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Abstract 

This thesis investigates the in-vivo function of the plantar intrinsic foot muscles. Though much 

speculation has been made of the function of these muscles, scant detail exists pertaining to their 

function. This thesis provides a novel description of the function of these muscles in providing 

active support for the longitudinal arch (LA) during postural tasks and locomotion. Furthermore, the 

following chapters provide evidence of an active mechanism to stiffen the LA, primarily provided 

by the graded activation of these muscles in response to increasing load. This mechanism may have 

important implications for how energy is stored and released within the foot. Chapter one provides 

a general overview of the existing literature pertaining to the function of these muscles. Chapters 

two, three, four and five contain the individual manuscripts from each experiment performed as part 

of this thesis. Chapter six provides a summary of the findings from the thesis and some general 

suggestions for the direction of future research in this field. 

 

Chapter two investigates the role of the plantar intrinsic foot muscles in providing postural support 

for the foot during quiet standing. Intra-muscular electromyographic (EMG) activity was recorded 

from abductor hallucis (AH), flexor digitorum brevis (FDB) and quadratus plantae (QP) while 

participants performed two balance tasks of graded difficulty. Each task was performed while 

standing on a force plate, allowing appraisal of any relationship between loading, postural sway and 

intrinsic foot muscle activity. Intrinsic foot muscle activation increased in response to postural 

demand, with these muscles displaying highly correlated inter-muscular activation patterns in 

response to medial postural sway. Contrary to previous thoughts, these muscles are clearly 

important in postural control and are recruited in a highly co-ordinated manner to stabilise the foot 

and maintain balance, particularly during single leg stance, in the medio-lateral direction. 

 

The purpose of Chapter three was to investigate if the neurophysiological properties of the largest 

intrinsic foot muscle (abductor halluces) are matched to its suggested postural function. A highly 

selective, quadrifilar arrangement of fine wire EMG electrodes was employed to describe the 

discharge properties of AH motor units during ramp and hold isometric contractions, as well as 

during a submaximal, constant force, fatiguing contraction. Abductor hallucis motor units displayed 

small rate coding ranges, relatively low peak discharge rates and were largely resistant to fatigue. 

This muscle is comparatively fatigue resistant and appears to rely predominantly on recruitment to 

generate force, optimizing the use of slow twitch, fatigue resistant fibres to generate moderate to 

large amounts of force for sustained periods of time. These properties appear well matched to AH’s 

postural function that involves providing stabilisation of the LA during weight-bearing tasks. 
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Chapter four examined the potential for the intrinsic foot muscles to actively control LA 

compression and recoil that occurs due to the application and release of external load. This study 

tested the hypotheses that activation of AH, FDB and QP is associated with muscle stretch that 

occurs in response to LA compression produced by external loading on the foot, and that activation 

of these muscles (via electrical stimulation) will generate sufficient force to counter LA 

compression. Muscle tendon units (MTU) of AH, FDB and QP stretched in response to LA 

compression occurring due to external load. Recruitment of these muscles increased with increasing 

load beyond specific force thresholds. LA deformation and muscle stretch plateaued towards the 

maximum load of 150% body weight, when muscle activity was greatest. Electrical stimulation of 

the plantar intrinsic muscles countered the deformation that occurred due to the application of 

external load by reducing the length and increasing the height of the LA. These findings 

demonstrate that these muscles have the capacity to control LA deformation and may buttress the 

LA during foot loading.  

 

 

Chapter five tested the hypothesis that AH, FDB and QP will actively lengthen and shorten during 

the stance phase of gait in response to variable loading of the foot that occurs during walking and 

running at different speeds. For both walking and running the LA compressed during the initial 

loading phase (early stance) and recoiled as the load subsided (late stance), with the magnitude of 

compression increasing with gait velocity and the associated increase in vertical ground reaction 

force. All muscles underwent a process of slow active lengthening during LA compression, 

followed by a rapid shortening as the arch recoiled during the propulsive phase. MTU length 

change and peak muscle activity increased with gait velocity for all muscles. This thesis provides 

in-vivo evidence that the plantar intrinsic foot muscles actively lengthen and shorten during the 

stance phase of gait and are therefore capable of contributing to power dissipation and generation 

during gait. We suggest that the intrinsic foot muscles actively contribute to the foot spring 

mechanism and are regulated in response to the magnitude of load encountered.  

 

In summary, this thesis has provided a detailed description of the function of the three largest 

plantar intrinsic foot muscles, AH, FDB and QP during postural and dynamic tasks. These muscles 

are activated in a highly co-ordinated manner in order to adjust the stiffness of the longitudinal arch 

in response to the loading demands encountered during postural activity and locomotion. 
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CHAPTER ONE - INTRODUCTION 

1.1 Background 

The evolution to habitual bipedalism un-constrained our hands and allowed the development of 

skills such as throwing and carrying that were hallmarks of the hunter-gatherer lifestyle (Bramble & 

Lieberman, 2004; Rolian et al., 2009; 2010). In order to enable habitual bipedalism, the anatomical 

structure of the human foot has undergone a number of key adaptations. These structural alterations 

have increased the structural integrity of the foot, allowing it to cope with the increased loading 

demands that are associated with terrestrial bipedalism, while also facilitating forward propulsion at 

reduced metabolic cost (Li et al., 1996; Bramble & Lieberman, 2004; Wang & Crompton, 2004; 

Rolian et al., 2009; 2010; Crompton et al., 2012). Adaptations such as an adducted hallux, enlarged 

and re-aligned tarsal bones and shortened lateral digits reflect the transformation in functional 

requirement of the human foot from a grasping and balancing structure designed for arboreal life on 

compliant branches to that of a primary load bearing structure that is responsible for maintenance of 

upright balance, impact attenuation and forward propulsion on the stiff and uneven surfaces that are 

encountered in terrestrial environments (Bramble & Lieberman, 2004; Thorpe et al., 2007; Rolian 

et al., 2009; Crompton et al., 2010).  

 

Specifically, the adducted hallux and shortened lateral digits represent a change in the line of 

progression of the foot that occurred with the adoption of a bipedal gait, with the line of leverage of 

the foot shifting to between the first and second metatarsal, enabling forward progression (Morton, 

1924). The enlarged calcaneus that is evident in the human foot is reflective of the relative increase 

in loading demand that was encountered with the advent of habitual bipedalism (Bramble & 

Lieberman, 2004; Morton et al., 1930). The human foot also displays a re-arrangement of the tarsal 

bones with the calcaneo-cuboid and talo-navicular joints having substantially less range of motion, 

which has subsequently increased the structural stiffness of the hind-foot (Crompton et al., 2012; 

Bates et al., 2013). 

 

Arguably the most important structural adaptation of the human foot was the development of a 

pronounced longitudinal arch (LA) (Morton, 1924; Ker et al., 1987; Crompton et al., 2010; 

Lieberman, 2012; McKeon et al., 2014). This structure functions as a mechanical truss which is 

supported by a strong, well developed plantar aponeurosis and plantar ligaments that provide 

resistive tension at its proximal and distal ends when it is encumbered with load (Hicks, 1954; 

1955). This osseous arrangement optimises structural integrity under substantial load with minimal 

muscular contribution (Hicks, 1954; Basmajian & Stecko, 1963), allowing humans to stand for 

prolonged periods of time at very low metabolic cost (Wang & Crompton, 2004).  
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While the LA is considerably stiffer than our arboreal ancestors, it does retain some capacity for 

compliance (Wang & Crompton, 2004; Vereecke & Aerts, 2008; Crompton et al., 2010) allowing it 

to compress and recoil in response variations in terrain and load.  This compression-recoil process 

allows impact forces to be attenuated and stored as elastic strain in the stretched plantar soft tissues, 

with some of this being returned via elastic recoil prior to propulsion (Ker et al., 1987) providing 

forward and upward acceleration. This function, known as the “foot spring” mechanism is thought 

to contribute substantial metabolic energy savings (Ker et al., 1987). Another crucial function of the 

plantar aponeurosis and the LA during locomotion is the windlass mechanism that produces 

transient increases in LA stiffness to assist forward propulsion. During late stance as the toes 

extend, the plantar aponeurosis is wound around the metatarsal heads, increasing the tension in this 

structure, resulting in extension of the calcaneus and flexion of the metatarsals (Hicks, 1954; 

Caravaggi et al., 2009). The resulting series of rotations about a number of small joints serves to 

elevate the LA and increase its stiffness, allowing ankle plantar flexion forces to be transferred 

rapidly to the ground (Erdemir et al., 2004) propelling the body forward. This process is unique to 

humans and is thought to be metabolically advantageous as it reduces the muscular contributions 

required to propel the body forward during locomotion (Alexander, 1991). 

 

While the LA is considered a key evolutionary adaptation enabling efficient bipedal locomotion, it 

is also a structure that is repeatedly encumbered with substantial loads for extended periods of time 

during daily activities such as standing, walking and running. As a result of this high loading 

demand, it is commonly the source of physiological ailment (Morton, 1930). Impaired function of 

the LA, either due to excessive compliance or stiffness may hinder the capacity of the leg to absorb 

and generate mechanical power during dynamic activity and has been implicated as a contributing 

factor in the development of musculoskeletal injury (Morton, 1930; Bojsen-Møller, 1979; 

Thordarson et al., 1995; Mootanah et al., 2012). For many years, army recruits displaying increased 

LA compression during stance, otherwise known as “flat feet” were banned from active military 

service due to the perception that this foot structure places excessive burden on the lower limb in 

order to maintain function, with these people being more likely to succumb to the rigorous demands 

of active service (Morton, 1930). Indeed the relative importance of a pronounced LA for human 

locomotion can be appreciated when we consider the plethora of clinical conditions that have been 

linked to dysfunction of this structure, including plantar fasciitis (Wearing et al., 2006), tibialis 

posterior dysfunction (Semple et al., 2009), hallux valgus (Fuller, 2000), osteoarthritis (Rao et al., 

2009) Achilles tendonopathy (Chuter & de Jonge, 2012), knee pain syndromes (Barton et al., 2010) 

and tibial stress injuries (Bandholm et al., 2008). While direct causal relationships between 
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dysfunction of the LA and injury to the lower limb have been scarce (Chuter & de Jonge, 2012) it is 

apparent that rehabilitation techniques aimed at improving LA function, such as foot orthoses are 

known to be successful in the treatment of a number of the previously mentioned conditions 

(Collins et al., 2009; Barton et al., 2010). Furthermore, complex surgical techniques aimed at 

restoring function of the LA are commonly employed as treatment for diseases that lead to 

excessive LA compliance, such as plantar aponeurosis rupture and tibialis posterior tendon 

dysfunction (Watanabe et al., 2012). 

 

Running is a common recreational past time with known health benefits. However, running also has 

an extremely high incidence of injury, with between 30-70% of participants reporting an injury in 

each calendar year (Kaufman et al., 1999; Taunton et al., 2002; Daoud et al., 2012; Lieberman, 

2012). Interestingly, data from the Taunton study (Taunton et al., 2002) indicates that a large 

number of the reported injuries were to structures within or attaching into the LA (22%), while an 

even greater number of injuries (>50%) were to lower limb structures that may be affected by the 

function of the LA. As a result of the large number of recreational and competitive runners that 

become injured each year, a multi-billion dollar footwear industry has arisen aimed at developing, 

promoting and selling footwear designed to reduce the risk of lower limb injury to runners. 

Furthermore, substantial efforts have been made by researchers and clinicians in attempt to prevent 

and manage these injuries in the running population. Sport shoes have been designed with enhanced 

cushioning features, aimed at reducing the potentially harmful impact forces that are encountered 

during running (Yan et al., 2012). Structural features of running shoes have been designed to 

increase the stiffness of the LA, aiming to reduce excessive strain on the passive structures of the 

arch and the musculature of the legs and feet (Cheung & Ng, 2009; 2010). However despite the 

massive intellectual and financial investments into developing footwear, running injury rates remain 

relatively unchanged across the last 30 years (Lieberman, 2012). This mismatch between 

technology and outcomes has led many to question the long held belief that the foot and more 

specifically the LA, needs to be supported in order to prevent injury, resulting in the emergence of 

the barefoot running movement (Robbins, 2006; Jenkins & Cauthon, 2011; Lieberman, 2012). 

 

The concept of barefoot running emerges from an evolutionary medical perspective that questions 

why modern humans need to wear highly supportive and cushioned footwear when we have 

actually evolved to run barefoot and have done so successfully for million of years (Lieberman, 

2012). In fact proponents of the evolutionary medicine paradigm and the barefoot running 

movement suggest that modern footwear may actually hinder our ability to run (Jungers, 2010; 

Lieberman et al., 2010; Collier, 2011) by inhibiting sensory feedback and altering natural running 
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biomechanics (Robbins, 2006; Lieberman, 2012). Specifically, it is argued that running barefoot 

facilitates with enhanced sensory feedback and allows the body to cope more effectively with the 

large magnitudes of forces that are encountered repetitiously during running (Lieberman, 2012). For 

example, it has been suggested that when running barefoot, people tend to run with an increased 

cadence and shorter stride length, landing with greater knee flexion and ankle plantar flexion 

(Divert et al., 2005; Robbins, 2006; Lieberman et al., 2010; Braunstein et al., 2010). This alteration 

in landing mechanics is thought to enhance running efficiency by improving leg and foot spring 

function, allowing for a softer landing with impact forces being absorbed (Perl et al., 2012). 

 

While debate continues regarding the potential benefits and pitfalls of barefoot running, or various 

running techniques in the prevention of injuries and enhancement of running performance (Jenkins 

& Cauthon, 2011; Lieberman, 2012; Hatala et al., 2013), a common element of this argument has 

emerged that is of interest to coaches, clinicians and researches on both sides of the debate. This 

common theme relates to the relative importance of the spring-like qualities of the lower limb that 

assist absorption, transmission and generation of forces during running (Divert et al., 2005; 

Lieberman et al., 2010; Daoud et al., 2012; Lieberman, 2012; Franz et al., 2012). The human leg is 

known to act like a spring during running, compressing during the first half of stance in response to 

rising ground reaction force, and recoiling during late stance as ground reaction force subsides, 

providing forward and upward acceleration of the centre of mass (Cavagna & Kaneko, 1977). This 

spring like behaviour is believed to enhance the efficiency of locomotion by increasing utilisation 

of elastic energy storage in tendinous tissue and reducing the net mechanical work performed by the 

contractile element of muscles (Cavagna & Kaneko, 1977; Zelik & Kuo, 2010).  

 

An important aspect of the spring-like behaviour of the leg is the capacity of the central nervous 

system to change the effective stiffness of the leg in response to variations in sensory stimuli 

allowing it to adapt to locomotion through changing environments and with different demands 

(Kerdok et al., 2002; Müller et al., 2010). For instance, it has been shown that there is an increase in 

human leg stiffness with increased running velocity, driven primarily through changes in knee 

stiffness (Arampatzis et al., 1999). Likewise the stiffness of the leg spring is known to change in 

response to variations in surface compliance (Kerdok et al., 2002; Müller et al., 2010). The spring-

like function of human legs has principally focussed on the major three joints in the leg – the hip, 

the knee and ankle. These joints contribute to the majority of the power absorption and generation 

during most movements like walking or running (Zelik & Kuo, 2010). The role of muscles in 

utilisation of elastic energy storage and return from tendons during spring-like gaits has been well 

established (Alexander, 1984; Ishikawa, 2005; Lichtwark, 2005; Lichtwark & Wilson, 2006). For 
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example, at the ankle the gastrocnemius and soleus muscles are known to utilise the long Achilles 

tendon to store elastic strain energy during the first half of stance phase, which is subsequently 

returned via elastic tendon recoil prior to propulsion (Roberts & Azizi, 2011) with the contractile 

component of the muscle regulating the magnitude of energy stored within the Achilles tendon in 

response to the requirements of the task (Lichtwark & Wilson, 2006). This mechanism provides 

substantial metabolic energy savings (Ker et al., 1987; Alexander, 1991). The foot is also known to 

contribute to the leg spring function via compression and recoil of the LA (Ker et al., 1987; Simkin 

& Leichter, 1990; Vereecke & Aerts, 2008). However, in contrast to the active contribution to 

energy storage and release and return provided by the plantar flexors at the ankle, regulation of LA 

compression and recoil has traditionally been considered passive in nature. Ker and colleagues (Ker 

et al., 1987) have shown that the plantar aponeurosis and plantar ligaments stretch and recoil in 

response to LA deformation produced by external load and that this process may allow storage and 

return of up to 17% of the metabolic energy requirements of each foot contact, which is equivalent 

to approximately half of that stored within the Achilles tendon. Ker and colleagues performed their 

experiments on cadaveric specimens using a protocol that sequentially resected each of the passive 

structures of the LA and measured changes in LA deformation at specific load magnitudes 

following the resection of each structure. As expected, they reported that the plantar aponeurosis, 

long plantar ligament and spring ligament provide significant structural integrity for the LA, with 

LA deformation increasing substantially with the magnitude of load encountered. Furthermore they 

found that as each of these structures was resected, the magnitude of LA deformation increased 

substantially.  

 

Recent in-vivo experiments exploring the dynamic function of the LA and plantar aponeurosis 

(Pataky et al., 2008; Caravaggi et al., 2009; 2010; Bates et al., 2013) have provided divergent 

findings from the earlier work of Ker and colleagues (Ker et al., 1987). Caravaggi and colleagues 

reported that while the LA does deform under load during gait, the magnitude of LA deformation 

and peak plantar aponeurosis strain does not increase with gait velocity despite significant increases 

in ground reaction forces (Caravaggi et al., 2010). The speculated that this finding may indicate the 

presence of an active arch stiffening mechanism, possibly produced by the muscles located in the 

arch of the foot. This hypothesis is further supported by the findings of Bates et al (Bates et al., 

2013)and Pataky et al (Pataky et al., 2008)who also reported that deformation of the arch appears to 

plateau at higher gait velocities, despite substantially larger deformation forces being born by this 

structure. The suggestion that the musculature of the LA may contribute to maintenance of LA 

function, acting in parallel to the passive ligamentous structures in order to provide “on demand” 

support for the LA in response to the forces or deformation experienced provides a potentially 
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important mechanism that may enhance efficiency and versatility of the leg during locomotion, 

providing further explanation for the capacity for the central nervous system to adapt the 

mechanical characteristics of the lower limb in response to varying environmental  or task 

requirements. However at present we have little direct evidence for this mechanism, nor do we have 

a clear understanding of the function of the plantar intrinsic foot muscles that are located within the 

LA. 

 

Given the emergence of a potential link between the plantar intrinsic foot muscles and dynamic 

function of the LA, as well as the apparent dearth of direct information pertaining to their function, 

it is of great interest to gain a deeper understanding of the neuromechanical function of these 

muscles. This knowledge may provide novel insights for human functional anatomy, while also 

providing valuable information that may be applicable in the fields of human athletic performance 

and musculoskeletal rehabilitation. Therefore the aim of this thesis is to investigate the in-vivo 

function of the human plantar intrinsic foot muscles.  

 

1.2 Literature Overview 

1.2.1 Anatomy of the longitudinal arch  

Anatomy of the longitudinal arch 

The LA is an elaborate structure that is unique to the human foot. It provides substantial stiffness to 

enable forward propulsion, whilst also maintaining sufficient compliance to enable adaptability to 

variations in environmental and loading demands (Donatelli, 1985; Erdemir et al., 2004; Vereecke 

& Aerts, 2008; Crompton et al., 2010). This diversity of function is achieved by a complex 

interaction of displacements between numerous small bones of the foot (Leardini et al., 2007; Arndt 

et al., 2012; Nester et al., 2014). In order to simplify this complexity and allow descriptive clarity, 

larger functional joints have been described, with each functional joint including a number of 

articulations with similar movement patterns. These joints are outlined below; 

 

Sub-talar joint 

The sub-talar joint has been defined as the articulation between the superiorly located talus and the 

inferiorly located calcaneus (Sarrafian, 1993; Rockar, 1995; Stagni et al., 2003). The sub-talar joint 

consists of three separate concavo-convex articulations, otherwise known as the posterior, middle 

and anterior articulations between the talus and calcaneus (Figure 1.1) (Sarrafian, 1993; Rockar, 

1995). Traditionally the sub-talar joint has been considered a modified hinge joint with one axis 

passing obliquely from the posterior, lateral and plantar aspect of the calcaneus to the anterior, 
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medial and superior margin of the talus. Rotation about this obliquely oriented axis provides 

simultaneous tri-planar motion of flexion, eversion and abduction or extension, inversion and 

adduction (Hicks, 1953), commonly referred to as pronation and supination, respectively (Manter, 

1941; Hicks, 1953; Perry, 1983; Rockar, 1995; Kirby, 2001; Stagni et al., 2003; Arndt et al., 2004; 

Sheehan et al., 2007; Sheehan, 2010; Arndt et al., 2012). While a small amount of flexion and 

extension occurs between the calcaneus and talus, the predominant motions are thought to be 

inversion / eversion and adduction / abduction (Arndt et al., 2004; Sheehan, 2010). 

 

 
Figure 1.1. The sub-talar joint (green shaded area, A) is formed by the articulation between the 

talus (B) superiorly and the calcaneus (C) inferiorly. The joint is comprised of three facets 

known as the anterior, middle and posterior facets. Image adapted from Bone Box (2014) (Iso-

Form LLC, 2014) 

 

Transverse tarsal joint 

The transverse tarsal joint consists of articulations between the calcaneus and talus with the cuboid 

and navicular. The two primary articulations is this functional joint are the calcaneo-cuboid and 

talo-navicular joints, these articulations are concavo-convex joints that move as a functional unit 

allowing rotation about all three planes (Manter, 1941; Huson, 2000; Arndt et al., 2012; Nester et 

al., 2014). 

 

Tarso-metatarsal joint 

This functional joint consists of a number of small joints made up of the articulations between the 

cuneiforms with the navicular and cuboid, as well as the articulations between the cuneiforms and 

the metatarsals and the cuboid and metatarsals (Figure 1.2) (Bojsen-Møller, 1979). These joints are 

all generally considered gliding type joints, that rotate as a functional unit to provide relatively 

equal amounts of motion about the three anatomical planes (Kido et al., 2013; Nester et al., 2014). 

 

A"

C"

B"
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Figure 1.2. The transverse tarsal joint (red shaded area) is formed by the articulations between 

the calcaneus, cuboid, talus and navicular bones, with the two key joints being the calcaneo-

cuboid joint which is located laterally, and the talo-navicular joint, which is located medially. 

The tarso-metatarsal joint (blue shaded area) is located anterior to the transverse tarsal joints 

and comprises many small articulations between the tarsals and metatarsals. Image adapted 

from BoneBox (Iso-Form LLC, 2014) 
 

1.2.2 Biomechanics of the longitudinal arch 

The LA is a key anatomical feature of the human foot (Hicks, 1955; Crompton et al., 2010)allowing 

a structurally sound base of support that requires minimal muscular contributions during quiet 

stance and walking (Basmajian & Stecko, 1963; Mann & Inman, 1964), while also possessing a 

spring like function, whereby the LA compresses and recoils in response to cyclical loading and 

unloading of the foot during locomotion (Ker et al., 1987; Erdemir et al., 2004; Caravaggi et al., 

2009) allowing storage and return of elastic energy (Ker et al., 1987; Alexander, 1991).  

 

Early experiments by Hicks (Hicks, 1955) delivered valuable insight to the function of the LA 

providing evidence that the LA functions as both an arch and a beam during weight bearing, in the 

absence of any requirement for muscular control. The beam function of the LA is provided by the 

dorsal compression of the articulations within the tarso-metatarsal joint, while the plantar 

aponeurosis provides passive tension at either end of the LA resisting longitudinal lengthening and 

arch collapse (Hicks, 1954; 1955). Extension of the toes in mid- to late-stance, creates increased 

tension in the plantar aponeurosis, resulting in shortening of the LA via flexion and adduction of the 

metatarsals in combination with supination of the rear-foot (Hicks, 1954; Caravaggi et al., 2009). 

