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Abstract 

Insects use sensory information to control their behaviour when performing complex tasks. For 

example, an insect can navigate using visual cues, allowing it to move from its current location 

to a goal. As the insect moves towards that goal, it must also perform other tasks such as 

stabilising its course against disturbances, avoiding obstacles, and minimising its energy 

expenditure. These tasks also make use of visual cues, and the information from other senses, 

such as mechanoreception. At any point during its journey towards its goal, an insect may well 

use information from multiple senses to perform multiple tasks. Further, the insect can also 

adapt its control, based on sensory feedback, to optimize its performance. Despite their 

relatively small brain sizes, insects present a complex model of how an organism can use 

sensory information to control behaviour. 

 

Many experimental paradigms seeking to unravel how insects control their behaviour have 

used virtual reality to display sensory stimuli to a tethered insect, but have often used a 

reductionist approach. For instance, an experiment may expose insects to stimulation in only a 

single sensory modality. Alternatively, experiments may be conducted in open-loop, where an 

insect cannot influence the sensory experience it receives. Both of these paradigms have 

allowed researchers to study the relationships between the sensory information an insect 

receives and the behavioural choices it makes. However, studies have also found that multi-

sensory integration, and also closed-loop interaction with a stimulus, can affect how insects 

process information at both the neural and behavioural levels. This thesis aims to develop 

models, based on experimental data, of how insects use multi-sensory information to control 

their behaviour.  

 

To address those points, honeybees are used as a model organism in experiments conducted 

using tethered virtual reality techniques, to allow for controlled and quantitative tests of their 

behaviour. With regards to multi-sensory information processing, the methods used by flying 

bees to integrate two measures of flight speed, visual motion and air speed, are examined by 

measuring the influence of these stimuli on the honeybee’s streamlining response. The 

streamlining response results from an interaction between the two stimuli, and a relatively 

simple non-linear model could predict the bee’s behaviour.  
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A detailed study of how walking honeybees control a fixation stimulus in closed-loop is also 

conducted. This study uses a recently developed measurement technology, FicTrac, to measure 

the walking bee’s behaviour when interacting with closed-loop visual stimulus. Surprisingly, 

bees behave differently when the closed-loop feedback loop uses FicTrac, as compared to when 

less accurate measurements from other sensors (with systematic biases) are used. When the 

biased sensors are used, the bee’s change in behaviour allowed them to improve their fixation, 

indicating insects can learn to adapt and take advantage of the peculiarities in measurements 

from some sensors; an important consideration for future research in the field.  

 

To analyse the control scheme underlying honeybees’ ability to fixate, analysis techniques are 

developed to model the control system in manner comparable to previous open-loop studies. 

These techniques show that bees also adapt their control scheme depending on the coupling 

ratio (the gain) between their actions and the fixation stimulus. Honeybees adapt the 

relationship between their turning rate and the observed position and velocity of the fixation 

stimulus depending on the gain. Simulations indicate that the adaptations the honeybees made 

increase the stability of the fixation stimulus during closed-loop control at high gains. 

Surprisingly, bees also modulated their walking speed in response to the position of the fixation 

stimulus, even though this did not influence the stimulus. The bees’ walking speed modulation 

allows them to efficiently move towards the stimulus, even if they could not control it stably 

at high gains. 

   

This thesis contributes to a broader understanding of how sensory control is used to guide insect 

behaviour. The models of insect behaviour that are developed, particularly where derived from 

closed-loop experiments, provide a better understand control schemes linking complex sensory 

information to behaviour. Knowledge of such control schemes is important in discovering how 

they are realized by neural mechanisms, and can also inform the design of robotic systems 

using biologically inspired control methods. 



 

| iii | 

Declaration by author 

This thesis is composed of my original work, and contains no material previously published or 

written by another person except where due reference has been made in the text. I have clearly 

stated the contribution by others to jointly-authored works that I have included in my thesis. 

 

I have clearly stated the contribution of others to my thesis as a whole, including statistical 

assistance, survey design, data analysis, significant technical procedures, professional editorial 

advice, and any other original research work used or reported in my thesis. The content of my 

thesis is the result of work I have carried out since the commencement of my research higher 

degree candidature and does not include a substantial part of work that has been submitted to 

qualify for the award of any other degree or diploma in any university or other tertiary 

institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify 

for another award. 

 

I acknowledge that an electronic copy of my thesis must be lodged with the University Library 

and, subject to the General Award Rules of The University of Queensland, immediately made 

available for research and study in accordance with the Copyright Act 1968. 

 

I acknowledge that copyright of all material contained in my thesis resides with the copyright 

holder(s) of that material. Where appropriate I have obtained copyright permission from the 

copyright holder to reproduce material in this thesis. 

 



 

| iv | 

Publications during candidature 

Moore, R. J. D, Taylor, G. J., Paulk, A.C ., Pearson, T. W. J., van Swinderen, B. & Srinivasan, 

M. V. (2014). FicTrac: a visual method for tracking spherical motion and generating fictive 

animal paths. Journal of Neuroscience Methods. 225(1), 106-119 

 

Paulk, A. C., Stacey, J. A., Pearson, T., Taylor, G. J., Moore, R. J. D., Srinivasan, M. V. & 

van Swinderen, B. (2014). Selective attention in the honeybee optic lobes precedes behavioral 

choices. Proceedings of the National Academy of Sciences of the U.S.A.  

 

Taylor, G. J., Luu, T., Ball, D. & Srinivasan, M. V. (2013). Vision and airflow combine to 

streamline flying honeybees. Scientific Reports. 3  

 

Publications included in this thesis 

Taylor, G.J., Luu, T., Ball, D. & Srinivasan, M. V. (2013). Vision and airflow combine to 

streamline flying honeybees. Scientific Reports. 3  

 

This publication is included in the thesis as Chapter 2 and Appendix A. Contributions: GJT, 

design (60%), experiments (95%), analysis (90%), modelling (95%), and writing (80%); TL, 

design (10%), experiments (5%), and analysis (5%); DB, design (10%), writing (5%), and other 

assistance; MVS, design (20%), analysis (5%), modelling (5%), and writing (15%). 



 

| v | 

Contributions by others to the thesis  

The thesis contains four results chapters that are each formatted as multi-author research 

articles. The first of these articles (Chapter 2) has been published, and the authors and their 

contributions are detailed in the preceding section. Chapters 3, 4 and 5 represent work that has 

been prepared for submission in the future. A preamble at the start of each results chapter 

briefly details the journal the material has been prepared for (or published in) and the 

significance of the work. Additionally, M. V. Srinivasan provided critical comments on the 

General Introduction and Discussion, Chapters 1 and 6 respectively.  

 

The authors for Chapter 3 (and Appendix B) are, Taylor, G. J., Paulk, A. C., Pearson, T. W. 

L., Moore, R. J. D., Stacey, J. A., Ball, D., van Swinderen, B. & Srinivasan, M. V. 

Contributions: GJT, design (30%), analysis (75%), and writing  (65%); ACP, design (30%), 

experiments (20%), analysis (10%), and writing (20%); TWLP, design (20%), and experiments 

(75%); RJDM, analysis (5%), and other assistance; JAS, design (5%), and experiments (5%); 

DB, design (5%), and other assistance; BvS, design (5%), and writing (5%); MVS, design 

(5%), analysis (10%), and writing (10%). 

 

The authors for Chapter 4 (and Appendix C) are, Taylor, G. J., Paulk, A. C., Pearson, T. W. 

L., van Swinderen, B. & Srinivasan, M. V. Contributions: GJT, design (60%), analysis (90%), 

modelling (90%), and writing (80%); ACP, design (20%), experiments (20%), analysis (5%), 

modelling (5%), and writing (10%); TWLP, design (10%), and experiments (80%); BvS, 

design (5%); MVS, design (5%), analysis (5%), modelling (5%), and writing (10%). 

 

The authors for Chapter 5 (and Appendix D) are Taylor, G. J., Paulk, A. C., Pearson, T. W. 

L., van Swinderen, B. & Srinivasan, M. V. Contributions: GJT, design (60%), analysis (90%), 

modelling (90%), and writing (80%); ACP, design (20%), experiments (20%), analysis (5%), 

modelling (10%) and writing (10%); TWLP, design (10%), and experiments (80%); BvS, 

design (5%); MVS, design (5%), analysis (5%) modelling (5%), and writing (10%). 

 

Statement of parts of the thesis submitted to qualify for the award of another degree 

None 



 

| vi | 

Acknowledgements 

First and foremost I would like to thank my advisors – Dr. Tien Luu, Dr. David Ball and Prof. 

Mandyam Srinivasan. All three have my utmost gratitude, Tien for helping me think like a 

biologist, David for reminding me of good engineering practice, Srini for always advocating 

an enthusiastic approach to both, and all for providing excellent advice and encouragement 

along the way.  

 

At the Queensland Brain Institute, I was part of the Srinivasan group and also regularly worked 

with the Claudianos, Reinhard and van Swinderen groups; the people in these groups, and more 

generally, all the students and staff at QBI made it a pleasure to come in to work every day. 

Specifically, I am grateful for the technical support provided by Daniel Bland, Dean Soccol, 

and Saul Thurrowgood, and also to Richard Moore, Angelique Paulk, Thomas Pearson, 

Jacqueline Stacey, and Bruno van Swinderen for their involvement in a fruitful collaborative 

project. During my candidature I was involved with the QBI Students and Postdocs Association 

and also the ACEVS Young Visionaries, and would like to thank the convenors of both for 

hosting many informative and social ECR events. 

 

I appreciate all of my friends in Brisbane, and in particular my housemates over the years for 

helping me to unwind, and I also cannot thank Flávia Freitas enough, as she was a constant 

source of motivation and kind words during the final stages of my PhD. Finally, I am grateful 

to my parents Wendy and Stephen Taylor for supporting me throughout my studies and 

encouraging me all along. 

 

My primary scholarship funding was provided by a University of Queensland Research 

Scholarship, with ‘top-up’ scholarships provided by both the Queensland Brain Institute and 

the ARC Centre of Excellence in Vision Science at different stages of my candidature.  I am 

grateful for travel funds that were provided by the Queensland Brain Institute, the ARC Centre 

of Excellence in Vision Science and the UQ Graduate School. In addition, my research was 

also partly supported by grants from the ARC Special Research Initiative on Thinking Systems 

(TS0669699), the ARC Centre of Excellence in Vision Science (CE0561903), the US Asian 

Office of Aerospace R&D (Award No. FA4869-07-1-0010), and a Queensland Smart State 

Premier’s Fellowship (M. V. Srinivasan).   



 

| vii | 

Keywords 

Apis mellifera, vision, air speed perception, adaptive control, multi-sensory, systems 

identification, insect flight, insect walking, streamlining, fixation 

 

Australian and New Zealand Standard Research Classifications (ANZSRC) 

ANZSRC code: 060801, Animal Behaviour, 60% 

ANZSRC code: 110906, Sensory Systems, 30% 

ANZSRC code: 060603, Animal Physiology - Systems, 20% 

 

Fields of Research (FoR) Classification 

ANZSRC code: 0608, Zoology, 60% 

ANZSRC code: 1109, Neurosciences, 30% 

ANZSRC code: 0606, Physiology, 20% 

 

  



 

| viii | 

 

 

To Daniel Taylor,         

for always enjoying things in your own way.  



 

| ix | 

Table of Contents 

Abstract……. .............................................................................................................................. i 

Acknowledgements ................................................................................................................... vi 

Table of Contents ...................................................................................................................... ix 

List of Figures ........................................................................................................................ xiii 

List of Tables ........................................................................................................................... xv 

List of Abbreviations and Symbols........................................................................................ xvii 

 General introduction ............................................................................................ 1 
1.1 Sensory control of behaviour ...................................................................................... 1 

1.1.1 Sensory mechanisms ............................................................................................ 2 

1.1.2 Locomotory behaviours ....................................................................................... 4 

1.1.3 Multi-sensory control ........................................................................................... 7 
1.1.4 Adaptive control................................................................................................. 10 

1.2 Unpacking sensory control ........................................................................................ 12 
1.2.1 Input-output modelling ...................................................................................... 12 

1.2.2 Virtual-reality paradigms ................................................................................... 13 
1.3 Scientific aims and outline ........................................................................................ 14 

 Vision and air flow combine to streamline flying honeybees ............................ 17 

2.1 Preamble .................................................................................................................... 17 
2.2 Abstract ..................................................................................................................... 17 

2.3 Introduction ............................................................................................................... 18 
2.4 Methods ..................................................................................................................... 19 

2.4.1 Experimental animals......................................................................................... 19 

2.4.2 Tethering ............................................................................................................ 20 

2.4.3 Visual stimulus display and generation ............................................................. 21 
2.4.4 Air flow generation ............................................................................................ 22 
2.4.5 Data acquisition and image analysis .................................................................. 23 

2.4.6 Statistical analysis .............................................................................................. 23 
2.4.7 Flight protocol .................................................................................................... 24 

2.5 Results ....................................................................................................................... 24 
2.5.1 Abdominal response to a combination of air speed and optic flow stimuli ....... 25 
2.5.2 Manipulation of the antennae............................................................................. 27 

2.5.3 Response to a tail wind ...................................................................................... 29 
2.5.4 Invariance of the streamlining response to thorax orientation ........................... 30 

2.5.5 Passive lifting by air flow .................................................................................. 32 
2.5.6 A model of the interaction between air speed and optic flow ............................ 34 

2.5.7 Streamlining in the absence of antennal information ........................................ 37 
2.6 Discussion ................................................................................................................. 39 

 Walking honeybees adapt their behaviour to improve performance in virtual 

reality……… ........................................................................................................................... 47 
3.1 Preamble .................................................................................................................... 47 

3.2 Abstract ..................................................................................................................... 47 
3.3 Introduction ............................................................................................................... 48 
3.4 Methods ..................................................................................................................... 50 

3.4.1 Honeybee preparation ........................................................................................ 50 



 

| x | 

3.4.2 Tethered virtual reality arena ............................................................................. 50 

3.4.3 Trackball motion measurement .......................................................................... 51 
3.4.4 Closed-loop experiments ................................................................................... 52 
3.4.5 Systematic manipulation of rotation sensitivity ................................................. 53 
3.4.6 Data acquisition and analysis ............................................................................. 53 

3.5 Results ....................................................................................................................... 54 
3.5.1 Honeybees can fixate on a single green bar using either feedback sensor ........ 54 
3.5.2 Honeybees walk faster with computer mouse sensors ....................................... 55 
3.5.3 Honeybees walk faster to reduce rotational sensitivity...................................... 57 

3.6 Discussion ................................................................................................................. 60 

 Turning towards the light: Honeybees adapt the control functions underlying 

their visual fixation .................................................................................................................. 63 
4.1 Preamble .................................................................................................................... 63 
4.2 Abstract ..................................................................................................................... 63 

4.3 Introduction ............................................................................................................... 64 
4.4 Methods ..................................................................................................................... 66 

4.4.1 Honeybee preparation ........................................................................................ 66 

4.4.2 Tethered virtual reality apparatus ...................................................................... 66 
4.4.3 Trackball motion measurement .......................................................................... 67 

4.4.4 Closed-loop experiments ................................................................................... 68 
4.4.5 Data acquisition and analysis ............................................................................. 69 

4.4.6 Modelling ........................................................................................................... 69 
4.5 Analysis procedure .................................................................................................... 70 

4.5.1 Open-loop control functions .............................................................................. 70 

4.5.2 Considerations for closed-loop analysis ............................................................ 73 
4.5.3 Uniformly estimating data using Gaussian kernel regression............................ 75 

4.5.4 Open-loop control functions from zero-mean responses ................................... 76 

4.5.5 Closed-loop control functions from zero-mean responses ................................. 79 

4.5.6 Calculating a motion function that depends on motion direction ...................... 80 
4.6 Results ....................................................................................................................... 83 

4.6.1 Honeybees fixate a visual stimulus over a range of gains ................................. 83 
4.6.2 Average turning rate increases with gain ........................................................... 85 
4.6.3 Comparison of control functions at varying gains ............................................. 86 

4.6.4 Model simulations using control functions ........................................................ 91 
4.7 Discussion ................................................................................................................. 95 

4.7.1 Closed-loop analysis techniques ........................................................................ 95 
4.7.2 Control functions ............................................................................................... 96 
4.7.3 Mechanisms underlying adaptation ................................................................... 98 

4.7.4 Conclusion ......................................................................................................... 99 

 Walking towards the light: Honeybees modulate their walking speed to move 

effectively towards a visual landmark ................................................................................... 101 
5.1 Preamble .................................................................................................................. 101 

5.2 Abstract ................................................................................................................... 101 
5.3 Introduction ............................................................................................................. 102 
5.4 Methods ................................................................................................................... 104 

5.4.1 Animal preparation, apparatus and experiments .............................................. 104 
5.4.2 Data analysis .................................................................................................... 105 
5.4.3 Gaussian kernel regression estimations ........................................................... 106 
5.4.4 Modelling paths towards an object .................................................................. 110 



 

| xi | 

5.5 Results ..................................................................................................................... 111 

5.5.1 Walking with and without a stimulus .............................................................. 111 
5.5.2 Predictors of longitudinal walk speed .............................................................. 113 
5.5.3 Predictors of transverse walking speed ............................................................ 115 
5.5.4 Walking speed can influence fixation performance ......................................... 117 

5.5.5 Reconstructed paths would take honeybees towards the stimulus ................... 119 
5.5.6 Simulated paths from modelled fixation and walking speed ........................... 120 

5.6 Discussion ............................................................................................................... 124 
5.6.1 Control dependent on stimulus position .......................................................... 124 
5.6.2 Conclusion ....................................................................................................... 125 

 General discussion ........................................................................................... 127 
6.1 Summary of results.................................................................................................. 127 
6.2 Implications of results ............................................................................................. 128 

6.2.1 Honeybees in virtual-reality ............................................................................. 128 

6.2.2 Closed-loop virtual-reality ............................................................................... 129 
6.2.3 Multi-sensory integration ................................................................................. 131 
6.2.4 Adaptive control............................................................................................... 132 

6.3 Conclusions and perspective ................................................................................... 135 

List of References .................................................................................................................. 136 

 Supplementary material for Chapter 2 ............................................................. 151 
A.1 The influence of stimulus presentation order .......................................................... 151 

A.1.1 Air speed .......................................................................................................... 151 
A.1.2 Optic flow ........................................................................................................ 153 

A.2 Models of interaction between air speed and optic flow (Figure 2-7) .................... 154 

A.2.1 Details of models ............................................................................................. 154 
A.2.2 Antennal manipulation comparison ................................................................. 155 

A.3 Comparison of streamlining benefits across insect orders (Figure 2-9).................. 158 
A.4 Statistical tests ......................................................................................................... 162 

A.4.1 Figure 2-2 details (normal bees) ...................................................................... 162 
A.4.2 Figure 2-2 details (antenna amputated bees) ................................................... 165 

A.4.3 Figure 2-2 details (antenna waxed bees) .......................................................... 167 
A.4.4 Figure 2-3 details (antennal manipulation comparison) .................................. 169 
A.4.5 Figure 2-4 details (response to a tailwind) ....................................................... 171 

A.4.6 Figure 2-5 details (bees with their thorax pitched upwards) ............................ 173 
A.4.7 Figure 2-5 details (bees with their thorax pitched downwards) ....................... 175 

A.4.8 Figure 2-6 details (passive lifting of the abdomen) ......................................... 176 
A.4.9 Figure A-1 details (air speed presentation order) ............................................ 177 
A.4.10 Figure A-2 details (optic flow presentation order) .......................................... 179 

 Supplementary material for Chapter 3 ............................................................. 183 

B.1 Supplementary figures............................................................................................. 183 

 Supplementary material for Chapter 4 ............................................................. 185 
C.1 Supplementary figures............................................................................................. 185 

C.2 Motion from front to back details ........................................................................... 189 
C.3 Effects of motion blur ............................................................................................. 190 
C.4 Function translations ............................................................................................... 194 
C.5 Statistical details ...................................................................................................... 194 

C.5.1 Figure 4-4 details (mean vector and mean turning rate comparisons) ............. 195 
C.5.2 Figure 4-5 details (position-dependent function comparison) ......................... 196 



 

| xii | 

C.5.3 Figure 4-6 details (motion-dependent function comparison)........................... 197 

C.5.4 Figure C-6 details (mean vector comparison) .................................................. 199 

 Supplementary material for Chapter 5 ............................................................. 201 
D.1 Supplementary figures............................................................................................. 201 
D.2 Statistical details ...................................................................................................... 205 

D.2.1 Figure 5-1 (mean longitudinal and transverse speed comparison) .................. 206 
D.2.2 Figure 5-2 details (detailed longitudinal speed comparison) ........................... 207 
D.2.3 Figure 5-3 details (detailed transverse speed comparison) .............................. 208 
D.2.4 Figure 5-4 details (path length comparisons)................................................... 210 
D.2.5 Figure D-3 details (longitudinal and transverse speed offset comparisons) .... 211 

 

  



 

| xiii | 

List of Figures 

Figure 1-1: Sensory perception and sensorimotor control. ........................................................ 4 
Figure 2-1: Overview of the tethered flight arena. .................................................................. 25 
Figure 2-2: The abdomen pitch in honeybees depends on optic flow and air speed. .............. 27 

Figure 2-3: Comparison of honeybee’s abdomen response across various experimental 

conditions. ................................................................................................................................ 29 
Figure 2-4: Response to a tailwind. ......................................................................................... 30 
Figure 2-5: The honeybee’s abdomen response when tethering angle of the thorax is varied.

.................................................................................................................................................. 32 

Figure 2-6: Passive forces acting on the abdomen................................................................... 33 
Figure 2-7: Model predictions of the abdomen pitch............................................................... 35 
Figure 2-8: Model describing the non-linear interaction of air speed and optic flow. ............ 37 
Figure 2-9: Streamlining reduces the power required for fast flight. ...................................... 41 

Figure 3-1: Virtual reality arena used for experiments. ........................................................... 51 
Figure 3-2: Honeybees fixate using both feedback sensors. .................................................... 55 
Figure 3-3: Honeybees maintain similar turning rates between feedback sensors, but vary 

their walking speed. ................................................................................................................. 57 
Figure 3-4: Honeybees walk faster to decrease the feedback sensitivity to rotational 

movement. ................................................................................................................................ 59 
Figure 4-1: Honeybees control the position of a fixation stimulus in closed-loop. ................. 72 

Figure 4-2: Non-uniform stimulus distributions and autocorrelated behaviour are confounding 

factors for modelling using closed-loop data. .......................................................................... 75 
Figure 4-3: Reconstruction of zero-mean functions is possible from zero-mean responses. .. 78 

Figure 4-4: Honeybee’s fixation performance degrades at high gain conditions. ................... 85 
Figure 4-5: The scale of the position-dependent response function varied depending on the 

gain condition........................................................................................................................... 87 

Figure 4-6: The shape of the motion-dependent function varies depending on gain condition.

.................................................................................................................................................. 90 
Figure 4-7: Position- and motion-dependent functions can qualitatively predict fixation 

performance across all gain settings. ....................................................................................... 94 
Figure 5-1: Longitudinal and transverse components of the bee’s walking speed. ............... 113 
Figure 5-2: Longitudinal walking speed is modulated by stimulus position and turning rate.

................................................................................................................................................ 115 
Figure 5-3: Transverse walking speed is modulated by stimulus position. ........................... 117 

Figure 5-4: Walking speed influences fixation performance, and allows bees to approach the 

stimulus. ................................................................................................................................. 119 
Figure 5-5: Simulated paths progress further when walking speed is modulated by stimulus 

position. .................................................................................................................................. 123 
 

Figure A-1: Air speed presentation order affects the streamlining response. ........................ 152 

Figure A-2: Optic flow presentation order does not affect the streamlining response. ......... 153 

Figure A-3: Adaptability of a non-linear combination of saturating response model to 

antennal manipulations. ......................................................................................................... 156 
Figure B-1: Mean vector for each bee in all experimental conditions. .................................. 183 
Figure B-2: Feedback sensor sensitivity to turning when affected by walking speed. .......... 183 
Figure C-1: Mean vectors for each bee in each stimulus condition. ...................................... 185 

Figure C-2: The expected turning rate, ω, as function of stimulus position, ψ. .................... 186 
Figure C-3: The motion-dependent response for counter-clockwise rotation. ...................... 186 
Figure C-4: RMS scale of the motion-dependent functions in both directions, for all gain 

conditions. .............................................................................................................................. 187 



 

| xiv | 

Figure C-5: Comparison of various model components effects on fixation. ......................... 188 

Figure C-6: Motion blurring could distort function reconstruction. ...................................... 193 
Figure D-1: Relationships between components of walking speed and other variables........ 201 
Figure D-2: Path reconstruction based on individual components of walking speed. ........... 202 
Figure D-3: Autoregressive relationship for both components of walking speed. ................ 203 

Figure D-4: Analysis of the random variation longitudinal and transverse speed in the no 

stimulus condition. ................................................................................................................. 204 
Figure D-5: Distributions and autocorrelations for simulated data in Figure 5-5. ................. 205 



 

| xv | 

List of Tables 

Table A-1: Comparison of model results for the various cases of antennal manipulation, and 

various constraints. ................................................................................................................ 157 
Table A-2: Morphological details. ......................................................................................... 159 

Table A-3: Flight kinematics and power requirement details. ............................................... 160 
Table A-4: Leven’s test of equality of variances for normal bees. ........................................ 163 
Table A-5: Repeated measures ANOVA results for normal bees. ........................................ 163 
Table A-6: Post-hoc comparisons of optic flow levels for normal bees................................ 164 
Table A-7: Post-hoc comparisons of air speed levels for normal bees. ................................. 165 

Table A-8: Leven’s test of equality of variances for antenna amputated bees. ..................... 165 
Table A-9: Repeated measures ANOVA results for antenna amputated bees. ...................... 166 
Table A-10: Post-hoc comparisons of optic flow levels for antenna amputated bees. .......... 167 
Table A-11: Post-hoc comparisons of air speed levels for antenna amputated bees. ............ 167 

Table A-12: Leven’s test of equality of variances for antenna waxed bees. ......................... 168 
Table A-13: Repeated measures ANOVA results for antenna waxed bees. .......................... 168 
Table A-14: Post-hoc comparisons of optic flow for antenna waxed bees. .......................... 169 

Table A-15: Repeated measures ANOVA results for antennal manipulations at different air 

speeds. .................................................................................................................................... 170 

Table A-16: Post-hoc comparisons of normal antenna to both manipulations. ..................... 171 
Table A-17: Leven’s test of equality of variances for bees experiencing a tail wind. ........... 171 

Table A-18: Repeated measures ANOVA results for bees experiencing a tail wind. ........... 172 
Table A-19: Post-hoc comparisons of optic flow for bees experiencing a tail wind. ............ 172 
Table A-20: Post-hoc comparisons of air speed for bees experiencing a tail wind. .............. 173 

Table A-21: Leven’s test of equality of variances for bees with their thorax pitched upwards.

................................................................................................................................................ 173 

Table A-22: Repeated measures ANOVA results for bees with their thorax pitched upwards.

................................................................................................................................................ 174 

Table A-23: Repeated measures ANOVA results for comparison between bees with their 

thorax pitched upwards and horizontally. .............................................................................. 175 

Table A-24: Leven’s test of equality of variances for bees with their thorax pitched down. 176 
Table A-25: Repeated measures ANOVA results for bees with their thorax pitched 

downwards. ............................................................................................................................ 176 

Table A-26: ANOVA results for decapitated bees. ............................................................... 177 
Table A-27: Mauchly’s test of sphericity for test of air speed presentation order. ............... 178 

Table A-28: Results of repeated measures ANOVA for test of air speed presentation order.

................................................................................................................................................ 179 
Table A-29: Leven’s test of equality of variances for test of optic flow presentation order. 180 

Table A-30: Mauchly’s test of sphericity for test of optic flow presentation order. ............. 180 
Table A-31: Repeated measures ANOVA results for test of optic flow presentation order.. 181 

Table C-1: Post-hoc comparisons for mean vector lengths. .................................................. 195 
Table C-2: Post-hoc comparisons for absolute turning rates. ................................................ 196 

Table C-3: Post-hoc comparisons for position function scales. ............................................ 196 
Table C-4: Comparison of position function scales vs. 0. ..................................................... 197 
Table C-5: Comparison of clockwise motion difference between left and front visual fields 

vs. 0. ....................................................................................................................................... 197 
Table C-6: Post-hoc comparisons of counter-clockwise motion difference between left and 

front visual fields. .................................................................................................................. 198 
Table C-7: Comparisons of counter-clockwise motion difference between left and front visual 

fields vs. 0. ............................................................................................................................. 198 



 

| xvi | 

Table C-8: Post-hoc comparisons of clockwise motion difference between right and front 

visual fields. ........................................................................................................................... 198 
Table C-9: Comparisons of clockwise motion difference between right and front visual fields 

vs. 0. ....................................................................................................................................... 199 
Table C-10: Comparisons of counter-clockwise motion difference between right and front 

visual fields vs. 0.................................................................................................................... 199 
Table C-11: Results of Rayleigh’s test of uniformity for each factor.................................... 200 
Table D-1: Post-hoc comparisons for mean longitudinal speed. ........................................... 206 
Table D-2: Post-hoc comparisons for turning rate based longitudinal speed differences. .... 207 
Table D-3: Comparisons of turning rate based longitudinal speed differences vs. 0. ........... 207 

Table D-4: Post-hoc comparisons for stimulus position based longitudinal speed differences.

................................................................................................................................................ 208 
Table D-5: Comparison of stimulus position based longitudinal speed differences vs. 0. .... 208 
Table D-6: Post-hoc comparisons for turning rate based transverse speed differences. ........ 208 

Table D-7: Comparisons of turning rate based transverse speed differences vs. 0. .............. 209 
Table D-8: Post-hoc comparisons for stimulus position based transverse speed differences.

................................................................................................................................................ 209 

Table D-9: Comparisons of stimulus position based transverse speed differences vs. 0. ..... 209 
Table D-10: Post-hoc comparisons for final path lengths...................................................... 210 

Table D-11: Comparisons of final path lengths vs. 0. ........................................................... 210 
Table D-12: Comparisons between longitudinal and transverse based distances for each 

factor. ..................................................................................................................................... 211 
Table D-13: Post-hoc comparisons for longitudinal speed offsets. ....................................... 211 
Table D-14: Comparisons of longitudinal speed offsets vs. 0. .............................................. 211 

Table D-15: Comparison of transverse speed offsets vs. 0. ................................................... 212 

 



 

| xvii | 

List of Abbreviations and Symbols 

AbP Abdomen pitch 

AS Air speed 

CCW Counter-clockwise 

CM Computer mice 

CW Clockwise 

DAQ Data acquisition unit 

df Statistical degrees of freedom 

E Expected value 

F Test statistic from ANOVA and variants  

fps Frames per second 

G Gain 

GKR Gaussian kernel regression 

OF Optic flow 

 M   Motion-dependent response 

 CWM   Motion-dependent response to CW motion 

 CCWM   Motion-dependent response to CCW motion 

 DM   Directionally dependent motion response 

 .ShM   Shape of the motion dependent response (RMS scale equals 1) 

P*Par. Body mass specific parasitic power 

P*Tot. Body mass specific total power 

 P   Position-dependent response 

p Probability value 

P Path 

PSc. Scale of a position dependent response 

PY Total distance moved in the y direction over an experiment 

PWM Pulse width modulated 

R Response 

Sat. Saturating function 

S.E.M Standard error of the mean 

SNR Signal to noise ratio 

SS Sum of squares 

t Test statistic from Student’s t-test and variants 

W Walking speed vector magnitude, or test statistic from Shapiro-Wilk test, or 

Wilcoxon signed rank test and variants (depending on context) 

WL Longitudinal walking speed 

WT Transverse walking speed 

z Test statistic from Rayleigh’s test of uniformity 

β Walking speed vector direction 

ε Deviation from sphericity (in relation to Mauchly’s test of sphericity) 

θ Angular offset due to latency 

v Angular velocity of a stimulus 

χ2 Test statistic from Mauchly’s test of sphericity, or Freidman’s test (depending on 

context) 

ψ Azimuthal angular position of a stimulus  

ω Turning rate 

 

  



 

| xviii | 

Function notation  

xt Denotes the current value of the variable x 

xt-1 Denotes the prior value of the variable x 

Y  Denotes Y is a function with zero mean 

Y   Denotes the function Y is offset such that its minimum value is zero  

YA Denotes Y is an anti-symmetric function  

YM Denotes Y is an mirror-symmetric function 

YRMS Denotes the RMS value of the function Y 

 

Abbreviations and symbols are also defined when initially used in the main text. Several 

additional abbreviations and symbols are used in a limited context, and the meanings for those 

are also defined when initially used. 



 

 | 1 | 

 General introduction 

 

Many insects lead active lives and, whether walking or flying, they frequently perform 

challenging manoeuvres. As they move through their environment, insects utilise various 

sources of sensory information to control crucial behaviours, such as moment-to-moment 

stabilisation of their flight, avoiding obstacles and more challenging tasks such as navigation. 

The processing and use of information for sensorimotor control by insects for these purposes 

appears robust, and may also have adaptive aspects. This thesis investigates sensorimotor 

control in both flying and walking honeybees at the behavioural level. The use of multisensory 

information for the control of body posture is described (Chapter 2), as well as the adaptive 

and robust behaviours employed when using visual information to control their orientation with 

respect to an object (Chapters 3, 4 and 5). 

 

This chapter provides a brief introduction on how insects use information for sensorimotor 

control, and the methods used to characterise these behaviours. Although all experimental work 

included in this thesis was conducted using honeybees as a model organism, the background 

material in this chapter is intentionally broad, covering a variety of walking and flying insect 

species. Additional, more specific, background information is included in the ‘Introduction’ 

sections of each of the results chapters. It is also pertinent to note that this thesis refers to insect 

behaviour and sensorimotor processing primarily in the context of locomotion. 

 

1.1 Sensory control of behaviour  

An insect’s sensorimotor control is largely defined by its ecological needs, as it will 

differentially employ behaviours and sensory mechanisms depending on its needs for survival 

and reproduction. For example, most insects forage for food, avoid predators and other hazards, 

and find conspecifics for reproduction by moving around the habitat they occupy. Although 

there is a diverse range of insects living in different environments in the world, common motor 

routines and sensory mechanisms are present across many taxa. By combining sensory 

mechanisms and motor routines with robust multi-sensory integration and adaptive control 

mechanisms, insects are able to fill many ecological niches (Price, 1997). 
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1.1.1 Sensory mechanisms 

Sensory organs allow an insect to perceive visual, mechanoreceptive, and chemoreceptive 

classes of stimuli (Christensen, 2005). When properly transduced and processed, sensory 

information can identify the source of a stimulus and determine its orientation, intensity, 

distance, and motion, although the specific information is highly dependent on the sensory 

modality that the stimulus represents (Campan, 1997; Jander, 1975). The behaviours of many 

insects are influenced by external cues, thus, perception of external stimuli is critically 

important to allow an insect to control its locomotion with respect to the environment. The 

locations of the various classes of sensory organs on a bee are noted in Figure 1-1. 

 

Arguably, vision provides the richest source of information for animals moving in a complex 

environment. Light sensed by the compound eyes or the ocelli allows an insect to measure its 

orientation, position and motion with respect to the world as a whole, and also with respect to 

specific, visually identifiable objects (Borst, Haag, & Reiff, 2010; Land & Nilsson, 2002; 

Wehner, 1981).  

 

Mechanoreception involves the perception of forces, which are sensed by a broad category of 

receptors located over an insect’s cuticle that measure both externally and internally generated 

forces (Keil, 1997). Two specific organs of interest relating to mechanoreception are the 

halteres and antennae. The halteres are mechanosensory organs specific to Diptera, which the 

insects use to measure angular velocity using Coriolis forces (Fraenkel & Pringle, 1938; 

Hengstenberg, Sandeman, & Hengstenberg, 1986). The antennae also transduce information 

on angular velocity through Coriolis forces (Hinterwirth & Daniel, 2010; Sane, Dieudonne, 

Willis, & Daniel, 2007), and detect the speed (Gewecke, 1974) and the direction of air flow 

(Heinzel & Gewecke, 1979; Heinzel & Böhm, 1989). Further, the antennae can detect acoustic 

vibrations that can identify the source of a sound and its direction (Robert & Göpfert, 2002), 

tactile cues that identify nearby objects and their distance and direction (Camhi & Johnson, 

1999; Erber, Kierzek, Sander, & Grandy, 1998; Okada & Toh, 2006), and information on 

electric fields (Greggers et al., 2013; Newland et al., 2008). The above list is not exhaustive; 

mechanosensory transduction is often duplicated by other organs, as in the case of other air 

flow receptors (Kanzaki, Arbas, & Hildebrand, 1991; Neese, 1965; Weis-Fogh, 1949), acoustic 

receptors (Hoy & Robert, 1996), and tactile receptors (Goyret, 2010; Kress & Egelhaaf, 2012; 

Schütz & Dürr, 2011). Other variables are also sensed, such as loading of the wings (Frye, 
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2001; Gettrup, 1966) and legs and measurement of body posture through proprioception 

(Schmitz, 1993; Zill, Schmitz, & Büschges, 2004).  

 

Finally, chemoreception allows an insect to perceive odours and tastes (Dahanukar, Hallem, & 

Carlson, 2005). An insect’s gustatory apparatus can taste proximal food items, primarily using 

the proboscis and tarsae (Mitchell, Itagaki, & Rivet, 1999). Olfactory cues are primarily 

detected by the antennae, which can identify chemicals (Galizia & Rössler, 2010) and 

distinguish gradients to determine the sources direction (Duistermars, Chow, & Frye, 2009; 

Willis, Ford, & Avondet, 2013). Although the specific design and efficacy of sensory systems 

varies between insect species, nearly all have some capacity to detect visual, mechanosensory 

and chemosensory stimuli in the environment. 

 

If the measurement transduced directly by an animal’s sensory organs (or at least with minimal 

neuronal computation) are directly useful for sensorimotor control, then that sense can be 

described as a matched filter for the required information from the environment (Wehner, 

1987). For example, in flies, the axes of measurement of a subset of interneurons that visually 

detects angular velocity (Krapp, 2000; Taylor & Krapp, 2007), and the equivalent 

mechanoreceptive measurement from the halteres (Nalbach, 1994), closely correspond to the 

measurement axes required to stabilise flight (Faruque & Humbert, 2010; Krapp, Taylor, & 

Humbert, 2012). Matched filtering is a useful concept when considering how information is 

sensed from the environment, as the capabilities of any insect’s sensory system are expected to 

closely match the information that is required for its sensorimotor control. 
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Figure 1-1: Sensory perception and sensorimotor control. Top row, stimulus classes perceived 

by insects and the respective sensory organs necessary for perception. Bottom row, sensory 

motor behaviours exhibited by insects that are related to locomotion, which can be altered by 

sensory information. Both are described further in Sections 1.1.1 and 1.1.2. 

 

1.1.2 Locomotory behaviours 

Insects control their locomotion over a wide range of spatial and temporal scales, from 

adjusting their attitude within milliseconds of a disturbance (Sandeman & Markl, 1980) to 

migrating between continents over months (Srygley & Dudley, 2008). Locomotory behaviours 

can be broadly classified into four groups: controlling the posture of body parts, stabilisation 

of position and attitude, orientating towards external cues, and controlling locomotory speed 

through the environment. The behavioural classes are broadly represented in Figure 1-1.  

 

An insect body is highly articulated and active movements of all body parts relative to the 

thorax are common during both flight and walking. The wings or legs are moved to generate 

propulsive forces during flight or walking respectively. Postural adjustments can be made to 

improve sensory perception during movement. One example is the antennal positioning 

reaction, which readjusts the position of the antennae such that they maintain the angle of 

optimal sensitivity for the measurement of changes in air speed at all flight speeds, despite 

being deflected by varying amounts due to drag at different speeds (Gewecke, 1974; Heran, 
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1959). Alternatively, the passive properties of the body may also be adjusted. For instance, the 

abdomen can be moved laterally, which acts as a rudder in flight by re-directing air flow 

produce a yaw torque (Camhi, 1970b; Pollack & Plourde, 1982; Zanker, 1988a), or moved 

vertically to reduce drag (Camhi, 1970a; Luu, Cheung, Ball, & Srinivasan, 2011) and to adjust 

the attitude of the insect in flight (Dyhr, Morgansen, Daniel, & Cowan, 2013). Further, the legs 

are not merely stowed in flight, but actively adjusted for stability (Combes & Dudley, 2009) 

and steering (Arbas, 1986; Gotz, Hengstenberg, & Biesinger, 1979). Although not all of an 

insect’s body structure is primarily designed to contribute to all modes of locomotion, many 

components contribute in some way.    

 

Several reflexes act to stabilise aspects of an insect’s attitude and position, to counteract 

disturbances arising from external influences (Vance, Faruque, & Humbert, 2013) or mitigate 

against the inherent instability of many flying insects (Sun, Wang, & Xiong, 2007; Sun & 

Xiong, 2005). Unexpected rotations about the yaw, pitch, or roll axes are detected by vision or 

mechanoreception, and will trigger a compensatory turning response (Blondeau & Heisenberg, 

1982; Rowell, 1988; Sherman & Dickinson, 2003). Attitude can also be kept level and stable 

by maintaining a consistent angle between the insect and prominent features in the 

environment, such as the horizon (Stange & Howard, 1979; Taylor, 1981). Likewise, position 

can be stabilised by compensating for unexpected translational velocity with compensatory 

changes in altitude and lateral position (Straw, Lee, & Dickinson, 2010; Tanaka & Kawachi, 

2006), by maintaining a fixed location relative to prominent features in the environment 

(Cowan, Lee, & Full, 2006; Sprayberry & Daniel, 2007; Straw et al., 2010), or by keeping an 

equal distance to surrounding objects (Kirchner & Srinivasan, 1989; Portelli, Ruffier, Roubieu, 

& Franceschini, 2011; Srinivasan, Lehrer, Kirchner, & Zhang, 1991). Stabilisation reflexes can 

be used to hold a set attitude and position when hovering (Collett & Land, 1975; Kelber & Zeil, 

1990), or to stabilise a subset of attitude and position components during directed movement, 

such as when orientating and flying towards an object (Land & Collett, 1974; Wehrhahn, 

Poggio, & Bülthoff, 1982). In the latter case, where an insect is making a voluntary action, 

stabilisation reflexes would interfere with the movement if they remained active. Various 

methods for preventing stabilisation reflexes have been suggested, such as suppressing or 

otherwise preventing the usual action of the reflex (Egelhaaf, 1987; Srinivasan & Bernard, 

1977; Trischler, Kern, & Egelhaaf, 2010), changing the set point of stabilising reflexes to match 

the predicted stimulus resulting from the action (Chan, Prete, & Dickinson, 1998), or 
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subtracting a prediction of the expected sensory feedback resulting from the voluntary action 

to negate the actual sensory input for the reflex (Payne, Hedwig, & Webb, 2010). 

