Accepted Manuscript

Title: Antimicrobial susceptibility of *histophilus somni* isolated from clinically affected cattle in australia

Author: Lauren K. Goldspink, Joanne L. Mollinger, Tamsin S. Barnes, Mitchell Groves, Timothy J. Mahony, Justine S. Gibson

 PII:
 \$1090-0233(14)00504-8

 DOI:
 http://dx.doi.org/doi: 10.1016/j.tvjl.2014.12.008

 Reference:
 YTVJL 4356

To appear in: The Veterinary Journal

Accepted date: 9-12-2014

Please cite this article as: Lauren K. Goldspink, Joanne L. Mollinger, Tamsin S. Barnes, Mitchell Groves, Timothy J. Mahony, Justine S. Gibson, Antimicrobial susceptibility of *histophilus somni* isolated from clinically affected cattle in australia, *The Veterinary Journal* (2014), http://dx.doi.org/doi: 10.1016/j.tvjl.2014.12.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 2 3	Antimicrobial susceptibility of <i>Histophilus somni</i> isolated from clinically affected cattle in Australia
4 5 6 7	Lauren K. Goldspink ^{a,b} , Joanne L. Mollinger ^a , Tamsin S. Barnes ^{b,c} , Mitchell Groves ^b , Timothy J. Mahony ^c , Justine S. Gibson ^{b,*}
8 9 10 11 12 13 14	^a Biosecurity Sciences Laboratory, Biosecurity Queensland, Brisbane, Queensland 4108, Australia ^b The University of Queensland, School of Veterinary Science, Gatton, Queensland 4343, Australia ^c The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland 4072, Australia
15 16 17 18	 * Corresponding author. Tel.: +61 7 54601830. <i>E-mail address:</i> gibson.j@uq.edu.au (J.S. Gibson). Highlights
19	Histophilus somni is a respiratory pathogen of cattle.
20	• Antimicrobial susceptibility testing was performed against commonly used antimicrobial
21	agents.
22	• Disc diffusion and minimum inhibitory concentration assays were mostly comparable.
23	• Isolates from Australian cattle were almost completely susceptible bar, but one resistant
24	isolate was identified.
25	• Genotypic investigation detected a major cluster and clonal group of <i>H. somni</i> .
26	• Genotypic investigation detected a major cluster and clonal group of <i>H. somni</i> .
27	G
28	

30 Abstract

This study investigated antimicrobial resistance traits, clonal relationships and epidemiology 31 of Histophilus somni isolated from clinically affected cattle in Queensland and New South Wales, 32 33 Australia. Isolates (n = 53) were subjected to antimicrobial susceptibility testing against six 34 antimicrobial agents (ceftiofur, enrofloxacin, florfenicol, tetracycline, tilmicosin and tulathromycin) using disc diffusion and minimum inhibitory concentration (MIC) assays. Clonal relationships were 35 36 assessed using repetitive sequence PCR and descriptive epidemiological analysis was performed. 37 The *H. somni* isolates appeared to be geographically clonal, with 27/53 (51%) isolates grouping in one cluster from one Australian state. On the basis of disc diffusion, 34/53 (64%) isolates were 38 39 susceptible to all antimicrobial agents tested; there was intermediate susceptibility to tulathromycin 40 in 12 isolates, tilmicosin in seven isolates and resistance to tilmicosin in one isolate. Using MIC, all but one isolate was susceptible to all antimicrobial agents tested; the non-susceptible isolate was 41 42 resistant to tetracycline, but this MIC result could not be compared to disc diffusion, since there are 43 no interpretative guidelines for disc diffusion for *H. somni* against tetracycline. In this study, there was little evidence of antimicrobial resistance in *H. somni* isolates from Australian cattle. Disc 44 45 diffusion susceptibility testing results were comparable to MIC results for most antimicrobial agents tested; however, results for isolates with intermediate susceptibility or resistance to tilmicosin and 46 tulathromycin on disc diffusion should be interpreted with caution in the absence of MIC results. 47 48 Keywords: Histophilus somni; Bovine respiratory disease; Antimicrobial susceptibility; Disc 49 diffusion; Minimum inhibitory concentration

51 Introduction

Histophilus somni causes bovine respiratory disease (BRD) worldwide (Sandal and Inzana,
2010). Although it is a commensal of the nasopharynx (Corbeil, 2007), *H. somni* can be an
opportunistic pathogen of cattle, predominantly causing respiratory infections, but occasionally
septicaemia, myocarditis, arthritis, abortion and other systemic infections (Sandal et al., 2007).

