, mothers only increased their mass during mid-

lactation in 2012 during their time in captivity (year 2012 x offspring age: t=-2.25, p = 0.03; 

Figure 3. Table S1b). This result initially appears to support the argument that in 2012 

maternal condition was very low, and females were taking advantage of the access to ad 

libitum food resources offered while in captivity during mid-lactation. However, despite this, 

half of the mothers died during this time, along with their litters. High mortality among 

mothers during the time when I kept them in captivity in 2012 forced me to make the 
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decision to release them sooner than planned. Therefore, it is surprising that the model 

found that mothers in 2012 were actually increasing their mass during mid-lactation, when 

their time in captivity was shorter than in the previous two years (Figure 3 most data for 

2012 is at the left side of the graph), so it is not possible to make the comparision between 

the three years. 

 

b) Maternal weaning success 

Consistent with the idea that low rainfall during lactation reduces weaning succes in 

antechinuses, mothers were less likely to wean their young in 2012, when rainfall was 

extremelly low during lactation. The percentage of offspring weaned in 2012 was only 50% 

compared >80% in the previous two years (χ2  = 8.19, df = 2, p = 0.017; Fisher test: p = 

0.02). However, the mixed effect model found this effect only marginally significant (t = 

1.76, p = 0.08. Table S3). 

Also consistent with this expectation, first-year mothers and mothers rearing male-biased 

litters were less likely to wean their young in 2012, especially compared to 2011. The 

percentages of first-year mothers that weaned their young in 2010, 2011 and 2012 were, 

respectively, 50%, 84% and 47% (χ2 = 6.01, df = 2, p = 0.05; Fisher test: p = 0.047), while 

the respective percentages for second-year mothers were 100%, 100% and 67% (χ2 = 

3.95, df = 2, p = 0.14; Fisher test: p = 0.43). A similar pattern was observed in mothers 

rearing male-biased litters compared to female-biased litters. The percentage of mothers 

with male-biased litters that were successful at weaning them in 2010, 2011 and 2012 was 

100%, 92% and 40% (χ2 = 10.31, df = 2, p = 0.006; Fisher test: p = 0.007), while for 

female-biased litters the percentages were 67%, 80%, 58% (χ2 = 1.18, df = 2, p = 0.56; 

Fisher test: p = 0.60), respectively. These results agree with my results in Chapter 2 and 3 

that sons are more constly to produce, especially when conditions are not favourable, and 

that young mothers have a reduced investment ability compared to older mothers. 

 

c) Offspring growth  

Offspring grew larger and faster when higher rainfall occurred during lactation. Offspring 

were heavier in 2010 than in 2011 and 2012 (year: t = -4.48, p < 0.0001; Figure 4. Table 
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S2a). The extraordinary high rainfall during lactation experienced by individuals in 2010 

had a positive effect on offspring growth, as the young were heavier and grew faster (see 

Table 3 to compare growth rates) compared to the next two years during mid-lactation 

(when they were ~51 days old), and especially compared to 2012, although according to 

the mixed effect model this effect was only marginally significant (year x offspring age: t = 

1.83, p = 0.07). 

Offspring from second-year mothers were overall heavier than offspring from first-year 

mothers (see Chapter 3), but this difference was not observed in 2011 (Figure 4A). This is 

because mothers in 2011 were the heaviest (Figure 2A), especially first-year mothers 

(Figure 2B) and offspring mass was strongly associated to maternal mass (maternal mass: 

t > 4, p < 0.001. See Table S2a and S2b. Also see chapters 2 and 3 of this thesis). These 

results show that the good condition of the young that were born in 2010 and experienced 

extraordinarily high rainfall during lactation, persisted into adulthood. In 2011 those 

individuals were breeding for the first time. These first-year mothers in 2011 demonstrated 

their increased investment ability by producing high quality offspring, despite the fact that 

rainfall during lactation in 2011 was around average. Their maternal investment was even 

superior compared to second-year mothers that year, which are the ones that usually 

show a greater investment ability (see Chapter 3).  

The smallest offspring of all were the ones born in 2012 with first-year mothers, confirming 

that younger mothers were more affected by low rainfall during lactation. However, 

offspring from second-year mothers were not as affected (year 2012 x maternal age: t = -

1.96, p = 0.057. Figure 4A. See Table S2a) had growth rates similar to the previous years 

(Table). These results are consistent with the idea that older mothers have higher 

investment abilities (Chapter 3), thus do better under adverse conditions (low rainfall in 

2012) than first year mothers. A similar pattern occurred when comparing offsping mass 

between female- and male-biased litters (Figure 4B). This also supports the idea that 

mothers invest more in sons, even when mothers are in poor condition (year 2012 x sex 

ratio –male-biased: t = 4.24, p < 0.001. Table S2a). 

 

d) Maternal survival 

The survival of mothers in captivity (and their young, because if the mother died so did 

their entire litter) also varied significantly among years. From a total of 67 mothers that 
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were trapped during the three years of this study (12 in 2010, 30 in 2011 and 25 in 2012), 

47 survived the period of captivity and 20 died during this time. In 2012 the proportion of 

females that died in captivity with their entire litters was significantly higher (N=12, 48%) 

than in the previous two years N=0 in 2010, 0%; N=8 in 2011, 27%; χ2 = 9.18, df = 2, p = 

0.01; Fisher test: p = 0.0068). This confirms the low condition of mothers in 2012, which 

was an extremely dry year. 

The exceptional low rainfall experienced by antechinus mothers during the whole lactation 

periond in 2012 also reduced their chance to survive the process of weaning their offspring 

and to be seen alive within the next two months (χ2 = 6.99, df = 2, p = 0.03; Fisher test: p = 

0.03). In 2012, only 18% of mothers survived weaning their young, while in 2010 and 

2011, 58% and 50% did (respectively). Their chances plunged to zero if they were second-

year mothers or were rearing a male-biased litter (χ2 = 6.36, df = 2, p = 0.04; Fisher test: p 

= 0.03). In 2010 and 2011, a second-year mother had at least a 60% chance of surviving 

after weaning their young and over 40% in male-biased litters. When breeding for the first 

time or in female-biased litters, mothers did better in 2012. The percentage of first-year 

mothers that survived weaning in 2012 was ~20%, compared to ~50% in 2011 and 2012. 

In female-biased litters, ~30% of the mothers survived weaning in 2012 compared to 

~60% in the previous years.  

According to the GLM model, mothers that had longer feet were more likely to survive the 

process of weaning their young (t = 2.37, p = 0.02. Figure 5. Table S4). This is consistent 

with the prediction that larger mothers should have a greater investment ability and thus 

have a higher post-weaning survival than smaller mothers. 

Although the percentage of mothers that survive to breed again varied across the years of 

study, none of the analyses used in this Chapter to asses year effects were significant 

(see Table S5). In 2010, 2011 and 2012, respectively, 42%, 27% and 18% of the mothers 

survived at least until the following mating season. However, it is worth mentioning that 

high rainfall during lactation (2010) increased maternal breeding survival, especially in 

first-year mothers. In 2010, 50% of first-year mothers survived to the following breeding 

season, while in the following two years their chances were 26% in 2011 and 21% in 2012. 

e) Offspring survival 

The percentage of offspring that were successfully weaned and seen as newly 

independent juveniles between January and March varied each year in a manner 
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consistent with the idea that high rainfall at weaning favours offspring weaning survival in 

this species. Those offspring that were heavier and had faster growth rates were more 

likely to be seen alive as weaned, newly independent, juveniles. In particular, male young, 

those born in 2010 of a second-year mother, or from a male-biased litter showed higher 

survival rates. Offspring from a second-year mother had a probability of 93%, 65% and 

67% to be weaned in 2010, 2011 and 2012, respectively (χ2  = 10.88, df = 2, p = 0.004; 

Fisher test: p = 0.003). If the mother was a first-year female, their chance was 48%, 73% 

and 47%, respectively (χ2 = 15.52, df = 2, p = 0.0002; Fisher test: p = 0.0001), higher in 

2011. The percentage of offspring from male-biased litters that were successfully weaned 

in 2010, 2011 and 2012 was, respectively, 88%, 74% and 49% (χ2 = 19.36, df = 2, p < 

0.0001; Fisher test: p < 0.0001). If they came from a female-biased litter, their chance of 

being weaned in those respective years were 68%, 65% and 51% (χ2 = 4.12, df = 2, p = 

0.13; Fisher test: p = 0.14). The percentage of male offspring weaned in the respective 

years were 90%, 71% and 49% (χ2 = 20.22, df = 2, p < 0.0001; Fisher test: p = 0.0001) 

and for female offspring, 68%, 72% and 52% (χ2 = 6.29, df = 2, p = 0.043; Fisher test: p = 

0.047). These results show that offspring from young mothers were the most affected by 

the dry conditions of 2012 (mothers with less investment ability; see Chapter 3) and sons 

were also slightly more affected than females (more expensive to produce; see Chapter 

2), consistent with the idea that wetter conditions favour more male offspring. The mixed 

effect model found that the only significant effect was litter sex ratio (see Table S6). 

High rainfall at weaning translated into improved offspring weaning survival. This would 

explain the reduced offspring weaning survival in 2010 for offspring from first-year mothers 

caused by the decline in rainfall during January 2011 (weaning time for individuals born in 

September 2010). These young had a probability of a 48% of surviving to be a newly 

weaned juvenile, which is 45% less than an offspring from a second-year mother. This 

result is consistent with the idea that older mothers are able to produce high quality 

offspring (greater investment ability) compared to younger mothers (see Chapter 3).  

High rainfall at weaning does not guarantee offspring survival. Juveniles were not able to 

compensate for poor condition associated with extremely low rainfall during lactation, and 

high mortality was observed in 2012, when high rainfall occurred at weaning but not 

throughout lactation. Female offspring were also more likely to survive to breed in 2011 

than in 2010, and especially than in 2012. The percentage of female offspring that 

survived to breed in 2010, 2011 and 2012 was, respectively, 18%, 24% and 0.06% (χ2 = 

9.05, df = 2, p = 0.011; Fisher test: p = 0.008).  Their chance was 56% if their mother was 
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a second-year mother (χ2 = 6.96, df = 2, p = 0.03; Fisher test: p = 0.04) or 30% if they 

came from a female-biased litter (χ2 = 6.99, df = 2, p = 0.003; Fisher test: p = 0.02) in 

2011. In 2012, their chance of survival was less than 1% regardless the age of the mother 

or their litter sex ratio. There was no significant effects according to the mixed effect model 

(see Table S7). 

 

Discussion 

In this study I demonstrate that growth, survival and investment abilities of female 

subtropical antechinuses are driven by rainfall. Therefore, changes in rainfall patterns can 

have profound consequences for the entire population, especially when those climatic 

events disrupt the natural seasonal predictability of the environment (Parrott et al. 2007, 

Recher et al. 2009). At least average rainfall during early and mid-lactation and high 

rainfall during late-lactation and at weaning is crucial for high survival of a cohort. High 

rainfall only at weaning is not sufficient to ensure high offspring survival.  

As in red squirrels (Kerr et al. 2007), good body condition of antechinus offspring acquired 

during unusually favourable conditions during lactation persisted into adulthood. Heavy 

female offspring born in 2010 continued to be the heaviest in both their first (first-year 

mothers in 2011) and second breeding attempt (second-year mothers in 2012) and 

demonstrated high maternal investment abilities in both breeding attempts. They were not 

only larger and with high probability of survival, but they also produced large, fast growing 

offspring, were more likely to wean them, and produced high quality offspring that were as 

large as the offspring from second-year mothers, and also more likely to survive to breed. 

Therefore, breeding success in antechinuses seems to be related to favourable wet 

conditions not only at the time of their own development as dependent offspring (when 

lactating from their mother), but also to the environmental conditions when they are 

breeding themselves.  

