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ABSTRACT 21 

This paper investigates anaerobic co-digestion of pig manure and algae (Scenedesmus sp.) 22 

with and without extraction of intracellular algal co-products, with views towards the 23 

development of a biorefinery concept for lipid, protein and/or biogas production. Protein 24 

and/or lipids were extracted from Scenedesmus sp. using free nitrous acid pre-treatments and 25 

solvent-based Soxhlet extraction, respectively. Processing increased algae methane yield 26 

between 29% and 37% compared to raw algae (VS basis), but reduced the amount of algae 27 

available for digestion. Co-digestion experiments showed a synergy between pig manure and 28 

raw algae that increased raw algae methane yield from 0.163 to 0.245 m
3
 CH4 kg

-1
 VS. No 29 

such synergy was observed when algal residues were co-digested with pig manure. Finally, 30 

experimental results were used to develop a high-level concept for an integrated biorefinery 31 

processing pig manure and onsite cultivated algae, evaluating methane production and co-32 

product recovery per mass of pig manure entering the refinery.   33 



  

1 INTRODUCTION 34 

Algae are an interesting feedstock for the production of biofuels, chemicals, cosmetics and 35 

animal feed (Milledge & Heaven, 2014; Passos et al., 2013). Advantages of algae include: (i) 36 

the capacity to grow on fresh, brackish, saline and wastewater streams; (ii) tolerance to a 37 

wide variety of environmental conditions; (iii) an ability to be cultivated on land not suitable 38 

for food production; and (iv) be produced all year round (Uggetti et al., 2014; Ward et al., 39 

2014). Currently, most approaches for algae-based biorefineries (i.e. facilities to convert 40 

algae into multiple valuable products, including biofuels) are not economically viable, due to 41 

high costs of algae cultivation and valorisation (Milledge & Heaven, 2014). Consequently, 42 

strong research efforts aiming to improve biofuels and/or biochemical production yields from 43 

algae are being made (Milledge & Heaven, 2014; Uggetti et al., 2014). One particular 44 

opportunity, which is the focus of this work, is value-adding to algae residue by using it as a 45 

feedstock for anaerobic (co-)digestion.  46 

 47 

Anaerobic digestion (AD), which converts organic matter into biogas and a stabilised 48 

digestate, is a proven technology for the management of organic-rich streams (Mata-Alvarez 49 

et al., 2014). AD has been identified as a key process to make algae biorefineries 50 

commercially feasible (Milledge & Heaven, 2014; Uggetti et al., 2014), and can be used to 51 

treat either raw algal biomass or algal residue after extraction of valuable intracellular 52 

products (Keymer et al., 2013; Passos et al., 2013; Ramos-Suárez & Carreras, 2014; Sialve et 53 

al., 2009). The viability of algae AD is highly dependent on: (i) the organic concentration of 54 

the feedstock, since harvesting and concentrating algae biomass is a major cost; and (ii) the 55 

biochemical methane potential (B0) of the algae (Uggetti et al., 2014). The latter depends on 56 

the algae culture strain and its cultivation conditions, which impact their composition 57 

(carbohydrate, protein and lipid content) as well as cell wall structure (Alzate et al., 2014; 58 



  

Sialve et al., 2009; Uggetti et al., 2014). Reported algae B0, mostly mono-cultured, are highly 59 

variable ranging from 0.130 to 0.600 m3 CH4 kg-1 VS (Mussgnug et al., 2010; Ward et al., 60 

2014). Unfortunately, the methane yield from natural mixed algae cultures grown in less 61 

controlled systems (real world application) are found in the lower range, rarely exceeding 62 

0.300 m
3
 CH4 kg

-1
 VS (González-Fernández et al., 2011; Keymer et al., 2013; Passos et al., 63 

2013). This fact has raised the interest on algae pre-treatment techniques, with and without 64 

co-products recovery, aiming to improve algae biodegradability through cell wall disruption 65 

(Milledge & Heaven, 2014; Ramos-Suárez & Carreras, 2014). Under this rationale, the 66 

feasibility of an algae-based biorefinery is mainly linked to: (i) the co-products economic 67 

value; (ii) biogas value as electricity and/or heat energy; (iii) algae harvesting and 68 

concentration, where harvested algae may not only be thickened, but also dewatered or even 69 

dried before processing for co-products extraction (Alzate et al., 2014; Sialve et al., 2009; 70 

Ward et al., 2014). 71 

 72 

Anaerobic co-digestion (AcoD), the simultaneous anaerobic digestion of two or more 73 

substrates, improves economic viability of AD plants due to the potential for higher methane 74 

production than through digestion of single substrates (Mata-Alvarez et al., 2014). The 75 

increase in methane production from AcoD is mainly a result of increased organic loading 76 

rate; however, synergism (i.e. a complementary relationship between substrates that improves 77 

digestion performance) can further enhance methane production (Astals et al., 2014; Mata-78 

