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Abstract 

  This paper reports on the measurement of the corrosion rate, and the stress corrosion 

cracking threshold stress, for ultra-high-purity Mg-5Zn. The corrosion rate was higher than 

the intrinsic corrosion rate of ultra-high-purity Mg, attributed to the quality of the corrosion 

product film. The threshold stress for stress corrosion cracking, at an applied stress rate of 

0.00016 MPa s
-1

, was equal to 0.7 times the yield stress in air. The ductility of the cracking 

indicated that the stress corrosion cracking mechanism was probably hydrogen enhanced 

localized plasticity. 

  Keywords: A. Magnesium, B. Weight loss, B. SEM, C. stress corrosion 



  

zMg5Zn_txt_150109.doc Page 2 of 17 15/01/09 

1. Introduction 

Recently, it has become possible to produce some ultra-high-purity (UP) magnesium (Mg) 

alloys by distillation [1,2,3]. Melt processing in a possible alternative production route for UP 

Mg alloys [4]. The aim of the present research was to study the corrosion and stress corrosion 

cracking (SCC) behaviour of one such alloy, UP Mg5Zn. 

Magnesium (Mg) is the most active engineering metal, but nevertheless, the corrosion rate 

of Mg in the atmosphere is lower than that of steels or some aluminium alloys [5,6]. However, 

the corrosion rates of Mg alloys are higher in aqueous chloride solutions [7,8,9]. This poor 

corrosion performance in aqueous chloride solutions limits the more widespread use of Mg 

alloys. The corrosion rate of Mg alloys is typically higher than that of high-purity Mg in 

aqueous chloride solutions because of micro-galvanic corrosion caused by second phases and 

Fe-rich particles [5,6,7,8]. The deleterious influence of Fe-rich particles can be overcome in 

ultra-high-purity Mg, as the Fe content can be lower than that which causes precipitation of 

Fe-rich particles if the Fe content is greater than the solid solubility, which can be ~ 1 ppm in 

Mg after heat treatment [10]. Our recent work showed that the intrinsic corrosion rate (as 

measured by weight loss, PW) of ultra-high-purity Mg was PW = 0.25 ± 0.7 mm y
-1

 in 3.5 % 

NaCl solution saturated with Mg(OH)2 at 25 °C [1,11,12]. Recent work by Hofstetter et al 

[13] indicated that much lower rates were measured for the ultra-high-purity Mg alloy 

UPZX50 (Mg-5Zn0.25Ca) using hydrogen evolution. Thus, it is of considerable interest to 

evaluate the corrosion behaviour of UP Mg5Zn in 3.5% NaCl solution saturated with 

Mg(OH)2 at 25 °C. This solution has been widely used in our recent research [1,11,12,14,15] 

so that there is a considerable body of research available for comparison. 

Mg alloys also suffer stress corrosion cracking (SCC) [16,17]. SCC can occur at stresses 

as low as 50% of the yield stress. A continuous second phase along grain boundaries causes 

intergranular stress corrosion cracking (IGSCC). Heat treatment can dissolve such a 
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distribution of second phase, and remove the possibility of IGSCC. In contrast, transgranular 

stress corrosion cracking (TGSCC) can occur in distilled water, indicating that no deleterious 

ions are needed [18,19,20]. TGSCC involves hydrogen [21]. SCC susceptibility was reported 

to increase with Zn content [22], although this was disputed by Fairman and Bary [23]. SCC 

is known to occur in the commercial Mg-Zn alloys ZK60 (6%Zn, <1%Zr) and ZE10 (1%Zn, 

<1% rare earths) [17] and Choudhary et al [24] found SCC in ZX50 (5%Zn, 0.25%Ca) and 

WZ21 (2%Y1%Zn) in a synthetic body fluid. Bobby Kannan et al [25] found that ZE41 

(4%Zn, 1.19% rare earths) was susceptible to SCC in 0.5 wt.% NaCl solution, and distilled 

water. Ben-Hamu et al [26] studied the SCC behaviour of Mg-Zn-Mn alloys (6%Zn, 0.5%Mn) 

containing Si, and found that all alloys were susceptibility to SCC in 3.5% NaCl solution 

saturated with Mg(OH)2. Cao et al [27] found that Mg5Zn suffered TGSCC in distilled water 

at low applied stress rate.  