This function, known as the windlass mechanism (Hicks, 1954) acts to stiffen the foot and 

transform it from a compliant attenuator to a rigid lever, allowing ankle plantar flexor torque to be 

efficiently transmitted to the ground (Donatelli, 1985).  
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Due to the substantial complexity and technical difficulties involved when investigating and 

describing rotation of all the small joints that contribute to overall LA motion (Arndt et al., 2007; 

Lundgren et al., 2008; Nester et al., 2014) the vast majority of research describing LA 

biomechanics in-vivo has involved simplified kinematic models that describe the rotation of the 

metatarsals, relative to the calcaneus using two and three dimensional modelling techniques (Scott 

& Winter, 1993; Leardini et al., 2007; Caravaggi et al., 2009; 2010; Levinger et al., 2010; 

Caravaggi et al., 2011; Dixon et al., 2012). While not providing the detailed information that is 

obtainable from in-vitro studies (Morton, 1924; Hicks, 1953; 1954; 1955; Ker et al., 1987) or the 

accuracy and detail of invasive bone pin studies (Arndt et al., 2004; 2007; Lundgren et al., 2008; 

Arndt et al., 2012) the use of a multi segment foot modelling approach allows for time efficient 

analysis that can be applied to normal (Leardini et al., 2007; Caravaggi et al., 2009; Levinger et al., 

2010; Caravaggi et al., 2011; Bishop et al., 2012; Arnold et al., 2012) and clinical populations (Rao 

et al., 2007; 2009; Levinger et al., 2010). Recent advances in three-dimensional motion analysis 

and kinematic modelling techniques have increased the utility of multi segment foot modelling, 

providing advances in our knowledge of LA biomechanics (Bishop et al., 2012). Leardini and 

colleagues (Leardini et al., 2007) employed a multi-segment foot model to show that LA 

compression during stance phase is primarily due to extension, inversion and abduction of the 

metatarsals relative to the calcaneus, with these rotations reversing in late stance, presumably due to 

the combined effects of elastic recoil of the plantar aponeurosis (Ker et al., 1987; Erdemir et al., 

2004) with the windlass mechanism. Caravaggi and colleagues (Caravaggi et al., 2010) investigated 

how LA biomechanics alters with gait velocity. Their results confirmed the previous findings of 

previous research that the LA compresses and recoils during early stance (Hicks, 1954; Ker et al., 

1987; Erdemir et al., 2004). However their findings also highlighted that this compression appears 

to plateau at higher walking velocities, despite substantial increases in ground reaction force 

(Caravaggi et al., 2010). This finding is in contrast to the cadaveric experiments performed by Ker 

(Ker et al., 1987), Erdemir (Erdemir et al., 2004) and Hicks (Hicks, 1954) who found that LA 

compression increased with increasing ground reaction forces. Caravaggi hypothesised that the 

divergence in findings may be due to the presence of active muscular support that may be delivered 

when the body encounters high loads. Dynamic support for the LA has generally been considered 

primarily passive in nature, however this idea has been primarily based on data from cadaveric 

studies, where no active muscular contributions are possible. The findings of Caravaggi and 

colleagues (Caravaggi et al., 2010) as well as those by Bates (Bates et al., 2013) and Pataky (Pataky 

et al., 2008) findings have highlighted that active muscular control may also be an important factor 

in LA biomechanics. 
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Structural support for the longitudinal arch 

As mentioned previously, structural support for the LA has traditionally been considered passive in 

nature. The plantar aponeurosis is known to provide the majority of structural support for the LA 

(Hicks, 1954; Ker et al., 1987; Erdemir et al., 2004), applying tension at proximal and distal ends of 

the LA, via its origin at the calcaneus and insertion into the toes (Hicks, 1955). This structural 

arrangement acts as a truss, resisting LA lengthening under load (Hicks, 1955; Ker et al., 1987; 

Erdemir et al., 2004) and also provides transient increases in LA stiffness during late stance, via the 

windlass mechanism (Hicks, 1954). Additionally the long plantar and short plantar ligaments also 

provide considerable structural support to the plantar aspect of the LA (Ker et al., 1987)while 

osseous compression in the dorsal margins of the tarso-metatarsal joints also provide considerable 

structural integrity for the LA during stance (Hicks, 1955). 

 

While it has been observed that minimal muscular control is required to maintain LA integrity 

during quiet standing (Basmajian & Stecko, 1963; Wang & Crompton, 2004), muscles of the leg 

and foot are also known to provide transient influences on LA biomechanics (Basmajian & Stecko, 

1963). The extrinsic muscles such as tibialis posterior, tibialis anterior and the peroneal muscle 

group are known to be active during the stance phase of locomotion (Mann et al., 1986) providing 

frontal plane control of sub-talar and transverse tarsal joint motion (Kirby, 2001; Watanabe et al., 

2012).  

 

The plantar intrinsic foot muscles are known to be active during the stance phase of gait (Mann & 

Inman, 1964) and it has been suggested that these muscles may also provide active support for the 

LA when it is encumbered with excessive loads (Basmajian & Stecko, 1963). The largest intrinsic 

foot muscles span similar anatomical pathways to that of the plantar aponeurosis (Kura et al., 1997; 

Ledoux et al., 2001; Tosovic et al., 2012), thus when considered in the context of their known 

activation patterns (Basmajian & Stecko, 1963; Mann & Inman, 1964) it is possible that these 

muscles may also contribute to LA support. 
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Figure 1.3. The plantar aponeurosis viewed from the medial (A) and plantar (B) aspect of the 

left foot. The plantar aponeurosis courses from the medial and lateral tuberosity of the 

calcaneus to the insert in the intermediate phalanx of the toes, providing primary structural 

support for the longitudinal arch. Images adapted from Ankle and Foot Pro III (C3D4 Medical, 

2014) 

 

1.2.2 Plantar intrinsic foot muscle anatomy 

The plantar intrinsic foot muscles have both origin and insertion contained within the foot. 

According to a study by Kura et al. (1997) the abductor hallucis (AH), flexor digitorum brevis 

(FDB) and quadratus plantae (QP) muscles have the greatest length, physiological cross sectional 

area (PCSA) and muscle volume of all the intrinsic foot muscles.  Table 1.1 gives a summary of the 

architectural properties of these muscles, while Figure 1.4 provides a representation of their 

anatomical locations within plantar aspect of the foot. 

 

Abductor hallucis (Fig 1.4) is located in the first (superficial) fascial compartment of plantar aspect 

of the foot and is the most medially located of all the intrinsic foot muscles (Hing et al., 2009; 

Tosovic et al., 2012). It arises from the medial posterior aspect of the calcaneus and inserts into 

both the plantar aspect or the proximal phalanx and medial sesamoid of the first 

metatarsophalangeal (MTP) joint and is known to consist of relatively low motor unit numbers 

(Johns & Fuglevand, 2011). Its function is to both abduct and plantar flex the great toe at the first 

MTP joint. It has also been reported that this muscle provides active support for the LA during 

weight bearing (Fiolkowski et al., 2003; Headlee et al., 2008).  

 

Flexor digitorum brevis (Fig 1.4) is also located in the first (superficial) fascial layer of the foot. It 

is fusiform in shape and arises from the medial plantar calcaneal process, as well as the plantar 

aponeurosis (Locke et al., 2010).  The FDB contains three or four discreet muscle compartments, 
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with each giving rise to a tendon, inserting into the plantar aspect of the proximal phalanx in toes 2-

5 (Locke et al., 2010).  Interestingly, the fourth muscle belly and tendinous slip (inserting into the 

fifth toe) is often described as being absent in cadaveric specimens(Kura et al., 1997; Ledoux et al., 

2001). The proposed function of this muscle is to flex the second, third, fourth and fifth toes at the 

MTP joints, as well as stabilizing the toes during the push-off phase of gait (Thibodeau & Patton, 

2007). 

 

Quadratus plantae (Fig 1.4) arises from two heads. The smaller lateral head arises from the plantar 

surface of the lateral plantar calcaneal tubercle. This lateral head has been reported to be absent in 

some humans (Kura et al., 1997). The large medial head arises prom the medial plantar calcaneal 

tubercle. Both heads unite to form a flattened band, which inserts in to the posterior surface of the 

flexor digitorum longus tendon (Sooriakumaran et al., 2005). The role of QP is to aid in the flexion 

of the lesser toes, while aligning the longitudinal pull of the FDL tendon (Sooriakumaran et al., 

2005). To the author’s knowledge, the precise function of this muscle in gait and posture is 

unknown. 

 

 

 abductor hallucis flexor digitorum brevis quadratus plantae 

Muscle Length (mm) 115.8 (4.9) 103.0 (9.2) 81.3 (20.1) 

PCSA (cm2) 6.7 (2.7) 4.6 (2.0) 2.9 (1.3) 

Muscle Volume (cm3) 15.2 (5.2) 10.3 (5.0) 8 (4.6) 

Fibre Length (mm) 23 (5.5) 23 (4.3) 25.4 (7.0) 

Pennation Angle (deg) 16.5 (7.5) 11.4 (7.1) 8.1 (4.9) 

 

Table 1.1 Muscle architectural properties (mean (SD)) of three plantar intrinsic foot muscles - 

abductor hallucis, flexor digitorum brevis and quadratus plantae. Figures summarized from 

Kura et al. (1997) and Ledoux et al (2001). PCSA, physiological cross sectional area. 
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Figure 1.4 Intrinsic foot muscle anatomy. Depiction the anatomical location of abductor 

hallucis (AH), flexor digitorum brevis (FDB) and quadratus plantae (QP) in the plantar aspect 

of a right foot. 

 

1.2.3 Motor unit discharge characteristics of the plantar intrinsic foot muscles 

Neurophysiological properties of muscles are closely linked to their biological function (Enoka, 

1995; Duchateau & Enoka, 2011), allowing each muscle to perform its given task with optimal 

efficiency. The human foot is primarily a load bearing structure and is commonly encumbered with 

forces far exceeding body weight (Nilsson & Thorstensson, 1989). Given the magnitude of forces 

encountered within the foot, it could be speculated that the muscles contained within this structure 

would be well adapted to produce and sustain substantial levels of force for prolonged periods, in 

order to provide dynamic and postural support during stance and locomotion.   

 

Active muscle force is regulated by the nervous system via two mechanisms; recruitment (and de-

recruitment) and rate coding, with the utilisation of recruitment and rate coding strategies varying 

greatly between muscles. Postural muscles, such as soleus, that are active for sustained periods 

maintaining upright posture (Sherrington, 1915) generally display relatively low peak discharge 

rates (10-25 Hz) (Bellemare et al., 1983; Kuchinad et al., 2004; Oya et al., 2009; Dalton et al., 

2009) and are reliant on recruitment to generate and maintain force across their full range of force 

production (Oya et al., 2009).  Whereas muscles requiring precise control of movement, such as 

hand muscles, tend to have complete recruitment achieved at relatively low force levels (≈ 30 - 50% 

of maximal voluntary contraction (MVC), thereafter relying on rate coding to generate and maintain 

force (De Luca et al., 1982; Thomas et al., 1986; Zijdewind, 2002; Moritz et al., 2005).  

 

In addition to recruitment and rate coding strategies, the number of motor units within a particular 

muscle will also have a significant impact on the ability to generate and grade active force 

AH QP FDB 
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(Campbell et al., 1973). Muscles with a lower number of motor units, relative to their PCSA, tend 

have a reduced ability to precisely control gradation of force (Enoka, 1995). Abductor hallucis, the 

largest intrinsic foot muscle with a PCSA of 6.7 cm2 (Kura et al., 1997) is known to be comprised 

of approximately 43 motor units (Johns & Fuglevand, 2011). The ratio of motor units to PCSA for 

AH appears quite low when considered in context of similar muscles from the hand, such as the 

abductor pollicis brevis which has a PCSA of 1.6 cm2 and possesses approximately 136 motor units 

(Sica et al., 1974). A relatively low number of motor units innervating a larger number of muscle 

fibres may allow relatively large amounts of force to be summated from each motor unit in order to 

provide postural stability for the LA, however this may occur at the expense of force precision. 

 

Despite the apparent importance of the plantar intrinsic foot muscles in providing postural support 

for the LA during stance and locomotion, the neurophysiological characteristics of these muscles 

remain largely unknown.   

 

1.2.3 Role of the plantar intrinsic foot muscles in support for the LA during stance and locomotion  

The AH, FDB and QP muscle-tendon units span the length of the LA (Kura et al., 1997; Ledoux et 

al., 2001; Tosovic et al., 2012) coursing a similar anatomical pathway to the plantar aponeurosis. 

The function of these muscles during stance and gait has been the subject of speculation for many 

years and remains an area of intense interest. Anatomy texts describe these muscles as accessory toe 

flexors, which may also aid in forefoot stabilization during the push-off phase of gait (Thibodeau & 

Patton, 2007). However there is very little data describing the specific role of the plantar intrinsic 

foot muscles during stance and locomotion, thus any interpretation of their functional roles has been 

drawn from a small number of electromyography studies (Basmajian & Stecko, 1963; Mann & 

Inman, 1964; Gray & Basmajian, 1968). A Seminal study by Basmajian and Stecko (Basmajian & 

Stecko, 1963) shed some light on the function of these muscles as providing secondary support for 

the LA in addition to the plantar aponeurosis, reporting that AH and FDB were recruited at forces 

exceeding bodyweight, and that once recruited, the activation of these muscles increased in 

response to load. Further supporting this hypothesis, individuals with a lower LA height in stance 

(i.e., greater LA deformation) were shown to display greater levels of intrinsic muscle activity 

during waking (Gray & Basmajian, 1968). Additionally, Mann and Inman reported that these 

muscles act as a functional unit during the stance phase of gait to stabilise the forefoot during 

propulsion (Mann & Inman, 1964).  

 

While providing valuable insight to the possible function of these muscles, the early studies by 

Basmajian and colleagues (Basmajian & Stecko, 1963; Gray & Basmajian, 1968) and Mann and 
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Inman (Mann & Inman, 1964) are subject to a number of limitations. For example, as these studies 

were performed in the 1960’s, the researchers were unable to use real time ultrasound to ensure the 

correct location of each electrode within the arch of the foot. The intrinsic foot muscles are quite 

small (Kura et al., 1997) and given that the morphology of the LA varies considerably between 

individuals (Morton, 1930) it is difficult to assume that recordings made during these experiments 

(Basmajian & Stecko, 1963; Mann & Inman, 1964; Gray & Basmajian, 1968) were from the correct 

muscles. Furthermore, as these recordings were made from a seated position with weights being 

loaded on the leg (Basmajian & Stecko, 1963)and during walking (Mann & Inman, 1964), it is 

difficult to determine if these muscles respond in a similar fashion to the extrinsic foot muscles in 

response to postural sway (Winter, 1995). 

 

From a clinical perspective, weakness or dysfunction of the plantar intrinsic foot muscles has been 

linked to numerous lower limb pathologies, including plantar fasciitis (Wearing et al., 2006), hallux 

valgus (Arinci İncel et al., 2003) and medial tibial stress syndrome(Senda et al., 1999). 

Additionally, weakness of the plantar intrinsic foot muscles has been implicated as a contributing 

factor to balance impairment and an increased falls risk in the elderly (Menz et al., 2005; Mickle et 

al., 2009) and intervention programs including strengthening of these muscles have been shown to 

reduce the risk of falls in this population (Spink et al., 2011).  

 

Recent studies have highlighted the potential for the plantar intrinsic foot muscles to contribute to 

regulation of LA stiffness. For example Caravaggi and colleagues (Caravaggi et al., 2009; 2010) 

used a multi-segment foot model to describe the behaviour of the plantar aponeurosis in relation to 

gait velocity. Their findings confirmed the earlier work of Hicks (Hicks, 1954) that peak tension in 

the plantar aponeurosis occurs in mid- to late-stance (80% of contact time). However, they reported 

no effect of gait velocity on peak aponeurosis tension, despite the increased vertical ground reaction 

forces that occurred at higher velocity. They speculated that their findings indicated the presence of 

an active LA stiffening mechanism, possibly produced by muscles such as the plantar intrinsics 

(Vereecke & Aerts, 2008; Caravaggi et al., 2010). Adding further credence to this suggestion, 

Pataky (Pataky et al., 2008) and Bates (Bates et al., 2013) have used plantar pressure measurement 

techniques to show that LA deformation does not increase with walking speed, despite increased 

ground reaction forces.  

 

Despite the indirect evidence suggesting that the plantar intrinsic foot muscles may have the 

capacity to actively contribute to regulation of foot stiffness and postural stability during stance and 

gait (Pataky et al., 2008; Caravaggi et al., 2010), the specific mechanical functions of these muscles 
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are yet to be described. It is also unknown whether these small muscles are able to generate 

sufficient force to produce a significant alteration in foot biomechanics under loaded conditions, in 

order to influence LA biomechanics.  

 

1.3 Research Aims 

The above literature overview has outlined areas in the literature that need further exploration, in 

order to gain a deeper understanding of the in-vivo function of the plantar intrinsic foot muscles. 

Below are the general aims of the four studies that will contribute towards this thesis. 

 

1.3.1 Study 1 

It has been speculated that the plantar intrinsic foot muscles provide support for the LA during 

stance and postural activities. While weakness and dysfunction of these muscles has been linked to 

poor balance and an increased risk of falls in the elderly. Despite the apparent link between these 

muscles and postural support for the foot, the precise role of these muscles in balance control 

remains unknown. Therefore, the aim of this study was to determine the difference in activation 

patterns of three plantar intrinsic foot muscles, during two standing tasks with increasing postural 

difficulty. 

 

1.3.2 Study 2 

It has been suggested that the plantar intrinsic foot muscles are important in balance and postural 

control. As such it could be hypothesised that motor units in AH would have relatively slow 

discharge rates, while displaying relatively high levels of fatigue resistance. Therefore, the aims of 

this study were to describe the single motor unit (SMU) discharge properties AH, the largest plantar 

intrinsic foot muscle, during controlled ramp and hold contractions as well as during an isometric 

submaximal constant load fatigue task.  

 

1.3.3 Study 3 

Despite some evidence suggesting that the plantar intrinsic foot muscles may actively control LA 

deformation during stance and gait (Basmajian & Stecko, 1963; Pataky et al., 2008; Caravaggi et 

al., 2010), the specific mechanical functions of these muscles are yet to be described. It is also 

unknown whether these small muscles are able to generate sufficient force to produce a significant 

alteration in foot biomechanics under loaded conditions, in order to influence LA biomechanics. 

This study will aim to address two hypotheses, firstly, that the LA deforms under increasing load, 

producing stretch of the plantar intrinsic foot muscles (AH, FDB and QP) and an increase in 
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involuntary muscle activation. Secondly, when activated these same muscles are capable of 

generating sufficient forces to attenuate LA deformation produced by the load, effectively 

increasing LA stiffness. Activation of these muscles with load and their ability to generate sufficient 

force to counter LA deformation may have important implications for how the foot can absorb and 

generate energy during gait. 

 

1.3.4 Study 4 

It is well established that plantar aponeurosis stretches and recoils in response to LA deformation 

occurring during the stance phase of gait, allowing storage and return of mechanical energy. Given 

that the MTU’s of AH, FDB and QP span the length of the LA, following a similar anatomical 

pathway to the plantar aponeurosis and that they are active during stance, it is possible that these 

muscles actively lengthen and shorten during this phase of gait and thus have the potential to 

contribute to force dissipation and generation. Therefore this study aims to determine if the MTU’s 

of AH, FDB and QP undergo an active stretch and recoil process in response to LA deformation 

during stance phase, and therefore are capable of contributing to energy dissipation and generation. 

Additionally this study aims to determine if the magnitude of MTU stretch and also muscle 

activation increases with increased loading forces that are encountered when gait velocity is 

increased during walking and running. 
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2.1 Abstract 

Background; The aim of this study was to determine the difference in activation patterns of the 

plantar intrinsic foot muscles during two quiet standing tasks with increasing postural difficulty. We 

hypothesised that activation of these muscles would increase with increasing postural demand and 

be correlated with postural sway. 

Methods: Intra-muscular electromyographic (EMG) activity was recorded from abductor hallucis, 

flexor digitorum brevis and quadratus plantae in 10 healthy participants while performing two 

balance tasks of graded difficulty (double leg stance and single leg stance). These two standing 

postures were used to appraise any relationship between postural sway and intrinsic foot muscle 

activity. 

Findings: Single leg stance compared to double leg stance resulted in greater mean centre of 

pressure speed (0.24ms -1 versus 0.06 ms-1, respectively, P ≤ 0.05) and greater mean EMG 

amplitude for abductor hallucis (P≥0.001, ES=0.83), flexor digitorum brevis (P ≤ 0.001, ES=0.79) 

and quadratus plantae (P ≤ 0.05, ES=0.4). EMG amplitude waveforms for all muscles were 

moderate to strongly correlated to COP medio-lateral waveforms (all r ≥ 0.4), with muscle activity 

amplitude increasing with medial deviations of the centre of pressure. Intra-muscular EMG 

waveforms were all strongly correlated with each other (all r ≥ 0.85). 

Interpretations: Activation of the plantar intrinsic foot muscles increases with increasing postural 

demand.  These muscles are clearly important in postural control and are recruited in a highly co-
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ordinated manner to stabilise the foot and maintain balance in the medio-lateral direction, 

particularly during single leg stance. 

Key words: Electromyography, Intrinsic foot muscles, Postural control, Balance. 

 

2.2 Introduction 

Upright stance has been described as an unstable inverted pendulum, where continuous small 

fluctuations in body position (postural sways) are accompanied by bursts of lower limb muscle 

activity (Tokuno et al., 2007). The majority of muscular activity during quiet stance appears to 

occur in the ankle plantar flexors and is associated with anterior-posterior body sway (Winter, 

1995). However, given that weakness in the plantar intrinsic foot muscles has previously been 

implicated as a contributing factor to balance impairment (Menz et al., 2005; Mickle et al., 2009), it 

is likely that these muscles are also involved in maintaining balance and as such, they may be 

significant in postural control.  

 

The plantar intrinsic foot muscles are a unique group of muscles, with both origins and insertions 

contained within the foot. It has been proposed that these muscles provide structural support for the 

medial arch of the foot (Basmajian & Stecko, 1963) however their precise function remains unclear 

(Kura et al., 1997). It has been proposed that weakness and dysfunction of these muscles can 

contribute to clinical pathologies such as plantar fasciitis (Wearing et al., 2006), hallux valgus 

(Arinci İncel et al., 2003), and medial tibial stress syndrome (Senda et al., 1999), through a reduced 

ability to control foot pronation (Headlee et al., 2008). 

 

Early intramuscular electromyographic (EMG) studies (Mann & Inman, 1964; Gray & Basmajian, 

1968) suggested that the plantar intrinsic foot muscles act as a functional unit to stabilise the toes 

during the push off phase of gait, as well as providing resistance to sub-talar joint pronation. These 

early reports provided valuable insight into the function of these muscles. However, evidence of 

electrode location and sufficient detail of the procedures used to acquire and process the EMG 

signals were not provided. More recently, surface EMG evaluation of the plantar intrinsic foot 

muscles has provided some evidence for their role in maintaining the height of the medial 

longitudinal arch (Fiolkowski et al., 2003) and reducing foot pronation (Headlee et al., 2008) 

during static stance. These studies are, however, limited by the inability of surface EMG electrodes 

to capture the individual drawn from the larger and more superficial abductor hallucis (AH).  Given 

the methodological limitations of existing literature, combined with the lack of data pertaining to 

the role of the plantar intrinsic foot muscles in postural support, it is judicious to use ultrasound 



 45 

guided EMG to provide reliable and accurate recordings of these muscles during basic postural 

tasks. 

 

Therefore, the aim of this study was to determine the difference in activation patterns of three 

plantar intrinsic foot muscles, during two standing tasks with increasing postural difficulty. 

Recording of specific patterns of activation from these muscles was achieved using ultrasound 

guided intramuscular EMG. We hypothesised that these muscles would be active during stance and 

that their level of activation would be regulated in response to postural demand.  

 

2.3 Methods 

2.3.1 Participants  

Ten healthy male participants (mean (SD) for age 33 (4) yr; mass: 76 (4) kg; height: 181 (4) cm) 

with no history of diagnosed neuromuscular disorder or lower limb injury in the previous six 

months volunteered to participate in the study. All subjects were informed of the study 

requirements, benefits and risks before giving written informed consent. All procedures conformed 

to the standards set by the Declaration of Helsinki and the protocol was approved by the scientific 

research ethics committee of Aspetar, Qatar Orthopedic and Sports Medicine Hospital. 

2.3.2 Experimental design  

Postural Tasks 

Two quiet standing postures with varying degrees of difficulty (double leg stance, DLS; and single 

leg stance, SLS) were used to appraise any relationship between postural sway and intrinsic foot 

muscle activity, measured using fine wire intramuscular electromyography (EMG). The DLS trial 

was performed once only, for a 120-s period, while the more difficult SLS trial was performed three 

times, each for a 60-s period.  

