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ABSTRACT 

Activity-dependent gene expression depends, in part, on transcriptional regulation that is 

coordinated by rapid changes in the chromatin landscape as well as the covalent modification of 

DNA. Here we demonstrate that the expression of brain-derived neurotrophic factor (BDNF), a 

gene that is critically involved in neural plasticity and subject to epigenetic regulation, is regulated 

by the RNA/DNA editing enzyme, activation-induced cytidine deaminase (AID). Similar to previous 

reports, we observed an activity-dependent induction of BDNF exon IV mRNA expression, which 

correlated with a reduction in DNA methylation within the BDNF P4 promoter. Lentiviral-mediated 

knockdown of AID disrupted these effects and inhibited BDNF exon IV mRNA expression, an effect 

that was associated with decreased cAMP response element-binding protein occupancy within the 

BDNF P4 promoter. Thus, together with other epigenetic mechanisms, AID plays a key role in 

regulating activity-dependent BDNF expression in post-mitotic cortical neurons. 
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INTRODUCTION  

Activity-dependent changes in gene expression depend on epigenetic mechanisms, including post-

translational histone modifications and DNA methylation (Zovkic et al., 2013). DNA methylation, 

and the accumulation of one particular mark, 5-methylcytosine (5mC), is one of the most well 

characterized epigenetic modifications, and has been shown to regulate X chromosome 

inactivation, genomic imprinting, retrotransposon silencing, and the reprogramming of gene 

expression in embryonic stem cells (Jones & Baylin, 2007; Reik, 2007). More recently, it was 

discovered that, in the adult brain, the accumulation of 5-mC also mediates synaptic plasticity and 

the formation of fear-related memories (Holliday, 1999; Levenson et al., 2006; Feng et al., 2010; 

Miller et al., 2010; Sultan et al., 2012). Brain-derived neurotrophic factor (BDNF) is an activity-

dependent gene driven by the transcription factor cAMP response element-binding protein 

(CREB), which is necessary for neuronal survival, synaptic plasticity and memory formation, and 

has been shown to be sensitive to various epigenetic modifications, including DNA methylation 

(West et al., 2001; Martinowich et al., 2003). The BDNF locus consists of nine 5’ non-coding 

exons, each with its own promoter, and a 3’ protein-coding region (Aid et al., 2007). Although 

activity-dependent changes in CpG dinucleotide methylation, including reduced 5mC within BDNF 

gene promoters, is thought to regulate the spatial and temporal expression of individual BDNF 

isoforms (Martinowich et al., 2003; Lubin et al., 2008; Wu & Sun, 2009; Guo et al., 2011), the 

mechanism by which this occurs is not yet known. 

 

Activation-induced cytidine deaminase (AID) was originally identified as an RNA/DNA editing 

enzyme involved in immune cell somatic hypermutation and class switch recombination underlying 

antibody diversification (Muramatsu et al., 2000). This epigenetic mechanism is also necessary for 

the dynamic reprogramming of pluripotent embryonic stem (ES) cells (Bhutani et al., 2010), and 

the regulation of DNA methylation during early development (Morgan et al., 2004; Rai et al., 2008). 

More recently, AID has been implicated in active DNA demethylation by promoting Tet1-mediated 

DNA hydroxylation through its interaction with thymine DNA glycosylase and the genome stability 

protein Gadd45a (Cortellino et al., 2011; Guo et al., 2011). Thus, AID regulates the covalent 

modification of DNA during early neuronal development and within a neurogenic niche in the adult 

brain. Together with its role in regulating the immune system and in ES cell differentiation, AID is 

also highly expressed in distinct neuronal populations including pyramidal neurons in both the 

developing and adult cortex (Rommel et al., 2013); however, its role in terminally differentiated 

cortical neurons has not yet been fully elucidated. Here we report that AID also contributes to 

activity-dependent BDNF exon IV expression in post-mitotic cortical neurons through its effects on 

DNA methylation and subsequent influence on the binding of the activity-dependent transcription 

factor CREB to the BDNF P4 promoter.  
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MATERIALS AND METHODS 

Primary cortical neuron culture. Cortical neurons derived from embryonic day 14 (E14) C57Bl6/J 

mice were dissociated in 0.025% trypsin (Sigma) at 37C for 5min and plated (1×106 per well) on 6 

well plates. Neurons were maintained in 2ml Neurobasal medium containing B27 supplement (2%; 

Invitrogen), penicillin-streptomycin (50μg/ml penicillin, 50 U/ml streptomycin, Invitrogen) and L-

glutamine (2mM, Invitrogen) at 37°C and 5% CO2 for 7 days in vitro (DIV), with half the medium 

being replaced with fresh warm medium on the 3rd and 6th days. All experiments followed 

protocols approved by the Animal Ethics Committee of the University of Queensland in accordance 

with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes. 

