
�������� ��	
�����

A chironomid based transfer function for reconstructing summer temperatures
in south eastern Australia

Jie Christine Chang, James Shulmeister, Craig Woodward

PII: S0031-0182(15)00048-6
DOI: doi: 10.1016/j.palaeo.2015.01.030
Reference: PALAEO 7152

To appear in: Palaeogeography, Palaeoclimatology, Palaeoecology

Received date: 4 August 2014
Revised date: 23 January 2015
Accepted date: 28 January 2015

Please cite this article as: Chang, Jie Christine, Shulmeister, James, Woodward,
Craig, A chironomid based transfer function for reconstructing summer temperatures in
south eastern Australia, Palaeogeography, Palaeoclimatology, Palaeoecology (2015), doi:
10.1016/j.palaeo.2015.01.030

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/43363725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.palaeo.2015.01.030
http://dx.doi.org/10.1016/j.palaeo.2015.01.030


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1 
 

A chironomid based transfer function for reconstructing summer temperatures in south 

eastern Australia 

 

Jie Christine Chang (j.chang2@uq.edu.au, Ph: +61 433 489 668) 

 

James Shulmeister (james.shulmeister@uq.edu.au) 

 

Craig Woodward (c.woodward1@uq.edu.au) 

 

Affiliation/Postal Address:  

School of Geography, Planning and Environmental Management 

The University of Queensland, St Lucia, Brisbane, 4072 Queensland, Australia 

 

 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2 
 

Abstract 

We present a new chironomid based temperature transfer function which was developed from a 

training set of 33 natural and artificial lakes from southeast Australia from subtropical 

Queensland to cool temperate Tasmania. Multivariate statistical analyses (CCA, pCCA) were 

used to study the distribution of chironomids in relation to the environmental and climatic 

variables. Seven out of eighteen available variables were significantly (P < 0.05) related to 

chironomid species variation and these were mean February temperature (9.5%), pH (9.5%), 

specific conductance (8.2%), total phosphorous (8%), potential evapotranspiration (8%), 

chlorophyll a (6.9%) and water depth (6.2%). Further pCCA analyses show that mean February 

temperature (MFT) is the most robust and independent variable explaining chironomid species 

variation. The best MFT transfer function was a partial least squares (PLS) model with a 

coefficient of determination (r
2

Jackknifed) of  0.69, a  root mean squared error of prediction 

(RMSEP) of 2.32˚C, and maximum bias of 2.15°C. Chironomid assemblages from actively 

managed reservoirs appear to match assemblages from equivalent natural lakes in similar 

climates and therefore can be included in the development of the chironomid transfer function. 

Although we cannot completely rule out some degree of endemism in the Tasmanian 

chironomid fauna, our analyses show that the degree of endemism is greatly reduced. 

Therefore, integrating the existing chironomid transfer function for Tasmania (Rees et al. 2008) 

with this new model is a real possibility.  
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1. Introduction 

 

In temperate Australia, high-resolution continuous palaeoenvironmental records are 

scarce due to the relative paucity of permanent water bodies (Chang et al. 2014). As a result, 

palaeoenvironmental research is focussed on a few regions where these records exist (Petherick 

et al. 2011). Continuous records that extend back to the last glaciation maximum (LGM: c. 

21,000 yrs ago) are rare and geographical coverage is poor (Petherick et al. 2013). Pollen is the 

most widely used proxy for these palaeoenvironmental reconstructions, and most of the 

reconstructions of climate in Australia are qualitative. This has limited the climate inferences 

that can be made from these records, which is unfortunate, as there are few estimates of the 

absolute scale of temperature change between glacial and interglacial times. Bioclimatic 

modelling has been used with some success (D‘Costa and Kershaw 1997) but the technique 

does not allow biotic effects to be easily separated from climate change (Jeschke and Strayer 

2008). Statistical approaches using pollen transfer functions have been developed for mainland 

Australia (Cook and Van der Kaars 2006) and for Tasmania (Fletcher and Thomas 2010). The 

former has not been widely applied and the latter is appropriate only to Tasmania. Transfer 

functions have also been developed using other organisms, such as diatoms (Tibby 2004; Tibby 

and Haberle 2007), but diatoms are used primarily for salinity and other limnological variables 

rather than temperature estimates. Molluscs (Edney et al. 1990; D‘Costa et al. 1993) and 

beetles (Porch et al. 2009; Sniderman et al. 2009) have also been applied but a critical gap 

remains in the tools that are available to determine past changes in temperature in Australia. 

Chironomids (Diptera: Chironomidae) have been widely used as a proxy in 

palaeoclimate and palaeoenvironmental studies (Walker and Paterson 1985; Hofmann 1986; 

Walker 1987). Since temperature is a dominant factor in every aspect of the chironomid life 

cycle (e.g. egg hatching, larval and pupal development, adult emergence), many studies have 
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focused on the influence of temperature on the distribution and abundance of chironomids, in 

the context of past climate change (Walker 2002; Porinchu and MacDonald 2003; Walker and 

Cwynar 2006).  