My results support the idea that environmental conditions experienced early in life have 

strong effects on growth, survival and individual reproductive success, and may have 

strong impacts on population dynamics and life history evolution (Lindström 1999, 

Descamps et al. 2008). Charmantier and Garant (2005) conducted a meta-analysis to see 

how changes in environmental conditions affects heritability of different traits, comparing 

favourable with unfavourable conditions in wild population of animals. They found 
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increased heritability of morphometric traits under favourable conditions. For example, 

food availability during lactation in red squirrels strongly determines females’ reproductive 

success (Descamps et al. 2008). However, these early environment effects are not always 

evident, and can be obscured by variable conditions experienced as adults (Descamps et 

al. 2008). Kerr and colleagues (2007) studied the persistence of maternal traits in wild red 

squirrel offspring by food supplementation prior and during reproduction, but not at or after 

weaning. Offspring from food supplemented mothers emerged earlier and were almost 

three times as likely to survive to the following year (Kerr et al. 2007). Annual fluctuations 

of environmental quality, in particular of food abundance, significantly affected growth 

rates in red squirrels, which were higher in times of high food abundance (McAdam & 

Boutin 2003).  

In seasonally predictable environments, mammals often synchronise their breeding so 

young are weaned at the time when food is abundant. For example, the seed-eating edible 

dormouse (Glis glis) adjusts the timing of its reproduction to the pattern of mast fruiting in 

beech and oaks trees, and the entire population may skip reproduction in years when 

seeds of these plants are absent. Because these trees do not produce mast crops two 

year in a row, these rodents avoid producing offspring straight after a masting year and 

increase breeding after a year with low fruit production (Schlund et al. 2002). Red squirrels 

(Tamiasciurus hudsonicus) also need reliable resources to sustain reproduction and 

although these rodents exploit a wide range of resources depending on seasonal 

availability, they synchronise their reproductive events with the fruiting times of conifers 

(Fletcher et al. 2013).  

Energetic requirements of lactation and weaning large litters are high in antechinuses in 

relation to their body size (Green et al. 1991; Cockburn et al. 1983), especially in late 

lactation (Tyndale-Biscoe & Renfree 1987, Russell et al. 1989). They consume ~60% of 

their body mass each day when not lactating (Nagy et al. 1978, Hall 1980), and as much 

as their own body mass or more when lactating (Green et al. 1991). High demands of 

lactation in these insectivorous marsupials have been linked to the evolution of their 

extreme life history, because they need to match the end of lactation and the time of 

juvenile independence with the highest annual peak of arthropod abundance to breed 

successfully (Braithwaite & Lee 1979, Fisher et al. 2013). Seasonal predictability of prey 

and the high demands of a long lactation are the major forces that cause females to 

synchronize late lactation and weaning with the highest abundance of prey, and this 

creates the conditions for intense competition in males (Fisher et al. 2013).  
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Arthropod abundance depends on climatic factors and varies seasonally and from year to 

year depending on weather conditions (Strehlow et al. 2002). Patterns of rainfall and the 

severity of the dry season are the major factors regulating insect abundance across 

seasons and from year to year (Wolda 1978, Denlinger 1980, Jones 1987, Frith & Frith 

1990). Abundance of leaf litter invertebrates appears to also be regulated by 

environmental factors such as pattern of litter fall, soil moisture and decomposition rates, 

all of which are also highly related to rainfall patterns (Frith & Frith 1990). Overall, 

invertebrate abundance and richness of species increases with rainfall and plant flowering 

during the wet season, especially if the wet season co-incides with warmer temperatures, 

as in tropical and subtropical zones (Frith & Frith 1990, Recher et al. 2009). Arthropods 

decline sharply with drier conditions and remain at very low densities during the dry 

season. This occurs in most invertebrates regardless of niche: leaf litter (Frith & Frith 

1990), trunks/bark (Mejer et al. 2003), or canopy (Recher et al. 1996). However, due to 

year to year variations, this relationship between insect abundance and rainfall may not be 

straightforward, as it also depends on the interaction between duration and severity of 

current and previous rainfall events and and the variation between dry and rainy years 

(Denlinger 1980). In a study of seasonal and annual variation in insect abundance in 

Kenya, invertebrates reached the largest peak of abundance during a very long, 

uninterrupted event of heavy rainfall, were strongly suppressed during years with 

exceptional low rainfall, and were maintained at high densities by unusual rainfall during 

the dry season (Denlinger 1980). Unexpected rainfall during the dry season increases 

foliage production and this is thought to increase insect abundance, especially of foliage-

feeders (Wolda 1978). 

Rainfall in Australia in the period 2010-2012 was highly variable and also varied greatly at 

Springbrook. These years differed from rainfall patterns in previous years, as there had 

been more than a decade of drought Australia wide (Bureau of Meteorology 2006, 2010). 

In my study, the number of females with pouch-young captured in October 2010 (at the 

beginning of the study) was fewer than half of the number trapped in the following two 

years (30 lactating females were trapped in both 2011 and 2012 while in 2010, I only 

caught 12 lactating females). This may suggest that a population recovery during the 

period of this study followed a decline caused by the extended drought preceding the 

study (Bureau of Meteorology 2006, 2010, 2012) . Recher et al. (2009) also found that 

population dynamics of two species of antechinuses (agile and dusky antechinus) closely 

tracked rainfall, with little lag time. Lada et al. (2007) described an association between 
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low rainfall prior and during the breeding season and low populations in yellow-footed 

antechinuses. Numbers of another dasyurid, the brush-tailed phascogale, also declined 

severely and immediately with drought (Rhind & Bradley 2002). Insectivorous marsupials 

respond quickly to drought because arthropod abundance declines abruptly in dry 

conditions (Strehlow et al. 2002, Majer et al. 2003, Bell 2006, Lada et al. 2007, Recher et 

al. 2009).  

During the years of this study, the timing of rainfall peaks varied in relation to mating, 

pregnancy, lactation and weaning of antechinuses. High rainfall during pregnancy and 

lactation, such as in 2010, benefited mothers by enhancing their investment abilities and 

survival, and their offspring condition at weaning. Mothers were able to improve their body 

condition to sustain the high requirements of lactation without reducing survival, especially 

in young mothers. The weaning success of mothers rearing male-biased litters was more 

affected by the decline in rainfall during lactation in 2012 than the success of mothers 

rearing female biased litters. Compared with 2010, there was a 40% drop in success in 

2012 in the former and a 10% drop in the latter. Overall, sons appeared to have benefited 

more than daughters from the favourable conditions during lactation as they had slightly 

enhanced survival around weaning in 2010 when high rainfall occurred during lactation. 

These results agree with the conclusions of the sex allocation chapter of this thesis that 

sons impose greater energy demands on their mother (Chapter 2).  

High rainfall during lactation improved maternal survival, especially in second-year 

mothers. In the first year of my study, two-thirds of lactating females were second-years. 

This is extremely unusual for antechinuses as usually first-year females are significantly 

more abundant than second-years. Larger fossorial species such as dusky and swamp 

antechinuses typically have a greater proportion of iteroparous females than smaller 

scansorial species in the brown antechinus complex, but past studies have not found more 

than 40% surviving to breed again (Cockburn et al. 1983).  

In iteroparous mammals, younger females must trade-off energy allocation between their 

own growth and their offspring’s growth. For example, first year female red squirrels had 

smaller offspring and were less likely to breed again than older mothers (Descamps et al. 

2007). The demands of first-time breeding mean that younger mothers are more 

vulnerable to poor environmental conditions (Descamps et al. 2007). In antechinuses, 

individuals continue to growth throughout their lives, thus second-year mothers are always 

heavier than first-year mothers (Fisher & Blomberg 2011). First-year mothers, in order to 
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sustain late lactation and wean a large litter of young (the most demanding part of lactation 

as their young can weigh up to five times altogether her own body mass; Cockburn 1994, 

Fisher & Blomberg 2011) need to gain weight during pregnancy and early/mid lactation. I 

did not observe any changes in body mass during mid-lactation during captivity, but I 

confirmed that young mothers are more vulnerable to poor environmental conditions than 

older mothers.  First-year females were clearly more negatively affected than second-year 

mothers by extremely low rainfall during lactation in 2012. Accordingly, first-year mothers 

benefited most from exceptional wet conditions during pregnancy and lactation in 2010 not 

only by increasing their investment abilities, but also their breeding survival in a 30% 

Under unfavourable conditions of drought at critical stages of lactation, heavier mother 

subtropical antechinuses had heavier offspring and were more likely to wean them. This is 

consistent with population studies of many other mammals. Individuals with relatively large 

body size typically have higher survival, competitive abilities and reproductive success. 

Heavier mothers have more body reserves, enabling them to produce and transfer more 

milk to their offspring (Bernardo 1996) so they invest in offspring growth to produce large 

offspring at weaning (red squirrels: Wauters et al. 1993; bank voles: Ylönen et al. 2004; 

caribous: Taillon et al. 2012; roe deer: Andersen et al. 2000; elephant seals: Arnbom et al. 

1994). The efficiency with which the mother can transfer her body reserves to her young 

depends on previous and current maternal ability to store and acquire resources, and 

therefore, ultimately depends on food availability (Boydi & McCannt 1989, Clutton-Brock & 

Godfray 1991, Fairbanks & McGuire 1995). Reduced food availability is associated with 

juvenile mortality, low growth rates, delayed maturity and reduced reproductive success 

(McClure 1987, Festa-Bianchet 1988, Fairbanks & McGuire 1995, McMahon et al. 2000, 

King & Alliné 2003, Altmann & Alberts 2005). In long-lived, iteroparous mammals, mothers 

can potentially compensate for poor environmental conditions in later breeding events, but 

this is not possible in antechinuses. The life history responses to rainfall variation recorded 

in my study cover the entire reproductive lifespan of individuals in this population, so 

breeding failures of cohorts and categories of individuals could potentially translate into 

local extinction of the population, or strong selection on particular life history strategies 

such as trading off survival in favour of breeding effort as a first year female under high 

rainfall conditions (Fisher and Blomberg 2011).  

My finding that juvenile condition at weaning persists into adulthood and is correlated with 

survival and reproductive success in later life agrees with several previous studies of 

mammals (Koskela 1998, Millesi et al. 1999, McMahon et al. 2000, Clutton-Brock et al. 
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2001, Rödel et al. 2008). My results also agree with a previous experiment with golden 

hamsters, on the effects of food restriction during reproduction. Undernourished mothers 

produced stunted offspring and sons were the most affected (Labov et al. 1986). Food 

restriction during reproduction in guinea pigs also resulted in mothers producing smaller, 

slow growing offspring and offspring reduced condition persisted into adulthood (Laurien-

Kehnen & Trillmich 2004). Van Horne et al. (1997) carried out a study of population 

dynamics of Townsend’s ground squirrels during four years, during which a severe  

drought affected the study area followed by an extended winter season. This caused a 

reduction in individual body mass of both young and adults, and an overall decline in 

population density that persisted at least a year after conditions reverted to normal. 

Females that managed to survive the harsh conditions produced smaller young and in 

lower numbers than before the severe weather events. Weather conditions need to be 

considered on the scale of the subject species’ generation time (Van Horne et al 1997). 

This is more straightforward for antechinuses than for most other mammals (Fisher et al. 

2006). 

 

Conclusion 

Because of its dense and stable overall population, much of which is in National Parks, the 

subtropical antechinus is classed by the IUCN as a species of least concern (Burnett & 

Dickman 2008) and is considered to have low vulnerability to decline (Hagger et al. 2012). 

However, my study suggests that this status may change in the future as a result of 

climate change. Climate change is considered to be a major threat to biodiversity during 

the next 100 years (Isaac 2009, Cahill et al.  2012). Vulnerability to climate change is likely   

to be determined not only by species geographical distribution but also by life history traits. 

Species restricted to small areas with short generation times are more vulnerable than 

similar species with long generation times (Pearson et al. 2014), and especially if those 

climatic changes occur rapidly and by extreme events (Isaac 2009). Evidence is currently 

limited, but disruption of food webs, especially declines in food availability for predators 

are suggested to be important causes of species declines and extinction due to climate 

change (Cahill et al. 2012). Subtropical antechinuses have a very small geographic range, 

and their semelparous life history, dependence on predictable prey cycles, montane 

distribution and extremely high energetic demands of lactation make them vulnerable to 

climate change. As presented in this chapter, unexpected changes in the patterns of 
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rainfall can cause dramatic consequences for the entire population. According to the 

Bureau of Meteorology and CSIRO, Australia is expected to show further high climate 

variability in the following years including warming weather, high fire risk and reduced 

rainfall, especially during autumn and winter in the eastern regions of Australia (BOM & 

CSIRO 2014). 