Alvarez et al., 2014; Ramos-Suárez & Carreras, 2014). Beyond the implementation and 79 

operation expenses, onsite cultivation of algae presents some advantages over the use of other 80 

co-substrates (Mata-Alvarez et al., 2014). Such advantages include: (i) reduced or nullified 81 

co-substrate transport cost, which is one of the most important co-substrate selection criteria; 82 

(ii) minimising the effect of seasonality of some agro-industrial co-substrates, where supply 83 



  

can be variable or cease; and (iii) providing a co-substrate in regional areas where co-84 

substrates are otherwise utilised or are not available. Taking into account these facts, algal 85 

biomass appears as a potential co-substrate for animal manure digester located in rural/remote 86 

areas. 87 

 88 

The potential of using algae as a co-substrate has recently been reported in several 89 

publications; however, these studies focus on sewage sludge or carbon-rich waste as the main 90 

substrate (Cecchi et al., 1996; Mata-Alvarez et al., 2014; Ramos-Suárez & Carreras, 2014; 91 

Zhong et al., 2012), while few studies have evaluated AcoD of animal manure and algae 92 

(González-Fernández et al., 2011; Miao et al., 2014; Sarker et al., 2014). From a nutrient 93 

balancing perspective, AcoD of algae and manure does not seem obviously attractive, 94 

because both substrates are characterised by a relatively low carbon-to-nitrogen (C/N) ratio 95 

(< 10) (Mata-Alvarez et al., 2011). However, Gonzalez-Fernandez et al. (2011) and Ramos-96 

Suarez and Carreras (2014) observed that synergism is not always linked to the C/N ratio of 97 

the mixture when using algae as co-substrate and therefore AcoD of algae and pig manure 98 

warrants further investigation. Furthermore, previous algae AcoD studies have only tested 99 

raw algae in co-digestion mixtures and have not considered AcoD of algae residues after 100 

extraction of valuable co-products. There is a present need for a study on AcoD of algal 101 

residues to provide critical insights into AD plants aiming to process algae grown on 102 

anaerobic digestion supernatant. 103 

 104 

The primary goal of this study is to evaluate anaerobic co-digestion of pig manure and algae 105 

(Scenedesmus sp.) with and without extraction of intracellular algal co-products. Algae 106 

processing targeted the extraction of lipids (solvent-based Soxhlet extraction) and/or protein 107 

(free nitrous acid pre-treatment) as high-value co-products. Biomethane potential tests were 108 



  

used to assess the effect of pre-treatment and co-product extraction on substrate 109 

biodegradability and degradation rate. Finally, the results of the study were used to evaluate a 110 

high-level concept for an integrated biorefinery treating pig manure and onsite cultivated 111 

algae. 112 

 113 

 114 

2 MATERIALS AND METHODS 115 

2.1 Raw algae, manure and inoculum origin 116 

Pig manure was collected as a representative composite sample of an entire direct-flush from 117 

a grown-out pig shed near Perth (WA, Australia). The sample was shipped immediately 118 

(chilled on ice-bricks) to The University of Queensland, and was received cold and stored at 119 

277 K until use. Dry algal biomass was obtained from a pilot-scale open algal cultivation 120 

raceway (Pinjarra Hills, Australia). The raceway had a total volume of 30 m3 with 1.5m wide 121 

channels and 0.2 m depth. The green algae Scenedesmus sp. was cultured in an open pond 122 

and algal biomass was collected by filtration and dried in a solar collector and drying tunnel 123 

assembly. Microscope observation showed that the majority of the biomass was Scenedesmus 124 

sp. with small amounts of sand, grit and salt crystals.  125 

 126 

Anaerobic inoculum was collected from the bottom (~2 m depth) of a partially covered 127 

anaerobic lagoon, which treats flush manure from a specialised breeder piggery located near 128 

Grantham (QLD, Australia). After collection, inoculum was stored at 277 K. Prior to 129 

commencement of the biomethane potential (BMP) tests, the inoculum was degassed at 310 130 

K for one week. The specific methanogenic activity of the inoculum at 310 K was 0.09 kg 131 

COD-CH4 kg
-1

 VS day
-1

.  132 

 133 



  

2.2 Algae high-value products extraction 134 

Processed algal residues were prepared for the digestion/co-digestion testing. The processing 135 

steps extracted protein with free nitrous acid (FNA) (Section 2.2.1), and/or lipids via a 136 

solvent-based Soxhlet extraction (Section 2.2.2).  137 

 138 

2.2.1 Protein extraction 139 

FNA pre-treatment was carried out to release protein from algal cells. Dry algal biomass was 140 

re-suspended in deionized water at 47 g L
-1

, and pH was adjusted to 5.5 using 0.1 M HCl. 141 

Sodium nitrite stock solution 30 g NO2
-
-N L

-1
 was then added to the suspension resulting in 142 

an initial concentration of 0.3 g NO2
--N L-1. The FNA dose was selected from previous 143 

