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electrochemical performance†
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Rigid three-dimensional (3D) Ni3S4 nanosheet frames assembled from

ultrathin nanosheets are synthesized via a facile solvothermal method.

Compared to flat Ni3S4 sheets, 3D Ni3S4 nanosheet frames have both a

high free volume and high compressive strength. They can deliver a

very high specific capacitance of 1213 F g�1 with good rate perfor-

mance. In addition, these 3D Ni3S4 nanosheet frames are stabilized by

plastically deformed ridges. The stabilized nanosheet frames did not

unfold or collapse during electrochemical tests, and thus showed

enhanced cycling ability.
Nowadays, metal chalcogenide materials have been attracting
signicant attention in the energy eld, due to their high
theoretical capacitance and low cost.1 Key to their further
development in these areas has been their improved surface
area and the rigidity in their structure.2 To date, two-
dimensional (2D) metal chalcogenide nanocrystals have
provided a much higher specic surface area compared with
their bulk counterparts, which is benecial to energy devices,
because the reaction/interaction between the devices and the
interacting media can be signicantly enhanced.3 However,
during the electrode fabrication process, the nanosheet-like
materials, such as graphene, tend to aggregate or restack due
to strong inter-sheet van der Waals attraction.4 Consequently,
many of the unique properties that individual sheets possess,
such as high specic surface area and peculiar electron trans-
port behaviours, are signicantly compromised or are even
unavailable during assembly. An efficient strategy to prevent
nanosheet aggregation and thus to improve the energy storage
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performance of sheet-like materials is to synthesize three-
dimensional (3D) architectures assembled with nanosheets,
such as by fabricating sandwich-type structures by introducing
“spacer” (e.g. carbon nanotubes, nanoparticles)5 and forming
3D macroporous structures.6 For instance, Luo et al.7 crumpled
graphene sheets into paper ball-like, fractal-dimensional parti-
cles to make them aggregation-resistant in both solvents and
the solid state, even aer mechanical compression. Therefore,
the preparation of large-area, aligned nanoporous nano-
structured lms in a highly crystalline state with well-oriented
frameworks, excellent accessibility, and controlled porosity is
an effective way to prepare metal chalcogenide-based electrode
materials.

As an important class of transition metal chalcogenides,
nickel sulphides with a controlled morphology is of great
interest, due to their potential applications in hydrogenation
catalysts and as electrode materials.8 The electrochemical
performances of the electrode materials are strongly dependent
on their sizes, morphologies and structures, and up to now,
some progress has been made on nickel sulphide-based elec-
trodes. For example, Hou et al.9 rst investigated the potential
application of NiS nanoparticles as a supercapacitor electrode
and proposed an electrochemical reaction mechanism. Subse-
quently, Zhu et al.10 reported the synthesis of hierarchical NiS
hollow spheres by a template-engaged conversion method. Due
to the unique structural features and high surface area, these
NiS hollow spheres showed a high specic capacitance of 583–
927 F g�1 at various currents densities of 4.08–10.2 A g�1. Later,
Yang et al.11 synthesized a hierarchical ower-like b-NiS elec-
trode with a high specic discharge capacitance of 857.76 F g�1.
Recently, Pang et al.12 reported the synthesis of uniform NiS2
nanocubes, and these NiS2 nanocube electrodes showed a large
specic capacitance (695 F g�1 at 1.25 A g�1) and excellent
cycling performance. However, Ni3S4 has attracted much less
attention compared to other binary nickel suldes, such as NiS,
Ni3S2, and NiS2, due to the synthetic challenges in obtaining the
single phase Ni3S4.13 Ni3S4 has a cubic spinel structure and is
found in nature as the mineral polydymite.14 Much effort has
This journal is © The Royal Society of Chemistry 2015
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Fig. 1 TEM image (A), STEM image (B), HRTEM images (C–E), inset FFT
and XRD pattern (F) of the 3D Ni3S4 nanosheet frames.
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been devoted to obtain single-phase Ni3S4 efficiently in labora-
tories. Through a selective control of the reaction conditions,
such as the Ni precursor or capping agents, it is possible to
obtain single phase Ni3S4 triangular nanoprisms and nano-
pyramids.15 Despite the success in the synthesis of various
morphologies, the preparation of uniform 3D Ni3S4 nanosheet
structure in a highly crystalline state still remains a signicant
challenge.