The results of this study not only confirm the essential role of dependable rainfall for the 

survival and overall success of subtropical antechinus, a montane rainforest specialist, but 

also show the crucial importance of timing of those events. While rainfall during lactation 

improves weaning survival of both mother and young, high rainfall around the time of 

independence is essential for high offspring survival to breeding. This study also highlights 

the importance of the effects of environmental conditions experienced in early life (during 

development and lactation) as their impacts can persist throughout life, and will determine 

future performance. I showed that high rainfall during lactation is important for good 

offspring condition at weaning, which translates into good condition as adults, and in 

females also translates into greater investment ability in offspring. I also present evidence 

that confirms the vulnerability of the subtropical antechinus to climate change. 
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Figures and Tables  
 

Table 1. Number of individuals, mothers and offspring per maternal age class and sex, 

used in this study in 2010, 2011 and 2012. 

 2010 2011 2012 

Nº mothers - Total 12 22 22 

Nº mothers - First-year females 4 19 19 

Nº mothers - Second-year females 8 3 3 

Nº offspring - Total 77 135 139 

Nº offspring - First-year females 23 118 115 

Nº offspring - Second-year females 54 17 24 

Nº female offspring 38 58 71 

Nº male offspring 39 77 68 

 

 

 

 

 

Table 2. Mean maternal body mass for mothers’ age classes when young were ~51 days 

old (mid-lactation) from 2010 to 2012 at Springbrook National Park.  

 2010 2011 2012 

First-year mothers 30.64 ± 1.49 g 32.56 ± 0.90 g 29.81 ± 0.80 g 

Second-year mothers 34.50 ± 1.49 g 40.61 ± 1.40 g 43.91 ± 2.20 g 
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Table 3. Regression parameters for offspring growth (body mass in g per day) per year 

during mid-lactation. 

 Slope (g/day) R2 F p 

2010 0.23 ± 0.006 0.78 1737 <0.0001 

2011 0.20 ± 0.008 0.60 601.8 <0.0001 

2012 0.16 ± 0.002 0.21 48.29 <0.0001 

 

 

 

 

 

 

 

Table 4. Regression parameters for offspring growth (body mass in g per day) during mid-

lactation and the effects of maternal age. 

 Slope (g/day) R2 F p 

2010 – First-year mothers 0.20 ± 0.008 0.80 598.9 <0.0001 

2010 – Second-year mothers 0.25 ± 0.006 0.86 2112 <0.0001 

2011 – First-year mothers 0.21 ± 0.006 0.61 556.9 <0.0001 

2011 – Second-year mothers 0.18 ± 0.026 0.58 50.27 <0.0001 

2012 – First-year mothers 0.08 ± 0.027 0.06 9.45 0.0025 

2012 – Second-year mothers 0.21 ± 0.032 0.54 43.98 <0.0001 
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Figure 1. Annual rainfall (A) and monthly rainfall (B) at Springbrook in 2010, 2011 and 

2012 in relation to the mean observed during the previous 30 years and in relation to the 

breeding season for subtropial antechinus. The bars on the mean line Figure B show the 

95% confidence intervals. Rainfall data were obtained from the Australian Bureau of 

Meteorology – Springbrook Road Station (nº 040607; 28.20ºS, 153.27ºE; 681 m above 

sea level). 
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Figure 2. The effect of year on (A) maternal body mass and (B) its interaction with 

maternal age class (first-year mothers in white and second-year mothers in grey) on 

maternal body mas when young were ~51 days old (See Table S1a). The dark horizontal 

line represents the mean value, the box represents the 25th and 75th percentiles, the 

whiskers represent the 5th and the 95th percentiles and the outliers are represented as 

open circles. 

 
 
 

A	  

B	  
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Figure 3.  Variation of maternal body mass during mid-lactation, when their offspring went 

from 45 to 75 days old, per year: 2010 (open squares, continuous line), 2011 (open 

circles, discontinuous line) and 2012 (x, dotted line). See Table S1b. 
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Figure 4. The effect of (A) maternal age class (first-year mothers in white and second-year 

mothers in grey) and (B) litter sex ratio (female-biased litters in white and male-biased 

litters in grey) on offspring body mass during mid-lactation (~51 days old) during the three 

years of study (2010, 2011 and 2012). The dark horizontal line represents the mean value, 

the box represents the 25th and 75th percentiles, the whiskers represent the 5th and the 

95th percentiles and the outliers are represented as open circles. See Tables S2a and 

S2b. 

 

A	  

B	  
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Figure 5. The effect of maternal foot length as a measure of skeletal size on maternal 

post-weaning survival. Mothers that survived after weaning their young and were seen 

alive within the next two months after weaning in grey, mothers that died soon after 

weaning their young in white. The dark horizontal line represents the mean value, the box 

represents the 25th and 75th percentiles, the whiskers represent the 5th and the 95th 

percentiles and the outliers are represented as open circles. See Table S4.  
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Supplementary information Chapter 4	  

Table S1a. GLM results for the effects on maternal body mass (log(Wt)) of the following 

fixed factors: mean offspring body mass (g), maternal foot length (mm), maternal age class 

(if mother was a first- or a second-year female), litter sex ratio (female- or male-biased), 

litter size (1 to 8), year (2010, 2011, 2012) along with the interactions between year and 

maternal age class, sex ratio and litter size. No repeated measures. 

 

Factor Estimate Std. Error t p 

Intercept 3.97 1.18 3.37 0.002 

Offspring body mass 0.12 0.03 4.38 <0.0001 

Maternal foot length -0.08 0.09 -0.89 0.38 

Maternal age class 0.04 0.07 0.63 0.54 

Sex ratio -0.04 0.07 -0.67 0.51 

Litter size 0.04 0.02 1.90 0.06 

Year 2011 0.16 0.15 1.10 0.28 

Year 2012 0.13 0.17 0.77 0.45 

Year 2011 x maternal age –second 0.14 0.09 1.57 0.13 

Year 2012 x maternal age –second 0.29 0.10 3.00 0.005 

Year 2011 x sex ratio –male-biased 0.11 0.08 1.26 0.21 

Year 2012 x sex ratio –male-biased 0.05 0.08 0.67 0.51 

Year 2011 x litter size -0.02 0.02 -0.98 0.33 

Year 2011 x litter size -0.04 0.03 -1.32 0.19 

 

AIC: -82.04  

Null deviance: 1.26, df = 53 

Residual deviance: 0.40, df = 40 
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Table S1b. LMER results for the effects on maternal body mass (log(Wt)) of the following 

fixed factors: offspring age (days when measurements were performed), maternal age 

class (if mother was a first- or a second-year female), litter sex ratio (female- or male-

biased), litter size (1 to 8), year (2010, 2011, 2012) along with the interactions between 

year and maternal age class and also with litter sex ratio. Random factors: (offspring 

age|mother ID). 

 

Factor Estimate Std. Error t p 

Intercept 3.30 0.14 23.28 7.23x10-25 

Offspring age 0.0001 0.001 0.11 9.16x10-01 

Maternal age class 0.11 0.07 1.62 1.13x10-01 

Sex ratio -0.04 0.06 -0.62 5.41x10-01 

Litter size 0.02 0.02 1.19 2.43x10-01 

Year 2011 0.02 0.20 0.09 9.28x10-01 

Year 2012 0.99 0.42 2.36 2.33x10-02 

Year 2011 x offspring age 0.001 0.002 0.48 6.32x10-01 

Year 2012 x offspring age -0.02 0.008 -2.25 2.99x10-02 

Year 2011 x maternal age –second 0.16 0.08 2.06 4.58x10-02 

Year 2012 x maternal age –second 0.25 0.09 2.84 7.03x10-03 

Year 2011 x sex ratio –male-biased 0.12 0.08 1.63 1.11x10-01 

Year 2012 x sex ratio –male-biased 0.09 0.08 1.17 2.47x10-01 

Year 2011 x litter size -0.02 0.02 -0.81 4.24x10-01 

Year 2012 x litter size -0.04 0.03 -1.31 1.96x10-01 

 

AIC: -244.2; BIC: -185.1, logLik: 141.1, deviance: -374.6, REMLdev: -282.2 
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Table S2a. LMER results for the effects on offspring body mass (log(Wt)) of the following 

fixed factors: offspring sex (male or female), maternal body mass (g), maternal age class 

(first- or second-year mother), litter sex ratio (female- or male-biased), litter size (1 to 8), 

year (2010, 2011, 2012) along with the interactions between year and maternal age class, 

sex ratio and litter size. Random factor: (1|mother ID). No repeated measures. 

 

Factor Estimate Std. Error t p 

Intercept 0.70 0.37 1.91 6.31x10-02 

Offspring sex 0.007 0.01 0.51 6.12x10-01 

Maternal body mass 0.03 0.008 4.07 2.13x10-04 

Maternal age class 0.16 0.15 1.07 2.90x10-01 

Sex ratio 0.009 0.02 0.47 6.43x10-01 

Litter size -0.15 0.03 -5.79 9.49x10-07 

Year 2011 -1.18 0.26 -4.48 6.11x10-05 

Year 2012 -0.43 0.33 -1.31 1.98x10-01 

Year 2011 x maternal age –second  -0.20 0.13 -1.48 1.47x10-01 

Year 2012 x maternal age –second  -0.35 0.18 -1.96 5.73x10-02 

Year 2011 x sex ratio –male-biased -0.009 0.03 -0.35 7.27x10-01 

Year 2012 x sex ratio –male-biased 0.33 0.08 4.24 1.27x10-04 

Year 2011 x sex –male 0.001 0.02 0.09 9.26x10-01 

Year 2012 x sex –male  0.01 0.02 0.72 4.76x10-01 

Year 2011 x litter size 0.18 0.04 4.36 8.81x10-05 

Year 2012 x litter size 0.08 0.05 1.65 1.06x10-01 

 

AIC: -808.4; BIC: -738.9, logLik: 422.2, deviance: -935, REMLdev: -844.4 
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Table S2b. LMER results for the effects on offspring body mass (log(Wt)) of the following 

fixed factors: offspring age (days when measurements were performed), offspring sex 

(female or male), maternal body mass (g), maternal age class (if mother was a first- or a 

second-year female), litter sex ratio (if litter was either female- or male-biased), litter size 

(1 to 8), year (2010, 2011, 2012) along with the interactions between year and maternal 

age class, sex ratio and litter size. Random factors: (offspring age|donor mother ID), 

(offspring age|recipient mother ID), (offspring age|offspring ID). 

 

 

Factor Estimate Std. Error t p 

Intercept -2.40 0.26 -9.37 1.21x10-11 

Offspring age 0.05 0.004 13.51 1.70x10-16 

Offspring sex 0.02 0.01 1.38 1.76x10-01 

Maternal body mass 0.02 0.001 16.58 1.62x10-19 

Maternal age class 0.04 0.04 0.98 3.32x10-01 

Sex ratio -0.05 0.02 -2.96 5.10x10-03 

Litter size 0.005 0.01 0.48 6.36x10-01 

Year 2011 -0.50 0.31 -1.60 1.18x10-01 

Year 2012 0.65 0.45 1.43 1.61x10-01 

Year 2011 x offspring age 0.009 0.005 1.83 7.44x10-02 

Year 2012 x offspring age 0.004 0.006 0.68 5.01x10-01 

Year 2011 x maternal age –second  0.03 0.08 0.33 7.44x10-01 

Year 2012 x maternal age –second  0.09 0.11 0.80 4.31x10-01 

Year 2011 x sex ratio –male-biased 0.04 0.03 1.45 1.54x10-01 

Year 2012 x sex ratio –male-biased 0.55 0.05 11.44 3.51x10-14 

Year 2011 x sex –male -0.003 0.01 -0.24 8.10x10-01 

Year 2012 x sex –male  0.005 0.02 0.33 7.46x10-01 

Year 2011 x litter size -0.01 0.01 -0.89 3.80x10-01 

Year 2012 x litter size -0.11 0.05 -2.61 1.26x10-02 

 

AIC: -2368; BIC: -2224, logLik: 1213, deviance: -2555, REMLdev: -2426 
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Table S3. GLM results for the effects on maternal weaning success (if the mother weaned 

or not their young) of the following fixed factors: maternal body mass (g), offspring body 

mass (g), maternal foot length (mm), maternal age class (if mother was a first- or a 

second-year female), litter sex ratio (if litter was either female- or male-biased), litter size 

(1 to 8) and year (2010, 2011, 2012) along with the interactions between year and 

maternal age class and sex ratio.  