experiments (Bai et al., 2014), where 0.3 g NO2
--N L-1 led to moderate cell disruption with  144 

algal biomass releasing most protein. The algal suspension was treated in a well-mixed (550 145 

rpm) reactor for 48 h, with pH maintained constant at 5.5 ± 0.2 through periodic manual 146 

addition of 0.1 M HCl. During the pre-treatment, FNA concentration was monitored by nitrite 147 

and pH measurements, and calculated as in Eq. 1 (Bai et al., 2014), where SNO2 is the 148 

dissolved nitrite concentration (g NO2
-
-N L

-1
), pH is the suspension pH, and T is the 149 

operational temperature (298 K). 150 

 151 

FNA	 �g	HNO2 − N		L-1�= SNO2

e
-2300
(T) ∙10pH

       (1) 152 

 153 

After FNA pre-treatment, algae biomass residues were recovered by centrifugation (2,500 g 154 

for 5 min) and decanting the supernatant, where released protein was contained. 155 

 156 

2.2.2 Lipid extraction 157 

Lipid extraction was done on raw and FNA pre-treated algal biomass using a serial Soxhlet 158 



  

extraction apparatus and n-hexane:ethanol (3:1, v/v) as extraction solvent (Bai et al., 2014). 159 

Lipid extraction yields were quantified in duplicates after 6 h of extraction. After lipid 160 

extraction, the algal biomass residues were dried to constant weight in a vacuum desiccator to 161 

remove residual organic solvent. 162 

 163 

2.3 Chemical analytical methods 164 

Analyses of the total fraction were performed directly on the raw samples. For analyses of the 165 

soluble fraction, the samples were centrifuged at 2,500 g for 5 min and the supernatant was 166 

filtered through a 0.45 µm PES Millipore
®
 filter. The content external to the cells and cell 167 

debris was quantified by analysing the supernatant of the centrifuged samples.  168 

Total solids (TS) and volatile solids (VS) were measured according to Standard Method 169 

2540G (Eaton et al., 2005). Total chemical oxygen demand (tCOD) and soluble chemical 170 

oxygen demand (sCOD) were measured using a Merck COD Spectroquant
®
 test kit (range 171 

0.5-10 g L-1) and a Move 100 colorimeter (Merck, Germany). Volatile fatty acids (i.e. acetic, 172 

propionic, butyric and valeric) were analysed with an Agilent 7890A gas chromatograph 173 

equipped with an Agilent DB-FFAP column. NH4
+-N, NO2

--N, NO3
--N, PO4

3--P, total 174 

Kjeldahl nitrogen (TKN) and phosphorous (TKP) were determined with a Lachat Quik-Chem 175 

8500 flow injection analyser. Total protein was measured using the bicinchoninic acid 176 

method with bovine serum albumin as calibration standard (Smith et al., 1985). 177 

Polysaccharide (carbohydrate) concentration was determined using the anthrone method with 178 

glucose as standard (Raunkjaer et al., 1994). Lipid content was determined using a Wilks 179 

Enterprise Inc. InfraCal TOG/TPH analyser, with S-316 as the extraction solvent. Biogas 180 

composition (CH4, CO2 and H2) was determined using a Shimadzu GC-2014 gas 181 

chromatograph equipped with a Valco GC valve (1 mL sample loop), a HAYESEP Q 80/100 182 

packed column (2.4 m length; 1/8” outside diameter, 2 mm inner diameter) and a thermal 183 



  

conductivity detector (TCD). The chromatograph injector, oven and detector temperatures 184 

were set at 75, 45 and 100 °C, respectively, and 28 mL min-1 of Argon at 135.7 kPa was used 185 

as a carrier gas. 186 

 187 

2.4 Biomethane potential tests 188 

Biomethane potential (BMP) tests were carried out according to Angelidaki et al. (2009) in 189 

160 mL glass serum bottles at mesophilic conditions. All tests contained 35 mL inoculum and 190 

an amount of substrate that provided an inoculum to substrate ratio of 2 (VS-basis). Bottles 191 

were flushed with 99.99% N2 gas for 1 min (4 L min
-1

), sealed with a rubber stopper retained 192 

with an aluminium crimp seal and stored in temperature-controlled incubators (310 ± 1 K). 193 

Tests were mixed by swirling once per day. A blank test containing inoculum and no 194 

substrate was used to correct for background methane potential of the added inoculum. All 195 

tests and blank were done in triplicates, and all error bars indicate 95% confidence limit on 196 

the average of the triplicates. Biogas volume was measured using a manometer at the start of 197 

each sampling event. Accumulated volumetric gas production was calculated from the 198 

pressure increase in the headspace volume and expressed under standard conditions (273.15 199 

K, 100.00 kPa). At each sample event, the biogas composition was determined by gas 200 

chromatography using the GC configuration described in Section 2.3. 201 

 202 

Pig manure was co-digested with four different algae co-substrates: (i) raw algae; (ii) lipid 203 

extracted algae residue (after Soxhlet extraction); (iii) protein extracted algae residue (after 204 