2.3.3 Data Collection 

Balance measurements 

The DLS and SLS postural trials were performed with the subject standing on a force platform 

(Type 9286AA Kistler, Zurich, Switzerland) facing forward with their eyes open and arms folded 

across their chest. Two strips of adhesive tape were placed on the force plate, measuring 15 cm 

apart and extending from the posterior to anterior edge. During the DLS trial, subjects were asked 

to align the medial aspect of their heel and forefoot (left and right foot) along the corresponding 

pieces of tape. For the SLS trial, subjects placed their foot in the middle of the force plate parallel 
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with the previously mentioned strips of tape. This procedure was employed to maintain consistency 

of foot placement between subjects and trials. 

 

Electromyography (EMG) 

Identification of the abductor hallucis, flexor digitorum brevis (FDB) and quadratus plantae (QP) 

muscles was conducted using real-time ultrasound imaging (12Hz, linear array, Siemens Acuson 

Antares, USA) in the right foot of each subject. An acupuncture needle (0.3 x 50mm, Seirin, 

Shizuoka, Japan) was inserted into the muscle of interest through the medial aspect of the foot, 

while continuously imaging the muscle. The acupuncture needle was used as a guide to determine 

the correct angle and depth for when the fine wire electrode was to be inserted later. Unlike fine 

wire delivery needles, the acupuncture needle could be retracted and repositioned with minimal 

discomfort to the participant, until the tester was satisfied that it was located within the appropriate 

muscle. Subsequently, bi-polar fine wire electrodes (0.051mm stainless steel, Teflon coated, 

Chalgren, USA) with a detection length of 2mm and inter-electrode distance of approximately 2mm 

were inserted using delivery needles (0.5mm x 50mm) into the bellies of AH, FDB and QP under 

ultra sound guidance, using the angle and depth of the acupuncture needle as a guide for correct 

placement. The size of the active area and separation between sites was chosen to give the best 

chance of recording representative activity from each muscle, while reducing the possibility of 

cross-talk from nearby muscles. Once the wires were positioned appropriately in each muscle, both 

the acupuncture and delivery needles were removed. The muscle was imaged once more to 

determine that the ends of the wires remained within the muscle after needle removal.. This method 

has been shown previously to be an accurate and reliable method of fine wire placement (Carpenter 

et al., 2008). Sterile techniques were used for the insertion of all wires.   

 

In two subjects, additional confirmation of electrode placement was made immediately after the 

experiment with the use of Computed Tomography (Siemens Somatom Sensation 40 Slice). Spiral 

blocks of 1-2mm slice thickness were recorded through the region from the metatarsal heads to the 

calcaneus. These images were reconstructed in axial, coronal and sagittal planes to verify wire 

position.  Risk of radiation exposure was reduced with the use of lead gowns. 

 

EMG signal quality was assessed by asking the participant to flex their toes against manual 

resistance. In some cases when the signal appeared to be contaminated by artefact or crosstalk, the 

position of the fine wire electrodes was adjusted by gently pulling on the exposed wires, 

withdrawing them approximately 1mm. The quality of the signal was then reassessed and the 

procedure repeated until an artefact free EMG signal was obtained.  
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EMG was continuously recorded from the right foot during all of the DLS and SLS trials. Ten 

seconds of EMG data was also recorded in a seated position, with the right foot unloaded and 

relaxed (REL). This procedure was undertaken in order to determine the level of resting base-line 

activity for each muscle.  

2.3.4 Data Acquisition and Processing 

All EMG signals were sampled at 5kHz, amplified 1000 times and band pass filtered between 30-

1000Hz and (MP35, Biopac Systems Inc., Santa Barbara, CA). Data was subsequently exported to 

Spike2 (Cambridge Electronic Design, Cambridge, UK) for analysis. Each EMG signal had any DC 

offset removed prior to rectification and low-pass filtering at 5Hz using a fourth order Butterworth 

filter.  Mean EMG root mean square (RMS) signal amplitude was calculated for the entire duration 

of each postural trial, as well as for the 10s REL condition.  

Centre of pressure (COP) position in both the medio-lateral (ML) and antero-posterior (AP) 

directions was calculated for each sample from the vertical and horizontal forces recorded from the 

force plate. COP path excursion in both AP and ML directions was calculated over the entire 

standing period for each DLS and SLS trial. Different task durations were employed in this 

protocol, as single leg stance is difficult to maintain for periods of longer than 60 seconds, while 

longer durations of quiet stance are typically employed to provide an accurate reflection of postural 

demand during double leg stance (Tokuno et al., 2007; 2009). Mean COP speed in both AP and ML 

directions was also determined, in order to normalize the time periods for each task. The calculated 

COP signal was additionally low pass filtered using a 5Hz fourth order Butterworth filter. For the 

purpose of this study COP was calculated to provide an indicator of postural sway. This assumption 

was made in accordance with previous literature (Gatev et al., 1999; Tokuno et al., 2008; 2009). 

 

To enable changes in the EMG signal to be cross-correlated with changes in the force plate signals, 

the rectified and smoothed EMG data was down sampled to 50Hz, the same frequency at which the 

force data was sampled. Synchronisation between both force plate and EMG signals was achieved 

with the use of an external trigger. 

2.3.5 Statistical Analysis 

A repeated measures analysis of variance (ANOVA) was used to compare differences in mean 

EMG RMS amplitude between DLS, SLS and REL trials. Sphericity (homogeneity of covariance) 

was verified by the Mauchly’s test. When the assumption of sphericity was not met, the significance 

of F-ratios was adjusted according to the Greenhouse-Geisser procedure. Pair-wise comparisons, 

including Bonferroni corrections, were applied as post-hoc analyses. Effect size (ES) was calculated 
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using partial-eta squared, to determine the magnitude and the practical relevance of the significant 

findings. Differences in mean COP speed between DLS and SLS trials were assessed using a paired 

T-test.  For all analysis, the level of significance was set at P ≤  0.05.   

 

A cross (waveform) correlation function was applied to compare correlations between rectified 

EMG and COP path excursion (in AP and ML directions), as well as inter-muscular correlations. 

This analysis was conducted using SPIKE 2 software. Correlation (r) values were classified as 

follows; small ± 0.1-0.3, moderate ± 0.3-0.5, and strong ± 0.5-1.0 (Nelson-Wong, 2009). 

2.4 Results 

The single leg balance task induced a higher level of postural demand, as evidenced by a 

significantly greater mean COP speed in both AP (T9 = 5.84, P < 0.001) and ML (T9 = 7.84, P < 

0.001) directions (Fig 2.1). Mean EMG RMS amplitudes were significantly higher in the SLS task 

(Fig 2.2) in AH (F2,18 = 44.3, P <  0.001, ES = 0.83), FDB (F2,18 = 32.2, P < 0.001, ES = 0.79) and 

QP (F2,18 = 5.45, P < 0.02, ES = 0.40), compared to both DLS and REL. No significant differences 

in EMG RMS were found between DLS and REL tasks (P > 0.05). However, most subjects 

displayed intermittent recruitment of a small number of motor units, in one or more muscles, during 

DLS (Fig. 2.3). AH was the most commonly active muscle during DLS, displaying consistent 

recruitment in 7 of the 10 subjects. 

 

 
Figure 2.1. Mean (SEM) speed of the centre of pressure (COP) in antero-posterior (AP) and 

medio-lateral (ML) directions during double leg stance (DLS, solid) and single leg stance (SLS, 

open) trials. * significantly different between conditions. 
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Figure 2.2. Mean (SEM) EMG Root mean square signal amplitude during relaxed sitting 

(REL), double leg stance (DLS) and single leg stance (SLS), for quadratus plantae (QP, white), 

flexor digitorum brevis (FDB, diagonal black stripes) and abductor hallucis (AH, black). * 

significantly different from REL and DLS conditions.  

 

Activation of AH (r = 0.62), FDB (r = 0.40) and QP (r = 0.40) was correlated to ML sway during 

the SLS task (Fig 4), with increased recruitment during medial shifts of the COP. No correlation 

was evident for AP sway and muscle activation (all r < 0.2), nor were there any significant COP-

muscle correlations during the DLS task (all r < 0.2). Strong correlations were observed between all 

muscles during the SLS task (all r > 0.85, Fig 4). 
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Figure 2.3. Anatomical location of abductor hallucis (AH), flexor digitorun brevis (FDB) and 

quadratus plantae (QP) in a right foot, as well as a sample of EMG signal recorded during the 

single (SLS) and double (DLS) leg stance trials. Bi-polar fine wire electrodes have been drawn 

in the approximate recording region within each muscle. All recordings are taken from the 

same representative individual, with all SLS (upper trace) and DLS (lower trace) recordings 

taken from the same time period in each respective trial. 
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Figure 2.4. Waveforms for medio-lateral centre of pressure (COP-ML) and for EMG of 

abductor hallucis (AH), flexor digitorum brevis (FDB) and quadratus plantae (QP) during 

single leg stance (SLS) for a representative subject. Moderate to high correlations between 

COP-ML and muscle activation in AH, FDB and QP (all r ≥ 0.4). High inter-muscular 

correlations were observed between all muscles (all r ≥ 0.85). Shaded areas show the 

synchronous EMG bursts that correspond to the COP-ML excursion. 

 

Computed Tomography images in two subjects confirmed the location of the fine wire electrodes 

within each respective muscle belly after the completion of the balance tasks. Thus, providing 

further evidence of correct electrode placement whilst also indicating that the electrodes remained 

in their correct location for the duration of testing period. 
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2.5 Discussion 

The aim of this study was to describe the activation patterns of the plantar intrinsic foot muscles 

during standing, where task demand and loading varied. We hypothesised that activation of these 

muscles would increase with increasing postural demand, and that recruitment and activity of these 

muscles would be correlated with postural sway. Our results indicate that recruitment of the plantar 

intrinsic foot muscles is regulated in response to postural demands. These muscles are moderate to 

strongly correlated with ML postural sway, thus suggesting a function in balance control.  

 

This is the first study to use ultrasound guided intramuscular EMG to describe the activation 

patterns of the plantar intrinsic foot muscles during quiet stance. Previous studies examining the 

EMG activity of the plantar intrinsic foot muscles have either been limited by the inability to 

confirm the exact location of fine wire electrodes (Basmajian & Stecko, 1963; Mann & Inman, 

1964; Gray & Basmajian, 1968), or by the inability of surface EMG electrodes to record the 

individual activity of small, deep and underlying musculature (Fiolkowski et al., 2003; Headlee et 

al., 2008). Given that the physiological cross-sectional area of these muscles are quite small (Kura 

et al., 1997; Ledoux et al., 2001) and that the use of real-time ultrasound is now quite readily 

available for use in EMG studies, it is prudent to use these techniques to provide reliable and 

effective intra-muscular electrode recordings (Carpenter et al., 2008). In addition to real-time 

ultrasound guidance, we have used Computed Tomography (in 2 individuals) to confirm the 

location of our fine wire electrodes after the completion of the balance tasks.  

 

Our results indicate that the plantar intrinsic foot muscles are active during quiet stance, increasing 

activation in accordance with postural demand. An early study by Basmajian and Stecko (1963) 

involved incrementally adding weights to the legs of seated subjects. They reported that activation 

of these muscles increased with loading of the foot, providing secondary structural support to the 

medial longitudinal arch. The work of Fiolkowski et al. (2003) and Headlee et al. (2008), using 

surface electromyography reported reduced muscle activation in AH in association with increased 

medial arch deformation. Our study delivers evidence that the plantar intrinsic foot muscles provide 

postural support for the feet during quiet stance. 

 

A major finding of this study was that plantar intrinsic foot muscle activation was strongly 

correlated with medio-lateral postural sway in single leg stance, with increasing activity observed 

during sway to the medial border of the foot. Additionally, these muscles display highly correlated 

inter-muscular activation patterns during standing. Cross (waveform) correlation functions have 

been used widely in research related to balance and posture (Nelson-Wong, 2009), establishing 
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relationships between postural sway and muscle activation in the lower limb. Using these 

techniques, it has been established that the posterior lower limb muscles are recruited in response to 

AP body sway, with muscle waveform peaks occurring prior to the peak of anterior sway(Winter, 

1995; Gatev et al., 1999). Suggestions have been made that a central balance control mechanism is 

responsible for the activation of posterior leg muscles, in response to anterior body sway (Gatev et 

al., 1999; Loram et al., 2011) and that recruitment of the posterior leg muscles may be dictated by 

common neural drive (Mochizuki et al., 2006). In the current study, plantar intrinsic foot muscle 

activity was positively correlated with medial shifts in COP during single leg stance, with EMG 

waveform peaks occurring in synchrony with medial COP excursion. Thus, we suggest that a 

similar central mechanism may also be responsible for the highly synchronised recruitment of AH, 

FDB and QP, in response to medial sways in COP. Although these muscles are relatively small in 

size compared to the extrinsic foot muscles (Kura et al., 1997; Ledoux et al., 2001), the 

synchronised manner in which they respond to ML sway may be an essential response to maintain 

balance. According to Mann and Inman (1964), the plantar intrinsic foot muscles function as a unit 

to resist sub-talar joint pronation, observed as calcaneal eversion (frontal plane), combined with 

medial deviation (transverse plane) and reduced vertical height (sagittal plane) of the navicular 

(Razeghi & Batt, 2002). As foot posture and function are known to impact on single leg balance 

(Menz et al., 2005; Tsai, 2006), activation of the plantar intrinsic foot muscles may be utilised to 

help stabilise the foot, thereby improving balance. Our results also support the conclusions of Menz 

et al. (2005) and Mickle et al. (2009) who hypothesised that weakness in the intrinsic foot muscles 

is associated with poor balance and increased risk of falls in the elderly.  

 

Limitations 

The plantar intrinsic foot muscles are relatively small in size, thus there is always a risk of crosstalk 

from adjacent muscles when attempting EMG recordings (Solomonow et al., 1994). Within the 

current study we took care to use a recording area on the intramuscular electrode that was large 

enough to record representative muscle activity, while small enough to minimise the risk of 

crosstalk. Additionally, visual inspection of our data revealed periods when only one muscle was 

active at a given time (Fig 2.5), providing evidence that our electrodes were in fact recording 

electrical activity from different muscles.  
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Figure 2.5. A - Ultrasound view of fine wire electrodes being inserted into the flexor digitorum 

brevis (FDB) muscle using delivery needles (top) and the fine wire electrodes remaining within 

the muscle tissue after the delivery needle is removed (bottom). B – Raw intramuscular 

electromyography recordings from abductor hallucis (AH, red) and FDB (blue) during 

voluntary isometric contractions showing periods of synchronous activation in both muscles 

and also periods of independent activation in each muscle. 
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2.6 Conclusion 

This study investigated the function of the plantar intrinsic foot muscles during quiet upright stance. 

Our results indicate that recruitment of these muscles increases with increasing postural demand 

and that high levels of inter-muscular co-ordination occur in response to ML sway during single leg 

stance.  
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3.1 Abstract 

Abductor hallucis is the largest muscle in the arch of the human foot, and is comprised of relatively 

few motor units, relative to its physiological cross sectional area. It has been described as a postural 

muscle, aiding in the stabilization of the longitudinal arch during stance and gait. The purpose of 

this study was to describe the discharge properties of abductor hallucis motor units during ramp and 

hold isometric contractions, as well as its discharge characteristics during fatigue. Intramuscular 

electromyographic recordings from abductor hallucis were made in five subjects, from those 

recordings 42 single motor units were decomposed. Data were recorded during isometric ramp 

contractions at 60% maximum voluntary contraction (MVC), performed before and after a 

submaximal, isometric contraction to failure (mean force 41.3±15.3%MVC, mean duration 

233±116s). Motor unit recruitment thresholds ranged from 10.3 – 54.2% MVC. No significant 

difference was observed between recruitment and derecruitment thresholds or their respective 

discharge rates for both the initial and post fatigue ramp contractions (all P>0.25). Recruitment 

threshold was positively correlated with recruitment discharge rate (r=0.47, P<0.003). All motor 

units attained similar peak discharge rates (14.0±0.25Hz) and were not correlated with recruitment 

threshold. Thirteen motor units could be followed during the isometric fatigue task, with a decline 
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in discharge rate and increase in discharge rate variability occurring in the final 25% of the task 

(both P<0.005). We have shown that abductor hallucis motor units discharge relatively slowly and 

are considerably resistant to fatigue. These characteristics may be effective for generating and 

sustaining the substantial level of force that is required to stabilize the longitudinal arch during 

weight bearing. 

 

3.2 Introduction 

Abductor hallucis (AH) is the largest and most medially located of the plantar intrinsic foot muscles 

(Kura et al., 1997; Ledoux et al., 2001) and is comprised of a relatively low number of motor units 

(Johns & Fuglevand, 2011). Its function is to both abduct and flex the great toe at the first 

metatarso-phalangeal (MTP) joint. Abductor hallucis has recently been shown to be involved in 

postural stabilization during upright stance, with activation patterns being highly correlated with 

medial postural sway (Kelly et al., 2012). It has also been suggested that AH is involved in 

maintaining longitudinal arch (LA) height during gait (Basmajian & Stecko, 1963; Mann & Inman, 

1964). However little is known about the neurophysiological properties of this muscle, as well as 

how these properties may influence force production.   

 

Active muscle force is regulated by the nervous system via two mechanisms; recruitment (and 

derecruitment) and rate coding.  The utilisation of recruitment and rate coding strategies varies 

greatly between muscles. Postural muscles, such as soleus, are active for sustained periods 

maintaining upright posture (Sherrington, 1915) generally display relatively low peak discharge 

rates (10-25 Hz) (Bellemare et al., 1983; Kuchinad et al., 2004; Oya et al., 2009; Dalton et al., 

2009) and are reliant on recruitment to generate and maintain force across their full range of force 

production (Oya et al., 2009).  Whereas muscles requiring precise control of movement, such as 

hand muscles, tend to have complete recruitment achieved at relatively low force levels (≈ 30 - 50% 

of maximal voluntary contraction (MVC), thereafter relying on rate coding to generate and maintain 

force (De Luca et al., 1982; Zijdewind, 2002; Moritz et al., 2005; Thomas, 2006).  

 

In addition to recruitment and rate coding strategies, the number of motor units within a particular 

muscle will also have a significant impact on the ability to generate and grade active force 

(Campbell et al., 1973). Muscles with a lower number of motor units, relative to their physiological 

cross sectional area (PCSA), tend have a reduced ability to precisely control gradation of force 

(Enoka, 1995). Interestingly, AH has been shown to possess few motor units (Johns & Fuglevand, 

2011) relative to its PCSA and thus these motor units may be inherently large, compared to other 
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muscles of the foot (Campbell et al., 1973) and hand (Sica et al., 1974) which contain greater motor 

unit numbers, relative to their PCSA (Linscheid et al., 1991; Kura et al., 1997). 

 

During sustained submaximal (fatiguing) contractions, a decline in force producing capacity is 

generally accompanied by an increase in excitatory drive to the alpha motoneurone pool (Löscher et 

al., 1996; Hoffman et al., 2009). If the contraction force is below the upper limit of motor unit 

recruitment, an increase in excitatory drive will generally incite recruitment of new motor units in 

order to help maintain the required force. Despite an increase in central drive to the motoneurone 

pool, motor unit discharge behaviour can vary considerably during sustained submaximal 

contractions, with studies reporting a decrease (Garland et al., 1997; Mottram, 2004; Riley et al., 

2008b; Dalton et al., 2010), an increase (Griffin et al., 2001; Kuchinad et al., 2004) and also no 

change in discharge rate (Christie & Kamen, 2009; Pascoe et al., 2011). It has been suggested that 

the reported inconsistencies between studies in discharge behaviour that occur during sustained 

submaximal contractions are due to varying interactions between cortical input and spinal 

motoneurone responsiveness (Kernell & Monster, 1982; McNeil et al., 2011a), as well as the nature 

of the task (ie. high versus low intensity) (Kuchinad et al., 2004) and the recruitment threshold of 

the motor units being investigated (Riley et al., 2008b).  

 

Another factor determining the discharge behaviour of a particular muscle during a fatiguing 

contraction is the composition of muscle fibres within that muscle, that is the percentage of fatigue 

resistant slow twitch fibres to the more fatigue sensitive fast twitch fibres (Kernell & Monster, 

1982; 2004). Postural muscles, which have a higher percentage of fatigue resistant, slow twitch 

fibres tend to be relatively resistant to fatigue induced alterations in motor unit discharge behaviour 

(Macefield et al., 2000; Kuchinad et al., 2004). 

 

Fluctuations in resting membrane potential (due to synaptic noise) are known to lead to increased 

discharge variability, which also influences the ability of a muscle to maintain target force (Calvin 

& Stevens, 1968). The co-efficient of variation (CV) of inter-spike interval (ISI) is a relative 

measure of motor unit discharge variability and provides an insight to the interplay between 

increased central drive and spinal motoneurone inhibition that occurs during sustained contractions 

(Calvin & Stevens, 1968). Motor unit discharge variability significantly hinders force output and 

steadiness (Enoka et al., 2002; Tracy et al., 2005; Moritz et al., 2005) and has been shown to 

increase under conditions of muscle fatigue (Christie & Kamen, 2009).  
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The manner in which a postural muscle with a low number of motor units relative to its PCSA, such 

as AH, utilises recruitment and rate coding strategies to generate and sustain force remains unclear. 

Given the suggestion that AH is responsible for postural support of the LA during stance we 

hypothesised that motor units in AH would have relatively slow discharge rates, while displaying 

relatively high levels of fatigue resistance. Therefore, the aims of this study were to describe the 

single motor unit (SMU) discharge properties of AH during controlled ramp and hold contractions 

as well as during an isometric submaximal constant load fatigue task.  

 

3.3 Methods 

3.3.1 Participants 

Five healthy males who had no history of neuromuscular disorder volunteered to participate in this 

study (mean ± standard deviation (SD) for age, height and weight were 30 ± 5yrs, 180 ± 3cm and 

79 ± 7 kg, respectively). The procedures were approved by the local scientific ethics committee and 

performed according to the Declaration of Helsinki. All subjects gave their written informed 

consent. 

 

3.3.2 Familiarization Procedure 

Precise control of isometric force development and relaxation is imperative when studying the 

recruitment and derecruitment characteristics of a SMU. However an isolated contraction of AH 

(abduction and flexion of the hallux) is a novel task that can be particularly difficult to perform with 

accuracy. As such, all subjects attended the laboratory between two and six times to familiarize 

themselves with the required experimental tasks to reduce task variability. This included performing 

controlled isometric ramp and hold flexion/abduction (F-AB) contractions of the hallux, sustained 

isometric F-AB contractions at a constant submaximal force, as well as maximal voluntary effort 

isometric F-AB contractions. Participants were trained to flex and abduct their hallux at the first 

MTP joint, in the absence of inter-phalangeal joint flexion. The hallux F-AB task was designed 

based on pilot experimental data that indicated this was an effective method to isolate contraction of 

the AH and reduce the risk of co-contraction of agonist hallux flexors. Force feedback was given 

visually via a computer monitor located at eye level directly in front of the subject. The acceptable 

error for force tracking was set at ±3%MVC (De Luca et al., 1996). All participants conducted 

several practice trials, until the investigator was satisfied that the participant could adequately 

follow the target force templates.  

 



 61 

3.3.3 Experimental set-up 

Participants sat comfortably with the right shank and foot secured with Velcro straps in a rigid, 

custom-built brace, which stabilized the leg, ankle and mid-foot, preventing changes in ankle and 

mid-foot joint angles (Figure 3.1A).  The shank was positioned perpendicular to the plantar surface 

of the brace and the foot was positioned in approximately 10O of eversion and parallel to the plantar 

surface of the brace. The inner lining of the boot contained an air bladder that was inflated to 

improve comfort and further reduce any possible change in joint angle. A compression load cell 

(model MB miniature beam, Interface, Scottsdale Arizona, USA) able to detect a minimal mass of 

0.0056kg, was aligned to the plantar surface of the big toe and secured with an additional Velcro 

strap.  

 
Figure 3.1.  Experimental set up for recording of intramuscular EMG during isometric 

contractions of abductor hallucis. (A) The foot and shank were stabilised in a rigid, custom-

built brace with a force transducer aligned to the plantar aspect of the big toe, allowing 

measurement of flexion-abduction force. (B) A medial approach was used to insert the 

quadrifilar fine wire electrodes, under ultrasound guidance, into the abductor hallucis muscle, 

which is located along the medial longitudinal arch of the foot.  