 

Factor Estimate Std. Error z p 

Intercept -6.98x10+01 4.77x10+01 -1.46 0.14 

Maternal body mass 4.94x10-03 1.51x10-01 0.03 0.97 

Offspring body mass 5.18x10-01 9.86x10-01 0.53 0.60 

Maternal foot length  5.21x10+00 3.53x10+00 1.48 0.14 

Maternal age class 2.03x10+01 2.91x10+03 0.007 0.99 

Sex ratio 1.98x10+01 3.20x10+03 0.006 0.99 

Litter size -5.72x10-01 3.58x10-01 -1.60 0.11 

Year 2011 3.59x10+00 2.04x10+00 1.76 0.08 

Year 2012 2.94x10+00 2.08x10+00 1.42 0.16 

Year 2011 x maternal age –second  -2.88x10+00 6.28x10+03 0.00 0.99 

Year 2012 x maternal age –second  -2.04x10+01 2.91x10+03 -0.007 0.99 

Year 2011 x sex ratio –male-biased -1.82x10+01 3.20x10+03 -0.006 0.99 

Year 2012 x sex ratio –male-biased -2.01x10+01 3.20x10+03 -0.006 0.99 

 

AIC: 64.84  

Null deviance: 61.81, df = 53 

Residual deviance: 38.84, df = 41 
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Table S4. GLM results for the effects on maternal post-weaning survival (if the mother was 

seen alive in the wild within the next two months after weaning her young, when young 

were 100-120 days old) of the following fixed factors: maternal body mass (g), offspring 

body mass (g), maternal foot length (mm), maternal age class (if mother was a first- or a 

second-year female),  litter sex ratio (if litter was either female- or male-biased), litter size 

(1 to 8) and year (2010, 2011, 2012) along with the interactions between year and 

maternal age class and sex ratio.  

 

Factor Estimate Std. Error z p 

Intercept -72.69 31.32 -2.32 0.02 

Maternal body mass 0.06 0.12 0.50 0.62 

Offspring body mass -0.88 0.92 -0.96 0.34 

Maternal foot length  5.65 2.38 2.37 0.02 

Maternal age class 1.47 1.60 0.92 0.36 

Sex ratio -1.38 1.48 -0.93 0.35 

Litter size -0.48 0.27 -1.78 0.07 

Year 2011 0.29 1.43 0.20 0.84 

Year 2012 0.17 1.43 0.12 0.91 

Year 2011 x maternal age –second  -1.31 2.20 -0.59 0.55 

Year 2012 x maternal age –second  -19.34 2893.65 -0.007 0.99 

Year 2011 x sex ratio –male-biased 1.03 1.80 0.58 0.57 

Year 2012 x sex ratio –male-biased -15.93 2022.19 -0.008 0.99 

 

AIC: 76.12  

Null deviance: 72.99, df = 53 

Residual deviance: 50.12, df = 41 
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Table S5. GLM results for the effects on maternal breeding survival (if the mother survived 

after weaning their offspring to the following breeding season) of the following fixed 

factors: maternal body mass (g), offspring body mass (g), maternal foot length (mm), 

maternal age class (if mother was a first- or a second-year female),  litter sex ratio (if litter 

was either female- or male-biased), litter size (1 to 8) and year (2010, 2011, 2012) along 

with the interactions between year and maternal age class and sex ratio. 

 

Factor Estimate Std. Error z p 

Intercept -28.38 27.85 -1.02 0.31 

Maternal body mass 0.06 0.12 0.47 0.64 

Offspring body mass 0.45 0.87 0.52 0.61 

Maternal foot length  2.00 2.06 0.97 0.33 

Maternal age class -0.52 1.49 -0.35 0.73 

Sex ratio -0.71 1.38 -0.51 0.61 

Litter size -0.22 0.23 -0.95 0.34 

Year 2011 -0.30 1.41 -0.22 0.83 

Year 2012 -0.39 1.37 -0.28 0.78 

Year 2011 x maternal age –second  -0.61 2.32 -0.26 0.79 

Year 2012 x maternal age –second  -16.99 3128.58 -0.005 0.99 

Year 2011 x sex ratio –male-biased -0.44 1.76 -0.25 0.80 

Year 2012 x sex ratio –male-biased -16.99 2105.92 -0.008 0.99 

 

AIC: 76.83 

Null deviance: 63.81, df = 53 

Residual deviance: 50.83, df = 41 
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Table S6. GLMER results for the effects on offspring weaning survival (if the young 

survive for a while after weaning as independent individuals – if seen within the next two 

months after weaning) of the following fixed factors: offspring body mass (g), offspring sex 

(female or male), maternal body mass (g), maternal age class (if mother was a first- or a 

second-year female), litter sex ratio (if litter was either female- or male-biased), litter size 

(1 to 8), year (2010, 2011, 2012) along with the interactions between year and maternal 

age class and sex ratio. Random factor: (1|mother ID). 

 

Factor Estimate Std. Error z p 

Intercept 3.30 11.66 0.28 0.78 

Offspring body mass -0.63 1.63 -0.39 0.70 

Offspring sex 0.17 0.72 0.23 0.82 

Maternal body mass 0.31 0.37 0.84 0.41 

Maternal age class 4.17 5.16 0.81 0.42 

Sex ratio 3.80 1.38 2.76 0.009 

Litter size -1.66 0.96 -1.74 0.09 

Year 2011 2.35 4.60 0.51 0.61 

Year 2012 1.57 4.89 0.32 0.75 

Year 2011 x maternal age –second  -4.99 7.19 -0.69 0.49 

Year 2012 x maternal age –second  -3.14 8.47 -0.37 0.71 

Year 2011 x sex ratio –male-biased -2.45 2.12 -1.15 0.26 

Year 2012 x sex ratio –male-biased -5.73 4.03 -1.42 0.16 

 

AIC: 201.9; BIC: 255.9, logLik: -86.94, deviance: 173.9 
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Table S7. GLMER results for the effects on female offspring breeding survival (if survived 

or not to breed) of the following fixed factors: offspring body mass (g), offspring sex 

(female or male), maternal body mass (g), maternal age class (if mother was a first- or a 

second-year female), litter sex ratio (if litter was either female- or male-biased), litter size 

(1 to 8), year (2010, 2011, 2012) along with the interactions between year and maternal 

age class and sex ratio. Random factor: (1|mother ID). 

 
Factor Estimate Std. Error z p 

Intercept -2.40 4.71 -0.51 0.61 

Offspring body mass 0.008 0.16 0.05 0.96 

Maternal body mass 0.03 0.12 0.22 0.83 

Maternal age class 2.21 2.98 0.74 0.46 

Sex ratio -18.33 932.90 -0.02 0.98 

Litter size -0.52 0.32 -1.63 0.11 

Year 2011 2.63 2.85 0.92 0.36 

Year 2012 -0.77 3.19 -0.24 0.81 

Year 2011 x maternal age –second  -1.55 3.22 -0.48 0.63 

Year 2012 x maternal age –second  1.98 4.69 0.42 0.68 

Year 2011 x sex ratio –male-biased 14.67 932.90 0.02 0.99 

Year 2012 x sex ratio –male-biased 18.75 932.91 0.02 0.98 

 

AIC: 281.3; BIC: 335.8, logLik: -127.6, deviance: 255.3 
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Figure S1. Monthly rainfall during 2010, 2011 and 2012 compared to the mean monthly 

rainfall observed during the last 29 years (1985 to 2014) at Springbrook, Queenland, 

Australia. Data obtained from Bureau of Meteorology. 

 

 

 

 

 

 

0	  
100	  
200	  
300	  
400	  
500	  
600	  
700	  
800	  
900	  
1000	  

Jan	   Feb	   Mar	   Apr	   May	   Jun	   Jul	   Aug	   Sep	   Oct	   Nov	   Dec	  

M
on
th
ly
	  r
ai
nf
al
l	  [
m
m
]	  

Month	  

2010	  
2011	  
2012	  
Mean	  1985-‐2014	  

Mating	  

Lactation	  Gestation	  Weaning	  



 

 

 

Chapter 5 

 

 

 

General Discussion 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

	   186	  

 

General Discussion 

Evolutionary biologists have been trying to explain the variation in offspring sex ratios in 

different organisms for decades, and many theories have been proposed (Fisher 1930, 

Charnov 1982, Hardy 2002, West 2009). Despite chromosomal sex determination in 

mammals, the production of biased sex ratios is common and the mechanism has proved 

difficult to understand (Cockburn et al. 2002, Wild & West 2007, Robert & Schwanz 2011). 

Mammalian complex life histories and their intricate sociality are likely to be the main 

reasons why it has been so challenging to understand the vast diversity of offspring sex 

ratios (Cockburn et al. 2002, Wild & West 2007, Robert & Schwanz 2011). Multiple 

maternal and environmental traits are expected to affect sex allocation strategies of 

organisms (Cockburn et al. 2002, Robert & Schwanz 2011). 

 

The same kind of problems have occurred in the study of life history trade-offs in wild 

populations of animals (Reznick et al. 2000). High energetic requirements associated with 

reproduction in mammals, especially during lactation, make them suitable models to study 

the costs of reproduction (Hamel et al. 2010). However, trade-offs have often been difficult 

to demonstrate in wild mammals and many studies have shown ambiguous results 

(Nussey et al. 2008, Hamel et al. 2010). Many confounding variables may mask detection 

of the costs of reproduction in the wild, these are likely to be related to differences in 

maternal and environmental quality. One of the major problems has been the difficulty in 

identifying the causes of improvement in breeding success of older mothers. In particular, 

it has been difficult to discern if the increase in the reproductive success of older mothers 

is due to increasing reproductive effort or simply enhanced maternal skills through 

experience (Cameron et al. 2000, Coté & Festa Bianchet 2001, Weladji et al. 2002, 

Weladji et al. 2006). 

 

Variation in environmental quality, individual heterogeneity and the interaction between 

these two factors may prevent the detection of costs of reproduction and life history trade-

offs in wild populations of animals (Van Noordwijk & de Jong 1985, Reznick et al. 2000). 

When environmental quality is high and food is plentiful, there is little conflict over resource 
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allocation. Conflict occurs in times of food shortage, when trade-offs become evident  

(Reznick et al. 2000, Nussey et al. 2008). Some individuals may monopolise more 

resources than others and so face less intense conflicts of energy allocation (Reznick et al. 

2000). Moreover, some individuals may perform better under certain environmental 

conditions and not others, or different individuals may have access to resources of varying 

quality (Reznick et al. 2000).  

 

Most studies of mammalian life history evolution and sex allocation have been carried out 

on eutherian mammals, especially on rodents and ungulates. A large proportion of 

maternal investment occurs during gestation through the placenta and milk production in 

these taxa. In contrast, in marsupials gestation is extremely short and young are born at 

an embryonic stage. This suggests that most of the energy transfer from the mother to her 

young occurs externally during lactation and is under strong maternal control, as female 

marsupials are able to manipulate milk allocation to their offspring in terms of volume and 

composition (Tyndale-Biscoe & Renfree 1987). Therefore marsupials are particularly 

suitable study subjects for studies of sex allocation (Robert & Schwanz 2011) and the 

costs of reproduction (Isaac & Johnson 2005, Fisher & Blomberg 2011). 

 

My study confirms that antechinuses are informative model species for experimental 

studies of life history trade-offs and sex allocation in the wild. They are short-lived 

monoestrus animals, so they are expected to maximise their reproductive effort at each 

breeding attempt, at the expense of survival (Hamel et al. 2010). They have a simple 

population structure, they are abundant and easily trapped, and estimation of lifetime 

fitness in a large number of individuals is possible. There are strong maternal and paternal 

effects on fitness (Fisher & Cockburn 2006, Fisher & Blomberg 2011). Litter size in 

antechinuses is large, and limited by the number of teats, so it is uniform in a given 

population (Cockburn et al. 1985). Sex ratio is discernable at a very immature stage 

because during the first five to six weeks after birth pouch young are attached to the 

mother's teat, and by the end of this period the sex of the young can be easily determined 

(Cockburn et al. 1985). Some populations of antechinuses produce strongly sex-biased 

litters (Cockburn et al. 1985, Dickman 1988, Davison & Ward 1998) and this bias is 
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generated before birth, not by selective infanticide or sex-specific failure to attach to a teat  

(Davison & Ward 1998).  