 

KCl-induced depolarization and lentivirus infection of neurons. In experiments designed to test the 

effect of neuronal activity on BDNF gene expression and epigenetic regulation, cortical neurons (6 

DIV) were incubated overnight in 1μM tetrodotoxin (Sigma) in order to suppress spontaneous 

neuronal activity. 24 hours later, the neurons were stimulated with 50mM KCl for 0, 1, 3, 5, 7 and 

10 hours relative to time-matched control samples that were incubated in phosphate buffered 

saline (PBS). We used standard PBS, which contains disodium hydrogen phosphate (Na2HPO4) at 

a concentration of 10mM. In each plate, we added 40μl of 2.5M KCl solution, containing 2ml of 

Neurobasal mediaum. Therefore, the final concentration of Na2HPO4 is reduced to 0.2mM, which is 

a normosomotic concentration of Na+ that does not evoke changes in neural activity in the control 

conditions. At each time-point, total RNA and genomic DNA were harvested for mRNA expression 

and DNA methylation analysis. For experiments examining the effect of AID knockdown, a 

lentivirus harbouring an shRNA directed toward AID was added directly to the culture medium at a 

multiplicity of infection (MOI) of 5-10 at 4 DIV. The culture was immediately returned to the 

incubator for 24 hours, after which half of the culture medium was replaced. Following lentivirus 

infection, the concentration and timing of both tetrodotoxin and KCl treatment remained the same 

as described above.  

 

Quantitative real time-PCR. Control and stimulated neurons were lysed and total RNA was 

isolated. 1μg RNA was reverse transcribed using an optimized blend of oligo-dT and random 

primers according to the manufacturer’s instructions (Qiagen). BDNF exon I and IV and PGK 

mRNA (as a reference) were amplified using 2x Rotor-Gene SYBR Green (Qiagen) in a Rotorgene 

Q real-time quantitative PCR (qPCR) detection system using the following primers: BDNF exon IV 

5’-GCAGCTGCCTTGATGTTTAC-3’ and 5’-CCGTGGACGTTTACTTCTTTC-3’, BDNF exon I 5’-

GCCGGCTGGTGCAGAAAAGC-3’ and 5’-GCACGCCGATCCTTTGCCCA-3’, AID 5’-

CCACCTTCGCAACAAGTCTGGCT-3’ and 5’-CCGGGCACAGTCATAGCACGG-3’, and PGK 5’-

TGCACGCTTCAAAAGCGCACG-3’ and 5’-AAGTCCACCCTCATCACGACCC-3’. Each sample 

reaction was run in triplicate and the relative expression levels analysed by 2-ΔΔCt with 
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normalization relative to PGK. Data from at least 2 experiments were collected and were 

expressed as mean ± standard error (S.E.M.). A student’s t-test (unpaired) was used for 

comparison between two groups at each time point. 

 

AID shRNA design and validation. A lentiviral construct was designed to knock down AID by 

inserting an shRNA sequence 5’-GACTTGCGAGATGCATTTC-3’ or scrambled control 5’-

GGCTTCGCGCCGTAGTCTTATC AAGAGTAAGACTACGGCGCGAAGCTTTTTTG-3’ into psiHIV-

U6 (HIV based, Genecopoeia). To test the efficiency of this AID shRNA, we co-transfected 0.25 μg 

of an AID overexpression vector with 2μg of AID shRNA into HEK293T cells. Transfection was 

performed using lipofectamine (Invitrogen). Cells were harvested 3 days post-transfection and, 

after confirmation of GFP expression, total RNA was isolated using Trizol (Invitrogen). 1μg RNA 

was reverse transcribed and AID mRNA and GAPDH mRNA were measured by qPCR as 

described above. The primer sequences of GAPDH were 5’-AGGTCGG TGTGAACGGATTTG-3’ 

and 5’-TGTAGACCATGTAGTTGAGGTCA-3’. 