 

Turning responses allow an insect to orientate towards, away from, or relative to cues 

representing global features of the environment or local objects. Global cues indicate a 

direction an insect can orient towards, and are stable over a wide spatial and temporal range. 

They do not always represent a specific object towards which insect moves (such as, visual: 

Collett, 1996; celestial: Dacke, Byrne, Scholtz, & Warrant, 2004; magnetic: Etheredge, Perez, 

Taylor, & Jander, 1999; polarisation: Evangelista, Kraft, Dacke, Labhart, & Srinivasan, 2014; 

wind: Heinzel & Böhm, 1989), but  are important when navigating between distant locations 

(Collett, 2009; Srinivasan, 2011). Alternatively, the insect may be able to directly perceive an 

object that provides the orientation cue, based on its unique visual (Bahl, Ammer, Schilling, & 

Borst, 2013; Zhang, Si, & Pahl, 2012), acoustic (Hedwig & Poulet, 2005) or tactile (Okada & 

Toh, 2006) properties, or because of its movement (Bülthoff, 1981; Lehrer & Srinivasan, 1992; 

Reiser & Dickinson, 2013). Odours also provide orientation cues, either as trails or in plumes, 

but may be unreliable due to influences from wind. Hence, plumes do not necessarily allow an 

insect following them to move to their source directly (Cardé & Willis, 2008; Vickers, 2000). 

Regardless of the underlying sensory mechanism, orientation cues often cause a turning 

response from tethered insects that varies sinusoidally with the cue’s azimuthal position, with 

the maximum turning response occurring when stimuli are positioned perpendicular to the 

insect’s preferred orientation (wind: Böhm, Heinzel, Scharstein, & Wendler, 1991a; acoustic: 

Böhm, Schildberger, & Huber, 1991b; polarisation: Mappes & Homberg, 2004; visual: 

Reichardt & Poggio, 1976; motion: Reiser & Dickinson, 2013). Orientation cues are important 

regardless of whether they are local or global, as theoretical predictions show that an external 

orientation reference is required to maintain movement in a straight line (Cheung, Zhang, 

Stricker, & Srinivasan, 2007). 

 

As insects move through the world, most vary their longitudinal, or forwards, speed. When 

walking, proprioceptive variables such as stride frequency are regulated and can control 

walking speed (Zollikofer, 1994). External factors may have minor (Götz & Wenking, 1973; 

Schone, 1996) or no influence (Zanker & Collett, 1985). However, external factors strongly 

influence flight speed, which is regulated either solely depending on visual perception of 

ground speed (Baird, Srinivasan, Zhang, & Cowling, 2005; David, 1979; Fry, Rohrseitz, Straw, 

& Dickinson, 2009; Srinivasan, Zhang, Lehrer, & Collett, 1996), or by maintaining a consistent 
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air speed (Gewecke, 1974; Niehaus, 1981). When approaching a specific object, both walking 

and flying insects are also observed to regulate their speed based on the distance to their target 

(Boeddeker, Kern, & Egelhaaf, 2003; Collett & Land, 1975; Cook, 1979; Wehrhahn et al., 

1982). Although it is not as important for navigation as controlling orientation, controlling 

speed relative to an object is critical if an insect is to land on an object (Baird, Boeddeker, 

Ibbotson, & Srinivasan, 2013; Srinivasan, Zhang, Chahl, Barth, & Venkatesh, 2000; van 

Breugel & Dickinson, 2012), or to follow it at a fixed distance (Cook, 1979; Land, 1993; van 

Praagh, Ribi, Wehrhahn, & Wittmann, 1980).  

 

Although walking and flying are distinctly different modes of locomotion, with the latter 

involving an extra spatial dimension, commonalities exist for the responses to stimuli in both 

modes (Kanzaki, 1998). For instance, gaze stabilisation based on visual motion is seen in many 

insects when walking and in flight (Boeddeker & Hemmi, 2010; Hengstenberg, 1993; Kral, 

2003). A cricket’s response when orientating towards acoustic targets is also similar between 

both modes (Böhm et al., 1991b; Hedwig & Poulet, 2004; Pollack & Plourde, 1982). Similar 

behaviours between walking and flying (i.e. when height changes are negligible) may share a 

variety of common aspects of sensory processing and behavioural control.  

 

The behaviours discussed here are by no-means an exhaustive list of those observed in insects. 

However, the general principles involve maintaining an appropriate posture, stabilisation 

against disturbances, and controlling speed and orientation with respect to external cues all 

constitute core components of an insect’s sensorimotor control (Dickinson, 2013). 

 

1.1.3 Multi-sensory control 

Similar quantities are encoded by multiple sensory modalities, and a single object may provide 

information to multiple senses. Anatomical projections from many sensory organs converge in 

the peripheral and central nervous systems of insects (Homberg, 2005; Rowell & Reichert, 

1986; Strausfeld & Seyan, 1985), and present possibilities for sensorimotor control using the 

perception of multi-sensory stimuli. Multi-sensory information is combined in linear and non-

linear methods at the behavioural level, and context dependency is also frequently observed; 

these topics will be described in the remainder of the section. 
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Context dependency, also called gating, occurs when two or more sensory cues modulate a 

motor action. Often the measurement from a sense functions in an on/off type manner, whilst 

a second sense controls the magnitude of the response. For example, context dependency 

occurs in a set of muscles controlling compensatory head movements in flies, such that the 

direction of visual movement controls the response strength, and afferent signals from the 

halteres or antennae indicating flight function in an on/off role (Haag, Wertz, & Borst, 2010; 

Huston & Krapp, 2009). Similarly, neurons in Drosophila have been found that only respond 

to translational optic flow when the insect is actively flying (Weir, Schnell, & Dickinson, 

2014), and the response of circuits sensitive to visual rotation are similarly increased during 

active locomotion (Chiappe, Seelig, Reiser, & Jayaraman, 2010; Maimon, Straw, & Dickinson, 

2010). However, whether afferent feedback is required for the context modulation was not 

determined in these studies. Context dependency ensures that the appropriate motor outputs 

are activated given an insect’s state of locomotion. 

 

At the behavioural level, many multi-sensory inputs result in a linear, or weighted linear, 

summation of the responses to each individual stimulus, particularly when the stimuli represent 

similar quantities. The turning response from the visual optomotor reflex is combined linearly 

with that expected from mechanoreceptors in Drosophila (Sherman & Dickinson, 2004) and 

Manduca (Hinterwirth & Daniel, 2010), where both modalities measure a value of angular 

velocity. A direct benefit of combining senses in this manner is the different temporal tuning 

between visual and mechanosensory information. In Drosophila, mechanoreceptors are tuned 

to detect rotations up ten times faster (Hengstenberg et al., 1986; Sherman & Dickinson, 2003) 

than the visual system, which is itself capable of detecting rotations up to 100 o.s-1 

(Hengstenberg, 1984), and also typically have latency of only several milliseconds (Collett & 

Land, 1975; Sandeman & Markl, 1980), whereas latency in behaviours mediated by the 

compound eyes may be an order of magnitude greater (Warzecha & Egelhaaf, 2000). Likewise, 

information on angular rotations encoded by two different visual systems, the ocelli and the 

compound eyes, is linearly combined to control turning responses (Haag, Wertz, & Borst, 2007; 

Parsons, Krapp, & Laughlin, 2006), again benefiting from one sensor, the ocelli, responding 

rapidly compared to the compound eyes. Responses to azimuthally positioned acoustic and 

visual cues are also linearly summed (Böhm et al., 1991b), and allow an insect to continue 

towards the visual direction a sound is emitted from, even if the acoustic signal stops (von 

Helversen & Wendler, 2000). In instances where variables represent different quantities, 

summation is also observed, such as for Drosophila’s wingbeat modulation in response to 
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visual and olfactory cues (Frye & Dickinson, 2004), which prime it to fly towards an odour 

source. In these examples, summation of the response to both modalities appears sufficient to 

increase the efficacy of behavioural responses. 

 

In some cases, non-linear interactions are found to occur beyond that provided by context 

dependency. In fact, the mechanism used by the halteres to provide context dependency for 

gaze stabilisation allows the fast phasic responses from the halteres to ‘clock’ slower tonic 

responses from the compound eyes, resulting in a rapid motor response combining both 

variables (Huston & Krapp, 2009). In other cases a multiplicative, rather than linear 

combination has been found, such as where an attractive odour acts to scale up Drosophila’s 

stabilising response to rotational visual motion (Chow & Frye, 2008; Wasserman, Lu, Aptekar, 

& Frye, 2012), but scales down their aversive response to visual expansion (Chow & Frye, 

2008). Error checking can also form an inherent part of multi-sensory interactions. In locusts, 

the signals from the compound eyes, ocelli, and wind sensitive hairs indicating rotational 

disturbances are integrated in descending neurons, which respond with progressively 

increasing strength as the signals become consistent across all three modalities as compared 

with when they conflict (Rowell & Reichert, 1986). This potentially prevents an unreliable 

measurement in any one sense from triggering compensatory turning unless there is agreement 

in the measurements from all modalities. It is known that vertebrates can combine multiple 

sources of information, weighted depending on each senses reliability, in order to improve the 

measurement accuracy of the system (Baddeley, Ingram, & Miall, 2003; Körding & Wolpert, 

2006; Oie, Kiemel, & Jeka, 2002). This is analogous to the technique of Kalman filtering that 

is used in engineering applications to statistically optimise the combination of multiple sources 

of sensory information (Haykin, 2001). Some cases of changing behaviour based on sensory 

reliability are also observed in insects; ants are observed to adjust their navigation strategy 

based on uncertainties in path integration (Merkle, Knaden, & Wehner, 2006; Wolf & Wehner, 

2005), and nocturnal insects can use neural spatial and temporal summation of visual 

information to improve vision in low light (Theobald, Greiner, Wcislo, & Warrant, 2006; 

Warrant, 1999). Regardless of whether information is re-weighted based on sensor reliability, 

non-linear integration undoubtedly provides greater flexibility in multi-sensory integration, 

particularly when the measured quantities represent different physical values. 

 

Multi-sensory integration encodes both similar and different sources of information, and 

appears to make insect sensorimotor control more robust than measurements from a single 
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modality. Given that multi-sensory information contributes to higher level tasks such as 

navigation and learning (Menzel & Giurfa, 2001; Reinhard, Srinivasan, Guez, & Zhang, 2004; 

Steck, Hansson, & Knaden, 2011), it is likely that further instances of multisensory integration 

for sensorimotor control will be discovered. 

 

1.1.4 Adaptive control 

Insect behaviour is often described as being highly robust to varying conditions. Insects walk 

capably despite leg damage (Götz & Wenking, 1973; Wittlinger, Wehner, & Wolf, 2007), and 

on slippery or springy surfaces (Epstein & Graham, 1983; Spence, Revzen, Seipel, Mullens, & 

Full, 2010). Similarly, insect flight is not drastically impaired by severe wing damage (Dukas 

& Dukas, 2011; Haas & Cartar, 2008) or flight in low density air (Altshuler, Dickson, Vance, 

Roberts, & Dickinson, 2005; Dillon & Dudley, 2014; Dudley, 1995). The intrinsic properties 

of sensory processing can make receptors inherently robust to disturbances (Borst, Flanagin, 

& Sompolinsky, 2005; Brinkworth & O'Carroll, 2009). Furthermore, integration of information 

from multiple sensory modalities contributes to robust behaviours. In addition to their robust 

control, there is growing evidence to suggest that insects adapt their sensorimotor control to 

improve their performance given the task at hand (Hesselberg & Lehmann, 2009; Webb, 2004; 

Wolf & Heisenberg, 1990). 

 

The behaviour of flies when controlling the position of a narrow vertical bar, a behaviour 

known as fixation (Reichardt & Poggio, 1976), illustrates adaptive control. When tethered, but 

not shown any visual stimulus, flies will produce random fluctuations of yaw torque 

(Heisenberg & Wolf, 1979; Maye, Hsieh, Sugihara, & Brembs, 2007; Poggio & Reichardt, 

1973). However, as soon the fixation stimulus is shown, the flies will control their yaw torque 

as a function of the position and motion of the stimulus. If the measured yaw torque is made to 

control the position of the stimulus in real time, the fly positions the fixation stimulus in its 

frontal visual field (Heisenberg & Wolf, 1984; Reichardt & Poggio, 1976). Other investigations 

showed that tethered Drosophila adapted to use both their flight thrust (Wolf & Heisenberg, 

1991) and leg movements (Wolf, Voss, Hein, & Heisenberg, 1992) to control the position of 

the fixation stimulus. Both types of motor commands are rather unnatural ways of controlling 

yaw, but the flies learn each task within seconds. Drosophila can also adapt to control the 

stimulus when the polarity between their yaw torque and the stimulus motion is inverted from 

that normal free flight (i.e. when the fly turns clockwise the stimulus also turns clockwise, 



General introduction 

| 11 | 

rather than counter-clockwise as expected), although adapting to this coupling can take tens of 

minutes (Heisenberg & Wolf, 1984). Yet the previously mentioned coupling changes were 

drastic, and a fly is more likely to require the ability to fine-tune its sensorimotor commands to 

the task at hand. Experiments have also been conducted to examine the fly’s ability to adapt to 

changes in the coupling, or gain, between its yaw torque and the movement of the fixation 

stimulus. The results have shown that flies indeed adapt to these changes and modify their 

motor commands within 200 ms of the coupling change (Wolf & Heisenberg, 1990). Further, 

a recent study has shown that Drosophila raised in a vial that prohibits flight have lower 

responses to open-loop fixation stimuli than their normally raised counterparts (Hesselberg & 

Lehmann, 2009). However, after the flight deprived flies are allowed to control the stimulus in 

closed-loop experiments the differences disappear, providing further support that flies can learn 

to fine-tune sensorimotor commands for fixation, in a surprisingly similar manner to 

vertebrates (Wolpert, Ghahramani, & Jordan, 1995). 

 

In the fixation experiments described, trial and error allowed an insect to improve its motor 

commands to achieve some desired state of a stimulus. One proposed method for generating 

adaptive motor commands is by correlating the changes in motor output with changes in the 

velocity of the stimulus to be controlled (Wolf & Heisenberg, 1990; Wolf & Heisenberg, 1991). 

Whether a given motor command affects the stimulus, and the coupling coefficient, can then 

be determined from the correlation. The above description of sensorimotor adaptation is based 

on fixation experiments with Drosophila, although similar adaptive behaviours were also found 

in locusts (Möhl, 1988; Möhl, 1989). Rather than correlating motor output with the sensory 

state of the stimulus, another mechanism that would enable adaptive control is to have a 

predictive, or forward model, of how actions will influence the resulting sensory perception of 

the environment (Sperry, 1950; von Holst & Mittelstaedt, 1950). By comparing the forward 

model to the actual sensory perception resulting from a given action, incorrect predictions 

could then form the basis for sensorimotor adaptations (Miall & Wolpert, 1996; Wolpert & 

Kawato, 1998). Experimental evidence supports the existence of a forward model in vertebrates 

(Kawato, 1999). In insects the use of a forward model to negate stabilising reflexes during 

voluntary motion has support (Payne et al., 2010; Webb & Reeve, 2003), and may also be used 

for predictive gaze stabilisation during voluntary actions (Schwyn et al., 2011; Viollet & Zeil, 

2013). The explicit use of a forward model for motor adaption in insects has yet to be 

established (Webb, 2004), although the correlative method mentioned at the start of this 
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paragraph is analogous to a simple forward model to identify which of an insect’s motor outputs 

influence its sensory perception (Wolf & Heisenberg, 1990; Wolf & Heisenberg, 1991).   

 

As with multi-sensory integration, adaptive control contributes to robust insect behaviours. In 

addition, adaptive control allows an insect to rapidly adopt new methods of responding to 

stimuli in the environment, potentially reducing the requirements for evolving matched 

filtering in its sensory system.  

 

1.2 Unpacking sensory control 

Fully understanding how an insect’s sensorimotor control system works requires detailed 

knowledge of the anatomy and physiology of the sensory, nervous and motor systems, as well 

as the sensory environment through which it moves (Chiel & Beer, 1997; Dickinson et al., 

2000). Classically, an input-output approach seeks to characterise insect behaviour as a ‘black 

box’ system by describing the relationship between sensory inputs and motor outputs, without 

taking into account the underlying mechanisms. Virtual-reality paradigms and input-output 

models are both useful approaches for quantifying and describing behaviours. Although input-

output characterisation does not describe the physiological mechanisms underlying behaviour 

directly, it frequently provides insightful information concerning general control principles, 

and may inform subsequent, more targeted, investigations of the underlying biological 

mechanisms.   

 

1.2.1 Input-output modelling 

Based on the results of behavioural experiments, input-output models can be developed that 

predict some aspects of an animal’s response to stimuli. Such models, using systems 

identification techniques (Ljung, 1999; Nise, 2008; Westwick & Kearney, 2003) or based on 

first principles, do not necessarily incorporate the properties of the neurons and networks 

underlying behaviours. Rather, a phenomenological description links the state of the 

environment to some behavioural output, abstracting the underlying sensory, processing and 

motor mechanisms. Despite this abstraction, an input-output model can be used to make 

experimentally testable predictions of biological function, leading to its refinement or 

abandonment. A model of beetle motion vision, the correlation type motion detector 
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(Hassenstein & Reichardt, 1956), exemplifies this approach, as its initial formulation can 

explain many aspects of invertebrate visual motion detection (Borst et al., 2010).   

 

Regardless of whether the underlying mechanisms are determined, input-output models can 

also be informative when designing artificial control systems, particularly for robotic agents 

that attempt to perform tasks in a similar environment as insects (Srinivasan, Thurrowgood, & 

Soccol, 2010; Webb, Harrison, & Willis, 2004). Indeed, as the underlying mechanisms built 

into an in silico realisation of a model will not duplicate those observed in the in vivo 

realisation, extracting the simplest model description of the observed behaviour is 

advantageous. For example, landing honeybees implement a simple strategy that maintains a 

constant rate of optic flow in their ventral eye region during descent, resulting in deceleration 

to a gentle touch down (Baird et al., 2013; Srinivasan et al., 2000). This visually guided strategy 

has been used to successfully control landing on a variety of robotic platforms, such as; a 

precision gantry (Chahl, Srinivasan, & Zhang, 2004), a rotorcraft (Ruffier & Franceschini, 

2005) and an ultra-light fixed wing plane (Zufferey & Floreano, 2006). In the case of landing, 

the identified model has proven useful for control of robots with different sensory and motor 

mechanisms, acting at different physical scales, to the insect themselves. 

 

1.2.2 Virtual-reality paradigms 

Experiments with freely moving insects examine their behaviour under the most realistic 

conditions possible, as each sense obtains the appropriate feedback from the environment, and 

motor commands influence the insect’s position and orientation as expected. Disturbing the 

insect’s movement or manipulating aspects of the sensory environment can provide 

information on how it controls its behaviour, but disturbances are usually rapidly corrected for, 

and it is difficult to directly manipulate the coupling between an animal’s actions and their 

perceived effect. An alternative is virtual-reality, where a tethered insect is placed in a 

simulated environment. Both experiments with freely moving insects and those in virtual-

reality can provide information for top-down modelling. However, virtual-reality allows for 

experiments that separate the contributions from different senses and manipulation of the usual 

coupling in the action-perception loop (Roth, Sponberg, & Cowan, 2014; Taylor et al., 2008). 

 

Two common types of experiments that are performed to characterise control systems in 

virtual-reality are open-loop and closed-loop experiments. In open-loop, an insect’s reactions 
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are recorded, but these reactions do not alter the stimuli that are presented. In a closed-loop 

protocol, real time measurements are made of the tethered insect’s motor actions, which are 

used to vary the stimuli that the insect experiences. Open-loop paradigms can be used to expose 

insects to stimuli far away from their stable control parameters, testing their responses to 

situations that rarely occur in flight (Reiser & Dickinson, 2013). However, open-loop 

stimulation is not likely to fully replicate the sensory experience of self-controlled flight 

(Taylor et al., 2008). Whilst fly neurons involved in visual processing appear to encode visual 

motion in a similar manner in both open- and closed-loop experiments (Ejaz, Krapp, & Tanaka, 

2013), neurons in the central brain region of honeybee’s appear to respond differently during 

closed-loop behaviour when compared to replays of identical stimulus movements in open-

loop (Paulk et al., 2014). Differences are also observed at the behavioural level, for instance, 

Drosophila have a reduced reaction to stimuli displayed in open-loop compared to their 

reaction in closed-loop (Heisenberg & Wolf, 1988; Wolf & Heisenberg, 1990). Although the 

observed responses are likely to be qualitatively similar between open- and closed-loop, 

especially for reflexive actions, the magnitude and dynamics of responses may vary. Ideally 

closed-loop experiments allow a situation that closely replicates the sensory experience of free 

movement, despite the insect remaining fixed in place, and allow for controlled tests of how 

the insect responds to changes in certain aspects of the environment, or manipulations of the 

coupling in the normal action-perception loop (Roth et al., 2014). Closed-loop experiments can 

also show emergent behaviours arising from the feedback loop containing the nervous system, 

body and environment (Chiel & Beer, 1997).   

 

Both open- and closed-loop experiments in tethered virtual reality provide unique opportunities 

to characterise insect control systems that are not easily accessible in freely moving animals. 

However, perhaps the most important benefit is that electrophysiological or cellular activity 

imaging techniques can be used to record the neural activity from actively behaving insects, 

especially as recent experiments have shown that active locomotion modulates many aspects 

of neural processing (Maimon, 2011). 

 

1.3 Scientific aims and outline  

Scientists over the past decades have sought to determine the principles by which insects use 

sensory information from the environment to control their behaviour by conducting 

behavioural experiments, and by investigating the underlying neural mechanisms. Robust 
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behavioural control has been observed in freely moving insects, and also when insects are 

exposed only to changes in a single sensory modality using virtual-reality paradigms. However, 

relatively few experiments have explicitly tested multi-sensory integration and how adaptations 

influence an insect’s sensorimotor control, although these factors undoubtedly occur during 

natural movement. I investigate multi-sensory integration and sensorimotor adaption using 

honeybees (Apis mellifera) as a model organism. The honeybee has previously provided a 

useful model to study visually guided sensorimotor control during free flight (Srinivasan, 

2011), and also higher order associative learning (Menzel & Giurfa, 2001; Zhang et al., 2012). 

My studies have further found honeybees use sensory information for robust multisensory and 

adaptive sensorimotor control, and these provide insight for control mechanisms that could be 

utilised on small scale robotic platforms. I describe my findings in four results chapters as 

follows: 

 

Chapter 2 describes how flying honeybees respond to open-loop combinations of optic flow 

and air speed by streamlining their abdomen in flight, and further, how this response is affected 

by disabling the air speed sensing organ in the antenna. A model is developed to explain the 

response as a non-linear combination of the two stimuli. The energetic benefits of streamlining 

are compared across several insect species. 

 

In Chapter 3, walking honeybees are tested with a visual fixation task in closed-loop, where 

they use their turning rate to control the azimuthal position of a bright green vertical bar. The 

bee’s ability to adapt to an imposed coupling between the measurement of their walking speed 

and their turning rate is tested. A similar coupling occurs in optical motion sensors, which are 

often used in virtual-reality experiments, and tests are made as to whether bees make 

behavioural adaptions with these sensors. 

 

Chapter 4 further considers how walking honeybees adapt their behaviour in a closed-loop 

visual fixation task, examining the case where a linear multiplier coupling their turning rate to 

stimulus movement is systematically varied. A novel analysis method is developed to extract 

non-linear control functions from temporally correlated closed-loop data, which is used to 

describe the honeybee’s response to the position and motion of the fixation stimulus. 

Simulations are used to test how the behavioural adaptations made by honeybees would 

influence their control of the fixation stimulus. 
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Chapter 5 describes the modulation of longitudinal (forwards) and transverse (sideways) 

components of walking speed measured from honeybees performing the closed-loop fixation 

task in Chapter 4. Both components of walking speed are modelled as temporally correlated, 

non-linear functions of the position of the fixation stimulus and the bee’s turning rate. The 

effect of walking speed on fixation success and its effect on movement towards the stimulus 

position is considered. Simulations are used to determine which aspects of a honeybee’s 

walking speed modulation are most effective for making progress towards a visual target.  

 

Following University of Queensland guidelines, each chapter is formatted as appropriate for 

publication in a peer reviewed journal, as detailed in the preamble in each chapter. Thus, the 

chapters each contain an ‘Introduction’, ‘Methods’ and ‘Discussion’ section in addition to the 

results presented therein. To conclude the main body of this thesis, Chapter 6 is a broader 

discussion of the implications of the combined findings of my research. 
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 Vision and air flow combine to streamline flying 

honeybees  

 

2.1 Preamble 

This chapter describes the honeybee’s streamlining in response to open-loop combinations of 

both optic flow and air speed when in tethered flight. Multi-sensory control based on optic flow 

and air speed has received minimal research attention compared to control based on the 

integration of other senses, and this Chapter suggests a quantitative model for combining the 

two sensory measurements that can explain the observed streamlining responses from 

honeybees. Preliminary results of this study were presented at the Australian Neuroscience 

Society Annual Meeting (2012) and the International Congress of Neuroethology (2012). The 

contents of this Chapter (and Appendix A) are based on a peer reviewed publication (with the 

same title) in the journal ‘Scientific Reports’ authored by G. J. Taylor (the candidate), T. Luu, 

D. Ball, and M. V. Srinivasan. The contributions of each author are detailed in the preliminary 

pages of the thesis. After publication in Scientific Reports, this work received significant media 

attention, which led to five local and national radio interviews, as well as national and 

international coverage in online articles by more than two dozen media agencies (notably The 

Brisbane Times, The Guardian and The Sydney Morning Herald). This publication was also 

awarded the annual Queensland Brain Institute student publication prize in 2013. 

 

2.2 Abstract 

Insects face the challenge of integrating multi-sensory information to control their flight. There 

is evidence that insects combine visual information to sense optic flow and mechanosensory 

cues to sense air flow.  Here we study a ‘streamlining’ response in honeybees, whereby insects 

raise their abdomen to reduce drag. We find that this response, which was recently reported to 

be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a 

head wind. The Johnston’s organs in the antennae were found to play a role in the measurement 

of the air speed that is used to control the streamlining response. The response to a combination 

of visual motion and wind is complex and can be explained by a model that incorporates a non-

linear combination of the two stimuli. The use of visual and mechanosensory cues increases 

the strength of the streamlining response when the stimuli are present concurrently. We propose 
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this multisensory integration will make the response more robust to transient disturbances in 

either modality.  

 

2.3 Introduction 

An insect in flight has available to it at least two sources of information about the speed of its 

flight through the environment.  One source is the visual perception of the world’s motion, 

derived from the pattern of image movement (optic flow) as sensed by the visual system. The 

second source is the movement of air over the body. Individually, these cues can be unreliable 

for inferring the insect’s own motion in the environment, because variations in the topography 

of the environment, movement of objects in the world, or a gust of wind can create erroneous 

or conflicting sensory cues. 

 

Many insects use visual information to control their flight. An example is the optomotor 

response, which allows a flying insect to correct unwanted rotations about its body axes by 

generating turning responses that compensate for the rotational optic flow that it senses (Götz, 

1964). Other aspects of flight are also visually controlled: for example, honeybees (Baird et al., 

2005) and Drosophila (David, 1982) have been shown to use visual cues to regulate their flight 

speed, to avoid dangerously close objects (honeybee: Srinivasan, Zhang, & Chandrashekara, 

1993; Drosophila: Tammero & Dickinson, 2002), to orchestrate safe landings (Srinivasan et 

al., 2000) and to centre their flight through a narrow passage (Kirchner & Srinivasan, 1989). 

Honeybees have also recently been shown to use the rate of visual motion to control their 

abdominal posture (Luu et al., 2011). The faster the visual motion that is experienced by the 

bees, the greater the elevation of the abdomen. This behaviour, termed the ‘streamlining 

response’, should minimise the aerodynamic drag experienced by the insect by reducing the 

cross-sectional area of its body that is exposed to the wind (Nachtigall & Hanauer-Thieser, 

1992). However, it is not yet known whether this streamlining response is mediated purely by 

optic flow, or by additional cues such as the air flow that are experienced during flight. 

 

Vision is not the only sense that some insects use to stabilise their flight. The hindwings of 

Diptera have evolved into specialised club shaped masses, called halteres, which oscillate in 

time with the wingbeat (Pringle, 1948). These structures provide flies with a gyroscopic sense 

for the detection of unintended rotations, complementing their visually evoked optomotor 
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response (Sherman & Dickinson, 2004). The antennae of Manduca were also recently shown 

to sense gyroscopic forces in a similar way to dipteran halteres (Sane et al., 2007). 

 

Many experiments have shown that visual and mechanosensory cues would stabilize insect’s 

flight against external disturbances caused by air movements in the environment. For example, 

if a gust of wind blows an insect off course, the resulting optomotor response should help 

correct the unintended deviation from the flight path (Reichardt, 1969). Honeybees flying down 

a corridor were found to be able to regulate their ground speed in the presence of strong head 

wind (Barron & Srinivasan, 2006). This compensation was accomplished by holding constant 

the perceived optic flow (Barron & Srinivasan, 2006).  

 

However, despite some reflexes that seemingly counteract the unintended disturbances caused 

by air movements on an insect’s flight plan, air speed is also actively sensed and used to control 

other aspects of flight. Many insects, including honeybees (Heran, 1959), have also been shown 

to sense air speed and to use this to control the amplitude of their wingbeat, which may act to 

regulate their flight speed (Taylor & Krapp, 2007). Other insects sense air movements to detect 

changes in flight direction.  For example, locusts (Camhi, 1970b; Rowell & Reichert, 1986), 

Drosophila (Budick, Reiser, & Dickinson, 2007), and carrion beetles (Heinzel & Böhm, 1989) 

respond to air flow by changing the direction of their path in a compensatory fashion. 

 

It appears that insects are able to make use of air flow as well as visual cues to control various 

aspects of their flight. To investigate the effects of air flow on the control of the honeybee’s 

streamlining response we exposed tethered bees to combinations of optic flow and air flow in 

a flight arena, and observed the reactions of the abdomen. We also examined whether the 

antennae contribute to the measurement of air speed, and developed a quantitative model that 

describes how this is accomplished. 

 

2.4 Methods 

2.4.1 Experimental animals 

Adult honeybee foragers (Apis mellifera) were used in all experiments. All insects were 

collected from a single hive maintained by the Queensland Brain Institute at The University of 
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Queensland, Brisbane, Australia. Only foragers were collected, and were identified as those 

carrying pollen on their hind legs when returning to the hive.  

 

2.4.2 Tethering 

Honeybees were cold anaesthetized in a refrigerator for 20 to 30 minutes, after which they were 

removed individually for tethering. Animals spent no more than one hour under anaesthesia. 

While the insect was anaesthetised, the base of an L-shaped metal rod was attached to the head 

and the thorax by a globule of dental adhesive (shade modification, SDI), which was cured 

using high intensity blue light (radii plus, SDI). Whilst this globule occluded the ocelli, this is 

unlikely to have affected the bee’s behaviour as the ocelli have a low spatial resolution 

(Goodman, 2003) that would be unlikely to detect the movement of the grating used in this 

assay. Adhesion to the tether was facilitated by gently shaving the hair on the notum using a 

scalpel. 

 

Antennal manipulations were performed after tethering whilst the bee was still anaesthetised. 

In the case of amputation, the antennae were cut close to the base using a pair of surgical 

scissors (Figure 2-3D). Waxing of the antenna was performed using dental wax applied with a 

hand cauteriser (Change-A-Tip Deluxe Cautery Kit, Bovie Medical Corporation). The antenna 

was positioned such that the two segments, the flagellum and the scape were approximately at 

right angles (their normal orientation), and the hot wax was touched lightly to the joint. The 

wax wicked into the pedicle joint, and also across the flagellum; the success of immobilization 

was tested by gently attempting to bend the antenna with a pair of forceps (Figure 2-3C and E). 

The integrity of the waxing was tested both before and at the conclusion of the experiments, 

and honeybees were rarely found to have removed the wax (those that had were not included 

in the analysis). Honeybees undergoing this preparation still exhibited the proboscis extension 

reflex, a gustatory response to sugar water touched to their antenna, suggesting that the antennal 

nerve was still intact. In experiments with manipulated antennae, bees were generally more 

reluctant to fly, and those with waxed Johnston’s organs often tried to groom the wax off.  

 

Tethered honeybees were housed in a Styrofoam box placed on a heater, which maintained the 

temperature at 28 to 30 oC. A beaker of water, placed inside the box, provided an environment 

with the appropriate humidity. Insects typically recovered from anaesthesia after several 
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minutes in the humid box, and were then fed with several drops of 1 mol.L-1 sucrose solution, 

and had were given least 30 minutes to recover before their first flight. 

 

2.4.3 Visual stimulus display and generation 

Images were displayed on four 22” monitors (2209WAf, Dell) arranged in a diamond shaped 

arena, which provided a near panoramic virtual environment. The tethered insect was 

positioned in the centre of the arena by attaching the tether to a clip, which was held in the 

arena by an articulated arm (MA61003, Noga), with the bee’s head facing a corner of the arena. 

The LCD monitors were driven by a computer (Intel i7 CPU (4 cores at 2.67 GHz), 2.5 GB 

RAM, Windows XP SP 3), with two dual headed NVIDIA GeForce GTX 260 video cards. The 

monitors were configured to use 1680x1050 pixel resolution at a 60 Hz update rate. The 

dimensions of the monitor screens were 475x300 mm, and the diamond arrangement covered 

approximately 61o of the tethered honeybee’s vertical visual field at the closest points and 45o 

at the corners (both full angles). The black plastic frames of the monitors prevented full 360o 

coverage of the insect’s azimuthal visual field, leaving four gaps, each approximately 3o wide, 

in the front, the rear, and the two sides.  

 

As shown in Figure 2-1, the computer monitors provide panoramic visual stimulation in the 

horizontal plane, with non-stimulated areas in the dorsal and ventral view fields. Whilst not 

entirely true to the world an insect would observe in natural flight, the apparatus was designed 

to replicate the stimulus used in Luu et al. (2011) as closely as possible (the monitors are 2” 

smaller), to enable a direct comparison of the role of air speed in modulating the visually 

mediated streamlining response discovered in that study. The response to visual motion alone 

(at 0 m.s-1, Figure 2-2A) saturates at approximately 10 o.s-1 lower than that observed in the 

previous study, but is otherwise qualitatively similar. This suggests that the smaller monitors, 

and areas of the monitor occluded by the fan for air flow generation  (described in the following 

section), may have slightly reduced the strength of the visual input in stimulating the response. 

The visually evoked component of the streamlining response has previously been found to be 

the result of a non-linear spatial summation of optic flow seen across all angles of elevation 

(Luu et al., 2011) (within ±23o of the insects transverse plane), and so including stimulus in the 

dorsal and ventral view fields may not have any substantial effect, as the response is already 

close to saturation. 
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A custom written C++ program was used to generate the visual display.  This display was 

similar to that used by Luu et al. (2011), where motion was simulated along an apparently 

infinitely long tunnel of user-selectable width, displaying red and white sinusoidal gratings on 

the inside walls, with a spatial frequency of 0.014 cycles.degree-1. At the maximum optic flow 

used (600 o.s-1) the 60 Hz update rate resulted in images ‘stepping’ at 0.14   cycles.frame-1. For 

a honeybee flying along a virtual tunnel, the maximum image velocity as experienced by the 

eyes occurs in the lateral viewing direction, i.e. in a viewing direction at 90o to the direction of 

flight. The values of optic flow shown in the graphs correspond to the values pertaining to this 

viewing direction. 

 

2.4.4 Air flow generation 

Air flow, or simulated wind, was generated by two fans (TurboFan 12VDC 40x28MM 

20000RPM, NMB Technologies Corp.) connected in series, which blew wind through a square 

shaped wind tunnel that incorporated a honeycombed cross section to reduce the turbulence of 

the flow. The end of the tunnel was approximately 140 mm in front of the insect, and subtended 

22o (full angle, vertically and horizontally) of the honeybee’s frontal field of view. Whilst this 

is a sizable portion of the insect’s visual field, we do not believe that its presence would have 

affected the visually-driven component of the streamlining response, as the frontal visual field 

has been shown to have minimal influence on insect’s streamlining response (Luu et al., 2011), 

and also flight speed regulation (Baird, Kornfeldt, & Dacke, 2010). 

 

The speed of the fan was controlled by a pulse width modulated (PWM) signal, and an 

anemometer measured the air speed. The PWM signal was generated by a USB data acquisition 

(DAQ) module (U3-HV, Labjack) which was controlled in real time by a program running on 

the PC. The DAQ module also acquired data from the anemometer positioned behind the insect 

(EE-65VB, E+E Elektronik Ges.m.b.H). The PWM signal versus air speed relationship was 

calibrated by placing the anemometer at the insect’s usual flight position and measuring the air 

speed. The PWM required for a desired air speed was then found by interpolating between the 

calibration points. Turbulence, measured as the standard deviation of the air speed over a time 

interval of thirty seconds, increased in absolute value as the air speed increased, whilst the ratio 

of the standard deviation to the mean air velocity remained at approximately 5% for air speeds 

up to 5 m.s-1. The airspeed was held constant during any given experimental trial (during which 

the optic flow was varied systematically). 
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Initial experiments showed that honeybees exhibited a hysteresis-like effect when exposed to 

different air speeds. Further investigations revealed that the order of presentation of air speed 

was significantly affected the honeybees response, whereas there was no variation dependent 

on the order optic flow was presented (Section A.1). To avoid this confound, individual bees 

were only stimulated with a single constant air speed during their test in the arena (excluding 

the transient ramps up and down at the start and end of the test protocol). For any given trial, 

the air speed was assigned randomly; hence measurements of data at different air speeds are 

independent. 

 

2.4.5 Data acquisition and image analysis 

A camera (FireFly, Point Grey) filmed the side view of the bee (perpendicular to the simulated 

direction of flight, at 30 fps) against a piece of white paper (80x80 mm, placed at the opposite 

corner of the stimulus arena from the camera).  Video frames were recorded with a time stamp 

linked to the stimulus. The orientation of the honeybee’s abdomen was measured in real time 

for each frame using a custom written C++ program written in-house. The program tracked the 

axis of the insect’s abdomen, and found its angle relative to the user-defined orientation of the 

thorax. This was defined as the ‘abdomen angle’ or ‘response’. Examples of abdomen tracking 

are shown in Figure 2-1D and E. The response was defined to be positive or negative, according 

to whether the abdomen was elevated or depressed relative to the axis of the thorax. The 

abdominal angles reported throughout this study are of the honeybee’s steady-state response to 

each of the six stimulus speeds. The steady-state response was calculated as the mean 

abdominal angle measured during the last 5 s of each 10 s epoch of stimulus speed. Typically, 

the abdominal response reached a steady state within 1–3 s following the presentation of each 

new stimulus speed. 

2.4.6 Statistical analysis  

All statistical analyses were performed using IBM SPSS Statistics V20. Main effects were 

tested using ANOVA. Prior to conducting ANOVA, we conducted tests of normality, 

homoscedasticity and sphericity. The vast majority of data was normally distributed, but failed 

tests of homoscedasticity and sphericity. Sphericity was corrected using the Greenhouse-

Geisser correction, and we discuss the effect of heteroscedasticity on our analysis in Section 

A.4, as well as providing full details of all statistical tests. Flight data from bees were included 
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for analysis only if the bees flew continuously through the entire optic flow ramp. Four to six 

trials were conducted per bee to reduce inter-animal variability, and data points from multiple 

flights of an individual bee were averaged. 

 

2.4.7 Flight protocol 

For each flight trial, a tethered honeybee was removed from the humid box and placed in the 

centre of the arena and allowed to hold a small piece of waxed paper. As soon as the visual 

stimulus and air flow commenced, the paper was removed from the honeybee’s grasp and the 

tarsal reflex initiated flight. At the end of each flight the bee was returned to the humid box and 

offered several drops of 1 mol.L-1 sucrose solution. Animals were rested for at least 20 minutes 

between consecutive trials. We used a stimulus protocol that simulated flight at a progressively 

increasing flight speed, namely, 100, 200, 300, 400, 500, and 600 o.s-1. Each epoch of stimulus 

speed was 10 s in duration, thus each trial lasted 60 s. Air flow was started prior to the start of 

visual motion, and was maintained at a constant level through each trial.  

 

2.5 Results 

The effect of combined air speed and optic flow stimulation on the orientation of the 

honeybee’s abdomen was investigated by placing tethered honeybees in a flight arena (Figure 

2-1A, B and C), based on the design of Luu et al. (2011), who found that honeybees did not 

exhibit a streamlining response when no visual motion was displayed (0 o.s-1 optic flow). Our 

initial observations confirmed that, regardless of air speed, bees would not fly reliably nor hold 

a stable abdomen position when no visual motion was shown in the front-to-back direction. 

(Occasionally, the abdomen would be raised at the onset of flight, but would then drop to a 

non-streamlined position, after which flight would cease). Because of this, we did not include 

the speed of 0 o.s-1 in our optic flow test protocol.  
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Figure 2-1: Overview of the tethered flight arena. A, schematic side view of flight arena, from 

the camera’s perspective. B, schematic top view of flight arena (schematic bees are not to 

scale). C, photo of a tethered honeybee in flight taken from the position of the rear right 

monitor. D, image of honeybee with a lowered abdomen. E, image of honeybee with a raised 

abdomen. D and E are representative of video images used for analysis. The white ellipses 

depict the results of automatic image-based segmentation of the insect’s abdomen and 

determination of its orientation, as described in Section 2.4.5. 

 

2.5.1 Abdominal response to a combination of air speed and optic flow 

stimuli 

In a first set of experiments, we investigated the strength of the streamlining response that was 

evoked by various combinations of headwind and optic flow. These experiments revealed that, 

in addition to visual motion, air flow plays an important role in driving the honeybee’s 

streamlining response. Tethered honeybees flying in the arena display their characteristic 

streamlining response to optic flow, as described in Luu et al. (2011). We find, however, that 

this visually induced response is modulated by wind.  Specifically, the range of the visually 

evoked response decreases as the air speed is increased (Figure 2-2A). The reason for this is 

that when the insect is stimulated with air flow, the abdomen is generally raised further, having 

the overall effect of making the animal more streamlined (Figure 2-2D). The variation of the 

response with air speed for any fixed velocity of the visual stimulus (Figure 2-2D) indicates 

that the abdomen angle does not increase monotonically with air speed – it shows both a local 

minimum and a maximum before plateauing. Air speed appears to account for a greater range 
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of the response than optic flow: at low optic flow (100 o.s-1), the abdomen pitch varies over a 

range of ~45o in response to variation of air speed (Figure 2-2A - black arrow). In contrast, in 

the ‘no wind’ condition the abdomen pitch changes only over a range of ~25o in response to 

the variation of optic flow (Figure 2-2D - black arrow).  