56

57 BRD is the most economically important disease in beef cattle (Welsh et al., 2004), costing 58 the Australian feedlot industry approximately AUD\$40 million per year (Sackett et al., 2007). Antimicrobial agents including tetracycline, tilmicosin, florfenicol, tulathromycin, ceftiofur and 59 enrofloxacin are used routinely to prevent and/or treat BRD (Welsh et al., 2004). A reliance on 60 these drugs creates a selection pressure that may result in the emergence of drug-resistant 61 microorganisms (Barton et al., 2003). Resistance is emerging amongst BRD pathogens, particularly 62 63 to those antimicrobial agents from first generation classes (e.g. tetracycline) (Welsh et al., 2004; Portis et al., 2012). Moreover, antimicrobial resistance patterns vary according to bacterial species 64 and geographical location (Hendriksen et al., 2008), meaning that local knowledge of 65 susceptibilities is critical for the effective prevention and treatment of *H. somni* infections. 66

67

The aim of this study was to determine the antimicrobial susceptibilities of H. somni against 68 69 six antimicrobial agents commonly used to control and treat bovine bacterial respiratory pathogens 70 via both disc diffusion and minimum inhibitory concentration (MIC) testing. Although MIC is 71 considered to be the gold-standard test method in antimicrobial susceptibility determination 72 (Andrews, 2001), disc diffusion is commonly used in veterinary diagnostic laboratories. An 73 additional aim of this study was to assess associations between epidemiological factors (e.g. state of 74 origin, production type, site of isolation), clonal relationships and antimicrobial susceptibility of H. somni cultured from Australian cattle. 75

77

78 Materials and methods

79 Isolates

80 Fifty-three H. somni isolates were obtained in 2012 from bovine samples that had been 81 submitted to the Animal Disease Surveillance Laboratory, Toowoomba, Queensland or Elizabeth 82 Macarthur Agricultural Institute, Menangle, New South Wales, Australia. Isolates were derived 83 from cattle with clinical signs of respiratory disease (n = 51), thrombotic meningoencephalitis (n = 51)84 1) or infertility (n = 1) and *H. somni* was considered to be the causal or a contributing pathogen. 85 Isolates were recovered from lung samples (37/53, 70%), nasal swabs (6/53, 11%), brain swabs 86 (3/53, 6%) and one each from a pleural swab, preputial swab and heart blood swab; the remaining four (8%) isolates were from unspecified sites. All isolates were confirmed as *H. somni* by clonal 87 morphology, Gram stain and H. somni-specific PCR (Angen et al., 1998). The quality control strain 88 89 H. somni ATCC 700025 was used for all testing.

90

A clinical history, including location, breed, sex, age, production type and if the animal was introduced onto the property or homebred, was available for all cases, together with the results of serology or molecular testing for potential contributing pathogens, including infectious bovine rhinotracheitis virus (bovine herpesvirus type 1), bovine coronavirus and bovine pestivirus (bovine viral diarrhoea virus).

96

97 Antimicrobial disc diffusion susceptibility

Disc diffusion susceptibility testing was used to determine the antimicrobial susceptibility of *H. somni* isolates against ceftiofur (30 µg), enrofloxacin (5 µg), florfenicol (30 µg), tilmicosin (15
µg) and tulathromycin (30 µg) according to Clinical and Laboratory Standards Institute (CLSI)
guidelines (Clinical Laboratory Standards Institute, 2013). Since guidelines for tilmicosin were not
available for *H. somni*, interpretation was based on guidelines for *Mannheimia haemolytica*

- 103 (Blackall, 2007). Disc diffusion susceptibility testing was also performed for tetracycline (30 µg),
- 104 although CLSI guidelines were not available for interpretation of these results. Tulathromycin discs
- 105 were obtained from Becton Dickinson, while other antimicrobial discs were obtained from Oxoid.
- 106
- 107 Minimum inhibitory concentration susceptibility testing

The MICs of ceftiofur, enrofloxacin, florfenicol, tetracycline, and tilmicosin were determined according to CLSI guidelines for agar dilution (Clinical Laboratory Standards Institute, 2013). The MICs of tulathromycin were determined for only 43 isolates using the same guidelines, since there were delays in obtaining tulathromycin antimicrobial powder and 10 isolates could not be revived for testing. Tulathromycin was obtained from Zoetis, while other antimicrobial powders were obtained from Sigma Aldrich.