Raja and Padekar [28] studied the role of chlorides on pitting and SCC of a wrought 

Mg2Mn alloy in aqueous chloride solutions. SCC occurred both in the presence and absence 

of chlorides by a hydrogen embrittlement mechanism. The threshold stress for SCC was 

estimated to be about 90% of the yield stress in 0.1 M NaCl saturated with Mg(OH)2. Padekar, 

Raja and Singh Raman [29] found that this alloy had a threshold stress intensity factor for 

SCC, K1SCC, of 10 MPa m
0.5

 in the same solution compared with a fracture toughness of 15 

MPa m
0.5

. Padekar et al. [30] studied the SCC of EV31A in in 0.1 M NaCl solution saturated 

with Mg(OH)2. The SCC susceptibility of EV31A was lower than that of AZ91E in slow 

strain rate tests, and EV31A was considered essentially immune to SCC in constant load tests. 

Padekar et al [31] found that EV31A had a higher threshold stress intensity factor, K1SCC, in 

the same solution than AZ91A, but a higher stress corrosion crack velocity. Wang et al [32] 

found that Mg-7%Gd-5%Y-1%Nd-0.5%Zr was susceptible to stress corrosion cracking in 3.5 

wt.% NaCl solution. 
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Thus, it is of interest to evaluate the SCC behaviour of UP Mg5Zn in distilled water. 

Thus, the aims of this research were: 

1. To evaluate the corrosion behaviour of UP Mg5Zn in 3.5 % NaCl solution saturated with 

Mg(OH)2.

2. To evaluate the SCC behaviour of UP Mg5Zn in distilled water.

2. Experimental Methods 

Specimen material consisted of extruded Mg5Zn, 6 mm in diameter. The Mg5Zn alloy 

was produced by distillation at the Swiss Federal Institute of Technology Zurich (ETHZ). 

The ultra-high-purity Mg was produced via vacuum distillation. The purification procedure 

was performed using a distillation autoclave as described by Löffler et al. [1], Hofstetter et al. 

[2], and in Cao et al [3]. High-purity graphite crucibles with ash contents of 20 ppm were 

used to avoid any contamination of the magnesium.  

The ultra-high-purity Mg was alloyed with 5 wt.% of zinc (99.999%) in a graphite 

crucible under a protective gas mixture at 750 °C. The melt was poured into a conical 

graphite mould with an average diameter of 55 mm and a height of 150 mm. The mould was 

water cooled at the bottom to avoid shrinkage cavities, and to facilitate directional 

solidification. The billets were homogenized at 350 °C for 12 h, and cooled with pressurized 

air.  

The homogenized alloy was machined to a billet with a diameter of 50 mm, and a length 

of 120 mm. Direct extrusion at 320 °C was performed at a ram speed of 0.3 mm/s, to a rod 

profile with a diameter of 6 mm. This corresponded to an extrusion ratio of 69:1.  

Table 1 presents the chemical composition as determined by glow discharge mass 

spectrometry. 
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Corrosion testing used fishing-line specimens immersed at the open circuit potential in 3.5 % 

NaCl aqueous solution saturated with Mg(OH)2 at 25 ± 2 °C for 7 days, as described by Shi 

and Atrens [33]. This solution has a pH of 10.3 because of the low solubility of Mg(OH)2 as 

explained in Atrens et al [8], and the pH does not change with test duration. The corrosion 

rate was evaluated from the evolved hydrogen volume, and from weight loss. Specimen size 

was 6 mm diameter x 10 mm length. Each surface of each specimen was ground to 2000 grit 

SiC paper, washed and dried. After the immersion test, corrosion products were removed 

using chromic acid containing a concentration of CrO3 of 200 g L
-1 

and 2 g L
-1

AgNO3. This 

cleaning solution has been shown to remove corrosion products but no metallic Mg [1,11,12].  