Most chironomid-based reconstructions have been carried out in temperate and sub-

polar regions of the Northern Hemisphere, including areas in central and northern Europe 

(Olander et al. 1999; Larocque et al. 2001; Brodersen and Anderson 2002; Luoto 2009; Heiri et 

al. 2011) and northern North America (Porinchu et al. 2002; Barley et al. 2006; Porinchu et al. 

2009; Brodersen et al. 2008; Medeiros and Quinlan 2011). There are only few applications in 

the Southern Hemisphere and these are from New Zealand (Woodward and Shulmeister 2006; 

Dieffenbacher-Krall et al. 2007), Tasmania (Rees et al. 2008), east Africa (Eggermont et al. 

2010) and South America (Massaferro and Larocque-Tobler 2013).  

Early palaeoecological and palaeoclimate investigations of chironomids from the 

Southern Hemisphere were restricted to semi-quantitative interpretations because the numerical 

techniques for creating transfer functions were still in an early stage of development. For 

example, Schakau (1993) investigated the modern chironomid distribution from New Zealand 

lakes using cluster analysis and ordinations. Classification techniques were applied down-core 

to interpret the fluctuations in fossil chironomid abundances and species from a 6,000 year 

record from Lake Grasmere in New Zealand (Schakau 1991) and a glacial transition to 

Holocene record from Blue Lake in alpine Mount Kosciusko (Fig. 1), Australia.  

Dimitriadis and Cranston (2001) performed the first quantitative reconstruction based 

on chironomids from eastern Australian lakes. Instead of using chironomid head capsules in the 

training set, they used the presence and abundance of chironomid exuviae from 68 water 

bodies in eastern Australia. Dimitriadis and Cranston (2001) then used the mutual-climate-

ranges (MCRs) of the pupal exuviae in the training set to create a Holocene climate 

reconstruction from Lake Barrine (Atherton Tableland, northeast Queensland, Fig. 1) based on 
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the down-core chironomid head-capsule record. They inferred up to 6˚C temperature change in 

the Holocene.  

The first Southern Hemisphere transfer function based on chironomid head capsules 

was developed by Woodward and Shulmeister (2006) for New Zealand. Both summer 

temperature and chlorophyll a (Chl a) transfer functions were presented. The summer 

temperature transfer function was successfully applied to a record spanning the marine oxygen 

isotope stage 3/2 transition (∼26,600 - 24,500 cal yr BP) from lake deposits in Lyndon Stream, 

New Zealand (Woodward and Shulmeister 2007). A second independent chironomid model for 

New Zealand was produced by Dieffenbacher-Krall et al. (2007), which also yields satisfactory 

reconstructions. 

 In Australia, a head capsule based chironomid transfer function was developed by Rees 

et al. (2008) for summer temperature from Tasmanian lakes. This transfer function was applied 

to produce late-glacial (~16,000 cal yr BP) to late Holocene summer temperature 

reconstructions from Eagle Tarn and Platypus Tarn in Mount Field National Park, Tasmania 

(Fig. 1) (Rees and Cwynar 2010a). Although the Tasmanian chironomid transfer function 

appears to be robust, biogeographical controls on the Tasmanian chironomid taxa may prevent 

the application of the Tasmanian transfer function to mainland sites. 

 Concerns over the influence of biogeography on Tasmanian and mainland Australian 

chironomid taxa stem from a chironomid exuviae survey of eastern Australian lakes by Wright 

and Burgin (2007). Wright and Burgin argue for the presence of 23 endemic taxa from 

Tasmania, including 5 genera, 4 species and 14 undescribed morpho-species. Despite this 

assertion, Wright and Burgin‘s study does not completely rule out the possibility of applying 

the Tasmanian transfer function to the mainland or producing a combined mainland and 

Tasmanian transfer function. Wright and Burgin (2007) did not include mainland alpine lakes 

in their study and the degree of Tasmanian endemism may be over-estimated. The level of 
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taxonomic resolution provided by exuviae is typically higher than for chironomid head 

capsules. Even if there are endemic chironomid species in Tasmania, their presence might not 

dramatically affect the composition of sub-fossil chironomid head capsule assemblages. 

Here we present a temperature transfer function based on sub-fossil assemblages of 

Chironomidae (non-biting midges), from 33 southeast Australian lakes. We included 7 lakes 

from Tasmania in this total as an initial test of the feasibility of producing a chironomid 

training set combining both mainland and Tasmanian lakes. We assessed Wright and Burgin‘s 

argument for Tasmanian chironomid endemism using our new training set and published 

information on the distribution of Wright and Burgin‘s endemic taxa. A combined training set 

would be desirable because it is difficult to find non-impacted, permanent freshwater lakes 

spread continuously along a long temperature gradient on mainland Australia. Due to the rarity 

of freshwater bodies on the mainland, we also investigated the possibility of including artificial 

water-bodies in the training set.  

 

2. Materials and methods 

 

2.1 Study sites 

 

This data set comprises 25 natural lakes and 8 artificial water bodies located in the 

south-east Australia (Table 1, Fig. 1). The transect covers a distance of 2500 km along the east 

coast of Australia from Kureelpa, Queensland to Mount Field National Park, Tasmania 

(25.96˚S to 42.67˚S, 140.18˚E to 153.26˚E) (Table 1, Fig. 1). The climate ranges from sub-

tropical in the north, to cool temperate in the south, and hence there are large temperature and 

precipitation gradients in the data set. Elevation of the sites ranges from sea level to ~ 2000 m 

above mean sea level (a.s.l) (Table 1a), corresponding to estimated mean February air 
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temperatures (MFT) of 10.7–24.7˚C (Table 1a). A detailed description of the climate, 

vegetation and geology of the study area is provided in Chang et al (2014).  