 

The main objective of this three year study was to assess the costs of reproduction and 

likely adaptive drivers of biased sex allocation in a wild population of subtropical 

antechinuses. The experimental manipulation of offspring sex ratio allowed me to test 

maternal investment ability and to separate this from sex differences in offspring ability to 

acquire milk (Robert & Schwanz 2011, Monclús & Blumstein 2012). The experimental 

design used during this research also allowed me to evaluate the life-long fitness 

consequences of maternal investment while accounting for confounding variables of 

maternal and habitat quality. In addition, the fact that growth and survival of young were 

unaffected by being swapped between mothers also confirms that manipulation of litter 

composition is an effective way to study life history trade-offs in wild animals in future 

research. 

 

There are two main hypotheses to explain sex allocation theory in non-cooperatively 

breeding mammals: the Trivers-Willard Hypothesis (TWH) and the Local Resource 

Competition Hypothesis (LRCH) (Chapter 2). The TWH predicts increased investment in 

sons due to the greater fitness returns associated with producing large, competitive males 

if the mother has the capacity to do so, but production of more daughters if she does not. 

The LRCH predicts increased investment in sons regardless of maternal condition, to 

avoid future competition with philopatric daughters. There have been only a few cross-

fostering studies performed previously on other species, and all of them have found 

support for the TWH. In the second chapter of this thesis, I tested these hypotheses by 

performing a cross-fostering experiment on subtropical antechinuses and measured their 

fitness consequences in the wild. My results support some of the assumptions of the TWH, 

but do not support the predictions. Instead my results support the predictions of the LRCH. 

In Chapter 2, I showed that although sons are more costly to produce than daughters and 

heavier females tend to naturally produce male-biased litters (in agreement with the TWH 

assumptions), smaller mothers with female-biased litters were as able to produce large, 

fast growing offspring (in agreement with LRCH). Moreover, I showed that after increasing 

their offspring sex ratio biased, mothers with male-biased litters were able to increase their 
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investment without compromising offspring growth and were more likely to wean them 

successfully than mothers with female-biased litters, in agreement with LRCH. However, 

this increased investment reduced their survival as they were less likely to breed again 

than mothers rearing female-biased litters. In contrast, mothers rearing more daughters 

decreased investment in their young in favour of their own survival when large litters of 

daughters were imposed on them, also consistent with LRCH. 

 

In Chapter 3, I tested the two main hypotheses to explain variation in maternal investment 

in relation to age: the senescence hypothesis and the terminal investment hypothesis. 

These make opposite predictions. The former predicts decreased investment in older 

mothers due to deterioration associated with ageing. The latter predicts an increase in 

female reproductive effort with age, as their chances of breeding again decline. My results 

support the terminal investment hypothesis. Older females, far from being reproductively 

senescent, demonstrated greater investment ability compared to younger mothers. 

Mothers in their second year were heavier, produced large, high quality offspring that grew 

the fastest and were more likely to survive than the offspring from younger mothers. 

Additionally these older mothers were more likely to survive until the next reproductive 

event than younger mothers, even when their chances of breeding successfully for a third 

time are zero. 

 

In the fourth chapter of this thesis, I evaluated the effects of the environment on maternal 

investment and showed how important the timing and amount of of rainfall is during their 

reproductive season. Antechinuses living in seasonal habitats synchronise their mating 

season with the annual peak of insect abundance so that the end of lactation and weaning 

occur at times of very high food abundance in high rainfall years. High abundance of prey 

is required to sustain lactation and increase offspring survival when they are most naïve, 

inexperienced and have high energetic requirements to sustain growth. During the three 

years of this study, rainfall patterns varied greatly and so did antechinus performance. 

High rainfall during lactation increased maternal survival, meaning that mothers were more 

likely to breed again, and increased offspring growth and survival. I showed that the good 

condition of these offspring acquired through a beneficial environment during the period of 

nutritional dependence, persisted into adulthood. Individuals that experienced the best 
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conditions in infancy had large body sizes and exceptionally high maternal investment 

abilities as adults. They produced litters that grew faster than second-year females of that 

year. In contrast, low rainfall in young reduced body sizes, later investment ability, survival 

and reproductive success, and the entire marked population severely declined. The severe 

effects of low environmental quality confirm predictions of Reznick et al. (2010) that life 

history trade-offs should only be evident under harsh conditions and low food supply. I 

also demonstrated that it is essential, when studying wild populations of animals, to 

consider how long-term weather patterns affect current demography and life history of 

animals (van Horne et al. 1997). My results suggest that the small geographic range of 

subtropical antechinuses, their semelparous life history, dependence on predictable prey 

cycles and extremely high energetic demands of lactation make them vulnerable to climate 

change.  

 

 

Future Directions 

In this study I exchanged only one or two individual young between mothers during the 

cross fostering manipulation to increase sex bias of litters. It would be interesting to test if 

these results persist with a more extreme variation of litter sex ratios. Instead of just 

enhancing the natural sex ratio produced by a mother, another approach would be to 

change it completely to the opposite. For example, if a mother produced five daughters 

and three sons, under the protocol applied in this thesis, this mother would have had either 

six or seven daughters and two or one sons after manipulation. However, an even more 

extreme test would be to change her litter sex composition to five sons and three 

daughters or to six sons and two daughters. This kind of manipulation would test if a 

mother that naturally produced a female-biased litter has the ability to raise a litter biased 

towards males or not. My experience with this species suggests that they may be more 

prone to stress in captivity than some other species of antechinus. Unlike some other 

studies, they were never seen active out of the nestbox while I was in the room. For more 

extreme tests, I would recommend to use a more resilient and extroverted species such as 

the yellow-footed antechinus (A. flavipes). In the wild, this species seems to be highly 

resilient and has adapted to a variety of conditions as it is the most widely distributed 

species of antechinus, in most states of Australia. This species also persists in very small 
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fragmented patches of remnant vegetation (Marchesan & Carthew 2008). It would also be 

interesting to test these same questions and experimental approach in a more stable 

environment in which droughts and floods are absent for a period of years, given the 

sensitivity of antechinuses to fluctuating environmental conditions and drought that my 

study has revealed. 

Every month during the three years of this field study, I collected data on nesting 

associations and nest sites, and locations of foraging antechinuses in the wild. Individuals 

in my study had known family structure and skewed sex ratios as a result of experimental 

manipulations, so these data can also be used to assess the effects of the number of 

female relatives sharing a home range on social structure and demography of individual 

females. As in most mammals (Silk 2007), male antechinuses disperse away from their 

birth place, but females remain together forming matrilines: groups of related females 

share nests and home ranges with their mother and sisters (Fisher et al. 2011).  

Immediate benefits of group living, such as reduction of predation risk or enhanced 

foraging efficiency are quite common among social mammals (Krause & Ruxton 2002). 

However, long-term benefits of sociality in mammals have been difficult to demonstrate, 

especially in species with complex life histories and long lifespans, and complex, variable 

social structures (e.g. primates; Silk 2007). However, the limited available evidence 

(mainly on primates) indicates that improved offspring survival may be a benefit of 

sociality, which implies that forming social bonds may have positive consequences on 

individuals’ fitness (Silk 2007). As described in chapter 1, subtropical antechinuses form 

fluid nesting groups composed of related and unrelated females and unrelated males 

(Fisher et al. 2011), however, nothing is known about the stability or strength of those 

social associations. By taking advantage of the manipulation of the family structure that I 

performed on this population, it will be possible to evaluate the benefits of forming social 

relationships on individuals’ lifetime fitness, while accounting for the effects of habitat 

quality and relatedness. In future work, I will use social network analyses to quantify social 

associations among related and unrelated females, and evaluate their stability and 

strength over time. This study will contribute to understanding of social evolution in 

mammals by determining if there are net fitness benefits of female sociality and matrilines 

in antechinuses, as there are in long-lived primates (Silk 2007).  
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Another important aspect that it will be valuable to explore in the future will be the potential 

effects of relatedness on offspring growth. Because antechinuses are highly promiscuous 

and a female mates with multiple mates (Fisher et al. 2006), siblings differ in relatedness. 

Cross-fostered littermates differ further in relatedness. Genetic analyses can be performed 

using the toe-bud tips removed from the young when they were marked individually, to 

assess how relatedness affects offspring growth and survival, and to test maternal effects 

on growth and survival by comparing offspring from the same biological mother raised by 

different foster mothers.  

 

Another potential avenue of research will be to directly evaluate the effects of habitat 

quality on the reproductive performance of female antechinuses. In particular, it would be 

interesting to assess the effects of prey availability (arthropod richness and abundance) 

and its effects on sex allocation and terminal investment of mothers. Pitfall traps can be 

used to assess prey availability, and have been shown to be effective for capturing mobile, 

ground-dwelling invertebrates (Fisher & Dickman 1993 a, b). Also important would be to 

take concurrent measurements of abiotic factors at the field site such as rainfall, litter 

depth, density of fallen logs, canopy cover, soil temperature and humidity that can be 

correlated with arthropod abundance (Wolda 1978, Denlinger 1980, Frith & Frith 1990, 

Reddy & Venkataiah 1990, Strehlow et al. 2002, Majer et al. 2003). I have already 

collected data of soil humidity and temperature, canopy cover, tree density and leaf litter 

depths for each of the home ranges of the studied individuals that I am planning to used in 

home range analyses. I also have preliminary data for insect abundance using pitfall traps 

that needs to be analysed, although it is most likely that more data needs to be collected.  
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Appendix 

Book Chapter: Maternal care strategies of marsupials and implications for animal welfare. 

In: Animal Welfare: Mother and young. Mota-Rojas D, Paranhos M, Alonso-Spilsbury, eds. 

Elsevier B.V. 

Parra-Faundes DV and Fisher DO  

This book would actually be published in the first quarter of 2015 and is intended for the 

Spanish and Latin-American public. The title of the chapter and the book in Spanish are as 

follow: ‘Estrategias de cuidado maternal en marsupiales y sus efectos en el bienestar 

animal’ in ‘Bienestar animal: la madre y su cría’, respectively. 

 

Marsupials and their mode of maternal care 

There are around 350 species of marsupials (i.e. the infraclass Metatheria within the class 

Mammalia), native to Australia, Papua New Guinea and West Papua, South and Central 

America (with one species, the Virginia opossum Didelphis virginiana, in North America). 

Marsupial pregnancy is very short (12-46 days; Russel 1982) and metabolic rate is 

relatively slow in comparison to eutherian mammals, meaning that a long lactation is 

needed for young to grow large enough for independence, and a large proportion of 

maternal investment consists of lactation rather than supporting the foetus through a 

placenta (Lee & Cockburn 1985). The length of the period of maternal care is related to 

body size (Russel 1982), ranging from 2-4 months in small species to more than a year in 

larger species. For example, some small carnivorous marsupials spend around half of their 

lives as nutritionally dependent young (five of the eleven month lifespan of a male 

antechinus) and in general, lactation in marsupials is ~40% longer than in placental 

mammals (Hayssen et al 1985).  

 

Birth 

Marsupial young are born at a very early stage of development weighing less than 1% of 

maternal body weight and look similar to an embryo, except that features used by the 

neonate to locate the teat and survive in the pouch are relatively well developed (Dickman 
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& Vieira 2006). The newborn must quickly find and latch onto a teat to survive, so the 

forelimbs (including the hands), mouth and olfactory system are particularly well 

developed. They grab their mother’s fur to propel themselves from the cloaca towards a 

teat, and once they found it, they seal their mouth around it and remain strictly attached to 

it for the next few weeks (Russel 1982). Lungs are partially developed at birth, with a 

variable degree of development between species, which are complemented with partial 

gas exchange through the thin and moist skin (Russell 1982, Edwards & Deakin 2013). 