The corrosion rate from weight loss, PW (mm y
-1

) was determined from [1,11,33]: 

P
W

= 2.1
W

b
−W

a

At
L

          (1) 

where, Wb (mg) is the specimen weight before the immersion test, Wa (mg) is the specimen 

weight after the immersion test and after removal of corrosion products, A (cm
2
) is the 

surface area of the specimen, and tL (day) is the immersion duration.  

The volume of evolved hydrogen during the immersion test was measured at 25 °C. The 

average corrosion rate from hydrogen evolution, PAH (mm y
-1

), was evaluated using [1,11,33]: 

           (2) 

where the hydrogen evolution rate,  �V
H

 (ml cm
-2

 d
-1

), was evaluated as the total volume of 

evolved hydrogen per unit area divided by the immersion time. The instantaneous corrosion 

rate can be evaluated using Eq. (2) and using the instantaneous hydrogen evolution rate. 

Stress corrosion cracking (SCC) was studied using the Linearly Increasing Stress Test 

(LIST) [34] as in our prior studies of the SCC of Mg alloys [18,19,20]. The specimen was 
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analogous to a tensile specimen with a gauge length of 20 mm and gauge diameter of 5 mm. 

The specimen, whilst exposed to the solution of interest, (distilled water (DW) in the present 

study), was subjected to a linearly increasing (engineering) stress until fracture.  

The pH of distilled water is initially in the neutral range and slowly increases somewhat 

due to Mg dissolution. The pH was not measured. A potential drop technique allowed 

identification of the yield stress (in air or in solution in the absence of SCC), and the 

threshold stress for SCC in solution. The potential drop technique essentially measures the 

specimen resistance whilst the (engineering) stress on the specimen is increased at a linear 

rate. Initially, the specimen resistance increases slowly, and linearly with increasing stress, 

due to the decrease in specimen gauge section, and the increase in specimen gauge length. 

There is an acceleration of the rate of increase of specimen resistance when (i) there is stress 

corrosion crack initiation that significantly decreases the specimen section, or (ii) there is a 

decreased specimen section due to yielding of the specimen. This allows identification of (i) 

the SCC threshold stress when there is SCC, or (ii) the yield stress in the absence of SCC. 

Two applied stress rates were used: 0.0016 MPa s
-1

 and 0.00016 MPa s
-1

. These applied 

stress rates correspond to applied strain rates of 3.6 x 10
-8

 s
-1

 and 3.6 x 10
-9

 s
-1

 in the initial 

(elastic) portion of the LIST. 

3. Results 

3.1 Immersion tests 

Fig. 1 presents the hydrogen evolution data for Mg5Zn. The volume of evolved hydrogen 

increased linearly with immersion time for specimen UPMg5Zn-01 for the whole immersion 

duration, indicating a constant corrosion rate throughout the immersion period. In contrast the 

volume of evolved hydrogen increased initially linearly for specimen UPMg5Zn-02, but the 
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rate of increase decreased after 4 days immersion, indicating a decreasing corrosion rate 

during the second half of the immersion test for specimen UPMg5Zn-02. This second 

specimen indicated a decreasing hydrogen evolution rate, which was consistent with a 

partially protective surface film. 

Table 2 presents (i) the corrosion rate, PAH (mm y
-1

), evaluated from the evolved hydrogen 

volume; and (ii) the corrosion rate, PW (mm y
-1

), evaluated from the weight loss. There was 

agreement between the two independent measures of the corrosion rate, PAH and PW, although 

PAH was about 40% smaller than PW, attributed to some hydrogen dissolving in the Mg 

specimen as observed previously [1,11,12,]. The average corrosion rate was PW = 2.6 ± 1.2 

mm y
-1

. 

3.2 Stress corrosion cracking 

Table 3 presents values of the yield stress, σy, for Mg5Zn tested in air, and values of the 

SCC threshold stress, σSCC, for Mg5Zn tested in distilled water (DW) using LIST at the 

nominated applied stress rate. The LISTs in distilled water at an applied stress rate of 0.0016 

MPa s
-1

 had values of yield stress, σy, or SCC threshold stress, σSCC, similar to the values of 

the yield stress, σy, in air.  