 

Statistical analysis of the data in Figure 2-2A and D using ANOVA (Section A.4.1) showed a 

significant effect of optic flow (F1.6,147.3=141.39, p<0.001), as well as air speed (F8,95=6.35, 

p<0.001), and an interaction between the two variables (F12.4,147.3=4.89, p<0.001) on abdominal 

pitch.  Figure 2-2A shows that as the air speed increases, the dependence of the response on 

optic flow decreases (explaining the interaction effect observed), however, regardless of optic 

flow level, the response shows a strong dependence on air speed (Figure 2-2D). Beyond 400 

o.s-1, post-hoc tests show that there is no significant difference in abdomen position, confirming 

that the response has indeed saturated (this saturation level varies between 300 and 500 o.s-1 for 

the antennal manipulation cases described in the following section, but is qualitatively similar 

across all antenna conditions, (Sections A.4.1 to A.4.3). Air speeds were divided into four 

different groups by post-hoc tests. First, the global response minimum occurs in the ‘no wind’ 

condition. This is followed by a local maximum at 0.5 m.s-1 (the response of this depends 

heavily on the optic flow interaction), which is succeeded by a local minimum centred at 1.5 

m.s-1, before the response plateaus beyond 2.5 m.s-1. 
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Figure 2-2: The abdomen pitch in honeybees depends on optic flow and air speed.  Plotted as 

a function of optic flow with air speed as a parameter (A, B and C), and as a function of air 

speed with optic flow as a parameter (D, E and F). Note that honeybees would not fly reliably 

at 0 o.s-1 optic flow; hence this data point is omitted. A and D represent data from intact bees. 

B and E represent data from bees with amputated antennae. C and G represent data from bees 

with waxed pedicels. The legends in A, B and C show the sample size of bees tested at each 

airspeed, for a particular antenna condition. The legend in D is used for E and F. Error bars 

show ± S.E.M. 

 

2.5.2 Manipulation of the antennae 

The antennae, and specifically the Johnston’s organs (the mechanosensors that detect 

movement of the flagellum; Goodman, 2003) located in the antenna’s pedicle joint (Figure 

2-3F), have previously been reported to provide honeybees (Heran, 1959) and other insects 

(Taylor & Krapp, 2007) with a measurement of air flow in flight. To examine whether these 

receptors provide a bee with information to regulate its flight posture, we performed two 

manipulation experiments, firstly, amputation of the antenna (Figure 2-2B and E), and, 

secondly, immobilization of the antennal pedicle with wax (Figure 2-2C and F).  The 

abdominal responses of manipulated insects, exposed to three different air speeds: 0.5, 1.5 and 

3 m.s-1, as well as to the ‘no wind’ condition, were measured for comparison with the intact 

controls. This reduced set of air speeds were selected as the points of interest from the responses 

of the un-manipulated honeybees to air flow, as they represented the global minimum (0         
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m.s-1), the local minima (1.5 m.s-1), the local maximum (0.5 m.s-1), and a point well into the 

saturated region of the response curve (3 m.s-1). We hypothesized that if the antennae were 

responsible for the measurement of air speed, then there would be a difference between the 

responses of the treated animals and the untreated controls, especially at these points of interest 

in the original curve. 

 

Neither the amputation of the antenna, nor waxing the pedicle appeared to affect the basic 

characteristics of the honeybee’s response to optic flow – the response continued to increase 

monotonically (Figure 2-2B and C). Unexpectedly, however, at low to intermediate air speeds 

(0, 0.5 and 1.5 m.s-1) the response versus optic flow profiles of the manipulated honeybees 

were generally higher than those of the controls.  Furthermore the local minimum that is clearly 

present at an air speed of 1.5 m.s-1 in the responses of the control animals (Figure 2-3A) was 

no longer evident in the manipulated animals. ANOVA tests (Sections A.4.2 and A.4.3) to 

examine the influence of air speed on abdomen pitch showed no significant effect in the case 

of the waxed pedicels (F3,33=0.72, p=0.546), and a weak effect in the case of the amputated 

antennae (F3,34=3.11, p=0.039). Thus, the change in abdomen position in response to wind is 

removed or reduced in the manipulated bees. In both types of manipulation, the effect of optic 

flow remained similar to non-manipulated bees, whilst the interaction between air speed and 

optic flow was removed. This indicates that antennal manipulation removes or reduces wind-

induced variation of the response. 

 

When comparing normal honeybees with the groups of bees that had been subjected to the two 

kinds of antennal manipulation, we found a significant effect of antennal manipulation at 0 and 

1.5 m.s-1 air speed, but not at 0.5 and 3 m.s-1 air speed (Figure 2-3E). Post-hoc testing showed 

that both antennal manipulation conditions were significantly different from the control at the 

former air speeds (Section A.4.4). The reason for these differences in the manipulated animals 

is that the responses in the no-wind condition and at 1.5 m.s-1 are stronger than in the intact 

controls.  This finding implies, surprisingly, that under no-wind conditions and at intermediate 

air speeds, the input from the antennae inhibits the abdominal pitching that is observed in 

normal honeybees.  
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Figure 2-3: Comparison of honeybee’s abdomen response across various experimental 

conditions. A, comparison showing the mean response across all optic flow levels at each air 

speed, for all conditions. A star (*) denotes a significant difference between normal bees and 

both manipulations at the indicated air speed. Error bars show ± S.E.M. The sample size for 

each air speed and antenna condition are noted in the legends in Figure 2-2A, B and C. B, 

antenna morphology. C, flexibility of non-waxed antenna. D, amputated antennae. E, 

illustration of immobilisation and lack of flexibility of waxed pedicel joint. 

 

2.5.3 Response to a tail wind 

In a second set of experiments, we investigated how tethered honeybees respond to a tail wind 

by positioning the fan behind a tethered bee in the arena, and conducted experiments similar to 

those in the antennal manipulation case (at air speeds of -0, -0.5, -1.5, and -3 m.s-1, 

corresponding to the points of interest in the positive air speed response). At these negative air 

speeds, bees still displayed their characteristic streamlining response to the visual stimulus 

(Figure 2-4). The responses at -1.5 and -3 m.s-1 were close to the baseline ‘no wind’ condition, 

whilst the response at -0.5 m.s-1 was slightly elevated. Overall the bees exhibited a reduced 

response to negative air speeds. ANOVA testing revealed that, with tail winds, the streamlining 

response depends weakly on airspeed (F3,32=3.10, p=0.041), with significant differences being 

observed between the response at -0.5 and -1.5 m.s-1 (Section A.4.5). 

 

Whilst the observed response to a tail wind is clearly different from a honeybee’s response to 

a head wind, it is not clear if this is because the honeybee is unable to sense the air speed 

(because its antenna are occluded by its body), or could sense the air flow, either with its 

antenna or with other sensory organs, and chooses not to respond. However, the results indicate 

that the streamlining response is functionally asymmetrical, with the response at positive air 

speeds differing from the response at negative air speeds, much as the streamlining response to 

optic flow (Luu et al., 2011). 
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Figure 2-4: Response to a tailwind. Plotted as a function of optic flow with air speed as a 

parameter (A), and as a function of air speed with optic flow as a parameter (B). The box in A 

shows number of bees tested at each air speed. Error bars show ± S.E.M. 

 

2.5.4 Invariance of the streamlining response to thorax orientation 

During natural flight honeybees reorient their entire body as their flight speed increases 

(Nachtigall, Widmann, & Renner, 1971). In this situation, the head, thorax and abdomen are 

rotated forwards relative to the flight path, but the thorax–abdomen angle (which we describe 

as abdomen pitch in this study) remains relatively constant. Such a rotation would change the 

angle of the insect’s head and the sensory structures on it, relative to the oncoming optic flow 

and air flow, which in this study are directed horizontally. To test if the angle of the thorax 

affected the abdominal pitch response to optic flow and air speed, we conducted experiments 

where bees were tethered with the thorax pitched up, simulating slow or hovering flight, and 

the thorax pitched down, a position that is not assumed during normal flight. These results were 

compared to those obtained for the usual experimental paradigm where bees were tethered with 

their thorax at 0o, simulating fast flight. These angles are of the thorax relative to the horizontal, 

and are analogous to the body angle measured for free flying insects (although in free flight the 

abdomen is usually held in line with the thorax). The effects of air speeds that would elicit a 

low, intermediate, and strong streamlining response were tested, these air speeds being 0, 1.5, 

and 3 m.s-1 respectively. 

 

The thorax angle of bees could only be set by changing the angle they were glued relative to 

the metal tether; it was not possible to adjust this during or between experiments. The insects 

often refused to participate in experiments if they were anesthetized a second time, and because 

of this, separate bees were tested for each thorax orientation. The average thorax angle of bees 
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with their thorax pitched down was -33 ± 4.6o, and the average with their thorax pitch up was 

36 ± 5.3o. In addition, we used data collected with the thorax pitch horizontal (2 ± 4.2o) from 

the standard experiments described in Chapter 2. Notably, bees with their thorax pitched down 

were very reluctant to fly (even more so than when antennal manipulations were performed); 

indeed, the flight attitude appears very unnatural (Figure 2-5). In these experiments the bees 

were only tested at a single air speed because there was an effect of presentation order on the 

response to air speed, as described in the following section. 

 

Bees with their thorax pitched up show a similar response (Figure 2-5A and D) to optic flow 

and air speed, as do normal bees (Figure 2-5B and E). Increasing strengths of optic flow and 

air speed both act to increase the response, and they appear to interact via a non-linear, 

saturating function. Both main effects (air speed (F2,25=11.10, p<0.001) and optic flow 

(F1.6,41.0=28.31, p<0.001)), and their interaction (F3.3,41.0=4.49, p=0.007), are significant 

(Section A.4.6). Furthermore, there is no statistical difference between bees in this condition 

and bees with their thorax tethered horizontally, neither as a main effect of tethering angle 

(F1,57=0.17, p=0.678), nor as an interaction with any other factors (Section A.4.6). Hence, it 

appears that at the upper and lower limits of thorax angles that a bee might assume during 

natural flight (at the three wind speeds tested), the streamlining response persists, regardless of 

thorax angle. Because thoracic reorientation also rotates the honeybee’s head, this implies the 

streamlining response is invariant to the perceived direction of optic flow and air movement 

(and also the direction of gravity) for head orientation angles between 0o and 36o.   

 

Conversely, honeybees with their thorax pitched down show a qualitatively different behaviour 

(Figure 2-5C and F); noticeably, optic flow no longer acted to steadily increase the abdomen 

pitch to a plateau point. In fact, for all three air speeds, the response relative to optic flow 

reaches a peak value before the maximum optic flow rate tested, after which it begins to 

decrease. Furthermore, the responses at 0 and 1.5 m.s-1 air speed overlap substantially, 

suggesting that the response to air speed is also modified by pitching the thorax down. ANOVA 

shows there is no longer a significant main effect of optic flow (F2.9,47.0=1.58, p=0.208), 

although it continues to interact with air speed (F5.9,47.0=2.8, p=0.021), which does itself have 

significant main effect (F2,16=8.19, p=0.004; Section A.4.7). Honeybees flying with their thorax 

pitched down are in a distinctly un-natural position, and it is perhaps unsurprising their 

response is fundamentally different. 
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Figure 2-5: The honeybee’s abdomen response when tethering angle of the thorax is varied.  

The response is plotted as a function of optic flow with air speed as a parameter (A, B and C), 

and as a function of air speed with optic flow as a parameter (C, D and E). A and D represent 

data from bees with their thorax pitched up. B and E represent data from bees with a horizontal 

thorax (re-plotted from Figure 2-2). C and F represent data from bees with their thorax pitched 

down. The legends (A, B and C) show the sample size of bees tested at each airspeed, for a 

particular thorax pitch. The legend in D is also used for E and F. The image at the bottom of 

the figure show representative images of bees at different thorax tethering angles, flying in a 3 

m.s-1 air stream. Error bars show ± S.E.M. 

 

2.5.5 Passive lifting by air flow 

It is possible that airflow from the fan acted to lift the abdomen passively, by causing a pitching 

moment about the thorax-abdomen joint (generated by aerodynamic force against the 

abdomen), to pivot it into a streamlined position. For this to occur, the aerodynamic pitching 

moment would have to exceed the opposing moment caused by the weight of the abdomen 

itself. Since aerodynamic forces increase as the square of the wind velocity, high air speeds 

could exert an appreciable force against an insect’s abdomen.  
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The effect of drag force on passive abdomen lift was investigated by using honeybee bodies 

that would experience the same drag forces as living bees. Honeybees were collected from the 

same hive as the insects used in the other experiments.  They were tethered as usual, and then 

euthanized by amputation of the head capsule before they had recovered from the cold 

anaesthesia. The thorax and abdomen were immediately tested using air speeds of 0, 1, 2, 3 

and 4 m.s-1. Prior to testing, the abdomen was manually positioned at approximately -90o, 

which should have exposed it to the maximal possible drag force for a given air speed. 

Reflexive motions of the legs were observed for up to an hour after decapitation, indicating 

that rigor mortis had not set in. 

 

The results indicate that air flow over the abdomen of deceased bees causes a small increase 

(several degrees) in the abdomen posture (Figure 2-6). In addition to aerodynamic forces, the 

thoracic ganglia could have caused abdominal motion either randomly, or based on information 

from air speed sensing organs on the body that projected directly to it, and these motions would 

have been combined with those caused by external forces. However, ANOVA (Section 0) 

showed no significant effect of air flow (F4,34=0.83, p=0.517) on abdomen posture, and the 

range of the response exhibited by live flying bees far exceeded that of the decapitated insects, 

even at the lowest speed of optic flow (Figure 2-6). The aerodynamic forces clearly play a 

minor role in lifting the abdomen and the streamlining response to air speed is a primarily 

active response. 

 

 

Figure 2-6: Passive forces acting on the abdomen. The effect of air speed on the abdomen pitch 

of deceased honeybee bodies, compared to the response of live tethered honeybees 

experiencing an optic flow of 100 o.s-1 (the lowest optic flow condition). N=7 deceased bees. 

Error bars show ± S.E.M. 
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2.5.6 A model of the interaction between air speed and optic flow 

Previous investigations of other flight control behaviours that are driven by visual as well as 

mechanosensory stimuli in Drosophila (Sherman & Dickinson, 2004) and Manduca 

(Hinterwirth & Daniel, 2010) have documented multimodal responses that  can be accurately 

characterized as a linear, or weighted linear, summation of the visual and mechanosensory 

components of the response. We examined whether the abdomen response to the optic flow or 

to the wind could each be described by an input-output relationship that involved a saturating 

nonlinearity (Figure 2-7A and B). It was found that, in each case, the input versus output data 

were well fitted by a variable slope sigmoidal equation (Gibson, 1950), using least squares 

nonlinear regression (Figure 2-7F and G). Details of all models are in Section A.2.1. 

 

How do optic flow and wind interact to generate the streamlining response?  If the net response 

is a linear summation of the individual response to each stimulus, then it should be possible to 

predict the response to the combined stimuli by summing the (saturating) response to each 

stimulus. For example, it should be possible to predict the response to optic flow at 100 o.s-1 

and an air speed of 5 m.s-1 from the response to an optic flow at 100 o.s-1 (with zero air speed), 

and the response to wind at 5 m.s-1 (with zero optic flow). However, when the two saturating 

responses are combined as a linear summation (Figure 2-7C), the result substantially 

overshoots the measured response for combinations of the two stimuli (Figure 2-7I and J). 

 

A weighted sum of the two original saturating responses was also tested (Figure 2-7D). The 

optimal weightings for both saturation functions were found using a least squares fit across the 

entire response surface; optic flow was weighted by a factor of 0.45 and air speed by a factor 

of 0.74 (Figure 2-7D, G1 and G2 respectively). Whilst this weighted sum was found to perform 

well at predicting the air speed response curve for low and high optic flows (Figure 2-7F and 

I), it was less successful at predicting the entire response versus optic flow curve. Notably, the 

range of the optic flow response decreases between the 0 and 5 m.s-1 air speed conditions, 

which is not captured by the weighted sum model (Figure 2-7G and J). 
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Figure 2-7: Model predictions of the abdomen pitch.  Model types shown: A and B, abdomen 

pitch response as a function of each stimulus; C, Linear summation; D, linear weighted 

summation; E, non-linear combination. F, G, I and J, show response comparisons for all models 

at the boundaries of the measured response surface: F, response vs. air speed at 100 o.s-1 optic 

flow (the legend in this plot is used for F, G, I and J); G, response vs. optic flow at 0 m.s-1 air 

speed; I, response vs. air speed at 600 o.s-1 optic flow and J, response vs. optic flow at 5 m.s-1 

air speed. H and K, response comparison of non-linear model refit to data from antenna 

manipulated bees, at low and high optic flow boundaries of the response surface (Model details 

and plots at the low and high air speed boundaries are shown in Section A.2.2). Some model 

parameters are refit (separately for each type of antennal manipulation), whilst others are held 

at the same values as those found for non-manipulated bees: H, response vs. air speed at 100 
o.s-1 optic flow (the legend in this plot is used for H and K) and K, response vs. air speed at 600 
o.s-1 (note that the curve for Adjust Sat.OF for both manipulations overlap the curve for the 

original model). Abbreviations: AS – air speed, OF – optic flow, AbP – Abdomen pitch, G – 

Gain. Details of all model parameters are given in Section A.2. 

 

Finally, the response was modelled as a non-linear combination of the two stimuli. Whilst there 

are many possible ways in which these responses could be combined nonlinearly, we found 

that a linear summation of the saturating response to each of the two stimuli, in conjunction 

with an interaction in which the magnitude of the response to optic flow was modulated by the 



Chapter 2 

| 36 | 

air speed (as shown in Figure 2-7E), was able to predict the observed ranges of the responses 

to the two stimuli, either in isolation or in combination (see Figure 2-8D and E). To modulate 

the optic flow response by air speed, a saturating function of air speed, Sat.AS2 (Figure 2-8B) 

was used to adjust the gain along the optic flow pathway, Sat.OF (Figure 2-8C). While the output 

of Sat.AS1 (Figure 2-8A) increases as the air speed is increased, the output of Sat.AS2 decreases 

with increasing airspeed (Figure 2-8C). This interaction can be viewed as a gain control that is 

exerted by the airflow sensing pathway on the optic flow sensing pathway, in which the gain 

of the optic flow pathway is progressively reduced as the air speed increases. This postulated 

interaction successfully predicts the peak that is consistently observed at 0.5 m.s-1 in the 

response to variation of air speed (Figure 2-7I), which arises from slight differences in the 

thresholds and slopes of the saturating functions Sat.AS1 and Sat.AS2.  

 

A summary of the model, showing the block diagram and the exact profiles of the three 

nonlinearities is shown in Figure 2-8. This figure also shows a comparison of the 

experimentally measured two-dimensional response surface (Figure 2-8D) with that predicted 

by the model (Figure 2-8E). This model is designed to predict the response for positive air 

speeds and optic flows, the standard flight conditions for a honeybee.  
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Figure 2-8: Model describing the non-linear interaction of air speed and optic flow. The plots 

indicated by dashed lines show the input-output relationships at various stages of the model. 

A, response to air speed. B, modulation of gain of the optic flow path way by air speed. C, 

response to optic flow. D, measured response surface. E, predicted response surface. 

Abbreviations: AS – air speed, OF – optic flow, AbP – Abdomen pitch. Model details are 

shown in Section A.2.1. 

 

2.5.7 Streamlining in the absence of antennal information  

Whilst this model captures the response of normally tethered honeybees, can one predict the 

honeybees’ streamlining responses when they are deprived of air flow information from their 

antennae? From Figure 2-2 and 2-3 it is clear that whilst both antennal manipulations are 

significantly different from the control case, the response is also modulated by air speed to 

some extent, which in the case of antenna amputated bees is significant. From this, we might 

assume that streamlining is not only driven by optic flow following these manipulations, but 
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that the honeybee receives some measure of air speed from other sensory organs that would 

usually be combined with information from the antenna.  

 

If all model parameters are refit (Section A.2.2), then the model is able to predict the bee’s 

response to air speed after either type of antennal manipulations (Figure 2-7H and K, and 

Figure A-3). Notably, different model fits are required to capture the observation that 

streamlining is increased at high air speed when the antennae are amputated, but decreased at 

similar air speeds when the pedicels are waxed. It turns out that in both cases the response 

range, or gain, of both saturating functions is reduced (Table S2-1), which might be expected 

given that the honeybee’s primary air speed sensor has been disabled. However, it is surprising 

that bees react differently to the two different manipulation cases, given that the same sensory 

information has been removed (waxing a honeybee’s pedicel has been shown to completely 

remove any response to air speed from the antennal nerve, which would otherwise be present 

in intact antennae (Heran, 1959)). In both cases, they would presumably have the same 

remaining alternate, but unknown, mechanisms of sensing air speed. If the sensory systems are 

the same and the outputs are different, but our model can still predict the outcome, then it 

appears that the manipulated bees must have used different weightings at the neural level for 

combining the two sensory modalities. We comment on this further in the Section 2.6. 

 

To further elucidate how honeybees made adaptations to use what air speed sense they had 

remaining after antennal manipulation, we tested if some model parameters could be held 

constant, at the level that fit the data for normal honeybees, whilst others were refit. In brief, if 

only the parameters in both saturating functions to air speed (Sat.AS1 and Sat.AS2) are allowed 

to vary, the model can be fit nearly as well as when all parameters are adjusted (Section A.2.2). 

Conversely, if only the parameters in the saturating response to optic flow (Sat.OF) are allowed 

to vary, the fit is qualitatively no better than the unadjusted model (Figure 2-7H and K, and 

Figure A-3). Further, if the terms in only one of Sat.AS1 or Sat.AS2 are recalculated, relatively 

good model fits are achievable, but they fail to capture the decrease in abdomen pitch at high 

air speeds and low optic flow rates for pedicel waxed bees (Figure A-3). Nevertheless, the 

model captures most of the observed response, particularly for the antennal amputation. In all 

cases, there is considerable flexibility in using this model to explain the behaviours that are 

observed under all of the experimental conditions (Table A-1).  
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2.6 Discussion 

Our findings show that honeybees measure both air speed and optic flow to actively control 

their abdominal angle during tethered flight. The response to wind is asymmetrical, showing 

that honeybees differentiate between head and tail winds. This is in concordance with the effect 

of optic flow, which is also asymmetrical; honeybees respond by elevating their abdomen to 

progressive optic flow but not to regressive flow (Luu et al., 2011). Given the relatively small 

movements of the abdomen that are observed in tethered honeybee bodies, it seems likely that 

the raising of the abdomen is primarily an active response that is driven by sensing optic flow 

and air flow, rather than the passive mechanical lifting of the abdomen by air flow alone, which 

has previously been suggested (Nachtigall & Hanauer-Thieser, 1992; Nachtigall et al., 1971). 

 

Luu et al. (2011) proposed that the raising of the abdomen serves to actively streamline an 

insect and reduce its energy consumption during flight. The present study lends support to this 

idea, as combining information from visual motion and airflow causes the abdomen to be raised 

into increasingly streamlined positions, further contributing to the energy savings of the insect 

in flight. The range of the air speed response curve at low optic flow is approximately 1.8 times 

that of the optic flow response curve with ‘no wind’. In other words, wind appears to be more 

effective than optic flow at strengthening the streamlining response. The additional use of optic 

flow may increase the robustness of the response to fluctuations in air speed arising from 

turbulence during natural flight. 

 

Our antennal manipulation experiments show that the antennae contribute to regulation of the 

insect’s abdominal position in response to wind. When the antennae are either amputated or 

the Johnston’s organs are immobilised, the modulation in response to air speed is clearly 

reduced. This supports previous findings from Heran (1959), which showed that the Johnston’s 

organs are also responsible for regulating the bee’s wingbeat amplitude in response to varying 

air speeds. Likewise, other studies have implicated the Johnston’s organs in airflow sensing in 

butterflies (Niehaus, 1981), flies (Budick et al., 2007), dragonflies (Gewecke, Heinzel, & 

Philippe, 1974) and locusts (Gewecke, 1970) and have also suggested other mechanosensory 

roles (hearing (Dreller & Kirchner, 1993) and electric field perception (Greggers et al., 2013) 

in honeybees and inertial sensing in Manduca (Sane et al., 2007). Indeed the Johnston’s organs, 

and antennae more generally, are recognized to provide insects with a wide range of sensory 

measurements. However, in both kinds of antennal manipulation, we find that there is still some 
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residual modulation in the abdominal response to airflow, and this activity can be predicted in 

both cases by our non-linear model if the insects are assumed to still have a mechanism to sense 

air speed. This suggests that other sensory receptors also contribute to the honeybee’s 

perception of airflow, although these appear to have a reduced effect on the response compared 

to the information provided by the antennae. These additional sensory channels could be 

innervated hairs in various parts of the body, or wing load sensors, as are found in many orders 

of insects (Taylor & Krapp, 2007).  

 

Our study indicates that the abdomen response to combinations of optic flow and air speed 

involves nonlinear interactions between the two sensory modalities. These interactions cannot 

be predicted accurately by using a weighted linear summation of the response to either 

stimulus. This is in contrast to other studies of visual and mechanosensory integration in 

insects, such as Drosophila (Sherman & Dickinson, 2004) and Manduca (Hinterwirth & 

Daniel, 2010), where multimodal responses have been found to combine as a linear or weighted 

sum to predict a response. We find that, in the case of the streamlining response, a non-linear 

combination of the saturating responses to wind and optic flow allows the model to predict the 

responses to various combinations of the two stimuli as well as the unexpected peak at 0.5 m.s-

1. Thus, a relatively simple, nonlinear combination of two stimuli can create an apparently 

complex behavioural response. Furthermore, this model can also be refit to predict the response 

after antennal ablations (assuming the bees have some other mechanism of sensing air speed), 

showing the model is capable of predicting some of the effects of manipulating the wind sense. 

 

With the same information from the antenna being removed in both antennal manipulations, 

and likely the same alternate sensors providing air speed measurements, why does the response 

vary between bees with amputated antennae and waxed pedicels? The results of our non-linear 

model show that such results can be predicted if honeybees make different adjustments to the 

way in which they process air speed information in the two cases. We speculate that this may 

be a mechanism of adapting to uncertain sensory information. When a bee’s antennae are 

amputated, it may be aware of this, and may then weight information from the correct, but 

possibly less sensitive, alternate sensors more strongly. When a bee’s antennae are waxed it is 

less obvious they have been compromised, and the bee may not perform such reweighting, and 

even continue to use the erroneous air speed signals from its immobile Johnston’s organs. 
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Figure 2-9: Streamlining reduces the power required for fast flight. A, body angle in free flight 

as a function of advance ratio for a variety of insect species (A, C and D use this legend). Note 

that this is a plot of body angle (the angle from the anterior tip of the head to the posterior point 

of the abdomen), rather than the abdomen pitch referred to elsewhere in this chapter. By 

convention, this is plotted with positive 90o indicating a non-streamlined flight position, rather 

than negative 90o as we used for the abdomen pitch. B, ratio of relative parasitic power (P*par) 

to relative total power (P*tot) required for flight at increasing advance ratios, when streamlined 

or not (SL: streamlined; NSL: not streamlined), for two species. C, parasitic power per unit 

body mass required for flight as a function of advance ratio when insects streamline as normal 

(using the body angles in A for each species). D, as for C, but the power is recalculated as if 

the insects had maintained the same body angle as for hovering (using the body angle at an 

advance ratio of zero for each species in A). The broken lines in B are calculated using the 

same approach. See Section A.3 for details on this data, and references.  

 

Adjustments in body angle were first observed in free flying, rather than tethered insects. In 

free flight, the majority of insects have a similar response to what we have observed in tethered 

honeybees. Figure 2-9A shows body angle plotted against the advance ratio (the ratio between 

forwards velocity and mean flapping velocity of the wingtip), and as flight speed, and hence 

the advance ratio increase, the pitch angle of the body is adjusted until it is almost horizontal. 

However, in free flight the thorax and head are also rotated forwards, which a tethered insect 

cannot do. The insects we consider in the comparison shown in Figure 2-9A vary in size by 
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three orders of magnitude, as does the Reynolds number of their body during flight (Section 

A.3), yet most show a similar streamlining behaviour. 

 

In this chapter, we focus on active, behavioural adjustment of the abdomen, which appears 

primarily to reduce body drag; however, insects also have some aspects of streamlining 

inherent to their morphology. This is the drag coefficient of an insect’s body, which is usually 

compared between insects when the body is orientated with the long axis parallel to the air 

stream. This coefficient ranges from 0.25 in the case of Manduca (Willmott & Ellington, 

1997b), which are very streamlined, to over 2.3 for small flies (Hocking, 1953), which are 

generally less streamlined. Yet, regardless of their inherent aerodynamic design, the majority 

of insect species make some attempt to streamline their flight. Does streamlining actually 

provide worthwhile benefits for insects? The comparison in Figure 2-9 (C and D) reveals that, 

when the insect streamlines in the left hand plot, the mass specific parasitic power (the power 

used to overcome drag against its body), increases with advance ratio, but for all the insects 

considered this would more than double at the equivalent advance ratio if it were not to 

streamline its body. This effect is most pronounced near the upper limits of the flight speed of 

each species. 

 

Reduction in parasitic power is only meaningful if it represents a large contribution to the total 

power required for flight (a flying animal must also support its body weight which requires 

energy). The total power required for flight over a range of flight speeds has only been found, 

by simulation for two species; Drosophila virilis (Sun & Wu, 2003) and Bombus terrestrius 

(Wu & Sun, 2005). The ratio of parasitic to total power for these two species is similar over 

their flight speed ranges, and whilst parasitic power represents a negligible portion of the total 

power at low advance ratios, it rises rapidly to near a tenth of the total power at higher flight 

speeds (Figure 2-9B). If each species were to not streamline, and maintained their hovering 

abdomen angle across all flight speeds, parasitic power costs at high air speeds would be even 

larger, approaching one fifth of the total power required by Drosophila (the increase for 

bumblebees is not so severe, as they start at a body angle 20o closer to horizontal). Although it 

has been suggested streamlining is of little benefit for small insects (Vogel, 1994), this 

statement appears to be only true when evolving an insect’s body shape to be aerodynamically 

streamlined; regardless of their size or inherent drag coefficient, most of the insects considered 

here assume a streamlined body angle and benefit by reducing parasitic drag, which might 

otherwise be a factor that limits their maximum flight speed.  
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An exception to the general trend for streamlining is the order Coleoptera, the beetles. The 

rhinoceros beetle we include in Figure 2-9 do not streamline, and consequently they are likely 

to experience a body drag that is much higher than in for other insects at comparable advance 

ratios. These insects also reach maximum flight speed at lower advance ratios than other large 

insects in our comparison (hawk moth and locust), suggesting that body drag may be a limiting 

factor on the upper limit for the flight speed that beetles can attain. In some cases, other beetles 

adopt a peculiar looking posture where the thorax is not re-oriented, but the head is thrust 

forward, and the abdomen is partially lifted up into a streamlined position (Brackenbury, 1994). 

Beetle flight is somewhat different from the other insects we have considered: whilst they have 

only a single pair of true wings, like Diptera, their front wings, or elytra, are hardened and more 

like armour than wings. Elytra no doubt provide desirable protective benefits, and in flight may 

generate close to a fifth of the lift required to keep the insect aloft (much like a fixed wing 

aircraft), and even beat in time with the rear wings, albeit at a smaller amplitude (Schneider & 

Hermes, 1976). Thus whilst elytra may not have evolved to aid beetles in flight, their flight 

behaviours are probably optimized to make the most of their aerodynamic properties, possibly 

placing less emphasis on streamlining other body parts. 

 

In theory, an insect should benefit from assuming a streamlined posture at any air speed above 

zero. Why, then, would a flying insect choose not to be streamlined at all flight velocities? 

When the abdomen is raised to a streamlined position it exerts the largest possible nose-up 

pitching moment on the insect. Whilst aerodynamic forces against the abdomen would act to 

raise the abdomen, our experiments, and calculations of the aerodynamic forces on free flying 

bumblebees (Dudley & Ellington, 1990b), show that this would be insufficient to sustain the 

abdomen in a streamlined position even at high air speeds. Much as they must support the 

insect’s weight with a vertical force when hovering, it seems that insects’ wings must also 

generate a nose-down pitching moment to allow streamlining. Hoverflies hover with 

‘streamlined’ abdomen positions, and simulation studies have shown the power requirements 

for hover for these insects is only 10% more than when hovering with their abdomens lowered 

(Mou, Liu, & Sun, 2011). However, they do appear to have morphological adaptations that 

facilitate this; the relative distance from the centre of mass to their wing base is approximately 

half that of many other insects, including other Diptera (Ellington, 1984a), which would reduce 

the nose-up moment resulting from holding the abdomen up. Hovering with a raised abdomen 
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may be more energetically taxing for other insects, in which case the choice to streamline could 

be a compromise. 

 

We previously mentioned that an insect in free flight rotates its entire body forwards. This does 

not necessarily imply that the net force vector (i.e. the angle between thrust and lift) produced 

by an insect’s wings rotates with its body as the insect can also adjust its stroke plane. In fact, 

whilst both Drosophila (David, 1978) and bumblebees (Dudley & Ellington, 1990a) are 

observed to rotate their bodies by 40o or more over the range of their free flight speeds, 

simulation studies show that the direction of the net force vector produced by the wings only 

varies by around 10o for both insects (Sun & Wu, 2003; Wu & Sun, 2005), suggesting that 

changing the angle of the net force vector via thoracic reorientation may not be required for 

fast flight (although tethered Drosophila flying in still air show an angle of the net force vector 

which is fixed to the thorax (Gotz & Wandel, 1984)). The streamlining response (relative to 

the insect’s body) of tethered honeybees is invariant to the pitch of the tethered insect’s thorax, 

as least for positive thorax pitch angles varying from 0o to 36o. Thus, a complementary purpose 

for thoracic reorientation may be to allow the abdomen to freely move into a streamlined 

position relative to the opposing airflow; the reduction in energy expenditure from streamlining 

may make sustained fast flight more achievable for many insects. 

 

Whilst minimising energy expenditure (or maximizing flight speed given an energy budget), is 

a compelling reason to streamline the abdomen, there may be other considerations for insect 

flight. One reason for maintaining a low abdominal position may be to improve aerodynamic 

stability. Besides decreasing the nose-up pitching moment on the body, lowering the abdomen 

would increase the moment of inertia about the insect’s roll axis (enhancing roll stability), and 

bring the insect’s centre of mass forward which would enhance longitudinal stability (Taylor 

& Thomas, 2002). This is not the only option available to insects; Combes and Dudley (2009) 

observed that tropical orchid bees extended their hind legs at high flight speeds to increase roll 

stability, at the cost of increased drag, but did not change their abdominal posture. Further, 

tethered Drosophila (Zanker, 1988b) and Manduca (Dyhr et al., 2013) have been observed to 

actively raise or lower their abdomen when shown a visual stimulus that indicates a pitch 

disturbance. This abdominal motion would both change the moment generated by the weight 

of the abdomen, and also create an inertial torque about the thorax-abdomen joint, both of 

which would act to adjust the pitch of the insect’s thorax (assuming the wings did not modify 
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their generated pitching moment). In the case of Manduca, such a reaction has recently been 

calculated to be capable of providing pitch stability (Dyhr et al., 2013). 

 

Clearly, by changing their body posture, flying insects trade benefits from reducing energy 

expenditure with increased aerodynamic stability and control, and possibly other, as yet 

undiscovered factors. One potential application of such a control scheme would be for 

dynamically reconfigurable small aerial vehicles. For instance, the battery pack on such a robot 

could be placed and actuated in a similar way to an insect’s abdomen, and this type of device 

has recently been shown to provide pitch stability for a quadrotor helicopter, based on the 

control model discovered for Manduca (Demir et al., 2012). However, on long distance, 

cruising flights it would be critically important to ensure that such an aircraft is streamlined, as 

body drag accounts for the majority of power requirements in macro scale vehicles at higher 

velocities (Anderson, 2005).  
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 Walking honeybees adapt their behaviour to 

improve performance in virtual reality 

 

3.1 Preamble 

The chapter describes the finding that honeybees walking on a trackball change their behaviour 

depending on the properties of feedback sensor that is used to measure the bee’s actions during 

a closed-loop visual fixation task. Specifically, honeybees exploit a systematic error that is 

present in optical motion sensors from computer mice (that are often used as feedback for 

virtual-reality experiments with walking animals) which allows bees to more accurately control 

the fixation stimulus. Preliminary results of this study were presented at the Australasian 

Society for the Study of Animal Behaviour Annual Conference (2013). This Chapter (and 

Appendix B) have been prepared and formatted as a publication, for submission to the journal 

‘PLoS One’ authored by G. J. Taylor (the candidate), A. C. Paulk, T. W. L. Pearson, R. J. D. 

Moore, J. A. Stacey, D. Ball, B. van Swinderen, and M. V. Srinivasan. The contributions of 

each author are detailed in the preliminary pages of the thesis.  

 

3.2 Abstract 

Studying animals using tethered virtual reality paradigms can allow the neural mechanisms 

underlying their behaviours to be investigated, which is not always possible using unrestrained 

animals. Measurement of the animal’s behaviour is an important aspect, particularly where its 

actions affect the visual stimuli, as in closed-loop experiments. Many different sensor types 

have been used to measure behaviour, and although some may produce more accurate measures 

than others, whether differences in accuracy between two separate sensors would affect the 

study animal’s behaviour has not been considered. Here we find that honeybees change their 

behaviour by walking faster, depending upon whether a computer vision algorithm (FicTrac) 

or computer mice sensors are used to detect their behaviour when walking on an air-suspended 

ball in a closed-loop virtual reality arena. The bee’s adaptation exploits a systematic error in 

the computer mice sensors, and this increases their control of the stimulus location. This shows 

honeybees can rapidly change their behaviour, even when coupling two normally separate 

motor outputs, walking forward and turning, in order to improve their performance.  



Chapter 3 

| 48 | 

3.3 Introduction 

All animals use sensory information from the environment to guide their behaviour. To 

understand how animals use sensory information, researchers have designed virtual reality 

paradigms for tethered animals, which allow for tight control of sensory stimuli and detailed 

observation of behavioural responses from the animals interacting with the stimuli (Dombeck 

& Reiser, 2012). By fixing the animal in place, tethered experiments allow measurement of its 

reaction to precisely controlled stimuli. To study how the animal interacts with sensory stimuli, 

some motor output must be measured concurrently and fed back into the virtual reality system 

to adjust the animal’s sensory environment, resulting in a closed-loop paradigm (Taylor et al., 

2008). In particular, one of the best-studied closed-loop paradigms involves tethered flying 

flies orienting to objects in a circular arena (Poggio & Reichardt, 1973). In those studies, flies 

were shown to adjust their flight patterns to bring dark, vertical bars into their frontal visual 

field, a behaviour termed “fixation”. This type of fixation has formed the groundwork for 

testing visual responsiveness, learning and memory, the neural mechanisms of visual 

processing, and how flies to adapt their motor patterns to improve fixation (Heisenberg & Wolf, 

1984). 

 

Closed-loop experimental paradigms with a tethered animal walking on an air-supported 

trackball, have increased in popularity over the last decade. In these experiments, optical 

motion sensors repurposed from consumer computer mice (CM) are often used to measure the 

angular velocity of the ball, which is then used to control the sensory environment, such as 

computer generated visual images (Harvey, Collman, Dombeck, & Tank, 2009; Seelig et al., 

2010; Takalo et al., 2012). The CM sensors used in this study optically measure changes in ball 

position by acquiring sequential images of a surface and calculating the direction and 

magnitude of visual movement (Avago Technologies, 2009), which is integrated to determine 

the animal’s instantaneous orientation in the virtual environment.  However, CM sensors have 

been found to suffer from errors that alter the accuracy and precision of their measurements, 

for instance; inconsistent measurement of motion about both axes (Moore et al., 2014; Palacin, 

Valganon, & Pernia, 2006), effects of surface texture and pattern (Minoni & Signorini, 2006), 

and illumination (Tunwattana, Roskilly, & Norman, 2009).  Despite such errors, animals have 

been shown to perform tasks including fixation (Bahl et al., 2013) and navigation (Harvey et 

al., 2009) with CM sensors.  
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Computer vision software (Moore et al., 2014), provides an alternative for measuring the 

angular velocity of a trackball, using video image sequences of the ball that are acquired and 

processed in real time. In contrast to CM sensors, FicTrac measures the absolute orientation, 

rather than the velocity, of the ball at each point in time. In addition, computer vision software 

measures this velocity with greater precision compared to CM sensors, and is also robust to a 

wide range of experimental conditions (Moore et al., 2014). When CM sensors and FicTrac 

were compared using the same animals, namely honeybees, the two systems produced differing 

results in open-loop (where the bees did not control the stimulus position). In addition, FicTrac 

could be used for closed-loop feedback, such that honeybees could reliably fixate on a single 

green bar in closed-loop (Moore et al., 2014), positioning it in their frontal visual field during 

an experiment, as has been demonstrated with the use of CM sensors (Paulk et al., 2014).  

 

Classic experiments with tethered flies have measured their yaw torque (or wingbeat amplitude 

difference as a close proxy; Gotz et al., 1979) as behavioural output to control closed-loop 

fixation (Poggio & Reichardt, 1973) or their turning motions when walking on an air supported 

ball (Bahl et al., 2013). In addition, other experiments have shown Drosophila can learn to use 

a wide range of non-standard behavioural outputs to control a fixation stimulus, such as their 

flight thrust (Wolf & Heisenberg, 1991), and leg movements (Wolf et al., 1992). Insects have 

the capacity to adapt their motor commands to increase their performance in achieving their 

behavioural goal. Given the differences between measurements from CM sensors and FicTrac, 

would insects change their sensorimotor control depending on the feedback sensor used in 

closed-loop, particularly if this could optimise their performance? If insects did adapt, this 

would raise questions around how closely their behaviour in virtual-reality would correspond 

to behaviour in the real world. 

 

To examine whether the feedback sensor used in closed-loop virtual-reality would affect an 

insect’s behaviour, we tested the honeybees fixation behaviour (Moore et al., 2014; Paulk et 

al., 2014) using several feedback sensors conditions. Honeybees walked on a ball, the motion 

of which was measured as feedback by using FicTrac, CM sensors, or when the output from 

FicTrac was adjusted to mimic systematic errors that occurred in CM mice. In all cases bees 

could fixate the stimulus, but increased their walking speed if this reduced the sensitivity of the 

feedback sensor to their turning rate, which occurred when using the CM sensors and FicTrac’s 

adjusted measurements. This behavioural change was made within two minutes, and the 
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reduction in turning rate sensitivity aided the honeybee as it could improve fixation 

performance. 