 

2.2 Chironomid collection and analysis 

 

The lakes were sampled during the Southern Hemisphere summer (January or 

February) of 2012 and 2013 (Fig. 1 and Table 1). Lakes were selected along an altitudinal and 

latitudinal range to ensure a long temperature gradient. Where possible we sampled shallow to 

medium depth (between 1-10 m) lakes to ensure a close relationship between bottom water 

temperature and air temperature. The sampling of very deep (> 30 m), stratified lakes was 

avoided to eliminate the effect of hypolimnetic anoxia on the chironomid species assemblages 

(Little and Smol 2001). A minimum of three sediment cores were collected using a Glew Mini 

Corer (Glew 1991) at the deepest point or lake centre where bathymetry was not available. The 

top 2 cm of each core were extruded on site and packaged at 0.5 cm intervals in Whirlpak
®
 

sample bags. Sediment samples were refrigerated prior to analysis.  

Sediment samples were processed for chironomid analysis following the method 

outlined in Hofmann (1986) with the following modification. Samples were deflocculated in 

warm 10% KOH for 20 minutes and washed on a 90 µm mesh with distilled water. Samples 

were transferred to a Bogorov counting tray and examined under a dissection microscope at 50 

× magnification. Chironomid head capsules were hand-picked using fine forceps onto a glass 

slide, until a minimum of 100 head capsules were obtained (when possible). Chironomid head-

capsules were mounted on glass slides in a drop of Euparal
®
 and covered with a glass 

coverslip. Head-capsules were mounted ventral side up to assist identification. Chironomid 

species were identified using a compound light microscope at 400 × magnification, following 
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the published identification guides by Cranston (2000a, 2010), Brooks et al. (2007) and 

Dieffenbacher-Krall et al. (2008). 

Several studies have examined the minimum number of chironomid head capsules that 

should be extracted to provide representative samples. Larocque (2001) found that 50 head 

capsules is the minimum required to provide an accurate temperature estimate, but counts 90 

head capsules or above will give much better representation of taxa in the assemblage. Quinlan 

and Smol (2001) concurred with this finding, whereas Heiri and Lotter (2001) argued that the 

minimum count size is model and location dependent. We therefore used rarefaction analysis in 

R (version 2.11.1, R Development Core Team 2010) and the Vegan package (version 2.0-10, 

Oksanen et al. 2013) to test how representative different sample sizes were in our training set. 

A plot of observed species richness vs predicted species richness was derived using the 

‗estimateR‘ function which uses Chao‘s method (Chao 1987) to estimate actual richness. We 

also created multiple rarefaction curves for each site based on multiple random sub-samples 

from the full species pool. This allowed us to visualise the effect of simulated increased 

sampling intensity on the observed species richness. 

 

2.3 Lake water chemistry and environmental variables 

 

Water samples for chemical analyses were collected from 30 cm below the water 

surface at the location where the core samples were taken. Untreated water samples were 

collected for the analysis of major ions (Na
+
, K

+
, Ca

2+
, Mg

2+
, HCO3

-
, Cl

-
, SO4

2-
) (Table 1b) and 

total nitrogen/total phosphorous (TN/TP) analysis. These samples were kept frozen until 

analysis. A 1000 ml water sample was filtered for Chl a through a 4.7 cm diameter GF/F filter 

(0.45 µm pore size). The Chl a filter was wrapped in foil and kept frozen for subsequent 

analysis. The 125 ml water sample was filtered using a syringe and a Whatman
®
 syringe filter 
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(Supor
®
 Membrane 0.45 µm pore size) and the filtered water was frozen in the bottle for later 

analysis for dissolved reactive phosphorus (DRP) and reactive nitrogen (NOX). Total dissolved 

solids (TDS), pH, specific conductance (COND) and turbidity (TURB) were also obtained 

from water chemistry analyses which was carried out by the Forensic and Scientific Services, 

in Brisbane, Queensland. In the field, water temperature, oxidation reduction potential (ORP), 

pH, dissolved oxygen (DO), specific conductance (COND), total dissolved solids (TDS), 

salinity (SAL), turbidity (TURB) were recorded from 30 cm below the water surface using an 

Aquaread
®
  multi-parameter meter. Lake depth at the sampling point was measured using a 

Speedtech
® 

portable depth sounder.  

Climate variables were obtained using the combination of the WorldClim program 

(available from http://www.worldclim.org/bioclim, accessed 20 August 2013) and ArcGIS 

10.1. Worldclim data for Australia is based on climate surfaces derived from around 600 

nation-wide weather stations that have climate records spanning the years 1950 – 2000 

(http://www.bom.gov.au/climate/data/stations/, accessed 20 January, 2014). For this study, 

mean February temperature (MFT), mean annual temperature (MAT) and mean annual 

precipitation (Precip) were considered. The potential evapotranspiration (PET) values were 

obtained from the Global Potential Evapo-Transpiration (Global-PET) and Global Aridity 

Index (Global-Aridity) data set (CGIAR-CSI, available from http://www.cgiar-

csi.org/data/global-aridity-and-pet-database, accessed 20 August 2013). 