Herein, we present a facile, one-pot solvothermal route to
prepare rigid 3D single-crystalline Ni3S4 nanosheet frames. To
the best of our knowledge, the controlled synthesis of rigid 3D
Ni3S4 nanosheet frames has not been reported. As a demon-
stration, the obtained 3D Ni3S4 nanosheet frames were used as
the electrode of a supercapacitor and demonstrated excellent
electrochemical performance, even outperforming most of the
nickel sulde-based electrodes from previous reports. We
anticipate that the unique 3D Ni3S4 structure originating from
the ultrathin Ni3S4 nanosheet is worth further exploring for its
intrinsic properties in the elds of catalysis, cathode materials
in lithium batteries, and so on.

In a typical reaction, a mixture of nickel stearate, oleic acid,
n-dodecanethiol and toluene was added in to a Teon-lined
stainless autoclave. Aer continuous stirring for 5 min, the
reaction solution was heated up to 200 �C for 2.5 h. Once the
reaction was nished and cooled down to room temperature,
the black products precipitated at the bottom of the autoclave
were puried with excess ethanol by centrifugation, and were
then easily dispersed in ethanol for further characterization.

The typical rigid 3D Ni3S4 nanosheet frames are displayed in
Fig. 1. The size and morphology of the as-prepared frames were
characterized by transmission electron microscopy (TEM). A
panoramic view of the 3D frames (see Fig. 1A) reveals that the
sample consists entirely of a 3D frame structure, with many
ridges and vertices. The scanning transmission electron
microscopy (STEM) (see Fig. 1B) and the high resolution
transmission electron microscope (HRTEM) images (see Fig. 1C
and D) show that the average size of the 3D nickel sulde frames
is �160 nm, and that they are assembled from very thin Ni3S4
sheets. The crystallographic phase of the nickel sulde nano-
structures was investigated by X-ray diffraction (XRD) (see
Fig. 1F). The position of the diffraction peaks is in good
accordance with the standard pattern of the cubic Ni3S4 (ICDD-
JCPDS card no. 76-1813), indicating that the sample consists of
pure single crystalline Ni3S4. It is worth noting that the 3D
structures result in an apparent enhancement in peak (311) and
a decrease in peak (111) of the Ni3S4 diffraction patterns. The
single-crystalline feature of the Ni3S4 frames was further veried
by HRTEM (see Fig. 1E). The lattice spacing of �0.54 and
�0.33 nmmatches well with the interplanar spacing of the (111)
and (220) planes of the cubic Ni3S4, respectively. In addition, the
selected area electron diffraction pattern from the edges shows
strong Ni3S4 (111) and (220) diffraction spots, corresponding to
the d-spacing of 0.54 nm and 0.33 nm, respectively. These
results clearly demonstrate that the 3D Ni3S4 frame is composed
of pure and single crystalline cubic Ni3S4 ultrathin nanosheets.
It is notable that the obtained 3D Ni3S4 frames are very open,
but are also rigid. No morphology change was observed aer
This journal is © The Royal Society of Chemistry 2015
30 min ultrasonication, further implying their good structural
integrity and stability (see Fig. S1†).

When the ratio of n-dodecanethiol/oleic acid (DDT/OA) in
the reaction system was increased, while keeping all the other
parameters unchanged, relative at nickel sulde sheets were
obtained. Fig. 2A shows a typical TEM image of the as-prepared
nickel sulde products, most of which exhibit a sheet-like
morphology. The XRD pattern of the nickel sulde sheets is
similar to that of the Ni3S4 3D frames (see Fig. 2B), except there
is no decrease in the intensity of the (111) peak of the Ni3S4
diffraction patterns. The HRTEM image (see Fig. 2C) reveals
that the Ni3S4 sheets have near rectangular shape, with an
average lateral size of �130 nm. The thickness of the sheet was
determined with an atomic force microscope (AFM, see Fig. 2D).
Prominently, the thickness was measured to be only 1.0 nm.

Our experimental results imply that the ratio of DDT/OA
plays an important role in tuning the structure of Ni3S4, since
the only varying parameter in preparing the 3D Ni3S4 frames
and at Ni3S4 sheets is the ratio of DDT/OA; n-dodecanethiol is
also the source of sulfur for the formation of Ni3S4. Controlled
experiments were carried out to investigate the evolution of the
Ni3S4 sheets and 3D frames by varying the ratio of DDT/OA and
the reaction time. The evolution of the morphology was
RSC Adv., 2015, 5, 8422–8426 | 8423

http://dx.doi.org/10.1039/c4ra15607b


Fig. 2 TEM image (A), XRD pattern (B), HRTEM images (C), AFM image
with height information data (D) of the flat Ni3S4 sheets.

Scheme 1 Schematic illustration of the proposed mechanism for the
formation of the 3D Ni3S4 nanosheet frames and Ni3S4 sheets.