114

The MICs were determined as the lowest concentrations of antimicrobial agent in the plate that completely inhibited colony formation. All MICs were tested in duplicate independently on separate days. If duplicate tests were within one serial dilution of each other, they were accepted, and the MIC result was reported as the highest MIC. In all cases, duplicate MIC results were identical or within one serial dilution.

- 120
- 121 Enterobacterial repetitive intergenic consensus PCR

122 Clonality between the *H. somni* isolates was determined by enterobacterial repetitive 123 intergenic consensus (ERIC) PCR (Versalovic et al., 1991). Banding patterns were analysed using 124 GelComparII (Applied Maths) with a Dice coefficient of 0.28% and a tolerance of 2.8%. A cluster 125 was defined as a group of isolates that shared \geq 80% similarity in their ERIC-PCR patterns. Within 126 each cluster, isolates with a similarity of >94% were considered to be a clonal group. Isolates were 127 considered to be outliers if they were <70% similar.

129	Epidemiological analysis
130	Epidemiological analyses were performed with Epitools ¹ . The effect of state (Queensland
131	vs. New South Wales), production type (meat/feedlot vs. non-meat/feedlot) and sample site (lung
132	vs. non-lung) for cluster 6 (the dominant cluster including 27/53 of all isolates) compared to isolates
133	from other clusters was determined using the Fisher's exact test. Other variables were not
134	compared, since the total number of isolates in each category were <10.
135	
136	Results
137	Antimicrobial susceptibility testing
138	Using the disc diffusion method, 35/53 (66%) isolates were susceptible to all antimicrobial
139	agents tested (Table 1). All isolates were susceptible to ceftiofur, enrofloxacin and florfenicol.
140	Intermediate susceptibility against tulathromycin was exhibited by 12/53 (23%) isolates and against
141	tilmicosin by 7/53 (13%) isolates; 2/53 (4%) isolates had intermediate susceptibility to both
142	tulathromycin and tilmicosin, while 1/53 (2%) isolates exhibited resistance to tilmicosin.
143	
144	MICs, percentages of resistance to each antimicrobial agent, and MIC_{50} and MIC_{90} values
145	are shown in Table 2. One of 53 (2%) isolates was resistant to tetracycline, with an MIC of 32
146	μ g/mL, while all other isolates were susceptible to all antimicrobial agents tested.
147	
148	There was complete agreement between the results of the disc diffusion and MIC methods
149	for ceftiofur, enrofloxacin and florfenicol; all isolates were identified as susceptible with both
150	methods. The isolate which exhibited tetracycline resistance in the MIC (32 μ g/mL) had a
151	corresponding disc diffusion of 22 mm (Fig. 1).
152	

¹ See: <u>http://epitools.ausvet.com.au</u> (accessed 1 December 2014).

153	Using CLSI breakpoints for M. haemolytica, all H. somni isolates were susceptible to
154	tilmicosin on MIC (Fig. 1). Seven isolates had intermediate susceptibility to tilmicosin by disc
155	diffusion, with zone diameters of 12-13 mm (intermediate breakpoints 11-13 mm); these isolates
156	had MIC values of 2-8 μ g/mL (susceptible breakpoint \leq 8 μ g/mL). The one resistant isolate had a
157	zone diameter of 10 mm (resistant breakpoint \leq 10 mm) and a corresponding MIC of 8 µg/mL.
158	
159	All 43 isolates tested were susceptible to tulathromycin on MIC testing (Fig. 1); 11/43
160	(26%) isolates had intermediate susceptibility to tulathromycin by disc diffusion, all with a zone
161	diameter of 16 mm (intermediate breakpoints 15-17 mm). These isolates had MIC values of 4-16
162	μg/mL (susceptible breakpoint ≤16 μg/mL).
163	S
164	Clonal relationships
165	Using ERIC-PCR, 10 clusters were identified among the 53 H. somni isolates (Fig. 2). If
166	five outlying clusters (clusters 1, 2, 9 and 10) were removed, the remaining isolates had a similarity
167	level of >72% (Fig. 2). Twenty-seven of 52 (51%) isolates aligned with cluster 6; 15/27 (56%)
168	isolates within cluster 6 belonged to clonal group 6.3. Cluster 8 included 7/53 (13%) isolates and
169	cluster 4 included 6/53 (11%) isolates. The remaining eight isolates were distributed across three
170	clusters, each with no more than four isolates.
171	
172	Epidemiology
173	Thirty-six H. somni isolates originated from cattle in Queensland and 17 isolates originated
174	from cattle in New South Wales (Table 3). Four clusters contained isolates from both Queensland
175	and New South Wales (clusters 3, 5, 6 and 8). Cluster 6 consisted predominately of Queensland
176	isolates (24/27, 89%); the proportion of isolates from Queensland in cluster 6 was significantly