FNA extraction); and (iv) protein & lipid extracted algae residue (after FNA extraction 205 

followed by Soxhlet extraction). Specifically, three mixtures were tested between pig manure 206 

and raw algae (15, 30 and 50 % in co-substrate on a VS-basis), and two mixtures were tested 207 

between pig manure and each algae residue (15 and 30% in co-substrate on a VS-basis). In 208 



  

addition, BMP assays of each individual substrate (i.e. pig manure, raw algae and the three 209 

algal residues) were carried out to establish reference degradation parameters (Fig. SI of 210 

supplementary data summarises BMP set-up). The chemical characterisation of the substrates 211 

under study is provided in Table 1. 212 

 213 

2.5 Model implementation and data analysis 214 

Mathematical analysis of the BMPs was based on the IWA Anaerobic Digestion Model No. 1 215 

(ADM1). Process kinetics and substrate biodegradability were the two targeted parameters to 216 

compare mono- and co-digestion experiments (Astals et al., 2014). As hydrolysis was 217 

assumed to be the rate-limiting step during AD of manure and algae (Costa et al., 2012; 218 

Ramos-Suárez & Carreras, 2014), the BMPs were modelled using first order kinetics (Astals 219 

et al., 2014). In contrast to the conventional one-substrate model, in this study all substrates 220 

(manure and algae) were modelled through a two-substrate model, where substrates are split 221 

into a rapidly biodegradable and a slowly biodegradable fraction (Eq. 2) (Wang et al., 2013). 222 

This approach improved fitting of the algae (raw and residual) mono-digestion BMP profiles 223 

and exploration of the effect of the algae pre-treatment over the rapidly and slowly 224 

biodegradable fractions of the substrates (Wang et al., 2013).  225 

 226 

r = ∑ �f��� ," ∙ k$%&,��� ," ∙ X" ∙ C") + ∑ �f�+,-," ∙ k$%&,�+,-," ∙ X" ∙ C")..    (2) 227 

 228 

where r is the process rate (g COD L-1 day-1), fi is the substrate biodegradability (-), khyd,i is 229 

the first-order hydrolysis rate coefficient of the substrate (day
-1

), Xi is the substrate 230 

concentration (g VS L
-1

) and Ci is the tCOD-to-VS (COD/VS) ratio of the substrate. 231 

Biodegradability (fi) is used for model-based analysis in order to normalise analysis between 232 

substrates. The fi can be converted to B0 using the conversion factors provided in Table 1, 233 



  

with material with a COD/VS ratio of 1 having a conversion factor of 0.350 m3 CH4 kg-1 VS 234 

(B0/f) (Astals et al., 2014). 235 

 236 

The degradation model was implemented in Aquasim 2.1d. Parameter estimation and 237 

uncertainty analysis were simultaneously estimated with a 95% confidence limit as per 238 

Batstone et al. (2009). Parameter uncertainty was estimated using a two-tailed t-test on 239 

parameter standard error around the optimum and non-linear confidence regions were also 240 

tested to confirm the linear estimate was representative of true confidence. The objective 241 

function used was the sum of squared errors (χ
2
), where average data from triplicate 242 

experiments were used as the model target. 243 

 244 

 245 

3 RESULTS AND DISCUSSION 246 

3.1 Extraction of high-value products from algal biomass 247 

The increase in polysaccharide and protein concentrations in the supernatant of the algal 248 

suspension after 48 h FNA pre-treatment reflects lysis of the algal cell wall and the 249 

subsequent release of intracellular organic compounds (Fig. 1). Scenedesmus sp. is known to 250 

have a rigid cell wall composed of poorly biodegradable carbohydrates (Ramos-Suárez & 251 

Carreras, 2014; Ward et al., 2014). Hence, the increase of polysaccharides concentration in 252 

the liquor, especially insoluble (particulate) compounds, shows that FNA pre-treatment was 253 

able to break apart the algal cell wall but could not solubilise it. The cell wall disruption 254 

produced by the FNA pre-treatment caused release of large amounts of protein into the liquor 255 

leading to a protein concentration increase from 0.5 g L-1 to 5.0 g L-1 (i.e. release of 0.25 kg 256 

of protein per kg VS of algae) (Fig. 1). The protein release yield obtained in this study is in 257 

agreement with those reported in previous studies using other pre-treatment techniques such 258 



  

as sonication, high-pressure homogenization and enzyme hydrolysis (Keris-Sen et al., 2014; 259 

Safi et al., 2014), indicating that FNA pre-treatment is an effective technology to facilitate 260 

protein recovery. 261 

 262 

Lipid extraction yield for Scenedesmus sp. was 0.14 kg lipids kg
-1

 VS, which is in good 263 

agreement with previously reported values (Keymer et al., 2013; Ramos-Suárez & Carreras, 264 