 

2.4 Statistical analyses 

 

2.4.1 Test for Tasmanian endemism and difference between natural and artificial lakes 
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A principal components analysis (PCA) of the chironomid taxa data were run for the 33 

lakes. We tested to determine if the chironomid assemblages were significantly different in 

mainland lakes compared to Tasmanian lakes to look for potential biogeographical effects. We 

also tested for significant differences between natural and artificial lakes. The distribution of 

both sets PCA axis scores were assessed for normality using the Shapiro-Wilk test (Shapiro 

and Wilk 1965) respectively. The data were normally distributed around the mean so that a 

student t-test was appropriate to test significance of the results.  

We first performed a t-test (α= 0.05, two sample assuming unequal variances) on 

sample axis scores from a principal components analysis (PCA) of the chironomid taxa based 

on head-capsule assemblages for Tasmania vs. mainland lakes. This is not an exhaustive test 

for endemism as it is based on the taxonomic resolution possible with head capsules. In order 

to further test for endemism in the Tasmanian chironomid taxa we performed a literature search 

for records of Wright and Burgin (2007)‘s endemic Tasmanian taxa, and searched the 

Australian National Insect Collection records (Atlas of Living Australia database: 

http://bie.ala.org.au/species/CHIRONOMIDAE, accessed 20 July 2014). The same t-test was 

performed to natural vs. artificial lakes. 

 

2.4.2 Selection of environmental variables and model development 

 

Constrained ordinations were performed using CANOCO version 4.5 (ter Braak and 

Šmilauer 2002) to determine which variable(s) explained a significant proportion of the 

variation in the chironomid species data. Prior to ordination, climate and lake water chemistry 

data were assessed for normality in Minitab 16
®

 using the Shapiro–Wilk test (Shapiro and Wilk 

1965), and through measurements of skewness and kurtosis (Zar 1999). All variables apart 
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from MAT, MFT and pH were normalized using a log10 transformation. Chironomid species 

were used in the form of square root transformed percentage data.  

A detrended correspondence analysis (DCA) (with rare taxa down-weighted) of the 

chironomid data was used to determine whether linear or unimodal methods were appropriate 

for selecting the best candidates for model construction. The gradient length for DCA axis 1 

was 2.067 standard deviation units, which means that a unimodal technique (Canonical 

correspondence analysis, CCA) is appropriate (Birks 1998). CCAs were run to determine 

which environmental variables explained the highest and most significant amount of the 

variation in the chironomid species data. The environmental variable with highest variance 

inflation factor (VIF) was removed after each CCA and the CCA was repeated until all VIFs 

were less than 20 (ter Braak and Šmilauer 2002). The ability of the remaining environmental 

variables to explain a statistically significant amount of the variation in the chironomid species 

data was determined using a series of CCAs with manual forward selection and  a Monte Carlo 

permutation test (999 unrestricted permutations) (ter Braak and Šmilauer 2002). Variables that 

were significant (p ≤ 0.05) were retained for further analyses. To test the strength of the 

explanatory power of each of the significant variables for the chironomid distribution, a series 

of partial canonical correspondence analyses (pCCAs) were performed with the remaining 

significant variables included as co-variables. This step was used to distinguish between 

indirect and direct relationships between the environmental variables and the chironomid 

species data. Only environmental variables that retained their significance after this step were 

considered for transfer function development. CCA bi-plots of sample and species scores were 

generated using CanoDraw (ter Braak and Šmilauer 2002). Chironomid taxon response curves 

for significant variables (p ≤ 0.05) were generated in CanoDraw using Generalized Linear 

Models (GLMs) with a Poisson distribution.  
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Transfer functions for the significant environmental variable(s) selected in the CCAs 

and pCCAs were developed in the computer program C2 (Juggins 2005). A detrended 

canonical correspondence analysis (DCCA) was used to determine whether chironomids were 

responding in a linear or unimodal fashion along the gradient of the environmental variable 

selected for model development (Birks 1995). Leave-one-out, cross-validation was used as this 

technique is more robust for data sets with fewer than 80 sites (Kim and Han 1997). 

Transfer functions were selected based on the performance of the jack-knifed 

coefficient of determination (r
2

jackknifed), average bias of jack-knifed predictions (AveBiasjack), 

maximum bias of jack-knifed predictions (MaxBiasjack), and root mean square error of 

prediction (RMSEP) (Birks 1998). Additional components were only included in the model if 

the addition of an additional component reduced the RMSEP by at least 5% (Birks 1998). 

 

3. Results 

 

3.1 Chironomid Taxa 

 

The average sample size in the training set is 128 head capsules and only two samples 

(Chaffey Dam (n = 0) and Lake Cootapatamba (n = 59) produced fewer than 100 head 

capsules. Counts of this level are generally regarded as reliable (Heiri and Lotter 2001). 