Western blot. Four days after lentivirus infection, neurons were lysed in 2X Laemmli sample 

buffer, then sonicated and run on a 12% SDS-PAGE gel. The protein was transferred to a PVDF 

membrane and incubated overnight with 5% non-fat milk in Tris-buffered saline containing 0.05% 

Tween 20 (TBS-T). Membranes were incubated with primary antibody diluted in TBS-T overnight 

at 4°C. Primary antibodies included mouse anti-AID 1g/ml (Invitrogen) and rabbit anti-β tubulin 

1:5000 (Cell Signaling). The blots were washed and incubated with horseradish peroxidase-

labelled secondary antibody for 1 hour and then washed for 30 min. The secondary antibodies 

used for detection were ECL anti-mouse IgG (Amersham) and ECL anti-rabbit IgG (Amersham). 

Signals were visualized using chemiluminescence (Perkin Elmer). 

Selection of genomic regions of the BDNF gene for DNA methylation analysis. DNA 

methylation within CpGs located proximal to regulatory elements for plasticity-related transcription 

factors is generally considered to be important for gene silencing. Thus, we chose proximal 

promoter regions of the BDNF gene upstream of exon I and exon IV that contain these elements 

as targets for DNA methylation analysis. The UCSC genome browser was used to identify the 

promoter sequence of exon I (MM10_NM_007540_chr2:109673700-109674699) and exon IV 

(MM10_NM_001048141 chr2:109691436-109692435). The following primer pairs were designed: 

BDNF exon I; 5’-aggaagagagTTGTGATTTTTTTGGTAAAAAGGAA-3’ and 5’-cagtaatacgactca 

ctatagggagaaggctCTCTCATTTAAAAAACCATAAACCA-3’, and BDNF exon IV; 5’-aggaag 

agagTTGTTGTTTAGATAATGATAGGTTTGG-3’ and 5’-cagtaatacgactcactatagggagaaggct 

AACAAAAACTAAAAAATTTC ATACTAACTC-3’. 
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DNA methylation analysis by nucleotide mass spectrometry. DNA was extracted from KCl-

treated neurons with the AllPrep DNA/RNA Micro Kit (Qiagen) according to the manufacturer’s 

instructions. 1 μg of genomic DNA was treated with bisulphite conversion reagent using a two-step 

modification procedure outlined in the EZ DNA methylation kit (Zymo). Each assay involved PCR 

amplification of the region of interest, shrimp alkaline phosphatase (SAP) treatment to remove 

excess dNTPs, addition of T7-RNA polymerase to generate RNA copies, and RNase A for ‘T’-

specific cleavage of the RNA. This step was followed by clean up of the extension reaction and 

cation exchange resin, spotting of the extension product onto a 96 well SpectroCHIP, and analysis 

of the spotted product by MALDI-TOF nucleotide mass spectrometry (MassArray 4 system, 

Sequenom). 

 
Chromatin immunoprecipitation. Primary cortical neurons were fixed in 1% formaldehyde and 

cross-linked cell lysates sheared by sonication in 1% SDS lysis buffer. Sonication generated 

chromatin fragments with an average length of 100-200 bp. Samples were incubated overnight at 

4C with an antibody specific to CREB (1:500, Santa Cruz) or an equivalent amount of control IgG 

(anti-rabbit; 1:500, Santa Cruz). Next, protein-DNA complexes were precipitated with protein G-

magnetic beads at 4C for 1 hour, followed by two washes in low salt buffer, two washes in high 

salt buffer, and three washes with TE buffer. After washing, the precipitated DNA-protein 

complexes were eluted using 1% SDS and 0.1 M NaHCO3. In order to reverse the formaldehyde 

cross-link, eluted complexes were incubated overnight a 65C in 200 mM NaCl. Before subjecting 

the samples to qPCR they were first treated with proteinase K digestion, followed by phenol-

chloroform extraction and ethanol precipitation. Primer pairs specific for 200 bp segments 

corresponding to the BDNF P4 promoter region (5’-GCATGCAATGCCCTGGAACGG-3’ and 5’-

GAGGGCTCCACGCTGCCTTG-3’) were used for qPCR and analysed relative to input, as 

described above. Three separate experiments were performed using independent biological 

replicates in each experiment. 