- 177 higher than the proportion of isolates from Queensland in all the other clusters combined (P < 0.01).
- 178 Isolates in cluster 6 were cultured from samples from 17 different regions; clonal group 6.3

179 contained only isolates from Queensland. Cluster 8 consisted mostly of Queensland isolates (6/7, 86%). Clusters 1 and 4 contained isolates exclusively from New South Wales (2 and 6 isolates, 180 181 respectively). The tetracycline resistant isolate belonged to cluster 8. Most isolates (38/53, 72%) 182 were cultured from the lungs and most isolates (41/53, 77%) were cultured from feedlot/meat cattle (Table 3). Of the 38 isolates cultured from the lungs, four of these animals were also infected with a 183 184 viral respiratory pathogen; 13 samples tested negative for one or more viral pathogens, whereas 21 185 lung samples were not analysed). No patterns were apparent between cluster group and production 186 type, sex, age, breed or introduction of an animal onto a property.

187

188 **Discussion**

Studies on BRD pathogens throughout the world, including Denmark (Aarestrup et al.,
2004), Australia (Blackall et al., 2007), North America (Portis et al., 2012), Japan (Katsuda et al.,
2009) and Canada (D'Amours et al., 2011), show that resistance to antimicrobial agents is
increasing. The present study demonstrated that resistance against six antimicrobial agents in *H*. *somni* cultured from Australian cattle is either absent or extremely low.

194

195This study utilised two widely accepted methods, disc diffusion and MIC, for determining196antimicrobial susceptibility in *H. somni* isolates. The results of the two tests for tilmicosin and197tulathromycin were not comparable for all isolates, since a small number of isolates had198intermediate susceptibility or resistant zone sizes on disc diffusion which were determined to be199susceptible by the MIC method. Caution is needed in the interpretation of tilmicosin and200tulathromycin disc diffusion results for isolates displaying intermediate susceptibility or resistance201in the absence of MIC results.

202

203 The finding that all isolates were susceptible to tilmicosin by MIC is supported by previous 204 findings in another Australian study, in which all of 27 *H. somni* isolates tested were susceptible to

205	tilmicosin (Blackall et al., 2007). A study in United States investigating tilmicosin susceptibility
206	over time (1994-2002) showed that <i>H. somni</i> isolates were consistently susceptible (Welsh et al.,
207	2004). However, a later study from North America (2000-2009) identified a decrease in the
208	susceptibility of <i>H. somni</i> to both tilmicosin and tulathromycin over time (Portis et al., 2012). One
209	year prior to registration of tulathromycin in Northern America in 2004, 2-6% of BRD pathogens
210	exhibited resistance and, by 2009, only 81% of <i>H. somni</i> remained susceptible (Portis et al., 2012).
211	Therefore, continued surveillance should be a priority to detect any emergence of reduced
212	susceptibility in <i>H. somni</i> .
213	
214	In our study, one <i>H. somni</i> isolate was resistant to tetracycline by the MIC method.
215	Resistance to tetracycline has been demonstrated in <i>H. somni</i> in North America by Portis et al.
216	(2012), who observed a decrease in tetracycline susceptibility from 83% of isolates in 2000 to 47%
217	in 2009. Tetracycline resistance has not previously been reported in Australian isolates of H. somni;
218	however, with the detection of a highly resistant isolate in the present study (isolated in 2012),
219	tetracycline susceptibility in H. somni should be closely monitored.
220	
221	The 53 H. somni isolates formed 10 separate clusters, with the majority of isolates
222	displaying high levels of similarity (Fig. 2). This supports previous studies suggesting there is
223	limited genetic diversity in <i>H. somni</i> isolates and that the main mode of dispersal is clonal
224	expansion (D'Amours et al., 2011). In our study, 51% of <i>H. somni</i> isolates belonged to cluster 6;
225	within this cluster, clonal group 6.3 contained 56% of isolates. The isolates in cluster 6 were
226	cultured from 1989 to 2011 and 85% were from cattle used for meat/feedlot production, but few
227	conclusions can be drawn about the virulence potential of these isolates until further
228	characterisation is performed.