3.3.4 Intramuscular electromyography and force measurement 

Intramuscular EMG (EMGIM) recordings were collected in the right foot of each subject, using a 

quadrifilar fine wire electrode (Micro-probes, Gaithersberg, MA, USA), which was inserted in the 

largest and most proximal segment of the AH muscle (Tosovic et al., 2012) with the aid of a 

delivery needle (0.5mm diameter x 50mm, Figure 3.1B). Quadrifilar electrodes consist of four 

insulated fine wires glued together at the tip, with reduced area cut ends acting as the recording 

surfaces, making them highly selective (Adam, 2003). Ultrasound guidance was used to ensure 

accuracy of electrode placements for all needle insertions. Two channels of EMGIM were recorded 

A B 
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from these electrodes in order to improve both the precision and yield of SMU’s from the 

recordings. A reference surface electrode was placed on the medial malleolus of the right ankle.  

 

All EMGIM signals were amplified 1000 times, recorded with an open bandwidth (Delsys Bagnoli, 

Boston, USA), analogue to digitally converted at a sampling rate of 20KHz and collected using 

Spike2 software (Cambridge Electronic Design, Cambridge, UK). Electromyography signal quality 

was assessed by asking the participant to conduct a brief, low intensity, isometric contraction. In the 

case of apparent signal contamination due to movement artefact, the position of the fine wire 

electrodes were adjusted by gently pulling on the exposed wires, withdrawing them approximately 

1mm. The quality of the signal was subsequently reassessed and the procedure repeated until at 

least one SMU could be easily distinguished by visual inspection.  

 

Force was amplified 1000 times, recorded with an open bandwidth (Delsys Bagnoli, Boston, USA) 

and digitized at the same rate as the EMGIM using the same collection equipment and software as 

for the EMGIM.  

 

Isometric ramp-up, hold, ramp-down protocol 

Each subject performed three isometric MVC F-AB contractions of the hallux. A minimum of 120-s 

was allowed for full recovery between each effort. The maximal force recorded during this task was 

used to normalize force levels during the subsequent isometric ramp-up, hold, ramp-down 

contractions.  

 

Subjects were asked to conduct between three and five controlled isometric ramp-up (5s), hold (3s), 

ramp-down (5s), F-AB contractions to 60% of MVC. This task was conducted while following 

visual feedback of the real-time force signal super-imposed on a ramp template, on a computer 

monitor. In order to record activity from a wider range of the AH motor unit pool, the position of 

the fine wire electrodes was adjusted slightly after the completion of each trial by gently 

withdrawing the electrodes by approximately 1mm. Ramp contractions were then repeated, thereby 

analysing the activity of a separate motor unit. This was conducted 3-5 times for each participant 

until at least 5 motor units had been collected. Immediately after the completion of the subsequent 

fatigue task (described below), subjects were asked to complete the same ramp-up, hold, ramp-

down contractions that were performed at 60% of the pre-fatigue MVC, following identical 

procedures.   
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3.3.5 Fatigue Protocol 

Subjects were asked to sustain a constant submaximal force, isometric F-AB contraction of the 

hallux. A SMU that could be clearly distinguished during the preceding ramp and hold contractions 

was selected as a target unit for the following fatigue trial. The target force was set at 1.5 times the 

recruitment threshold for the target unit. Participants were strongly encouraged to maintain the 

target force until failure, which was defined as when the force recording dropped by more than 5% 

of the target force trace for a period of more than 5 seconds and could not subsequently return to the 

target force level (Christie & Kamen, 2009; Vila-Cha et al., 2010). In a number of the fatigue trials 

additional motor units could be identified and discriminated from the beginning of the fatigue task. 

For these motor units, the target force did not correspond to 150% of their recruitment thresholds, 

however given that they could be discriminated for the entire duration of the fatigue task, they were 

also included the analysis.  

 

3.3.6 Data analysis and statistics 

Rate of force production was defined as the slope of the force time data from the onset of force 

production to the hold phase. Rate of force relaxation was defined as the slope from the end of the 

hold phase to when the force returned to baseline. The accuracy of the force-tracking task was 

calculated by subtracting the force signal from the target force trace. The tracking accuracy was 

defined as the mean RMS value of the residual force signal. This value was calculated for both the 

force production and relaxation phases of the ramp contractions. 

 

 

EMGIM signals were decomposed semi-automatically, offline, into trains of individual SMU’s, 

using an interactive software program (EMGLAB, McGill et al., 2005), based in a MATLAB 

environment (The Mathworks, Nattick, MA, USA) which has been described in detail elsewhere 

(McGill et al., 2005; Oya et al., 2009). The signal was processed in 0.5 s segments, which were 

digitally high-pass filtered at 1kHz. When decomposition of a segment was complete, the time 

window was advanced to the following 0.5s segment. If SMU super-impositions could not be 

clearly resolved, the adjacent EMGIM channel from the quadrifilar electrodes was decomposed and 

used to aid in verifying the units involved.  

 

Recruitment of SMUs were determined by moving a 0.5s window of EMGIM signal forward in steps 

of 1ms until the mean co-efficient of variation (CV) of ISIs within the 0.5s window was less than 

50%. Derecruitment was determined in the same manner, but by moving the window backwards 

from the last segment of the signal (Moritz et al., 2005). Forces corresponding to the calculated first 
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and last discharge within each 0.5s window were considered as recruitment and derecruitment 

thresholds, respectively. Recruitment and derecruitment thresholds, discharge rate at recruitment 

and derecruitment, as well as peak discharge rate were calculated during the ramp-up, hold, ramp-

down contractions. The slope of the discharge rate as a function of the F-AB force was also 

calculated by dividing the amount of increase in the discharge rate by the amount of increase in the 

force from the recruitment threshold to peak discharge rate (Oya et al., 2009). This process was 

completed for both pre- and post-fatigue ramp and hold isometric contractions. 

 

During the constant force submaximal isometric fatigue task, mean discharge rate and the CV of 

ISIs were calculated from 5s epochs at times corresponding to 0, 25, 50, 75 and 100% of 

contraction duration. The initial time epoch was considered to commence when the force attained 

the target level and remained stable for 5s. 

 

The ability of the participant to match the rate of force increase and decrease during the ramp up 

and ramp down phases of the contraction was assessed using a one-way, repeated measures 

ANOVA. The same test was also applied to compare any differences in accuracy of the force 

production and relaxation phases. A two-way repeated measures analysis of variance (ANOVA) 

was performed (discharge behaviour vs. fatigue) to determine within factors effects for discharge 

behaviour (recruitment / peak / derecruitment discharge rates and recruitment / derecruitment force 

thresholds) and between factors effects (pre- vs. post-fatigue). Between factors analysis was applied 

for pre- and post-fatigue comparisons as we could not be certain that the same motor units were 

being decomposed following the fatigue task. Linear correlations were performed on both pre- and 

post-fatigue data for the following variables: recruitment threshold, the discharge rate at 

recruitment, the peak discharge rate and the slope of increase in discharge rate as a function of the 

force. Correlations were classified as weak, r = 0.1 - 0.3; moderate, r = 0.3 - 0.5; and strong, r > 0.5 

(Cohen, 1988). Alterations in mean discharge rate and the CV of ISIs occurring during the fatigue 

task was evaluated separately using a repeated measures one-way ANOVA.  

 

Sphericity (homogeneity of covariance) was verified by the Mauchly’s test. If the assumption of 

sphericity was not met, the significance of F-ratios were adjusted according to the Greenhouse-

Geisser procedure. Pair-wise comparisons, including Bonferroni corrections, were applied as post-

hoc analyses. For all analysis, the level of significance was set at P ≤ 0.05.  Effect size (ES) was 

calculated using partial-eta squared, to determine the magnitude and the practical relevance of the 

significant findings. Effect sizes were as follows; small ± 0.1-0.3, moderate ± 0.3-0.5, and strong ± 
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0.5-1.0 (Cohen, 1988). All data is presented as mean ± standard deviation (SD) unless otherwise 

stated. 

 

3.4 Results 

A total of 42 motor units were recorded from the isometric ramp contractions before and 

immediately after the fatigue task. Additionally, 13 motor units (recorded from five subjects) could 

be followed for the duration of the fatigue task. Typically between six and eight motor units were 

collected from each participant during the ramp and hold contractions prior to and following the 

fatigue task, while one or two motor units were tracked during each fatigue task. Two individuals 

returned for a second data collection session 7 days after the initial session (see Table 3.1). 

 

3.4.1 Isometric ramp-up, hold, ramp-down contractions 

All subjects were able to satisfactorily follow the ramp templates, with force increasing 

(contraction) at a rate of 7.6 ± 1.2% MVCs-1 and decreasing (relaxation) at a rate of at 8.2 ± 1.0 

MVCs-1 (P = 0.12, Figure 3.2). However, the ability to accurately track the contraction and 

relaxation ramps was significantly different, with force relaxation being more difficult. This was 

shown by mean root mean square (RMS) force residuals over the force relaxation ramp being 

significantly greater than those during the force development ramp (3.3 ± 1.1% MVC versus 2.3 ± 

0.5% MVC, respectively, P ≤ 0.05, ES = 0.57). 

 

There was no significant difference between the mean recruitment and derecruitment thresholds of 

the identified motor units (28.8 ± 13.1% MVC and 30.4 ± 11.5% MVC, respectively). Thresholds 

spanned a range of 10.3% MVC - 54.2% MVC for recruitment and 9.7% MVC - 52.0% MVC for 

derecruitment, P = 0.25).  

 

Mean motor unit discharge rate at recruitment (6.6 ± 1.8Hz) and derecruitment (6.4 ± 1.1Hz) was 

not significantly different from each other and ranged from 3.4Hz to 10.5Hz at recruitment and 

4.0Hz to 8.6 Hz at derecruitment (P = 0.4). Motor unit discharge rate increased with increasing 

force and mean peak discharge rate (14.0 ± 2.3Hz) was significantly higher than both recruitment 

and derecruitment discharge rates (P ≤ 0.05, ES = 0.86). Peak discharge rates ranged from 10.7Hz - 

21.3Hz for the ramp and hold contractions. A moderate positive correlation was evident between 

recruitment threshold and recruitment discharge rate, with higher threshold motor units discharging 

at a higher initial rates (r = 0.47, P ≤ 0.05, Figure 3.3A). There was no correlation between 

recruitment threshold and peak discharge rate (r = 0.03, P = 0.89 Figure 3.3B). However, a 
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moderate positive correlation was evident between recruitment discharge rate and the slope of 

increase in discharge rate as a function of the force (r = 0.35, P ≤ 0.05), indicating that higher 

threshold motor units attained peak discharge frequency at a faster rate. 

 

Subject 

 

 Session 

     # 

Motor 

Unit # 

Fatigue 

target 

force 

(%MVC) 

Fatigue 

task 

duration 

(s) 

Pre-fatigue 

Recruit 

threshold 

(%MVC) 

Pre-fatigue 

Recruit 

DR 

(Hz) 

Pre-fatigue 

Peak 

DR 

(Hz) 

1 1 1 36.5 432.0 24.7 6.9 13.3 

1 1 2 36.5 432.0 37.7 8.7 15.6 

1 2 3 70.9 97.0 44.3 5.1 11.4 

2 1 4 53.1 152.0 35.6 5.5 15.3 

2 1 5 53.1 152.0 43.5 5.6 15.6 

3 1 6 37.7 212.0 25.5 8.6 12.3 

3 1 7 37.7 212.0 29.6 10.5 12.6 

3 2 8 27.7 178.0 18.3 5.8 13.2 

3 2 9 27.7 178.0 12.8 5.3 11.8 

4 1 10 31.5 215.0 18.6 3.4 16.0 

4 1 11 31.5 215.0 24.2 4.6 16.3 

5 1 12 32.1 345.0 40.0 8.3 18.4 

5 1 13 32.1 345.0 19.4 5.8 16.1 

 

Table 3.1. Data for individual motor units decomposed during the fatigue task, including the 

subject and session from which each motor unit was recorded, as well as the duration and 

intensity of the task. Motor units correspond to those presented in figure 4. MVC - maximal 

voluntary contraction, DR - discharge rates. 
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Figure 3.2. A representative recording of a ramp up, hold, ramp down contraction showing 

force (bottom trace) and two channels of intramuscular electromyography (EMG) from a 

quadrifilar fine wire electrode inserted into abductor hallucis (second and forth trace from the 

top). Single motor units were discriminated from the EMG signals and their instantaneous 

discharge rate is shown above each respective EMG trace. The motor unit recorded from 

intramuscular EMG Channel 1 is recruited at 27.2% MVC at a discharge rate of 8.8Hz, while 

the motor unit recorded from intramuscular EMG Channel 2 is recruited at 18.6% MVC at a 

discharge rate of 6.0Hz. Both motor units increase to similar peak discharge rates (13.1Hz and 

13.9 Hz, respectively). Derecruitment occurs at 27.0% MVC for both motor units, with 

discharge rates of 6.9Hz and 7.6Hz, respectively. MVC, maximal voluntary contraction. 
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Figure 3.3. (A) Moderate positive linear correlation between recruitment threshold and 

discharge rate at recruitment for ramp and hold contractions prior to (filled circles, n=42 units, r 

= 0.45, P ≤ 0.05) and following (open circles, n=42, r =0.47, P ≤ 0.05) the fatigue task. (B) No 

significant correlation was observed between recruitment threshold and peak discharge rate 

prior to the fatigue task (filled circles, r = 0.03, P = 0.89). Following the fatigue task a negative 

correlation was evident between recruitment threshold and peak discharge rate (open circles, r 

= -0.43, P ≤ 0.05). MVC, maximal voluntary contraction. 

3.4.2 Fatigue task 

The submaximal fatigue task was performed at a mean force level of 41.3 ± 15.3% MVC (range 

27.7% MVC – 70.9% MVC, Table 3.1), which resulted in mean task duration of 233 ± 116.2s 

(range 97s – 432s). An increase in neural drive was indicated by the recruitment of new motor units 

in all of the fatigue trials, with eight additional motor units being detected by our electrodes. 

Recruitment of new motor units was not limited to the end of the fatigue task with additional 

recruitment observed from 20% of task duration. However most additional motor units discharged 

in periodic bursts, thus only motor units that could be identified and followed for the entire duration 

of the task were analysed. Mean discharge rates and CVs of the ISIs are shown in Figure 3.4. Mean 

motor unit mean discharge rate significantly decreased from 75% to 100% of task duration (P ≤ 

0.05, ES = 0.72). Variability of the firing rate, as measured by CV of the ISI, was stable over the 

first 50% of the fatigue task and increased significantly during the final 25% of the fatigue task (P ≤ 

0.05, ES = 0.71).  
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Figure 3.4. Mean (solid line) and the corresponding 13 individual motor unit responses (broken 

lines) for (A) discharge rate (B) and co-efficient of variation (CV) of the inter-spike interval 

(ISI), calculated during a submaximal contraction to task failure. * indicates a significant 

decrease in mean discharge rate over the last 25% of the fatigue task (P ≤ 0.05). ** indicates a 

significant increase in CV of ISIs over the last 25% of the fatigue task (P ≤ 0.05).  

3.4.3 Isometric ramp-up, hold, ramp-down contractions following the fatigue task 

Maximal voluntary force producing capacity declined to 73.6 ± 4.2% of pre-fatigue MVC value (P 

≤ 0.05, ES = 0.91). Mean recruitment (25.2 ± 14.6 % MVC) and derecruitment (25.7 ± 13.3 % 

MVC) thresholds during the ramp and hold contractions performed immediately after the fatigue 

trial were not significantly different to each other (range 8.3 – 51.3% MVC and 6.8 – 52.0% MVC, 

respectively, P = 0.25). These threshold values were not significantly different to the same 

measures made over the same type of contraction protocol prior to performing the fatigue task (P = 

0.25).  

 

Mean discharge rates at recruitment and derecruitment (5.8 ± 1.5Hz and 6.3 ± 1.7Hz, respectively) 

for ramp and hold contractions after the fatigue task were not significantly different from each other 

(range 3.2Hz - 10.1Hz and 4.1Hz - 10.7Hz respectively, P = 0.4). There was also no difference 

between these values and the pre-fatigue task recruitment and derecruitment discharge rates (P = 

0.4). Mean peak discharge rate (13.3 ± 2.3Hz) remained unchanged after the fatigue trial (post 

fatigue range 7.8Hz - 18.5Hz, P = 0.12) and was significantly higher than recruitment and 

derecruitment discharge rates (both P ≤ 0.05). A moderate positive linear correlation was still 

evident between recruitment threshold and recruitment discharge rate during this task (r = 0.47, P ≤ 
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0.05, Fig 3.3A). A moderate negative linear correlation existed between peak discharge rate and 

recruitment force threshold for ramp and hold contractions after the fatigue task, with higher 

threshold motor units discharging at slower peak rates after completion of the fatigue trial (r = -

0.43, P ≤ 0.05, Fig 3.3B).  

 

3.5 Discussion 

 We describe the recruitment and discharge characteristics of motor units in AH, a muscle with a 

postural function (Kelly et al., 2012) which also possesses a low number of motor units (Johns & 

Fuglevand, 2011). Similarly to other postural muscles (Macefield et al., 2000; Oya et al., 2009; 

Dalton et al., 2009) motor units in AH displayed low peak discharge rates and were resistant to 

fatigue. The anatomical configuration of a low number of motor units, relative to PCSA (Johns & 

Fuglevand, 2011) that are also fatigue resistant, may allow this muscle to generate and sustain 

moderate to large amounts of force for prolonged periods of time, in order to provide postural 

support for the foot.  

 

Recruitment threshold and discharge characteristics 

In the current study we did not observe any difference between recruitment and derecruitment 

thresholds, or discharge rates at recruitment and derecruitment for AH motor units. While similar 

findings have been reported previously (Oya et al., 2009; Jesunathadas et al., 2010) during 

isometric ramp up-down contractions, derecruitment generally occurs at higher force levels and at 

lower discharge rates (Adam, 2005; Moritz et al., 2005; Riley et al., 2008b; Oya et al., 2009). It is 

suggested that this is due to the amplifying effects of persistent inward currents (PIC) (Gorassini et 

al., 2002; Heckman et al., 2008) as well as late adaptation of the motoneurone . Our finding may 

indicate that similar to another lower limb postural muscle, the soleus (Oya et al., 2009) the effects 

of PICs and late adaptation are minimal within AH. However, an alternative explanation for the 

lack of difference between recruitment and derecruitment thresholds, or discharge rates at 

recruitment and derecruitment, relates to the accuracy of force development and relaxation in the 

ramp-up and ramp-down phases of the isometric contractions. In our study, despite extensive task 

familiarization, the accuracy of force tracking during force production was significantly greater than 

that during force relaxation. Thus, it is possible that a less accurate relaxation of force may have 

influenced both the threshold and discharge rate at derecruitment.  

 

Discharge rate at recruitment was positively associated with recruitment threshold over the range of 

force tested. This result is in contrast to the “onion skin” hypothesis, which describes lower 

threshold motor units discharging at higher initial and peak discharge rates in muscles such as 
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vastus lateralis and tibialis anterior (Erim et al., 1996; Adam, 2003; De Luca & Hostage, 2010). 

However, the positive correlation between recruitment threshold and recruitment discharge rate has 

previously been demonstrated in other muscles such as soleus (Oya et al., 2009), muscles of the 

hand (Moritz et al., 2005), biceps brachii (Riley et al., 2008a) and adductor pollicis (Kukulka & 

Clamann, 1981). The finding that lower threshold motor units discharge at lower initial rates fits 

with the theoretical organizational properties of a motoneurone pool, as these motor units possess 

longer contraction and half relaxation times (Bakels & Kernell, 1993; Kernell et al., 1999) and 

would therefore summate and fuse at lower firing rates compared to higher threshold units with 

shorter contraction and half relaxation times (Grimby et al., 1979).  It is has been hypothesised 

previously that this level of organization helps to achieve efficient gradation of force across a wide 

variety of contraction strengths (Moritz et al., 2005; Oya et al., 2009).  

 

Peak Discharge rate 

The peak discharge rates reported in our study are at the lower end of the range of peak discharge 

rates (between 10 to 25Hz) described in other lower limb muscles (Connelly et al., 1999; Roos et 

al., 1999; Dalton et al., 2009) during isometric contractions at similar contraction intensities. Our 

observed low peak discharge rates may be related to the postural function of this muscle (Kelly et 

al., 2012), as some postural muscles are known to discharge at relatively low rates (Oya et al., 

2009; Dalton et al., 2009) for sustained periods in order to resist gravitational forces and maintain 

upright posture (Sherrington, 1915).  

 

Previous studies have reported both positive (Gydikov & Kosarov, 1974; Moritz et al., 2005; Oya et 

al., 2009) and negative (De Luca & Hostage, 2010; Stock et al., 2012) linear relationships between 

recruitment threshold and peak discharge rate. However in AH we found no relationship between 

peak discharge rate and recruitment threshold, with all motor units converging to similar peak 

discharge rates, regardless of recruitment threshold. When considering this finding, it must be 

recognized that we have only recorded data from contractions up to 60% of MVC. Thus it is 

possible that our latter recruited motor units may have eventually attained higher discharge rates, if 

the contraction force was increased to levels beyond 60% MVC. Our finding that higher threshold 

motor units obtained peak discharge rate more rapidly supports this suggestion. Regardless, the 

relatively small increase in discharge rate after recruitment for all motor units, suggests that rate 

coding as a method of force gradation may be somewhat limited in AH. Thus recruitment may be 

the dominant factor in force generation (De Luca et al., 1982; Bellemare et al., 1983), despite the 

fact that AH has relatively few motor units (Johns & Fuglevand, 2011). This suggestion is further 

supported by the continued recruitment of motor units during the fatigue task, despite a minimal 
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change in discharge rate. Due to its postural function, AH is required to generate and sustain 

relatively large forces to support bodyweight. The organization of a low number of large motor 

units relative to its PCSA may allow for generation of substantial forces, whilst maintaining fatigue 

resistance (Gordon et al., 1990; Sirca et al., 1990). 

 

Motor Unit discharge properties during the fatigue task 

During the fatigue task an increase in central drive to the motoneurone pool was evidenced by 

recruitment of eight additional motor units. Despite this increase in central drive, only two of these 

motor units displayed an increase in discharge rate during the fatigue task. During the final 25% of 

the task we observed a decrease in motor unit discharge rate in 11 of the 13 motor units. This 

anomalous decrease in SMU discharge rate observed concurrently with an increase in central drive 

has been observed previously in upper (Carpentier et al., 2001; Mottram, 2004; Riley et al., 2008a) 

and lower (Kuchinad et al., 2004; Christie & Kamen, 2009; Dalton et al., 2010)  limb muscles and 

is possibly due to reduced spinal motoneurone responsiveness, which impairs the ability to integrate 

increased cortical input (McNeil et al., 2011a; 2011b). Reduced spinal motoneurone responsiveness 

may occur as a result of intrinsic motoneurone adaptation (due to repetitive discharge) (Kernell & 

Monster, 1982; McNeil et al., 2011b) and reflex inhibition by Group III and IV afferents (Rotto & 

Kaufman, 1988). We must also recognize motor units recruited during the later stages of the fatigue 

may have actually increased their discharge rates, in order to compensate for the decrease in 

discharge rate of the existing motor units. Regardless, it is worthy to note that AH motor units were 

able to maintain moderate to high levels of force (40% MVC for 233 s) for similar periods and 

intensities (40-60% MVC for 292 s) (Kuchinad et al., 2004) to the fatigue resistant soleus and for 

considerably longer than the biceps brachii (17% MVC for 117 s) (Riley et al., 2008a).  

 

Despite increasing central drive, discharge rate variability also remained relatively unchanged until 

late in the fatigue contraction, when it was observed to increase significantly in the final 25% of the 

task. Discharge variability arises as a result of fluctuations in synaptic noise due to an increase in 

both excitatory and inhibitory input (Berg et al., 2008), causing variability in the motoneurone 

membrane potential (Calvin & Stevens, 1968). Our findings that both discharge rate and discharge 

rate variability of AH motor units remains relatively stable until just prior to task failure, indicates 

that AH is able to sustain a relatively constant and moderate output for prolonged periods. It 

appears that it is only in the late phase of a sustained contraction that significant alterations in 

synaptic input and intrinsic motoneurone properties occur, disturbing the balance of repetitive 

discharges.   
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Maximal voluntary force production was reduced by 27% following the fatigue tasks.  However, 

recruitment thresholds of the recorded units during ramp and hold contractions following the fatigue 

task were not significantly different from those pre-fatigue. Our finding of no change in recruitment 

thresholds following the fatigue task suggests that additional motor units, other than those detected 

by our fine wire electrodes may have been recruited in order to generate 60% of pre-fatigue MVC 

(equivalent to 83% post-fatigue MVC). However this suggestion cannot be quantified in the current 

study, as we have not collected surface EMG data. Regardless, the 27% decline in MVC following 

a sustained moderate to high intensity fatigue task is similar to that of the fatigue resistant soleus 

(Kuchinad et al., 2004), highlighting the fatigue resistance properties of this muscle. 