Fig. 3 N2-sorption isotherms and pore size distribution (inset) of the
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examined by TEM, as shown in Fig. S2–S4.† At a medium ratio
of DDT/OA (e.g. 0.6 ml/6 ml or 0.8 ml/6 ml), the nal product is
composed of both sheets and 3D frames (see Fig. S2†). The
sample prepared at a low ratio (e.g. 0.5 ml/6 ml) and collected in
the early stages (0.5 h, 1.0 h, 1.5 h) exhibit an immature 3D
assembly structure, and the size and the sharpness of the 3D
structure increases with the extension of time (see Fig. S3†). The
sample prepared at a high ratio (e.g. 1 ml/6 ml) and collected in
the early stages (0.5 h, 1.0 h, 1.5 h) (see Fig. S4†) exhibits a sheet
structure, and the size of sheet increases with the extension of
time (see Fig. S4†). From the HRTEM image of a single relative
small Ni3S4 3D frame (see Fig. S5†), the clear lattice fringes at
the extended end are visible and the interplanar distance is
measured as �0.54 nm and �0.29 nm, corresponding to the
(111) and (311) planes. This indicates that the growth direction
is along the [311] direction. The growth rate of the {111} crys-
tallographic facet was lower than that of the {311} facet, which is
consistent with the intensity ratio for the (111) vs. the (311) peak
(see Fig. 1F), in a qualitative manner. According to these
observations and the previous literature,16 we propose that both
the Ni3S4 sheets and the 3D frames could be obtained from the
coalescence of the Ni3S4 nucleus (see Scheme 1a) in an oriented
way. In the initial stages, Ni3S4 nanopyramids (see Scheme 1f)
are formed in the reaction system. When the ratio of DDT/OA is
low, the Ni3S4 nanopyramids tend to aggregate to minimize the
total surface energy, and thus small Ni3S4 nano-aggregates are
formed through a self-assembly process (see Scheme 1b). As the
reaction continues, the growth rate of the {111} facets was lower
than that of the {311} facets, which results in growth along the
[311] direction, and nally leads to the formation of Ni3S4 3D
frames assembled from the thin Ni3S4 nanosheets (see Scheme
1c). On the other hand, the higher DDT/OA ratio results in well-
8424 | RSC Adv., 2015, 5, 8422–8426
dispersed Ni3S4 nanopyramids initially (see Scheme 1f). As the
reaction goes on, the reaction system tends to minimize the
total energy by forming relatively at Ni3S4 sheets through the
coordination of n-dodecanethiol and oleic acid (see Scheme 1g).
When the DDT/OA ratio is at a medium level, both 3D frames
and relatively at sheets are formed in the reaction system (see
Scheme 1e).

A good electrode material for a pseudocapacitor should have
a large specic surface area and a suitable pore-size distribution
which allows efficient contact between the electroactive sites
and the electrolyte ions for fast faradic energy storage.17 Since
the Ni3S4 3D frames are a highly open structure, they should
have a higher specic surface area than the stacked at Ni3S4
sheets. Indeed, nitrogen adsorption/desorption analysis reveals
that Ni3S4 3D frames have a higher BET surface area
(122.6 m2 g�1) than the at Ni3S4 sheets (66.7 m

2 g�1). The value
is also higher than some other nickel sulde nanomaterials
reported in the literature, such as NiS hierarchical hollow
microspheres (34.3 m2 g�1)18 and hierarchical ower-like b-NiS
nanostructures (24.0615 m2 g�1).19 The nitrogen adsorption/
desorption isotherm of the Ni3S4 3D frames (see Fig. 3A)
displays a type-IV isotherm with a type-H3 hysteresis loop in the
Ni3S4 3D frames (A) and flat Ni3S4 sheets (B).

This journal is © The Royal Society of Chemistry 2015
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relative pressure range of 0.6–1.0 p/p0, indicating the presence
of a mesoporous structure. SEM images of the working elec-
trode are shown in Fig. S6.† As expected, the at Ni3S4 nano-
sheets are packed like a stack of papers, with a smooth
featureless surface. For the 3D Ni3S4 nanosheet frames, the
surface has essentially indistinguishable microstructures. It
should be noted that there is free space inside each individual
3D nanosheet frame, as well as between them.