Rarefaction analysis (Fig. 2) indicated that the sample size for most sites was adequate for 

including all of the common chironomid species. There is a significant correlation between 

observed and predicted species richness (Fig. 2a) and only one site (Lake Cootapatamba) 

produced a low head-capsule count (59) which possibly under-represents the full chironomid 

species pool. All head capsules from the top 2 cm of the Cootapatamba sediment core were 

used. The plot of multiple rarefaction curves (Fig. 2b) indicates that the minimum number of 
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counted head-capsules that is sufficient to capture the actual species richness varies from site to 

site. 

One site (Chaffey Dam) had no head capsules and was removed from the dataset for 

further analyses. 43 chironomid taxa were identified and counted from the training set. Five 

rare species were removed from further analyses as they have a maximum abundance of less 

than 2% and/or occurred in fewer than two lakes (Brooks and Birks 2001).  

 

3.2 Test for Tasmanian endemism and difference between natural and artificial lakes 

 

  Chironomid species assemblages for the seven Tasmanian lakes show no significant 

difference to mainland lakes based on t-test results (Fig. 3a, Supplementary Table 1a). 14 of 

Wright and Burgin‘s 23 endemic taxa are undescribed morpho-species (Supplementary Table 

2), so it is not possible to assess these taxa for endemism. The remaining 9 endemic taxa 

comprise 5 genera and 4 species. Head capsules from one of Wright and Burgin‘s (2007) 

endemic Tasmanian taxa (Thienemanniella sp.) were found on the Australian mainland in Blue 

Lake and Lake Albina (Mount Kosciuszko), from our training set. Head capsules from Wright 

and Burgin‘s (2007) other 4 ―endemic‖ Tasmanian genera (Apsectrotanypus sp., Pentaneurini 

genus E, Nanocladius sp., Orthocladiinae ―MO5‖ (Now = Echinocladius sp. Cranston)) were 

not found in our training set but have been previously recorded from mainland sites by 

Marchant et al (1999),  Cranston ( 2000a), Cranston (2000b), and  Krosch (2011) respectively 

(Supplementary Table 2). Wright and Burgin‘s (2007) four endemic Tasmanian species 

(Botryocladius australoalpinus, B. grapeth, Riethia plumosa, Tanytarsus liepae) were not 

identified in the training set, but have been previously recorded from the Australian mainland 

by Cranston and Edward (1999), Cranston and Edward (1999), Cranston (Australian National 
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Insect Collection, available from http://bie.ala.org.au/species/CHIRONOMIDAE, accessed 20 

July 2014), and Cranston (2000a) respectively (Supplementary Table 2). 

 The t-test of PCA axis scores shows that there is no significant difference in the 

chironomid assemblages from natural and artificial water bodies on PCA axis 1, but there is on 

PCA axis 2 (Fig. 3b and Supplementary Table 1b). PCA axis 2 mainly separates warm 

stenotherms (low PCA axis 2 scores, e.g. Dicrotendipes, Kiefferulus, Cladopelma) from cold 

stenotherms (high PCA axis 2 scores, e.g. Parakiefferiella) (Supplementary Fig. 1a). Warm 

stenotherms are more common in three high altitude, shallow artificial lakes (not reservoirs) 

(Highland Waters (LD), Lake Samuel (LS) and Lake Cantani (LCN)) than other high altitude, 

natural lakes (Supplementary Fig. 1b).   

 

3.3 Selection of environmental variables and model development 

 

Individual ions (Table 1b), precipitation (Precip), and mean annual temperature (MAT) 

were excluded prior to ordination. Cation and anion gradients are correlated in PCA space and 

are better represented by specific conductance (see Chang et al. 2014: Supplementary Fig. 1). 

Rainfall is usually a secondary effect on chironomids species distribution where its effect on 

chironomids is through influencing or altering the lake water chemistry by dilution and in-lake 

macrophyte composition and structure through changes in water depth. However, potential 

evapotranspiration (PET) was included in this dataset since evaporative balance drives salinity 

and nutrient gradients in sub-humid and semi-arid areas, especially for shallow lakes with 

endorheic basins (Chang et al. 2014). Chang et al (2014) concluded that PET is a much 

stronger climate driver for lake water chemistry and nutrient status changes of the east coast 

Australian waterbodies than rainfall alone. The choice of summer temperatures as a control on 

chironomids is routine for the alpine lakes and those in more temperate settings. Only two of 
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our sites (UQ lakes, Lake Poona) are not located in temperate settings as defined by the 

Köppen-Geiger climate classification (Kottek et al. 2006), so it is reasonable to assume that 

summer is the prime breeding period for chironomids in this study also.   

Total nitrogen (TN) produced the highest VIF in a CCA with all selected environmental 

variables and chironomid species and it was therefore not considered for further analyses. The 

remaining seven variables individually accounted for a significant portion (p ≤ 0.05) of the 

variance (Fig. 4). In order of explanatory power, these were mean February temperature 

(9.5%), pH (9.5%), specific conductance (8.2%), total phosphorous (8%), potential 

evapotranspiration (8%), Chl a (6.9%) and water depth (6.2%).  

South eastern Australian lakes in this training set cover large productivity and 

temperature gradients. The first four axes of the CCA constrained by the seven significant 

environmental variables (Fig. 4) account for 28% of the variance in the chironomid species 

data (Table 2). Depth, MFT and pH are significantly correlated to the first axis and Depth, TP, 

pH and specific conductance are correlated with the second axis. Mean February temperature 

(MFT) shows the strongest correlation with the first axis (Table 2). Total phosphorous (TP) 

shows the strongest correlation with the second axis (Table 2).  