 

Following the fatigue trial we observed a moderate negative correlation between recruitment 

threshold and peak discharge rate. This relationship was not evident prior to the fatigue task, when 

all motor units attained similar peak discharge rates, thus indicating a fatigue related alteration in 

the discharge behaviour of higher threshold motor units. The divergence in discharge behaviour 

between lower and higher threshold motor units may be explained by the fact that higher threshold 

motor units generally innervate faster twitch muscle fibres, which are less fatigue resistant (Bakels 

& Kernell, 1993).  

 

3.6 Conclusion 

We have described the discharge characteristics of motor units from AH, a postural muscle in the 

foot that is known to have relatively few motor units. This muscle is comparatively fatigue resistant 

and appears to rely predominantly on recruitment to generate force, optimizing the use of slow 

twitch, fatigue resistant fibres to generate moderate to large amounts of force for sustained periods 

of time.  
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4.1 Summary 

The human foot is characterised by a pronounced longitudinal arch that compresses and recoils in 

response to external load during locomotion, allowing for storage and return of elastic energy 

within the passive structures of the arch, contributing to metabolic energy savings. Here we 

examine the potential for active muscular contribution to the biomechanics of arch deformation and 

recoil, testing the hypotheses that activation of the three largest plantar intrinsic foot muscles, 

abductor hallucis, flexor digitorum and quadratus plantae is associated with muscle stretch in 

response to external load on the foot and that activation of these muscles (via electrical stimulation) 

will generate sufficient force to counter the deformation of longitudinal arch caused by the external 

load. We found that recruitment of the intrinsic foot muscles increased with increasing load, beyond 

specific load thresholds. Interestingly, LA deformation and muscle stretch plateaued towards the 

maximum load of 150% body weight, when muscle activity was greatest. Electrical stimulation of 

the plantar intrinsic muscles countered the deformation that occurred due to the application of 

external load by reducing the length and increasing the height of the LA. These findings 
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demonstrate that these muscles have the capacity to control foot posture and LA stiffness and may 

provide a buttressing effect during foot loading. This active arch stiffening mechanism may have 

important implications for how forces are transmitted during locomotion and postural activities as 

well as consequences for metabolic energy saving. 

Keywords 

multi-segment foot model, foot stiffness, electromyography,  

 

4.2 Introduction 

The human foot is a flexible structure, capable of conforming to variations in surface and load to 

maintain effective force transmission between the lower limb and the ground. This functionality is 

achieved via an intricate interaction of movements occurring in a series of small joints, which 

allows the longitudinal arch (LA) to lengthen and lower during stance (Leardini et al., 2007) and 

absorb loading forces as elastic strain energy (Ker et al., 1987; Erdemir et al., 2004).  Later in the 

stance phase, passive elastic recoil of the plantar aponeurosis contributes to positive work 

generation for propulsion, aided by the windlass mechanism, which effectively stiffens the LA 

during toe extension (Hicks, 1954; Ker et al., 1987; Erdemir et al., 2004). This process allows for a 

highly efficient bipedal gait that is unique to humans (Vereecke & Aerts, 2008).  

 

The plantar aponeurosis along with the windlass mechanism are considered the key contributors to 

foot stiffness during human gait (Hicks, 1954; Ker et al., 1987). It is proposed that extension of the 

toes in mid- to late-stance, creates increased tension in the plantar aponeurosis, resulting in 

shortening of the LA via flexion and adduction of the metatarsals in combination with supination of 

the rear-foot (Hicks, 1954; Caravaggi et al., 2009). These alterations in bony alignment act to 

stiffen the foot and transform it from a compliant attenuator to a rigid lever, allowing ankle plantar 

flexor torque to be efficiently transmitted to the ground (Donatelli, 1985). Recent studies 

investigating the biomechanics of LA deformation during locomotion have confirmed that the 

plantar aponeurosis has a critical influence on the stiffness of the LA (Caravaggi et al., 2009; 2010).  

However these studies (Caravaggi et al., 2010) and others by Pataky et al (Pataky et al., 2008) and 

Bates et al (Bates et al., 2013) have also highlighted the potential contribution of an active 

stiffening mechanism, possibly produced by muscles such as the plantar intrinsic foot muscles. 
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The plantar intrinsic foot muscles possess origins and insertions that are contained within the foot 

with the three largest muscles, abductor hallucis (AH), flexor digitorum brevis (FDB) and quadratus 

plantae (QP), having muscle-tendon units that span the length of the LA (Kura et al., 1997; Ledoux 

et al., 2001; Tosovic et al., 2012). The function of these muscles during stance and gait has been the 

subject of speculation for many years and remains an area of intense interest. Anatomy texts 

describe these muscles as accessory toe flexors, which may also aid in forefoot stabilization during 

the push-off phase of gait (Thibodeau & Patton, 2007). It appears however, that a disparity exists 

between the mechanical action proposed by textbooks and the electromyography (EMG) profiles 

described in the literature. Early EMG studies suggest these muscles may play a role in stabilization 

of the LA, with muscle recruitment occurring in response to increased loading (Basmajian & 

Stecko, 1963; Mann & Inman, 1964). Further supporting this hypothesis, individuals with a lower 

LA height in stance (i.e., greater LA deformation) were shown to display greater levels of intrinsic 

muscle activity (Gray & Basmajian, 1968). Recent studies from our own laboratory using intra-

muscular EMG have reported that the plantar intrinsic muscles act in a synchronous manner to 

provide postural support for the foot, with activation amplitude and timing being correlated with 

postural task difficulty and medial postural sway, respectively (Kelly et al., 2012). 

 

Despite some evidence suggesting that the plantar intrinsic foot muscles may actively contribute to 

regulation of foot stiffness during stance and gait (Pataky et al., 2008; Caravaggi et al., 2010), the 

specific mechanical functions of these muscles are yet to be described. It is also unknown whether 

these small muscles are able to generate enough force to produce a significant alteration in foot 

biomechanics under loaded conditions, in order to influence LA biomechanics. Here we tested two 

hypotheses, firstly, that the LA would deform under increasing load, producing stretch of the 

plantar intrinsic foot muscles (AH, FDB and QP) and an increase in involuntary activity. Secondly, 

we tested the hypothesis that these same muscles are capable of generating sufficient forces to 

attenuate LA deformation produced by the load, effectively increasing LA stiffness. Activation of 

these muscles with load and their ability to generate sufficient force to counter LA deformation may 

have important implications for how the foot can absorb and generate energy during gait. 

4.3 Methods 

4.3.1 Participants 

Nine healthy males with no history of neuromuscular disorder or lower limb injury in the previous 

six months volunteered to participate in the study (mean ± standard deviation (SD) for age, height 

and body mass were 30 ± 4yrs, 179 ± 7cm and 80 ± 6kg, respectively). All participants were 



 83 

informed of the study requirements, benefits and risks before giving written informed consent. The 

procedures were approved by the local scientific ethics committee and performed according to the 

Declaration of Helsinki. Two discrete experiments with similar experimental setups were performed 

on the same group of participants during the one test session, in order to address our two 

hypotheses. 

 

4.3.2 Experiment 1 – Foot loading 

The aim of this experiment was to examine the relationship between mechanical loading of the foot 

and both deformation of the foot and also muscle activity of the intrinsic foot muscles (AH, FDB 

and QP). Loads were incrementally applied to the thigh via a loading rig described in detail below 

(Figure 4.1). Loads ranged from 0% body mass to 150% body mass with 25% increments. A period 

of approximately 5-s was maintained at each loading increment, during which time intramuscular 

EMG, kinematic and force plate data were recorded. Subjects were advised to remain still and 

refrain from any voluntary movement throughout the trial. 

 

Figure 4.1. Experimental set up. Foot motion, ground reaction forces and intramuscular 

electromyography were recorded during incremental loading  (Experiment one) and 

independent electrically evoked contractions of the three major plantar intrinsic foot muscles 

(Experiment two). Loads ranging from 0-150% of body mass were added to a loading device, 

which was secured to the distal aspect of the participants right thigh. The participant’s foot was 

placed on the centre of a force plate and four motion analysis cameras were positioned to 

record three-dimensional motion of the shank and two individual foot segments during each 

task.  
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4.3.3 Experiment 2 - Electrically evoked muscle contractions 

The aim of this experiment was to determine the mechanical response of the foot to stimulation of 

the individual intrinsic foot muscles (AH, FDB and QP) under different loading conditions. Loads 

corresponding to 50% and 100% of body mass were applied using the same loading rig described 

above while the each individual muscle was electrically stimulated. One experimental trial 

consisted of three electrically evoked contractions, each separated by 15s, for each muscle. The trial 

was completed for each of the three muscles under the two loading conditions, which were 

undertaken in a randomized in order. As such, a total of 6 trials were completed for each 

participant.  

 

4.3.4 General experimental setup 

Each participant was seated with their right foot placed flat on a marked area in the centre of a force 

plate (Kistler 9286A, Zurich, Switzerland). The shank was positioned at approximately 10 degrees 

of flexion (relative to vertical) with the femur positioned parallel to the floor. Loads of up to 150% 

of body mass could be applied to the distal aspect of thigh using a custom built rig (Figure 4.1) so 

that the vertical force was located slightly anterior to the ankle joint axis, similar to where it occurs 

during quiet standing (Tokuno et al., 2007).  

 

4.3.5 Data Collection 

Muscle activation and stimulation 

Paired, fine wire, intramuscular electrodes (0.051mm stainless steel, Teflon coated, Chalgren, USA) 

were inserted into both the proximal and distal ends of the AH, FDB and QP muscles in the right 

foot  (Figure 4.2) of each subject using delivery needles (0.5mm x 50mm) under B-mode ultrasound 

guidance (12MHz, 38mm linear array, Siemens Acuson Antares, USA)(Kelly et al., 2012). After 

removal of the delivery needles, the muscles were imaged once more to determine that the ends of 

the fine wire electrodes remained within the relevant muscle after needle removal. The most 

proximal pair of fine wire electrodes was used for measuring EMG activity during foot loading 

(Experiment 1 only). The electrodes had a detection length of 2 mm and were separated by 

approximately 2 mm. A surface ground electrode was attached to the medial malleolus of the right 

ankle and secured with adhesive tape. All signals were amplified 1000 times, band-pass filtered 

from 30Hz to 1kHz (Delsys Bagnoli, Boston, USA) and subsequently analogue to digitally 

converted (Power 1401, Cambridge Electronic Design, Cambridge, UK) at a sampling rate of 
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10kHz and collected using Spike2 software (Cambridge Electronic Design, Cambridge, UK). All 

data was manually inspected to ensure that muscle electrical activity could be clearly distinguished 

from that of background noise or artefact. In the case where recordings were contaminated by 

artefact, or muscle electrical activity appeared absent, the location of the fine wire electrodes were 

slightly adjusted and the loading task was repeated. If clear signals could not be obtained following 

this procedure, the data from that individual was excluded from further analysis.  

 

Figure 4.2. Location of electrodes within the intrinsic foot muscles. Schematic depiction of the 

anatomical location of abductor hallucis (AH), flexor digitorum brevis (FDB) and quadratus 

plantae (QP) from the plantar aspect of a right foot. Fine wire pairs of electromyography 

(EMG) electrodes (black lines with hooked ends) were inserted under ultrasound guidance, 

with one pair being inserted proximally and one pair distally to the muscle belly. The proximal 

electrode pair was used for the EMG recordings in Experiment 1, while one wire from each of 

the proximal and distal pairs were connected to a constant current electrical stimulator, which 

delivered trains of electrical stimulation to each muscle independently in Experiment 2. 

 

For experiment 2, a constant current electrical stimulator (Digitimer DS7AH, Digitmer, 

Herfordshire, UK) was connected to one of each pair of intra-muscular electrodes with the cathode 

connected to the proximal electrode and anode to the distal electrode. The electrical stimulator was 

programmed using Spike 2 software (Cambridge Electronic Design, Cambridge, UK) to deliver 

trains of current pulses (400V, 20 rectangular pulses, 10µs pulse width, 40 Hz frequency) across the 

motor point of the muscle. A submaximal level of stimulating current was determined prior to data 

collection by delivering a train of pulses commencing at 1mA and increasing incrementally by 1mA 

until a mechanical response was observed as a minimum change of 10N in the vertical ground 

reaction force. The 10N vertical force threshold was chosen so as to elicit a clear mechanical 

response while minimizing subject discomfort. The above task was undertaken with a mass of 20kg 

AH# QP#FDB#
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applied to the thigh using the loading rig, in order to ensure consistent foot position on the force 

plate during the stimulations. Mean stimulation intensities were 6 ± 1mA for all muscles. 

 

Foot motion and force measurements 

Three-dimensional (3D) motion-capture and force plate data were collected in order to quantify the 

magnitude and direction of the biomechanical responses due to loading and/or muscle stimulation. 

Fourteen retro-reflective markers (diameter 9.0 mm) were placed on the skin of the right foot and 

ankle according to a multi-segment foot model developed to describe rear-, mid- and fore-foot 

motion (Leardini et al., 2007) (Figure 4.3). This model (Leardini et al., 2007) has been designed to 

describe motion of the LA and has been shown to have a high inter and intra-tester repeatability 

healthy adults (Caravaggi et al., 2011). Marker trajectory and force data were collected 

synchronously at 200Hz using a four camera motion-capture system (Vicon MX, Vicon motion 

systems, Oxford, UK) and the previously described force platform. All marker trajectories and force 

plate data were processed using Visual 3D (C-Motion Inc., Germantown, USA) with the marker 

trajectories filtered using a 6Hz, low pass, fourth order Butterworth filter. Assumed rigid segments 

were created according to the previously described multi segment foot model (Leardini et al., 2007) 

including the calcaneus, mid-foot and metatarsals. 

 

 



 87 

 

Figure 4.3. Retroflective skin marker locations. Retro-reflective skin markers were applied to 

the right foot of each subject in order to create a multi-segment foot model. Views from the 

anterior (top), medial (middle) and lateral (bottom) aspects of the right foot. Markers are 

attached to rigid plastic disks and are secured to the skin with double-sided adhesive tape. 

 

4.3.6 Data analysis 

Muscle activation 

Root mean square (RMS) signal amplitude of the EMG data was calculated over the middle 3-s 

epoch of each 5-s loading increment in experiment 1. RMS amplitudes were normalised to the 

maximal occurring RMS amplitude recorded over a 1-s epoch for each muscle across all loading 

trials.  

Arch deformation and muscle lengths 

The LA height was defined from the 3D-motion data as the vertical height of the navicular marker 

from the floor (Nielsen et al., 2009; Hageman et al., 2011). LA length was defined as the straight-

line distance between the markers located on the medial calcaneus and the head of the first 

metatarsal.  
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For experiment 1 LA height and MTU lengths were calculated over the same 3-s epochs as the 

EMG data, corresponding to each 25% loading increment. These values were normalised to the 

values recorded prior to any loading being applied to the rig. Thus LA length and height and MTU 

length were expressed as changes relative to the unloaded posture.  

 

For experiment 2, LA length and height prior to electrical stimulation (loading condition) and that 

occurring during stimulation (stimulated condition) were calculated for each loading condition 

(50% and 100% body mass). The peak values for the three stimulations recorded during each trial 

were averaged for each condition and normalized to the LA length and height recorded prior to the 

application of any load to determine the effect of load and stimulation. 

 

Muscle tendon unit (MTU) lengths for AH, FDB and QP were determined based on a geometrical 

model according to the multi-segment 3D-motion data, by defining virtual markers corresponding 

to the origin, tether and insertion points for AH and FDB, in accordance with previous cadaveric 

descriptions for these muscles (Kura et al., 1997; Ledoux et al., 2001; Tosovic et al., 2012). Origin, 

tether and insertion points were expressed as fixed locations on the bony segment to which they 

were attached, allowing estimation of changes in MTU length according to the motion of the rigid 

foot segments. A tether point (a point that the line of action of the muscle is constrained to pass 

through) was created for the AH muscle to represent the fascial encapsulation of this muscle that 

occurs posterior to the navicular bone, extending from the deltoid ligament (Wong, 2007). This 

encapsulation serves as a pulley, changing the anatomical pathway for this muscle. Each MTU 

length was defined as the straight-line distance from the origin to the insertion, via any tether 

points.  

 

In order to provide detailed insight to the contribution of individual foot segments to the 

biomechanics of the longitudinal arch due to the application of load and muscle stimulation, 

segment angles for the calcaneus and metatarsals were calculated in the sagittal, frontal and 

transverse planes (experiment 2 only). Angular rotations of these segments were defined relative to 

the laboratory co-ordinate system (+x-lateral, +y-anterior, +z-up) and according to an x-y-z cardan 

sequence of rotations ie. rotation about the x-axis - sagittal plane motion; rotation about the y-axis – 
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frontal plane motion; rotation about the z-axis – transverse plane motion. For the purpose of 

aligning our findings with previous cadaveric and in-vivo data, we termed rotation about the x-axis 

as extension (positive) and flexion, rotation about the y-axis as inversion (positive) and eversion, 

and z-axis rotations as adduction (positive) and abduction. Segment angles were normalised to 

unloaded segment angles that were recorded in the experimental position prior to the application of 

load, so that zero degrees about all axes represented the segment angle when the foot was unloaded. 

For each participant, mean angular rotations were calculated within the sagittal, frontal, and 

transverse planes by creating an average of the angular path associated with the three stimulations 

in each task across a 2-s window from the onset of stimulation and continuing for 1.5 s following 

the cessation of the stimulation train. Joint angles were normalized and calculated for loading and 

stimulation conditions by applying the same method described for LA length and height. 

 

Force measurements 

Vertical ground reaction force (Fz) and centre of pressure (COP) in the antero-posterior (COPAP) 

and medio-lateral (COPML) directions were calculated from the ground reaction force and moment 

data which were low pass-filtered with a fourth order 6Hz Butterworth filter. During experiment 

two, the COP position and Fz values were calculated prior to and the peak value occurring during 

muscle stimulation. Centre of pressure and Fz values were averaged over the three stimulations for 

each muscle and condition using the same procedure described for the kinematic data. 

 

4.3.7 Statistics 

Group means for LA height, MTU length and EMG RMS activity were calculated at each loading 

increment in order to describe how these variables change as loading increased (Experiment 1). A 

two-way repeated measures ANOVA was used to determine the effect of loading (50% versus 

100% body mass) and muscle stimulation on LA length, LA height, segment angles, COP and Fz 

for AH, FDB, and QP muscles (Experiment 2). Multiple comparison tests including Bonferroni 

corrections were applied as post-hoc analysis between conditions when significant main effects 

were reported. Statistical differences were established at P ≤ 0.05. Results are presented as mean ± 

standard error unless otherwise stated. 
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4.4 Results 

4.4.1 Experiment 1 – Response to loading 

Intramuscular EMG data for the AH and FDB muscles was obtained from all nine participants, 

however QP data was only obtained from five participants due poor signal to noise quality. Mean 

unloaded lengths for the AH, FDB and QP MTU’s were 168.8 ± 6.9mm, 153.3 ± 4.5mm and 65.5 ± 

3.9mm respectively. 

 

The relationship between the external load applied to the leg and foot, and i) change in LA height, 

ii) change in AH, FDB and QP length and iii) AH, FDB and QP normalised EMG RMS activity are 

shown in Figure 4.4. With an increase in load there was a reduction in LA height and a subsequent 

stretch in the MTU’s of AH, FDB and QP. The load under which muscle activity could first be 

detected, or load threshold, was different for each muscle. Despite MTU lengthening, muscle 

activity was first evident when loading reached 50, 75 and 100 % of body mass for FDB, QP and 

AH respectively. Beyond these individual muscle thresholds there was a progressive increase in 

activation with increasing load for all muscles. Longitudinal arch height and the lengths of the AH, 

FDB and QP MTU’s appeared to plateau around 125% body mass, while muscle activation 

continued to increase up to the highest load tested (150% body mass). 

 

Figure 4.4. Group means ± standard deviation for (A) change in longitudinal arch (LA) height, 

(B) change in muscle tendon unit length and (C) normalized electromyographic (EMG) root 

mean square (RMS) plotted as a function of load applied to the thigh during the incremental 

loading task. For each participant, muscle length and arch height were normalised to the resting 

unloaded values. The EMG RMS amplitude was normalised to the maximal value recorded 

during the 150% body mass trial. Open circles (red) represent abductor hallucis, open squares 

(blue) represent flexor digitorum brevis and open triangles (green) represent quadratus plantae 

muscle. 
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4.4.2 Experiment  2 – Response to stimulation 

Mean unloaded LA length and height were 156.7 ± 18.2mm and 53.5 ± 4.7mm respectively. The 

height and length of the LA was significantly influenced by loading and muscle stimulation for all 

muscles (all P ≤ 0.05). The LA was significantly longer and lower when loaded with 100%, 

compared to 50% body mass (P ≤ 0.05, Figure 5). Individual stimulation of AH, FDB and QP 

muscles countered the LA deformation produced by the load, by reducing the length and increasing 

the height of the LA when loaded with both 50% and 100% body mass (all P ≤ 0.05, Figure 4.5).  

 

Figure 4.5. (A) Diagram of the measurements of longitudinal arch (LA) length and height. (B) 

Group mean ± standard error for LA length and height with 50% (open) and 100% (filled) body 

mass loading for abductor hallucis (AH, red), flexor digitorum brevis (FDB, blue) and 

quadratus plantae (QP, green) muscles. LA length and height values are shown in response to 

loading (squares) and stimulation (circles). Length and height of the LA are presented as a 

percentage change from the resting unloaded LA values (mean unloaded LA length = 156.7 ± 

18.2mm, mean unloaded LA height = 53.5 ± 4.7mm). Stimulation of AH, FDB and QP resulted 

in a significant reduction in LA length and increase in LA height for all conditions (all P ≤ 

0.05).  
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The alterations in LA length and height described above occurred as a result of a series of rotations 

occurring in multiple segments of the foot. In order to provide additional insight to the 

biomechanics of LA deformation and the impact of the plantar intrinsic foot muscles on this 

process, we have described the motion of the calcaneus and metatarsal segments during the loading 

and stimulation tasks. These findings are explained below and a visual depiction can be found in 

Figure 4.6. 

 

Figure 4.6. Depiction of foot motion changes occurring due to stimulation of abductor hallucis 

(AH). The position of the foot segments under load is represented by the grey shaded image 

and the stimulated position is represented by the red outlined image. The movements include 

(A) calcaneal extension and metatarsal flexion in the sagittal plane (B) calcaneal abduction and 

metatarsal adduction in the axial plane and (C) calcaneal inversion in the frontal plane. This 

combination of segment movements lead to a reduction in length and an increase in height of 

the longitudinal arch. 

 

Calcaneus motion 

When loaded with 50% body mass, angular displacements of the calcaneus were observed in the 

sagittal (extension), frontal (eversion) and transverse (adduction) planes, with the orientation of the 

calcaneus remaining similar when load was increased to 100% of body mass (all P > 0.05, Figure 

4.7). Stimulation of AH produced extension, inversion, and abduction of the calcaneus in the 50% 

A"

B"

C"
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body mass condition (P ≤ 0.05) and inversion and abduction of the calcaneus in the 100% body 

mass condition (P ≤ 0.05). Stimulation of FDB produced inversion and abduction of the calcaneus 

in both 50% and 100% body mass conditions (all P ≤ 0.05) while stimulation of QP produced 

abduction of the calcaneus in both 50% and 100% loading conditions (both P ≤ 0.05).  