You might think that the strategy of giving birth to such a tiny and apparently helpless 

embryo would be risky, and in the past some people have assumed that this mode of 

reproduction is inefficient and inferior to that of eutherian mammals. However, in spite that 

neonates have an undeveloped immune system (Edwards et al 2012), the birth process 

and the newborn marsupial are surprisingly resilient, and birth complications are rare. 

Mothers do not touch or directly help young during or immediately after birth, but hormonal 

changes at birth trigger mothers to adopt a specific posture, which helps the young to find 

or be transported to the teat and latch onto it within a few minutes (Russell 1982). 

Although they are capable of attaching to a teat at birth, marsupial neonates show no 

evidence of conscious awareness and pain perception through their behaviour (e.g. 

flinching) or brain activity (with an electroencephalogram) until at least a third to half way 

through pouch life (Mellor et al 2009).  

 

Pouch life 

Pouch life refers to the period when young are attached to a teat. Being in the pouch 

means that young marsupials are accessible, and this allows mothers control and flexibility 

through most of the period of development of their young; for example, mothers can 

jettison an infant, or selectively cull young in a litter or selectively influence milk transfer to 

different young.  

The morphology of the pouch of marsupials varies widely between taxa, notwithstanding, it 

offers the perfect moist environment for the developing young and it also provides physical 

and antimicrobial protection (Edwards & Deakin 2013). Not all species have an enclosed 

pouch with a forward-facing opening like a kangaroo. Koalas and wombats (which are 

closely related families), bandicoots and some didelphids have a rear-opening pouch. It is 

sometimes said that burrowing wombats evolved this morphology so that dirt would not get 
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into the pouch during digging, however this does not make sense given that koalas sit 

upright in trees, and burrowing macropods such as the boodie Bettongia lesueur have 

forward-opening pouches. The only aquatic marsupial, the yapok, can hunt underwater 

with pouch young because it has an enclosed (rear-opening) pouch with strong 

musculature that can make a water-tight seal. Kangaroos readily swim in dams and in the 

sea and also seem able to protect their pouch young using the pouch muscles. Sometimes 

this is a strategy to evade pursuing dogs; kangaroos are easily capable of drowning dogs 

that follow them into the water. Females observed swimming have been observed with 

surviving small pouch young.   

Smaller species of marsupials that produce litters (e.g. dasyurids and some didelphids) 

have only a patch of thickened skin and hairs around the pouch area and may not have a 

visible pouch when not breeding. Young that are attached to the mother’s teats are not 

enclosed and begin to drag on the ground after a few weeks of growth. Mothers then leave 

them in a nest or den, returning periodically to suckle them. South and central American 

opossums including mouse opossums and the larger Didelphis often carry young on their 

backs. Many Australian possums and the koala also do not deposit young in a den, but 

first carry young on their backs when they outgrow the pouch. Older young that are too big 

to be carried continue to follow the mother closely until weaning.  

The early period of attachment to the teat and prolonged pouch life means that maternal 

recognition of individual young is poorly developed in marsupials; mothers can assume 

that the young in their pouch is theirs. Consequently, marsupials do not normally reject 

young that have been handled by humans or have an unfamiliar scent. Adoption within 

species and cross-fostering between species are possible.  

Marsupial milk not only varies in quantity throughout lactation, but also it changes in 

composition according to the requirements of the developing young (Krockenberger 2006), 

and is regulated entirely by the mother (Isaac & Johnson 2005) and not by the offspring as 

in placental mammals (Delean et al 2009). This is very important when considering to 

cross-foster or hand raise young, among other things, in order to continue with a normal 

rate of growth and development: at least, young must be of similar size and age (Taggart 

et al 2010). 

Marsupial reproductive strategies have consequences for animal welfare in: 

• Captive breeding and husbandry for conservation and education. 
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• Wildlife population studies and conservation actions in the wild. These include trapping, 

disease management, threatened species conservation, and management of 

overpopulation. 

• Urban wildlife management and wildlife rescue. 

• Commercial harvest.  

In this review we will focus mainly on examples from two major marsupial groups: 

macropods (mainly ground-dwelling grazing and browsing marsupials), and carnivorous 

marsupials. 

 

Macropods 

Macropods include ~75 species in two families of herbivorous marsupials native to 

Australia and Papua New Guinea, Macropodidae (the three species of kangaroos, and 

numerous species of wallabies, wallaroos, pademelons, hare wallabies, rock wallabies, 

tree kangaroos, dorcopsis and the quokka) and Potoroidae (11 species: small potoroos, 

bettongs and the musky rat-kangaroo) (Coulson & Eldridge 2010).  Except for the musky 

rat kangaroo which has twins, all macropods have only one young at a time. 

Birth in macropods involves the mother sitting hunched on her tail, so that the neonate 

climbs a short vertical distance between the cloaca and the lip of the pouch (Gemmel et al 

2002). When the newborn reaches the pouch, locates a teat by scent and latches on, the 

tip of the teat swells in its mouth so the young cannot easily be dislodged. Survival of 

pouch young at this early stage is very high and stress in the mother does not usually 

result in the loss of the young in most marsupials, except in bandicoots which are prone to 

cannibalise small pouch young. Female kangaroos with small pouch young can be safely 

transported (e.g. between zoos), but transport of mothers at later stages of maternal care 

can result in the death of the young (Jackson 2007).  

Cross-fostering is the rearing of young by a surrogate mother. In macropods, cross 

fostering of threatened species with mothers of more common species has been used by 

conservation managers to increase reproductive rates of around twenty threatened 

species in captivity (Taggart et al 2010). Pouch young removal ends the donor mother’s 

period of lactational inhibition of reproduction, so she will produce another young from her 

diapausing embryo or she will return to oestrous to produce a new young (Tyndale-Biscoe 
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& Renfree 1987). This procedure can be performed as early as the beginning of pouch life, 

when young weighs <1g (Merchant & Sharman 1966, Taggart et al 2005, Taggart et al 

2010). Cross-fostering studies have been carried out with six potoroids and thirteen 

macropodid species with variable success in 30 different crossed trials between species 

(Taggart et al 2010). Choosing the appropriate surrogate species is crucial in order to 

ensure the most successful outcome by maximising both the survival of young and female 

reproductive rate of the endangered species. Foster mothers should be of similar size, with 

similar pouch life duration and milk composition throughout lactation (Menzies et al 2007), 

with a pouch young of similar size and age, from a closely related species that is abundant 

and easy to breed in captivity and that do not occur naturally in the same area to avoid 

possible recognition problems upon reintroduction of foster-reared animal back to the wild 

(Taggart et al 2010). The young from the surrogate mother is usually euthanized while still 

on the teat of its mother (Schultz et el 2006).  

In macropods and other marsupials with an enclosed pouch the mother can use the pouch 

muscles to close the entrance tightly like a drawstring, preventing the young from leaving 

or entering. Young leave the pouch gradually over weeks (in small wallabies and 

potoroids) or months (in larger macropodidae), emerging for very short periods at first. 

Macropod and other joeys at this stage are uncoordinated, easily confused and vulnerable 

to accidents and predation. Stress causes the mother to relax the pouch muscles, so a 

large joey that is no longer attached to the teat will fall out when the mother is handled, 

trapped or chased, and the young can be injured by falling or being trampled in an 

enclosed space such as a trap or pen. To prevent stress-related ejection and injury of 

young, researchers and zookeepers tape the pouch entrance shut with masking tape or 

elastoplast, which is easily removed by the mother when she has calmed down.  

People who discover a lone joey in the bush tend to assume that it is orphaned and 

remove it for hand rearing, however this is not needed in probably most cases. Stress 

causes female macropods being chased by a predator such as a dingo to jettison the 

young, which then hides. In the wild the mother will later double back and find the joey if 

she evades the predator. Like some ungulates, many small to medium sized macropods in 

dense habitats such as forest and tall grassland have a maternal care strategy which 

involves young hiding rather than following their mothers when they are old enough to 

release the teat. For example, infant bridled nailtail wallabies, red-necked wallabies and 

pademelons spend most of the time hidden under shrubs or swards of grass apart from 
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their mothers, which visit periodically to suckle them (Johnson 1987, Fisher & Goldizen 

2001, Fisher et al. 2002). 

Prolonged acute stress in some species of macropods (e.g. a long chase or struggle at 

capture, including in the wild after pursuit by predators) can cause capture myopathy 

(Booth 1999, Peterson 2007, McMahon et al 2013). The symptoms are degeneration and 

necrosis of skeletal and cardiac muscle caused by lactic acid accumulation. Symptoms of 

muscle stiffness and twitching, paralysis, twisting of the neck, tachycardia, reluctance to 

move and inability to lift the head, kidney damage causing red urine, and sometimes 

kidney or heart failure, appear 1-2 days or up to a month after acute stress. In captivity 

and wild population studies, this disease can be prevented by quick capture and handling 

in a cool part of the day. This is particularly important for mothers with pouch young. If 

handling might to take longer or the species is particularly susceptible (e.g. kangaroos), 

injecting the animal with diazepam is recommended at capture to relax the muscles. This 

is likely to affect large pouch young because the pouch muscles will relax, and diazepam 

reduces macropods’ ability to control body temperature. Vitamin E may also help to 

prevent the condition in captive macropods. Once an animal develops capture myopathy, 

treatment with diazepam, ice packs, fluids, vitamin E, sodium bicarbonate and 

corticosteroids can help but will be unsuccessful if muscle necrosis has occurred, and the 

animal should then be euthanased (Jackson 2007). 

Chasing or startling macropods can also cause them to crash into fences which can badly 

injure mothers and young in the pouch, and to overheat. Breeding enclosures should have 

no right-angled corners and should not contain obstacles for this reason. Tree kangaroos 

are exceptions; these arboreal animals need rough-barked branches to climb on. These 

should be replaced when worn smooth. One early captive breeding program failed to raise 

any young to weaning before keepers realised that newly emerged young tree kangaroos 

all slipped off the smooth branches to their deaths on the concrete floor (George 1982).  

Most species of macropods (and species in most marsupial families with the exception of 

wombats) breed successfully in captivity and adapt well, although they are susceptible to 

several diseases including coccidiosis and fatal bacterial infections of the jaw (lumpy jaw) 

associated with overcrowding and immunosuppression, and also inappropriate diet. As 

well as pouch relaxation and dropping young, signs of alarm or stress can include foot-

thumping, trembling, licking forearms excessively or flicking their ears or head. Chronic 

stress causes reduced food intake in captivity which can also affect maternal milk supply, 
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and this response is common to most groups of marsupials (Jackson 2007). Lactation is 

particularly demanding for koalas because of their low metabolic rate and low food 

nutrition (Eucalyptus leaves), and lactating koalas are often stressed by handling, whereas 

non-lactating females are not (Narayan 2013). 

Many of the smaller species of macropods and other mid-sized marsupials are threatened 

because they have declined to tiny natural populations as a result of introduced predators 

(especially the red fox in Australia) and habitat degradation (Fisher et al 2003, 2007). 

Macropods are common subjects for captive breeding and reintroductions to reduce the 

risk of extinction. Reintroductions have often failed, especially when introduced predators 

were inadequately excluded or controlled at the release site, so there is a perceived 

conflict between individual welfare and species conservation. Inexperience is thought to be 

problematic for released individuals. Pople et al. (2001) found some evidence for this, 

because breeding captive-reared bridled nailtail wallabies in a pen at the reintroduction 

site and releasing site-bred young improved survival, and wild-born animals survived 

better than captive-born. Programmes to train marsupials including numbats (Jackson 

2007), macropods and quolls to recognise and avoid predators and toxic cane toads 

appear to have had some success in improving survival. These programmes rely on 

maternal teaching of young then born in the wild to continue predator avoidance 

(O’Donnell 2010, Webb et al 2011).  

A study of the fate of released hand-reared young possums and relocated adults 

compared to wild resident individuals found that during the first 100 weeks, introduced 

ring-tailed possums (both hand-reared and relocated ones) were in a clear disadvantage 

and their mean survival was around 56% less than resident possums (Augee et al 1996). 