 
RESULTS 

BDNF mRNA expression is induced in post-mitotic neurons in an activity-dependent 

manner. In accordance with previous studies (Martinowich et al., 2003), there was a significant 

increase in BDNF exon I mRNA (n=6/group, unpaired two-tailed t-test, df=10; 3hr, t=6.34, p<.0001; 

5hr, t=15.0, p<.0001; 7hr, t=5.95, p<.0001; 10hr, t=534, p<.001, Figure 1a), and BDNF exon IV 

expression (n=6/group, unpaired two-tailed t-test, df=10; 3hr, t=9.78, p<.0001; 5hr, t=10.68, 

p<.0001; 7hr, t=6.15, p<.0001; 10hr, t=4.05, p<.01, Figure 1b), with peak mRNA expression 7 

hours after KCl-induced depolarization, in vitro. 

 

KCl-induced depolarization leads to a reduction in DNA methylation within the BDNF P4 

promoter. When DNA methylation was measured 7 hours after KCl-induced depolarization, there 

was no effect of neuronal activation on this epigenetic modification within the selected region of the 
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BDNF P1 promoter (Figure 2c), indicating that variations in DNA methylation at this particular locus 

may not support the activity-dependent induction of BDNF exon I mRNA expression. At the same 

time-point, there was a general trend toward decreased methylation in the BDNF P4 promoter. At 

two CpG sites, there was a significant decrease in DNA methylation (n=6/group; CpG-109, -

10.63%, unpaired two-tailed t-test df=10, t=2.61, p<.05 and CpG-66, -30.80%, t=2.56, p<.05) 

following membrane depolarization (Figure 2d). There was also a trend towards decreased DNA 

methylation at CpG-35. 

 

Lentiviral-mediated AID knockdown disrupts activity-dependent changes in DNA 

methylation at the BDNF P4 promoter and inhibits BDNF exon IV mRNA expression. The AID 

shRNA showed efficient transfection in primary cortical neurons (Figure 3a) and exhibited 80% 

knockdown of AID mRNA expression relative to scrambled controls in HEK293T cells (n=9/group, 

F5,47 = 12.04, Figure 3b), with near complete knockdown of AID protein expression (Figure 3c). In 

primary cortical neurons transfected with AID shRNA 3 days prior to treatment, activity-dependent 

changes in DNA methylation within the BDNF P4 promoter were disrupted when examined 7 hours 

post-KCl-induced depolarization (n=6-9/group, CpG-109, F3,22 = 3.51, p<.05; CpG-66, F3,22 = 14.36, 

p<.001, Figure 4a). Importantly, BDNF exon IV mRNA expression was also significantly blunted at 

the same time-point (F3,55 = 20.63, p<.0001, Figure 4b). Together, these data suggest a significant 

role for AID in the modulation of DNA methylation within the BDNF P4 promoter, which correlates 

with its effect on BDNF exon IV gene expression. 

 
AID-mediated changes in DNA methylation are necessary for CREB binding to the BDNF P4 

promoter. There was a significant effect of KCl-induced depolarization on CREB occupancy at the 

BDNF P4 promoter when assessed 7 hours after stimulation (n=3/group, F5,17=15.47, p<.0001, 

Figure 5). These effects were completely blocked in cortical neurons transfected with AID shRNA 3 

days prior to activation, suggesting a critical role for AID-mediated changes in DNA methylation 

and CREB binding at this locus. 

 

DISCUSSION  

This study generated three main findings: 1) the expression of BDNF exon I and IV mRNA in post-

mitotic cortical neurons is activity-dependent, 2) CpG sites proximal to regulatory elements within 

the BDNF P4 promoter are demethylated following KCl-induced depolarization, and 3) AID 

regulates DNA methylation within this region of the BDNF P4 promoter; an effect which influences 

CREB binding and subsequent BDNF exon IV mRNA expression. These data suggest that, 

together with its essential role as an RNA/DNA editing enzyme, AID also contributes to dynamic 

changes in DNA methylation in post-mitotic neurons, with subsequent effects on activity-dependent 