 

3.4 Methods 

3.4.1 Honeybee preparation 

Honeybees (Apis mellifera) were captured exiting the hive in Brisbane, Australia. Bees were 

cold anesthetised and tethered to thin metal rods using wax and a cautery tool (Bovie; Figure 

1A). The heads of the bees were fixed to the thorax using dental cement (Coltene Whaledent 

synergy D6 FLOW A3.5/B3) to ensure that they responded to visual stimulus by manipulating 

the trackball rather than making compensatory head movements. However, it should be noted 

that whether the head is fixed or free has been shown not to quantitatively alter the fixation 

behaviour of tethered bees (Paulk et al., 2014). Wax was also applied to the base of the wings 

to encourage walking behaviour. All bees were fed sucrose solution before being placed in a 

humidified chamber (~35˚C) for at least one hour to allow acclimatisation to the tether (Moore 

et al., 2014; Paulk et al., 2014). 

 

3.4.2 Tethered virtual reality arena 

The virtual reality arena consisted of a visual stimulus and a motion compensating trackball 

supported on a cushion of air. The visual stimulus was generated using four 32x32 tri-colour 

LED panels positioned panoramically around the tethered honeybee (Shenzchen Sinorad 

Medical Electronics Inc.; Zhou, Ji, Gong, Gong, & Liu, 2012), covering 360o of the azimuthal 

and 54o of the vertical field of view. A green bar 54o high and 20o wide was displayed to the 

tethered honeybee as the fixation stimulus. The peak wavelength and luminance (from the bee’s 

location) for a single green bar were measured as 518 nm and 168 lux respectively. The angular 

orientation of the bar in the arena was controlled in closed-loop, where the bee could control 

the bar’s orientation by rotating the ball around its vertical axis (Moore et al., 2014; Paulk et 

al., 2014). A Python script using Vision Egg software (Straw, 2008) updated the visual stimulus 

at 200 Hz (Figure 3-1A). 

 

The trackball was a 50mm diameter Styrofoam ball (weight 1.4 g; Sullivans International) that 

was supported on a low friction air cushion and constrained in a custom designed 3D printed 

mould (Plastic Ink). Although the weight of the ball was substantially more than the honeybee, 
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they appeared to manipulate it easily, and were able to walk at comparable speeds to freely 

walking bees (Schone, 1996). A manipulator was used to position a tethered honeybee above 

the centre of the ball in a natural walking posture. The ball was textured with an irregular black 

and white pattern with a felt-tipped pen for use with camera tracking. 

 

 

Figure 3-1: Virtual reality arena used for experiments. A, A honeybee is tethered (manipulator 

not shown) on an air supported trackball, whilst centrally positioned in rectangular arrangement 

of LED panels (only the two furthest panels in the rectangle are depicted in A). B, Two 

computer mice and two cameras record the motion of the trackball resulting from the 

honeybee’s walking and turning actions (only one camera and one computer mouse are 

depicted in A). Both sets of measurements are converted to motion in the honeybee’s reference 

frame, and used to control the fixation stimulus.  

 

3.4.3 Trackball motion measurement 

We used two methods of measuring the walking motions of bees, by tracking the movement of 

the ball either with computer mice (CM) sensors or by filming the movement of the ball and 

analysing it using a program called FicTrac (Moore et al., 2014). The measurements from either 

the CM sensors or FicTrac provide the position of the ball and were fed back to the Python 

script that updated the state of the visual stimulus.   

 

The first method involved the use of sensor chips from commercial computer mice, in which a 

proprietary optoelectronic device is used to measure the visual motion of an image. Our 

implementation used two laser mice (Logitech MX400; sensing chips: Avago ADNS7050) 

aligned orthogonally to each another, such that their transverse measurement axes both 

measured the ball’s rotation (Figure 3-1B). The CM sensors were placed approximately 3mm 

from the surface of the Styrofoam ball. The measurements from the sensors were used to 
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determine the rotation and translation rates of the ball in the bee’s frame of reference, based on 

the two measurements of each mouse (Figure 3-1B). A custom C++ script sampled the 

accumulated movement of the computer mice sensors at 100 Hz on a computer running 

Windows XP SP3. A non-standard computer mouse driver, CPNMouse (Westergaard, 2002), 

was used to interface directly with the mice, bypassing the standard Windows interface. This 

system had a closed-loop latency of approximately 46 ms from the motion of the ball to the 

movement of the stimulus. This design is comparable to other systems that have been used to 

study invertebrates (fly, Clark, Bursztyn, Horowitz, Schnitzer, & Clandinin, 2011; honeybee, 

Paulk et al., 2014; cockroach, Takalo et al., 2012). 

 

The second method tracked the motion of the ball from video images in close to real time 

(Moore et al., 2014).  Images were recorded using a firewire camera (Point Grey, Firefly), 

which recorded the ball at 30 fps in grey scale on a computer running Ubuntu 12.04.  FicTrac 

then calculated the orientation of the ball, with a resulting closed-loop latency of approximately 

of 87 ms. A webcam (Logitech Pro 9000) was used to film the ball when using the CM sensors 

in closed-loop.  The video from this was analysed offline with FicTrac.  The data from both 

cameras was time stamped along with the visual presentation program for synchronisation with 

the CM sensor data. In all cases, the shutter speed, camera gain, and brightness were set such 

that sharp images of the irregular ball pattern were taken, even when the bees were running at 

high speeds. FicTrac provided a direct measurement of the (negative) turning rate and walking 

speed in the bees' reference frame (Moore et al., 2014), so a coordinate transformation was not 

required. The relatively long closed-loop latency was a limitation for both measurement 

methods, as the visual stabilisation reflexes of insects such as flies can respond with latencies 

on the order of 30 ms (Warzecha & Egelhaaf, 2000). 

 

3.4.4 Closed-loop experiments 

All experiments were conducted in closed-loop.  When the bee rotated the ball about the 

vertical axis, the visual display rotated the fixation stimulus (a green bar) around the bee by the 

same angle, but in the opposite direction. This represented a feedback gain of x1, which 

corresponded to walking under natural conditions.  During each experiment, which ran for two 

minutes, bees had the opportunity to bring the green bar to their frontal visual field, thereby 

fixating on the stimulus. To ensure bees were attempting to control the visual cue, brief open-

loop displacements were introduced, in which the bar was displaced abruptly by 90o in either 
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direction (at random time intervals between 3 s and 15 s), to test if the bees were paying 

attention to the bar and compensating for these displacements (Heisenberg & Wolf, 1984; 

Moore et al., 2014; Paulk et al., 2014). Periods including displacements were excluded from 

all analysis. Individual bees were tested using both feedback sensors. 

 

3.4.5 Systematic manipulation of rotation sensitivity 

A second experimental condition was conducted where the rotational sensitivity of the 

measurement made by FicTrac was adjusted based on the instantaneous walking speed, W, 

(also measured by FicTrac), while the bees also fixated the bar in closed-loop. This 

manipulation was analogous to varying the gain between the honeybee’s actions and their 

influence on the stimulus, and took two forms, the ‘decrease’ and ‘increase’ conditions 

respectively. The ‘decrease’ condition allowed bees to reduce the rotational sensitivity of 

FicTrac by walking faster, 
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Conversely, in the ‘increase’ condition, running faster increased sensitivity. 
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In the above equations, walking speed is measured in rad.s-1 in the bee’s reference frame; 

graphical representations of these functions are shown in Figure B-2. The effect of the 

‘decrease’ condition was approximately equivalent to the relationship observed from the CM 

sensors (Figure B-2), whereas the ‘increase’ condition was considered to approximate the 

opposite relationship. Bees in this experiment were exposed to a pre-test control, where the 

sensitivity was uniformly one, followed by either the ‘increase’ or ‘decrease’ conditions. 

 

3.4.6 Data acquisition and analysis 

Data on the orientation of the bar and the bees’ movements measured by the sensors were 

synchronously recorded from within the Python script. All data was down-sampled to 30 Hz 

for analysis, to provide a fair comparison between the computer mouse sensors and FicTrac 

(which had the lowest sampling frequency in the system, 30 Hz). Data analysis was conducted 

using custom Matlab (The Mathworks Inc.) scripts. 
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The fixation on the bar was quantified by calculating the frequency distribution at each possible 

bar orientation, mapped to 360° around the arena for each bee. These results are shown on 

radial distribution plots, calculated in 2.8o bins (which corresponded to the resolution of the 

LED display). As an additional comparison, a mean vector was determined using the Circular 

Statistics Toolbox in Matlab for the location of the bar around the arena for each bee (Berens, 

2009). This vector is a representation of the strength of fixation (vector length) and the mean 

angle of fixation (direction of the vector). The mean vector directions for all bees in a group 

were tested for uniformity using Rayleigh’s test for each condition (Batschelet, 1981; Berens, 

2009). 

 

Frequency distributions for the turning rate and walking speed were calculated for each 

condition. Turning rate distributions were calculated based on 5 o.s-1 bins ranging from -250 

o.s-1 to 250 o.s-1, and walking speed distributions were calculated based on 1 mm.s-1 bins ranging 

from 0 mm.s-1 to 100 mm.s-1. The mean values of walking speeds, and absolute mean values 

of turning rates were compared statistically as described below.  

 

Statistical comparisons (besides Rayleigh’s test), were made using repeated measures statistics 

in SPSS V20 (IBM). Data was tested for normality using the Shapiro-Wilk test, and, if it was 

found to be normal the comparison was made using a paired samples t-test.  Otherwise a 

related-sample Wilcoxon signed rank test was used (for which the standardised test statistic is 

reported). The results are specified the t and W test statistics respectively (Rayleigh’s test uses 

the z test statistic). All statistical tests used a significance level of 0.05. 

 

3.5 Results 

3.5.1 Honeybees can fixate on a single green bar using either feedback 

sensor 

Honeybees were able to fixate a bringing a bright vertical green bar displayed on a LED array 

(Figure 3-1A) in frontal visual field using either feedback sensor in closed-loop (Figure 3-2A 

and B; Mean vector angles were non-uniformly distributed for both FicTrac (z10=6.75, 

p<0.001), and computer mice (CM) sensors (z10=4.62, p=0.007), Figure B-1). Although the 

distribution of bar positions appears to differ between feedback sensors (Figure 3-2B), a 

comparison of the mean vector lengths between groups revealed there was negligible difference 
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in fixation strength (Figure 3-2C, t10=0.67, p=0.517). We conclude that honeybees perform 

similarly at fixating the bar regardless of whether their walking behaviour is measured using 

FicTrac or CM sensors to provide feedback.  

 

 

Figure 3-2: Honeybees fixate using both feedback sensors. A, Example of fixation using 

FicTrac (i), and CM sensors (ii) from a single bee. Plots show a time history of bar positions 

(left), and the resulting frequency distribution of bar positions around the arena (right). B, 

Average fixation performance for all bees tested with each feedback sensor, in terms of the 

frequency distribution of bar positions. C, Fixation performance quantified using mean vector 

length, actual mean vectors are shown in Figure B-1. N=11 repeated both conditions. Error 

bars show ±S.E.M.  

 

3.5.2 Honeybees walk faster with computer mouse sensors 

While honeybees were able to fixate equally well using either feedback sensor, we next 

examined whether they change other aspects of their behaviour depending upon which sensor 

was used. FicTrac provides a more accurate and precise measure of the balls rotation than the 

CM sensors, which were known to be noisier and suffer from systematic biases (Moore et al., 

2014). Hence, for both feedback sensors, we considered the bee’s turning rate, which was 

intended to control the stimulus position, and their walking speed, which could have affected 
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the biases present in the CM sensors. In both cases, the data measured using FicTrac as the 

feedback sensor was compared to the data measured by CM sensors when used for feedback, 

and also to FicTrac’s simultaneous measurement of the movement of the ball for verification 

of the CM sensors recording. This allowed us to compare whether behavioural differences were 

observed using measurements of equivalent accuracy and precision for both feedback sensors, 

and also whether similar differences would have been detected using the measurements from 

both sensors directly. 

 

When examining the honeybees’ turning rate, symmetrical and zero biased distributions were 

observed which were qualitatively similar for all datasets (Figure 3-3A). The largest difference 

in turning rates was between the CM sensors and FicTrac’s verification of this data, which 

were both measurements of the same ball movement (Figure 3-3A and B). However, neither 

the mean absolute turning rate measured using the CM sensors directly (t10=1.38, p=0.197), 

nor their verification with FicTrac (t10=0.76, p=0.468), were significantly different from when 

FicTrac was used as the feedback sensor (although the average turning rate measured by the 

CM sensors was notably lower). For the bee’s walking speed, long tailed distributions with a 

prominent peak at or close to zero were observed for all datasets (Figure 3-3). Interestingly, 

both the CM sensors measurement and FicTrac’s verification of this data both showed that bees 

were more likely to walk quickly using the CM sensors for feedback as compared to when 

FicTrac provided feedback. Comparison of the mean walking speeds (Figure 3-3D) using 

FicTrac as the feedback sensor and the verified measurements for CM sensors confirmed a 

significant increase in mean walking speed occurred when CM sensors provided feedback 

(W10=2.13, p=0.033). However, the difference would not be noted when using the data from 

the CM sensors directly (W10=46, p=0.248). Despite the feedback sensor not affecting 

honeybee’s fixation performance, it does affect their behaviour, as bees increased their walking 

speed when CM sensors were used.  

 

One reason honeybees may have increased their walking speed when CM sensors provided 

feedback is a systematic error that affects these sensors (Moore et al., 2014; Palacin et al., 

2006). This error results in inconsistent measurement of complex rotations, where the velocity 

measured along one axis can affect that measured along the other axis. In other words, CM 

sensors exhibit an interaction, or coupling, between the measurements of movement that they 

register along their two principal axes. Specifically, given the arrangement of CM sensors that 

we used, the honeybee could reduce the sensitivity of the CM sensors to its turning rate by 
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walking faster (Figure B-2). We therefore hypothesized that the bees may have increased their 

walking speed to adjust the sensitivity of CM sensors to their turning rate. 

 

 

Figure 3-3: Honeybees maintain similar turning rates between feedback sensors, but vary their 

walking speed. A, turning rate frequency distribution, and B, mean absolute turning rates. C, 

walking speed frequency distribution, and D, mean walking speeds. Note that computer mice 

(CM) sensor (red), is a measurement directly from the sensors (when they were used for 

feedback), whereas CM sensor (FT), is the post-experiment verification measurement of the 

movement of the ball using FicTrac. N=11 repeated both conditions. Error bars show ±S.E.M. 

The star (*) denotes a statistically significant difference with p<0.05. 

 

3.5.3 Honeybees walk faster to reduce rotational sensitivity 

To test the hypothesis that honeybees would adjust their walking speed to modify the feedback 

sensitivity to turning rate, we conducted an experiment using FicTrac as the feedback sensor, 

and used two equations to couple walking speed to turning rate. The two conditions were 1) a 

‘decreasing’ condition: turning sensitivity was decreased as walking speed increased (Eq.  

(3-1)), and 2) ‘increasing’ condition: turning sensitivity was increased as walking speed 

increased (Eq. (3-2)). The decreasing condition replicates the systematic error that we observed 

from the measurements of CM sensors (Moore et al., 2014). Prior to testing either condition, 
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bees were given a pre-test in which walking speed did not change rotational sensitivity with 

FicTrac operating as the feedback sensor. Thus, in this condition, there was no coupling 

between the translational and rotational movements that were registered. If bees varied their 

walking speed between the pre-test and the altered coupling condition, it would demonstrate 

their ability to exploit such relationships, and also their preference for decreased, or increased, 

feedback sensitivity. Importantly, as FicTrac was used to measure the ball motion for all 

conditions, the latency always 87 ms, whereas the latency was not matched when comparing 

FicTrac to the CM sensors in the previous section. 

 

Regardless of the test condition – pre-test, ‘decreasing’, or ‘increasing’ – honeybees were able 

to position the fixation stimulus frontally (Mean vector angles were non-uniformly distributed 

for all conditions; Pre-testDec, z9=6.47, p<0.001; ‘decreasing’, z9=7.85, p<0.001; Pre-testInc, 

z9=9.33, p<0.001; ‘increasing’, z9=4.54, p=0.008, Figure B-1). However, when given the 

‘decrease’ condition, honeybees achieved a qualitatively sharper fixation distribution (Figure 

3-4A), and significantly longer mean vector lengths than in their pre-test (Figure 3-4B, t9=2.51, 

p=0.033). Honeybees tested with the ‘increase’ condition did not alter their mean vector lengths 

or fixation distributions compared to their pre-test results (Figure 3-4B, t9=0.28, p=0.787).  

 

Analysing the behaviour further, we found that honeybees did not modify turning rate (Figure 

3-4D, t9=0.73, p=0.484), but significantly increased walking speed when tested in the 

‘decrease’ condition relative to the pre-test (Figure 3-4F, W9=2.29, p=0.022). Conversely, 

honeybees do not modify their walking speed in the ‘increase’ condition (Figure 3-4F, 

W9=1.17, p=0.241), and whilst they do slightly decrease their turning rate (Figure 3-4C), the 

change in mean absolute turning rate was not significant (Figure 3-4D, t9=1.41, p=0.191).These 

findings indicate that bees changed their locomotory behaviour in the ‘decrease’ (but not the 

‘increase’) condition, by walking faster. In the ‘decrease’ condition, walking faster decreased 

the sensitivity of the feedback sensor to their turning rate, apparently aiding the bees in 

achieving more accurate fixation. 
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Figure 3-4: Honeybees walk faster to decrease the feedback sensitivity to rotational movement. 

A, Average fixation performance for bees tested with all conditions, in terms of the frequency 

distribution of bar positions. B, Fixation performance quantified using mean vector length, 

actual mean vectors are shown in Figure B-1. C, Turning rate frequency distribution, and D, 

mean absolute turning rates. E, walking speed frequency distribution, and F, mean walking 

speeds. Dashed lines in frequency distributions correspond to chequer bar plots throughout.  N 

= 10 repeated the pre-test and either ‘decreasing’ or ‘increasing’. Error bars show ±S.E.M. 

Stars (*) denote statistically significant differences with p<0.05. 
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3.6 Discussion 

Closed-loop virtual reality systems are an important paradigm for studying the visuomotor 

mechanisms that underlie numerous types of behaviour, including learning and memory (Dill, 

Wolf, & Heisenberg, 1995), attention (Sareen, Wolf, & Heisenberg, 2011; van Swinderen, 

2007), spatial navigation and place memory (Harvey et al., 2009), orientation behaviour 

(Schuster, Strauss, & Gotz, 2002; Strauss, Schuster, & Götz, 1997), and multimodal integration 

(Chow, Theobald, & Frye, 2011). The critical component of a closed-loop system is that some 

output from the animal produces a change in the sensory environment. In our experiments in 

which walking honeybees manipulate an air-supported ball to control the position of a visual 

stimulus, we find that the reliability of the sensors that are used to monitor the animal’s 

behaviour and generate the visual feedback played an important role in determining the 

behaviour. Using two separate feedback sensors, namely optical motion sensors from computer 

mice (CM) and a novel computer vision approach, FicTrac, we find the bees use different, 

sensor-dependent strategies to fixate a single green bar. Apart from the differing feedback 

sensors, all other components of the virtual reality system are unchanged when comparing the 

two systems. In general, bees walk faster when feedback comes from the CM sensors, as 

compared to FicTrac, and similarly walk faster when we replicate a systematic error occurring 

in CM sensors in data measured using FicTrac. In both cases, when the bees walk faster, this 

systematic error has the effect of decreasing the rotational sensitivity of the feedback sensor to 

the bee’s turning rate, which is the behavioural measurement that is used to control the bar 

position. Presumably, with decreased rotational sensitivity, the position of the bar is less 

affected by any accidental turning errors that the bees make, thus making it easier to accurately 

control the angular position of the bar.  

 

Why does walking faster change the sensitivity of the CM sensors? Both feedback sensors 

measure the angular velocity of the ball resulting from the honeybee’s walking and turning 

actions. When integrating a velocity signal, as in our experiments, any errors in the signal result 

in progressively larger errors in the estimated virtual position and heading direction of the bee, 

because the instantaneous velocity signals corresponding to walking speed and turning rate are 

integrated over time to estimate the position and heading direction (Britting, 2010). Whilst the 

motion sensing chips used in CM take measurements at a high sample rate, the measured values 

are surprisingly imprecise when compared to those delivered by FicTrac when the sample rate 

was matched (Moore et al., 2014). In addition, CM sensors can be affected by systematic and 
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biased errors, resulting in inaccurate measurements (Minoni & Signorini, 2006; Palacin et al., 

2006; Tunwattana et al., 2009), whereas FicTrac’s underlying measurement of the trackballs 

orientation is unbiased (Moore et al., 2014). By walking faster, bees exploited a systematic 

error present in CM sensors, which reduces the sensitivity of the devices when making 

simultaneous measurements of their turning movement. Systematic errors could also be present 

on other types of sensors used for feedback in virtual reality paradigms (Kröger, Kubus, & 

Wahl, 2008; Xu & Li, 2000). Thus, sensor calibration is an important consideration to establish 

how reliably an animal’s motor output is measured, and also to establish whether an 

opportunity exists for the animal to improve its performance by exploiting any systematic 

errors that are present. Other characteristics besides sensitivity will also vary between sensors 

used in closed-loop paradigms, such as latency, response time, and frequency responses, which 

may also trigger an animal to modify aspects of its behaviour. Notably, in this study we could 

not have detected that honeybees changed their behaviour between sensor types by comparing 

measurements from FicTrac with biased CM sensor data directly; FicTrac was required to 

provide verification and detect the difference.   

 

Experimental paradigms have measured behavioural outputs from flying and walking animals 

(Dombeck & Reiser, 2012), to enable the creation of an interface between the behaviour that 

the animal produces and the sensory cues that it experiences. For relatively simple tasks, like 

visual orientation and stabilization, animals quickly become accustomed to using their 

behavioural output to control the stimulus in virtual reality (Wolf & Heisenberg, 1991), 

although more complicated tasks, can require training (Harvey et al., 2009). Without any 

obvious reward, other than improving their fixation, the bees in this study rapidly change their 

walking speed to improve their control of the stimulus. The capacity of  Drosophila to switch 

between using a linear and rotational behaviour, such as thrust force and yaw torque, when 

controlling a rotational stimulus has previously been observed (Wolf & Heisenberg, 1991). 

However, the bee’s demonstrated ability to fine-tune behavioural performance using a coupling 

between two usually separate motor commands, walking and turning, does not appear to have 

been previously reported. 

 

Honeybees can adapt to the feedback sensor in complex ways, which raises the question: 

depending on the measurement errors involved in the closed-loop system, what is the 

experimenter studying?  Does the path an animal takes through a virtual reality arena match 

how the animal would move through a real space populated with similar stimuli, or are the 
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observed behaviours a result of the uniquely artificial set up?  In addition, since bees quickly 

adapt to the different feedback sensors, do the changes in behaviour involve higher-order 

learning, or do they represent a basic type of sensorimotor adaptation involving operant 

conditioning? 
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 Turning towards the light: Honeybees adapt the 

control functions underlying their visual fixation  

 

4.1 Preamble  

The chapter describes how honeybees control their turning rate based on the position and 

motion of the stimulus during a closed-loop visual fixation task, which they adapt to improve 

their performance when the coupling between their actions and the environment is varied. 

Quantitative analysis of fixation behaviour is usually based on open-loop experiments, and a 

key component of this study is the development of an analysis method for use with closed-loop 

experimental data, which allows quantification of the adaptive components of honeybee 

behaviour. The contents of this Chapter (and Appendix C) are prepared and formatted as a 

publication, for submission to the journal ‘PLoS Computational Biology’ authored by G. J. 

Taylor (the candidate), A. C. Paulk, T. W. L. Pearson, B. van Swinderen, and M. V. Srinivasan. 

The work is intended for submission as two part publication with Chapter 5. The contributions 

of each author are detailed in the preliminary pages of the thesis. 

 

4.2 Abstract 

When an insect moves through the world, it must not only stabilise its path against transient 

disturbances, the but also occasionally adapt to fundamental changes in the way in which its 

motor actions alter its sensory environment. We used a closed-loop virtual reality paradigm to 

investigate how tethered walking honeybees adapted their performance in an object fixation 

task while varying the gain, a linear multiplier coupling the magnitude of their actions to the 

magnitude of the resulting effect on the stimulus. The bees’ response could be modelled by 

separate non-linear functions of the position and motion of the fixation stimulus, and the insects 

adapted both of those functions depending on the gain condition. To determine position- and 

motion-dependent control functions from closed-loop data, we developed a novel analysis 

approach for data where the stimulus is non-uniformly sampled and the response is temporally 

correlated. Simulations with control functions measured from experimental data showed that 

these functions can predict the fixation behaviour observed. The simulations also suggest that 

by changing the control functions underlying fixation behaviour, bees can improve control of 

the stimulus at high gains. 
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4.3 Introduction 

When an animal is moving through the environment it uses sensory feedback to guide its motor 

output. However, there is not always a consistent coupling between an animal’s motor output 

and its effect; these relationships can change over different time scales. For example, insects 

would have to change their wingbeat kinematics if wing damage occurred (Dukas & Dukas, 

2011; Haas & Cartar, 2008) or when flying in low density air when ascending to high altitude 

(Altshuler et al., 2005; Dillon & Dudley, 2014; Dudley, 1995). Similarly, walking insects may 

suffer leg damage (Götz & Wenking, 1973; Wittlinger et al., 2007), or encounter slippery or 

springy surfaces (Epstein & Graham, 1983; Spence et al., 2010). When these changes in 

coupling occur, and insect would likely be required to modify its locomotion control, to 

continue to move effectively under the new conditions. 

 

A popular paradigm to study how insects respond to visual objects is to use a tethered insect’s 

motor output, whether in flight or walking, to drive changes in the position of a vertical bar 

presented on a circular display surrounding the animal (Poggio & Reichardt, 1973; Reichardt, 

1969; Reichardt & Poggio, 1976). When tethered flies are tested in such a ‘closed-loop’ 

paradigm, the insects typically 'rotate' left or right by either changing their yaw torque, or their 

walking patterns to position a vertical bar in their frontal visual field – behaviour termed 

‘fixation’. Flies (Drosophila and Musca) have been commonly used for quantitative studies of 

visual fixation, however, similar behaviour has been observed in other insects, including moths 

(Preiss & Kramer, 1984), beetles (Lönnendonker, 1991; Varjú, 1975), and honeybees (Moore 

et al., 2014; Paulk et al., 2014). The fixation paradigm has formed the basis for testing theories 

of visual responsiveness, learning and memory, the neural mechanisms of visual processing, 

and for understanding how insects adapt their motor patterns to view and track objects 

(Heisenberg & Wolf, 1984). 

 

The visual fixation that is observed in flies is a robust behaviour; although the fixation stimulus 

is typically a dark vertical bar on a bright background, flies will fixate on a variety of different 

types of stimuli (Brembs & Heisenberg, 2001) and can distinguish patterned object when it 

moves in front of a similarly patterned background (Aptekar, Shoemaker, & Frye, 2012; 

Bülthoff, 1981; Reichardt, Egelhaaf, & Guo, 1989). Similar fixation has been observed for both 

flying (Heisenberg & Wolf, 1984; Heisenberg, Wonneberger, & Wolf, 1978) and walking 

Drosophila (Bahl et al., 2013). Furthermore, Drosophila can learn to use non-standard motor 
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outputs to fixate on a stimulus, for example, they can learn to use flight thrust (Wolf & 

Heisenberg, 1991) or leg forces (Wolf et al., 1992), even though these would not usually control 

the flies’ rotation. Fixation behaviour is also robust to variations in the coupling, or gain, 

between the measured behavioural output and its effect on the movement of the stimulus 

(Poggio & Reichardt, 1973; Wolf & Heisenberg, 1990). However, performance degrades when 

the gain is very high (Poggio & Reichardt, 1973), indicating that the coupling of the fixation 

stimulus to motor output represents a performance constraint for fixation control. 

 

In a standard fixation experiment an insect controls the position of the stimulus using its turning 

response. Open-loop experiments, where the insect cannot control the stimulus, have shown 

that the turning response depends on both the position and the motion, or angular velocity, of 

the stimulus (Figure. 4-1A; Reichardt & Poggio, 1976). Thus, the fixating insect can be 

modelled as a control system, which uses feedback from the state of the environment to 

modulate its motor output in order to control the state of the stimulus over time (Nise, 2008). 

Specifically, fixation control is similar to a proportional-derivative linear control system, which 

would produce a response proportional to the difference between the current position of the 

stimulus and its preferred position, as well as the rate of change of that difference. Fixation 

behaviour has been modelled as linear system after linearizing the fly’s response when the 

stimulus is in its frontal visual field (Reichardt & Poggio, 1976; Roth, Reiser, Dickinson, & 

Cowan, 2012). However, if the insect’s response to stimulus across its entire visual field is 

considered, fixation behaviour appears to be more complex, as the fly’s response to the position 

and motion of a stimulus depend on the different non-linear functions of stimulus position 

(Aptekar et al., 2012; Bahl et al., 2013; Reichardt & Poggio, 1976). 

 

Despite the apparent complexities of the control system underlying fixation, open-loop 

measurements of the control functions linking turning response to stimulus position and motion 

have been used to successfully predict fixation results in closed-loop experiments (Bahl et al., 

2013; Reichardt & Poggio, 1976). However, other studies have shown that flies rapidly learn 

to adapt their motor output to control a stimulus (Wolf & Heisenberg, 1991; Wolf et al., 1992). 

Further, an insect’s open-loop responses often saturate (Taylor et al., 2008), or are otherwise 

different compared to the responses measured during closed-loop behaviour (Heisenberg & 

Wolf, 1988; Paulk et al., 2014). Thus, the control functions measured in open-loop may not 

exactly correspond with those used by the insects to control fixation in closed-loop. The control 

functions are likely to be qualitatively similar, although they may be fine-tuned to optimize the 
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insect’s fixation performance given the experimental conditions. One instance where closed-

loop results cannot be predicted using control functions measured in open-loop occurs in 

experiments with flies where a high gain multiplier was used (Poggio & Reichardt, 1973); the 

measured control functions predicted more robust fixation than was observed in closed-loop. 

Whilst fixation degraded at high gains, did the flies attempt to compensate by modifying the 

control of their behaviour? 

 

To investigate how insects adapt to varying gain conditions in closed-loop fixation, we 

performed experiments using tethered walking bees fixating on a bright vertical bar. The gain 

multiplier was randomly varied between low, normal and high gains in separate experiments. 

We developed a novel analysis method to extract control functions dependent on the position 

and motion of the fixation stimulus from the closed-loop data, which is described in Section 

4.5. The analysis method was then applied to experimental data (Section 4.6) to reveal that, 

whilst fixation performance declines at high gain conditions, bees did compensate for the 

imposed gain changes by adapting their control functions. A simulated model, using the 

measured control functions, suggests that these adaptations do improve control at high gains. 

 

4.4 Methods 

4.4.1 Honeybee preparation 

Honeybees (Apis mellifera) were captured exiting the hive in Brisbane, Australia. Cold 

anesthetised bees were tethered to a metal rod using wax and a cautery tool (Bovie). The heads 

of the bees were fixed to the thorax using dental cement (Coltene Whaledent synergy D6 

FLOW A3.5/B3), and wax was also applied to the base of the wings. As bee’s heads were 

fixed, this ensured their response to visual stimulus was represented in body centric 

coordinates, as compensatory head movements could not be made. Bees were fed a sucrose 

solution before being placed in a humidified chamber (~35 oC) for an hour to acclimatise to the 

tether (Paulk et al., 2014). 

 

4.4.2 Tethered virtual reality apparatus 

The virtual reality apparatus consisted of a visual stimulus and a motion-compensating ball 

supported on a cushion of air (Figure 4-1B). The visual stimulus, a bright green bar (54o high 

and 20o wide), was generated using four 32x32 tri colour LED panels (Shenzchen Sinorad 
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Medical Electronics Inc.; Zhou et al., 2012) positioned panoramically around the tethered 

insect (Moore et al., 2014; Paulk et al., 2014). The peak wavelength and luminance (from the 

bee’s location) for a single green bar were measured as 518 nm and 168 lux respectively. The 

angular position of the bar in the arena was controlled in closed-loop, where the bee could 

control the bar’s position by rotating the trackball.  The trackball was patterned with an 

irregular black and white pattern using a felt-tipped pen to allow measurement of its motion 

using custom designed software (FicTrac, described below). In closed-loop, the measurement 

of the rotation of the ball about the vertical axis (yaw), as registered by FicTrac, was used to 

control the angular velocity of the bar at an update rate of 200 Hz by using a Python script to 

drive Vision Egg software (Straw, 2008). 

 

The bee was positioned above the trackball, a 50 mm diameter Styrofoam ball (weight 1.4 g) 

that was supported on a low friction air cushion and constrained in a custom designed 3D 

printed mould (Plastic Ink). Whilst the dynamics of the ball were not matched for a honeybee 

(approximately perceived weight 580 mg (honeybee mass ~100 mg) and perceived rotational 

inertia 330 nkg.m2 (honeybee inertia ~5 nkg.m2) calculated using the methods of Weber, 

Thorson, and Huber (1981)), subjectively the bees appeared to manipulate the ball easily. The 

mean walking speed observed during undirected walking in the no stimulus control was 

approximately 30 mm.s-1, frequently reaching 75 mm.s-1. These speeds are approximately half 

the free walking speed observed in honeybees walking down a corridor when returning to their 

hive (Schone, 1996). 

 

4.4.3 Trackball motion measurement 

An image matching algorithm called FicTrac (Moore et al., 2014), was used to measure the 

rotation of the ball in real time. This provided a measurement of the honeybees turning rate, ω, 

walking speed, W, and walking angle, β (-ω and β + 180o were the values registered by FicTrac, 

which were transformed to the bee’s reference frame), as shown in Figure 4-1A.  

 

Images of the trackball were recorded in grey scale using a firewire camera (Point Grey, 

Firefly) at 30 fps on a computer running Ubuntu 12.04.  FicTrac then calculated the position 

of the ball, which was used by Vision Egg to change the angular position of the fixation bar, 

with a resulting latency of approximately of 87 ms (Moore et al., 2014). Although the closed-

loop latency of the feedback system may be longer than the latency of the visual stabilisation 
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reflexes of the bee (which can be 30 ms in flies; Warzecha & Egelhaaf, 2000), the ability of 

bees to control the stimulus under most gain conditions suggested the additional latency did 

not prevent fixation behaviour. Yet at increased gains the long latency would be expected to 

further decrease fixation performance (Nise, 2008), and is a limiting factor when relating the 

measured control functions in this study to natural behaviour. To account for this latency for 

analysis, the time series of the measured ω was shifted three frames back relative to the time 

series of stimulus positions, such that they were temporally aligned.      

 

4.4.4 Closed-loop experiments 

Experiments were conducted in closed-loop, and when the bee rotated the ball about the vertical 

axis the visual display rotated the fixation stimulus around the bee, to the angular position ψ. 

To test the honeybee’s ability to adapt to varying control conditions, we varied the gain, a linear 

multiplier, coupling the measured rotation of the ball to the angular position of the green bar 

(Figure 4-1A). A x1 gain means that 1o of rotation of the ball results in 1o of rotation of the 

visual stimulus, such that     t t l gain dt    , where l is the closed-loop latency of the 

virtual reality system. 

 

During two-minute experiments, bees could bring the green bar to their frontal visual field, 

thereby fixating on the stimulus. To test whether the bees were attempting to control the visual 

cue, brief open-loop displacements would intermittently move the bar by 90o, at 300 o.s-1, 

requiring bees to correct the bar’s position (Heisenberg & Wolf, 1984; Paulk et al., 2014). 

Displacements occurred randomly, with an interval of 3 to 15 s between each event. Bees were 

usually observed to successfully correct for disturbances at x2 gain and lower (data not shown; 

Moore et al., 2014), although these corrections were not analysed in detail. Periods including 

displacements were excluded from all analysis. The gains of closed-loop experiments were set 

at values ranging from x0.5 to x4 for the duration of each experiment.  

 

A black bar on a black background (thereby rendering the bar ‘invisible’) was used as a control 

to test if the bees had clear directional running preferences. The black bar is referred to as the 

no stimulus, or NS, condition. Individual bees completed all test conditions across the range of 

gains and the control in a pseudo-randomized order.  
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4.4.5 Data acquisition and analysis 

Data on the angular positions of the bar and the bees’ movements as measured by FicTrac were 

synchronously recorded from within the Python script. All data was analysed at 30 Hz and data 

analysis was conducted using custom programs written in Matlab (The Mathworks Inc.).  

 

Fixation ability was compared by calculating the frequency distribution at each possible bar 

position mapped to 360° around the arena for each bee. These results are shown as polar plots, 

calculated in 2.8o bins (which corresponded to the resolution of the LED display). As an 

additional comparison, a mean vector was determined using a circular statistical toolbox 

(Berens, 2009) in Matlab for each bee’s path. This vector is a representation of the strength of 

fixation (vector length) and the mean angle the bee faces (direction of the vector). A mean 

vector length of 1.0 would indicate perfect fixation, where the stimulus was maintained at a 

single position for the entire experiment, whereas a length of 0.0 would indicate random 

movement, from a uniform distribution of stimulus positions. The mean vector directions from 

all bees were tested for significant difference from a uniform distribution (with no preferred 

orientation) using Rayleigh’s test for each condition (Batschelet, 1981; Berens, 2009).  

 

Distributions of the turning rate, ω, were calculated for bees in each condition. ω distributions 

were calculated based on 5 o.s-1 bins between -250 and 250 o.s-1. The techniques described in 

Section 4.5 were implemented in custom Matlab scripts to calculate the position- and motion-

dependent control functions in Figure 4-5 and Figure 4-6. 

 

Statistical comparisons (besides Rayleigh’s test) are detailed in Section C.5. All statistics were 

performed using SPSS V20 (IBM).  

 

4.4.6 Modelling 

The models in Figure 4-7 were simulated using custom Matlab scripts. In addition to the 

explanation in Section 4.6.4.1, the following details apply: for each experimental condition 

fifty simulations were run, with each simulation running for 120 s (3600 time points at 30 Hz), 

the duration of the actual experiments. Each simulation was initialized with the stimulus 

positioned at a random location, and the model bee had zero initial turning rate.  
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4.5 Analysis procedure 

Previously a model has been used to predict an insect’s turning responses during closed-loop 

fixation behaviour, which is based on responses as a function of the position and motion of a 

stimulus in open-loop (Poggio & Reichardt, 1973). Instead of using open-loop behaviour to 

derive an insect’s response to the position and motion of a stimulus, we extract these functions 

directly from closed-loop experimental data. Before detailing the proposed closed-loop 

analysis method, we briefly review the methodology for characterising position and motion-

dependent control functions from open-loop experiments. Although the control functions are 

nearly equivalent between open- and closed-loop analyses, deriving control functions from 

closed-loop experiments require additional factors to be considered. These factors are the non-

uniform distribution of stimulus parameters and the temporal correlation  of turning responses. 

In addition, the motion-dependent response could be affected by the direction of motion, which 

we take into consideration.  

 

4.5.1 Open-loop control functions 

In open-loop, a fly responds to the angular position, ψ, and motion, v, of a dark bar presented 

in a virtual reality arena (Reichardt & Poggio, 1976). This control system (Figure 4-1A), has 

been modelled using a ‘phenomenological’ or input-output equation that characterises an 

insect’s expected turning response, as a function of ψ and v,  

      ,R v P M v n       (4-1) 

 

The elements of the phenomenological equation are the position,  P  , and motion,  M  , 

functions (originally termed  D   and  r   respectively by Poggio and Reichardt (1973)), are 

both dependent on the angular position (or bearing) of the stimulus, ψ, at any instant in time. 

 P   represents the turning response of the animal elicited by the stimulus position. In 

addition, the insect will usually turn in the same direction as the movement of the stimulus, a 

response to local-field motion (Bahl et al., 2013).  M   represents the modulation of the 

insect’s response depending on the angular position of the stimulus movement across the visual 

field. The velocity of the stimulus motion, v, also influences the scale of this response, and the 

actual response elicited by bar motion (assumed to be proportional to v), is described as  M v

. This model assumes that the response to motion in the front-to-back direction is equivalent to 

the response to back-to-front motion at the same location. The variable n represents random 
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endogenous movements generated by the animal (Heisenberg & Wolf, 1988), which can be 

considered a source of stochastic noise in the context of measuring deterministic control 

functions. 

 

The elements of Eq. (4-1) have classically been reconstructed from open-loop data by 

observing the behaviour of flies responding to a vertical bar presented in a virtual reality arena 

(Poggio & Reichardt, 1973; Reichardt & Poggio, 1976). Firstly, the turning response is 

measured whilst moving the bar completely around the insect in a clockwise (CW) and then in 

a counter-clockwise (CCW) direction. Whilst both rotations cover the same range of ψ, the 

polarity of v is inverted between them.  P   and  M v  can then be determined (neglecting 

n, and assuming no latency either in experimental apparatus, or in the insect physiological 

measurement of stimulus parameters) as, 

       , , 2P R v R v       (4-2) 

and, 

       , , 2M v R v R v       (4-3) 

An insect’s response in closed-loop can be predicted using Eq. (4-1) and the control functions, 

 P   and  M  , as measured in open-loop. These control functions abstract a set of underlying 

processes, involving the non-linear responses and dynamics of visual receptors, neural circuits 

and motor units, which are embedded in the calculation of each function. Simulations show 

that these control functions predict similar fixation to that observed in closed-loop experiments 

(Bahl et al., 2013; Reichardt & Poggio, 1976). However, we extend this approach by using 

closed-loop data to characterise the control functions underlying insect fixation using 

analogous position- and motion-dependent functions.   
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Figure 4-1: Honeybees control the position of a fixation stimulus in closed-loop. A, Schematic 

diagram of the closed-loop interaction between the walking honeybee and the fixation stimulus 

(central portion). FicTrac (Moore et al., 2014) measures the movement of the trackball, 

resulting in a measurement of the turning rate, ω, walking speed, W, and walking angle, β, in 

the bee’s reference frame. The measured ω is used to update the state of stimulus (right portion, 

further described in Section 4.4.3). An insect’s turning response,  ,R v , depends on the 

position, ψ, and motion, v, of the stimulus; the sum of non-linear functions of both of those 

variables (  P   and  M v  respectively), and noise, produce a turning response that can explain 

fixation behaviour in C (Section 4.5.1). B, Photograph of a tethered honeybee walking in the 

virtual reality arena and the fixation stimulus. C, Example time series of stimulus position, ψ, 

(left), and the resulting distribution (right) over two minute trials from a single bee, with no 

stimulus – i, x1 gain – ii, and x4 gain – iii conditions. Fixation behaviour produces the peaked 

distribution of bar positions directly in front of the bee (0o) in ii. 
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4.5.2 Considerations for closed-loop analysis 

Although an identical stimulus can be used for open- and closed-loop experiments, the spatial 

and temporal statistics of the stimulus would usually be quite different, making the derivation 

of comparable control functions difficult. This arises because the insect actively controls the 

stimulus in order to achieve a particular aim, such as positioning the stimulus when fixating, 

or stabilising its visual motion when producing the optomotor response (Götz, 1964; Kunze, 

1961). If the insect can successfully control the stimulus, its position and movement will not 

deviate from the stable set points for these parameters in the insect’s control system. 