In contrast, the LISTs in distilled water, at an applied stress rate of 0.00016 MPa s
-1

, had 

values of the SCC threshold stress, σSCC, much smaller than the value of the yield stress, σy, 

in air. 

Table 3 also presents the values of reduction in area for all LISTs. There was little 

reduction in area in the tests in air. Furthermore, the reduction in area was similar in distilled 

water at both the applied stress rates. The LISTs have not been instrumented to allow 

measurement of specimen strain during the test. Instrumenting to measure strain during the 

test is difficult, because the gauge section of the specimen is exposed to the solution causing 
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SCC. The ductility was low in these tests as is evident from the low values of the reduction in 

area presented in Table 3. This would indicate that the elongation to fracture values would 

also be low, and moreover, would be expected to be similar in air and in distilled water as 

were the values of reduction in area. For such low values of elongation to fracture, the errors 

are large if the elongation to fracture is measured after the test, and so there were no 

measurements of elongation to fracture. 

Fig. 2 presents a typical fracture surface for a specimen fractured in air. The fractography 

revealed that the surfaces fractured in air had a mixture of ductile dimple rupture features as 

well as some features that appeared less ductile. 

Fig. 3 shows some typical SCC features at the slowest applied stress rate. The SCC 

regions were at the specimen edge, and extended about 100 µm into the specimen interior, 

after which there was overload fracture. The SCC features were transgranular and 

macroscopically brittle. Nevertheless, close inspection indicated some ductile features, 

consistent with a HELP (hydrogen enhanced localised plasticity) mechanism of SCC. 

Fig. 4 presents the typical appearance of an UP-Mg5Zn specimen tested in distilled water 

at an applied stress rate of 0.0016 MPa s
-1

. This shows cracks at the surface of the specimen, 

and distributed evenly on the specimen surface for some distance from the fracture. These 

surface cracks were consistent with those documented in Fig. 3. 

4. Discussion 

4.1 Corrosion rates 

The average corrosion rate of ultra-high-purity (UP) Mg5Zn, measured by weight loss, 

was PW = 2.6 ± 1.2 mm y
-1

, measured by immersion at the open circuit potential in 3.5 % 

NaCl solution saturated with Mg(OH)2 at 25 °C. This corrosion rate was somewhat higher 



  

zMg5Zn_txt_150109.doc Page 9 of 17 15/01/09 

than the intrinsic corrosion rate (as measured by weight loss, PW) of ultra-high-purity Mg, PW

= 0.25 ± 0.7 mm y
-1

 [3], in the same solution. This indicates that ultra-high-purity by itself is 

not sufficient to decrease the corrosion rate of a Mg alloy below the intrinsic corrosion rate of 

high-purity Mg. The fact that the corrosion rate of UP Mg5Zn was greater than that of UP Mg 

is attributed to the quality of the corrosion product film on the surface of UP Mg5Zn being 

not as protective as that on UP Mg. 

The average corrosion rate of ultra-high-purity (UP) Mg5Zn was PW = 2.6 ± 1.2 mm y
-1

. 

The large error in the measurement of the average corrosion rate was a reflection of the 

variability of the corrosion rate measurements as is clear from Table 2. This variability was 

much greater than the measurement errors. For a detailed discussion of measurement errors, 

please see refs [3,11]. Thus, this variability is intrinsic to the corrosion behaviour of (UP) 

Mg5Zn. Significant variability was also shown by UP Mg [3] and Mg alloys [11,14]. This 

indicates that the behaviour of the surface film on the corrosion behaviour of UP Mg, and UP 

Mg5Zn, has significant variability. This is understandable in view of the fact that the surface 

film is only partly protective. 