BDNF expression. 
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BDNF gene expression is activity-dependent and the BDNF P4 promoter is subject to 

epigenetic regulation. BDNF is encoded within a complex genomic locus, consisting of nine 5’ 

non-coding exons and a protein-coding 3’ region (Aid et al., 2007), with differential usage of BDNF 

non-coding exons under varying conditions having been reported (Pattabiraman et al., 2005; 

Chiaruttini et al., 2008). BDNF exons I and IV are of interest because they are activated in 

response to a wide variety of stimuli, including early life stress, fear conditioning and fear 

extinction, and are sensitive to epigenetic modification (Martinowich et al., 2003; Bredy et al., 2007; 

Cokus et al., 2008; Lister et al., 2008; Fuchikami et al., 2010). Our data corroborate the activity-

dependent nature of BDNF exons I and IV in primary cortical neurons (Figure 1a and 1b). 

Accumulating evidence also indicates that activity-dependent induction of BDNF depends on 

variations in DNA methylation (Lubin et al., 2008). The BDNF P1 and P4 promoters have CpG 

islands located proximal to their TSS. However, as most CpG islands are protected from 

methylation, we used nucleotide mass spectrometry to interrogate a 354bp CpG shore within the 

BDNF P1 promoter due to recent evidence indicating that tissue-specific changes in DNA 

methylation are more likely to occur within CpG shores (Doi et al., 2009; Irizarry et al., 2009). The 

CpG sites in this region are either part of, or in close proximity to, several transcription factor-

binding sites, including activator protein 1 (AP-1), specificity protein 1 (Sp1), and neuronal PAS 

domain protein 4 (Npas4). AP-1 is a transcriptional regulator associated with DNA methylation 

changes (Ng et al., 2013) and is highly regulated by neuronal activity in prefrontal cortical neurons 

(Covington et al., 2010). Sp1 belongs to the C2H2-type zinc-finger protein family and is known to 

mediate enhancement of NMDA receptor subunit type 1 (NR1) promoter activity by binding to GC-

rich regions in the promoter (Okamoto et al., 2002). Npas4 is an immediate-early gene that shows 

very little expression prior to membrane depolarization, but very rapid and robust protein synthesis 

following stimuli that induce calcium influx into neurons (Lin et al., 2008). We did not observe any 

changes in DNA methylation within this region of the BDNF P1 promoter following KCl-induced 

depolarization (Figure 2a). Given that we have only examined a single locus, we cannot rule out 

the possibility that dynamic variations in DNA methylation in response to neuronal activity may 

have occurred at distal promoter regions. Indeed, a region 4.8kb upstream of BDNF P1 harbours a 

consensus sequence for MEF2D, which also regulates transcriptional activity at the BDNF P1 

promoter (Flavell et al., 2008).  

 

With respect to the BDNF P4 promoter, we selected a 337bp region encompassing a CpG shore 

for investigation (Figure 2b). This locus is important because it contains three Ca2+ response 

elements (CaREs), which have been shown to be critical for the activity-dependent induction of 

BDNF exon IV (Tao et al., 1998; Zheng et al., 2011). These include CREB, upstream stimulatory 

factors 1/2 (USF1/2) and calcium-responsive transcription factor (CaRF) (Shieh et al., 1998; Tao et 

al., 1998; Timmusk et al., 1999; Tabuchi et al., 2002; Tao et al., 2002; Chen et al., 2003). 

Furthermore, this region of the BDNF P4 promoter has also been shown to be sensitive to 
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epigenetic modification (Martinowich et al., 2003). DNA methylation at this locus was generally 

reduced following KCl-induced depolarization (Figure 2b), and the two CpG sites, which exhibited 

the greatest decrease in DNA methylation, are closely positioned near consensus sequences for 

Sp1 and CaRE1, which is known to be critically involved in the activity-dependent regulation of 

BDNF exon IV (Lyons & West, 2011; Pruunsild et al., 2011). Although the range of the observed 

reduction in DNA methylation (10-30%) is similar to previous reports (Martinowich et al., 2003), we 

cannot rule out the possibility that a greater reduction in DNA methylation within distal regions 

(including enhancers) may have led to a cumulative effect on the transcriptional output of the 

BDNF P4 promoter. Nonetheless, together these data lend further support to the notion that 

dynamic changes in DNA methylation can regulate transcription (Cokus et al., 2008; Lister et al., 

2008; Rai et al., 2008; Bhutani et al., 2010), and highlight the selectivity and complexity of activity-

dependent epigenetic regulatory processes, as not all CpG sites were affected by this form of 

neuronal stimulation. 