 

In contrast, open-loop experiments have an important property, in that the distribution of any 

stimulus parameter is controlled by the experimenter. In the usual experiment for determining 

the position,  P  , and motion,  M   functions, the probability of the bar being in a given 

angular position, ψ, is uniformly distributed over the range of possible ψ values around the 

arena, and furthermore the number of observations made of the stimulus rotating clockwise 

(CW) matches those for counter-clockwise (CCW) rotation of equal velocity. Such uniform 

distributions do not occur in closed-loop when the insect is successfully fixating the stimulus, 

as a bee will usually bias the ψ distribution to the front of the arena (Figure 4-1C; Moore et al., 

2014; Paulk et al., 2014). Furthermore, in controlling the stimulus position, a honeybee will be 

biased towards turning the stimulus in different directions depending on its position, for 

example, when the stimulus is positioned to the bee’s right (+90o), it preferentially turns 

rightwards and experiences CCW image motion (Figure 4-2B), and the opposite occurs when 

the stimulus is positioned to the bee’s left (-90o). Non-uniform stimulus distributions occurring 

in closed-loop experiment are the first consideration in calculating control functions, as an 

imbalanced number of CW and CCW rotations, at any ψ, will result in an inaccurate calculation 

of  P   using Eq. (4-2). 

 

Our second consideration is the temporal structure of the turning rate, ω, over time, which can 

be examined using autocorrelation. The average autocorrelation of ω when no stimulus is 

displayed indicates that the bee’s spontaneous turning motions are temporally structured, and 

show an exponentially decaying autocorrelation curve (Figure 4-2A). When a fixation stimulus 

is shown, at any gain condition, the autocorrelation was similar to when the stimulus was not 

shown (albeit at higher gains the autocorrelation exhibits some periodicity). Intuitively, the 

exponentially decaying autocorrelation of ω indicates that, regardless of the state of the 
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stimulus, a bee will likely keep doing much the same as what it was doing in the recent past, 

implying that the temporal dynamics of the bee’s turning behaviour involved low-pass filtered 

dynamics.  

 

Because a bee’s turning rate is low-pass filtered, the relationship between ω and the stimulus 

velocity is what differentiates the analysis for open- and closed-loop conditions. In closed-loop, 

when a bee turns in a CW direction, it will simultaneously experience CCW visual motion. The 

optomotor response describes an insect’s strong tendency to turn in the same direction as the 

wide-field visual motion it experiences (Gotz, 1975; Reichardt, 1973). The ω autocorrelation 

indicates that it will then likely continue turning CW for some time, contrary to our 

expectations from the optomotor response. The motion function,  M  , quantifies the strength 

of the response to local-field motion, depending on its angular position in the visual field. If 

Eq. (4-3) were then directly used to calculate  M v  from closed-loop data, this function will 

have the opposite polarity to our expectations, and indicate that the bee turned away from the 

visual motion. This would be in contradiction to findings from open-loop experiments on the 

bee’s response to wide field motion (Kunze, 1961), and is unlikely to occur. A similar 

autocorrelation of ω would undoubtedly be present in open-loop experiments. However, 

autocorrelation in open-loop is not as problematic because the insect cannot control the 

stimulus. Therefore we see that, with non-uniform distributions and temporally correlated data, 

the  P 
 
and  M 

 
functions cannot be determined accurately using open-loop analysis of 

closed-loop data with Eqs. (4-2) and (4-3).  
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Figure 4-2: Non-uniform stimulus distributions and autocorrelated behaviour are confounding 

factors for modelling using closed-loop data. A, Autocorrelation of turning rate, ω, for all gain 

conditions. B, Heat map of ω distribution for each stimulus position, ψ. C, The expected 

response,  1 1| ,t t tE    
, plotted against ψt-1, parameterised by ωt-1 (Curves are parameterised at 

8.5 o.s-1 increments). B and C show example data for x2 gain. N=11 repeated all gain 

conditions. 

 

4.5.3 Uniformly estimating data using Gaussian kernel regression 

Gaussian kernel regression (GKR) is a non-parametric statistical technique to estimate the 

conditional expectation of a random variable,    | ,... , , ...E Z Y,X F Y X , using noisy observations 

(Bowman & Azzalini, 1997). The estimation for a set of predictor variables is made based on 
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a locally weighted average of all observed combinations of predictors, where a Gaussian kernel 

is used as a weighting function. We used this technique to estimate the expected turning 

response, ωt, based on the immediate time history of turning response and stimulus position, 

ωt-1 and ψt-1, as  1 1| ,t t tE    
. The inclusion of ωt-1 as a predictor variable in the regression 

incorporates both the strongly autocorrelated structure of ω as an autoregression, but also the 

effect of stimulus velocity, v, on the honeybee’s response, as ω and v are directly coupled.

 1 1| ,t t tE    
 was calculated based on uniformly distributed ω (0.42 o.s-1) and ψ (2.8o) 

increments (Cao, 2008).  The result of such a regression shows the influence of autocorrelation 

of ωt strongly offsets the predicted response at all ωt-1 parameterisations; however, some of the 

variation in the curve also appears to depend on ψt-1 (Figure 4-2C).      

 

With ωt-1, the autoregressive component, being the dominant predictor of the estimated value 

ωt,  1 1| ,t t tE    
is not directly useful for calculating the honeybee’s response in terms of 

position- and motion-dependent functions. To remove the immediate effect of autocorrelation 

from the estimate, the mean value dependent on ωt-1 was subtracted, such that the estimated 

function was now zero-mean for any ωt-1 level (a diacritic tilde (~) is used to denote that 

function has had its mean level subtracted,  

      1 1 1 1 1 1| , | , | 180 180,t t t t t t t t tE E E                    (4-4) 

 

After this operation, the variation in the expected value of ωt, depending on ψt-1, is clear across 

all ωt-1 parameterisations and maintains a consistent scale (Figure 4-3B). There does appear to 

be a distortion of the curve at larger ωt-1 parameterisations, suggesting that v, affects the shape 

of curve. In addition to ensuring that the response is uniformly estimated across the ranges of 

ψ and ω, Eq. (4-4) provides insight as to how an insect will vary its turning rate in response to 

the stimulus conditions, and removes the effect of the autocorrelation in ω. 

 

4.5.4 Open-loop control functions from zero-mean responses 

In open-loop experiments, where the fixation stimulus is rotated around an insect, the measured 

response function,  ,R v , would not have a mean level of zero because of the insect’s 

response to stimulus motion (Figure 4-3Aii). However, for closed-loop data, subtracting the 

mean value from the estimated turning response is necessary to prevent the autocorrelation of 

ω from interfering with the calculation of the insect’s response to stimulus motion (Eq. (4-4)). 
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For open-loop data, if the mean of  ,R v  was subtracted, what would the effect on 

reconstructing the position,  P  , and motion,  M v , functions be?  

 

Eq. (4-1) predicts ω based on the underlying  P   and  M v  functions. Subtracting the mean 

level of this function is equivalent to subtracting the mean level of both the underlying 

functions, 

           ,R v P P M M v          (4-5) 

Reconstructing the underlying functions would then be accomplished by combining the 

response to CW and CCW motion as in Eqs. (4-2) and (4-3). Reconstruction from zero-mean 

responses leads to both  P   and  M v  having their mean levels subtracted,  

           , , 2P R v R v P P           (4-6) 

            , , 2M v R v R v M M v           (4-7) 

 

This process is illustrated in Figure 4-3A using an example pair of  P   and  M   functions1 

(Figure 4-3Ai), that are summed using Eq. (4-1) to find  ,R v
 
(Figure 4-3Aii). Subtracting 

the mean level of the function removes information from  ,R v  (Figure 4-3Aiii). However, 

provided each function varies over ψ, information on the shape and scale of this variation is 

retained (Figure 4-3Aiv-v) when reconstructing  P   and  M   using Eqs. (4-6) and (4-7). 

 

Open-loop functions (with zero-mean) depend on ψ and v, and closed-loop responses (with 

zero-mean), are also observed to depend on ψ and ω. As such, we propose that zero-mean 

closed-loop responses and classic open-loop functions, both with their mean level subtracted, 

are treated as functionally equivalent when analysing fixation control, that is (given 

v gain   ),  

      1 1 1 1, | , | ,t t t t t tR v E v E gain              (4-8) 

 

                                                 

1 The example functions used are    
2
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Figure 4-3: Reconstruction of zero-mean functions is possible from zero-mean responses. A, 

Graphical example of reconstructing position,  P  , and motion,  M v , dependent functions, 

using responses where the mean level is subtracted (Section 4.5.4). i, functions of stimulus 

position (  P  ), and motion (  M  ) at different stimulus velocities (v). ii, the response (  ,R v ) 

to CW or CCW motion from the functions in i (Eq. (4-1)). iii, zero-mean responses (  ,R v ) 

from ii. iv, calculation of  P   using the curves in iii (Eq. (4-6), the curves overlap exactly). v, 

calculation of  M v  using the curves in iii (Eq. (4-7)). B, The zero-mean expected response, 

ωt (from Eq. (4-8)), plotted against past stimulus position, ψt-1, parameterised by past stimulus 

velocity, ωt-1. The reconstructed,  P  , C, and  M v , D, functions (from Eqs. (4-6) and (4-7) 

respectively), plotted against ψ, parameterised by v. B, C, D show an example based on x2 

gain. Curves are parameterised in 8.5 o.s-1 increments. N=11 repeated all gain conditions.  
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4.5.5 Closed-loop control functions from zero-mean responses 

The standard method of reconstructing position- and motion-dependent functions from open-

loop data can then be applied to closed-loop data, by substituting  1 1| ,t t tE    
 in place of 

 ,R v
 
in both Eqs. (4-6) and (4-7). Reconstruction of the position-dependent function,      

 P  , from the responses for x2 gain (Figure 4-3B) yields a function (Figure 4-3C) that is of 

a qualitatively consistent scale and shape over a wide range of v, although it starts to deform 

slightly at high v. The motion-dependent function,  M v , also displays a relatively consistent 

shape, the scale of which increases as v increases. Notably, the central portion of the function 

drops below zero, whilst both lateral portions remain above zero. This observation does not 

require that the bee’s response to motion be inverted for motion in its frontal visual field. 

Rather, the mean level of all curves has been subtracted, and whilst such inversion could be the 

case, there is likely to be an unknown offset to the original motion function,  M v , such that 

the response to motion in this region would be zero or positive. 

 

Instead of using Eq. (4-6) to calculate the position-dependent function,  P  , an alternative 

approach to calculating a similar function from closed-loop data would be to take the mean 

value of ω for each value of ψ. This approach yields an expected value for ω, or  |E   , for 

each value of ψ (Figure C-2). How does this compare to the response calculated using 

uniformly re-estimated zero-mean data? The  |E    curve is substantially larger in amplitude 

than those obtained using zero-mean functions (Figure 4-3C). This disparity arises because Eq. 

(4-6) predicts how the honeybee will change her behaviour from the autoregressive 

expectation, based on the immediate history ψ and ω, whereas  |E    measures the expected 

ω after integrating a series of such changes. The expected ω at any ψ will then depend on the 

average time series of stimulus conditions leading to that ψ, which varies depending on ψ 

(Figure 4-2B). Both methods provide a representation of the underlying control system (in 

response to ψ), although Eq. (4-6) provides a representation that can be more easily generalised 

across all combinations of ψ and v. Qualitatively similar curves are observed between  P   

and  |E   , for all gain levels (in Figure 4-5A and Figure C-2 respectively), although the 

amplitude of  |E    is always larger than the equivalent  P   function. There is not an 

obvious alternative to Eq. (4-7) for measuring  M v
 
from closed-loop data.  
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4.5.6 Calculating a motion function that depends on motion direction 

Studies have shown that the response of a fly to visual motion depends upon the direction of 

visual motion (Götz, 1975; Götz & Buchner, 1978). The magnitude of the response to stimulus 

motion was also found to vary at any stimulus position, depending upon whether the motion 

was from front-to-back or back-to-front (Bahl et al., 2013; Heisenberg & Wolf, 1984; 

Reichardt, 1973), in other words, that    M v M v     . This means that to calculate the 

position function (Eq. (4-2)), which relies on direction invariance of  M  , at any ψ, will 

introduce inaccuracies into the calculation of the  P  . When calculating the motion function 

(Eq. (4-3)), there will also be ambiguities, as  M 
 
will represent an intermediate between 

 M v   and  M v  . In this section, we show that is possible to expand the traditional 

method of calculation  P   and  M   to correctly calculate both, even though front-to-back 

and back-to-front motion may not elicit equivalent responses. 

  

To do this, we must first include a function describing the insect’s response that depends on 

the direction of motion. This is termed2  DM  , and modifies Eq. (4-1) such that, 

          , sgnDR v P M M v v n          (4-9) 

In this,  M   continues to represent a function modulating the response to motion that is 

independent of motion direction (although the polarity of the response depends on the direction 

of motion). However, as well as changing the polarity of  DM  , the direction of motion also 

reflects this function about ψ = 0.  ,R v  now allows for the response to motion in the right 

visual field, during clockwise (CW) motion, to be modulated in the same way as motion in the 

left visual field, during counter-clockwise (CCW) motion, both of which represent motion from 

front-to-back. The implicit assumption is then that    D DM v M v      , rather than the 

broader assumption that    M v M v     . 

 

This representation of  ,R v  is now able to describe the directional dependency of an insect’s 

response to visual motion; however, isolating  P   and  M v  becomes more complicated. 

                                                 
2 Although  DM   is expressed as  sgn( )DM v 

 
in Eq. (9), for brevity, the result of the signum function is 

calculated and written as either ψ or –ψ in the argument for the MD function in the following equations. 
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If Eqs. (4-2) and (4-3) are rewritten using Eq. (4-9), then these functions are now reconstructed 

as, 

              , , 2 2D DR v R v P M M v P              (4-10) 

and, 

               , , 2 2D DR v R v M M M v M v              (4-11) 

Thus, position and motion functions will be incorrectly represented if Eq. (4-9) underlies an 

insect’s response, rather than Eq. (4-1).  

 

It is possible to fully separate the insect’s response for further decomposing Eq. (6) and 

separating all functions into components that are mirror symmetric or anti-symmetric about ψ 

= 0. Any function can be decomposed such that, 

      M AF F F      (4-12) 

where  F   is the original function,  MF   is the mirror symmetric component and  AF   is 

the anti-symmetric component, and the axis of symmetry is ψ = 0. These component functions 

are easily found, as,  

        2AF F F       (4-13) 

and, 

        2MF F F       (4-14) 

 

 F   can be reconstructed by summing Eqs. (4-13) and (4-14). Additionally two useful 

identities arise from this definition: for anti-symmetric functions, 

    A AF F      (4-15) 

and for mirror symmetric functions, 

    M MF F     (4-16) 

 

Using the function decomposition above, Eq. (4-9) can be re-written as, 

                 , sgn sgnA M A M A M

D DR v P P M M M v M v v n                (4-17) 

 

Whilst not immediately obvious, the advantage of this decomposition is that all terms in  ,R v  

can always be expressed as functions of positive ψ using the identities in Eqs. (4-15) and (4-16)

. Furthermore, we can now add and subtract the measured responses to CW,   ,R v , and CCW 
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motion,  ,R v  , and reflections about ψ = 0 of those responses (these being  ,R v  and 

 ,R v   respectively), whilst still expressing all equations as functions of ψ. Four equations 

provide additional insight, which are (further described in Section C.2), 

           , , , , 4 MR v R v R v R v P              (4-18) 

             , , , , 4 A A

DR v R v R v R v P M v                (4-19) 

              , , , , 4 M M

DR v R v R v R v M M v                (4-20) 

           , , , , 4 AR v R v R v R v M v              (4-21) 

 

Three of these equations contain terms arising from either a position or motion response, 

although it is not possible to completely separate these components, as Eq. (4-19) has terms 

dependent on both. However, when v ≈ 0, Eq. (4-19) will result in function describing a position 

response, 

           ,~ 0 ,~ 0 ,~ 0 ,~ 0 4 AR R R R P            (4-22) 

 

The motion response for any v can now be determined. The sum of Eqs. (4-19) to (4-21), minus 

(4-22), will provide the complete response to stimulus motion in a CW direction,  CWM v  

(see Section C.2 for the derivation of  CCWM v ), 

 
          

          

3 , , , , 4 A

A M A M

D D CW

R v R v R v R v P

M M M M v M v

    

    

       

    
  (4-23) 

 

The sum of  MP   (from Eq. (4-18)) and  AP   (from Eq. (4-22)) will also provide the 

complete response to stimulus position in either direction,  P  , although this can also be 

calculated using Eq. (4-2) when v ≈ 0. This procedure uses function symmetry to separate the 

position- and motion-dependent components of an insect’s response to a fixation stimulus when 

the motion-dependent component is fully or partially directionally dependent. Although we 

have used the classic function notation for  P   and  M v  through this section, the procedure 

is also applicable to zero-mean responses.  

 

We have outlined three separate analysis procedures as follows: 1) Gaussian kernel regression 

to uniformly estimate non-uniformly sampled closed-loop data, 2) zero-mean functions for 

removing the immediate effect of autoregression, and 3) calculation of a motion-dependent 
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function for each direction of motion. In combination, this yields functions that depend on the 

position,  P  , and motion,  M  , of a fixation stimulus that can be calculated from closed-

loop experimental data. This provides a new method of characterising the control functions that 

underlie an insect’s fixation behaviour from closed-loop data. 

 

4.6 Results 

Walking honeybees have been shown to orient towards bright visual objects (Moore et al., 

2014; Paulk et al., 2014; Zolotov, Frantsevich, & Falk, 1975), however, it is not known how 

robust this behaviour is to varying gains. To examine this, we tested walking honeybees with 

a task in which they could fixate a vertical bright green bar on a black background in closed-

loop (Figure 4-1B), using their turning rate to control its angular position. The coupling 

between the measured turning rate and the angular velocity of the bar (i.e. the gain of the 

feedback coupling), was randomly varied across five conditions, representing gains of x0.5, x1 

x2, x3 and x4, as well as a no stimulus control condition, where the fixation stimulus was not 

presented. The results revealed that honeybees were able to fixate the stimulus at lower gains, 

although their performance degraded at high gain conditions (Figure 4-4A). To both derive and 

analyse the control system underlying the bee’s fixation behaviour, we used the closed-loop 

analysis procedures outlined in the preceding section. 

 

4.6.1 Honeybees fixate a visual stimulus over a range of gains 

Honeybees attempted to position the fixation stimulus, a vertically oriented bright green bar, 

in their frontal visual field. At a x1 gain (Figure 4-1Cii), which means that for every 1° rotation 

of the ball there is a 1° rotation of the stimulus, the bee is clearly able to fixate on the stimulus, 

resulting in a single major peak in the distribution of bar positions in front of the bee (around 

0o).  This behaviour was less pronounced at higher gains, such as at x4 gain where the 

distribution shows a much shallower peak in frontal region (Figure 4-1Ciii). However, without 

a visual cue, the position of the stimulus was scattered, demonstrating that presence of the 

visual stimulus clearly had an effect on the bee’s behaviour (Figure 4-1Ci).   

 

Bees fixated the stimulus frontally over varying gain conditions, as observed in radial 

histograms (Figure 4-4A). However, at higher gains the stimulus positions become less 

frontally distributed, and the distributions at very high gains were similar to those for the no 
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stimulus control. To quantify the sharpness of these directional distributions, we calculated the 

mean vector of the bar positions over the experiment (Figure C-1). The length of the mean 

vector (which is a measure of the sharpness of an angular distribution) was generally larger at 

lower gains compared to those at higher gains, and for the no stimulus condition, indicating 

that fixation was more robust at the low gains (Figure 4-4B). The gain condition had a 

significant effect on mean vector length (χ2
5=32.20, p<0.001), and post-hoc tests showed that 

the x0.5 gain condition, which had the longest mean vectors, was significantly different from 

the x4 gain and the no stimulus conditions. In addition, the mean vector directions for x4 gain 

and the no stimulus conditions were not significantly different from random (Figure C-1, 

Rayleigh’s test – NS: z10=0.80, p<0.459, and x4: and z10=0.11, p=0.902). This confirms that a 

bee’s ability to position the stimulus in its frontal field of view degrades progressively as the 

gain is increased, as bees could not maintain preferred angular position for the stimulus at x4 

gain. However, the fixation results do not distinguish between two possibilities: 1) bees may 

not have adapted their behaviour at different gains, and been unable to control the stimulus at 

high gain, or 2) the bees may have adapted their behaviour, even though the adaptions were 

insufficient to control the stimulus at high gains. Since these two possibilities cannot be 

separated by measuring fixation performance alone, we must further analyse the characteristics 

of the underlying control system used by bees for the various gain conditions. 
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Figure 4-4: Honeybee’s fixation performance degrades at high gain conditions. A, Radial 

histograms of stimulus position, ψ, showing distributions for each gain condition. B, Average 

mean vector lengths for all conditions (Actual mean vectors are shown in Figure C-1). C, 

Distributions of turning rate, ω. D, Mean |ω| for all conditions. Error bars show ± S.E.M. N=11 

repeated all gain conditions. Stars (n.s.: p>0.05, *: p<0.05, **: p<0.01, ***: p<0.001) denote a 

statistically significant differences between groups, with full statistical in Section C.5.1. 

 

4.6.2 Average turning rate increases with gain 

Did the bees attempt to modify the way in which they controlled the stimulus at higher gains 

in order to improve performance? An initial test for such adaption was to investigate the 

distribution of turning rates, ω, which is the bee’s motor output used to control the stimulus 

(Figure 4-4C). The results show that the shapes of the ω distributions are qualitatively similar 

across all of the gain conditions, but that the mean |ω| significantly increased as gain increased 

(Figure 4-4D, F5,50=6.08, p<0.001). Given that increased gain increases angular velocity of the 

bar for a given turning rate of the bee, one might intuitively expect that the honeybee would 

reduce the magnitude of its turning motions to control the stimulus more effectively. 

Surprisingly, we found the opposite effect.  
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Yet the distributions of bar position or turning rate provide limited information on whether the 

bees are adapting their behaviour to gain changes, because they do not specifically link the 

bee’s motor output, ω, to specific control inputs, such as stimulus position, ψ, and velocity, v. 

Furthermore, at the different gain conditions, the bees experienced very different combinations 

of ψ and v. For example, at x0.5 gain, ω distributions are the result of a control system operating 

when the stimulus is positioned predominantly in the frontal visual field. This is in contrast 

with the situation at x4 gain, where the stimulus position is more widely distributed (Figure 

4-4A). To understand how bees adapt to each of these gain conditions, we must examine the 

control functions linking the stimuli to the motor actions. 

 

4.6.3 Comparison of control functions at varying gains 

To quantify how the bees adapted the control functions underlying their fixation at various gain 

conditions, we characterised their responses to the fixation stimulus in terms of position,  P 

, and motion,  M  , dependent functions. The functions were calculated from closed-loop data 

using the methods described in the Section 4.5 to uniformly estimate the data, remove the 

immediate effects of autocorrelation, and separate the motion responses dependent on motion 

direction. 

 

4.6.3.1 Position-dependent function 

Honeybees were found to vary the scale of their response to stimulus position, depending upon 

the gain condition. The stimulus position,  P  , was calculated using Eq. (4-3) when the bee's 

turning rate, ω, was close to zero (specifically, for |ω| < 5 o.s-1 at all gain conditions).  P 
 

generally has an anti-symmetric shape for all gain conditions (Figure 4-5A). For x2 gain and 

above, this appears to approximate a single period of a sine function. The amplitude, or scale, 

of the  P   in Figure 4-5A varies depending on the gain condition. To objectively compare 

the scale (Sc.) of  P  , the mean of the function for ψ < 0 was subtracted from the mean for ψ 

> 0, that is,  

    . 0 180 180 0ScP P P         (4-24) 

 

.ScP  values for gain conditions above x1 were significantly different from zero, indicating that 

honeybees modulated ω such that it was generally positive for ψ > 0 and negative for ψ < 0 
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(Figure 4-5B). Further, .ScP  peaked at x2 gain, and varied significantly depending on gain 

condition (F1.71, 17.06=3.78, p=0.047). Post-hoc tests showed that .ScP for x2 gain was 

significantly higher than for the x0.5 or the x4 gain, indicating that the bees varied the scale of 

their response to a given stimulus position, depending on the gain condition. In contrast, in the 

no stimulus condition, the predicted  P  does not vary depending on ψ (Figure 4-5A), and 

.ScP  is not significantly different from zero (Figure 4-5B), confirming that  P   represents the 

response to a stimulus. Bees modulated their turning rate depending upon the angular position 

of the stimulus, and the scale of this modulation varies depending on the gain condition. 

 

 

Figure 4-5: The scale of the position-dependent response function varied depending on the gain 

condition. A, The average position-dependent function, for various gain conditions. B, The 

scale of  P   as indicated by .ScP  (from Eq. (4-24)). N=11 repeated all gain conditions. Error 

bars show ± S.E.M. Stars (*: p<0.05, **: p<0.01) in bars denote factor averages that are 

statistically different from zero, otherwise stars denote a statistically significant difference 

between the indicated groups, with full statistical details in Section C.5.2. 

 

4.6.3.2 Motion-dependent function 

Honeybees were found to adjust the shape of their response to motion, which depended on the 

direction of motion.  M v  for clockwise (CW) motion was calculated using Eq. (4-23), and 

for counter-clockwise (CCW) motion using Eq. (C-11), over the limited range3 |ω| < 50 o.s-1, 

for all gain conditions (the motivation for limiting the range of ω is discussed in Section C.3). 

For all gain conditions, increasing ω increased the scale of the motion-dependent response 

(Figure 4-6A for  CWM v  and Figure C-3 for  CCWM v ).  

                                                 
3  MP    in these equations was calculated using Eq. (4-18) when |ω| < 5 o.s-1. 
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The amplitude, or scale, of  CWM v  varies for the no stimulus condition (Figure 4-6Ai). This 

could indicate that ω affects the scale of this function in the absence of a fixation stimulus, 

which potentially arises due to the slight periodicity observed in the autocorrelation of turning 

responses observed during the no stimulus condition (Figure 4-2A). This is confounding for 

comparing the scale of the motion response between gain conditions, because the stimulus 

velocity, v, is always proportional to ω (with the gain determining the proportionality). As such, 

different gain conditions cannot be compared with simultaneously equivalent ω and v levels, 

and we cannot draw conclusions based on variation in scale between gain conditions. 

 

On the other hand, the shape (Sh.) of  CWM v , appears to vary depending on gain condition. 

Because the scale of the function obviously changes with v, comparing the typical shape 

between gain conditions is difficult. To facilitate this comparison, we calculated a scale 

invariant shape of the motion-dependent response, as  .ShM  . Firstly  M v  measured for 

any ω was divided by its root-mean-square (RMS) value,  RMSM v , resulting in a function 

that would have an RMS value of 1.  .ShM   was calculated as the average of these RMS 

normalized functions, across the range 20 < |ω| < 50 o.s-1 (the lower limit was imposed as 

 M v  may be poorly attenuated at low ω, Section C.3), 
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M v
M d

M v

 
 

 
    (4-25) 

This procedure was performed for both CW and CCW motion, to find  .Sh

CWM   and  .Sh

CCWM   

respectively.  

 

In this form,  .ShM   clearly varies depending on stimulus position, ψ, for all gain conditions, 

and also between motion directions (Figure 4-6D). An initial observation is that the elevated 

responses of these functions tend to occur when the stimulus is moving from front-to-back, for 

CW motion this is when ψ > 0, and for CCW motion ψ < 0. Further, these regions of elevated 

response appear to occur when the bar is positioned laterally to the bee, at ψ ≈ ±90o, for all 

gain conditions. A second observation is that the difference in amplitude between these 

elevated regions, and the response when the stimulus is positioned centrally, at ψ ≈ 0o, 

increases as gain increases. At x2 gain or higher, the response to motion in the frontal field is 

clearly diminished for motion in both directions, suggesting that varying the relative response 

of the motion response across the visual field is an adaption to varying gain conditions. 
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For each gain condition, two comparisons were made for motion in each direction, at each gain 

condition. These comparisons were measurements of the difference in the response of  .ShM   

in various visual regions. These regions were: left lateral; -135 < ψ < -45o, frontal;                             

-45 < ψ < 45o, and right lateral; 45 < ψ < 135o. We compared the difference between mean 

response in the left lateral region and the mean response in the frontal region, 

        . . . .45 135 45 45Sh Sh Sh ShM L M F M M             (4-26) 

and, also the difference between the mean response in the right lateral region and the mean 

response in the frontal region,  

        . . . .45 135 45 45Sh Sh Sh ShM R M F M M           (4-27) 

 

These differences in the motion function corresponding to frontal and side bar positions 

confirm that at all gain conditions, for both bar motion directions, the strength of  .ShM   in 

the lateral visual field corresponding to front-to-back motion is larger than the response in the 

frontal visual field (Figure 4-6C and D). This results in a positive difference that is significantly 

larger than zero for the majority of gain levels. Furthermore, this difference in the motion 

function varies significantly depending on gain condition, tending to increase as gain increases. 

In contrast, the difference in  .ShM  between the lateral and frontal visual fields for back-to-

front motion is only significantly larger from zero in one case (Figure 4-6C), and in some cases 

falls below zero. It does not vary significantly depending on gain condition. This indicates that 

the strength of  .ShM   in the lateral visual field is generally comparable to that in the frontal 

visual field for back-to-front motion. Bees modulated their turning rate in response to stimulus 

motion depending on where in their visual field it occurs. The relative strength of the response 

in any given area of the visual field changes depending on the gain condition, and it also differs 

depending on whether the stimulus motion is from front-to-back, or from back-to-front. 
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Figure 4-6: The shape of the motion-dependent function varies depending on gain condition.  

A, The clockwise motion-dependent function,  CWM  , for all gain conditions, parameterised by 

turning rate, ω, ( v gain   , see Figure C-3 for  CCWM   curves) in 4.2 o.s-1 increments. B, The 

scale invariant motion function,  .ShM   (from Eq. (4-25)), for rotation in both directions, for 

each gain condition. All curves in B have an RMS scale of one. C, comparison of relative 

strength of  .ShM   in the left (-135 < ψ < -45o) and frontal (-45 < ψ < 45o) visual fields, across 

all gain conditions for both motion directions using Eq. (4-26). D, as for C, with the comparison 

between the right and frontal visual fields using Eq. (4-27). N=11 repeated all gain conditions. 

a.u. = arbitrary units. Error bars show ± S.E.M. Stars (n.s.: p>0.05, *: p<0.05, **: p<0.01,    

***: p<0.001) in bars denote factor averages that are statistically different from zero, otherwise 

stars denote a statistically significant difference between the indicated groups, with full details 

in Section C.5.3.  
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4.6.4 Model simulations using control functions 

To assess how well the control functions predicted bee behaviour, we used these functions to 

computationally simulate the fixation behaviour of a ‘model’ honeybee under various gain 

conditions. This model was used to test how the position or motion-dependent functions would 

respond in isolation, and also how the control functions would perform when tested using 

simulation gains that were different from the experimental gain for which they were calculated. 

 

4.6.4.1 Model details 

The model (Figure 4-7A), uses the instantaneous stimulus position, ψ, and instantaneous 

velocity, v, to predict the simulated bee’s turning response, ω, using position- and motion-

dependent functions calculated from the experimental data for each gain condition. By 

incorporating temporal dynamics, noise, and stimulus displacements, the model mimics the 

conditions experienced during actual behavioural experiments.    

 

The position-dependent response was predicted using  P  , as in Figure 4-5. The motion-

dependent response was predicted using  .ShM   (further separated into  .Sh

CWM  , and  

 .Sh

CCWM  ) as in Figure 4-6. Both  P   and  .ShM   were calculated as zero-mean functions. 

Hence,  .ShM   must have a negative magnitude at some ψ values. If  .ShM   was left as is, 

the stimulated honeybee’s response to stimulus motion would change polarity depending on 

stimulus position; at some ψ it would turn in the same direction as stimulus motion, at others 

it would turn in the opposite direction. This is unlikely to occur; hence to correct this, each 

calculated  .ShM   curve was offset such that its minimum was zero, 

       . . .minSh Sh ShM M M       (4-28) 

 

A linear function of v was used as a multiplier to scale  .ShM  ; the coefficients, aM and bM, 

of this function were found using a linear regression on the average RMS scale between 

 CWM   and  CCWM  , over the ω range 0 to 150o.s-1, from experimental data for each gain 

condition (Figure C-4). The simulated honeybee’s response to visual motion was then, 

        .Sh

M MM F v M a b v       (4-29) 

The sum of  P  ,    M F v , and a source of Gaussian noise predicted the change in the 

simulated honeybees turning rate, ω, from its past state. The Gaussian noise represented the 
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random actions made by a honeybee, and the average standard deviation for the no stimulus 

condition, 71.5 o.s-1, was used as the standard deviation of the noise term. The amplitude of the 

noise may have varied between experimental gain conditions; however it was not possible to 

use our data to measure if such changes occurred. A saturation limit of ±500 o.s-1 was imposed 

on ω, as turning rates reaching this were very rarely observed (Figure 4-4C). The stimulus 

velocity, v, experienced by the honeybee, was v gain   . 

 

To ensure that the simulation replicated the experimental conditions, forced displacements 

were incorporated that followed the same randomized pattern as for the actual experiments 

(described in Section 4.4.4), were included in the simulation (these did not noticeably influence 

fixation performance, Figure C-5). A three time point delay was also included between the 

simulated bee’s action affecting the stimulus position, representing the latency between the 

honeybees' actions and a change in the stimulus position under experimental conditions. The 

results from this configuration of the model overestimated the bees’ fixation ability at most 

gain conditions (Figure C-5), exhibiting more accurate fixation than observed in experiments 

(Figure 4-4A). 

 

To include an approximation of the temporal dynamics underlying the response, we fitted a 

six-step (200 ms) autoregression (AR) filter to the ω time series from the no stimulus 

condition4. The AR filter implements the low-pass dynamics observed in the exponentially 

decaying autocorrelation of ω (Figure 4-2A), this may be limited to describing the dynamics 

of a bee’s actuation signal, rather than the sensorimotor dynamics. Incorporating the AR low-

pass filter resulted in similar simulated fixation performance (Figure 4-7B and Figure C-5) to 

experimental results (Figure 4-4A). Hence, it is possible to qualitatively replicate honeybee 

fixation with a simulation model by using control functions calculated from closed-loop 

experiments combined with temporal dynamics. Fixation results can be replicated from all 

experimental gain conditions, when matched to the appropriate simulation gain, which 

validates the measurement of position- and motion-dependent functions from closed-loop data. 
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4.6.4.2 Model results 

When the simulation gain matched the experimental gain used for deriving control functions, 

simulations of the model honeybee showed fixation performance (Figure 4-7Bi) that was 

similar to that observed in the actual behavioural experiments (Figure 4-4A) across all gain 

conditions. At low gains the simulated honeybee concentrated the distribution of the stimulus 

position into its frontal visual field and these distributions were less concentrated at high gains. 

The simulations showed exponentially decaying and periodic autocorrelations (Figure 4-7Bii), 

which were again similar to observations from behavioural experiments (Figure 4-2A), 

although shorter oscillation periods were found for the simulated data. Un-modelled dynamics 

in the bee’s response may be responsible for the observed difference in the autocorrelation 

periods, although this does not appear to affect the fixation results. 

 

To assess the robustness of the control functions calculated for each experimental gain 

condition, we ran the simulation using the normal x1 gain (Figure 4-7C), and the highest gain, 

x4 (Figure 4-7F). At a simulation x1 gain, the control functions calculated from all 

experimental gains could bee used to to fixate the stimulus, although the efficacy varied; 

control functions calculated for x3 and x4 gains performed worse than those calculated for x0.5 

and x1 gains (Figure 4-7C). At a simulation x4 gain, the model honeybee could not fixate the 

stimulus regardless of which experimental gain the control functions were calculated from 

(Figure 4-7F). Furthermore, the autocorrelations when using control functions calculated at 

experimental x0.5 and x1 gains showed that unstable oscillations of ω occurred (Figure 4-7Fii), 

whereas the autocorrelations when using control functions calculated at experimental x2, x3, 

and x4 gains produced ω oscillations that were damped (Figure 4-7Fii). This indicates that, 

despite having limited success in fixating the stimulus at higher gains, the control strategy 

adopted by honeybees allowed them to retain some stability at these gains, was not achieved 

using the control functions calculated for lower gains. 

 

The efficacy of either position or motion-dependent functions at providing fixation control, in 

isolation, was tested using a x1 gain. When the simulated honeybee only used the position-

dependent function (Figure 4-7D), fixation was noticeably impaired, with the function 

calculated at experimental x0.5 gain performing worst. Surprisingly, when the simulated 

honeybee only used the motion-dependent function, weak fixation appeared possible using the 

function calculated for experimental x0.5 and x1 gains, although not when the function was 

calculated from data for higher gains (Figure 4-7E). When using either the position or motion-
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dependent functions in isolation, regardless of the gain condition, fixation performance was 

worse than when the control functions were used in combination (Figure 4-7C). 

 

 

Figure 4-7: Position- and motion-dependent functions can qualitatively predict fixation 

performance across all gain settings. A, Block diagram of fixation model (Section 4.6.4.1). 

Position- and motion-dependent functions are calculated based on experimental data for each 



Turning towards the light 

| 95 | 

gain setting. B, Simulation gain matches experimental gains. C, Simulation is x1 gain 

regardless all experimental gains. D, As for C, however, only the position-dependent function,

 P  , is used for fixation control. E, As for C, however, only the motion-dependent function,

 M  , is used for fixation control. F, Simulation is x4 gain regardless of experimental gain. For 

B, C, D, E, and F; i shows radial histograms of stimulus position, ψ, distributions, and ii shows 

the corresponding autocorrelations of turning rate, ω. Results from experimental data for 

fixation are displayed in Figure 4-4A, and for autocorrelation in Figure 4-2A. 

 

4.7 Discussion 

Tethered visual fixation, where an insect uses a motor output to control the angular position of 

a fixation stimulus, represents a relatively constrained behavioural experiment compared to 

flying or walking in the natural world. However, given that an insect combines non-linear 

responses to the position and motion of the stimulus, and also generates random turning 

fluctuations, quantifying the underlying control scheme from closed-loop data is a non-trivial 

task (Wolf et al., 1992). Using novel analysis techniques, we find that the position- and motion-

dependent functions,  P   and  M  , that describe a honeybee’s turning response can be 

reconstructed from a quantitative analysis of closed-loop behaviour in which bees fixated a 

vertical bar. These functions are similar to the classic position and motion functions,  P   and 

 M   that have been derived for flies (Bahl et al., 2013; Heisenberg & Wolf, 1984; Reichardt 

& Poggio, 1976), except that they represent how a honeybee will change her turning rate, given 

the current state of the stimulus, rather directly predicting the turning rate. Honeybees adapt 

both the position- and motion-dependent functions underlying their control of the stimulus. 

Whilst the bee’s ability to fixate the stimulus deteriorates as gain increases, the simulation 

studies suggest that their adaptations do improve their control of the stimulus at high gain.  

 

4.7.1 Closed-loop analysis techniques   

In order to examine these control functions, we used Gaussian kernel regression (GKR) to 

uniformly estimate the honeybee’s response to all combinations of stimulus position and 

velocity from data that was originally non-uniformly sampled over these variables. Non-

uniform stimulus distributions could result from any closed-loop behaviours, particularly those 

based on an orientation task such as navigation or prey pursuit. Whilst some control systems 

identification techniques can be applied directly to data from closed-loop experiments (Ljung, 

1999; Westwick & Kearney, 2003), uniform stimulus distributions are required to reconstruct 

 P   and  M 
 
for use with the classic phenomenological equation (Poggio & Reichardt, 
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1973) in Eq. (4-1). Uniformly resampling closed-loop data using GKR alleviates the problem 

of non-uniformly sampled data, and could enable systems identification using closed-loop data 

for other behaviours.  

 

One consideration when resampling with GKR is that the signal to noise ratio (SNR) across 

the range of predictor variables may not be constant, as a non-equal number of points contribute 

to any estimate. As every estimate is based on a locally weighted average, increasing the 

number of contributing observations will decrease the SNR. When reconstructing  P 
 
from 

x0.5 gain data, low SNR may have been problematic when the stimulus position approached 

±180o, as most bees rarely position the stimulus to their rear. Tellingly, the reconstructed  P 
 

for x0.5 gain appears qualitatively noisier than those for higher gains. When characterising a 

highly stable control system in closed-loop, as bees were for the x0.5 gain condition, open-loop 

displacements should be applied to ensure that the insect’s response can be measured multiple 

times across the full range of all stimulus parameters (Ljung, 1999). Obviously it is a fine 

distinction between conducting a closed-loop experiment with regular open-loop disturbances, 

and an experiment where too many disturbances may influence how the insect adapts its 

control.  

 

4.7.2 Control functions 

The position-dependent function,  P  , defines how the honeybee’s response will change 

depending on the angular position of the stimulus relative to the insect. The function follows 

an approximately sinusoidal curve, peaking in the bee’s lateral visual field, which results in the 

bee turning towards the stimulus. Whilst a similar analysis has not been undertaken for flying 

honeybees, the function we have obtained is qualitatively similar to the position function,  P 

, observed for both walking (Bahl et al., 2013) and flying Drosophila (Heisenberg & Wolf, 

1984; Heisenberg et al., 1978) in open-loop experiments. Our results indicate that, in adapting 

to different gain conditions bees adjust the scale, but not the shape, of their response to stimulus 

position. The position-dependent function has the largest scale at x2 gain, with the lowest scales 

occurring at gains of x0.5 and x4. As has been found in motion-blind Drosophila (Bahl et al., 

2013), simulations show that the measured position-dependent function on its own would allow 

a bee to fixate. However, both the position- and motion-dependent components of the 
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honeybee’s response are required to predict the characteristics of the experimentally observed 

fixation behaviour. 

 

The motion-dependent function,  M  , specifies how a bee’s response to stimulus motion 

varies, depending on where in its visual field that motion occurs. Varying the gain condition 

caused honeybees to change the shape of the motion-dependent function. As gain increased, 

honeybees tended to decrease their response to forwards motion in their frontal visual field 

relative to their lateral visual field. This difference was present across all gains, but the 

difference was largest at x4 gain. A similar reduction in the response to visual motion occurring 

in the frontal visual field has not been observed for flies, where the response has been found to 

be uniform across the visual field for Musca (Poggio & Reichardt, 1973), or elevated in the 

frontal visual field in Drosophila (Aptekar et al., 2012; Bahl et al., 2013). In linear control 

system theory, the motion-dependent response is similar to the derivative term of a 

proportional-derivative (PD) controller, although here it generates a non-linear function of 

stimulus position and velocity, rather than a linear derivative function of an error term (Nise, 

2008). In a high-gain system, it is well known that the derivative term can cause unstable 

oscillations (Ljung, 1999; Nise, 2008). Hence, reducing the response to visual motion in the 

frontal visual field should be a beneficial control strategy for the insect at high gain. 