The electrochemical properties of the Ni3S4 3D frames and
at Ni3S4 sheets were studied in 3 M KOH aqueous solution
using a three-electrode system. Their typical cyclic voltammetry
(CV) curves at a scan rate of 5 mV s�1 are shown in Fig. 4A. There
can be seen a pair of redox peaks in the potential range of
�0.15–0.55 V (vs. SCE). For nickel sulde-based electrodes, it is
widely accepted that the storage mechanism is mainly based on
the surface redox reaction between Ni2+ and Ni3+.9,11,19 It is
observed from the CV curves that the Ni3S4 3D frame electrode
has a higher electrochemical activity. The rate capability of the
Ni3S4 3D frame-based electrode is illustrated in Fig. S7A† at
different scan rates. With the increasing scan rate, the shape of
the curves is maintained, suggesting a relatively good rate
performance. Moreover, the peak current increases and the
oxidation peak shis to a more positive position, while the
reduction peak shis to a more negative position. This is due to
the increased internal resistance within the pseudoactive
material with the increase in scan rate.

Consistent with the CV results, the plateaus in the charge–
discharge curves (see Fig. 4B) indicate the existence of faradic
processes. The ability for a high-rate discharge is crucial for a
Fig. 4 The cyclic voltammogram curves at a scan rate of 5 mV s�1 (A),
the galvanostatic charge–discharge curves at a current density of
2 A g�1 (B), the specific capacitance as a function of current density (C),
and the dependence of the discharge specific capacitance on the
charge–discharge cycle numbers at a current density of 2.0 A g�1 (D)
of the Ni3S4 3D frame electrode and the flat Ni3S4 sheet electrode,
respectively.

This journal is © The Royal Society of Chemistry 2015
pseudocapacitor. Galvanostatic charge–discharge curves of the
Ni3S4 3D frame-based electrode at different current densities
are shown in Fig. S7B,† and the corresponding rate dependent
specic capacitances as a function of current density for Ni3S4
3D frame and Ni3S4 sheet-based electrodes are shown in Fig. 4C.
The Ni3S4 3D frame electrode displays a high capacitance of
1213 F g�1 and 587 F g�1 at the current densities of 2 A g�1 and
12 A g�1, respectively; while, the capacitance of the Ni3S4 sheet
electrode is only 789 F g�1 and 324 F g�1, respectively. The
specic capacitance of our Ni3S4 3D frame electrode is signi-
cantly larger than some nickel sulde-based electrodes
from previous studies, such as NiS hollow spheres (927 F g�1 at
4.08 A g�1),10 ower-like b-NiS (857.76 F g�1 at 2 A g�1),11 and
NiS2 nanocubes (695 F g�1 at 1.25 A g�1).12 The good pseudo-
capacitive performance of the Ni3S4 3D frame electrode could be
attributed to its unique structural features. Specically, the high
surface area and open structure composed of ultrathin nano-
sheets can provide not only a high interfacial area between the
electrode material and the electrolyte, but can also allow fast
ionic diffusion.10 Fig. 4D shows the cycling performance of the
as-prepared electrodes at a current density of 2 A g�1 in a voltage
window of 0–0.4 V. The initial capacitance of the Ni3S4 3D frame
electrode is 1213 F g�1, and around 60% of the initial capacitance
was retained aer 2000 cycles, indicating a relatively high cycling
stability; while, the capacitance of the Ni3S4 sheet electrode drop-
ped to 449 F g�1 aer 2000 cycles, and around 56% of the initial
capacitance was retained. The cycling performance of our Ni3S4 3D
frame electrode is better than some nickel sulde-based electrodes
from literature, such as NiS hollow spheres (52% retention aer
2000 cycles)10 and ower-like b-NiS (44% retention aer 1000
cycles).11 This improved capacitance retentionmay be attributed to
the enhanced structural integrity of these rigid 3DNi3S4 nanosheet
frames, which are stabilized by plastically deformed ridges.

Conclusions

In summary, a facile one-pot solvothermal method has been
developed to prepare rigid 3D Ni3S4 nanosheet frames. The as-
prepared 3D Ni3S4 nanosheet frames are shown to be very
uniform in size, with an open and rigid structure. The DDT/OA
ratio is shown to play an important role in altering the
morphology of the Ni3S4 nanostructure; for instance, relatively
at Ni3S4 sheets were obtained with a high DDT/OA ratio. In
virtue of its unique structure, the 3D Ni3S4 nanosheet frame
electrode exhibits a high specic capacitance of 1213 F g�1 at
the current density of 2 A g�1. Moreover, over 60% of the initial
capacitances can be retained aer 2000 cycles. This suggests its
promising application as an electrode material for high-
performance pseudocapacitors. Furthermore, we anticipate
that this simple solvothermal method can be extended to the
synthesis of other 3D metal sulde nanostructures.
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