 

Metatarsal motion 

Under loads equivalent to 50% body mass, the metatarsal segment flexed (sagittal plane) and 

abducted (transverse plane), with these rotations increasing significantly when load was increased 

to 100% of body mass (all P ≤ 0.05, Figure 4.7). Individual stimulation of AH, FDB and QP 

significantly changed the orientation of the metatarsal segment, in the opposite direction to that 

observed with the application of load (all P ≤ 0.05). Stimulation of AH produced flexion and 

adduction of the metatarsals while stimulation of FDB and QP produced adduction of the 

metatarsals under loads of 50% and 100% of body mass  (all P ≤ 0.05).  
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Figure 4.7. Changes in calcaneal and metatarsal segment angles due to passive loading and 

intrinsic foot muscle stimulation. Group means ± standard error for changes in calcaneal and 

metatarsal segment angles due to loading, 50% (open) and 100% (closed) body mass, as well as 

the subsequent changes in segment angles occurring with stimulation of abductor hallucis (AH, 

red), flexor digitorum brevis (FDB, blue) and quadratus plantae (QP, green) muscles. Segment 

angles are shown in response to loading (squares) and stimulation (circles). Angular rotations 

are defined relative to the laboratory co-ordinate system (x-lateral, y-anterior, z-upward) and 

according to an x-y-z cardan sequence of rotations, with extension-flexion (positive extension) 

as the rotation about the x-axis, inversion-eversion (positive inversion) as the rotation about the 

y-axis and abduction-adduction (positive adduction) as the rotation about the z-axis. Segment 

angles are normalised to the seated, unloaded segment angle, such that zero degrees equals the 

unloaded segment angle for all axes. β indicates significant effect of load (100% versus 50% 

body mass) on segment angle. * indicates significant change in segment angle due to muscle 

stimulation. 
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Force measurements 

The location of COPML or COPAP remained unchanged in both loading conditions (P > 0.05). 

Stimulation of AH shifted the COP posteriorly and laterally for both 50% and 100% loading 

conditions (both P ≤ 0.05), while stimulation of FDB and QP produced a significant posterior shift 

in the location of the COP for both loading conditions (both P ≤ 0.05, Figure 4.8).  

 

Individual stimulation of AH, FDB, and QP produced an increase in vertical force, in both the 50% 

(AH: 23.09 ± 8.7 N, FDB: 21.89 ± 13.2 N, and QP: 20.43 ± 11.4 N, all P ≤ 0.05) and 100% (AH: 

22.73 ± 12.1 N, FDB: 20.97 ± 21.5 N, and QP: 20.36 ± 21.8 N, all P ≤ 0.05) body mass loading 

conditions.  

 

Figure 4.8. Changes in centre of pressure (COP) position due to intrinsic foot muscle 

stimulation. Mean  ± standard error for COP in the medio-lateral (COPML, X co-ordinate) and 

antero-posterior (COPAP, Y co-ordinate) directions occurring due to electrically evoked 

contractions in abductor hallucis (red circle), flexor digitorum brevis (blue square) and 

quadratus plantae (green triangle) with both 50% (open) and 100% (filled) loading conditions. 

Changes in COP position were calculated by subtracting the COP position immediately prior to 

stimulation from the subsequent maximum COP displacement that occurred during muscle 

stimulation, such that 0,0 (X,Y) represents the COP position prior to muscle stimulation, for all 

conditions. Stimulation of AH, FDB and QP produced significant changes in COP position in 

both loading conditions (all P≤0.05). 

 

4.5 Discussion 

Our results demonstrate the importance of the intrinsic foot musculature in contributing to foot arch 
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posture under physiological loads that would be exerted during tasks like walking. We have shown 

that increased vertical loading resulted in significant LA length and height deformations, stretching 

of the arch musculature and increased electrical activity of the intrinsic foot muscles beyond 

specific load thresholds. This indicates that the intrinsic foot muscles respond to loading of the foot, 

however their onset seems not to be mediated by stretch as MTU length increases were evident 

while EMG activity was notably absent at the lowest loading condition. Interestingly, foot 

deformation and muscle stretch plateaued at the highest loads; when muscle activity was still 

increasing. Our second experiment demonstrated that electrically induced contractions of individual 

intrinsic foot muscles (AH, FDB and QP), over and beyond their natural activity, can attenuate and 

even reverse LA arch deformation. Hence these muscles have the capacity to stiffen the LA under 

load and could potentially account for the plateau in arch deformation observed at higher loads.  

 

The capacity for the arch of the human foot to compress when loaded, allowing for storage of 

elastic strain energy, was dubbed the “foot spring” mechanism by Ker and colleagues (Ker et al., 

1987). They reported that energy was stored as elastic strain in the passive ligamentous structures 

located within the LA, such as the plantar aponeurosis and plantar ligaments. This process was 

shown to provide metabolic energy savings, as well as structural support countering compression of 

the LA. The results of our initial experiment confirm that the intrinsic foot muscles also stretch in 

response to LA deformation, with activation of these muscles increasing at higher loads. Results 

from experiment 2 suggest that these muscles have the capacity to contribute and attenuate arch 

deformation during loading. Therefore activation of the intrinsic foot muscles with load may have 

the potential to provide a buttressing effect in parallel to that provided by the plantar aponeurosis. It 

appears that regulation of muscle activation may be contingent on loading demands, allowing forces 

generated from the intrinsic foot muscles to augment the contributions of the plantar aponeurosis 

once specific force or deformation thresholds are exceeded and potentially assisting in providing 

stabilisation of the arch when encountered with excessive load.  

 

A novel aspect of our study was the use of intra-muscular electrical stimulation in addition to 

vertical loading to provide detailed insight to the biomechanical capability of the three largest 

plantar intrinsic foot muscles, AH, FDB, and QP. Our data revealed that individual activation of 

AH, FDB, and QP was sufficient to produce forces large enough to induce angular displacement of 

the calcaneus (extension, inversion and abduction) and metatarsals (flexion and adduction), which 

reduced the initial loading deformation by reducing LA length and increasing LA height. A 
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conceptual figure demonstrating the general movement that occurs when the AH muscle is 

stimulated is shown in Figure 4.6.  

 

Despite the similar effect that individual muscle stimulations had on overall LA motion, differences 

did exist between muscles and the axis in which each muscle exerted mechanical influence on the 

calcaneal and metatarsal segments. The AH has the largest physiological cross sectional area 

(PCSA) of the plantar intrinsic foot muscles (Kura et al., 1997; Ledoux et al., 2001) and stimulation 

of this muscle produced the most pronounced alterations in segment angles in all anatomical planes, 

including extension, inversion and abduction of the calcaneus, with flexion and adduction of the 

metatarsals. The FDB and QP have smaller PCSA’s than AH (Kura et al., 1997; Ledoux et al., 

2001) and, for the submaximal stimulation intensity used here, only exerted significant influence in 

the frontal (calcaneal inversion) and transverse (calcaneal abduction and metatarsal adduction) 

planes. The AH is also the most medially located of the three muscles investigated (Tosovic et al., 

2012), therefore compared to FDB and QP it may possess a greater moment arm over the joints of 

the LA, thereby giving it the possibility to produce larger torques and therefore greater segmental 

motion. 

 

Stimulation of the individual plantar intrinsic foot muscles produced angular displacement of the 

calcaneus and metatarsal segments which led to a reduction in arch length and an increase in arch 

height. Given that the applied downward load was constant during our muscle stimulations, a 

reduction in length of the LA indicates an overall increase in LA stiffness (reduced deformation for 

the same load). This may provide an explanation for the findings of Carravaggi (Caravaggi et al., 

2010), Bates (Bates et al., 2013) and Pataky (Pataky et al., 2008) who have suggested that active 

contractile mechanisms may provide substantial contributions to regulation of the stiffness of the 

LA. The presence of an active force generating element in parallel with a passive elastic element 

may help in both attenuation of impact forces and the generation of sufficient stiffness to transmit 

forces from the leg for effective forward propulsion (Vereecke & Aerts, 2008). Active stiffening of 

the LA may occur in a feedback or feed-forward manner in response to known or unknown 

variations in surface or loading demand, with the intrinsic foot muscles contributing either negative 

or positive work in order to provide transient adjustments in stiffness, in addition to that provided 

by the passive structures (Hicks, 1954; Ker et al., 1987; Erdemir et al., 2004; Caravaggi et al., 

2009). This mechanism may contribute additional positive work, as required to provide postural 

stability (Kelly et al., 2012) and aid in the transfer of ankle plantar flexion moments during gait and 
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possibly generate additional positive power during propulsion (Zelik & Kuo, 2010).  

  

A recent paper by Kelly et al. (Kelly et al., 2012) used intra-muscular EMG to describe the 

activation patterns of the plantar intrinsic foot muscles during various standing balance tasks and 

reported highly correlated inter-muscular activation with medial postural sway. This study was 

unable to determine whether these relatively small muscles were capable of generating sufficient 

force to alter COP position and thus influence posture. In our current study we have extended the 

findings of Kelly et al. (Kelly et al., 2012) by confirming that even individual activation of these 

muscles is capable of shifting the COP location, and as such could play a part along with other 

lower limb muscles in balance control. An interesting finding from the current study was that 

stimulation of the intrinsic foot muscles resulted in a posterior shift in COP. This may be due to the 

shortening of the LA, predominantly arising from its distal end, and thus a posterior displacement in 

COP. In the current study we have largely eliminated postural influences by recording data from 

subjects in a seated position with weights loaded on to their knees, in order to simulate the loads 

applied during standing, in the absence of postural sway. This may help to explain the divergence in 

results between the current study and that of Kelly et al (Kelly et al., 2012) who found no 

correlation between COPAP and intrinsic foot muscle activation, as any relationship between COPAP 

and muscle activity may have been hidden by the moments produced by the significantly larger 

soleus and gastrocnemius muscles.  

 

There are some limitations to the approach employed here in attempting to understand the capacity 

of the intrinsic foot muscles to adapt foot stiffness under load. During the incremental loading task, 

QP muscle activation was not able to be collected from all participants. In four participants, muscle 

activation could not be distinguished from background noise. This may have been due to the 

unstable nature of recordings from this small muscle, or conversely, it may also be due to a lack of 

activation within QP under the loading conditions produced in this study. Additionally, for 

Experiment 2 we have not made direct statistical comparison between muscles, as we are uncertain 

if all muscles were contracting with the same relative intensity. Normalisation of the stimulation 

intensity across muscles could be achieved by evoking a supra-maximally stimulated contraction, 

however, this was not attempted due to the risk of damage to muscle tissue, discomfort and the 

increased risk of the stimulation current spreading to other nearby muscles which would confound 

the results.  It is also difficult to ascertain what the summative effect of muscle activation might be 

in terms of both kinematics and kinetics as we did not simultaneously stimulate all three muscles. 
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Our prediction is, however, that simultaneous activation (which is likely to be the physiological 

normality in walking and running) would increase the overall effect with an even greater increase in 

LA height and reduction of LA length. It must also be acknowledged that as we did not record 

EMG from these muscles during the evoked muscle stimulations, we cannot verify that they were 

quiescent during these tasks. In fact, based on the results of Experiment 1, it is likely that these 

muscles may been active in the 100% body mass loading condition and as such our measures may 

have been influenced by a low level of background activation. Finally, we relied on skin-mounted 

markers to determine changes in LA height and length as well as movement of calcaneus and 

metatarsal segments. This approach is likely to underestimate some of the motion of the mid-foot 

during walking (Nester et al., 2014), however we are confident that the general movement 

directions measured are consistent with what actually occurred during loading and muscle 

stimulation. The model we have used has been specifically designed to examine LA biomechanics, 

and has been shown to have high repeatability (Caravaggi et al., 2011). In our measures, the 

movement of the foot segments is limited compared to walking and hence the contribution of 

factors such as skin movement relative to the foot segments is also more limited and changes in 

marker position are likely to represent motion of foot rather than that of the skin. 

 

In summary, our initial experiment has shown that the intrinsic foot musculature stretched in a 

similar manner to that of the plantar aponeurosis in response to LA deformation, while muscle 

activation increased considerably as loads increased beyond certain threshold loads for each muscle. 

Our following experiment has shown that activation of the plantar intrinsic foot muscles under load 

produced significant alterations in metatarsal and calcaneus segment angles, which countered the 

deformation occurring due to the initial load and ultimately increased LA stiffness. This active arch 

buttressing mechanism may have important implications for how forces are transmitted during 

locomotion and postural activities. Future studies should examine the influence of the plantar 

intrinsic foot muscles on LA biomechanics during dynamic activities such as walking and running. 
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5.1 Summary 

The longitudinal arch (LA) of the human foot compresses and recoils in response to being cyclically 

loaded. This has typically been considered a passive process, however it has recently been shown 

that the plantar intrinsic foot muscles have the capacity to actively assist in controlling LA motion. 

Here we tested the hypothesis that intrinsic foot muscles, abductor hallucis (AH), flexor digitorum 

brevis (FDB) and quadratus plantae (QP), actively lengthen and shorten during the stance phase of 

gait in response to loading of the foot. Nine participants walked at 1.25 ms-1 and ran at 2.78 and 

3.89 ms-1 on a force-instrumented treadmill while foot and ankle kinematics were recorded 

according to a multi-segment foot model. Muscle tendon unit (MTU) lengths, determined from the 

foot kinematics, and intra-muscular electromyography (EMG) signals were recorded from AH, 

FDB and QP. Peak EMG amplitude was determined during the stance phase for each participant at 

each gait velocity. All muscles underwent a process of slow active lengthening during LA 

compression, followed by a rapid shortening as the arch recoiled during the propulsive phase. 

Changes in MTU length and peak EMG increased significantly with increasing gait velocity for all 

muscles. This is the first in-vivo evidence that the plantar intrinsic foot muscles function in parallel 

to the plantar aponeurosis, actively regulating the stiffness of the foot in response to the magnitude 

of forces encountered during locomotion. These muscles may therefore contribute to power 

absorption and generation at the foot, limit strain on the plantar aponeurosis and facilitate efficient 

foot ground force transmission. 
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5.2 Introduction 

The human foot is a unique structure characterized by the presence of a pronounced longitudinal 

arch (LA) that provides considerable stiffness to enable forward propulsion, whilst also retaining 

sufficient flexibility to adapt and conform to alterations in surface and loading demand (Hicks, 

1954; Vereecke & Aerts, 2008). When encumbered with load, the LA lengthens and lowers, 

subsequently recoiling as the load is removed (Ker et al., 1987; Erdemir et al., 2004). This 

compression – recoil process has been termed the “foot spring” mechanism and allows mechanical 

energy to be stored and subsequently released during each foot contact, which may improve the 

metabolic efficiency of gait (Ker et al., 1987).  The contribution of the passive ligamentous 

structures to this mechanism have been well established (Ker et al., 1987; Erdemir et al., 2004) 

however, to date very little attention has been paid the potential contributions of the contractile 

tissues of the LA in this mechanism. 

 

The plantar intrinsic foot muscles are a group of muscles that contain both origin and insertion 

within the foot. The three largest of these muscles, abductor hallucis (AH), flexor digitorum brevis 

(FDB) and quadratus plantae (QP) have muscle tendon units (MTU) that span the length of the LA 

and follow similar anatomical pathways to the medial and central slips of the plantar aponeurosis 

(Kura et al., 1997; Ledoux et al., 2001; Tosovic et al., 2012). Recent work from our own laboratory 

has shown that similar to the plantar aponeurosis, these muscles stretch in response to controlled 

LA compression, with muscle activation increasing in response to the magnitude of encumbering 

load (Kelly et al., 2014). Furthermore, we have shown that additional activation of these muscles 

counteracts LA compression under load and subsequently increases the stiffness of the LA (Kelly et 

al., 2014).  

 

During human locomotion, the muscles and tendons of the lower limb perform positive and 

negative work on the body (Cavagna & Kaneko, 1977). Active MTU lengthening is achieved 

through the application of an external load to forcibly extend muscles as they actively generate 

tension. This muscle action acts to absorb mechanical energy (power). Conversely, active MTU 

shortening (or contractions) generates mechanical power (Cavagna & Kaneko, 1977; Ito et al., 

1983; Winter, 1983; Donelan et al., 2002). Early electromyographic measurements from the 

intrinsic foot muscles suggest that these muscles are active during the stance phase of gait (Mann & 
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Inman, 1964), however it is unclear whether this activation occurs relative to lengthening or 

shortening of the MTUs.  

 

Previous experiments from our laboratory have shown that the MTU’s of AH, FDB and QP activate 

in response to being forcibly lengthened due to LA compression during loading of the foot (Kelly et 

al., 2014). During locomotion it is likely that these MTU’s will also activate in response to LA 

compression that occurs during early stance phase. Based on our previous data (see Chapter four), 

activation of the intrinsic foot muscles would stiffen the LA during early stance while also 

contributing to absorption of power within the stretched MTU’s, effectively reducing the total load 

encumbered by the passive ligamentous structures. De-activation of these muscles during late 

stance, during which time the MTU’s presumably shorten, may also contribute to power being 

delivered through muscle contraction or elastic recoil of the elastic structures within the MTU’s. 

Given that we have previously found that the magnitude of activation of these muscles is dependent 

on the load encountered (Kelly et al., 2012; 2014), we expect to see an increase in the activation 

with speed of locomotion. An active contribution of the plantar intrinsic foot muscles could 

potentially enhance the capacity of the foot to adapt to the variations in external load as they are 

encountered, allowing efficient force transmission between the foot and the ground during tasks 

such as walking and running, when the magnitude of forces encountered are constantly changing. 

This may also reduce the total load, and hence strain, experienced by the passive ligamentous 

structures of the foot (plantar aponeurosis). 

 

As such, we tested the hypothesis that the MTU’s of AH, FDB and QP undergo an active stretch 

and shortening process in response to LA deformation during the stance phase of gait, and therefore 

are capable of contributing positive and negative power at the foot. Furthermore we hypothesised 

that the magnitude of MTU deformation and muscle activation would increase with the increasing 

loads that are encountered when gait velocity is increased during walking and running. 

 

5.3 Methods 

5.3.1 Participants 

Nine healthy male subjects (mean ± standard deviation for age 32 ± 5 years; height: 181 ± 8 cm; 

mass: 81 ± 11 kg) with no history of lower limb injury in the previous six months or known 

neurological impairment volunteered to participate in the study. Written informed consent was 

obtained from each subject. The study protocol was approved by the institutional human research 

ethics committee and conducted in accordance with the Declaration of Helsinki. 
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5.3.2 Experimental Procedures 

Subjects performed walking trials at 1.25 m.s-1, as well as running trials at 2.78 and 3.89 m.s-1 on a 

force-instrumented treadmill (AMTI, force-sensing tandem treadmill, Watertown, MA, USA). To 

ensure familiarity with the treadmill and each gait velocity, subjects were allowed 1-minute to adapt 

and familiarise themselves to each speed, prior to the commencement of data capture. Kinetic, 

kinematic and EMG data were collected simultaneously during all walking and running trials, with 

approximately 15-20 strides (toe-off to ipsilateral toe-off) being recorded at each gait velocity for 

subsequent data analysis. 

 

5.3.2 Data Acquisition 

Kinematic and kinetic measurements 

Three-dimensional (3D) motion-capture of the foot and shank, and ground reaction force data were 

collected during each walking and running trial. Fourteen retro-reflective markers (diameter 9.0 

mm) were placed on the skin of the right foot and ankle according to a multi-segment foot model 

developed to describe rear-, mid- and fore-foot motion (Leardini et al., 2007). Two additional 

markers were applied to the skin over the second and fourth toes, at the level of the middle phalanx, 

in order to track the movement of the lesser toes.  

 

Kinematic data was captured at 200 Hz using an eight camera 3D optoelectronic motion capture 

system (Qualysis, Gothenburg, Sweden) while ground reaction force and EMG data were 

synchronously captured at 2000 Hz through an analogue to digital converter. Kinematic, force and 

EMG data were collected simultaneously and synchronized using the Qualysis Track Management 

software from the same company.  

 

Electromyography  

Identification of the AH, FDB and QP muscles was conducted using real-time B-mode ultrasound 

imaging (10 MHz linear array, Ultrasonix RP, USA) in the right foot of each subject. Subsequently, 

bi-polar fine wire electrodes (0.051 mm stainless steel, Teflon coated, Chalgren, USA) with a 

detection length of 2 mm and inter-electrode distance of 2 mm were inserted using delivery needles 

(0.5 mm x 50 mm) into the muscle tissue of AH, FDB and QP under ultrasound guidance, in 

accordance with previously described methods (Kelly et al., 2012). The size of the active area and 

separation between sites was chosen to give the best chance of recording representative activity 

from each muscle, while reducing the possibility of cross-talk from nearby muscles. Once the wires 
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were positioned appropriately in each muscle the delivery needles were removed and the muscle 

was imaged once more to determine that the electrode sensitive ends of the wires remained within 

the muscle tissue. Sterile techniques were used for the insertion of all wires.   

 

All EMG signals were amplified 1000 times and recorded with a bandwidth of 30 -1000 Hz 

(MA300, Motion Labs, LA, USA). In order to prevent movement artefacts, the fine wire electrodes, 

connectors, cabling and pre-amplifiers were secured with cohesive bandage around the distal part of 

the shank. A surface ground electrode (Ag-AgCl electrode, 24 mm diameter; Tyco Healthcare 

Group) was secured to the skin overlying the fibula head.  

 

Prior to data collection, the participant was asked to perform foot manoeuvres known to activate 

each muscle separately. When predicted EMG patterns could be detected, it was concluded that the 

electrodes were in the correct position. If not, the electrodes were withdrawn approximately 1mm 

until appropriate activation patterns could be detected and possible crosstalk excluded. A Velcro 

strap was secured around the participant’s waist, which enabled the EMG amplifier box to be 

secured to the subject without interfering with their gait. A lightweight optical cable connected the 

amplifier box to the analogue to digital converter. 

 

5.3.3 Data analysis 

Kinetic, kinematic and EMG data files were exported to Visual3D (C-motion Inc., Germantown, 

MD, USA) for analysis. A vertical ground reaction force threshold was set to define each toe-off as 

occurring when vertical ground reaction force fell below 50 N, while foot contact was defined as 

occurring when vertical force subsequently rose above 50 N. Swing phase was defined as the period 

from right toe-off to right foot contact, while stance phase was defined as occurring between right 

foot contact and right toe-off. One gait cycle was considered as right toe-off to the subsequent 

ipsilateral toe-off. 

 

Force plate data recorded during each experimental trial was digitally filtered with a 20 Hz low 

pass, fourth order Butterworth filter. Subsequently the vertical component of the ground reaction 

force was calculated for each gait velocity and normalised to bodyweight for each participant. 

 

Marker trajectories were digitally filtered with a 6 Hz low pass, fourth order Butterworth filter. 

Assumed rigid segments were created according to a previously described multi segment foot 

model (Leardini et al., 2007) including the shank, foot, calcaneus, mid-foot and metatarsals. Joint 

rotations were calculated in accordance with International Society of Biomechanics 
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recommendations (y-up, z-lateral, x-anterior) with rotation about the z-axis - sagittal plane motion, 

rotation about the x-axis – frontal plane motion and rotation about the y-axis – transverse plane 

motion (Wu & Cavanagh, 1995). The LA angle was defined as rotation of the metatarsals relative to 

the calcaneus, about the z-axis, with metatarsal extension being positive and flexion negative 

(Leardini et al., 2007). Thus an increase in LA angle is indicative of a reduction in LA height 

(Figure 5.1). For each gait velocity, LA compression was calculated by subtracting the LA angle at 

foot contact in the 1.25 m.s-1 condition from the maximal LA angle recorded during each stance 

phase. Mean peak LA compression was calculated for each gait velocity by averaging the LA 

compression occurring over a minimum of 10 gait cycles.  

 

 

 
Figure 5.1. Compression and recoil of the longitudinal arch (LA). The LA angle is defined as 

the sagittal plane rotation of the metatarsals relative to the calcaneus. An increase in LA angle 

indicates compression of the LA which is calculated by subtracting LA angle at foot contact 

from peak LA angle, which generally occurred at mid-stance. Group mean LA angles are 

presented at foot contact (A), peak LA angle (B) and toe-off (C) when running at 3.89m.s-1 

with data indicating that the LA compresses and recoils during stance phase. 

 

 

Muscle tendon unit lengths for the AH, FDB and QP muscles were determined based on a 

geometrical model according to the multi-segment kinematic data by defining virtual markers 

corresponding to the origin, tether and insertion points for each individual muscle in accordance 

with previous cadaveric descriptions (Kura et al., 1997; Ledoux et al., 2001; Tosovic et al., 2012). 

The points were expressed as fixed locations on the bony segment to which they were attached, 

allowing estimation of changes in MTU length according to the motion of the rigid foot segments. 

MTU length was defined as the straight-line distance from the origin to the insertion, via any tether 

points. Tether points were created at the distal end of the metatarsal segments for AH and FDB, 

representing the point where each MTU wraps around the metatarsophalangeal joints (Figure 5.2). 