 

The honeybee’s motion-dependent response was found to vary depending on the direction of 

motion of the stimulus. Motion in the front-to-back direction generally elicits a larger response 

than motion in the back-to-front direction, particularly at high gain. A similar phenomenon has 

been observed in Drosophila’s response to fixation stimulus motion (Bahl et al., 2013), 

although it has not previously been incorporated into analysis methods for calculating the 

motion function. It is not clear if this particular aspect of the motion-dependent response 

represents a desirable feature of its control system, or simply reflects constraints in the 

physiological mechanisms that underlie the detection of stimulus motion. We developed a 

novel analysis procedure to calculate a separate motion function to be calculated for motion in 

either direction, which allows the directional dependency of the motion response to be 

determined in future open- or closed-loop experiments with fixation stimuli. 

 

These position- and motion-dependent functions outline the non-linear functions linking 

stimulus position and motion to a honeybee’s response. However, the methodology we propose 
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does not measure the temporal dynamics of how the insect responds to either the stimulus 

position or motion; it is possible that the honeybees also adapt this aspect of their response 

depending on the gain condition.  Systems analysis techniques have been used to separately 

determine the temporal dynamics of flies’ responses to both stimulus position and motion in 

open-loop (Aptekar et al., 2012; Theobald, Ringach, & Frye, 2010), and similar techniques 

could potentially be used to analyse closed-loop experiments.  

 

4.7.3 Mechanisms underlying adaptation 

Fundamental questions that arise from these experiments concern the nature of the mechanism 

that enables a honeybee to recognize changes in gain and the realisation of these mechanisms 

at the neural level. A proposed method for adaption is to correlate changes in motor output with 

changes in the velocity of the stimulus to be controlled (Wolf & Heisenberg, 1990; Wolf & 

Heisenberg, 1991). Based on this correlation, the coupling coefficient between motor actions 

and the stimulus can be determined, which can explain how Drosophila adjust their flight 

patterns in response to inverted or increased gain conditions during fixation (Heisenberg & 

Wolf, 1988; Wolf & Heisenberg, 1990). The bees in this study had to modify their behaviour 

based on subtle changes in the magnitude of the correlation between their motor output and its 

effect on the fixation stimulus. When walking speed is coupled to rotational gain in an identical 

fixation task, honeybees were also found to adjust their walking speed to improve their fixation 

(Chapter 3). This observation, taken together with the present study, suggests that honeybees 

possess a sensitive mechanism for detecting and optimising the results of their motor output, 

based on the sensory feedback they receive. These mechanisms may involve the use of a 

forwards model, where the intended results of an action are predicted and compared to the 

actual results, which would allow the bee to update its motor commands if discrepancies arrive 

(Miall & Wolpert, 1996).   

 

The neural mechanisms that underlie the gain adaptation for complex visual behaviours have 

yet to be discovered for any insect. Given that separate regions of the brain are responsible for 

processing stimulus motion and position in Drosophila (Bahl et al., 2013; Seelig & Jayaraman, 

2013), adaptation to varying gains could depend on the insect’s comparison of its motor output 

to the visual objects position, or its motion, or a combination of both. Recent findings from a 

vertebrate organism, zebra fish larva, have found that separate brain areas function during 

adaptation to conditions of decreased and increased gain (Ahrens et al., 2012). Similar 
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specialisation could also be present in insects. Taken at the behavioural level, fixation is a 

robust, yet surprisingly complex behaviour and the underlying neural mechanisms, particularly 

when adapting to changes in gain, are probably similarly complex. Further insight could be 

provided by behavioural experiments that use compound stimuli to separately stimulate an 

insect’s position and motion responses (Aptekar et al., 2012).  

 

4.7.4 Conclusion  

Novel analysis methods are described that enable characterisation of closed-loop fixation 

behaviour in terms of position- and motion-dependent functions, for a number of different 

feedback gains. These functions provide insight into the choices, at the behavioural level, made 

by an adaptive biological control system to increase its efficacy. Similar control schemes could 

be used to guide adaptive behaviours for a robotic agent, and optimise its ability to orient 

towards visual features in the environment.  
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 Walking towards the light: Honeybees modulate 

their walking speed to move effectively towards a 

visual landmark 

 

5.1 Preamble 

This chapter describes how honeybees modulate their walking speed as a function of the 

angular position of a visual fixation stimulus, when also actively controlling its position in 

closed-loop. Bees were found to modulate their forwards and sideways walking speed to 

effectively move towards the stimulus, providing a new insight into how insects control their 

translation from a paradigm designed to study orientation. The contents of this Chapter (and 

Appendix D) have been prepared and formatted as a publication, for submission to the journal 

‘PLoS Computational Biology’ authored by G. J. Taylor (the candidate), A. C. Paulk, T. W. L. 

Pearson, B. van Swinderen, and M. V. Srinivasan. The work is intended for submission as two-

part publication with Chapter 4. The contributions of each author are detailed in the preliminary 

pages of the thesis. 

 

5.2 Abstract 

Honeybees use vision to control their orientation towards objects, though the influence of both 

motion and position of the stimulus in the visual field can be complex. We analysed the walking 

speeds of honeybees as they oriented towards a visual fixation stimulus in a virtual-reality 

arena. In these closed-loop experiments, tethered bees walked on a trackball where yaw rotation 

was measured and used to control the azimuthal position of a bar presented on a panoramic 

visual display. Although the bee’s walking speed had no direct effect on the movement of the 

visual stimulus, bees modulated both their forward and sideways walking speeds depending on 

the angular position of the stimulus. The bee’s forwards, or longitudinal, speed was highest 

when the stimulus was positioned in their frontal visual field, whereas their sidestepping, or 

transverse, speed was modulated such that the bees would step towards the stimulus when it 

was positioned in their lateral visual field. In the experiments analysed, the gain condition, a 

linear coupling between the insect’s turning rate and the stimulus velocity, was varied by a 

factor of eight. Although bees have been found to adapt the control of their turning rate 

depending on the gain condition, we find here the control of walking speed is similar across all 
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gain conditions. Simulations indicate that the strategy used by bees to modulate both forward 

and sideways walking speeds can be effective when attempting to move towards a distant 

landmark, particularly if its angular position is unstable. The study and modelling of translatory 

movements can provide new insights into how insects intend to control their locomotion, even 

in paradigms designed to study rotational control.  

 

5.3 Introduction 

Many insects orient towards visual objects in their environment. This behaviour can serve a 

variety of purposes, as insects orient with respect to prey, predators, food sources, their nests, 

or conspecifics. However, behaviour when orienting towards a visual object also depends on 

the translational speed of the insect’s locomotion, as translation changes the insect’s position 

and also its orientation with respect to the object of interest. For example, during prey pursuit 

(Boeddeker et al., 2003; Gilbert, 1997; Land & Collett, 1974), or navigation (Robie, Straw, & 

Dickinson, 2010; Srinivasan, 2011; Wehner, Michel, & Antonsen, 1996), an insect will move 

towards an object or location until it is reached. In other situations a constant distance may be 

maintained towards the object, such as when hovering in front of a flower whilst feeding from 

it (Farina, Varjú, & Zhou, 1994; Kern & Varjú, 1998; Sprayberry & Daniel, 2007), during 

mating flights (Land, 1993; van Praagh et al., 1980), or courtship rituals (Cook, 1979, 1980; 

Frantsevich & Gorb, 2006). The insect may even orient towards an object whilst remaining in 

place, such as when reacting to the presence of a predator (Kelber & Zeil, 1990; Kevan, Cant, 

& Kevan, 1983). How an insect modulates both its translatory and rotational motions will 

therefore determine how it interacts with the stimulus.  

 

Behaviours that involve simultaneous orientation and movement towards an object have 

primarily been studied in experiments with freely moving animals, where specific features of 

the visual cue have been shown to control locomotion. Forwards speed can be controlled based 

on the perceived retinal size of the object (Boeddeker et al., 2003; Collett & Land, 1975; Cook, 

1979; Schuster et al., 2002; Wehrhahn et al., 1982), which can allow an insect to follow a 

moving object at a fixed distance, or decelerate during interception. Cues from the visual 

expansion of an object (Baird et al., 2013; Borst, 1986; van Breugel & Dickinson, 2012) can 

also be used to control deceleration during flight and initiate leg movements for landing. When 

the animal is nearing the target, the location of the object in the visual field can be used to 

control either sideways or vertical motions that correct an insect’s alignment (Collett & Land, 
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1975; Wagner, 1986; Wehrhahn & Reichardt, 1975; Zhang, Wang, Liu, & Srinivasan, 1990), 

or to allow it to maintain a stable hovering position (Sprayberry & Daniel, 2007; Wijngaard, 

2010). However, in some instances changes in alignment are desirable, such as during peering 

behaviour, where intentional lateral (or vertical) motion provides depth information, through 

motion parallax, to assess an objects distance (Voss & Zeil, 1998; Wallace, 1959). These 

methods of controlling translational movements appear to be primarily used when the insect is 

already close to a visual object. 

 

Insects also use visual information to control their orientation towards an object. A classic 

paradigm for studying visually guided orientation towards a specific object is exemplified by 

the so-called ‘fixation’ experiments that have been conducted with tethered flies in virtual-

reality arenas. Flies use their turning actions to control the azimuthal position of a dark bar 

against a bright background, and to position the bar in their frontal visual field, a behaviour 

called ‘fixation’ (Bahl et al., 2013; Heisenberg & Wolf, 1984; Reichardt & Poggio, 1976). 

Behaviourally, control of fixation appears to be based on non-linear functions that use 

information on the azimuthal position and angular velocity of the fixation stimulus to control 

turning rates (Aptekar et al., 2012; Bahl et al., 2013). Similar behaviour involving orientation 

towards visual cues been observed in other insects, including moths (Preiss & Kramer, 1984), 

beetles (Lönnendonker, 1991; Varjú, 1975), and honeybees (Chapter 4; Moore et al., 2014; 

Paulk et al., 2014). Yet, fixation in virtual-reality is an inherently artificial scenario, as the 

insect can never change its perceived distance the stimulus (Heisenberg & Wolf, 1984). 

However, could the insect’s translational movements during fixation provide further 

information on how it attempts to interact with the visual object?  

 

To answer this question, we examined the behaviour of tethered walking honeybees as they 

modulated both their longitudinal (forward) and transverse (sideways) walking speed when 

controlling the angular position of a fixation stimulus (a vertical bright green bar). The linear 

coupling, or gain, between the bee’s turning rate and the stimulus velocity was systematically 

varied by a factor of eight between experiments. We analysed closed-loop behavioural data on 

the bee’s walking speed by estimating the current speed as a function of the prior value of the 

stimulus position, and the bee’s turning rate and walking speed, and also compensating for the 

effects of the autocorrelation of the response on the estimation. Our analysis indicates that bees 

modulate both their longitudinal and transverse walking speed depending on the angular 

position of the fixation stimulus, regardless of the gain. Even though fast walking is negatively 
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correlated with fixation performance, we find that the observed strategy of modulating walking 

speeds would result in effective movement towards a visual object at all but the highest gain 

condition. Simulations of fixation behaviour and control of walking speed indicate that 

modulating either longitudinal or transverse walking speed is important when approaching an 

unstably orientated object. 

 

5.4 Methods 

This chapter further investigates walking speeds measured from honeybees performing a 

fixation task in virtual-reality. Chapter 4 describes the experimental conditions in detail, and 

analyses the turning motions made during this task. An abridged description of the methods is 

described in Sections 5.4.1 and 5.4.2. The analysis and the modelling that are specific to this 

chapter is described in Sections 5.4.3 and 5.4.4. 

 

5.4.1 Animal preparation, apparatus and experiments 

Honeybees (Apis mellifera) were captured exiting the hive in Brisbane, Australia. Bees were 

anesthetised before being tethered to a metal rod using wax and a cautery tool (Bovie). The 

heads of the bees were fixed to the thorax using dental cement (Coltene Whaledent synergy D6 

FLOW A3.5/B3), and wax was also applied to the base of the wings. Bees were fed with a 

sucrose solution before being placed in a humidified chamber (~35 oC) to acclimatise for one 

hour (Moore et al., 2014; Paulk et al., 2014). 

 

Tethered honeybees were placed an arena consisting of four 32x32 LED panels (Shenzchen 

Sinorad Medical Electronics Inc.; Zhou et al., 2012) that displayed a fixation stimulus, a bright 

green vertical bar (54o high, 20o wide, peak wavelength 518 nm and luminance 168 lux) against 

a background of unlit LEDs. In the arena, the bees walked on a light Styrofoam ball supported 

on an air cushion. The dynamics of the ball (approximate perceived weight 580 mg and 

rotational inertia 330 nkg.m2; calculated using the methods described in (Weber et al., 1981)) 

were not matched for a honeybee (mass ~100 mg and rotational inertia ~5 nkg.m2). However, 

the bees appeared to manipulate the ball easily. 

 

Measurements of the bee’s movements were made using FicTrac (Moore et al., 2014), a 

computer vision algorithm that tracks the motion of the ball on which an insect walks. FicTrac 
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used images from a firewire camera (Point Grey, Firefly), which were processed in real time 

at 30 fps. The bee’s walking speed, W, walking angle, β, and turning rate, ω, were calculated 

concurrently, and the turning rate was used to update the position of the stimulus, using a 

Python script running at 200 Hz incorporating Vision Egg software (Straw, 2008). The latency 

from the bee’s movements to a change in the visual display was approximately 87 ms (Moore 

et al., 2014), hence the time series of measured values from FicTrac was shifted three frames 

back relative to the time series of stimulus positions in order to ensure the temporal alignment 

of the data. 

 

Bees had closed-loop control of the visual stimulus, so that as they rotated the ball the position 

of the stimulus on the LEDs was updated in real time. To study how the insects reacted to 

changes in the coupling of their action-perception loop, the gain conditions were altered. Gain 

refers to the linear multiplier coupling the insect’s turning action to the movement of the 

stimulus. A gain of x1 meant that 1o of rotation of the ball resulted in 1o of rotation of the visual 

stimulus in the same direction, which corresponds to natural, free locomotion. Five gain 

conditions were used, x0.5, x1, x2, x3, and x4, as well as a ‘no stimulus’ control condition 

which displayed a black, unlit bar on a black, unlit arena to record behaviour in the absence of 

the visual stimulus. During the experimental runs, the angular position of the stimulus was 

displaced by 90o at random intervals as described in Chapter 4. The displacement periods were 

excluded from all analysis. Individual experiments lasted two minutes, and all bees were tested 

with all stimulus conditions in a pseudo-randomised order. 

 

5.4.2 Data analysis 

All data on the orientation of the bar and the bee’s movements were recorded within the Python 

script controlling the visual stimulus. Data was analysed at 30 Hz using custom programs 

written in Matlab (The Mathworks Inc.). The walking speed, W, and walking angle, β, 

measured by FicTrac were used to calculate the bee’s speed in terms of longitudinal, WL, and 

transverse components, WT, as  cosLW W    and  sinTW W    (see Figure 1A; Moore et 

al., 2014). 

 

Distributions of longitudinal speed were calculated using one hundred 2 mm.s-1 bins spanning 

the range between -100 and 100 mm.s-1. Distributions of transverse speed were calculated using 

one hundred 1 mm.s-1 bins spanning the range between -50 and 50 mm.s-1.  
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The stimulus position, ψ, was calculated based on the bee’s turning rate, ω, and the gain 

condition, such that     t t gain dt   . The path, P, that a bee would have taken across a 

2D surface was reconstructed in Cartesian coordinates based on the time series of WL, WT and 

ψ, as, 
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For brevity, the notation (t) is omitted through the remainder of the chapter. ψ represented the 

angle to a distant, fixed visual landmark that was aligned with the bee’s starting point, 

essentially having (x, y) coordinates at (0, ∞). Comparisons of the distance moved towards the 

stimulus during an experiment were calculated based on the final value PY from Eq. (4-30) for 

each experiment. 

 

Statistical comparisons are detailed in Section D.2. All statistics were performed using SPSS 

V20 (IBM).  

 

5.4.3 Gaussian kernel regression estimations 

The initial analysis of both longitudinal and transverse walking speeds in Section 5.5.1 

indicated that the past stimulus position, turning rate (or stimulus velocity) and autocorrelations 

influence both components of walking speed. Because measurements were made during 

closed-loop behaviour, there were two considerations for the analysis.  

 

The first consideration is that the observed combinations of predictor variables were non-

uniformly distributed. The honeybee’s control of its turning rate resulted in the fixation 

stimulus usually being positioned in their frontal visual field, and also in its turning rate being 

biased to be either positive or negative when the stimulus was positioned to either their right 

or left respectively (Chapter 4). Thus, simply calculating walking speed as an average, given 

the concurrent value of stimulus position could produce misleading results, as it would be 

influenced by the relationship between stimulus position and turning rate combined with the 

relationship between turning rate and walking speed. To compensate for the non-uniform 

stimulus distributions, Gaussian kernel regression (GKR; Bowman & Azzalini, 1997; Cao, 
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2008) was used to uniformly estimate the bee’s longitudinal and transverse walking speeds 

across the range of all predictor variables (Eqs. (4-31) and (4-32)). We decided not to use either 

component of walking speed as a predictor for the other, as their cross-correlation indicated 

they were only weakly coupled (Figure D-1), and adding dimensionality to the GKR estimation 

would increase the noise at every estimation point.  

 

The second consideration is that walking speed was strongly autocorrelated; hence, the most 

influential predictor variable for walking speed any time point is its own past value, regardless 

of the state of the other predictors at that time point. The autocorrelation would then mask the 

effects of the other predictor variables in the analysis. The effect of autocorrelation was 

compensated for by subtracting the mean level of the estimation when analysing the effect 

turning rate of stimulus position as predictor variables (Eq. (4-33)).  

 

The considerations associated with closed-loop data and both methods of analysis are discussed 

in further detail in Chapter 4. This section describes the analysis procedure used to determine 

the influence of each predictor variable on the behavioural response, and the metrics used for 

making statistical comparisons. The control functions, relating the influence of predictor 

variables to motor output, embed the non-linear responses and dynamics of the underlying 

physiological mechanisms in the function calculated for each variable. 

 

Current longitudinal speed, WL
t, was estimated using GKR as function of past stimulus 

position, ψt-1, past turning rate, ωt-1, and past longitudinal speed, WL
t-1,  

  1 1 1| , ,L L

t t t tE W W      (4-31) 

The estimation was based on increments in WL
t-1 of 0.25 mm.s-1 (between -12.5 and 65        

mm.s-1), 1.43 o.s-1 increments in ωt-1, (between -150 and 150 o.s-1), and 2.8o increments in ψt-1 

(between -180 and 180o). The current transverse speed, WT
t, was similarly estimated using 

GKR as function of past stimulus position, ψt-1, past turning rate, ωt-1, and past transverse speed, 

WT
t-1,  

  1 1 1| , ,T T

t t t tE W W      (4-32) 

The estimation was based on increments in WT
t-1 of 0.25 mm.s-1 (between -20 and 20 mm.s-1), 

1.43 o.s-1 increments in ωt-1, (between -150 and 150 o.s-1), and 2.8o increments in ψt-1 (between 

-180o and 180o). The range for estimating longitudinal and transverse speeds both encompassed 

approximately 95% of the range of measured data for both variables respectively. The 
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following analysis procedures were applied to estimates of both WL
t and WT

t from Eqs. (4-31) 

and (4-32) respectively, hence, the superscript L/T is used for brevity in Eqs. (4-33) to (4-35). 

 

Both WL and WT were strongly autocorrelated (Figure D-1), which could mask the effect of 

other predictor variables. To compensate for this, the mean level of the estimation given the 

prior walking speed was subtracted, 
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The resulting function has zero-mean which is denoted with a diacritic tilde (~). The zero-mean 

function indicates how the bee’s walking speed would vary from the mean level predicted by 

the autoregression, as a 2D function of both ψt-1 and ωt-1. The role of an individual predictor 

variable in modulating walking speed can be examined by averaging the surface represented 

by Eq. (4-33) over the range of the other variable. To examine the role of turning rate, ωt-1, in 

modulating walking speed Eq. (4-33) was averaged over the range of ψt-1: 
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    (4-34) 

To examine the role of ψ t-1, in modulating walking speed, Eq. (4-33) was averaged over the 

estimated range of ωt-1: 
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    (4-35) 

 

Additionally, the autoregressive component of walking speed can be examined using Eqs. 

(4-31) or (4-32), where mean levels were not subtracted. In this case, both ψt-1 and ωt-1 were 

averaged over their complete range as, 
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Using Eqs. (4-34) to (4-36), both longitudinal and transverse walking speed can be plotted as 

functions of their individual predictor variables, as in Figure 5-2, Figure 5-3 and Figure D-3. 

For statistical comparisons (Section D.2), a single feature of interest that characterised the 

relationship of longitudinal or transverse speed with a predictor variable was chosen. This was 

quantified as a difference between the average values over two ranges of the predictor variable, 

and provided an indication of the magnitude and the variance aspects of the response. 

 

The longitudinal walking speed was observed to either increase or decrease (depending on the 

stimulus condition) as a function of the absolute turning rate (Figure 5-2). We quantified this 
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relationship using the average difference between estimations of WL
t for fast (Fa.;100 < |ωt-1| 

< 150 o.s-1) and slow (Sl.; |ωt-1| < 25 o.s-1) turning rates, calculated as, 

          1 1. . 100 | | 150 0 | | 25L L L L

t t t tW Fa W Sl W W             (4-37) 

When considering the relationship between longitudinal speed and stimulus position, WL
t was 

typically highest when the stimulus was positioned in the frontal visual field, and decreased as 

the stimulus moved behind the bee (Figure 5-2). To quantify the relationship, the average 

difference between estimations of WL
t for front (Fr.; -45 < ψt-1 < 45o) and rear (Re.; 135 <        

|ψt-1| < 180o) stimulus positions was calculated as,  

          1 1. . 45 45 135 | | 180L L L L

t t t tW Fr W Re W W              (4-38) 

 

The transverse walking speed was observed to vary as an approximately linear function of 

turning rate (Figure 5-3). We quantified this relationship using the average difference between 

estimations of WT
t for positive (0 < ωt-1 < 150 o.s-1) and negative (-150 < ωt-1 < 0   o.s-1) turning 

rates, calculated as, 

          1 10 150 150 0T T T T

t t t tW W W W                (4-39) 

When considering the relationship between transverse speed and stimulus position, WT
t was 

typically positive when the stimulus was positioned to the bee’s right, and negative when 

stimulus was positioned to the bee’s left. To quantify this relationship, the average difference 

between estimations of WT
t for right (0 < ψt-1 < 180o) and left (-180 < |ψt-1| < 0o) stimulus 

positions was calculated as,  

          1 10 180 180 0T T T T

t t t tW W W W                (4-40) 

 

When comparing the effect of longitudinal or transverse walking speed as an autoregressive 

function (Eq. (4-33)), a similar function appeared to be present for all stimulus conditions, with 

varying vertical offsets between each curve (Figure D-3). To compare this relationship, a ‘base 

curve’ was computed, which was the average of Eq. (4-36) for all stimulus conditions, and 

offset such that  / 0 0L T

tW  . Comparisons with the average vertical offset of Eq. (4-33) from 

any stimulus condition from the base curve provided an indication of any constant bias present 

in the bee’s walking speed. 
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5.4.4 Modelling paths towards an object 

The modelling of a bee’s path towards an object is divided into two parts, as in Figure 5-5A. 

First, a model of fixation behaviour uses turning rate, as a function of the position and velocity 

of the fixation stimulus, to predict control of the fixation stimulus (Chapter 4). The second part 

is a model of walking speed control simultaneously predicts values for longitudinal, WL, and 

transverse, WT, walking speeds which are used to calculate the path taken by a simulated bee 

walking on a 2D surface towards a distant object. 

 

For each walking speed component, the current value is the sum of the functions (for each gain 

condition) of stimulus position,  /L TW  , and turning rate,  /L TW  , (Figure 5-2: WL and Figure 

5-3: WT). Both WL and WT are low-pass filtered using a three point autoregressive model fit to 

observations from the no stimulus condition5. Furthermore, random noise is added to both WL 

and WT. Based on data from the no stimulus condition the standard deviation of the derivative 

of both WL and WT was found to vary as a function of the value of WL
t-1 or WT

t-1 (Figure D-4), 

which indicates that the random variation in walking speed did not follow a Gaussian 

distribution. This is incorporated into the noise for the model, such that the standard deviation 

of Gaussian noise injected into both WL and WT is parameterised depending on WL
t-1 and WT

t-1 

(Figure D-4). As a positive mean was observed in WL, an offset was added to WL such that the 

population mean for each simulation gain matched the population mean for data at the 

equivalent gain (Figure D-4). An offset combined with low-pass filtering and noise (where the 

standard deviation depends on WL
t-1) can produce long tailed distributions that are similar to 

those observed from experimental data (Figure D-4). A limitation of this model is that turning 

rate influences both WL and WT, where as in an actual insect, bi-directional interaction would 

be likely to occur. (Full, Kubow, Schmitt, Holmes, & Koditschek, 2002). 

 

The model was implemented using custom written Matlab scripts. Fifty simulations of fixation 

were calculated for each gain condition, each lasting 3600 time steps, or 120 s as in the real 

experiments (each time step represented 30 ms). All WL and WT models were calculated based 

on the same set of simulations, and thus shared common stimulus position and turning rate 

inputs. Simulated WL, WT and ψ were used to calculate path,  , ,L TP W W  , using Eq. (4-30). 
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5.5 Results 

Tethered walking honeybees can turn an air-supported ball to bring a bright vertical bar to their 

front, a behaviour we term ‘fixation’ (Chapter 4; Moore et al., 2014; Paulk et al., 2014). 

However, bees can also modulate their forward (longitudinal) and sidestepping (transverse) 

movements during fixation.  We analysed both the longitudinal and transverse components of 

walking speeds in the absence of a stimulus, as well as when bee’s controlled a fixation 

stimulus at different gain conditions ranging from x0.5 to x4.  

 

5.5.1 Walking with and without a stimulus 

Bees would walk either with or without a visual stimulus. We measured their longitudinal, WL, 

and transverse, WT, walking speeds for the no stimulus condition and also when the fixation 

stimulus was presented, at a variety of gain conditions (Chapter 4). Without the stimulus, 

honeybees would often stand stationary (Figure 5-1C and E). However, the distribution of WL 

indicated that the bees tended to walk forwards rather than backwards, frequently at speeds up 

to approximately 50 mm.s-1 when the visual stimulus was not present (Figure 5-1C). When the 

visual stimulus was introduced, the bias towards positive WL decreased, resulting in lower mean 

WL, regardless of the gain condition. Mean WL did vary significantly depending on stimulus 

condition (χ2
5 =14.58, p=0.012), although speeds were only significantly faster when the 

stimulus was absent when compared to x1 gain (Figure 5-1D). On the other hand, the 

distribution of WT was unbiased and symmetrical about zero, and the mean absolute WT did not 

vary significantly depending on stimulus condition (Figure 5-1F, F5,50 =1.73, p=0.145).  

 

Next, we examined whether the stimulus position or the bee’s turning rate during fixation may 

influence either the longitudinal or transverse walking speed. When the average value for either 

component of walking speed was calculated at each stimulus position, ψ, it appeared that both 

WL and WT were modulated based on ψ (Figure D-1). The cross-correlation between walking 

speed and the honeybee’s physical turning rate, ω, also indicated that that both WL and WT
 

changed with ω (Figure D-1). However, ω is directly coupled to the stimulus velocity, v, since 

v gain  , and the cross-correlation results did vary depending on gain condition. Hence, v 

may also influence walking speed. The relationship between the two components of walking 

speed was examined by calculating the average value of WL across the range of WT, which 

indicated an approximately linear relationship between the walking speed components (Figure 

5-1B). However, a weak cross-correlation was found between WL and absolute WT (Figure 
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D-1). Hence, the linear relationship between WL and absolute WT may arise because both 

variables are influenced by the stimulus position and also the turning rate of the honeybee, 

rather than being directly coupled themselves. Finally, the auto-correlation of both WL and WT 

was found to decay exponentially (Figure D-1). The strong influence of autoregression – 

whereby the bee’s current longitudinal and transverse walking speed depend upon their 

previous values – bee’s walking speeds also depended on the stimulus position and the bee’s 

turning rate. We further investigated how the two components of walking speed depend on 

these predictor variables. 
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Figure 5-1: Longitudinal and transverse components of the bee’s walking speed. A, A 

honeybees movement is measured in terms of its turning rate, ω, walking speed, W, and 

walking angle, β. Walking speed can also be expressed in longitudinal, WL, and transverse, WT, 

components. B, The expected WL given WT. C, Frequency distributions of WL. D, Mean WL for 

each condition. E, Frequency distributions of WT. D, Mean absolute WT for each condition. All 

plots show each gain condition as a separate curve. N=11 bees repeated all gain conditions. 

Error bars show ± S.E.M. Bars denotes a statistically significant difference (n.s.: p>0.05,            

*: p<0.05) between the indicated groups. Full statistical details are provided in Section D.2.1. 

 

5.5.2 Predictors of longitudinal walk speed 

The honeybee’s predicted longitudinal walking speed, WL
t, was estimated using Eq. (4-31). 

The influence of past longitudinal speeds, WL
t-1 on the WL

t (essentially the autoregression; Eq. 
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(4-36)), indicated an approximately linear relationship between past and current longitudinal 

speed. However, the autoregressive relationship had a positive bias, or offset, for all stimulus 

conditions, the magnitude of which was significant for both the no stimulus and x4 gain 

conditions (Figure D-3). Further, the bias was significantly higher without the stimulus as 

compared to when the stimulus was visible at any gain condition (Section D.2.5, F5,50=4.43, 

p=0.002).   

 

Investigation of the influence of the bee’s past turning rate, ωt-1, on WL
t (Eq. (4-34)) revealed 

that, in the absence of a stimulus, WL
t decreased as the absolute value of ωt-1 increased (Figure 

5-2A). However, the opposite was true when the stimulus was visible, at any gain condition: 

honeybees tended to maintain or increase WL
t as the absolute value of ωt-1 increased. The 

relationship between longitudinal speed and turning rate was quantified using Eq. (4-37), which 

indicated the average difference in WL
t between periods when the bee was turning slowly, 

versus when it was turning quickly (Figure 5-2B); a positive value indicated that WL
t was higher 

when turning quickly, or vice versa. With no stimulus displayed, WL
t was significantly lower 

when honeybees were turning rapidly, as compared to when they were turning slowly. Yet, 

when the fixation stimulus was displayed, WL
t was generally higher when the bees turned 

rapidly. Although significant variation in the difference occurred depending on whether the 

stimulus was displayed (F2.20,21.98 =7.05, p=0.004), there was not significant variation between 

the gain conditions (Section D.2.2). The modulation appears unlikely to be a function of 

stimulus velocity, which varied by a factor of eight depending on gain condition. 

 

We then examined whether the past stimulus position, ψt-1, predicted WL
t (Eq. (4-35)). When 

the stimulus was visible, WL
t was highest when the fixation stimulus was positioned in the 

frontal visual field, particularly compared to when it was positioned at the rear (Figure 5-2C). 

This was true at all gain conditions. In the absence of a stimulus, the bee’s orientation had no 

effect on WL
t, as would be expected. The relationship between longitudinal speed and stimulus 

position was quantified using Eq. (4-38), which indicated the average difference in WL
t between 

when the bee had the stimulus positioned to its front versus when it was positioned to the rear 

(Figure 5-2D). A positive value indicated that WL
t was higher when the stimulus was positioned 

to the bee’s front, or vice versa. For all gain conditions WL
t was higher when the stimulus was 

positioned in the honeybee’s frontal visual field, as opposed to its rear visual field. Although 

this difference progressively decreased as gain increased, there was no significant variation 

between the highest and lowest gain conditions (x0.5 vs. x4, W10=-1.33, p=0.182). Both the 
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stimulus position and the turning rate were factors that influenced the modulation of  

longitudinal walking speed under different conditions. 

 

 

Figure 5-2: Longitudinal walking speed is modulated by stimulus position and turning rate. A, 

modulation of longitudinal speed, WL
t, as a function of prior turning rate, ωt-1. B, the difference 

in WL
t between fast (100 < |ωt-1| < 150 o.s-1) and slow (-25 < ωt-1 < 25 o.s-1) prior turning rates, 

from Eq. (4-37). C, modulation of WL
t as a function of prior stimulus position, ψt-1. D, the 

difference in WL
t between front (-45 < ψt-1 < 45o) and rear (135 < |ψt-1| < 180o) stimulus 

positions, from Eq. (4-38). All plots show each gain condition as a separate curve. N=11 bees 

repeated all gain conditions. Error bars show ± S.E.M. Bars denote statistical significance    

(n.s.: p>0.05, *: p<0.05, **: p<0.01, ***: p<0.001) of the difference between the indicated 

groups, whereas stars in bars denote statistically significant difference from a value of zero. 

Full statistical details are provided in Section D.2.2. 

 

5.5.3 Predictors of transverse walking speed 

We have seen above that bee’s longitudinal speed is influenced by both the turning rate and the 

stimulus location. The next question is whether the bee’s transverse speed, WT
t (Eq. (4-32)) is 

also predicted by these variables. The autoregressive influence of past transverse speed, WT
t-1, 

on WT
t (Eq. (4-36)) indicated a linear relationship between the two variables. For the majority 

of conditions (besides x3 gain, Figure D-3) there was no significant bias in the regression line, 
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and biases did not vary significantly depending on stimulus condition (Section D.2.5, χ2
5 =0.76, 

p=0.979). 

 

The past turning rate of a bee, ωt-1, had a proportional relationship with WT
t (Eq. (4-34)), in the 

absence of the stimulus as well as in in the x0.5 gain condition (Figure 5-3A). At gains of x1 

and above, WT
t was generally inversely proportional to ωt-1, though the relationship was 

inconsistent. The relationship between transverse speed  and turning rate was quantified using 

Eq. (4-39), which indicated the average difference in WT
t between periods when the bee was 

turning right, versus when it was turning left (Figure 5-3B); a positive value indicated that WT
t 

was positive when bees turned right, and vice versa. Although the difference did vary 

significantly depending on the gain condition (F5,50 =3.42, p=0.010), it was not significantly 

different from zero for any condition. This suggests that the bee’s turning rate, and by extension 

the stimulus velocity, has a negligible or inconsistent influence on the transverse speed. 

 

On the other hand, the stimulus position, ψt-1, predicted WT
t (Eq. (4-35)) for all gain conditions 

to exhibit a periodic relationship that peaked when the stimulus was positioned in the lateral 

visual field. This indicates bees would step towards the side of their body at which the stimulus 

was located (Figure 5-3C). In the no stimulus condition, the ‘phantom’ position of the stimulus 

had no effect on WT
t, as expected. The relationship between transverse speed and stimulus 

position was quantified using Eq. (4-40), which indicated the average difference in WT
t between 

when the stimulus was positioned to its left versus when it was positioned to the right (Figure 

5-3D); a positive value indicated that WT
t was positive when the stimulus was positioned to the 

bee’s right, or vice versa. For all gain conditions, WT
t was modulated such that bees would step 

towards the stimulus (Figure 5-3D). The magnitude of this relationship varied significantly 

depending on the stimulus condition (χ2
5 =15.41, p=0.009). However, although x2 gain had the 

largest magnitude, the relationship was not significantly different from that for x0.5 gain, which 

had the lowest magnitude (W10=-1.42, p=0.155). The honeybee’s transverse speed was only 

modulated by the angular position of the stimulus. 
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Figure 5-3: Transverse walking speed is modulated by stimulus position. A, modulation of 

longitudinal speed, WT
t, as a function of prior turning rate, ωt-1. B, the difference in WT

t between 

positive (0 < ωt-1 < 150 o.s-1) and negative (-150 < ωt-1 < 0 o.s-1) prior turning rates, from Eq. 

(4-39). C, modulation of WT
t as a function of prior stimulus position, ψt-1. D, the difference in 

WT
t between right (0 < ψt-1 < 180o) and left (-180 < |ψt-1| < 0o) stimulus positions, from Eq. 

(4-40). All plots show each gain condition as a separate curve. N=11 bees repeated all gain 

conditions. Error bars show ± S.E.M. Bars denote statistical significance (n.s.: p>0.05,                

*: p<0.05, **: p<0.01, ***: p<0.001), of the difference between the indicated groups, whereas 

stars in bars denote a statistically significance difference from a value of zero. Full statistical 

details are provided in Section D.2.3. 

 

5.5.4 Walking speed can influence fixation performance 

Both longitudinal and transverse walking speeds are modulated depending on the stimulus 

position, yet, the design of our experimental paradigm was such that their measured values do 

not influence the movement of the fixation stimulus in any way. To better understand why bees 

modulated their walking speed, we tested whether walking speed was related to fixation 

perfromance. To do this, we quantified the relationship between the duration of fixation periods 

and mean longitudinal, WL, or absolute transverse speed, |WT|, during such periods. Fixation 

periods were defined as a period of at least 100 ms in which the bee positioned the stimulus in 
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its frontal visual field, 45 < ψ < 45o (for the no stimulus condition, ψ represents the calculated 

angle of the black bar that is not visible to the bees).  

 

Surprisingly, in the absence of a visual stimulus, honeybees could maintain relatively long 

periods of constant orientation when walking quickly (Figure 5-4A). When the fixation 

stimulus was visible, the relationship between WL and fixation duration depended on the gain 

condition. At x0.5 gain, the fixation duration peaked during periods of fast walking (at 

approximately 50 mm.s-1) although bees could also fixate for nearly as long when walking 

slowly. Hence, fast walking may have some inherent benefits for maintaining a straight course, 

at least in our experimental paradigm. In contrast, at x1 gain and above, fixation durations 

generally declined as bees walked faster, to the extent where, for gains of x3 and x4, average 

durations greater than 1 s only occurred when WL was lower than 10 mm.s-1 (Figure 5-4A). 

Conversely, increasing |WT| rapidly decreased the expected duration for periods of constant 

orientation or fixation, regardless of the gain condition (Figure 5-4B). These results suggest 

that fast walking generally made fixation difficult, potentially causing errors or otherwise 

reducing the precision of the bee’s turning control. At gains of x2 and higher, these difficulties 

in fixation appeared to outweigh any passive stability provided by fast walking. Indeed, bees 

were likely to be more successful in fixation at higher gain levels if they walked slowly, 

therefore improving their control of turning the ball. Yet, bees maintained similar walking 

speeds across all gain conditions (Figure 5-1). Therefore, we further considered how the bees’ 

observed walking speeds would affect how far they could move towards the fixation stimulus 

if their path was calculated considering the assumption that the stimulus was a distant visual 

landmark. 
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Figure 5-4: Walking speed influences fixation performance, and allows bees to approach the 

stimulus. A, Relationship between longitudinal walking speed, WL, and fixation duration. B, 

Relationship between transverse walking speed, WT, and fixation duration. In both A and B, 

fixation duration refers to the duration of periods greater than 100 ms where the stimulus is 

positioned in the region -45 < ψ < 45o. C, Path reconstructions from each bee’s movement using 

Eq. (4-30). A grey dot denotes the start point of all trajectories for a given condition and the 

arrow represents the direction to the distant landmark represented by the fixation stimulus. All 

scale bars represent 500 mm. D, Final distance moved towards the stimulus location in the Y-

direction, PY. E, Average PY based only on either WL or WT. All plots show each gain condition 

as a separate curve. N=11 bees repeated all gain conditions. Error bars show ± S.E.M. Bars 

denote statistical significance (n.s.: p>0.05, *: p<0.05, **: p<0.01), of the difference between 

the indicated groups, whereas stars in bars denote the statistical significance from zero. Full 

statistical details are provided in Section D.2.4. 

 

5.5.5 Reconstructed paths would take honeybees towards the stimulus 

During actual walking, the bee’s speed and orientation over time define the path of its 

movement through the world. The stimulus could be considered to be a distant landmark, as 
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translatory motion towards or away from it results in no change to its apparent size. The bee’s 

path for the entire duration of the experiment can be reconstructed using Eq. (4-30) based in its 

longitudinal, WL, and transverse, WT, speeds, and by treating the stimulus position, ψ, as the 

idiothetic bearing of the external landmark.  

 

In the absence of a visual stimulus, the reconstructed paths of bees meander in random 

directions from the starting point (Figure 5-4C). However, in the presence of an external 

orientation cue, in this case the fixation bar, the reconstructed paths indicate that the bees would 

have moved towards the fixation stimulus given their turning rate and longitudinal and 

transverse walking speeds (Eq. (4-30)). This is true for all gain conditions to varying extents. 

Progress towards the fixation stimulus was quantified as the final distance moved towards the 

stimulus in the Y-direction, PY. The distance moved varied significantly depending on the gain 

condition (Figure 5-4D, χ2
5 =19.94, p=0.001), with x2 gain resulting in the largest PY, although 

the distances for gains x0.5 and x1 were comparable. PY
 decreased sharply at x3 gain, and bees 

did not move a significant distance towards the stimulus at x4 gain. As expected, bees did not 

move a significant distance from the starting point in the no stimulus condition on average.  

 

The path that a bee takes reflects a vector summation of the path resulting from WL and WT, 

that is,  

      , , ,0, 0, ,L T L TP W W P W P W      (4-41) 

Thus, it is possible to compare how either WL or WT individually contributes to PY, by 

calculating either  ,0,LP W   or  0, ,TP W  . These calculations indicated that at gains x0.5, x1 

and x2, the bees walked significantly further based on WL than WT (Figure 5-4E and Supp. 

Figure 2). However, WT
 does result in movement towards the stimulus for all gain conditions, 

and PY based on both WL and WT is statistically similar at gains x3 and x4. Both longitudinal 

and transverse walking speeds can contribute to a bee’s movement towards an object in the 

environment. Next, we use a simulation to identify how the bee’s method of modulation its 

longitudinal and transverse speed components contributes to progress towards the stimulus. 