Partial CCA‘s were then undertaken to determine the direct and indirect effects of each 

of the seven significant variables. The pCCA results show that lake water depth (DEPTH), 

nutrient variables (TP, Chl a) and specific conductance (COND) are confounded, while 

potential evapotranspiration (PET) is correlated with specific conductance. pH retained 7.7% of 

variance explained and remained significant (p ≤ 0.05) after the pCCAs with all other 

significant variables partialled out (Table 3). Although MFT and PET appear to be confounded, 

PET is the dependent variable because evaporation is partially a function of temperature and 

not vice-versa. In summary, pH and MFT are the two primary independent parameters that 
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should be considered for model construction. They both explained the largest amount of 

variance (both 9.5%) (Table 3). 

Although pH is also a good candidate for a transfer function, the focus here is on 

developing a palaeoclimate proxy and MFT is a more useful parameter. The taxon response 

curves and a plot of chironomid species turnover with respect to temperature (Fig. 5 and Fig. 6) 

show that the major taxa (p ≤ 0.05 and N2 ≥ 5) which are dominant at warm sites are 

Polypedilum spp., Parachironomus spp., Coelopynia pruinosa., Paratanytarsus spp., 

Tanytarsus lactescens. and Procladius spp. Taxa that are typical of cool sites include  

Paralimnophyes morphotype 1and Botryocladius. However, many taxa may respond to other 

environmental variables as well (e.g. Cladopelma, Dicrotendipes and Kiefferulus, see Fig 6 and 

Table 4). A few taxa such as Chironomus, Procladius, Pentaneurini and undifferentiated 

Tanytarsini contain many species each of which is likely to have different environmental 

responses but cannot be separated from similar morphotypes. 

 

3.4 The transfer function 

 

The DCCA results (gradient length = 1.07 standard deviation units) suggest a linear response 

of chironomid taxa along the mean February temperature gradient (Birks 1998), therefore, a 

partial least squares (PLS) model was appropriate for the transfer function construction (ter 

Braak and Juggins 1993) for MFT (Table 5) in C2 (Juggins 2005). The third component of the 

PLS model (with 3 components, jack-knifing, including 33 lakes and 38 non-rare species, 

Table 5) was selected based on the criteria of Birks (1998). It produced a coefficient of 

determination (r
2
 Jackknifed) of 0.69, RMSEPjack  of  2.32˚C, maximum biasjack  of  2.15˚C and an 

AveBiasjack of 0.07 ˚C (Table 5, Fig. 7).  
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4. Discussion 

 

4.1 Can we include artificial lakes in temperature training sets? 

 

A recent study (Chang et al. 2014) showed that reservoirs and other artificial water 

bodies respond to stressors in their catchments in a similar fashion to natural lakes. Despite the 

general preference for natural lakes for temperature training sets, this observation is not 

unexpected as human impacts that could change water quality in reservoir catchments are 

generally limited. We might expect chironomid species composition in reservoirs and natural 

lakes in environmentally equivalent settings to be similar.  

 However, we also note that for three high elevation artificial lakes (not reservoirs) (LD, 

LS and LCN), chironomid assemblages resemble lowland eutrophic lakes, with high values of 

Cladopelma, Dircrotendipes and Kiefferiulus, (see Supplementary Fig. 1, Fig 6 and Table 4). 

These three artificial water bodies comprise two nutrient rich trout stocked lakes in Tasmania 

and a shallow, productive recreation lake on Mt Buffalo (Table 1a). If the two Tasmanian lakes 

are excluded, the distinction between warm and cold lakes is markedly diminished (Fig 6). On 

Mt Buffalo, the shallowness of Lake Cantani increases its mean temperature in summer, 

making it resemble a lower elevation lake due to the increased abundance of Cladopelma. 

 In summary, chironomid assemblages from true reservoirs appear to match assemblages 

from equivalent natural lakes in similar climates. We should be cautious about including other 

types of artificial water bodies, especially those where the food web or trophic status might be 

significantly altered.    

 

4.2 Endemism and other considerations  

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

18 
 

In our dataset there was no significant difference between the chironomid assemblages 

from Tasmania and the Australian mainland (Fig. 3a, Supplementary Table 1a) for the 

taxonomic resolution that is available for sub-fossil head capsules. This test can be considered 

a first order test of the possibility for combining Tasmanian and mainland training sets. As we 

will mention below, we did detect a genus in our dataset (Thienemanniella sp.) that was 

previously considered endemic to Tasmania (Wright and Burgin 2007), but this does not fully 

rule out some degree of Tasmanian endemism. To do this we need to have chironomid 

distribution records with the same taxonomic resolution that was provided in Wright and 

Burgin‘s (2007) study on Australian chironomid biogeography. 