This disadvantage was mainly caused by the introduction into an unfamiliar territory and 

not due to lack of learning about predators from the mother, because in the long term the 

whole population seemed to be suffering the same high rate of predation by non-native 

predators (from 118 individuals with known fate, only 8 were not eaten by predators and 

80% were killed by foxes and cats; Augee et al 1996). Reintroduction is assumed to cause 

stress, but a study by Lapidge (2005) found evidence of the opposite effect on yellow-

footed rock wallabies. Physiological indices of stress and condition improved after release 

including vitamin E status. The welfare and breeding success of reintroduced individuals 

was therefore equivalent to wild ones and better than captive wallabies. 
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There are also welfare issues associated with over-abundance of some larger macropods. 

Australian rangelands and some urban areas have been altered in the last 150 years to 

the advantage of grazing kangaroos and wallabies. Forest has been thinned and cleared 

to create grassland, predators of these large macropods such as dingoes have been 

removed, and in arid areas drinking water has been provided (for sheep and cattle) 

(Jonzén et al. 2005). Kangaroos can reach very high densities when pasture is plentiful, 

then suffer from starvation and disease when it deteriorates in dry times. Lactation 

declines and large pouch young are first to die in droughts and under the nutritional stress 

of overcrowding. Mothers can potentially jettison pouch young to improve their own 

chances of survival, but lack of milk is probably the usual cause of pouch young death. 

Kangaroo management is controversial because they are considered both as iconic 

marsupials and pests.  

Heavy grazing by artificially dense populations of kangaroos detrimentally affects 

ecosystems and threatened plants and animals, especially during droughts when small 

animals rely on ground cover being retained (e.g. Fisher & Goldizen 2001). Commercial 

harvesting under licences issued by State government agencies is the major form of 

management in the rangelands. Two to four million kangaroos are harvested annually of a 

population of 23 to 57 million (McLeod 2010). Animal welfare concerns have been 

expressed about the potential prolonged suffering of joeys whose mothers are shot. To 

address this, licences allow only shooting with a high powered rifle that destroys the brain 

of adults and any large dependent young instantaneously, and a blow to the head that 

instantly kills small pouch young. These are considered humane method of euthanasia 

when done by skilled personnel, and commercial shooters must pass a competency test to 

gain a licence, although there is a possibility that joeys will escape, so harvesting only 

male kangarooos is the best option for animal welfare (McLeod 2010 ). McLeod (2010) 

argued that shooting is best practice for animal welfare in comparison to trapping and 

barbiturate overdose, which can have negative consequences for large pouch young and 

dependent young-at-foot (see above). It has been argued that harvesting wild kangaroos 

for food by shooting is a more humane and environmentally responsible way to obtain 

meat for human consumption than livestock farming followed by slaughter at abattoirs, 

because wild kangaroos are less damaging to vegetation than high densities of hard-

hoofed livestock, their method of digestion means that they do not produce methane, and 

they are unaware of their fate (Grigg 2002).   
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Another idea to promote recovery of arid ecosystems is to remove water points such as 

dams or exclude macropods from them, because these are only around seven km apart 

on average throughout the rangelands. Welfare implications of removing water from 

drought affected animals might appear obvious, but several studies have found no effect 

on kangaroo density or movements around closed water points, suggesting that the scale 

of artificial water removal has been insufficient to be effective, and these have concluded 

that food rather than water is the critical resource. Artificial water can have negative 

welfare implications. Fukuda and colleagues  (2009) recommended that mud around open 

water points be removed as water dries up during droughts, because kangaroos are often 

trapped and die. 

In urban areas of overcrowding where it is possible to capture or dart a large proportion of 

females, fertility control is an option to improve animal welfare. Female contraception using 

implants is most effective and appears to have no welfare implications other than those 

involved in capture and handling (Coulson & Eldridge 2010).  

Urban and rural macropods are frequently hit by vehicles, and joeys orphaned and hand-

reared. Young marsupials are accessible for hand-rearing at a very immature stage 

compared to what is possible in eutherian mammals. Joeys do not develop the ability to 

thermoregulate until they leave the pouch after several months, and have an undeveloped 

immune system. These attributes have welfare consequences for hand-reared joeys, 

which are more problematic the younger they are orphaned. Very small pouch young that 

are still attached to the teat have their milk intake regulated by the mother, and older ones 

suck inefficiently if their body temperature is not maintained by a pouch. Rescued joeys 

need to be warmed before they are artificially fed, and care must be taken not to feed too 

fast or they can aspirate milk into the lungs and develop pneumonia. The composition of 

marsupial milk changes through pouch life and special formulas are needed. Hand-reared 

joeys are prone to gut problems such as twisted bowel especially if incorrectly fed 

(Jackson 2007).  

 

Carnivorous marsupials 

Marsupials that more than half of their diet consist in the consumption of flesh either from 

vertebrate or invertebrate prey are considered to be carnivorous (Jones et al 2003) and 

includes the two Australasian orders Dasyuromorphia (the extinct Thylacinidae, the 
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monotypic Myrmecobiidae and ~71 species from Dasyuridae) and Notoryctidae (two 

species of marsupial moles) and  ~66 species of American marsupials from the orders 

Didelphimorphia (numerous species of opossums and mouse opossums), 

Paucituberculata (caenolestids or shrew opossums) and the monotypic Microbiotheria 

(Dromiciops gliroides, ‘monito del monte’) (Viera & Astúa de Moraes 2003, Tyndale-Biscoe 

2005). All carnivorous marsupials have relatively large litters and most of them have 

rudimentary pouches (Jones et al 2003). 

When young are born, each neonate weighing is less than 0.01g (Dickman & Vieira 2006) 

they have to propel themselves to the pouch and take hold of a teat.  As discussed 

previously, the morphology of the pouch is well-developed or rudimentary and when 

present, the position of opening will determine the specific posture the mother adopts 

when giving birth (and also the maternal care strategy; Russel 1982, Gemmell et al 2002). 

The Virginian opossum with a forward facing pouch sits on the base of her tail with the tail 

facing forward and between the hind legs, so then the neonates climb up towards the 

pouch (Reynolds 1952), similar to what has been described for macropods.  Parturition in 

other American marsupials has not been described in such detail, but it is presumed to be 

similar to Australian marsupials. For example, female bandicoots (Peramelidae) have a 

rear-opening pouch, just as the yapok or water opossum (didelphid), and usually lay on 

their side when giving birth (Gemmel et al 2002). Dasyurids mothers with a rudimentary 

pouch usually stand on their four feet raising her hips so that the cloaca is in a higher 

position compared to the hind part of the pouch (mammary area) and lowers her head, 

sometimes even curling her head under the body. Thus, the neonates move slightly 

downhill towards the pouch (kowaris: Hutson 1976, quolls: Gemmel et al 2002, Nelson & 

Gemmel 2003, tasmanian devil: Rose et al 2006, antechinus: Williams & Williams 1982).  

Litter size in carnivorous marsupials is limited by the number of teat. Teat number varies 

across species and some variation can be found even within species (Morton et al 1989). 

Dasyurid females produce supernumerary young (they give birth to more young than the 

number of teats) and even though in some cases most of them reach the pouch, the ones 

that are not able to take hold onto a teat are discarded (Reynolds 1952, Williams & 

Williams 1982, Morton et al 1998, Gemmel et al 2002, Nelson & Gemmel 2003, Jones et 

al 2003). 

Once the young are attached to the teat, it begins the pouch life. Pouch young must be 

attached to the teat constantly during the first few weeks of lactation (a third or half of the 
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entire period of lactation) (Tyndale-Biscoe & Renfree 1987). The lips of the young are 

sealed very tightly around the nipple (Russel 1982, Krockenberger 2006). Therefore, 

inappropriate removal of the young can be fatal and damage the teat permanently. During 

this time, young survival is very high (>90%) (Hossler et al 1994, Coates 1995). The pouch 

provides everything that these developing young need (milk, humidity, warmth and 

protection), so the main duty of the mother is to keep them clean (Russell 1982). 

When young become too big to be dragged around, the mother leaves her litter in a nest 

or den (i.e. nest phase), while she goes out hunting. Usually by this time, the young are 

weighing around 50% of their mother’s weight, but they are still naked (unfurred), small, 

unable to thermoregulate and with the eyes closed (Russell 1982). This extreme young 

vulnerability and the high energetic requirements of lactation exert an intense pressure on 

the mother that has to keep herself and her young alive (Soderquist 1993).  

The mother has to select a ‘safe’ place to leave her litter away from predators and in 

insulated nest to minimise heat loss as young at this stage of development are highly 

ectothermic (Geiser 2003, Edwards & Deakin 2013). Tree cavities, hollow logs, burrows, 

soil crevices, tussock grass and other protected areas such as artificial nest boxes and 

human buildings can be used to build up a nest. Animals use these nests to rest during the 

day (most of the carnivorous marsupials are nocturnal) and between foraging bouts 

(Marlow 1961, Soderquist 1993, Hossler et al 1994, Tyndale-Biscoe 2005). Most of the 

carnivorous marsupials are thought to be solitary, but antechinuses (Lazenby-Cohen 

1991, Coates 1995, Cockburn et al 1985, Sale et al 2009, Fisher et al 2011) and dunnarts 

(Morton 1978) can be quite social and share these nests communally except when 

lactating (lactating females prefer to nest alone) and it seems to be in response to high 

costs of thermoregulation. Some species build very sophisticated spherical nests by 

interwoven leaf litter, bark strips and other plant materials with an internal chamber linen 

with feather, fur and finely teased fibres (Phascogale tapoatafa), while others just drag 

some leaves or grass and place them as a mat with a central depression into a cavity or 

under a log (like planigales, ningaui, kowari, eastern quolls) (Russel 1982). Lactating 

mothers devote their time to care for their young, expending a large proportion of their time 

tiding up the nest, nursing and grooming their young and keeping them warm (Settle & 

Croft 1982), and short, but frequent, foraging bouts (Lazenby-Cohen 1991, Soderquist 

1993), expending >70% of their time in their nests (Lazenby-Cohen 1991). During this 

time, mothers may actively defend their nest and their young from intruders or when are 

being handled (Russel 1982, Croft 2003). Mothers will respond to distress calls of their 
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offspring that have been displaced from the pouch or the nest by approaching to them and 

retrieve them back towards the pouch using her forelimbs  (Russell 1982, Settle & Croft 

1982).  

When the young start opening their eyes and become more active, they will follow the 

mother and cling to her fur energetically every time she comes back to the nest after a 

foraging bout, and rapidly will take hold to a teat (Settle & Croft 1982). It seems that 

mothers picking up their offspring with their mouth is not a common behaviour in 

carnivorous marsupials, although it has been observed in kowaris and tiger quolls (Russell 

1982). When the mother is about to leave the nest, she has to actively make the young to 

let go the teat, her fur or from her back, by either grooming extensively or shaking her 

body vigorously (Settle & Croft 1989). 

The survival of the young during this nest phase is reduced compare to the pouch phase. 

Around 50-70% of the young survive to weaning (Cockburn 1994, Hossler et al 1994, 

Coates 1995, Fisher & Blomber 2011), 30-50% of survive as independent juveniles (sub-

adults) and only 10-15% of them survive to successfully breed (Hossler et al 1994, 

Cockburn 1994, Coates 1995, Fisher et al 2006). Young survival not only depends on 

maternal provisioning and condition, but also on environmental conditions (Julien-

Laferriere & Atramentowicz 1990, Fisher et al 2006). Overall, offspring mortality is greater 

in young and old mothers and in small, skinny mothers (Julien-Lafarriere & Atramentowicz 

1990). When food is scarce, mothers lose a lot of weight and litter failure is quite common 

under this conditions (Atramentowicz 1992, Coates 1995). Therefore, appropriate timing of 

lactation with seasonal abundance of resources seems to be fundamental for reproductive 

success, along with those other maternal behaviours that increase juvenile survival at 

weaning (Julien-Lafarriere & Atramentowicz 1990, Leiner et al 2008, Delean et al 2009). 

Hossler and his collegues (1994) found that Virginia opossum mothers showed a great 

den fidelity towards the end of the lactation period (carnivorous marsupials change the 

location of their nests constantly as described by Lazenby-Cohen 1991, Hossler et al 

1994, Bank et al 2005, Fisher et al 2011) when juvenile mortality reaches its peak (Fisher 

& Blomberg 2011) and locate them in areas with dense vegetation cover, suggesting a 

maternal effort to maximise juvenile survival at their time of independence. 