A B 

161 ± 6o 173 ± 6o 

C 

148 ± 4o 
Foot contact Peak Toe-off 
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Additionally, a second tether point was created for the AH MTU, representing the fascial 

encapsulation of this muscle that occurs posterior to the navicular bone, extending from the deltoid 

ligament (Wong, 2007). This encapsulation serves as a pulley, changing the anatomical pathway of 

AH. Within this geometric model, any length changes observed for the AH and FDB MTUs will be 

due to a combination of rotations about the LA and metatarsophalangeal (MTP) joints, while QP 

MTU length changes will be due to rotation about the LA only (Figure 5.2). Peak MTU strain was 

calculated during stance phase at each gait velocity by dividing the change in MTU length (Peak 

MTU length minus MTU length at foot contact) during stance phase by the MTU length at foot 

contact. 

 

 
Figure 5.2. Depiction of the muscle tendon unit (MTU) pathways (top row) and anatomical 

pathways (bottom) for abductor hallucis (AH, red), flexor digitorum brevis (FDB, blue) and 

quadratus plantae (QP, green). Filled circles indicate origin and insertion points for each MTU, 

while open circles indicate tether points. The MTU length changes for AH and FDB will be due 

to a combination of rotations occurring about the longitudinal arch and metatarsophalangeal 

joints, while QP MTU length changes will occur due to changes in the longitudinal arch angle. 

 

 

Raw EMG signals were visually inspected in order to identify data that may have been 

contaminated by movement artefact, which was defined as an abnormal spike in the signal 

associated to foot contact. In the event that movement artefact was identified in the EMG signal, 

data from that particular stride was excluded from the analysis. Following removal of any DC offset 

AH# QP#FDB#
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from each EMG signal, root mean square (RMS) signal amplitude was calculated using a moving 

window of 50 ms. Subsequently for each muscle, peak EMG RMS amplitude was selected during 

the stance phase for each stride cycle, allowing comparisons in magnitude of activation occurring at 

each gait velocity. EMG data for each muscle was normalised to the peak RMS amplitude recorded 

across all gait velocities for each muscle. 

 

For each individual, the kinetic, kinematic and EMG data from each gait cycle were time 

normalised to 100 points and a minimum of 10 gait cycles were averaged from a single velocity to 

form an individual mean for each variable, at each gait velocity. This process allows for comparison 

of data across gait cycles at varying velocities. 

 

5.3.4 Statistics 

A one-way repeated measures analysis of variance (ANOVA) was used to describe the effects of 

gait velocity on mean maximum vertical ground reaction force, LA compression, peak MTU strain, 

and peak stance phase EMG RMS amplitude for each muscle. Post-hoc multiple comparison tests 

including Sidak corrections were performed between each gait velocity (1.25 v 2.78 v 3.89 m.s-1). 

Statistical differences were established at P ≤ 0.05. Results are presented as mean difference ± 

standard error of the mean (SEM) unless otherwise stated. 

 

5.4 Results 

A representative example of raw kinetic, kinematic and EMG data from a representative individual 

running at 3.87 m.s-1 is presented in Figure 5.3. The data shows a high degree of similarity between 

the five sequential strides. The prominent peaks in the vertical ground reaction force indicate stance 

phase, which is approximately divided equally into deceleration and propulsion phases as shown by 

the horizontal ground reaction force. The change in LA angle for this subject at this running 

velocity was cyclic and highly reproducible. A process of LA compression and recoil is shown by 

the rapid increases in LA angle occurring during early stance, followed by a rapid decrease in LA 

angle occurring in late stance, associated with propulsion. While small variations in muscle activity 

were observed between the three intrinsic foot muscles, for the most part their activity was similar 

with significant periods of activity during stance and silence during swing, except for AH. 
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Figure 5.3. Raw data collected from a representative participant while running at 3.87m.s-1. 

Vertical and horizontal forces are calculated from the force instrumented treadmill. 

Longitudinal arch (LA) angle is calculated based on multi-segment foot kinematics and 

intramuscular electromyography (EMG) recordings are collected from the abductor hallucis 

(top), flexor digitorum brevis (middle) and quadratus plantae (bottom). Shaded areas indicate 

stance phase. 
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5.4.1 Vertical force, LA compression and MTU strain 

During early to mid-stance LA compression occurred (Figure 5.1) and the MTU’s of AH, FDB and 

QP lengthened as vertical force increased. From mid-stance to late-stance, as vertical force 

decreased, the LA recoiled and the MTU’s of AH, FDB and QP rapidly shortened (Figure 5.3). It 

was observed that vertical force, LA compression and peak MTU strain all increased significantly 

with increasing gait velocity (all P ≤ 0.05, Figure 5.4). 

 
Figure 5.4. Group mean ensembles ± standard error of the mean for vertical ground reaction 

force, longitudinal arch (LA) angle (degrees, o), electromyography (EMG) root mean square 

signal amplitude and changes (Δ) in muscle-tendon unit (MTU) length for abductor hallucis 

(AH, red circles), flexor digitorum brevis (FDB, blue squares) and quadratus plantae (QP, 

green triangles). Group mean ensembles are defined from toe off  (TO) to ipsilateral toe off for 

the right foot. Data recorded during walking at 1.25 m.s-1 and running at 2.78 and 3.89 m.s-1. 
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For each muscle EMG data is normalised to the maximal amplitude recorded for all trials. 

Change in MTU length and LA angle is calculated by offsetting the MTU length and LA angle 

at heel contact in the 1.25 ms-1 condtition, respectively.  Vertical ground reaction force (GRF) 

data is normalised to body mass. FC, foot contact 

 

5.4.2 Muscle activation 

All muscles displayed EMG patterns that were similar in nature, highlighted by substantial bursts of 

activation during stance and periods of relative inactivity during early swing phase (Figure 5.3). For 

all muscles stance phase activation increased with increasing gait velocity and the associated 

increase in ground reaction force. 

 

The AH activation pattern consisted of two discrete bursts, with the initial burst occurring during 

late swing phase, prior to foot contact (Figures 5.3 & 5.4). The second more substantial burst of AH 

activity occurred during stance for both walking and running. Peak activation generally coincided 

with peak vertical ground reaction force with de-activation occurring during late-stance (propulsion 

phase), as AH underwent shortening (cf. Figures 5.3 & 5.4). Peak AH activation during stance 

increased significantly with increasing gait velocity (P ≤ 0.05) as did AH total EMG activity over 

the stride cycle (P ≤ 0.05, Figure 5.5).  

 

FDB displayed a burst of activity commencing at foot contact and continuing throughout stance 

during running and to a lesser extent during walking. Peak activation occurred at mid to late stance 

(Figure 5.4). De-activation occurred during the later part of stance usually associated with the 

propulsion phase (cf. Figure 5.3). FDB activity during stance significantly increased with increasing 

gait velocity (P ≤ 0.05, Figure 5.5).  

 

Quadratus plantae displayed a small increase in activation during late swing that continued into 

early-stance, followed by a second larger burst of activity in mid-stance during running and late-

stance during walking (Figures 5.3 & 5.4). Peak stance phase activity increased with gait velocity 

(P ≤ 0.05, Figure 5.5).  
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Figure 5.5. Group mean data for longitudinal arch (LA) compression (A), peak muscle-tendon 

unit (MTU) strain (B) and electromyography (EMG) root mean square amplitude (C) during 

stance for abductor hallucis AH (red circles), flexor digitorum brevis (FDB, blue squares) and 

quadratus plantae (QP, green triangles). LA compression is calculated by subtracting the LA 

angle at heel strike in the 1.25ms-1 condition from the peak angle occurring during stance, at 

each gait velocity. EMG RMS values are normalized to the maximal amplitude recorded during 

all trials. *denotes significant difference, with all values increasing with increasing gait 

velocity (all P ≤ 0.05).  
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5.5 Discussion 

This study provides unique insight into the neuromechanical function of the plantar intrinsic foot 

muscles during walking and running at different velocities. These novel findings provide the first 

in-vivo evidence that the plantar intrinsic foot muscles actively lengthen during early stance, 

absorbing mechanical power and stiffening the arch in response to increasing ground reaction force. 

Subsequently in late stance as ground reaction force subsides, shortening of the MTU’s allow 

mechanical power to be returned, presumably aiding forward progression during propulsion. We 

suggest that this mechanism to actively adapt the stiffness of the foot in response to the magnitude 

of load encountered may enhance foot ground force transmission and also reduce strain experienced 

by passive ligamentous structures of the foot.  

 

The foot is the conduit for force transmission between the body and the ground during locomotion. 

The presence of a pronounced LA gives the foot the capacity to compress and conform in response 

to load, whilst retaining sufficient stiffness to enable forward propulsion (Donatelli, 1985; Vereecke 

& Aerts, 2008). The ligamentous plantar aponeurosis is known to stretch during early stance, 

providing some resistance to LA compression, while in late stance the windlass mechanism 

increases LA stiffness in preparation for propulsion (Hicks, 1954; Caravaggi et al., 2009). While 

the plantar aponeurosis has been considered the primary contributor to LA stiffness, this passive 

structure is limited in its ability to respond and adapt to the loading variations that are commonly 

encountered during locomotion. Additionally, the suggestion that the regulation of foot stiffness is 

entirely passive does not completely account for the highly adaptable nature of the LA (Pataky et 

al., 2008), which is known to display increased stiffness when encumbered with higher loads in the 

absence of increased plantar aponeurosis tension (Caravaggi et al., 2010). Recently we have shown 

that the plantar intrinsic foot muscles also possess the capacity to stiffen the LA (Kelly et al., 2014). 

When considering this knowledge in light of the current findings that plantar intrinsic foot muscle 

activation increases with increasing gait velocity, we suggest that these muscles are recruited in 

order to stiffen the LA, countering the LA compression that occurs due to higher ground reaction 

forces. The ability of the plantar intrinsic foot muscles to provide force dependent alterations in LA 

stiffness may facilitate effective foot ground force transmission, enabling higher ground reaction 

forces to be transmitted over a shorter period of time, as required at higher gait velocities (Nilsson 

& Thorstensson, 1989).   

 

Compression and recoil of the LA in response to load during stance allows mechanical energy to be 

both absorbed and returned during each foot contact and may provide metabolic energy savings 
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(Alexander, 1984; Ker et al., 1987). This process has traditionally been considered passive in 

nature, with energy being stored and released via elastic stretch and recoil of the plantar 

aponeurosis (Ker et al., 1987; Erdemir et al., 2004). However, if activation of the plantar intrinsic 

foot muscles provides the capacity to actively absorb and generate mechanical power at the foot 

during locomotion, then this may change our interpretation of the mechanical function of the foot. 

Stiffening the LA will essentially reduce compression, effectively reducing the strain experienced 

by the plantar aponeurosis and other ligamentous structures that would otherwise stretch further in 

the absence of muscular intervention. While this may provide some protection to the plantar 

aponeurosis and other structures, it also reduces the amount of energy storage and return from these 

structures. However, as the intrinsic foot muscles have relatively short muscle fibres (~ 23 mm) 

relative to the MTU length (~116 mm), the elastic structures of these muscles (tendon and 

aponeurosis) are well suited for storing the energy that is absorbed by the muscle during early 

stance and returning it to generate power during deactivation of the muscle in the shortening phase 

(push-off) (Alexander, 1984). The extent to which these muscles might be able to store and return 

the energy as well as tuning the stiffness of the foot is yet to be explored.  

 

It is important to note that within the current experimental design we were unable to separate the 

individual contribution of the plantar aponeurosis and plantar intrinsic foot muscles to the foot 

spring mechanism, as these two structures act in parallel to regulate LA stiffness during locomotion. 

Based on the EMG profiles of these muscles during walking, it is apparent that at lower gait 

velocities the majority of energy absorption and return may occur in the passive plantar aponeurosis 

with some contribution from the active intrinsic foot muscles. However, as gait velocity increases 

and the magnitude of force required to be transmitted between the foot and ground also increases, it 

is likely that the contribution from the intrinsic foot muscles increases substantially, as noted by the 

significant increase in muscle activation. Caravaggi and colleagues (Caravaggi et al., 2010) have 

previously reported that the compression of the arch during fast walking is significantly less than 

that which would be expected based on the passive stiffness of the arch reported by Ker et al. [3]. 

We suggest that this is due to the role of the intrinsic foot muscles in increasing the stiffness of the 

arch with increased force demand. This force dependent contribution from the intrinsic foot muscles 

may serve to stiffen the foot at higher velocities, allowing ankle plantar flexion torque to be 

transmitted to the ground rapidly, while also serving to modulate the amount of energy that is stored 

within the elastic element of the MTU. Further research exploring the relative contribution of these 

structures to the energetics of locomotion may provide valuable insight to human locomotor 

function.   
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The role of the foot in generating or absorbing power at the level of the body centre of mass also 

deserves consideration.  Recently, Zelik and Kuo (Zelik & Kuo, 2010) compared measures of total 

joint work from the ankle, knee and hip against work performed on the centre of mass during 

constant velocity locomotion with the aim of quantifying the magnitude of mechanical energy 

dissipation performed by soft tissue. They reported a substantial disparity in total joint work when 

compared to the total work performed on the centre of mass, with most of this disparity being 

dissipatory in nature and occurring during the first half of stance. Because Zelik and Kuo (2010) 

assumed a rigid foot segment in their inverse dynamics analysis, they attributed the differences in 

joint work and centre of mass work to the inability of rigid body inverse dynamics to measure 

dissipative work performed by the soft tissues. They concluded that it is likely that passive soft 

tissues do play an important role in mechanical energy dissipation (Ker et al., 1987; Pain & Challis, 

2001; Gefen et al., 2001). However, when considering their findings in light of the findings from 

our current study, it is possible that some of this difference may also be due to the role of both the 

passive and active components contributing to foot stiffness and subsequently contributing to both 

negative and positive power during stance.  

 

We have provided a detailed description of the activation patterns of AH, FDB and QP recorded 

from a range of walking and running velocities. An early intramuscular EMG study by Mann and 

Inman (Mann & Inman, 1964) reported that some plantar intrinsic foot muscles are activated as a 

functional group during late stance in order to stabilise the forefoot during propulsion. Results from 

the current study provide evidence that while these muscles may have similar mechanical functions, 

specific differences in activation patterns exist. For example AH, a muscle that is known to be a 

slowly discharging, fatigue resistant muscle (Kelly et al., 2012) displayed a substantial amount of 

late swing and early stance activation, which may indicate that this muscle provides preparatory 

stiffening of the LA prior to foot contact, as well as mechanical energy absorption during early 

stance. Recruitment of FDB and QP occurred largely at foot contact, with peak activation occurring 

in mid-stance and continuing into the propulsive phase, giving FDB a primary function of 

generating power during propulsion. Despite specific differences in activation patterns between the 

three muscles, it is apparent that regardless of specific function, activation is regulated in response 

to the magnitude of vertical force and subsequent LA compression encountered by the foot.  

 

This study has focussed on the behaviour of the AH, FDB and QP MTU’s during locomotion. It 

needs to be acknowledged that in addition to LA kinematics, rotation of the metatarsophalangeal 

(MTP) joints may also influence length changes of the MTU’s of AH and FDB. Extension of the 

MTP joints that occurs in late stance as the heel rises from the ground would presumably have a 
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lengthening effect on the MTU as it wraps around the joint. However based on our data this 

lengthening effect is minimal (Figure 5.6A) with this likely being due to the relatively small 

moment arm of the FDB and AH MTU’s across the MTP joint when compared to their moment arm 

across the joints of the LA (Figure 5.6B & 5.6C). Thus length changes of the MTU’s are closely 

aligned to the kinematics of the LA, as is reflected by the data in this study.  

 

 
 

Figure 5.6. A - Changes in FDB muscle tendon unit (MTU) length (blue line), 

metatarsophalangeal (MTP) joint flexion/extension (green circles) and longitudinal arch (LA) 

angle (red squares) during stance phase of running at 2.78ms-1. Data shows that MTU length 

recoils rapidly during late stance in parallel to LA recoil. This recoil happens despite the 

opposing influence of MTP joint extension occurring at the same time that should presumably 

lengthen the MTU. Parts B and C show the large moment arm of FDB across the LA, compared 

to its relatively small moment arm across the MTP joints, thus providing a biomechanical 

rationale for why MTP extension has minimal effect on overall length changes of the MTU.  

 

!20$

!10$

0$

10$

20$

30$

!30$

!20$

!10$

0$

10$

20$

30$ M
TU$RECOIL$

LA$RECOIL$

FC$ TO$

M
TP
$EX
TE
NS
IO
N$

Δ 
Jo

in
t a

ng
le

 (d
eg

re
es

) 

Δ 
M

TU
 le

ng
th

 (M
M

) 

A 

B 

C 

rLA 

rMTP 

θLA 

θMTP 

rLA 
rMTP 

θLA 

θMTP 



 118 

 

There are some methodological limitations within the current experimental design that need to be 

acknowledged. The use of skin-mounted markers to determine changes in foot segment motion may 

underestimate some of the motion of the mid-foot (Lundgren et al., 2008; Nester et al., 2014) and 

therefore may also impact on our modelling of MTU lengths. However we are confident that the 

general movement directions measured are consistent with what actually occurred during each gait 

trial and therefore the patterns of MTU lengthening and shortening should be representative of what 

has occurred. The use of intramuscular fine wire electrodes had the potential to influence running 

biomechanics of some participants, due to discomfort from the fine wires. In order to address this 

issue, all participants were asked to acknowledge any pain or discomfort arising from the 

electrodes. None of our participants experienced pain or discomfort during the experimental task, 

thus we are confident that this was not the case.  

 

In summary, the plantar intrinsic foot muscles are activated in order to provide dynamic support of 

the LA during locomotion. These muscles undergo active lengthening and shortening during stance, 

with muscle activation and stretch increasing in response to increasing vertical load. Thus, these 

muscles have the capacity to contribute to power absorption in early to mid-stance and power return 

and generation in late stance. The AH, FDB and QP muscles displayed distinct patterns of 

activation that may be related to differences in function, however activation of all muscles appears 

to be regulated in response to the magnitude of loading forces encountered.  

 

5.6 References 
Alexander RM (1984). Elastic energy stores in running vertebrates. American Zoologist 24, 85–94. 

Caravaggi P, Pataky T, Goulermas JY, Savage R & Crompton R (2009). A dynamic model of the 
windlass mechanism of the foot: evidence for early stance phase preloading of the plantar 
aponeurosis. Journal of Experimental Biology 212, 2491–2499. 

Caravaggi P, Pataky T, Günther M, Savage R & Crompton R (2010). Dynamics of longitudinal arch 
support in relation to walking speed: contribution of the plantar aponeurosis. Journal of 
Anatomy 217, 254–261. 

Cavagna GA & Kaneko M (1977). Mechanical work and efficiency in level walking and running. 
The Journal of Physiology 268, 467–481. 

Donatelli R (1985). Normal biomechanics of the foot and ankle. J Orthop Sports Phys Ther 7, 91. 

Donelan JM, Kram R & Kuo AD (2002). Simultaneous positive and negative external mechanical 
work in human walking. Journal of Biomechanics 35, 117–124. 

Erdemir A, Hamel AJ, Fauth AR, Piazza SJ & Sharkey NA (2004). Dynamic loading of the plantar 
aponeurosis in walking. J Bone Joint Surg Am 86-A, 546–552. 



 119 

Gefen A, Megido-Ravid M & Itzchak Y (2001). In vivo biomechanical behavior of the human heel 
pad during the stance phase of gait. Journal of Biomechanics 34, 1661–1665. 

Hicks J (1954). The mechanics of the foot: II. The plantar aponeurosis and the arch. Journal of 
Anatomy 88, 25. 

Ito A, Komi PV, Sjodin B, Bosco C & Karlsson J (1983). Mechanical efficiency of positive work in 
running at different speeds. Med Sci Sports Exerc 15, 299–308. 

Kelly LA, Cresswell AG, Racinais S, Whiteley R & Lichtwark G (2014). Intrinsic foot muscles 
have the capacity to control deformation of the longitudinal arch. Journal of The Royal Society 
Interface 11, 20131188–20131188. 

Kelly LA, Kuitunen S, Racinais S & Cresswell AG (2012). Recruitment of the plantar intrinsic foot 
muscles with increasing postural demand. JCLB 27, 46–51. 

Ker RF, Bennett MB, Bibby SR, Kester RC & Alexander RM (1987). The spring in the arch of the 
human foot. Nature 325, 147–149. 

Kura H, Luo ZP, Kitaoka HB & An KN (1997). Quantitative analysis of the intrinsic muscles of the 
foot. Anat Rec 249, 143–151. 

Leardini A, Benedetti MG, Berti L, Bettinelli D, Nativo R & Giannini S (2007). Rear-foot, mid-foot 
and fore-foot motion during the stance phase of gait. Gait & Posture 25, 453–462. 

Ledoux WR, Hirsch BE, Church T & Caunin M (2001). Pennation angles of the intrinsic muscles of 
the foot. Journal of Biomechanics 34, 399–403. 

Lundgren P, Nester C, Liu A, Arndt A, Jones R, Stacoff A, Wolf P & Lundberg A (2008). Invasive 
in vivo measurement of rear-, mid- and forefoot motion during walking. Gait & Posture 28, 
93–100. 

Mann R & Inman VT (1964). Phasic activity of intrinsic muscles of the foot. J Bone Joint Surg Am 
46, 469–481. 

Nester C, Jones RK, Liu A, Howard D, Lundberg A, Arndt A, Lundgren P, Stacoff A & Wolf P 
(2014). Foot kinematics during walking measured using bone and surface mounted markers. 
Journal of Biomechanics 40, 20131188–20131188. 

Nilsson J & Thorstensson A (1989). Ground reaction forces at different speeds of human walking 
and running. Acta Physiol Scand 136, 217–227. 

Pain MT & Challis JH (2001). The role of the heel pad and shank soft tissue during impacts: a 
further resolution of a paradox. Journal of Biomechanics 34, 327–333. 

Pataky TC, Caravaggi P, Savage R, Parker D, Goulermas JY, Sellers WI & Crompton RH (2008). 
New insights into the plantar pressure correlates of walking speed using pedobarographic 
statistical parametric mapping (pSPM). Journal of Biomechanics 41, 1987–1994. 

Tosovic D, Ghebremedhin E, Glen C, Gorelick M & Brown JM (2012). The architecture and 
contraction time of intrinsic foot muscles. Journal of Electromyography and Kinesiology 22, 
930–938. 

Vereecke EE & Aerts P (2008). The mechanics of the gibbon foot and its potential for elastic 



 120 

energy storage during bipedalism. Journal of Experimental Biology 211, 3661–3670. 

Winter DA (1983). Energy generation and absorption at the ankle and knee during fast, natural, and 
slow cadences. Clin Orthop Relat Res147–154. 

Wong YS (2007). Influence of the Abductor Hallucis Muscle on the Medial Arch of the Foot: A 
Kinematic and Anatomical Cadaver Study. Foot Ankle Int 28, 617–620. 

Wu G & Cavanagh PR (1995). ISB recommendations for standardization in the reporting of 
kinematic data. Journal of Biomechanics 28, 1257–1261. 

Zelik KE & Kuo AD (2010). Human walking isn't all hard work: evidence of soft tissue 
contributions to energy dissipation and return. Journal of Experimental Biology 213, 4257–
4264. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 121 

CHAPTER SIX – THESIS SUMMARY 

 

This thesis investigated the in vivo function of the plantar intrinsic foot muscles. The four studies 

presented provide novel findings pertaining to the neurophysiological properties and biomechanical 

function of these muscles during postural activity and locomotion. The following chapter integrates 

the key findings and discussion points, while also discussing the significance of the findings of this 

thesis as a whole. Finally, this chapter provides an insight to the directions for future research in this 

field. 

 

6.1 Summary of key findings 

6.1.1 Relationship between neurophysiological properties and biomechanical function of the 

intrinsic foot muscles 

The human foot has undergone a number of key structural adaptations as part of the evolutionary 

transition towards upright bipedal locomotion, including an adducted hallux, enlarged and re-

aligned tarsal bones, shortened lateral digits and a pronounced LA (Bramble & Lieberman, 2004; 

Thorpe et al., 2007; Rolian et al., 2009; Crompton et al., 2010). These important adaptations reflect 

a change in the functional requirements of the foot from grasping and object manipulation toward 

the modern human foot that is primarily a load bearing structure, acting as the interface between the 

body and ground (Li et al., 1996; Bramble & Lieberman, 2004; Wang & Crompton, 2004; Rolian et 

al., 2009; 2010; Crompton et al., 2012). While these structural adaptations have been well described 

in the literature, prior to this thesis it had not been established whether the neurophysiological 

properties of the musculature within the foot is well matched to their function in providing support 

for the LA during upright stance and locomotion. 