 

5.5.6 Simulated paths from modelled fixation and walking speed 

To assess how the variables modulating a bee’s locomotion would influence its path towards 

an object, we used a previously developed model to simulate honeybee fixation (Chapter 4, 
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Figure 5-5Ai) and simultaneously calculated the longitudinal, WL, and transverse, WT, walking 

speeds to construct the simulated path (Figure 5-5Aii). Both components of walking speed are 

predicted as autoregressive low-pass filtered functions of stimulus position, ψ, and turning rate, 

ω. We also included noise and offset terms (described in Section 5.4.4). The simulation 

predicted paths that a bee would take towards a distant visual landmark when fixating on it, 

and was used to test how various methods of modulating both WL and WT contributed to a bee’s 

displacement towards the stimulus PY. Four different types of modulation were examined: 1) 

no modulation, 2) modulation as a function of ψ, 3) modulation as a function of ω, or 4) 

modulation as a function of ψ and ω. All types of modulation included the injection of random 

noise (Figure D-4). The simulation was conducted for gain conditions varying from x0.5 to x4, 

as used in experimental conditions. As gain increased, control of the angular position of the 

stimulus became progressively less stable (Figure 5-5Aii). The functional dependence of 

walking speed on ψ and ω for each gain condition, as measured in real bees, was used in the 

simulation, in order to directly evaluate their role in shaping paths under stable and un-stable 

fixation conditions. The results of the simulations were quantified by computing the final 

distance moved towards the stimulus location in the Y-direction, PY, as was done for the 

measured paths shown in Figure 5-4. 

 

When considering the paths resulting from unmodulated longitudinal speed, the injection 

positively biased noise resulted in simulated trajectories that exhibited progress towards the 

stimulus at all gain conditions. Similar PY values, which are the final distance moved towards 

the stimulus, were found for both simulated (Figure 5-5B and C - red) and measured data 

(Figure 5-5C - black). Substantially longer paths occurred at lower gains (x0.5, x1 and x2) than 

at higher gains (x3 and x4). When longitudinal speed was modulated as a function of turning 

rate and injected noise, there was negligible difference on simulated paths or PY values (Figure 

5-5B and C - green) from the simulations where the longitudinal speed was not modulated. 

When WL was modulated as a function of the stimulus position and injected noise, simulated 

paths progressed further towards the stimulus (Figure 5-5B and C - blue) than seen for other 

simulation configurations and for measured data (Figure 5-5C). Although this made only a 

small relative contribution at lower gains, when PY was large for all simulations, at higher gains 

the relative contribution was much larger (Figure 5-5C). Modulating longitudinal speed by ψ 

allowed the simulated bee to progress more than twice as far towards the stimulus at high gains 

than in other conditions. 
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If paths resulting from transverse speed are considered, it is apparent only injecting unbiased 

noise does not result in movement towards the stimulus (Figure 5-5D and E - red), and nor does 

modulation of WT based on turning rate and injected noise. However, modulation of WT by 

stimulus position did result in progress towards the stimulus at all gain conditions (Figure 5-5D 

and E - blue). At all gain conditions, the average PY was marginally longer for the simulated 

data than for the measured data, although both followed a qualitatively similar trend, peaking 

at x2 gain. Evidentially, the manner in which both longitudinal and transverse speed are 

modulated by stimulus position contributes to the bee’s progress towards a fixation stimulus, 

particularly when its angular position is unstable. For both longitudinal and transverses speeds, 

modulation due to turning rate has negligible effect on the bee’s progress, either when used 

alone, or in combination with modulation due to the stimulus position (Figure 5-5B to E - cyan). 
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Figure 5-5: Simulated paths progress further when walking speed is modulated by stimulus 

position. A, Schematic diagram of stimulation: honeybee fixation (i), and the stimulations 

distribution of stimulus positions, ψ, (ii; Section 4.6.4), (iii) simulation of longitudinal, WL, and 

transverse, WT, walking speeds and calculation of simulated path (Section 5.4.4). In B, C, D 

and E, paths and bars are coloured depending on the functions used to modulate both 

components of walking speed in a particular simulation: red – walking speed is low-pass 

filtered noise, and in addition to noise, blue – walking speed is a function of stimulus position 

(ψ), green – walking speed is a function of turning rate (ω), and cyan – walking speed is a 

function of both ψ and ω.  The black bars in D and F show the measured data from Figure 5-4E 

for comparison. B, ten example paths based on longitudinal speed (  , 0,LP W  ) from each 

modulation condition. The dot denotes the starting point of all trajectories for a given condition. 

All scale bars represent 500 mm. C, the average final displacement towards the stimulus, PY, 
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of paths based on WL for all gain conditions. D and E, as for B and C, however calculated from 

transverse speed (  0, ,TP W  ). In both B and D, the top row of paths represents x1 gain, and the 

bottom row x4 gain. Distributions and autocorrelations for both WL and WT relating to the cyan 

lines are shown in Figure D-5. 

 

5.6 Discussion 

During a fixation task, insects use their turning actions to position a visual stimulus to their 

front. This study shows that when honeybees are actively controlling the fixation stimulus (a 

vertical green bar), they also concurrently modulate both their longitudinal and transverse 

walking speeds as functions of the stimulus position. If the fixation stimulus were considered 

as a static visual landmark, the observed modulation of walking speed would result in 

movement towards the object. Modulation is particularly important when the bee had minimal 

control of the stimulus position at high gain conditions, as might occur if it attempted to 

approach a flower moving unpredictably in the wind. Modulation of walking speed occurs 

despite bees receiving no cues indicating movement towards the stimulus, which is would 

normally be present during natural movement. During movement through the environment, 

speed control based on stimulus position presumably interacts with other sensory cues that are 

also used to control speed.  

 

5.6.1 Control dependent on stimulus position 

Flying insects are frequently observed to regulate their forward movement speed depending on 

visual information. Speed can be controlled depending on optic flow from the environment, 

allowing insects to maintain a consistent, presumably safe ground speed (Baird et al., 2005; 

David, 1979; Fry et al., 2009), and to perform smooth landings (Srinivasan et al., 2000). 

Movement speed may also be controlled depending on the apparent size of a visual object that 

is being approached (Boeddeker et al., 2003; Cook, 1979; Land, 1993; Schuster et al., 2002; 

van Praagh et al., 1980). We observe that walking bees control their longitudinal speed to walk 

fastest when the fixation stimulus is positioned in their frontal visual field. This strategy 

promotes efficient progress towards the object, because the walking speed is higher when 

moving towards an object and lower when moving away from it. When the fixation stimulus 

can be held in a stable position, the modulation of longitudinal speed has a small influence on 

how far the bee would progress towards the stimulus location, although at higher gains (x3 and 

above), this method of speed modulation appears to allow honeybees to progress at least twice 
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as far towards the stimulus than without it. Therefore, the method of controlling longitudinal 

speed could be important when moving towards an unstable object. Importantly, this method 

of controlling walking speed is not detrimental when moving towards a stable object. 

 

Insects have previously been shown to use side-to-side movements to control their alignment 

with respect to a visual object during flight, either to adjust their lateral position relative to a 

target (Sprayberry & Daniel, 2007; Zhang et al., 1990) or to centre the insect with respect to 

the environment (Kirchner & Srinivasan, 1989). In our fixation task, bees step sideways 

towards the visual stimulus when it is in their lateral visual field. This method of controlling 

transverse speed would result in similar alignment adjustments as those observed in free flight. 

Our findings indicate that when the angular position of the fixation stimulus cannot be 

accurately controlled, such as during high gain conditions, modulation of transverse speed 

would also allow them to progress further towards the stimulus location, as compared to the 

situation when only longitudinal speed is modulated. Thus, the bee’s method of controlling 

transverse speed also assists movement towards an unstable object. 

 

In their natural environment, honeybees inside a hive orient and walk towards the exit which 

is often brightly illuminated during the day (Tautz, 2008), and use non-visual cues to track 

other bees during the waggle dance (Judd, 1994; Rohrseitz & Tautz, 1999). Although the 

orientation and tracking tasks performed by walking bees do not appear particularly 

demanding, their methods of modulating both longitudinal and transverse walking speeds are 

robust. When flying, honeybees are known to use side-slip to adjust their alignment to a visual 

object that is being approached (Zhang et al., 1990), and can maintain a fixed distance relative 

to the visual objet they are following (van Praagh et al., 1980). Optic flow from the apparent 

motion of the environment also regulates forwards movement speed in flying bees (Baird et 

al., 2005), and has a similar influence when walking (Schone, 1996). Honeybees appear to 

control transverse speed depending on stimulus position in a similar manner when walking and 

as well as flying, and commonalities may also be found in how flying honeybees control their 

longitudinal speed when approaching an object.  

 

5.6.2 Conclusion 

If an insect cannot maintain a stable orientation with respect to a visual object, use of the 

target’s angular position as a parameter for controlling the speed of movement towards it 
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appears to be an important factor in ensuring an efficient approach. Although we cause target 

instability in our experiments by using a high gain value, analogous instability could occur if 

the target actively evades capture, or if both the insect and its target, such as a flower, are 

displaced by turbulent airflow. The target’s angular position is a variable that is already used 

to control an insect’s turning rate (Chapter 4; Aptekar et al., 2012; Bahl et al., 2013), so the 

control of longitudinal and transverse speeds, as observed in bees, suggests an effective 

mechanism to further utilize an already measured variable to expedite the progress towards the 

object. Indeed, incorporating a mechanism for controlling the speed of locomotion based on 

the angular position of a target could be an effective strategy for a robot designed to intercept 

a moving object, and may reduce the performance requirements for the control system 

underlying object fixation.  

 

 



 

 | 127 | 

 General discussion 

 

Understanding the roles of multi-sensory integration and adaptive control can provide insights 

into insect behaviour under general and varied environmental conditions. In this thesis, I have 

used virtual-reality paradigms to investigate how honeybees utilize both multi-sensory 

information and adaptive control to increase the efficacy and robustness of their behaviours. 

 

6.1 Summary of results 

Chapter 2 describes the streamlining response of flying honeybees to combinations of 

translational optic flow and air speed. As optic flow or air speed increases, bees raise their 

abdomen into alignment with their thorax, which would act to reduce energy expenditure 

during actual flight. The Johnston’s organ in the antennae was primarily responsible for 

measurement of air speed, although minor residual wind sensing capacity remains after its 

ablation. A model in which optic flow and air speed interact in a non-linear fashion predicts 

the movement of the abdomen. A brief review, considering insects ranging in size from 

Drosophila to locusts, indicates that streamlining by raising the abdomen would generally 

benefit the insects considered by reducing their energy expenditure during flight. The 

honeybee’s method of multi-sensory integration between air speed and optic flow appears to 

ensure the streamlining response is primarily mediated by sensing air speed, with optic flow 

acting to make the response robust to transient disturbances. 

 

Chapter 3 describes how honeybees perform a visual fixation task where they walk on a ball, 

and the measurement of their turning rate is used to control the azimuthal position of the 

fixation stimulus in closed-loop. In this paradigm, honeybees usually position the fixation 

stimulus in their frontal visual field; however, if the feedback sensor measuring the ball’s 

movement is coupled to the bee’s walking speed, such that increased walking speed reduces 

the sensitivity of the turning rate sensor, bees walk faster. This phenomenon is demonstrated 

using the FicTrac sensor, which is capable of measuring the movements of the ball accurately. 

However, the study also shows that such a coupling can occur as an artefact when the motion 

of the ball is measured using optical motion sensors from a consumer computer mouse. In both 

situations, the presence of the coupling induces a change in the bee’s behaviour, which 

increases their success when fixating the stimulus. 
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Chapter 4 further explores adaption during fixation, in this case examining how honeybees 

change their behaviour when the gain condition, which is the coupling between their turning 

rate and the movement of the fixation stimulus, is varied. An analysis method is described that 

allows for calculation of an insect’s response to both the position, and directionally dependent 

motion of the fixation stimulus. Although the bee’s fixation deteriorates at high gains, they 

adapt to increased gains by reducing the magnitude of their response to the stimulus position, 

and also by changing their response to stimulus motion such that the response to motion was 

weakest when the stimulus is in the frontal visual field. Simulations show that these adaptions 

increased the stability of fixation at elevated gain.  

 

Chapter 5 characterises how bees vary their walking speed during the closed-loop fixation task 

described in Chapter 4. Bees modulate both their longitudinal (forwards) and transverse 

(sideways) speeds as a function of the position of the fixation stimulus, but are not significantly 

influenced by the gain condition coupling their turning rate to the movement of the fixation 

stimulus. Fast walking appears to make fixation difficult, however, honeybees progressed 

towards the stimulus at all but the highest gain. Simulations indicated that the control of 

longitudinal and transverse components of walking speed represent an effective strategy for 

moving towards an object, even if its angular position is unstable. 

 

6.2 Implications of results 

These studies shed light on the mechanisms honeybees use to control their behaviour. In 

addition to the discussions in each results chapter, several points relating virtual-reality 

paradigms and insect sensorimotor control are considered further here. 

 

6.2.1 Honeybees in virtual-reality 

In this thesis all experimental work used tethered bees. Freely flying bees have long been used 

as a model organism for the study of higher order cognitive tasks such as visual navigation, 

learning and memory (Frisch & Lindauer, 1956; Menzel & Giurfa, 2001; Zhang et al., 2012). 

However, studies with restraiend honeybees have largely focused on classical conditioning 

(Giurfa & Malun, 2004; Menzel & Bitterman, 1983; Vergoz, Roussel, Sandoz, & Giurfa, 2007) 

or physiological aspects of flight performance (Esch, Nachtigall, & Kogge, 1975; Hanauer-
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Thieser & Nachtigall, 1995); learning experiments investigating restrained visual conditioning 

typically require antennal amputation and show relatively low learning rates (Hori et al., 2006; 

Niggebruegge, Leboulle, Menzel, Komischke, & de Ibarra, 2009). This thesis indicates that 

sustained flight and walking can be elicited from intact, tethered bees, during which they 

respond with flight control reflexes (Chapter 2) and also orientation behaviour (Chapters 3 and 

4) that involves adaptation. A recent study, using the same apparatus, demonstrated that neural 

recordings are possible from walking tethered honeybees that are actively fixating a stimulus 

(Paulk et al., 2014). In the future, virtual-reality paradigms may allow investigation of the 

neural processing mechanisms of honeybees performing a range of behavioural tasks. 

 

6.2.2 Closed-loop virtual-reality 

The technical specifications of the equipment used to implement virtual-reality arenas for 

insects may present limitations. For instance, the LCD monitors used to display visual stimulus 

in Chapter 2 to provided adequate visual stimulation to elicit flight in honeybees, but 

unfortunately, the monitors refresh rate of 60Hz was well below the flicker fusion frequency 

of honeybees (Srinivasan & Lehrer, 1984). A bee could have perceived a series steps in the 

tunnels position, rather than the smooth motion a human observer observed. The low 

measurement frequent (30 Hz) of FicTrac would have resulted in similar artefacts for closed-

loop experiments. Control experiments could be conducted to determine whether this 

experimental artefact influences an insect by measuring its behaviour or the activity of motion 

sensitive neurons, when stimulated using a display system with a faster refresh rate to display 

identical stimulus with different update frequencies. Closed-loop latency, that is the delay 

between the insect making an action and its influence on the sensory environment during 

closed-loop experiments, is another potential confound of using the CM sensors (46 ms delay) 

and FicTrac (87 ms delay) feedback systems for measuring trackball motion in Chapters 3, 4 

and 5. Ideally feedback latency should be minimised in virtual-reality studies, as long latency 

will negatively influence control (Nise, 2008). Dipteran neurons sensitive to visual motion have 

been shown to respond to within 30 ms (Warzecha & Egelhaaf, 2000), hence it is likely that 

the closed-loop latency in our system exceeded the latency of measurements by the bee’s 

nervous system. Still, honeybees were still evidentially able to control the visual stimulus 

(Chapter 4). Again, further behavioural studies could be conducted using behavioural and 

physiological paradigms by incorporating different latencies into a closed-loop task, which 

would elucidate how latency influences the bees control of a stimulus and whether insects make 
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adaptations if latency varies. Lacking control experiments regarding the influence of update 

frequency or latency, a safe consideration would be to avoid analysing temporal and transient 

components of an insect’s response where slow update speeds or latencies are present in the 

virtual-reality apparatus; these temporal nonlinearities in the visual environment are most likely 

to influence transient, rather than steady state responses (Nise, 2008).  

 

The cross-motor adaption between walking speed and turning rate described in Chapter 3 has 

the potential to produce misleading results regarding behavioural control during closed-loop 

experiments. Although the experiments in Chapter 3 are motivated by errors occurring when 

using a computer mouse sensor to measure a trackball’s motion, conceivably similar errors 

could occur using other sensors, such as multi-axis force/torque transducers (Kröger et al., 

2008; Xu & Li, 2000). While the bee’s adaptation improves their performance in virtual reality, 

cross-motor adaption could lead to observations of unexpected couplings between motor 

outputs that do not represent activity occurring during normal movement. Such adaptions could 

also prove confounding when investigating the neural mechanisms underlying behaviour. 

Recent findings show that many neural functions are context dependent (Maimon, 2011), and 

that separate brain regions in vertebrates are active during reflexive motor action compared to 

when adapting to increased and decreased gain (Ahrens et al., 2012). Thus, different neural 

activity may well be expected if the insect is performing cross-motor adaptation as compared 

to when behaving under normal conditions.  

 

Likewise, the influence of selectively breaking aspects of the action perception loop when 

cross-motor adaptation occurs is unknown. To illustrate this point, consider fixation 

experiments. Typically the ideal scenario is that an insect’s yawing actions (either aerodynamic 

forces in flight, or leg motions when walking) will be selectively measured and used to control 

the stimulus, with other motor actions being completely ignored. However, the insect is still 

likely to vary all motor outputs to determine the most efficacious for the given task (Wolf & 

Heisenberg, 1991), and would conclude that motor actions other than yaw have no influence 

on the sensory environment. If the insect must then adapt to changes in the coupling between 

its yaw torque and the angular position of the stimulus, would it do so in the same manner as 

if its other motor commands still influenced its perception as expected? This is a difficult 

question to probe using current virtual-reality apparatus, as almost all selectively measure some 

aspect of an insect’s motor output while aiming to disregard others (Roth et al., 2014), but this 
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is a core question to answer for closed-loop virtual reality studies aiming to address issues of 

motor control. 

  

Adaptive behaviours are measured by taking the average of the bee’s behaviour over the two-

minute duration of a particular test condition (Chapters 3, 4 and 5). Behavioural variability 

during the fixation task is typically large. Therefore, a long average is beneficial for accurately 

estimating the bee’s response to stimulus position and motion using many samples (Bowman 

& Azzalini, 1997). The use of many samples also increased the likelihood of observing many 

combinations of the predictor variables. However, the insect’s mechanisms of detecting that 

adaptation is required and making behavioural changes undoubtedly takes some time, and the 

analysis method averages the adaption period with the eventual adapted state in this study. 

Drosophila typically require several hundred milliseconds to adapt to changes in the coupling 

multiplier between their turning rate and the stimulus motion (Wolf & Heisenberg, 1990), and 

several seconds when switching to use alternate motor outputs, such as thrust, to control the 

stimulus (Wolf & Heisenberg, 1991); the adaption period for bees could be similarly brief. The 

dynamics of adaptive behaviour in Drosophila were determined by measuring the insect’s 

responses over many repetitions where the closed-loop coupling was altered after the fly had 

voluntarily moved the fixation stimulus to a single predetermined position. The method used 

with flies to measure the dynamics of adaption is then not well suited for also describing the 

resulting response to the fixation stimulus over the insect’s entire visual field. Knowledge of 

both of these aspects of adaption is useful, as dynamics are informative about the mechanisms 

used to adapt, whereas the response is informative about the eventual, control strategy after 

adaptation. There does not appear to be a standardised systems identification methodology for 

adaptive controllers in biological or engineered systems, and the study of adaptive behaviour 

would benefit from further research in this area. 

 

6.2.3 Multi-sensory integration 

The findings in Chapter 2 show that honeybees use a non-linear combination of information 

from optic flow and air speed to control the streamlining response. Specifically, air speed 

appears to adjust the sensitivity of the streamlining response to optic flow. This differs from 

other multi-sensory interactions involving air speed (Haag et al., 2010) and contrasts with 

studies on bee and fly flight, where flight speed is controlled exclusively by optic flow (Baird 

et al., 2005; David, 1979), and is largely invariant to air speed (Barron & Srinivasan, 2006; Fry 
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et al., 2009). However, in tethered flight, air speed acts to reduce the insect’s wingbeat 

amplitude, which would influence flight speed in free flight (Gewecke, 1967; Heran, 1959). 

Thus, whilst air speed influences wingbeat kinematics, it appears that the set point for flight 

speed is determined by optic flow and determining how both senses interact to control flight 

speed is difficult. Streamlining is evidence that aspects of honeybee flight are directly mediated 

by both optic flow and air speed, which presents the possibility that both senses could also 

interact in other sensorimotor control tasks. A beneficial (although unconfirmed) control 

scheme for insects could be to use air speed as a scaling factor for aspects of visually guided 

control that respond to disturbances, which is similar to the multiplicative role air speed plays 

in the streamlining response. For instance, air speed could scale the transient changes in thrust 

that correct for disturbances away from the preferred rate of optic flow (Fry et al., 2009; 

Theobald et al., 2010), or could be used to scale abdominal ruddering motions that produce a 

yaw torque in response to disturbances in rotational optic flow (Camhi, 1970b; Zanker, 1988a). 

Such a scheme is commonly used in aeronautical control and stability augmentation, where 

control gains are scheduled depending on the measured air speed (Cook, 2012). 

 

6.2.4 Adaptive control 

The experiments in Chapter 4 indicated that bees adapt their behaviour by modifying their 

response to fixed stimulus parameters to improve their performance at a fixation task. Testing 

adaptive mechanisms of motor control in insects often involves severely altering the coupling 

in the usual action-perception loop (Möhl, 1988; Wolf & Heisenberg, 1991; Wolf et al., 1992). 

The fine tuning of behavioural responses, as seen in Chapters 3 and 4, have rarely been 

examined (but see Hesselberg & Lehmann, 2009; Wolf & Heisenberg, 1990), and would likely 

to be beneficial. Events that occur during an insect’s life, such as leg damage (Götz & Wenking, 

1973; Wittlinger et al., 2007) or encountering slippery or springy terrain (Epstein & Graham, 

1983; Spence et al., 2010), change the usual coupling in the action-perception loop when 

walking. Arguably, the numerous mechanoreceptors providing feedback from an insect’s legs 

(Schmitz, 1993; Zill et al., 2004) could adjust the control of these body parts so that movements 

elicited in response to external stimuli remain largely unchanged; providing robust control that 

does not require higher order adaptive processes for fine tuning. This blurs the line between 

robust and adaptive behaviour, as highly robust control with many pre-defined motor routines 

for different scenarios could be hard to distinguish from changing the parameters of a smaller 

number of general motor routines (Dickinson, 2013; Ritzmann & Büschges, 2007). Hence, the 
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adaption observed in this study could result not from an adaptive, but rather a highly robust 

control system. The reality is probably somewhere between the two standpoints, supporting the 

previous assertions of Wolf et al. (1992), that despite having evolved a range of relatively fixed 

sensorimotor reflexes, insects retain the ability to adapt these if necessary. 

 

Classically, it has been proposed that an organism must compare the predicted consequences 

and actual effects of its actions to detect changes in feedback coupling (Webb, 2004), either by 

using a full predictive model (von Holst & Mittelstaedt, 1950), or by determining the 

correlation between changes of reafferent and afferent signals (Wolf & Heisenberg, 1990; Wolf 

& Heisenberg, 1991). Experiments have shown that both supressing stabilisation reflexes 

(Payne et al., 2010) and initiating compensatory head movements (Schwyn et al., 2011; Viollet 

& Zeil, 2013) during voluntary movement are both explained by the presence of a forward 

model. The ability to adapt suggests that honeybees must make some estimation as to the effect 

of their actions and compare this to reality, although these experiments do not provide 

clarification on the mechanism that detects adaption is required. Once the need for adaption is 

detected, however, it is evident that honeybees do not simply scale their responses depending 

on gain, which is a mechanism that explains Drosophila’s responses when stabilising wide 

field motion (Wolf & Heisenberg, 1990). Rather, bees scale their response to the position of 

the fixation stimulus, but change the underlying function of their response to stimulus motion 

by reducing their sensitivity to motion in their frontal visual field. This could form part of a 

pre-programmed reaction to elevated gain, or result from testing various responses to stimulus 

motion, and selecting the response that is most appropriate for the fixation task. Detailed 

examination of the temporal structure of responses during adaption may be required to 

differentiate these two adaptive mechanisms, and has proven informative for studies on motor 

adaption with vertebrates (Mehta & Schaal, 2002; Wolpert et al., 1995). 

 

Honeybees control their turning rate as a function of stimulus position, and vary the magnitude 

of this response significantly depending on the gain condition (Chapter 4). Although their 

longitudinal and transverse walking speeds are also modulated depending on stimulus position 

(Chapter 5), the magnitude of these responses did not vary significantly depending on gain 

condition. Given that walking speed does not directly affect the stimulus, the absence of any 

significant variation is unsurprising; however, small variation between gain conditions is 

observed and merits a brief consideration. There is a striking similarity between how honeybees 

control both their turning rate and transverse speed depending on stimulus position, as the 
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amplitude of both responses peaks at x2 gain, and decreases at higher and lower gains. 

Transverse speed is not significantly influenced by turning rate, ruling out a direct 

biomechanical coupling. Hence, the responses from both motor outputs may share a common 

control pathway, with adaptations to varying gain changing the magnitude of both responses. 

Conversely, modulation of longitudinal speed due to stimulus position peaks at x0.5 gain and 

steadily decreases as gain increases. Although all three motor outputs use a similar sensory 

measurement, it is evident that a different control system utilises this information to modulate 

longitudinal speed. However, the two control systems also interact, as bees learn to vary their 

forward speed when it influences rotational control of the fixation stimulus (Chapter 3), and 

similar cross-motor adaptions have been observed in flies (Wolf & Heisenberg, 1991; Wolf et 

al., 1992). Cross-motor adaptions would require convergence of reafferent signals from many 

of the insect’s muscles with multiple sources of afferent information, which suggests that 

higher order neural processing would underlie adaption (Webb, 2004). Such a convergence of 

reafferent and afferent signals occurs in the insect central complex, which is suggested to play 

a supervisory role in controlling locomotion (Ritzmann, Ridgel, & Pollack, 2008; Strausfeld, 

1999) 

 

To further understand insect adaptive sensorimotor control, the obvious suggestion would be 

to investigate the structure and function of the neural mechanisms underpinning adaptive 

sensorimotor control. However, explicitly designed behavioural studies may provide additional 

insight as to how insects adapt to multi-sensory combinations of stimuli with multiple motor 

outputs. When fixating a stimulus in free flight, an insect visually perceives the position and 

motion of the object of interest, the motion of the background, its own rotations based on 

mechanoreception, and can potentially exert aerodynamic control in six degrees of freedom. 

Consider that it is possible to display a two component visual stimulus, part of which elicits a 

response to image position, and part which elicits a response to image motion (Aptekar et al., 

2012), as well as separate visual and mechanosensory cues to tethered insects in virtual-reality 

(Budick et al., 2007; Sherman & Dickinson, 2004). A paradigm that allows the closed-loop 

coupling between an insect’s motor output and its effect on each sensory parameter to be 

arbitrarily manipulated could test: 1) which sensory parameters are prioritised during 

adaptation, 2) whether similar mechanisms are involved when adapting control for each 

parameter, and 3) how multiple motor outputs could contribute to adaption. Although this 

situation would represent more elaborate sensorimotor coupling changes than an insect would 

ever experience whilst freely moving, it would define the limits of sensorimotor adaption, and 



General discussion 

| 135 | 

may suggest where in the nervous system adaption occurs based on the required convergence 

of specific afferent and reafferent signals. 

 

6.3 Conclusions and perspective 

Consistent with observations of freely moving insects, this thesis finds that honeybees robustly 

use sensory information to control their behaviour. Specifically, they achieve this by using non-

linear responses to multi-sensory stimuli, and by adapting control parameters to changes in the 

coupling of the action-perception loop during closed-loop behaviour. Given that the majority 

of studies involving insects treat them as static control systems, responding with a pre-

programmed set of reactions to a given stimulus, the study of adaption may provide fruitful 

avenues for investigating the complexity of insect control systems. Although insects appear to 

be genetically pre-programmed for movement (Hesselberg & Lehmann, 2009), the ability to 

adapt sensorimotor programs would be advantageous. For instance, adaptation could allow 

insects to survive longer after sustaining injuries and enable them to better exploit changes in 

environmental conditions, relaxing the requirements for the evolution of well-matched filters 

in the sensory system. The benefits of higher order of learning for insects is already well 

established (Menzel & Giurfa, 2001; Srinivasan, 2009). 

 

Besides contributing to knowledge of insect control strategies, understanding effective 

adaptive mechanisms may prove useful for micro-scale robotics. As scale decreases, small 

errors during manufacturing can have relatively large impacts on system dynamics; 

manufacturing variations in a recently developed 80 mg flapping robot required individual 

control systems to be tuned for each prototype (Ma, Chirarattananon, Fuller, & Wood, 2013). 

A direct application of robust adaptive control schemes could be to supplement or replace 

factory calibrations when producing small robotic devices.  
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 Supplementary material for Chapter 2 

 

A.1 The influence of stimulus presentation order 

Initial experiments showed that honeybees exhibited a hysteresis-like effect when exposed to 

different air speeds. Qualitatively, it appeared that when the bees were initially exposed to a 

high air speed, they were reluctant to fly when the air flow was reduced or removed. This effect 

was observed to occur regardless of whether the lower air speed was presented to a bee during 

the same flight trial as the higher air speed, or during a later trial. To test this apparent effect 

of presentation order, or hysteresis, we presented bees with air speed in a stepped triangle 

function of increasing and then decreasing air speeds, at several optic flows. Whilst no 

dependence of the response to optic flow on presentation order had been observed, we also 

tested separate bees with a similar function of increasing then decreasing optic flows, at several 

air speeds. 

 

A.1.1 Air speed 

Honeybees were exposed to a stimulus pattern of progressively increasing series of air speeds, 

from 0 to 5 m.s-1 (in 1 m.s-1 increments of 10 s duration), followed by a decreasing series of air 

speeds that mirrored the initial increase. Honeybees were tested at optic flow levels that would 

elicit low, intermediate and strong streamlining responses, these being 100, 300, and 500 o.s-1. 

This was similar to the standard protocol of presenting a progressively increasing series of optic 

flow levels, except here optic flow was held constant during the flight whilst air speed was 

systematically varied. Bees were exposed to all optic flow levels twice in random order, and 

their responses averaged. 

 

When exposed to this triangular function of air speed levels, bees typically maintained their 

abdomens at a higher level during the decreasing portion of the response function, regardless 

of optic flow level (Figure A-1). The sole exception is at the end of the ramp when there is no 

wind, or at 3 m.s-1 air speed, at which point honeybees dropped their abdomens to lower 

positions than at the beginning. Generally, this phenomenon appears to approximate a classic 

hysteresis function. The effects of optic flow (F2,18=5.46, p=0.014), air speed (F1.8,15.8=64.41, 

p<0.001) and their interaction (F2.4,21.4=5.81, p=0.007) in these trials were significant, and 
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agreed with other results. The effect of air speed presentation order was not itself significant 

as a main effect (F1,9=0.76, p=0.407), but showed a significant interaction with air speed 

(F1.6,14.4=11.44, p=0.002), and also a three factor interaction with air speed and optic flow 

(F2.0,17.7=5.41, p=0.015). Thus, it appears the order in which a tethered bee experienced air 

speeds modified its response to the following air speeds, and further how this response interacts 

with the response to optic flow. 

 

It is unclear what causes presentation order to affect the observed abdomen pitch in this manner. 

The response itself does not display hysteresis when bees are exposed to a triangular function 

of optic flow (see the following section), and a similar effect was initially observed when air 

speed was changed between trials, suggesting that the response does not arise from short term 

habituation of the mechanoreceptors. We speculate that tethered bees rapidly become 

accustomed to higher air speeds in the flight arena, and are reluctant to assume a posture 

associated with low flight speed. They may even modulate their flight forces during the 

decreasing section of the triangular function, in an attempt to accelerate to faster flight speeds. 

Regardless of the cause, such hysteresis may be a consideration in the design of experiments 

investigating flight control of insects in response to varying air speeds and understanding the 

underlying mechanosensory cues. 

 

 

Figure A-1: Air speed presentation order affects the streamlining response. Response to a 

triangular air speed function at various optic flow levels: A, 100 o.s-1; B, 300 o.s-1, and C, 500 
o.s-1. Presentation order is indicated as increasing (black line), followed by decreasing (red line) 

air speed. 10 bees participated in all conditions. Error bars show ± S.E.M. 
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A.1.2 Optic flow 

Honeybees were exposed to a standard stimulus of progressively increasing optic flows, going 

from 100 to 600 o.s-1 (in 100 o.s-1 increments of 10 s duration), followed by a decreasing series 

of optic flows that mirrored the initial increase. As air speed presentation order was already 

suspected to affect the response, separate bees were tested without air flow and with airflow at 

intermediate and high speeds with respect to their effect on the streamlining response (Figure 

A-2). These air speeds were 0, 1.5, and 3 m.s-1 respectively.  

 

Whilst there is some variation of the response with the increasing and decreasing side of the 

triangular optic flow function, this variation appears to be inconsistent and varies qualitatively 

between air speeds. Again, optic flow (F1.8,40.8=22.81, p<0.001) and air speed (F2,32=8.79, 

p=0.001) show a significant effect on abdomen position, and these are the only significant 

effects detected (Section A.4.10). The presentation order of optic flow has no significant effect 

on streamlining per se (F1,32=0.10, p=0.750), nor does it show any significant interaction with 

other parameters. Thus, we conclude that the order of presentation of optic flow does not need 

to be controlled when designing experiments to examine its effects. 

 

 

Figure A-2: Optic flow presentation order does not affect the streamlining response. Response 

to a triangular optic flow function at various air speed levels: A, 0 m.s-1; B, 1.5 m.s-1, and C, 3 

m.s-1. Presentation order is indicated as increasing (black line), followed by decreasing (red 

line) optic flow. The number of bees tested for each air speed is indicated in the bottom right 

corner of each plot. Error bars show ± S.E.M. 
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A.2 Models of interaction between air speed and optic flow (Figure 2-7) 

A.2.1 Details of models 

All of the saturating functions are characterized by a 4 parameter variable slope sigmoidal 

function, represented by the equation: 
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     (A-42) 

In Eq. (A-42), x represents input and Y(x) represents the output at a particular value of x. p(1) 

represents the minimum value of the function (or vertical offset), p(2) the response range of 

the function, p(3) the x value where the function is halfway between its minimum and 

maximum values (or, equivalently, the horizontal offset), and p(4) a measure of the slope of 

the curve at this point.  

 

The best-fitting values of these parameters for the first four models were found using the least 

squares fitting tool ‘nlinfit’ in Matlab R2009b. The parameters of the non-linear combination 

model were found using a genetic algorithm optimisation approach, the function ‘nsga2’ (Lin, 

2011), where an artificial population size of 100 was used for 100 generations to optimise the 

10 free variables using a least squares fit. The range of the parameters were not constrained in 

either fitting algorithm.  

 

The values of these parameters for each of the saturating functions are given below: 

Figure 2-7B. Optic flow saturation function (the minimum of this function, p(1), was 

constrained to -90o), 
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Figure 2-7B. Air speed saturation function (the minimum of this function, p(1), was 

constrained to -90o), 
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Figure 2-7C. Abdomen pitch as a linear summation of the saturating response to optic flow 

and air speed, OF AS( ) Sat . Sat . 90AbP OF,AS    , 
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Figure 2-7D. Abdomen pitch as a weighted linear summation of the saturating response to 

optic flow and air speed, 1 OF 2 AS( ) G Sat . G Sat . 90AbP OF,AS      (where G1 = 0.45 and G2 = 

0.74), 
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Figure 2-7E. Abdomen pitch as a non-linear combination of saturating responses to optic flow 

and air speed, 
AS1 AS2 OF( ) Sat. +Sat. Sat.AbP OF,AS   . Note that there appeared to be considerable 

‘play’ in the optimiser’s results, as the majority of variables could vary by some amount whilst 

still producing similar model results, indicating that the effect of various interacting variables 

could produce multiple similar solutions. The air speed saturation function is, 
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The air speed saturating function that modulates optic flow gain is, 
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The optic flow saturating function is, 
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A.2.2 Antennal manipulation comparison 

The model using a non-linear combination of saturating responses was tested against the results 

found for the two antenna manipulation cases. As these abdomen positions for antenna 

manipulated bees were different from those observed in normal bees, the model would 

obviously have to be adjusted to fit this data. It is of interest to find if an entirely new model 

would be required, or if the same method of combining air speed and optic flow could be used 

with adjusted parameters, and if that was the case, which parameters should be adjusted. 

 

We refit the following model parameters, whilst keeping the other parameters at the same level 

as found for normal bees (the data was refit for antenna amputated and pedicel waxed bees 

separately, p(…) refers to components of Eq. (A-42)): 

 All parameters: (Sat.AS1 – p(1), p(2), p(3), p(4); Sat.AS2 – p(1), p(2), p(3), p(4); Sat.OF –

p(3), p(4)) 

 Both saturating responses to air speed (Sat.AS1 – p(1), p(2), p(3), p(4); Sat.AS2 – p(1), 

p(2), p(3), p(4)) 
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 Saturating response to optic flow (Sat.OF –p(3), p(4)) 

 Saturating response to air speed (Sat.AS1 – p(1), p(2), p(3), p(4)) 

 Saturating response to air speed that modulates optic flow gain (Sat.AS2 – p(1), p(2), 

p(3), p(4)) 

The results of refitting these parameters are shown in Table A-1. Qualitative comparison 

between the various models and the corresponding data is performed using plots of the models’ 

output, as shown in Figure 2-7 and Figure A-3. Similar to the model fit for data from non-

manipulated bees, there appeared to be considerable ‘play’ in the parameters fit by the 

optimiser, further highlighting the interaction of variables in determining the best fit. 

 

 

Figure A-3: Adaptability of a non-linear combination of saturating response model to antennal 

manipulations. A and D, comparisons of the model fits for the manipulated antennae shown in 

Figure 2-7 at the low and high air speed boundaries of the tested response surface (plots of the 

low and high optic flow boundaries are shown in Figure 2-7): A, response vs. air speed at 0 

m.s-1 air speed and D, response vs. air speed at 3 m.s-1 air speed. B, C, E and F, comparison of 

other model fits (the legend in this plot is used for A and D) for manipulated antenna, at the 

boundaries of the measured response surface. Different combinations of parameters are refit 

(for each manipulation case separately) whilst some are held constant with those found for non-

manipulated bees (Section A.2.2): B, response vs. air speed at 100 o.s-1 optic flow; C, response 

vs. optic flow at 0 m.s-1 air speed (the legend in this plot is used for B, C, E and F); E, response 

vs. air speed at 600 o.s-1 optic flow and F, response vs. optic flow at 3 m.s-1 air speed.  
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Table A-1: Comparison of model results for the various cases of antennal manipulation, and various constraints. For brevity the antennal 

manipulation cases are indicated in the left most column based on the following colour scheme: black, normal bees; green, antenna 

amputated; red, pedicel waxed. Model parameters that were fixed (at the value found for model fit for normal bees), are italicized, 

whereas those that were allowed to vary are shown in bold. 
 Sat.AS1 Sat.AS2 Sat.OF 

Model Vertical 

offset 

Vertical 

range 

Horizontal 

offset 

Slope Vertical 

offset 

Vertical 

range 

Horizontal 

offset 

Slope Horizontal 

offset 

Slope 

 p(1) p(2) p(3) p(4) p(1) p(2) p(3) p(4) p(3) p(4) 

Original model (all 

points) 
-7.1 -90.2 0.8 -1.1 9.2 40.8 1.1 -4.2 124 0.01 

Original model 
(reduced set) 

-7.1 -90.2 0.8 -1.1 9.2 40.8 1.1 -4.2 124 0.01 

Original model -7.1 -90.2 0.8 -1.1 9.2 40.8 1.1 -4.2 124 0.01 

Original model -7.1 -90.2 0.8 -1.1 9.2 40.8 1.1 -4.2 124 0.01 

Adjust all terms -14.3 -25.3 0.1 -1.3 4.8 17.0 0.3 -0.4 190 0.07 

Adjust all terms -38.9 16.7 0.8 -0.1 20.0 6.7 1.8 -7.3 142 0.02 

Adjust Sat.AS 

(both) 

-23.1 -21.9 0.45 -1.9 19.6 5.8 1.0 -20.9 124 0.01 

Adjust Sat.AS 

(both) 

-30.6 -9.7 0.4 -0.2 9.2 26.1 3.3 -1.3 124 0.01 

Adjust Sat.OF -7.1 -90.2 0.8 -1.1 9.2 40.8 1.1 -4.2 81 0.07 

Adjust Sat.OF -7.1 -90.2 0.8 -1.1 9.2 40.8 1.1 -4.2 92 0.23 

Adjust Sat.AS1 -14.1 -48.8 0.9 -2.6 9.2 40.8 1.1 -4.2 124 0.01 

Adjust Sat.AS1 -21.5 -27.2 0.7 -8.0 9.2 40.8 1.1 -4.2 124 0.01 

Adjust Sat.AS2 -7.1 -90.2 0.8 -1.1 7.4 59.4 1.3 -1.9 124 0.01 

Adjust Sat.AS2 -7.1 -90.2 0.8 -1.1 -4.1 87.7 1.3 -1.5 124 0.01 
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A.3 Comparison of streamlining benefits across insect orders (Figure 2-9) 

Figure 2-9 is the result of a meta-analysis of the drag forces incurred during flights at a range of 

forward air speeds for a collection of seven insect species, across six orders. These are: 

1. Hymenoptera - Apis mellifera (honeybee – female worker) 

2. Hymenoptera - Bombus terrestris (bumblebee – female worker) 

3. Lepidoptera - Manduca sexta (hawk moth – male) 

4. Coleoptera - Trypoxylus dichotomus (rhinoceros beetle – male) 

5. Odonata - Sympetrum sanguineum (dragon fly) 

6. Diptera - Drosophila viralis (fruit fly) 

7. Orthoptera - Schistocherca gregaria (locust) 

 

For each species, data was taken from several sources (detailed in Table A-2 and Table A-3) and 

used to compute the drag when streamlining normally, or alternatively, and if the insect had 

maintained the body angle that it used when hovering across its range of flight speed. In many 

cases values were found from interpolating or extrapolating from published figures, and the studies 

from which data has been collected span seven decades, during which technological advances may 

have improved measurement accuracy for some variables. Hence the data in this section aims to 

provide a general indication that streamlining benefits flying animals, rather than to make precise 

comparisons between their power requirements.  

 

Figure 2-9 uses the advance ratio of each insect species as the independent variable when plotting 

data from multiple species on the same plot. Whilst the insects examined here span three orders of 

magnitude in terms of mass, and also in terms of body Reynolds number over their flight range, 

their advance ratios during fast forward flight all fall within the range 0.4 to 1, making this a useful 

measure with which to compare flight power. 