Weaning these large litters involves a huge investment for the mother and it compromises 

her own survival. Their young at the time of independence can weigh as much as three to 

five times the weigh of the mother (Soderquist 1993, Cockburn 1994, Russell 1982), so 
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this massive maternal investment usually reduces their survival. Most of the carnivore 

marsupials rarely live to breed in more than one reproductive season, and many breed 

only once in their lifetime (Jones et al 2003, Lee & Cockburn 1985, Harder 1992, 

Cockburn 1997). 

In antechinuses (Woolley 1966, Wood 1970, and many others) and phascogales (Bradley 

1997; reviewed in Lee & Cockburn 1985, Cockburn 1997), individuals reach sexual 

maturity at 11 months of age and have a single, highly synchronised and short mating 

season each year (mainly in winter), after which all males die from physiological stress 

(semelparity; Bradley 1980). Most, if not all, females become pregnant and the majority of 

them breed only once dying soon after weaning their first litter (semelparous females) of 

around 6-14 young (living for 16-20 months), while some of them manage to live and 

breed a second time (iteroparous females; Fisher & Blomberg 2011). In other species, like 

dibblers (Mills & Bencini 2000) and northern quolls (Oakwood et al 2000), some males 

survive to breed in a second reproductive event and not all females become pregnant 

during the breeding season (~65-88%, Begg 1981) producing litters of four to ten young 

and some of them will even survive to breed in a third year, but not very successfully 

(Morton et al 1989). In other species of dasyurids like the eastern and tiger quolls, 

Tasmanian devils and the crest-tailed mulgara (Woolley 1971, Settle 1978, Godsell 1982), 

females are able to go on a second oestrous if unmated or after loosing prematurely her 

first litter (litter size of 4-8 young). In species like kultarrs, kowaris and planigales have an 

extended seasonal breeding season (~6 months, from late winter to mid-summer), females 

attempt to produce two litters per season. Dunnarts (common, fat-tailed and slender-tailed) 

reach sexual maturity at about 6 months old, thus breeding in their season of birth may be 

possible. While others species seem to breed throughout the year like the black-tailed and 

long-nosed dasyure and common planigales from the Northern Territory (Lee et al 1982, 

Morton et al 1989) 

Although life history strategies in New World marsupials are poorly understood (Leiner et 

al 2008), most of them are thought to be seasonal polyestrous breeders attempting to 

produce at least two litters during the breeding season (Lee & Cockburn 1985, Harder 

1992). However, species like ‘monito del monte’ (Muñoz-Pedreros et al 2005), Virginia 

opossum (Hossler et al 1994) and the Brazilian slender opossum (Leiner et al 2008) are 

seasonal monoestrous breeders producing only one litter per year. In semelparous 

didelphids, females exhibit a high reproductive investment (large litters ~10 young per 

litter) like in the Virginian opossum or the Brazilian slender opossum , while didelphids with 
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longer lifespans tend to be iteroparous (more than one litter a year) like Philander 

opossum and Caluromys philander and produce small litters (2-4 young per litter) (Leiner 

et al 2008). Species like Marmosa incana (Lorini et al 1994), yellow-sided opossum 

(Monodelphis dimidiate; Pine 1994), short-tailed opossum (Monodelphis domestica; Pine 

et al 1985) and the gracile mouse opossum (Gracilinanus microtarsus ; Martins et al 2006) 

have been described as partially semelparous as some males survive to reproduce a 

second time. Abundance of food resources appears to have a strong effect on the 

reproduction of American marsupials (Julien-Laferriere & Atramentowicz 1990). 

Mark-recapture and radiotelemetry studies allow the estimation of individuals’ survival in 

the wild. These types of ecological studies are possible as long as the animals can be 

identified with a permanent marking method. While the use of PIT (passive integrated 

transponder) tags or microchips is considered to be a good method to mark small 

mammals (Schooley al 1993, Gibbons & Andrews 2004), to insert a microchip under the 

very thin and delicate skin of a tiny pouch young is impossible. Toe-bud clipping has been 

proven to be the only way to safely mark dependent offspring of small marsupials (Fisher 

& Blomberg 2009). The removal of the the toe-bud (<1mm) is a quick procedure, causes 

little to no bleeding, and the young does not react much as it is performed at a very 

immature stage of development (Fisher & Blomberg 2009, Parra personal observation). In 

order to mark all the dependent offspring in the wild, it has to be done while the young are 

still permanently attached to the teat. Fisher and Blomberg (2009) evaluated the possible 

harmful short- and long-term effects of this type of method in brown antechinuses and 

found that did not affect growth nor survival of the young in captivity or in the wild, proving 

that it is humane method to permanently mark young marsupials. 

Live trapping small to medium size mammals like these carnivorous marsupials can be 

done by using box or cage live traps such as the enclosed, aluminium ones (Elliot or 

Sherman traps), the wire meshed ones (Tomahawk traps) or pit fall traps (Catlin et al 

1997, Tasker & Dickman 2002, Umetsu et al 2006, Caceres et al 2011) and their 

effectiveness is variable depending on the species targeted. Accidental death of the 

trapped animal while in the trap is a constant risk issue that the researcher must to deal 

with and avoid as much as possible, especially if working with rare species or in long-term 

studies. Trap-related mortality can be caused by stress while in the trap or during post-

capture handling, predation while still in the trap or when the animal is being released, 

consecutive recaptures (so the animal has not been able to recover from the previous 

captured), starvation, and extreme environmental conditions (i.e. extreme heat or cold) 
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that a trapped animal is not able to avoid in that situation (Lemckert et al 2006). These 

risks can be minimised by checking the traps regularly and release the animals as soon as 

possible, providing some bedding material or a shelter so the animal can nest or refuge 

when scared, remove extremely dirty traps that are likely to attract predators and check for 

predators nearby when releasing the animal hopefully at the capture site, provide enough 

food and offer some fluids when necessary, avoiding extreme weather conditions and 

providing warm bedding material and protective cover to avoid direct sunlight exposure in 

cold and hot weather, respectively. It is important to note that juveniles, old or sick 

individuals are more susceptible to trap-related mortality and that some species are more 

sturdy than others and cope extremely well under stress and extreme conditions 

(Lemckert et al 2006). Cockburn (1992) recommended not trapping around the expected 

date of birth, because neonates could become entangled in bedding material and die. 

Researchers generally do not trap when mothers first have young in the nest because of 

the possibility of prolonged separation of nest young from their mothers in traps (trapping 

when nest young are older is fine because mothers naturally leave them for long periods 

to encourage development of independence). 

Tasmanian devils, the world’s largest of the carnivorous marsupial is facing extinction as a 

result of a fatal infectious cancer known as Devil Facial Tumour Disease (DFTD) reported 

in 1996 and that has being spread across the majority range of the species (McCallum et 

al 2007) causing a decline of up to 80% of the affected wild populations (McCallum & 

Jones 2006). It mainly affects adults of two to three years of age, generating a shift to a 

very young age-structured population (Jones et al 2008) as 90% of the older age class has 

been wipe out (Lachish et al 2009). As a compensatory response, females have started to 

breed at an early age (precocial breeding or early onset of sexual maturity) that seems to 

be facilitated by reduced competition due to low population density (Lachish et al 2009). 

This disease is transmitted through biting mainly during sexual encounters (McCallum et al 

2007), and at first appears as small lumps around the mouth that then develop into large 

deforming tumours around the face and neck, causing the death of the animal within a few 

months due to starvation (deformed animals are unable to feed), infections and 

metastases (McCallum 2008). Among the available options to manage a wild infectious 

disease like this one include isolate healthy individuals together with captive breeding 

program and culling infected ones (McCallum 2008). Application of euthanasia to all 

infected individuals of an endangered species has been quite controversial. On one hand, 

it is perceived as a humane way to end the suffering of a dying animal, but on the other, it 
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was perceived as a cruel measure, especially on those individuals that do not seem to be 

in a lot of pain, and that may breed.  Besides, culling a threatened species will cause a 

reduction of the population density even more rapidly and it will also prevent to increase 

our knowledge on the ecology and transmission dynamics of an infectious disease like this 

one in the wild (Hamede et al 2013). Moreover, Lachish (2009) in her PhD thesis showed 

that culling all infected individuals not only failed to reduce, but also accelerated both the 

negative impacts of the disease on the population and on the progression of the disease. 

Furthermore, excessive culling of individuals may increase disease transmission if it 

intensifies animal movement due to break down of social structure. 

One of the immediate management measures that has being implemented is the 

establishment of captive and wild “insurance populations” with enough genetic and 

phenotypic diversity to repopulate once a resistance has evolved, a vaccine has been 

developed or after the extinction of devil in the wild (Jones et al 2007). These individuals 

come from wild-sourced individuals kept at zoos or in quarantine, captive-bred devil and 

orphans from diseased mothers. Should these sick mothers be culled of be left to raise 

their young? Is one of the many questions that arise within this dreadful drama. 

Dasyurids have a long history of being kept in captivity, and even though they have a short 

lifespan, under appropriate conditions they tend to live for longer (Jackson 2007). 

Enclosure facilities must consider that carnivorous marsupials are excellent climbers and 

very fast (especially the small ones), so extra care must be taking into account to avoid 

escapes. Natural looking enclosures provided with proper soil and leaf litter, hollow logs, 

branches with leafs/flowers, some rocks and bark, nest boxes and access to natural light 

or at least heat lamps so they can do some sun basking are fundamental to avoid stress 

and stereotypic behaviours. Changing the inside of the enclosure constantly, stimulate 

food searching/handling and changing the feeding pattern regularly seems to be very 

important too (Jackson 2007). For small species, providing a running wheel helps them to 

deal with the stress (Phillips et al 2012). Jackson (2007) calculated the minimum size 

required for enclosures to provide an appropriate housing facility for a pair of captive 

individuals according to their body sizes, natural mobility (home ranges), social behaviour 

and mating system. Captive enclosures must be at least large enough to allow breeding, 

social behaviour and long-term survival, and should be cleaned daily to remove faecal 

matter and uneaten food. Most dasyurids designate a special place as toilet (i.e. latrine), 

thus faeces are easily detected. Water bottles and drinking dishes should be cleaned and 

refilled daily. 
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Dasyurids are highly promiscuous, therefore multiple paternity is common. Providing the 

opportunity to mate with multiple males will increase genetic diversity and will favour 

directly both the young, as they have been described to grow faster than offspring from 

females that have been mating with a single male (Fisher et al 2006) and the female that 

will have the opportunity to choose with whom to mate. Some species have been shown to 

breed and successfully rear their young in captivity such as the striped-faced, Julia-Creek 

and fat-tailed dunnart (Sminthopsis macroura, S. douglasi, S. crassicaudata), yellow-

footed, agile and brown antechinus (Antechinus flavipes, A. Agilis, A. StuartiiiIi), fat-tailed 

pseudantechinus, little red kaluta, mulgara, kowari, southern dibbler, brush-tailed 

phascogale, common planigale eastern and western quoll and Tasmanian devil. Some 

difficult ones are white-footed dunnart, Ningbing false antechinus and kultarr (Jacksoon 

2007). It has also been described that breeding success in a captive colony may decline 

with time over successive generations. Some species breed well for one to two years and 

on the third year reproductive success declines considerably. There are also detail 

protocols to hand rear dasyurid marsupials when the mother is lost. These methods have 

been proven to be quite successful (see Jackson 2007 for further details). 
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Figure 3. Eastern grey kangaroo mother with 
joey at foot (left, Macropus giganteus) and 
common  brushtail possum carrying her large 
young on her back (right, Trichosurus vulpecula)  
Photo: Dr. Anne W. Goldizen. 

Figure 1. Eastern grey kangaroo females (left and right, Macropus 
giganteus) and red kangaroo female (centre, M. rufus) showing the 
flexibility of the pouch and tight muscular control of its opening. 
Photo: Dr. Anne W. Goldizen. 

Figure 4. Toe-bud clipping procedure to 
identify small antechinus young (Antechinus 
stuartii).  
Photo: Dr. Diana O. Fisher 

Figure 3 Brown antechinus mother 
(Antechinus subtropicus) with her eight young 
exposed. 
Photo: Dr. Anne W. Goldizen 
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