4.2 Stress corrosion cracking 

The threshold stress for SCC in distilled water at an applied stress rate of 0.0016 MPa s
-1

was comparable to the yield stress in air. However, the threshold stress for SCC in distilled 

water at an applied stress rate of 0.00016 MPa s
-1

 was significantly lower than the yield stress 

in air, 165 MPa compared with 250 MPa. As a ratio, the threshold stress for SCC in distilled 

water was equal to 0.7 times the yield stress in air. It is highly unlikely that the yield stress 

changes significantly at these low applied rates, so that it is valid to compare the SCC 

threshold stress at 0.00016 MPa s
-1

 with the yield stress measured in air at 0.0016 MPa s
-1

. 



  

zMg5Zn_txt_150109.doc Page 10 of 17 15/01/09 

Figs. 3 and 4 shows that the stress corrosion cracks occurred at the edge of the specimen 

as is often the case. These stress corrosion cracks grew until they reached a critical size, and 

fast fracture ensued. 

The SCC morphology was flat, transgranular, and macroscopically brittle, compared with 

the rest of the fracture surface. Nevertheless, there were signs of ductility, indicating that the 

SCC mechanism was most probably hydrogen enhanced localized plasticity (HELP), in 

which hydrogen enhances dislocation mobility, so that a microscopically ductile mechanism 

leads to a macroscopically brittle process [17]. 

The fractography indicated, at an applied stress rate of 0.00016 MPa s
-1

, brittle 

trangranular SCC initiated at the specimen surface and progressing to a depth of 0.1 mm into 

the Mg5Zn specimen, whereupon there was a transition to overload fracture. This cracking 

initiated without the need of any surface pitting, and initiated at a stress considerably below 

the yield stress. The corrosion tests indicated that the surface film was only partly protective, 

so it is to be expected that there was corrosion during the LIST, and that the applied stress 

rate caused additional breaks in the surface film, facilitating corrosion, and hydrogen entry 

into the Mg5Zn alloy. Moreover, the corrosion studies indicated that the surface film was 

only partly protective, even in the absence of chloride ions in the solution. This indicates, that 

whilst chloride ions do facilitate SCC of Mg alloys, chloride ions were not needed for the 

SCC of Mg5Zn. Distilled water was sufficient to cause stress corrosion cracking of Mg5Zn. 

The stress corrosion crack grew to a depth of 0.1 mm into the Mg5Zn specimen, 

whereupon there was a transition to overload fracture. This is because the LIST is load 

controlled rather than strain controlled. Fast fracture occurs when the crack length reaches a 

critical crack size, determined by the fracture toughness of the Mg5Zn. 

The applied stress rates of 0.0016 MPa s
-1

 and 0.00016 MPa s
-1

 correspond respectively to 

applied strain rates of 3.6 x 10
-8

 s
-1

 and 3.6 x 10
-9

 s
-1

 in the initial (elastic) portion of the LIST. 
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These applied stress rates were thus significantly slower than the strain rate of 10
-6

 s
-1

, which 

is often used for studying stress corrosion cracking. Testing at a strain rate of 10
-6

 s
-1

, would 

not have identified that Mg5Zn is susceptible to stress corrosion cracking in distilled water. 

5. Conclusions 

1. The average corrosion rate of ultra-high-purity (UP) Mg5Zn, measured by weight loss, 

was PW = 2.6 ± 1.2 mm y
-1

, measured by immersion at the open circuit potential in 3.5 % 

NaCl solution saturated with Mg(OH)2 at 25 °C. This corrosion rate was somewhat higher 

than the intrinsic corrosion rate (as measured by weight loss) of ultra-high-purity Mg, PW

= 0.3 mm y
-1

, in the same solution.  The fact that the corrosion rate of UP Mg5Zn was 

greater than that of UP Mg is attributed to the quality of the corrosion product film on the 

surface of UP Mg5Zn being not as protective as that on UP Mg.

2. The threshold stress for stress corrosion cracking (SCC) in distilled water of UP Mg5Zn 

at an applied stress rate of 0.00016 MPa s
-1

 was significantly lower than the yield stress in 

air, 165 MPa compared with 250 MPa. As a ratio, the threshold stress for SCC in distilled 

water at an applied stress rate of 0.00016 MPa s
-1

 was equal to 0.7 times the yield stress in 

air. 