 

AID regulates DNA methylation and influences BDNF exon IV gene expression through 

indirect effects on CREB binding at the BDNF P4 promoter. The involvement of AID in the 

regulation of DNA methylation has been demonstrated using interspecies heterokaryons (Bhutani 

et al., 2010), zebrafish (Rai et al., 2008) and ES cells (Cokus et al., 2008; Lister et al., 2008). 

Recently, Song and colleagues found that AID promotes active DNA demethylation within the adult 

hippocampus by preferentially targeting hydroxylated methylcytosine (5-hmC) (Guo et al., 2011). 

As a caveat, the hippocampal formation contains a neurogenic niche, which contains a 

heterogeneous population of cells at various stages of development, thereby limiting the general 

interpretation of these findings. Whether the activity of AID is functionally relevant in fully 

differentiated cortical neurons has remained an open question. In order to address this, we 

explored the role of AID-mediated regulation of DNA methylation within the BDNF P4 promoter, 

and its effect on BDNF exon IV mRNA expression. Firstly, we observed a significant increase in 

AID mRNA expression in primary cortical neurons following KCl-induced depolarization, which 

suggests that AID is induced in differentiated cortical neurons in an activity-dependent manner 

(data not shown). In primary cortical neurons transfected with AID shRNA, the dynamic changes in 

DNA methylation within the BDNF P4 promoter that occur as a function of KCl-induced 

depolarization were clearly disrupted (Figure 4a) and this effect was accompanied by a significant 

reduction in BDNF exon IV mRNA expression (Figure 4b), as well as decreased CREB occupancy 

at the BDNF P4 promoter (Figure 5). The effect of stimulation on DNA methylation at CpG-109 and 

CpG-66 was restored in an activity-dependent manner. Interestingly, DNA methylation at CpG-35 

increased in the presence of AID shRNA. These observations suggest that there is a complex 

interaction between KCl-induced changes in DNA methylation and AID-mediated effects on this 

epigenetic process. A limitation of our approach is that the bisulphite conversion of modified DNA 

cannot distinguish between 5-mC and the newly identified DNA modification, 5-hmC (Huang et al., 
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2010; Booth et al., 2012). Thus, it is possible that following AID knockdown, we may be observing 

an increase in the accumulation of 5-hmC or some other oxidative mark. Nonetheless, the data 

suggest that, together with its essential role as an RNA/DNA editing enzyme, AID contributes to 

dynamic changes in DNA methylation in post-mitotic neurons, with subsequent effects on activity-

dependent BDNF exon IV expression. 

 

Although the mechanistic details of this process remain to be elucidated, there are a number of 

potential ways in which AID may regulate gene expression. For example, activity-induced DNA 

demethylation has been shown to depend on a combination of AID, TET, and Gadd45a activity 

(Ma et al., 2009; Guo et al., 2011; Franchini et al., 2012), and emerging evidence indicates that 

AID and TET1 predominantly co-occupy promoter regions (Guo et al., 2011). It is possible that AID 

belongs to a complex involving other epigenetic regulatory proteins that are directed to specific 

genomic loci in response to KCl-induced depolarization, as may be the case with the BDNF P4 

promoter. In addition, it has recently been shown that members of the RNA 

processing/degradation complex act as co-factors in targeting AID to double-stranded DNA 

substrates (Basu et al., 2011; Fruhbeis et al., 2012), which may also promote the selective 

recruitment of AID to methylated CpGs along the BDNF P4 promoter. Finally, the long noncoding 

RNA p68/Ddx5 colocalizes with the RNA binding protein Gadd45a (Schwarz et al., 2000). Long 

non-coding RNAs function as decoys for transcription-related factors, as modular scaffolds, or as 

guides to direct chromatin-modifying complexes to their genomic sites of action (Rinn & Chang, 

2012; Spadaro & Bredy, 2012; Mercer & Mattick, 2013). Thus, we are currently testing the 

hypothesis that the tethering and targeting of an AID/Gadd45a complex by p68/Ddx5 promotes 

CpG-specific changes in DNA methylation within the BDNF P4 promoter and regulates the activity-

dependent induction of BDNF exon IV.  