230	While this study was able to demonstrate low levels of resistance in <i>H. somni</i> isolates tested
231	against a panel of commercially available antimicrobial agents, there are certain limitations to the
232	study design. The sample size $(n = 53)$ was too small to be able to draw definitive conclusions
233	based on epidemiological data. Data were limited to histories provided at the time of submission.
234	Isolates were from diagnostic samples and therefore were submitted at the discretion of veterinary
235	practitioners, so may not be representative of <i>H. somni</i> in the wider population of cattle.
236	
237	Conclusions
238	This study demonstrated that most isolates of <i>H. somni</i> from cattle in Queensland and New
239	South Wales are susceptible to antimicrobial agents that are most frequently used to treat BRD.
240	MIC and disc diffusion data were generally comparable, with the exception of tilmicosin and
241	tulathromycin. Identification of a H. somni isolate with tetracycline resistance from 2012 highlights
242	the importance of continued surveillance to ensure early detection of any emerging resistance.
243	Genotypic investigation into clonal lineages identified a major cluster (cluster 6) and a clonal group
244	(clone 6.3) within this cluster.
245	
246	Conflict of interest statement
247	None of the authors of this paper has a financial or personal relationship with other people
248	or organisations that could inappropriately influence or bias the content of this paper.
249	
250	Acknowledgements
251	The authors wish to thank the Animal Disease Surveillance Laboratory, Toowoomba,
252	Queensland, and the Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, for
253	data and isolates. This study was supported by grant B.FLT.0224 from Meat and Livestock
254	Australia, with matching funds provided by the Australian Government. Preliminary results were
255	presented at the 8th Annual Meeting of the Australian Association of Veterinary Laboratory

- 256 Diagnosticians, Bundoora, Victoria, Australia, 23-23 November 2012 and at 'Microbiology in
- 257 Maleny', Queensland Branch of the Australian Society of Microbiology, Maleny, Queensland,
- Australia, 24 November 2012.
- 259

267

273

277

282

- Aarestrup, F.M., Seyfarth, A.M., Angen, O., 2004. Antimicrobial susceptibility of *Haemophilus parasuis* and *Histophilus somni* from pigs and cattle in Denmark. Veterinary Microbiology
 101, 143-146.
- Andrews, J.M., 2001. Determination of minimum inhibitory concentrations. Journal of
 Antimicrobial Chemotherapy 48 (Suppl. 1), 5-16.
- Angen, O., Ahrens, P., Tegtmeier, C., 1998. Development of a PCR test for identification of
 Haemophilus somnus in pure and mixed cultures. Veterinary Microbiology 63, 39-48.
- Barton, M., Pratt, R., Hart, W.S., 2003. Antibiotic resistance in animals. Communicable Diseases
 Intelligence Quarterly Report 27 (Suppl.), 121-126.
- Blackall, P.J., O'Dell, R., Stephens, C.P., 2007. Minimal inhibitory concentration of tilmicosin
 against isolates of *Histophilus somni* from Australian cattle. Australian Veterinary Journal
 85, 503-504.
- Clinical Laboratory Standards Institute, 2013. Performance Standards for Antimicrobial Disk and
 Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard Fourth Edition. CLSI Document VET01-A4. Clinical Laboratory Standards Institute,
 Wayne, Pennsylvania, USA.
- Corbeil, L.B., 2007. *Histophilus somni* host-parasite relationships. Animal Health Research
 Reviews 8, 151-160.
- D'Amours, G.H., Ward, T.I., Mulvey, M.R., Read, R.R., Morck, D.W., 2011. Genetic diversity and
 tetracycline resistance genes of *Histophilus somni*. Veterinary Microbiology 150, 362-372.
- Hendriksen, R.S., Mevius, D.J., Schroeter, A., Teale, C., Meunier, D., Butaye, P., Franco, A.,
 Utinane, A., Amado, A., Moreno, M., et al., 2008. Prevalence of antimicrobial resistance
 among bacterial pathogens isolated from cattle in different European countries: 2002-2004.
 Acta Veterinaria Scandinavica 50, 28-38.
- Katsuda, K., Kohmoto, M., Mikami, O., Uchida, I., 2009. Antimicrobial resistance and genetic
 characterization of fluoroquinolone-resistant *Mannheimia haemolytica* isolates from cattle
 with bovine pneumonia. Veterinary Microbiology 139, 74-79.
- Portis, E., Lindeman, C., Johansen, L., Stoltman, G., 2012. A ten-year (2000-2009) study of
 antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex *Mannheimia haemolytica, Pasteurella multocida*, and *Histophilus somni* in the United
 States and Canada. Journal Veterinary Diagnostic Investigation 24, 932-944.