2014). Moreover, the efficiency of lipid extraction increased up to 0.19 kg lipids kg
-1

 VS after 265 

the FNA pre-treatment (Fig. SII of supplementary data), indicating that the disruption of algal 266 

cell wall caused by the FNA pre-treatment allowed to improve the contact between the 267 

solvent and intracellular lipids. The improvement of green algae lipid extraction yield after 268 

pre-treatment has been previously reported by Bai et al. (2014), who used different FNA 269 

concentrations with Tetraselmis striata M8, and Lee et al. (2010), who evaluated five pre-270 

treatment techniques on Scenedesmus sp. Comparing the results with those reported by Lee et 271 

al. (2010), it can be observed that the lipid yield after the FNA pre-treatment was similar to 272 

that reached by their optimal reported pre-treatments (i.e. bead-beating and microwaves). 273 

However, the increase of the lipid extraction yield (1.5-fold) recorded in the present study 274 

was lower than that reported by Lee et al. (2010) (up to 5.5-fold). This difference may be 275 

related to differences in pre-processing (i.e. drying and grinding) of the raw algae as well as 276 

the different lipid extraction method. 277 

 278 

3.2. Influence of product recovery on algal biomass anaerobic digestion 279 

Fig. 2 displays the experimental and modelled methane production profiles of the four algae 280 

mono-digestion experiments, while Table 2 shows the model outputs for biodegradability 281 

(ffast, fslow, ftotal) and degradation kinetics (khyd,fast, khyd,slow). The low methane yield of the 282 

Scenedesmus sp. (0.163 ± 0.010 m
3
 CH4 kg

-1
 VS), linked to the resistance of the cell wall to 283 



  

bacterial degradation, is in good agreement with values reported elsewhere (González-284 

Fernández et al., 2011; Keymer et al., 2013; Mendez et al., 2014; Ramos-Suárez & Carreras, 285 

2014). Model outputs clearly illustrated that pre-treatment could improve algal 286 

biodegradability (ftotal), even when co-products had been extracted. All algal residues (i.e. 287 

after co-product extraction) had an improved biodegradability as compared to raw algae, with 288 

lipid extracted algae showing the greatest increase (ftotal from 0.31 to 0.48). This 289 

improvement in biodegradability with extraction is believed to be a result of cell wall 290 

disruption, which made intracellular organic matter more bioavailable.  291 

 292 

Model outputs also indicated that the improvement in biodegradability following lipid 293 

extraction was mainly related to an increase of the rapidly biodegradable fraction (ffast), 294 

whilst protein, and protein & lipid extracted algae was due to an increase of the slowly 295 

biodegradable faction (fslow). The latter phenomenon could be explained by the conjunction of 296 

two factors: (i) the solvent-based extraction may be more severe disrupting the algal cell wall 297 

than the applied FNA dose; and (ii) the fact that the algae particles released during lipid 298 

extraction remained inside the Soxhlet thimble and were subsequently digested, whereas the 299 

particles (soluble and insoluble) released during the FNA pre-treatment were removed after 300 

the centrifugation of the pre-treatment suspension. 301 

 302 

Processing of algae for co-product extraction did not appear to have a significant impact on 303 

the degradation kinetics. A finding which was consistent with results reported by Ramos-304 

Suarez and Carreras (2014) who digested residual Scenedesmus sp. biomass after protein and 305 

lipid extraction and Keymer et al. (2013) when digesting solvent-based lipid extracted 306 

Scenedesmus sp. 307 

 308 



  

The present results indicate that algae pre-treatment is an effective strategy to enhance of 309 

algae B0. Actually, in the present study, algal biomass B0 improvement was achieved even 310 

after removing lipids and/or FNA solubilised organic matter (carbohydrates and protein), 311 

which is not a common practice in studies devoted to algae pre-treatment prior to AD 312 

(Uggetti et al., 2014; Ward et al., 2014). However, the co-production of high-value products 313 

and biofuels has been identified as more economically viable for algal biorefineries than the 314 

production of bioenergy alone (González-Fernández et al., 2011; Milledge & Heaven, 2014). 315 

Under this biorefinery concept (where algal valuable products are removed from the system 316 

prior to AD), two extreme scenarios could occur: (i) a biorefinery with a fixed algae 317 

production capacity, where co-products recovery reduces the amount of algae available for 318 

AD; and (ii) a biorefinery with a flexible algae production capacity, where an increase on 319 

algae production compensates the organic matter lost during co-products recovery. Pre-320 

treated algal B0 can only be used as a comparative parameter if the biorefinery is able to 321 

produce extra algae and keep the anaerobic digester organic loading rate stable. On the 322 

contrary (when the biorefinery algal production is the stable parameter), the overall methane 323 

yield (B’), defined as the methane yield per gram VS of algae before the pre-treatment, is a 324 

more appropriate parameter to compare the performance of an anaerobic digester; because 325 

although pre-treatment increased algae B0, co-products extraction reduces the amount of 326 

organic matter going into the digester. Table 3 shows B0, B’ and co-product extraction yield 327 

of each of the evaluated pre-treatments. Results indicated that only lipid extraction was able 328 

to enhance the digester methane production under both scenarios, while protein and protein & 329 

lipid extracted algae had a significant reduction of B’ due to the extraction of large amounts 330 

of organic matter during FNA pre-treatment. 331 

 332 

 333 



  