3. The SCC facture morphology was flat, transgranular and macroscopically brittle 

compared with the rest of the fracture surface. Nevertheless, there were signs of ductility, 

indicating that the SCC mechanism was most probably hydrogen enhanced localized 

plasticity (HELP). 
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Table 1 Chemical composition (in wt% or wt ppm) of the Mg alloy Mg5Zn as determined by 

glow discharge mass spectrometry. 

Table 2 Corrosion rates measured using fishing-line specimens of Mg5Zn immersed at the 

open circuit potential in 3.5% NaCl aqueous solution saturated with Mg(OH)2 at 25 ± 2 °C 

for 7 days. The average corrosion rate, PAH (mm y
-1

), was evaluated from the evolved 

hydrogen volume; and the average corrosion rate, PW (mm y
-1

), was evaluated from the 

weight loss. 

Specimen PAH (mm y-1) PW (mm y-1) 

UP Mg5Zn-01 1.0 1.8 

UP Mg5Zn-02 2.3 3.4 

  

Alloy Zn  

[wt%] 

Fe  

[wt ppm] 

Si 

[wt ppm] 

Mn 

[wt ppm] 

Cu 

[wt ppm] 

Ni 

[wt ppm] 

Mg5Zn 4.93 0.17 0.11 1.2 <0.1 <0.01 
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Table 3 Values of (i) the yield stress, σy, for Mg5Zn specimens tested in air, and values of the 

stress corrosion cracking threshold stress, σSCC, for Mg5Zn, tested in distilled water (DW), 

using LIST at the nominated applied stress rate. Also presented are the values of the 

reduction in area. The applied stress rates of 0.0016 MPa s
-1

 and 0.00016 MPa s
-1

 correspond 

respectively to applied strain rates of 3.6 x 10
-8

 s
-1

 and 3.6 x 10
-9

 s
-1

 in the initial (elastic) 

portion of the LIST. 

Specimen Environment Applied stress 

rate, MPa s-1 

σy or σSCC, 

MPa 

ı ı ı ı ı ı ı

ı ı ı ı ı ı ı

ı ı ı , % 

01 Air 0.0016 245 2.4 

02 Air 0.0016 250 1.3 

03 DW 0.0016 247 1.4 

04 DW 0.0016 255 2.5 

05 DW 0.00016 156 2.0 

06 DW 0.00016 174 1.5 
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Fig. 1 Hydrogen evolution for UP-Mg5Zn versus immersion time at the open 

circuit potential in 3.5% NaCl solution saturated with Mg(OH)2. 
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SCC of HP-Mg5Zn in DW 2 
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SCC of HP-Mg5Zn in DW 3 

Fig. 2 Typical fractography for UP-Mg5Zn LIST specimen tested to fracture in air at 

25  at an applied (engineering) stress rate of 0.0016 MPa s-1. In (b) the specimen 

edge is visible in the top right hand corner. The fractography revealed that the 

surfaces fractured in air had a mixture of ductile dimple rupture features as well as 

some features that appeared less ductile. The applied stress rate of 0.0016 MPa s-1 

corresponds to an applied strain rate of 3.6 x 10-8 s-1 in the initial (elastic) portion of 

the LIST. 
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Fig. 3 Typical SEM fractography for UP-Mg5Zn LIST specimen tested to fracture in 

distilled water at the open circuit potential at 25  at an applied (engineering) stress 

rate of 0.00016 MPa s-1. In (a) the specimen edge is visible in the top right hand corner, 

whereas in (b) the specimen edge is visible in the bottom right hand corner. There was 

macroscopically flat transgranular SCC fracture at the specimen edge of about 100 µm 

in depth, and typical dimple rupture in the central area along with brittle features as 

illustrated in Fig. 2. The applied stress rate of 0.00016 MPa s-1 corresponds to an 

applied strain rate of 3.6 x 10-9 s-1 in the initial (elastic) portion of the LIST. 
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SCC of HP-Mg5Zn in DW 6 
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Fig. 4 Typical surface appearance of an UP-Mg5Zn specimen tested in distilled 

water at 0.0016 MPa s-1, showing numerous surface cracks along the gauge 

length. Optical micrograph.  
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