303 304 305 306 307	Sackett, D., Holmes, P., Abbott, K., Jephcott, S., Barber, M., 2007. Assessing the economic cost of endemic disease on profitability of Australian beef cattle and sheep producers. Meat and Livestock Australia, Project AHW.087. <u>http://www.mla.com.au/Research-and- development/Search-RD-reports/RD-report-details/Animal-Health-and- Biosecurity/Assessing-the-economic-cost-of-endemic-disease-on-the-profitability-of-</u>
308 309	Australian-beef-cattle-and-sheep-producers/120 (accessed 7 May 2014).
310 311 312 313	Sandal, I., Hong, W., Swords, W.E., Inzana, T.J., 2007. Characterization and comparison of biofilm development by pathogenic and commensal isolates of <i>Histophilus somni</i> . Journal of Bacteriology 189, 8179-8185.
314 315 316	Sandal, I., Inzana, T.J., 2010. A genomic window into the virulence of <i>Histophilus somni</i> . Trends in Microbiology 18, 90-99.
 317 318 319 320 	Versalovic, J., Koeuth, T., Lupski, J.R., 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research 19, 6823-6831.
321 322 323 324	 Welsh, R.D., Dye, L.B., Payton, M.E., Confer, A.W., 2004. Isolation and antimicrobial susceptibilities of bacterial pathogens from bovine pneumonia: 1994-2002. Journal Veterinary Diagnostic Investigation 16, 426-431. Figure legends
325	rigure regenus
326	Fig. 1. Comparison of disc diffusion and minimum inhibitory concentration (MIC) results of
327	Australian isolates of Histophilus somni for (a) tetracycline, (b) tilmicosin and (c) tulathromycin.
328	Solid line, resistant breakpoint; broken line, susceptible breakpoint. Isolates with a MIC value less
329	than the lowest concentration tested have been given the value of the lowest concentration tested.
330	Disc diffusion breakpoints for tetracycline are not available. Overlapping of data occurs at some
331 332	points.
333	Fig. 2. Dendrogram of enterobacterial repetitive intergenic consensus PCR fingerprint profiles of 53

334 *Histophilus somni* isolates from cattle in Australia. QLD, Queensland; NSW, New South Wales.

CCEPTED 21

336 Table 1

337 Disc diffusion distribution and susceptibility zones of 53 Histophilus somni isolates.

338

	Nu	mber of isolates (%	5)	Disc diffusion zone sizes (mm)					
Antimicrobial agents	Susceptible	Intermediate	Resistant	Median	Range	CLSI breakpoints			
Ceftiofur	53 (100%)	0 (0%)	0 (0%)	38	26 - 48	$R \le 17; S \ge 21$			
Enrofloxacin	53 (100%)	0 (0%)	0 (0%)	32	24-42	$R \leq 16; S \geq 21$			
Florfenicol	53 (100%)	0 (0%)	0 (0%)	40	30-50	$R \leq 14; S \geq 19$			
Tilmicosin	45 (85%)	7 (13%)	1 (2%)	14	10-24	$R \leq 10; S \geq 14$			
Tulathromycin	41 (77%)	12 (23%)	0 (0%)	20	16-28	$R \leq 14; S \geq 18$			
Tetracycline	NA	NA	NA	28	22-36	NA			

339

340 S, susceptible; R, resistant; NA, not available; CLSI, Clinical and Laboratory Standards Institute.

341 Table 2

- 342 Distribution of minimum inhibitory concentrations (MICs) of 53 *Histophilus somni* isolates.
- 343