3.3. Anaerobic co-digestion of pig manure and raw or processed algae 334 

Assessment of the interaction mechanisms (i.e. synergistic and antagonistic) during co-335 

digestion of pig manure and algae (raw or processed) was carried out by comparing the 336 

experimental profiles with the theoretical ones (generated by the combination mono-digestion 337 

profiles over time and proportioned to the amount of substrate present). As illustrated in Fig. 338 

3, actual and theoretical curves overlap in most experimental trials, indicating no strong 339 

interaction between substrates. Thus, co-digestion performance (kinetics and extent) could 340 

have been assessed by combining the results from mono-digestion experiments. In all cases, 341 

the introduction of algae into the manure led to a reduction of the B0 since the B0 of algae is 342 

lower than the B0 of pig manure; such reduction was approximately proportional to the 343 

amount of algae and manure in the mixture. However, two raw algae mixtures (70% manure 344 

+ 30% raw algae; 50% manure + 50% raw algae) showed a methane yield significantly 345 

higher than the theoretical methane yield (Fig. 3A). The fact that the methane yield 346 

improvement was only observed in the mixtures with a higher algal concentration does not 347 

necessarily imply that the synergy did not occur at the low-level mixture (85% manure + 15% 348 

raw algae). Indeed, it may suggest that raw algae rather than manure was the substrate further 349 

degraded (increased biodegradability). Under this rationale, the increased algae 350 

biodegradability in the lowest mixture would have been masked by the low proportion of 351 

algae, which in the mixture only accounted for about 10% of the methane production.  352 

 353 

The comparison between the actual and modelled methane curves, when the mixtures were 354 

simulated using the set of parameters from the mono-digestion BMP modelling (Table 2),  355 

show that curves overlap in most of the tests; however, small differences could be observed 356 

in B0 values (see Fig. SIV of supplementary data). To better understand the interaction 357 

between the substrates, AcoD profiles were modelled giving freedom to kinetic (ki) and/or 358 



  

extent (fi) parameters. Model outputs from different scenarios (data not shown) indicated that 359 

(i) substrate degradation kinetics were not influenced by co-digestion; and (ii) B0 360 

discrepancies were mainly linked to algae biodegradability rather than manure 361 

biodegradability. Consequently, AcoD profiles were modelled using fixed hydrolysis rates 362 

(khyd,fast,i and khyd,slow,i) and fixed biodegradability for pig manure (ffast,manure and fslow,manure) 363 

(values shown in Table 2), with algae biodegradability as the fitted variables for each mixture 364 

(ffast,algae and fslow,algae). With the exception of the 85% manure + 15% protein & lipid extracted 365 

algae mixture, model outputs confirmed that pig manure and residual algae co-digestion 366 

could be modelled using a single set of parameters. The observed minor differences between 367 

the measured and modelled profiles would likely be attributed to experimental/analytical 368 

error rather than to synergic mechanisms (Figure SV of supplementary data). Likewise, 369 

model outputs confirmed the increase of raw algae biodegradability when co-digested with 370 

pig manure. As an average, raw algae ffast increased from 0.20 to 0.26 while fslow increased 371 

from 0.11 to 0.20, which represents approximately 0.030 and 0.050 m
3
 CH4 kg

-1
 VS 372 

additional methane potential respectively. Therefore, it can be concluded that raw algae B0 373 

increased from 0.163 to 0.245 m
3
 CH4 kg

-1
 VS due to synergistic mechanisms. Supporting the 374 

hypothesis made by Gonzalez-Fernandez et al. (2011) about improved algal biodegradability 375 

when co-digesting algae (a mixture of Chlorella vulgaris and Scenedesmus obliquus) and pig 376 

manure.  377 

 378 

Previous algae AcoD studies mainly linked the synergistic improvement in methane yield to 379 

the nutrient balance (Mata-Alvarez et al., 2014). However, in BMP assays the composition of 380 

the digestion mixture is primarily controlled by the inoculum properties rather than by the 381 

properties of the added substrates. Moreover, if the improvement was related to an optimised 382 

C/N ratio, similar behaviour should have been observed when co-digesting manure and algal 383 



  

residues, even though some organics were extracted. However, no synergies were observed 384 

for co-digestion of pig manure and algal residues. Based on this outcome, it is theorised that 385 

the enhancement of the raw algae biodegradability in the presence of pig manure was related 386 

to other factors, such as the addition of specific microbes within the pig manure able to 387 

disrupt algal cell wall. Furthermore, this statement would also explain why no significant 388 

improvement in methane yield was observed during manure and algae residues co-digestion 389 

trials where the algal cell wall had been disrupted by the pre-treatment technique. 390 