 

Chapters two, four and five highlight the functional importance of the plantar intrinsic foot muscles 

in providing active support for the LA during postural tasks and locomotion. Given this function, it 

would seem essential that these muscles have the ability to generate force in response to, or in 

anticipation of the foot impacting the ground. Furthermore these muscles would also require the 

capacity to sustain their force generating capacity in a cyclic manner for prolonged periods of time, 

as is required to provide support for the LA during locomotion. The findings from Chapter three 

support this suggestion, with AH displaying the hallmarks of a fatigue resistant muscle that has the 

capacity to generate and sustain moderate force for prolonged periods with little disruption to 

discharge characteristics or force output.  
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Evidence that the neurophysiological properties of the intrinsic foot muscles are closely linked to 

their function in LA support may be observed by comparing the discharge characteristics of AH 

reported in Chapter three, to similar muscles within the hand. The human hand remains a structure 

that is specialised for grasping and fine manipulation of objects, in a similar manner to how the pre-

human arboreal foot may have functioned. Even though the human hand has also likely undergone 

further evolutionary divergence towards greater precision of force, the comparison provides 

valuable insight into how the neurophysiological properties of AH may be well adapted to its role in 

providing postural support for the foot. The discharge properties of motor units of human hand 

muscles have been described extensively (Sica et al., 1974; Thomas et al., 1986a; De Luca et al., 

1996; Carpentier et al., 2001). Generally these muscles have relatively large numbers of motor units 

with low innervation ratios (Sica et al., 1974). Hand muscles such as the thenar group and dorsal 

interossei rely heavily on rate coding, with individual motor units displaying relatively high 

discharge rates (Sica et al., 1974; De Luca et al., 1982; Thomas et al., 1986b; Zijdewind, 2002; 

Moritz et al., 2005) allowing the precise control force of production that is essential for manual 

dexterity.  

 

The discharge behaviour of the hand muscles are in stark contrast to those of AH that were shown 

to have low peak discharge rates and low rate coding ranges. Abductor hallucis is known to have a 

low number of motor units relative to its size (Johns & Fuglevand, 2011) and thus has a high 

innervation ratio, suggests this muscle relies heavily on recruitment to generate force, utilising the 

high number of muscle fibres innervated by each motor unit to rapidly increase force production. 

This arrangement of fatigue resistant motor units that utilise a recruitment strategy for force 

production is similar to other muscles of the lower limb such as the soleus that also play important 

roles in postural support and locomotion (Oya et al., 2009). An apparent trade-off for this 

adaptation is the lack of ability to finely grade force, which is indicated by the difficulty 

experienced by the participants in accurately performing the ramp contractions. However, as the 

human foot is primarily a load bearing structure, the toes are rarely used for grasping of objects. 

Thus the requirement for force precision is likely outweighed by the benefit of being able to 

produce high forces which can be sustained for prolonged periods as is required to provide active 

support for the LA during standing, walking and running. 

 

Caution should be taken, however, when inferring that the neurophysiological properties of AH 

represent those of the entire group of plantar intrinsic foot muscles, including FDB or QP. 

However, given that results from Chapter two, four and five have shown high degrees of similarity 

in function and activation patterns of AH, FDB and QP it is likely that these muscles would posses 
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similar discharge characteristics to AH that are suited to their function in providing active support 

for the LA.  

 

6.1.2 Mechanical function of the plantar intrinsic foot muscles and implications for postural control 

and locomotion. 

This thesis provides detailed insight to the role of the plantar intrinsic foot muscles in contributing 

to LA biomechanics, highlighting that AH, FDB and QP are recruited in response to loading of the 

foot and the resulting deformation of the LA. Novel evidence is provided to show that these 

muscles have the capacity to generate sufficient force to produce angular displacement of the 

calcaneus (extension, inversion and abduction) and metatarsals (flexion and adduction), countering 

and reversing compression of the LA that occurs when the foot is encumbered with load. These 

findings have a number of implications for our knowledge of how the central nervous system (CNS) 

regulates the activation of these muscles, altering the biomechanical characteristics of the foot in 

order to maintain upright balance and improve efficiency during locomotion.  

 

Postural control 

The “top heavy” architecture of the human body, where the majority of the body’s mass is located a 

considerable distance above our base of support, provides a significant challenge to maintain 

upright posture (Winter, 1995). Accordingly the CNS must possess the capacity to constantly adapt 

in a reactive and pro-active manner in order to maintain balance (Winter, 1995; Gatev et al., 1999; 

Tokuno et al., 2007; Loram et al., 2011). It is well established that the ankle plantar flexors are 

recruited in response to, or in anticipation of forward sway during upright stance, with their action 

slowing and subsequently countering anterior displacement of the body centre of mass (COM) 

preventing forward falling (Winter, 1995; Tokuno et al., 2008; Loram et al., 2011). Data presented 

in Chapter two provides novel evidence that the intrinsic foot muscles display highly correlated 

inter-muscular activation patterns in response to medio-lateral displacement of the COP in single 

leg stance, with activation increasing with medial shifts in the COP. These findings suggest that 

similarly to the posterior leg muscles, that are recruited in response to antero-posterior shifts in 

sway, a central control mechanism may also be responsible for the highly synchronised recruitment 

of AH, FDB and QP, in response to, or in anticipation of medio-lateral sway. The relevance of this 

discovery in the context of postural control is highlighted further when considered in the context of 

the mechanical function of these muscles described in Chapter four. Activation of AH, FDB and QP 

substantially alters foot biomechanics (described above) under loads equivalent to those 
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encountered during single and double leg support. Thus despite the fact that these muscles are 

relatively small (Kura et al., 1997; Ledoux et al., 2001; Tosovic et al., 2012) these muscles may 

have the capacity to produce sufficient force to contribute meaningful alterations in postural 

alignment.  

 

The synchronised manner in which these muscles respond to medio-lateral shifts in the COP 

highlights the functional role of the plantar intrinsic foot muscles during upright stance. Weakness 

of these muscles may impair the capacity of the CNS to control medio-lateral motion during periods 

of single leg support in standing and during gait, possibly leading to larger medio-lateral 

displacements of the COM and as such, poorer balance control. While this hypothesis has not been 

addressed within the current thesis, it provides some explanation for why weakness in these muscles 

may lead to poor balance and an increased risk of falls (Menz et al., 2005; Mickle et al., 2009). The 

contribution of these muscles to standing balance requires further investigation. This may be 

achieved by the use of research techniques that temporarily block the function of these muscles in 

healthy participants, or in clinical populations with conditions such as diabetic polyneuropathy and 

Charcot Marie Tooth disease, where function of these muscles is compromised due to neurological 

impairment (Menz et al., 2004; Lencioni et al., 2014).  

 

Locomotion 

Potentially the most important finding of this thesis relates to the discovery of a mechanism by 

which the plantar intrinsic foot muscles actively modify the stiffness of the foot in response to the 

forces encountered during locomotion. It is widely acknowledged that human legs function as 

springs during locomotion, with the CNS actively altering the mechanical characteristics (stiffness) 

of the lower limb allowing the body to constantly adapt in response to variation in loading and 

environmental demands (Farley et al., 1998; Ferris et al., 1998). Chapter five provides evidence to 

suggest that the stiffness of the foot may also be actively adjusted during locomotion, contrary to 

the previous belief that the spring-like behaviour of the foot was passive in nature (Hicks, 1954; Ker 

et al., 1987). Based on the results from Chapters four and five, it is apparent that the relative 

contribution of the passive and active components to foot stiffness regulation may vary depending 

on the demands of the task. For example, at lower gait velocities, the magnitude of the vertical 

ground reaction force is relatively low and contact time is prolonged. Thus, the passive structures of 

the arch can provide sufficient stiffness to allow ankle plantar flexion torques to be transferred via 

the foot to the ground during propulsion, with only minor contributions needed from the intrinsic 

foot muscles. However, at higher gait velocities when torques transmitted between the body and 



 125 

ground are substantially higher and the time in which these torques need to be transmitted is greatly 

reduced, the capacity of the intrinsic foot muscles to actively stiffen the foot may be a considerable 

advantage.  

 

The energetic benefits of the spring like behaviour of human lower limbs has been described 

extensively (Alexander, 1984; Lichtwark & Wilson, 2007; Roberts & Konow, 2013). The potential 

for the intrinsic foot muscles to actively contribute to this mechanism during locomotion is a new 

insight that further highlights the importance of the LA as a structure that facilitates habitual upright 

bipedalism. The key finding of Chapter five was that the MTU’s of AH, FDB and QP undergo a 

cyclical process of gradual active lengthening and subsequent rapid recoil during stance, alongside 

LA compression and recoil that occurs in response to the ground reaction forces during the stance 

phase. This novel finding reveals that not only do these muscles regulate the stiffness of the LA, as 

described in Chapter four, but they also have the capacity to absorb and generate mechanical power 

during locomotion, acting in conjunction with the plantar aponeurosis. During the loading phase of 

stance, active lengthening of the intrinsic foot muscles will serve to stiffen the arch, resisting 

excessive LA compression and allowing mechanical energy to be absorbed with the MTU. During 

mid to late stance, active recoil of the MTU will allow mechanical power to be returned and 

possibly even generated, aiding forward progression. Additionally, activation of the intrinsic foot 

muscles may also serve to optimise energy storage and return within the MTU itself, by stiffening 

the contractile component of the MTU and potentially allowing greater utlilisation of elastic energy 

within the tendinous connective tissues. The AH, FDB and QP MTUs are comprised of relatively 

short fibres (AH~23mm, FDB ~23mm, QP~25mm) and long tendons (Kura et al., 1997; Ledoux et 

al., 2001; Tosovic et al., 2012), thus similar to other muscles of the lower limb, these muscles are 

well suited to storing mechanical energy within the long elastic component of the MTU during early 

stance and returning it via tendon recoil, providing mechanical power for propulsion (Alexander, 

1984). This hypothesis has not been investigated within this thesis and thus remains speculation. 

Therefore, further research exploring the potential for elastic energy utilisation within the intrinsic 

foot muscles and how this may influence the economy of locomotion is warranted (discussed in 

detail below). 

 

Another potential benefit of the intrinsic foot muscles actively stiffening the foot in response to 

higher loading forces is the reduction in plantar aponeurosis strain that occurs, due to reduced arch 

compression. Repeated excessive strain in the plantar aponeurosis is considered a contributing 

factor in common musculoskeletal injuries of the foot, such as plantar fasciitis (Wearing et al., 

2006). The potentially protective effect provided by the intrinsic foot muscles may have 
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implications for how conditions such as plantar fasciitis are managed in a clinical environment. 

Further research should now be conducted to determine if differences in activation patterns and 

force generating capacity of these muscles are apparent between people with various foot structures 

(eg. low and high arched feet) and also in people with clinical conditions such as plantar fasciitis. 

This research may also investigate the impact of strengthening programs for these muscles on foot 

function and foot pain, in clinical populations. 

 
 

The recent increase in the application of multi-segment foot modelling approaches to provide 

detailed insight to lower limb biomechanical function (Leardini et al., 2007; Caravaggi et al., 2009; 

2010)  has emphasised that the human foot is considerably more flexible than previously thought 

(Winter, 1983; Thorpe et al., 2007; Zelik & Kuo, 2010). Chapter five of this thesis reports that up 

20 degrees of motion occurs about the mid-foot during running and that the muscles within the arch 

have the capacity to absorb and generate mechanical power about this functional joint. This new 

knowledge suggests that the assumption of the foot as a rigid segment for the purposes of inverse 

dynamic calculations may lead to inaccuracies in interpretation of ankle joint kinematics and 

kinetics. For example, traditional modelling techniques model the foot as a rigid segment spanning 

from the calcaneus to the distal ends of the metatarsals, with any rotation of the shank about the foot 

considered to be rotation of the ankle (Winter, 1983; DeVita et al., 2008; Zelik & Kuo, 2010). 

However, in light of the findings from this thesis and other studies employing multi-segment foot 

models (Leardini et al., 2007; Caravaggi et al., 2009) it is likely that motion of the shank over the 

foot will be a combination of angular rotation about the ankle (shank – calcaneus) and mid-foot 

(calcaneus – metatarsals). Modelling ankle joint motion as rotation of the articulation between the 

rear-foot (calcaneus) relative to the shank may provide a more accurate reflection of the ankle joint 

motion and thus improve the accuracy of inverse dynamic calculations. Likewise, the mid-foot 

should also be included as an additional joint in inverse dynamic solutions. The lack of studies 

modelling the ankle and mid-foot as separate joints during locomotion may be in part due to the 

technical difficulty of performing inverse dynamic calculations across the mid-foot. Thus future 

research should investigate the influence of including a joint at the mid-foot on ankle joint 

kinematics and kinetics. 

 

Another known limitation of using three-dimensional motion capture is the use of skin-mounted 

markers to determine changes in body segment motion. Soft tissue motion can possible influence 

the accuracy of data collected during tasks such as locomotion. While there is minimal soft tissue 

located between the skin mounted markers and the bones of the foot, this technique may 
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underestimate some of the motion of the mid-foot (Lundgren et al., 2008; Nester et al., 2014) and 

therefore may also impact on our modelling of MTU lengths. Future research may benefit from 

incorporating emerging imaging techniques such as x-ray reconstruction of moving morphology, 

that combine the use of dual plane fluoroscopy and CT imaging to create highly accurate in-vivo 

animations of bone motion (Brainerd et al., 2010). This type of technology is yet to be employed to 

study motion of bones within the human foot. However, its previously successful application in 

small (Brainerd et al., 2010) and large (Baier & Gatesy, 2013) animals indicate that this type of 

technique could increase the accuracy of modelling foot bone motion and hence MTU lengths. 

 

6.3 Directions for future research 

This thesis proposes a novel biomechanical model of foot function that provides greater explanation 

for the highly adaptable nature of the human foot. This new model includes both active and passive 

components functioning in parallel to control the stiffness of the LA, with the intrinsic foot muscles 

actively modifying arch stiffness during tasks that require high forces to be transmitted between the 

foot and the ground, while the plantar aponeurosis provides primary structural support for the LA 

during tasks when forces are low, such as standing and slow walking (Hicks, 1954; Ker et al., 

1987). This new insight has substantial implications for research in lower limb biomechanics. 

Further research is now warranted to improve our understanding of this mechanism. A number of 

areas for future research questions and proposed directions of research are outlined below; 

 

6.3.1 How important are the plantar intrinsic foot muscles in foot stiffness regulation during 

locomotion? 

The ‘foot spring’ mechanism has previously been considered a largely passive process involving the 

plantar aponeurosis and ligamentous structures (Ker et al., 1987; Alexander, 1991) and it has been 

estimated that these mechanism allows storage and return of approximately 17% of the metabolic 

energy required for a single gait cycle (Ker et al., 1987). However, given the evidence provided 

within this thesis that the plantar intrinsic foot muscles are capable of adjusting foot stiffness and 

that these muscles activate in proportion to the forces experienced by the foot, it is likely that these 

muscles may augment the contribution of the passive ligament structures in control of foot stiffness. 

This action would serve to provide “on demand” adjustments in foot stiffness, tuning the foot in 

response to the forces or deformation encountered. This is a potentially important mechanism that 

may enhance efficiency and versatility of the leg during locomotion. However, while this thesis 

highlights the existence of this mechanism, at present we have little understanding of the magnitude 

of contribution from the intrinsic foot muscles to foot stiffness regulation, as well as the subsequent 
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mechanical and energetic benefits this might have for tasks like walking and running. Future studies 

attempting to isolate the contribution of these muscles to maintenance of foot spring function during 

locomotion are necessary in order to quantify the relative importance of these muscles to the overall 

function of the foot during locomotion and may also elucidate the mechanical and or metabolic cost 

of their activation. This may be achieved by employing research techniques that remove the 

contribution of the active components (eg. peripheral nerve blocks) and examining the effect this 

has on the mechanical function of the foot and the net metabolic cost of locomotion.  

 

6.3.2 Do the plantar intrinsic foot muscles utilise their relatively long tendons to store and return 

elastic energy during locomotion? 

The final study of this thesis has shown that the plantar intrinsic foot muscles undergo active 

lengthening and shortening during each foot contact, absorbing mechanical power during early 

stance, and generating mechanical power in late stance – essentially acting as both a break and 

motor. While this function is known to occur in any muscle of the lower limb that undergoes both 

lengthening and shortening during the stance phase of gait (Alexander, 1991), there is an 

accumulating amount of evidence to support the idea that this function is achieved primarily 

through the spring-like action of the elastic tendinous tissues (Lichtwark, 2005; Lichtwark & 

Wilson, 2006). The use of ultrasound imaging to examine the length changes of both the medial 

gastrocnemius muscle fascicles and Achilles tendon has clearly shown that during stretch-shorten 

activities like hopping, walking or running, the Achilles tendon and the gastrocnemius aponeurosis 

undergo the majority of the stretch and shortening of the MTU (Lichtwark, 2005; Lichtwark & 

Wilson, 2006). Using this data and models of muscle-tendon interaction and energetics, it has been 

reported that the compliance of the Achilles tendon is such that it minimises the required 

lengthening and shortening of the muscle fibres, which acts to reduce both the magnitude of 

activation of the muscle and as such the energy required to perform the action (Lichtwark & 

Wilson, 2007). The architecture of the intrinsic foot muscles is similar to the gastrocnemius and 

Achilles tendon, with short fibres and relatively long tendons (Kura et al., 1997; Ledoux et al., 

2001; Tosovic et al., 2012) and they also undergo cyclic lengthening and shortening contractions in 

response to load during each stride cycle. The arrangement of relatively short muscle fibres in series 

with long elastic tendons may enable these muscles to remain largely isometric during the MTU 

lengthening and shortening phases that occur during every foot contact, with the majority of 

lengthening and shortening occurring within the elastic tendons. This mechanism would serve to 

reduce the net mechanical work performed by the contractile element, optimising force output and 

enhancing movement efficiency. Further studies utilising a combination of ultrasound, 
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electromyography and three dimensional motion analysis are required in order to investigate this 

hypothesis. 

 

6.3.3 What are the central and peripheral mechanisms regulating intrinsic foot muscle activation? 

The experiments contained within this thesis have consistently found that activation of the plantar 

intrinsic foot muscles increase in response to increased loading forces. It is now of benefit to 

develop a greater depth of understanding pertaining to the sensory mechanisms that regulate the 

activation of these muscles. As with other locomotor muscles (Lacquaniti et al., 2012), it is likely 

that central pattern generators play an important role in governing the activation of the plantar 

intrinsic foot muscles. However the involuntary activation of these muscles during tasks such as the 

foot loading experiments performed in Chapter four, suggests these muscles are highly susceptible 

to afferent feedback and it is highly likely that a combination of various sensory afferents contribute 

to the regulation of intrinsic foot muscle activation during standing and gait, including the joint 

mechanoreceptors, muscles spindles and golgi tendon organs. One area of particular interest is the 

role that sensory cutaneous receptors of the foot sole play in the recruitment and activation of the 

plantar intrinsic foot muscles, with suggestions that these receptors play an important function in 

providing afferent feedback for postural control (Lowrey et al., 2010; 2013; Mouchnino & Blouin, 

2013; Lowrey et al., 2014). The slowly adapting type one (SAI) and type two (SAII) receptors are 

particularly sensitive to pressure and skin stretch, respectively (Macefield, 2005; Lowrey et al., 

2013; Bent & Lowrey, 2013). These sensory cutaneous receptors are known to trigger activation in 

muscles of the lower (Lowrey et al., 2010; Mouchnino & Blouin, 2013) and upper (Bent & Lowrey, 

2013) limbs in response to pressure and stretch during postural activities. Given the close proximity 

between the plantar intrinsic foot muscles and the sensory cutaneous receptors on the sole of the 

foot, it is likely that these sensory organs play a role in regulation of intrinsic foot muscle 

activation. This direction of research may have substantial implications for the development of 

textured insoles that stimulate the cutaneous receptors on the sole of the foot, possibly improving 

balance control in groups that are prone to falls, including people suffering from Parkinson’s 

disease (Hiorth et al., 2014) and the elderly (Mickle et al., 2009). 

 

Future studies may also investigate the role of the central nervous system (CNS) in modulating the 

responsiveness of the spinal pathways that facilitate recruitment of the plantar intrinsic foot 

muscles. Responsiveness of the Ia-afferent pathway is known to be modulated in response to 

postural sway location and velocity in other muscles of the lower limb via pre-synaptic inhibition 

(Gatev et al., 1999; Tokuno et al., 2007; 2008; 2009). Thus it is possible that similar processes may 

also contribute to the regulation of plantar intrinsic foot muscle activation during postural tasks. 
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Knowledge gained from studies investigating the central and peripheral mechanisms regulating 

intrinsic foot muscle function may provide valuable insight to the importance of these muscles in 

balance control.  

 

6.3.4 Can the function of the plantar intrinsic foot muscles be enhanced in order to improve 

efficiency of locomotion, increase performance and reduce the risk of injury and/or falls? 

Given that this thesis has shown the capacity for the intrinsic foot muscles to provide active 

adjustments in LA stiffness, it is now of interest to determine if it is possible to influence the 

function of these muscles, in order to increase their capacity to contribute to the “foot spring” 

mechanism.  This may involve studies that aim to improve neural activation and force producing 

capacity of the intrinsic foot muscles, in order to determine if these changes lead to an improvement 

in the foot stiffness regulation during locomotion. This may be particularly pertinent in individuals 

who display increased compliance in the LA, where increased strength of these muscles may allow 

more effective LA stiffness regulation, reducing load on the plantar aponeurosis. Changes in 

intrinsic foot muscle morphology (PCSA) and activity have been reported (Jung et al., 2011b; 

2011a) after specific ‘short-foot’ training exercises, providing some preliminary evidence that this 

is possible, however it is unknown whether these changes in muscle morphology relate to enhanced 

foot stiffness regulation. Longitudinal training studies evaluating changes in muscles strength and 

volume, as well as any resulting alterations in LA biomechanics may help to address these 

questions.  Results from these studies may have implications for the use of strength training 

programs as part of rehabilitation from lower limb musculoskeletal injury. 

 

It is also of interest to investigate if augmented stimulation of sensory cutaneous afferents on the 

plantar aspect of the foot can influence intrinsic foot muscle activation, thus providing an additional 

opportunity to modify the function of these muscles, enhancing postural control. As mentioned 

above, the SAI and SAII receptors on the sole of the human foot are thought to provide valuable 

information that enhances postural control during standing (Macefield, 2005; Lowrey et al., 2013; 

Mouchnino & Blouin, 2013; Bent & Lowrey, 2013). Selective stimulation of these sensory afferents 

may increase the activation of the plantar intrinsic foot muscles during stance and gait. Ritchie and 

colleagues (Ritchie et al., 2011) recently examined the effect of textured insoles that were designed 

with the aim to stimulate sensory receptors on discrete regions of the sole of the foot. They reported 

that foot motion was considerably altered when wearing the “stimulating” insoles, however these 

changes could not be attributed to any alteration in leg muscle activation. It is possible that the 

reported alterations in foot motion may have been due to activation of the intrinsic foot muscles, 
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which are located in close proximity to the cutaneous receptors on the plantar aspect of the foot and 

are now known to have substantial influence on foot biomechanics. Knowledge gained from these 

investigations may have implications for footwear design, specifically the incorporation of 

cutaneous stimulation within the insoles of footwear as an approach to improve balance control in 

the elderly, as weakness and dysfunction of these muscles is known to contribute to falls risk in this 

population (Menz et al., 2005; Mickle et al., 2009; Spink et al., 2011). 

 

6.4 Conclusion 

This thesis has explored the hypothesis that the plantar intrinsic foot muscles play an important 

function in stabilising the longitudinal arch during postural and locomotion tasks. Results from this 

group of studies provide unique evidence that these muscles have the capacity to actively stiffen the 

longitudinal arch, augmenting the contributions of the passive ligamentous structures. Activation of 

these muscles is regulated in response to loading forces that are encountered during postural and 

locomotion tasks, allowing additional mechanical power to be absorbed and generated within the 

LA. These novel findings contribute substantially to our knowledge of functional anatomy of the 

plantar intrinsic foot muscles and control of longitudinal arch biomechanics. Information from 

thesis may now be integrated into applied research for health (musculoskeletal injury and 

rehabilitation), athletic performance and the development of lower limb prostheses. 
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