Number of isolates with MIC $(\mu g/mL)^{a}$															
Antimicrobial agents	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	MIC ₅₀ ^b	MIC ₉₀ ^c	$%R^{d}$
Ceftiofur ^e			50	2	1								0.12	0.12	0
Tetracycline						18	34				1		2	2	1.9
Enrofloxacin	9	37	7										0.06	0.12	0
Tilmicosin					i	7	12	30	4				4	4	0
Florfenicol			1	46	3	3							0.25	0.5	0
Tulathromycin ^f						2		15	20	6			8	16	0

X

344

^a Isolates with an MIC result as a range have been rounded up.

346 ^b Lowest concentration of antimicrobial agent capable of inhibiting the growth of 50% of isolates.

^c Lowest concentration of antimicrobial agent capable of inhibiting the growth of 90% of isolates.

348 ^d Percentage of resistance.

^e MICs to the right of the solid vertical lines indicate breakpoints for resistance; MICs to the left of the dotted vertical

350 lines indicate breakpoints for susceptibility.

351 ^f Only 43 *H. somni* could be revived for tulathromycin MIC testing.

Accepted

352 **Table 3**

353 Distribution of isolates by category of epidemiological variables for all isolates, those from cluster 6

- and cluster 8.
- 355

		Number and percentage of isolates	Number cluster 6	Number cluster 8
Variable	Category	(<i>n</i> = 53)	(n = 27)	(n = 7)
State	Queensland	36 (67.9%)	24 (88.9%)	6 (85.7%)
	New South Wales	17 (32.1%)	3(11.1%)	1 (14.3%)
Production	Meat/Feedlot	41 (77.4%)	23 (85.2%)	6 (85.7%)
	Dairy	5 (9.4%)	1 (3.7%)	1 (14.3%)
	Unknown	7 (13.2%)	3 (11.1%)	0 (0%)
Sample site	Lung	38 (71.7%)	19 (70.4%)	6 (85.7%)
	Brain	3 (5.7%)	2(7.4%)	1 (14.3%)
	Nasal	5 (9.4%)	1 (3.7%)	0 (0%)
	Other	3 (5.7%)	3 (11.1%)	0 (0%)
	Unknown	4 (7.5%)	2 (7.4%)	0 (0%)
Year of isolation	1989-1994	4 (7.5%)	4(14.8%)	0 (0%)
	1995-2000	9 (17%)	6 (22.2%)	2 (28.6%)
	2001-2005	9 (17%)	7 (25.9%)	2 (28.6%)
	2006-2010	25 (47.2%)	6 (22.2%)	2 (28.6%)
	2011-2012	2 (3.8%)	1 (3.7%)	1 (14.3%)
	Unknown	4 (7.5%)	3 (11.1%)	0 (0%)
Sex	Male	13 (24.5%)	8 (29.6%)	1 (14.3%)
	Female	11 (20.8%)	4 (14.8%)	2 (28.6%)
	Unknown	29 (54.7%)	15 (55.6%)	4 (42.9%)
Origin	Introduced	23 (43.4%)	13 (48.2%)	4 (57.1%)
	Homebred	7 (13.2%)	5 (18.5%)	0 (0%)
	Unknown	23 (43.4%)	9 (33.3%)	3 (42.9%)
Age (months)	0-6	12 (22.6%)	6 (22.2%)	3 (42.8%)
	7-12	10 (18.9%)	5 (18.5%)	1 (14.3%)
	13-18	15 (28.3%)	7 (26%)	2 (28.6%)
	19-24	5 (9.4%)	3 (11.1%)	1 (14.3%)
	Unknown	11 (20.8%)	6 (22.2%)	0 (0%)
Other infections	IBRV ^a	1 (1.8%)	1 (3.7%)	0 (0%)
	Coronavirus	2 (3.7%)	1 (3.7%)	0 (0%)
	Pestivirus	1 (1.8%)	0 (0%)	1 (14.3%)
	Negative ^b	13 (24.5%)	9 (33.3%)	1 (14.3%)
	Not tested	36 (67.9%)	16 (59.3%)	5 (71.4%)

356

357 ^a Infectious bovine rhinotracheitis virus.

358 ^b Tested for at least one virus but all results were negative.

Accepted Manuscript