In this regard, Scenedesmus sp. cell wall has been described as a rigid wall of cellulose and 391 

hemicellulose, which together with the sporopollenin-like biopolymer provides great 392 

resistance to enzymatic degradation (Mendez et al., 2014; Mussgnug et al., 2010). Lu et al. 393 

(2013) reported the occurrence of Lactobacillus and Clostridia in fresh pig manure, 394 

independent of pig age and diet, while other studies have shown that Lactobacillus and 395 

Clostridia are very effective at degrading cellulosic organic matter (Calderon Santoyo et al., 396 

2003; Li & Liu, 2012; Mussatto et al., 2008; Sethi & Scharf, 2001). 397 

 398 

3.4. An integrated biorefinery approach to treatment of pig manure and algae 399 

Fig. 4A presents a high-level flow diagram for an integrated biorefinery, which combines 400 

manure treatment and algae cultivated onsite using supernatant from digested pig manure. 401 

Cultivated algae may be directed for biogas production or processed to extract valuable co-402 

products with the algae residues recycled for biogas production through anaerobic digestion.  403 

Biorefinery final configuration will be influenced by two main factors: (i) the cost (capital 404 

investment and operating expenses) of the extraction process and the revenue obtained from 405 

the sale or use of co-products; and (ii) the biogas production. To assess the potential for 406 

methane production, B* (defined as the maximum methane production per gram VS of pig 407 

manure entering the system) was used to compare the different scenarios considered in this 408 



  

study (Fig. 4). Using B* is more suitable than B0, since the introduction of algae into the 409 

manure digester will reduce B0 of the mixture, as the B0 of algae is lower than the B0 of pig 410 

manure, although it will increase the digester methane production due to the additional VS 411 

(organic loading rate increase). The system’s calculation base was pig manure (qmanure) with 412 

characteristics similar to that of the manure used in this study, i.e. a VS concentration of 25 g 413 

VS L
-1

 and an ammonium concentration in the AD effluent of 1.0 g NH4
+
-N L

-1
. The typical 414 

growth yield of the algae used in the present study is estimated to be 12.5 kg VS kg
-1

 NH4
+
-415 

Nremoved (Rusten & Sahu, 2011; Uggetti et al., 2014), while other parameters used to develop 416 

Fig. 4B were obtained from results in the present study. Considering the aforementioned 417 

values, a reasonable maximum algae production capacity (qalgae,max) was estimated at 0.5 kg 418 

VS kg-1 VS of manure entering the system. Nonetheless, the amount of algae recovered 419 

(qalgae) would be influenced by the efficiency of both the algae cultivation system and the 420 

harvesting system.  421 

 422 

Fig. 4B shows the progressive improvement of B* in relation to algae recovery efficiency 423 

(qalgae/qalgae,max); illustrating the extra methane production from adding raw and processed 424 

algae into the pig manure digester (0.350 m
3
 CH4 kg

-1
 VS represents methane yield for pig 425 

manure mono-digestion). Fig. 4B also demonstrates the improvement on AcoD performance 426 

due to the recorded synergy between manure and raw algae. In fact, the synergy between 427 

manure and raw algae shifts the optimal scenario for methane production from co-digestion 428 

of lipid extracted algae to co-digestion of raw algae.  However, this scenario does not 429 

consider value from co-product extraction nor the processing cost. Finally, the results in Fig. 430 

4B can be used together with product value calculations (energy, lipids and/or protein), 431 

processing costs, market analysis and sensitivity testing to determine the highest-value 432 

approach for such a biorefinery. 433 



  

 434 

CONCLUSIONS 435 

A biorefinery concept is presented for co-treatment of pig manure and algae (Scenedesmus 436 

sp.). Free nitrous acid pre-treatment was used on algal biomass to recover protein (0.25 437 

kgprotein kg
-1

 VSalgae) and to improve the algal lipid extraction yield from 0.14 to 0.19 kglipids 438 

kg
-1

 VSalgae. Co-product extraction enhanced algal methane yields from 0.163 to 0.223 m
3
 439 

CH4 kg
-1

 VS, but reduced the mass of algae available for digestion. Synergy between manure 440 

and raw algae increased the methane yield of algae from 0.163 to 0.245 m
3
 CH4 kg

-1
 VS. 441 

Conversely, no synergies were observed between manure and processed algae co-digestion 442 

trials. 443 

 444 
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 457 

Fig. 1 Protein and polysaccharides release, on VS-basis, in the supernatant of the algal 458 

suspension before and after raw algal biomass FNA pre-treatment. Results in g L
-1

 are shown 459 

in Fig. SII of supplementary data. 460 

 461 

 462 
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 465 

Fig. 2 Cumulative specific methane production in time of mono-digestion BMPs (symbols) 466 

and their corresponding modelled profile (solid lines).  467 

 468 

 469 

 470 

  471 



  