Five genera (including Thienemanniella sp.) and four species that Wright and Burgin 

(2007) identified as Tasmanian endemics have actually been reported from the Australian 

mainland (Supplementary Table 2). This means that the basis for Tasmanian endemism now 

relies on the presence of 14 undescribed morpho-species in Wright and Burgin‘s (2007) 

dataset. It was not possible for us to further test for endemism in records of adult and larval 

chironomid distributions for morpho-species that are based on exuviae alone. Further collection 

of exuviae from mainland lakes and rearing of chironomid larvae to possibly associate morpho-

species with other life stages of described species is required to rule out endemism. In the 

absence of this data, alternative methods for testing for endemism would include combining 

our dataset with Rees et al. (2008) and splitting the pooled dataset into Tasmanian and 

Mainland sites. Mainland sites can then be used to reconstruct temperatures from Tasmanian 

sites and vice-versa. This technique has been used to compare trans-Atlantic chironomid 

datasets (Lotter et al., 1999). At this stage we can only conclude that claims for endemism are 

greatly diminished, but we do not expect future efforts to combine datasets to be thwarted by 

endemism.  
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There is no reason for a high degree of Tasmanian endemism when changes in sea-level 

over the Quaternary are considered. Tasmania is currently isolated from the mainland by the c. 

250 km wide expanse of water known as the Bass Strait. However, during glacial periods, such 

as the last glacial maximum (LGM, c. 21,000 years ago), global sea level was c. 120 m lower 

than present so that Tasmania was connected to the mainland. In fact, since Bass Strait is c.75 

m deep at its deepest point, it is connected with the mainland during most stadials. Given that 

the connection between Tasmania and the mainland occurs during cold phases, this would 

facilitate the dispersal of cold stenotherms from Tasmania north onto the mainland. Wright and 

Burgin (2007) did not sample the Kosciuszko lakes and these represent the one likely high 

altitude refugium for cold stenotherms that could have migrated north during past glaciations. 

From these lines of evidence, we conclude that a transfer function based on summer 

temperature is feasible for south eastern Australia. 

   

4.3 Reconciliation and integration with Tasmanian transfer function  

 

We recognize that the temperature error in this transfer function is relatively high in 

comparison to other transfer functions. This reflects the long scalar length of the temperature 

gradient which extends from sub-tropical to sub-alpine locations, some 14°C. The RMSEP is 

2.3°C which represents 16% of the scalar length. This is comparable with the recently 

developed western Irish chironomid-based calibration set (Potito et al., in press). The Potito et 

al. (In press) dataset has a RMSEP of 0.57°C, but the temperature range this dataset covers is 

only 3.8°C; so the error represents 15% of the scalar length. Furthermore, it has been observed 

that data sets with large temperature gradients naturally have larger errors (Walker and Cwynar 

2006) but this in no way diminishes the value of the reconstruction. 
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The number of water bodies used in the study is small (33), but this is a function of the 

rarity of lakes on continental SE Australia. There are additional natural lakes to sample but 

they are exclusively in areas and elevations that we have already sampled. When we 

established this study we attempted to focus on natural water bodies. It is clear that in order to 

extend the training set, more reservoirs will need to be included. Even allowing for this, there 

is a gap between summer temperatures of c. 13.3-14.8˚C for which there are no ideal candidate 

lakes or reservoirs. There are some reservoirs at these temperatures (e.g. Lake Jindabyne) but 

they are exceptionally large and deep lakes, and require both alternative sampling strategies 

and some analyses and consideration before including in the data set. The other alternative is to 

integrate this model and data set with the Tasmania model and data set of Rees et al (2008). 

We have deliberately replicated some of the sites (e.g. Eagle Tarn) from Rees et al (2008) so 

that the models can be compared and harmonised in due course and this is an obvious next step 

for this research. 

 

 4.4 Value of the transfer function 

 

This transfer function has relatively large errors for detecting change during periods of 

relative climate stability (i.e. in the Holocene). However, on longer time scales, the expected 

change from Last Glacial Maximum (LGM) to the Holocene in south eastern Australia is 

between 8 to 10˚C (Galloway 1965; Miller et al. 1997). The precision of the current transfer 

function is ample to constrain climate change of this magnitude. Transfer functions with 

relatively large errors may still be able to provide a reliable indication of variation in 

temperature through time and this should be tested using the method developed by Telford and 

Birks (2011).  

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

21 
 

5. Conclusions  

 

We constructed a February mean temperature transfer function based on the modern 

distribution of Chironomids (Diptera: Chironomidae) species in southeast Australia. The 

training set comprises 33 natural and artificial lakes in locations that span the subtropics to the 

alpine zone. The February mean temperature model is statistically robust with an r
2
 Jackknifed of 

0.69, a RMSEP of 2.32˚C and a maximum bias of 2.15 °C. The transfer function is suitable for 

the reconstruction of summer temperatures during the LGM and the late glacial to Holocene 

transition in south eastern Australia. In a context where there are few reliable and no 

continuous estimates of palaeo-temperature available from mainland Australia, the transfer 

function represents a significant advance for palaeoclimatological studies. 

We also conclude that chironomids assemblages in actively managed reservoirs (non-

impacted) show no significant difference to natural lakes in the same climate and vegetation 

zones, and therefore can be included for transfer function development. Although we cannot 

completely rule out some degree of endemism in the Tasmanian chironomid fauna, our 

analyses show that the degree of endemism indicated by earlier studies is greatly reduced. This 

raises the real possibility of integrating the existing chironomid transfer function for Tasmania 

with this new model for the SE Australian mainland.  
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Fig. 1 Map of eastern Australia with the 34 study sites identified, the numbers correspond to 

the lake names and numbers in Table 1. 