 

In summary, we have confirmed that the induction of BDNF exon IV mRNA expression in cortical 

neurons is activity-dependent and correlates with a reduction in DNA methylation at specific CpG 

sites within the proximal BDNF P4 promoter. Lentiviral-mediated knockdown of AID disrupted the 

effect of KCl-induced depolarization on DNA methylation and blocked BDNF exon IV mRNA 

expression, an effect that was associated with decreased CREB occupancy within the BDNF P4 

promoter. Thus, these findings highlight the important role of AID in promoting the epigenetic 

regulation of activity-dependent BDNF expression in post-mitotic neurons.  
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Figure 1. BDNF mRNA expression is induced in post-mitotic neurons in an activity-

dependent manner. Transcript levels of (a) BDNF exon I and  (b) BDNF exon IV in primary 

cortical neuronal cells exhibit a time-dependent increase in expression following KCl-induced 

depolarization. Values represent mean  S.E.M. (n=6 for each condition; Student’s t-test KCl- vs 

KCl+ at each time point, **p<.01, ***p<.001; ****p<.0001). 

 

Figure 2. KCl-induced depolarization leads to a reduction in DNA methylation within the 

BDNF P4 promoter. DNA methylation was measured at CpG sites proximal to regulatory 

elements within the (a) BDNF P1 and (b) BDNF P4 gene promoters. Nucleotide mass 

spectrometry analysis revealed (c) no effect on DNA methylation within the P1 promoter, and (d) a 

significant decrease in DNA methylation at two specific CpG sites, CpG-109 and CpG-66, within 

the BDNF P4 promoter. Percent methylation represented as mean  S.E.M. (n=6 for each 

condition; Student’s t-test KCl- vs KCl+ at each CpG site, *p<.05).  

 

Figure 3. Validation of AID knockdown construct. (a) Representative image of AID shRNA 

lentiviral transfection in primary cortical neurons, (b) The efficiency of various AID shRNAs were 

determined by ectopic expression of AID and simultaneous transfection of AID shRNA, which 

revealed an 80% reduction in AID mRNA by AID shRNA2 when measured 3 days after viral 

treatment. Values represent mean  S.E.M. (n=9 for each condition; Dunnett’s post-hoc test, AID 

Ox vs. AID Ox + AID sh2 ****p<.0001), c) The effect of AID shRNA on mRNA levels was 

accompanied by a reduction in AID protein expression. 

 

Figure 4. Lentiviral-mediated AID knockdown disrupts activity-dependent changes in DNA 

methylation at the BDNF P4 promoter and inhibits BDNF exon IV mRNA expression. (a) 

Nucleotide mass spectrometry analysis revealed a disruption in the effect of neuronal stimulation 

on DNA methylation within the BDNF P4 promoter in primary cortical neurons pre-treated for 3 

days with AID shRNA and examined 7 hours after KCl-induced depolarization. Percent methylation 

represented as mean  S.E.M. (n=6-9/group, CpG-109; F3,22 = 14.36, p<.001, -KCl vs +KCl p<.05; -

KCl AID shRNA vs +KCl AID shRNA, **p<.01; CpG-66; F3,22 = 6.18, p<.01, -KCl vs +KCl p<.01; -

KCl AID shRNA vs +KCl AID shRNA, *p<.05). b) Diminished expression of BDNF exon IV in the 

neurons transfected with AID shRNA, when measured at the same time-point. Values represent 

mean  SEM (n=6-9 for each condition; +KCl control vs +KCl AID shRNA, **p<.01). 

 

 

Figure 5. AID-mediated changes in DNA methylation are necessary for CREB binding to the 

BDNF P4 promoter. Activity-dependent CREB binding to the BDNF P4 promoter in both mock- 

and scrambled control-treated samples is blocked in primary cortical neurons transfected with AID 

shRNA for 3 days, when examined 7 hours after KCl-induced depolarization. Values represent 



mean  S.E.M. (Dunnett’s post-hoc analysis relative to empty vector KCl- revealed a significant 

increase in CREB binding following KCl treatment in both empty (***p<.001) and control-treated 

wells (*p<.05), but not in neurons treated with AID shRNA. 
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