  

  

Fig. 3 Experimental and theoretical methane production over time for co-digestion of (A) pig 472 

manure and raw algae, (B) pig manure and lipid extracted algae, (C) pig manure and protein 473 

extracted algae, and (D) pig manure and protein & lipid extracted algae. Symbols (♦,▲,●) 474 

show experimental measurements and dashed lines the theoretical profile. 475 

 476 
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 480 

Fig. 4 (A) Flow diagram of the integrated manure and algae biorefinery considered in this 481 

study, (B) evolution of B* in relation to algae recovery efficiency in the biorefinery displayed 482 

in Fig. 4A 483 

A 

B 



  

 484 

Table 1. Chemical characterisation of the substrates under study 485 

 Parameter Units 
Pig 

manure 
Raw Algae 

Lipid 

extracted 

algae 

Protein 

extracted 

algae 

Protein & 

lipid 

extracted 

algae 

TS g kg-1  34.6 ± 1.9 68.6 ± 1.5 56.0  ± 2.2 56.8 ± 2.4 54.9 ± 2.9 

VS g kg
-1 

24.5 ± 2.1 30.0 ± 1.3 23.8  ± 2.0 25.9 ± 2.2 22.7 ± 2.6 

tCOD g O2 kg
-1

   33.7 ± 0.5 45.4 ± 1.3 32.0 ± 0.6 44.6 ± 0.7 36.1 ± 0.5 

sCOD g O2 kg-1 4.8 ± 0.4 5.9 ± 0.3 4.9 ± 0.1 1.7 ± 0.3 2.2 ± 0.4 

VFA g L
-1

 1.9 ± 0.1 2.3 ± 0.1 1.7 ± 0.1 0.3 ± 0.1 0.1 ± 0.1 

Nitrite mg N L
-1 

- - - 28.9 ± 0.1 2.3 ± 0.1 

Ammonium mg N L-1 624 ± 44 52.5 ± 1.8 16.0 ± 0.3 15.1 ± 0.2 4.1 ± 0.5 

Phosphate mg P L-1 49.6 ± 3.4 18.4 ± 0.5 10.5 ± 0.1 37.8 ± 0.6 20.9 ± 0.5 

B0/f m
3
 CH4 kg

-1
 VS 0.480 0.532 0.469 0.602 0.557 

 486 

 487 

 488 

  489 



  

Table 2 Model parameter outputs for the mono-digestion BMP tests. 490 

*
 ftotal = ffast + fslow 491 

 492 

 493 

 494 

  495 

 khyd,fast (d
-1

) khyd,slow (d
-1

) ffast (-) fslow (-) ftotal
*
 (-) 

Manure 0.19 ± 0.01 0.025 ± 0.005 0.50 ± 0.01 0.23 ± 0.03 0.74 ± 0.04 

Raw algae 0.54 ± 0.01 0.037 ± 0.010 0.20 ± 0.01 0.11 ± 0.01 0.31 ± 0.02 

Lipid extracted algae 0.50 ± 0.02 0.043 ± 0.009 0.32 ± 0.01 0.15 ± 0.01 0.48 ± 0.02 

Protein extracted algae 0.39 ± 0.02 0.028 ± 0.009 0.20 ± 0.02 0.17 ± 0.02 0.37 ± 0.04 

Protein + lipid extracted algae 0.50 ± 0.05 0.038 ± 0.005 0.19 ± 0.01 0.19 ± 0.01 0.38 ± 0.01 



  

Table 3 Comparison between the algae methane yield (B0) and the algae methane yield per 496 

gram VS of original raw algae feed (B’). 497 

 Algae methane yield (B0) Overall methane yield (B’) Co-product extraction 

 Yield 

(m
3
 CH4 kg

-1
 VS) 

Increase  

(%) 

Yield  

(m
3
 CH4 kg

-1
 VS) 

Increase  

(%) 

Yield 

(kg kg
-1

 VS algae) 

Raw algae 0.163 - 0.163 - - 

Lipid extracted algae 0.223 37% 0.192 18% 0.14 (lipids) 

Protein extracted algae 0.222 36% 0.102 -38% 0.29 (carbohydrates) 

0.25 (protein) 

Protein & lipid extracted algae 0.211 29% 0.057 -65% 0.29 (carbohydrates) 

0.25 (protein) 

0.19 (lipids) 

 498 
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GRAPHICAL ABSTRACT 502 

 503 

 504 

 505 

 506 

  507 



  

*      Pig manure was anaerobically co-digested with raw and processed algae. 

 

*      Processing increased algae biodegradability but not its degradation rate. 

 

*      Synergy between raw algae and pig manure increased methane yield of the mixture. 

 

*      There was no significant synergy between processed algae and pig manure. 

 

*      Concept was presented for a combined biorefinery processing pig manure and algae. 