 

Fig. 2 (a) Plot of observed species richness vs predicted species richness (b) Rarefaction curves 

for individual sites indicating estimated species richness with respect to increasing sub-sample 

size. Rarefaction curves begin to flatten once true species richness is achieved. 

Together, these plots indicate that sample sizes are adequate for most samples to capture all but 

the most rare species. Only one site (CTL) with a low head capsule count may possibly 

underestimate the true species richness. Minimum sample size varied from site to site and 

counts as low as 50 may be sufficient to capture the actual species richness  

(e.g. LPO). 

                                                                                                                                                                                                                                       

Fig. 3 PCA plots for exploring the difference between (a) mainland and Tasmanian lakes and 

(b) for natural and artificial lakes. PCA axis 1 and axis 2 explains 16.9% and 10.8% of the 

variance in chironomid species data respectively. A t-test was performed on the sample score 

means for each (Supplementary Table 1a and 1b). The sample size for the Tasmania and 

artificial lakes is small (< 10). There are no significant differences apparent between axis 1 

scores for both tests. There are no differences in axis 2 scores either for Tasmania vs mainland 

lakes, but there is for natural vs artificial lakes. Warm taxa are over-represented in artificial 

lakes that are not reservoirs (Supplementary Figure 1). 
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Fig. 4 CCA Biplots of (a) sample and (b) species scores constrained to seven environmental 

variables that individually explain a significant (p < 0.05) proportion of the chironomid species 

data. Sites codes correspond to site names in Table 1. Taxon numbers correspond to taxa in 

Table 6. Sites and taxa in warmer environments tend to plot in the upper left quadrant. Taxa 

typical of warmer sitesinclude  Harnischia spp., Cryptochironomus spp., Polypedilum spp., 

Coelopynia pruinosa, Cladopelma spp., Paratanytarsus spp., Procladius spp.,  Riethia  spp., 

while sites and taxa in colder environments tend to plot in the lower right hand quadrant. Taxa 

typical of cold sites include Paralimnophyes morphotype 3, Parakiefferiella morphotype 1, 

Orthoclad type 1, Orthoclad type 4, Pseudosmittia 2, and Botrycladius. Eutrophic sites and 

taxa typical of these environments tend to plot in the lower left hand quadrant, while 

oligotrophic sites and taxa typical of these environments tend to plot in the upper right hand 

quadrant. 

 

Fig. 5 Taxon response curves for taxa that show a significant response to temperature (p < 

0.05) using a generalised linear model with Poisson distribution (ter Braak and Smilauer 2002).  

(a) Taxa which are more common at lower temperatures, such as Paralimnophyes morphotype 

1 and Parakiefferiella morphotype 2 respond strongly to cooling in temperature (b) Taxa which 

are more common at higher temperatures demonstrate weaker but still significant responses. 

Examples include Procladius, Polypedilum spp. and Tanytarsus lactescens. 

 

Fig. 6 Stratigraphy diagram of the 38 non-rare taxa included in the final model, where 

observed mean February temperature is on the y-axis and taxon abundance is in percentage. 

Taxa such as Cladopelma, Dicrotendipes and Kiefferulus (*) show high abundance in lowland 

warm lakes but are also present in highland artificial lakes (Grey bars). 
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Fig. 7 Performance of the three component PLS model where (a) shows the predicted versus 

observed mean February temperature and (b) displays residuals of the predicted versus 

observed mean February temperature. Note that the model has a potential to over predict 

temperatures from some very shallow high altitude lakes by up to ~6˚C. These lakes have 

increased mean water temperature in summer and chironomid assemblages may resemble 

lower elevation sites. 
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Figure 2 
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Figure 3 
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Figure 6 
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Figure 7 
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Table 1 (a) Selected climatic and environmental variables for the thirty-four water bodies 

sampled from Southeast Australia (b) Major ions measurement for the thirty-four water bodies 

sampled from Southeast Australia 

 

Table 2 CCA summary of the seven significant variables including canonical co-efficients and 

t-values of the environmental variables with the ordination axes including 33 lakes and 38 non-

rare species 

 

Table 3 Partial CCAs of the seven significant (p≤0.05) environmental variables alone and with 

the effects of other significant variables partialled out for 33 lakes with 38 non-rare species 

included. 

 

Table 4 List of Chironomid taxa enumerated in this study along with data on distribution and 

environmental significance 

 

Table 5 Performance of partial least squares (PLS) model for reconstructing mean February 

temperature of southeast Australia using 33 lakes and 38 non-rare chironomid species. The 

bold indicates the model of choice. 
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Table 1a 
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Table 1b 
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Table 2 
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Table 3 
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Table 4 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

50 
 

Table 5 
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Highlights 

 First chironomid-based transfer function from mainland Australia 

 Reconstructs mean February temperatures and will give new tool for quantitative 

palaeoclimate estimates from Australia 

 Reservoirs were included in the development of the training set. 

 Integrating the existing chironomid transfer function from Tasmania with this new 

model is a real possibility.  