 

The values for the advance ratio (J), Reynolds number (Re), body drag (D*) and parasitic power 

(P*par) were calculated from measured morphological and kinematic parameters (mass (m), wing 

(r) and body length (l), wingbeat frequency (n), wingbeat amplitude (Φ), body angle (χ), 



Supplementary material for Chapter 4 

| 159 | 

coefficient of drag (Cd, dependent on body angle and Reynolds number) and body plan area (A)) 

at each flight speed (U) using the following equations (Ellington, 1984a, 1984b): 

Advance ratio:   2J U nR   

Reynolds number:  Re Ul v                   v = 1.46 x 10-5 m2.s-1 (kinematic viscosity of air) 

Body drag:   * 20.5 dD C AU m    ρ = 1.23 kg.m-3 (density of air) 

Parasitic power:  * *

parP D U      

 

Both parasitic power and body drag are expressed relative to the insect’s body mass, m, as such 

they are labelled P*par and D* respectively. The values for all parameters are shown in the 

following two tables, with the exception of the coefficient of drag, body plan areas, and parasitic 

power. Some sources provided drag measurements and not values for the coefficient of drag or 

body plan areas, hence we include only the value for body drag, whether calculated or taken 

directly from a source. The values for parasitic power are plotted in Figure 2-9.  

 

Table A-2: Morphological details. The superscripted number denotes the source of data, and 

superscripted letters denote a footnote following the table. Values separate by commas are for the 

forewings and hindwings respectively. 
Insect Mass (mg) Body length (mm) Wing length (mm) 

Apis 100 (Ellington, 1984a) 14.2 (Ellington, 1984a) 9.5 (Ellington, 1984a) 

Bombus 175 (Dudley & Ellington, 1990a) 18.6 (Dudley & Ellington, 1990a) 13.5 (Dudley & Ellington, 1990a)  

Manduca 1199 (Willmott & Ellington, 1997b) 45.6 (Willmott & Ellington, 1997b) 47.3 (Willmott & Ellington, 1997b) 

Trypoxylus 5050 (McCullough, Weingarden, & 

Emlen, 2012) 

40.0 (McCullough et al., 2012) 50.0 (McCullough et al., 2012) 

Sympetrum 127 (Wakeling & Ellington, 1997a) 35.4 (Wakeling & Ellington, 1997a) 27.3, 26.5 (Wakeling & Ellington, 1997a) 

Drosophila 2 (Weis-Fogh, 1972) 3.3 r 3.0 (Weis-Fogh, 1972) 

Schistocherca 1850 (Weis-Fogh, 1956) 46.0 (Weis-Fogh, 1956) 48.5, 44.4 (Weis-Fogh, 1956) 

r Assuming a wing to body length ratio of 1.1 as for Drosophila melanogaster (Ellington, 1984a) 
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Table A-3: Flight kinematics and power requirement details. The superscripted number denotes the source of data, and superscripted 

letters denote a footnote following the table. Unless followed by further superscripts, those at the lowest air speed for each species apply 

to the values for the following air speeds of that parameter. Drag NSL indicates the drag value was calculated assuming the insect had 

maintained the same body angle for hovering for all air speeds. 
Insect Air speed 

(m.s-1)  

Advance ratio  Reynolds 

number 

Wingbeat 

freq. (Hz) 

Wingbeat 

amp. (o) 

Body angle (o)  Drag  (% 

mass) 

Drag NSL (%  

mass) 

Apis 0 0 0 230 (Altshuler et al., 

2005), h 

91 (Altshuler et al., 

2005), h 

33 (Nachtigall et al., 

1971) 

0 0 

 2 0.3 1775 230 91 25 3.3 (Nachtigall & 

Hanauer-Thieser, 1992) 

6.5 (Nachtigall & 

Hanauer-Thieser, 

1992), e 

 3 0.4 2662 230 91 24 6.3 12.5 e 

 4 0.6 3550 230 91 13 10.7 21.4 e 

 5 0.7 4437 230 91 9 16.6 33.2 e 

Bombus  0 0 0 155 (Dudley & 

Ellington, 1990a) 

116 (Dudley & 

Ellington, 1990a) 

47 (Dudley & 

Ellington, 1990a) 

0 0 

 1.5 0.1 1250 145 112 32 0.2 (Dudley & 

Ellington, 1990b) 

0.2 (Dudley & 

Ellington, 1990b) 

 2.5 0.3 3125 152 125 25 2.2 3.3 

 3.5 0.5 4375 148 114 19 5.9 7.3 

 4.5 0.7 5625 144 103 13 10.4 13.8 

Manduca  0 0.0 0 26 (Willmott & 

Ellington, 1997a) 

114 (Willmott & 

Ellington, 1997a) 

40 (Willmott & 

Ellington, 1997a) 

0 0 

 1 0.2 4596 25 106 29 0.5 (Willmott & 

Ellington, 1997b) 

0.6 (Willmott & 

Ellington, 1997b) 

 2 0.4 5970 26 110 21 1.3 5.8 

 3 0.7 8221 27 100 17 2.3 11.6 

 4 1.0 10699 25 102 14 3.6 18.2 

Trypoxylus  0 0 0 37 (van Truong, Le, 

Byun, Park, & Kim, 

2012), h 

170 (van Truong et 

al., 2012), h 

50 (McCullough & 

Tobalske, 2013) 

0 0 

 1 0.1 2500 37 170 50 0.9 (McCullough & 

Tobalske, 2013), p 

0.9 (McCullough & 

Tobalske, 2013), p 

 2 0.2 5000 37 170 50 4.3 4.3 

 3 0.3 7500 37 170 50 10.1 10.1 

 4 0.4 10000 37 170 50 18.5 18.5 
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Insect Air speed 

(m.s-1) 

Advance ratio Reynolds 

number 

Wingbeat 

freq. (Hz) 

Wingbeat 

amp. (o) 

Body angle (o)  Drag  (% 

mass) 

Drag N (%  

mass) 

Sympetrum 0.7 0.2 fw 1536 38 (Wakeling & 

Ellington, 1997b), fw 

80 (Wakeling & 

Ellington, 1997b), fw 

32 (Azuma & 

Watanabe, 1988), da 

0.4 (Wakeling & 

Ellington, 1997a), da, e 

0.5 (Wakeling & 

Ellington, 1997a), da, e 

 1.5 0.4 3293 38 100 13 1.6 2.8 

 2.3 0.5 5049 38 120 1 2.5 9.1 

 3.2 0.7 7025 38 130 2 8.6 18.1 

Drosophila 0 0 0 240 (Weis-Fogh, 

1972), h 

150 (Weis-Fogh, 

1972), h 

68 (Sun & Wu, 2003) 0 0 

 0.5 0.13 103 240 150 52 3.1 (Vogel, 1966) 3.6 (Vogel, 1966), e 

 1 0.27 206 240 150 39 7.7 10.0 e 

 1.5 0.4 309 240 150 22 12.8 24.2 e 

 2 0.53 412 240 150 8 17.9 44.6 e 

Schistocherca 0 0 hw 0 20 (Weis-Fogh, 

1956), h, hw, t 

109 (Weis-Fogh, 

1956), h, hw, t 

25 (Camhi, 1970a), t 0 0 

 1 0.3 2813 20 109 8 0.7 (Weis-Fogh, 

1956) 

1.8 (Weis-Fogh, 

1956) 

 2 0.6 5625 20 109 3 1.2 3.5 

 3 0.9 8438 20 109 1 2.7 8.4 

 4 1.2 11250 20 109 0 3.9 12.7 

 5 1.5 14063 20 109 0 6.5 21.1 

da Body angles were from Anax parthenope julius, a larger species of dragon fly. A body angle of 35o was assumed for hovering when 

calculating non-streamlined body drag, slightly less horizontal than the 32o observed for 0.7 m.s-1 flight. 

e Value found by extrapolating beyond bounds of plot. 

fw Value for forewings, the hindwings have a similar measurement. 

h Value was only found for this parameter at hover, and was assumed equal to that for other flight speeds. 

hw Value for hindwings; the value for the forewings appears un-representatively large. 

p Data from personal communications. 

t Measurements are from tethered animals 
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A.4 Statistical tests 

Common abbreviations used when reporting statistical tests in this appendix are: Sum of squares (SS), degrees of freedom (df), mean 

squares (MS), F-value (F), p-value (p), χ2-value (χ2) and epsilon (test statistic for sphericity tests, ε). The subscripted number following 

χ2 values denotes the degrees of freedom, and for F values, the first and second subscripted values denote the between subjects and 

within subjects (error) degrees of freedom respectively. If the degrees of freedom were adjusted based on Greenhouse-Geisser correction 

for non-spherical data in ANOVA, the unadjusted degrees of freedom are shown in brackets. 

  

A.4.1 Figure 2-2 details (normal bees) 

Two factor ANOVA was conducted with one within subjects factor (optic flow), and one between subjects factor (air speed) in SPSS 

using Type III sum of squares (used for all ANOVA comparisons).  The number of bees included for each level of the between subjects 

factor were 11 (0 m.s-1), 11 (0.5 m.s-1), 11 (1 m.s-1), 12 (1.5 m.s-1), 11 (2 m.s-1), 12 (2.5 m.s-1), 12 (3 m.s-1), 13 (4 m.s-1), and 11 (5 m.s-

1). Of the 54 factor combinations, only two combinations were found to be non-normal (3 m.s-1 at 100 o.s-1 and 0 m.s-1 at 400 o.s-1) using 

a Shapiro-Wilk test. It is unlikely that these relatively minor deviations from normality will adversely influence an ANOVA’s results. 

 

The between subjects factors were found to be heteroscedastic at each of the within subjects factors levels (Table A-4). 

Heteroscedasticity can result in the F-statistic being non-conservative (an increase in Type 1 error), particularly in an unbalanced design 

where the group with the smaller number of samples has increased variance, or when the change in group means is small (Bao & Ananda, 

2001; Krutchkoff, 1988). Simulation studies suggest that Type 1 error rates are unlikely to exceed 7% for normal, but heteroscedastic 

data (Bao & Ananda, 2001). Outside of those constraints, the F-statistic for heteroscedastic data is usually conservative (an increase in 

Type 2 error), however performance is improved when the number of groups are large (greater than ten; Bao & Ananda, 2001; 

Krutchkoff, 1988). Notably, the variance of between subjects groups in our data does not appear to be directly proportional to the group 

mean (for example the variance at 0.5 m.s-1 air speed is larger than 0 and 1 m.s-1), even though this air speed results in a reduced average 
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abdomen angle, whilst higher air speeds have both reduced averages and variances (Figure 2-2), so a transformation will not alleviate 

the issue (Krutchkoff, 1988), nor would a non-parametric test. We suggest that the effect of heteroscedasticity may make tests slightly 

more conservative, but will not adversely affect the conclusions we draw from our data. Note that heteroscedasticity only effects the 

between subjects factor (air speed), as its equivalent for the within subjects factor (optic flow) can be corrected for. 

 

Table A-4: Leven’s test of equality of variances for normal bees. 
Factor (o.s-1) 100  200  300  400  500  600  

Result F8,95=3.42, p=0.002 F8,95=3.18, p=0.003 F8,95=4.00, p<0.001 F8,95=2.67, p=0.011 F8,95=2.38, p=0.022 F8,95=3.14, 

p=0.003 

 

Mauchly’s test of sphericity indicated that the assumption of sphericity was violated for this data, χ2
14=542.5, p<0.001, and as ε=0.31, 

Greenhouse-Geisser correction was used to adjust degrees of freedom for the within subjects factor (Table A-5) after conducting the 

ANOVA. Both main effects and the interaction are highly significant. Based on Figure 2-2 it appears that the interaction effect occurs 

because the range of group means is reduced over the within subjects factor (optic flow) at high levels of the between subjects factor 

(air speed). 

 

Table A-5: Repeated measures ANOVA results for normal bees. 
Within subjects SS df MS F p 

Optic flow (OF) 15222.1 1.6 (5) 9819.5 141.39 <0.001 

OF x AS 42109 12.4 (40) 399.6 4.89 <0.001 

Error(OF) 10227.4 147.3 (475) 69.5   

Between subjects SS df MS F p 

Air speed (AS) 55248.4 8 6906.1 6.35 <0.001 

Error 103359.8 95 1088.0   

 

Post-hoc comparisons were made between main effects by computing p-values for each pairwise comparison. Family wise error control 

is provided by using the Dunn-Sidak pairwise comparison for within subjects comparisons, and the Games-Howell comparison 
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(specifically for heteroscedastic data) for between subjects comparisons. Low optic flow levels are significantly different from all others 

up to 400 o.s-1 after which optic flow is no longer significantly different from higher levels (Table A-6). This indicates that a plateau, or 

saturation, of the response has been reached.  

 

Table A-6: Post-hoc comparisons of optic flow levels for normal bees. 
Optic flow (o.s-1) 200  300  400  500  600  

100  p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

200   p<0.001 p<0.001 p<0.001 p<0.001 

300    p<0.001 p<0.001 p<0.001 

400     p=0.625 p=0.991 

500      p=1.000 

 

As apparent from Figure 2-2, the response to air speed is more complicated, and divides itself into four groups (Table A-7).  First, a 

plateau or saturation is again reached at 2.5 m.s-1, after which air speed levels are no longer significantly different. Second, the 0 m.s-1 

air speed is significantly different from these air speeds in the plateau region, but not from flow rates lower than 2.5 m.s-1; 0 m.s-1 

representing the global minimum of the response. Third, the speed range 1 to 2 m.s-1 represents an intermediate local minimum, which 

whilst not different from 0 m.s-1 air speed and is different from the highest points on the plateau (4 and 5 m.s-1), suggesting it represents 

slightly higher values than the 0 m.s-1 minimum. Fourth, the 0.5 m.s-1 air speed, as it is not significantly different from any other air 

speed. Figure 2-2 shows that at high optic flow the response at the 0.5 m.s-1 air speed approaches the level the plateau, whilst at low 

optic flow levels the response is similar to the local minimum centred at 1.5 m.s-1 air speed. 0.5 m.s-1 represents a local maximum 

although its strength of its response is largely dependent on the interaction with optic flow. 
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Table A-7: Post-hoc comparisons of air speed levels for normal bees. 
Air speed  

(m.s-1) 

0.5  1  1.5  2  2.5  3  4  5  

0 p=0.485 p=0.614 p=0.834 p=0.102 p=0.019 p=0.012 p<0.001 p=0.001 

0.5  p=0.981 p=0.977 p=1.000 p=0.999 p=0.998 p=0.781 p=0.855 

1   p=1.000 p=0.864 p=0.259 p=0.180 p=0.001 p=0.002 

1.5    p=0.907 p=0.357 p=0.283 p=0.012 p=0.018 

2     p=0.830 p=0.736 p=0.011 p=0.011 

2.5      p=1.000 p=0.803 p=0.899 

3       p=0.808 p=0.905 

4        p=1.000 

 

A.4.2 Figure 2-2 details (antenna amputated bees) 

Two factor ANOVA was conducted with one within subjects factor (optic flow), and one between subjects factor (air speed). The 

number of bees included for each level of the between subjects factor were 9 (0 m.s-1), 9 (0.5 m.s-1), 8 (1.5 m.s-1), and 12 (3 m.s-1). Of 

the 24 factor combinations none were found to be non-normal (using a Shapiro-Wilk test). However, as for the normal bees, between 

subjects factors were found to be heteroscedastic at most of the within subjects factors levels (Table A-8). Heteroscedasticity is not as 

severe as for normal bees, with five of the within subjects factor levels now displaying non-equal variances. From simulation studies 

(Bao & Ananda, 2001), it still seems unlikely Type 1 error will noticeably exceed 5%, although the test of effects for the between 

subjects factor may be reduced in power. 

 

Table A-8: Leven’s test of equality of variances for antenna amputated bees.  
Factor (o.s-1) 100  200  300  400  500  600  

Result F3,34=2.75, p=0.058 F3,34=4.17, p=0.013 F3,34=3.08, p=0.041 F3,34=4.18, p=0.013 F3,34=4.55, p=0.009 F3,34=4.43, p=0.010 

 

Mauchly’s test of sphericity indicated that the assumption of sphericity was violated for this data, χ2
14=196.8, p<0.001, and as ε=0.31, 

Greenhouse-Geisser correction was used to adjust degrees of freedom for the within subjects factor (Table A-9). The main effect of the 
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within subjects factor (optic flow) is highly significant, and the interaction term is not significant. The between subjects factor (air speed) 

remains significant, but not strongly so, although the power of the test (and thus the strength of the statistical conclusion) is likely 

reduced due to heteroscedasticity as discussed previously. Nonetheless, it is reasonable to conclude that air speed has less effect on these 

bees with their amputated antenna than their un-manipulated compatriots (Section A.4.1).  

 

Table A-9: Repeated measures ANOVA results for antenna amputated bees.  
Within subjects SS df MS F p 

Optic flow (OF) 4632.2 1.5 (5) 3011.3 52.04 <0.001 

OF x AS 300.2 4.6 (15) 65.1 1.12 0.358 

Error(OF) 3026.5 52.3 (170) 89.0   

Between subjects SS df MS F p 

Air speed (AS) 4152.1 3 1384.0 3.11 0.039 

Error 15129.8 34 445.0   

 

Post-hoc comparisons are made between main effects by computing p-values for each pairwise comparison, using Dunn-Sidak and 

Games-Howell tests performed for within and between subjects comparisons respectively. The response to optic flow for antenna 

amputated bees plateaued (Table A-10) in a similar way to bees with normal antennas (Section A.4.1), except that the plateau level now 

occurs at 300 rather than 400 o.s-1. When comparing the effects of air speed (Table A-11), it now appears to follow a similar plateau or 

saturation response to the optic flow component. Only the 0 m.s-1 air speed condition is significantly different from the highest air speed 

tested (3 m.s-1). The local minimum at 1.5 m.s-1 does not occur, as the response at this point is now close to the plateau, and the response 

at 0.5 m.s-1 is now generally between the response for 0 and 1.5 m.s-1 (Figure 2-2), without the obvious interaction with optic flow 

observed for normal bees. 
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Table A-10: Post-hoc comparisons of optic flow levels for antenna amputated bees. 
Optic flow (o.s-1) 200  300  400  500  600  

100  p<0.001 p <0.001 p <0.001 p <0.001 p<0.001 

200   p <0.001 p<0.001 p<0.001 p<0.001 

300    p=0.919 p=0.863 p=0.989 

400     p=0.997 p=1.000 

500      p=1.000 

 

Table A-11: Post-hoc comparisons of air speed levels for antenna amputated bees. 
Air speed (m.s-1) 0.5  1.5  3  

0  p=0.658 p=0.299 p=0.049 

0.5   p=0.968 p=0.554 

1.5    p=0.693 

 

A.4.3 Figure 2-2 details (antenna waxed bees) 

Two factor ANOVA was conducted with one within subjects factor (optic flow), and one between subjects factor (air speed). The 

number of bees included for each level of the between subjects factor were 12 (0 m.s-1), 6 (0.5 m.s-1), 12 (1.5 m.s-1), and 7 (3 m.s-1). Of 

the 24 factor combinations one was found to be non-normal (0 m.s-1 at 100 o.s-1), using a Shapiro-Wilk test. As for previous comparisons, 

between subjects factors were found to be heteroscedastic at most of the within subjects factors levels (Table A-12). Heteroscedasticity 

is further reduced from the previous comparisons, with only four of the six within subjects factor levels now displaying non-equal 

variances. It still seems unlikely Type 1 error will noticeably exceed 5%, although the test of effects for the between subjects factor may 

be somewhat reduced in power.  
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Table A-12: Leven’s test of equality of variances for antenna waxed bees. 
Factor (o.s-1) 100  200  300  400  500  600  

Result F3,33=0.78, p=0.512 F3,33=2.42, p=0.084 F3,33=4.29, p=0.012 F3,33=4.12, p=0.014 F3,33=5.05, p=0.005 F3,33=5.67, p=0.003 

 

Mauchly’s test of sphericity indicated that the assumption of sphericity was violated for this data, χ2
14=305.8, p<0.001, and as ε=0.23, 

Greenhouse-Geisser correction was used to adjust degrees of freedom for the within subjects factor (Table A-13). The main effect of 

the within subjects factor (optic flow) is highly significant, and the interaction and between subjects factor (air speed) are both 

insignificant. This shows that waxing the antenna has removed variability due to varying air speed. 

 

Table A-13: Repeated measures ANOVA results for antenna waxed bees.  
Within subjects SS df MS F p 

Optic flow (OF) 8184.8 1.1 (5) 7158.3 52.49 <0.001 

OF x AS 196.1 3.4 (15) 57.2 0.42 0.766 

Error(OF) 5145.7 37.7 (165) 136.4   

Between subjects SS df MS F p 

Air speed (AS) 1628.7 3 542.9 0.72 0.546 

Error 24802.1 33 751.6   

 

Post-hoc comparisons are made between main effects by computing p-values for each pairwise comparison, using the Dunn-Sidak test 

for within subjects comparisons. The response to optic flow for antenna amputated bees plateaus (Table A-14) in a similar way to bees 

with normal antennae (Section A.4.1), except that the plateau level now occurs at 500 rather than 400 o.s-1.  
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Table A-14: Post-hoc comparisons of optic flow for antenna waxed bees. 
Optic flow (o.s-1) 200  300  400  500  600  

100  p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

200   p<0.001 p<0.001 p<0.001 p<0.001 

300    p<0.001 p<0.001 p<0.001 

400     p=0.047 p=0.020 

500      p=0.726 

 

A.4.4 Figure 2-3 details (antennal manipulation comparison) 

Two factor ANOVA was conducted with one within subjects factor (optic flow), and one between subjects factor (antennal manipulation) 

at each of the air speeds 0, 0.5, 1.5, and 3 m.s-1. In this comparison we are not particularly interested in the effect of optic flow, as its 

effect has already been investigated for each antennal manipulation, but include it as a main effect to permit the use of repeated measures 

analysis. The number of subjects and normality tests are presented in the preceding three sections, and whilst several groups do not have 

normal distributions, this should not affect the outcome of our analysis. Likewise, between subjects groups are heteroscedastic, which 

will make our ANOVA more conservative, and non-spherical, which is corrected for using Greenhouse-Geisser correction. 

 

The main effect of the within subjects factor (optic flow) is highly significant at all air speeds, while the interaction effect with antenna 

manipulation is only significant at 3 m.s-1 (Table A-15). Figure 2-2 shows that the range of response to optic flow increases when the 

antenna is manipulated at this air speed, accounting for the significant interaction at that air speed. The between subjects factor (antenna 

manipulation), is only significant at 0 and 1.5 m.s-1, not 0.5 or 3 m.s-1. The antennae must provide information to regulate abdomen at 

those two air speeds.  
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Table A-15: Repeated measures ANOVA results for antennal manipulations at different air speeds.  
0 m.s-1 Within subjects SS df MS F p 

 Optic flow (OF) 9591.9 1.4 (5) 7074.9 56.06 <0.001 

 OF x AM 818.1 2.7 (10) 301.7 2.39 0.089 

 Error(OF) 4961.6 39.3 (145) 126.2   

 Between subjects SS df MS F p 

 Antenna 

Manipulation (AM) 

16466.5 2 8233.3 10.43 <0.001 

 Error 22887.0 29 789.2   

0.5 m.s-1 Within subjects SS df MS F p 

 OF  6436.8 1.5 (5) 4181.9 40.41 <0.001 

 OF x AM 601.7 3.1 (10 195.4 1.88 0.148 

 Error(OF) 3663.7 35.4 (115) 103.5   

 Between subjects SS df MS F p 

 AM  1109.9 2 555.0 0.29 0.752 

 Error 44178.8 23 1920.8   

1.5 m.s-1 Within subjects SS df MS F p 

 OF  5262.6 1.4 (5) 3829.3 40.87 <0.001 

 OF x AM 259.7 2.7 (10) 94.5 1.01 0.394 

 Error(OF) 3734.1 39.9 (145) 93.7   

 Between subjects SS df MS F p 

 AM  6104.3 2 3052.1 41.19 0.030 

 Error 22291.1 29 768.7 3.97  

3 m.s-1 Within subjects SS df MS F p 

 OF  2615.8 2.0 (5) 1303.6 64.70 <0.001 

 OF x AM 210.4 4.0 (10) 52.4 2.60 0.045 

 Error(OF) 1132.1 56.2 (140) 20.2   

 Between subjects SS df MS F p 

 AM  1907.9 2 953.9 1.12 0.339 

 Error 23735.4 28 847.7   
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Post-hoc tests were conducted using least significant difference tests. These tests do not provide Type 1 error control, but as we are 

testing are pre-existing hypothesis that manipulated bees would be different from normal bees, rather than a full set of pairwise 

comparisons family wise error rate control is not critical (Ruxton & Beauchamp, 2008). Significant differences between normal bees 

and both antennal manipulations occur at 0 and 1.5 m.s-1 (Table A-16). 

 

Table A-16: Post-hoc comparisons of normal antenna to both manipulations. Pairwise comparisons were performed regardless of the 

significance of main effects to provide consistency cross air speeds. 
Air speed (m.s-1) Normal vs. antenna amputated Normal vs. antenna waxed 

0  p=0.029 p<0.001 

0.5  p=0.972 p=0.502 

1.5  p=0.050 p=0.013 

3  p=0.937 p=0.176 

 

A.4.5 Figure 2-4 details (response to a tailwind) 

Two factor ANOVA was conducted with one within subjects factor (optic flow), and one between subjects factor (air speed). The 

number of bees included for each level of the between subjects factor were 7 (0 m.s-1), 10 (-0.5 m.s-1), 9 (-1.5 m.s-1), and 10 (-3 m.s-1). 

Of the 24 factor combinations one was found to be non-normal (-1.5 m.s-1 at 300 o.s-1) using a Shapiro-Wilk test. The between subjects 

factors were found to be slightly heteroscedastic at only one of the within subjects factors levels (Table A-17), and it is unlikely this 

would have affected the results of the ANOVA. 

 

Table A-17: Leven’s test of equality of variances for bees experiencing a tail wind. 
Factor (o.s-1) 100 200  300  400  500  600  

Result F3,32=0.73, p=0.541 F3,32=0.50, p=0.683 F3,32=3.4, p=0.030 F3,32=1.47, p=0.242 F3,32=0.67, p=0.574 F3,32=1.3, p=0.291 
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Mauchly’s test of sphericity indicated that the assumption of sphericity was violated for this data, χ2
14=145.93, p<0.001, and as 

ε=0.33, Greenhouse-Geisser correction was used to adjust degrees of freedom for the within subjects factor ( 

Table A-18). The main effect of the within subjects factor (optic flow) is highly significant, and the between subjects factor (air speed) 

is weakly significant, and the interaction term is not.  

 

Table A-18: Repeated measures ANOVA results for bees experiencing a tail wind.  
Within subjects SS df MS F p 

Optic flow (OF) 12170.0 1.7 (5) 7316.4 52.11 <0.001 

OF x AS 341.9 5.0 (15) 68.5 0.49 0.783 

Error(OF) 7473.4 53.2 (16) 140.4   

Between subjects SS df MS F p 

Air speed (AS) 6267.6 3 2089.2 3.10 0.041 

Error 21583.8 32 675.5   

 

Post-hoc comparisons are made between main effects by computing p-values for each pairwise comparison, using the Dunn-Sidak test 

for both main effects comparisons. The response to optic flow for bees experiencing a tail wind (Table A-19) plateaus in the same way 

to bees experiencing forwards air flow (Section A.4.1), at 400 o.s-1. The only significant difference in pairwise test of air speeds occurs 

between -0.5 and -1.5 m.s-1 (Table A-20). These air speeds have the largest difference in abdomen pitch responses (Figure 2-4B), and it 

appears that the response at 0.5 m.s-1 may be slightly elevated, as for bees experiencing forwards air speed (Figure 2-2). 

 

Table A-19: Post-hoc comparisons of optic flow for bees experiencing a tail wind. 
Optic flow (o.s-1) 200  300  400  500  600  

100  p<0.001 p <0.001 p <0.001 p <0.001 p<0.001 

200   p<0.001 p<0.001 p<0.001 p<0.001 

300    p=0.001 p=0.040 p=0.012 

400     p=0.991 p=0.980 

500      p=1.000 
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Table A-20: Post-hoc comparisons of air speed for bees experiencing a tail wind. 
Air speed (m.s-1) -0.5 -1.5  -3 

-0  p=0.727 p=0.740 p=0.973 

-0.5   p=0.044 p=0.157 

-1.5    p=0.991 

 

A.4.6 Figure 2-5 details (bees with their thorax pitched upwards) 

Two factor ANOVA was conducted with one within subjects factor (optic flow) and one between subjects factor (air speed) using data 

for bees tethered with their thorax pitched up. The number of bees included for each level of the between subjects factor were 10 (0 m.s-

1), 8 (1.5 m.s-1), and 10 (3 m.s-1). Of the 18 factor combinations for each level of the thorax pitch factor, none were non-normal (Shapiro-

Wilk test). Whilst the between subjects factor was heteroscedastic at most of the within subjects factors levels (Table A-21), as for bees 

tethered with their thorax horizontal (Section A.4.1), we suggest that this will make our ANOVA conservative. 

 

Table A-21: Leven’s test of equality of variances for bees with their thorax pitched upwards. All bar one group are heteroscedastic. 
Factor (o.s-1) 100 200 300 400 500 600 

Result F2,25=17.04, 

p<0.001 

F2,25=5.00, p=0.015 F2,25=7.10, p=0.004 F2,25=4.16, p=0.028 F2,25=2.59, p=0.095 F2,25=6.65, p=0.005 

 

Mauchly’s test of sphericity indicated that the assumption of sphericity was violated for this data, χ2
14=130.35, p<0.001, and as ε=0.33, 

the Greenhouse-Geisser correction was used to adjust degrees of freedom for the within subjects factor (Table A-22). Both main effects, 

optic flow and air speed, including their interaction, are significant, matching our findings for bees with their thorax tethered horizontally 

(Section A.4.1), and suggesting their behaviour is qualitatively similar. 
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Table A-22: Repeated measures ANOVA results for bees with their thorax pitched upwards.  
Within subjects SS df MS F p 

Optic flow (OF) 7222.2 1.6 (5) 4403.9 28.31 <0.001 

OF x AS 2290.0 3.3 (10) 698.2 4.49 0.007 

Error(OF) 6378.6 41.0 (125) 155.6   

Between subjects SS df MS F p 

Air speed (AS) 20781.0 2 10390.5 11.10 <0.001 

Error 23396.2 25 935.8   

 

Whilst bees appear to react in a similar manner to both stimuli when their thorax is pitched up, to make a direct comparison we conducted 

three factor ANOVA, with an additional between subjects factor, the thorax pitch. Data from Figure 2-2 for bees with a horizontal thorax 

(at 0, 1.5 and 3 m.s-1 air speeds) and those with their thorax pitched up comprised the two levels of the new factor. The number of 

subjects, normality and equality of variance tests for bees with a horizontal thorax are listed previously in Section A.4.1. Whilst 

heteroscedasticity is not corrected for, the Greenhouse-Geisser correction is used for within-subjects factors. Air speed, optic flow and 

their interaction are significant, whereas the thorax angle does not have a significant main effect or interactions (Table A-23). This 

confirms that bees with their thoraxes pitched up exhibit a streamlining response to optic flow and air speed that is statistically 

indistinguishable from those with their thorax horizontal. 
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Table A-23: Repeated measures ANOVA results for comparison between bees with their thorax pitched upwards and horizontally.  
Within subjects 

factors 

SS df MS F p 

Optic flow (OF) 13941.3 1.7 (5) 8002.3 82.46 <0.001 

OF x AS 3929.4 3.5 (10) 1127.7 11.62 <0.001 

OF x Angle 208.7 1.7 (5) 119.8 1.24 0.293 

OF x AS x Angle 297.7 3.5 (10) 85.4 0.88 0.467 

Error(OF) 9636.5 99.3 (285) 97.0   

Between subjects 

factor 

SS df MS F p 

Air speed (AS) 40374.4 2 20187.2 18.6 <0.001 

Angle 188.6 1 188.6 0.17 0.678 

AS x Angle 149.1 2 74.6 0.07 0.934 

Error 61735.8 57 1083.1   

  

A.4.7 Figure 2-5 details (bees with their thorax pitched downwards) 

Two factor ANOVA was conducted with one within subjects factors (optic flow) and one between subjects factors (air speed) using data 

for bees tethered with their thorax pitched down. The number of bees included for each level of the between subjects factor was 5 (0 

m.s-1), 7 (1.5 m.s-1), and 7 (3 m.s-1).  

 

For these exploratory data analyses, we elected to include flights from bees that stopped flying briefly during the stimulation protocol. 

Hence the missing values for three bees (missing at most one data point), were replaced with the mean value measured for that bee at 

all other factor combinations. Of the 18 factor combinations for each level of the thorax pitch factor, two were found to be non-normal 

(3 m.s-1 at 500 o.s-1 and 1.5 m.s-1 at 600 o.s-1), using a Shapiro-Wilk test. Whilst the between subjects factor was heteroscedastic at half 

of the within subjects factors levels (Table A-24), as for bees tethered with their thorax horizontal (Section A.4.1), we suggest this will 

make our ANOVA slightly conservative. 
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Table A-24: Leven’s test of equality of variances for bees with their thorax pitched down. 
Factor (o.s-1) 100 200 300 400 500 600 

Result F2,16=2.24, p=0.139 F2,16=2.18, p=0.146 F2,16=2.39, p=0.123 F2,16=5.76, p=0.013 F2,16=7.06, p=0.006 F2,16=4.74, p=0.024 

 

Mauchly’s test of sphericity indicated that the assumption of sphericity was violated for this data, χ2
14=37.08, p<0.001, and as ε=0.59, 

the Greenhouse-Geisser correction was used to adjust degrees of freedom for the within subjects factor (Table A-25). The main effect 

of air speed, including its interaction with optic flow, is significant. Surprisingly, the main effect of optic flow was not significant, in 

contrast to the findings for bees with their thoraxes tethered horizontally (Section A.4.1). Whilst this test has a reduced number of 

subjects compared relative to the previous ones (due to the insects reluctance to fly when tethered with their thorax down), which would 

have reduced its power, the data in Figure 2-5 shows that bees tethered with their thorax down have a qualitatively different reaction to 

optic flow. This suggests that tethering bees with thoraxes pitched down changed their behaviour, and indeed changed the effect optic 

flow has on regulating their abdomen position.  

 

Table A-25: Repeated measures ANOVA results for bees with their thorax pitched downwards.  
Within subjects SS df MS F p 

Optic flow (OF) 369.5 2.93 (5) 125.8 1.58 0.208 

OF x AS 1310.8 5.9 (10) 223.2 2.80 0.021 

Error(OF) 3743.4 47.0 (80) 79.7   

Between subjects SS df MS F p 

Air speed (AS) 13098.4 2 6549.2 8.19 0.004 

Error 12794.3 16 799.6   

 

A.4.8 Figure 2-6 details (passive lifting of the abdomen) 

One factor ANOVA was conducted with a single between subjects factor (air speed). Seven honeybee bodies were tested at all air speed 

levels. Of the 5 factor levels one was found to be slightly non-normal (4 m.s-1) using a Shapiro-Wilk test. 
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Levene’s test of equality of variances indicated that the assumption of homoscedasticity was not violated for this data (F4,30=0.17, 

p=0.954). The main effect of the between subjects factor (air speed), is not significant (Table A-26), indicating that air speeds does not 

significantly affect the abdomen position of decapitated bees. 

 

Table A-26: ANOVA results for decapitated bees. 
 SS df MS F p 

Air speed (AS) 206.4 4 51.6 0.83 0.517 

Error 1866.3 30 62.2   

 

A.4.9 Figure A-1 details (air speed presentation order)  

Three factor ANOVA was conducted with three within subjects factors (optic flow, air speed and order). Ten bees participated in all 

experiments. Bees were exposed to a triangular function of air speed levels, as described in Section A.1.1. The 5 m.s-1 air speed point is 

not included in analysis as, being at the peak point of the triangular air speed ramp, bees were not exposed to this value twice in the 

same flight.  

 

For these exploratory data analyses, we elected to include flights from bees that stopped briefly flying during the stimulation protocol. 

Hence the missing values for three bees (missing for at most two data points), were replaced with the mean value measured for that bee 

at all other factor combinations. Of the 24 factor combinations two were found to be non-normal (100 o.s-1 at 0 m.s-1, first presentation; 

and 500 o.s-1 at 0 m.s-1, first presentation) using a Shapiro-Wilk test.  
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Table A-27: Mauchly’s test of sphericity for test of air speed presentation order. Order has only two factor levels and is not tested. 
Effect χ2 df p ε 

Optic flow (OF) 3.5 2 0.175 0.74 

Air speed (AS) 19.2 9 0.027 0.44 

Order 0 0 - - 

OF x AS 107.6 35 <0.001 0.30 

OF x Order 0.9 2 0.957 0.99 

AS x Order 33.7 9 <0.001 0.40 

OF x AS x Order 109.5 35 <0.001 0.25 

 

Mauchly’s test of sphericity showed that the assumption of sphericity was violated for some main effects and interactions (Table A-27). 

The Greenhouse-Geisser correction was used to adjust degrees of freedom for those factors in the following ANOVA (Table A-28). The 

main effects of optic flow and air speed are significant for this hysteresis test, and they show a significant interaction. The effect of air 

speed presentation order is not significant itself, however, it did show a significant interaction with air speed, and additionally shows a 

significant three factor interaction with the optic flow and air speed. Optic flow does not interact significantly with the order of air speed 

presentation. Thus, it appears that presentation order of air speeds affects how bees respond to that stimulus and modifies how air speed 

interacts with optic flow, resulting in the hysteresis curves observed for triangular air speed ramps across all tested optic flow speeds 

(Figure A-1). 
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Table A-28: Results of repeated measures ANOVA for test of air speed presentation order. Un-adjusted degrees of freedom for the 

within subjects factors (not used in calculations) are shown in brackets. 
Within subjects factors SS df MS F p 

Optic flow (OF) 839.6 2 419.8 5.46 0.014 

Error(OF) 1384.3 18 76.9   

Air speed (AS) 8970.1 1.8 (4) 5122.0 64.41 <0.001 

Error(AS) 1253.4 15.8 (36) 79.5   

Order 48.0 1 48.0 0.76 0.407 

Error(Order) 572.7 9 63.6   

OF x AS 1101.7 2.4 (8) 463.5 5.81 0.007 

Error(OFxAS) 1706.6 21.4 (72) 79.8   

OF x Order 54.6 2 27.3 0.74 0.493 

Error(OFxOrder) 668.4 18 37.1   

AS x Order 1250.1 1.6 (4) 780.7 11.44 0.002 

Error(ASxOrder) 983.8 14.4 (36) 68.3   

OF x AS x Order 685.5 2.0 (8) 348.2 5.41 0.015 

Error(OFxASxOrder) 1140.1 17.7 (72) 64.3   

 

A.4.10 Figure A-2 details (optic flow presentation order) 

Three factor ANOVA was conducted with two within subjects factors (optic flow and order) and one between subjects factor (air speed). 

The number of bees included for each level of the between subjects factor were 11 (0 m.s-1), 12 (1.5 m.s-1), and 12 (3 m.s-1). Bees were 

exposed to a triangular function of optic flow levels, as described in Section A.1.2. The 600 o.s-1 air speed point is not included in 

analysis as, being at the peak point of the triangular optic flow ramp; bees were not exposed to this value twice in the same flight.  

 

For these exploratory data analyses, we elected to include flights from bees that stopped flying briefly during the stimulation protocol. 

Hence the missing values for four bees (missing at most two data points), were replaced with the mean of value measured for that bee 

over all other factor combinations. Of the 30 factor combinations three were found to be non-normal (0 m.s-1 at 100 o.s-1, first and second 
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presentations; 0 m.s-1 at 300 o.s-1, first presentation) using a Shapiro-Wilk test. The between subjects factors were found to be slightly 

heteroscedastic at only one of the within subjects factors levels (Table A-29). 

 

Table A-29: Leven’s test of equality of variances for test of optic flow presentation order. 
Presentation   First   

Factor (o.s-1) 100 200 300 400 500 

Result F2,32=0.81, p=0.455 F2,32=0.0, p=0.997 F2,32=1.0, p=0.370 F2,32=0.2, p=0.816 F2,32=0.1, p=0.913 

Presentation   Second   

Factor (o.s-1) 100 200 300 400 500 

Result F2,32=9.3, p=0.001 F2,32=1.2, p=0.319 F2,32=0.2, p=0.862 F2,32=0.4, p=0.673 F2,32=0.4, p=0.696 

 

Table A-30: Mauchly’s test of sphericity for test of optic flow presentation order. Order has only two factor levels and is not tested. 
Effect χ2 df p ε 

Optic flow (OF) 139.1 9 <0.001 0.32 

Order 0 0 - - 

OF x Order 113.1 9 <0.001 0.37 

 

Mauchly’s test of sphericity showed that the assumption of sphericity was violated for the main effect of optic flow and its interaction 

with presentation order (Table A-30), hence, Greenhouse-Geisser correction was used to adjust degrees of freedom for those within 

subject factors in the following ANOVA (Table A-31). Consistent with the results observed for normal bees (Section A.4.1), the main 

effects of optic flow and air speed are both significant, although the interaction between the two is not significant (this is likely to be 

because the reduction in air speed levels tested has reduced the power of this ANOVA test to detect this interaction relative to other 

tests, rather than the effect itself having changed). The order of presentation of optic flow has no significant main effect, or significant 

interactions associated with any other factors. This indicates that the abdomen position is relatively independent on the order of optic 

flow presentation, at least in the case of a simple triangular function. 



Supplementary material for Chapter 4 

| 181 | 

Table A-31: Repeated measures ANOVA results for test of optic flow presentation order.  
Within subjects 

factors 

SS df MS F p 

Optic flow (OF) 7312.8 1.3 (4) 5732.4 22.81 <0.001 

OF x AS 1402.2 2.6 (8) 549.6 2.19 0.113 

Error(OF) 10259.2 40.8 (128) 251.3   

Order 6.7 1 6.8 0.10 0.750 

AS x Order 316.1 2 158.0 2.41 0.106 

Error(Order) 2095.2 32 65.5   

OF x Order 34.1 1.5 (4) 23.0 0.19 0.759 

OF x Order x AS 250.8 3.0 (8) 84.5 0.71 0.551 

Error(OFxOrder) 5668.7 47.5 (128) 119.4   

Between subjects 

factor 

SS df MS F p 

Air speed (AS) 18473.2 2 9236.6 8.79 0.001 

Error 33627.7 32 1050.9   
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 Supplementary material for Chapter 3 

 

B.1 Supplementary figures 

 

Figure B-1: Mean vector for each bee in all experimental conditions. Triangles on plot 

perimeter denote the average mean vector direction for each group. A, FicTrac and CM sensors 

(corresponding to distributions in Figure 3-2). B, Pre-test and ‘decreasing’ condition, and C, 

Pre-test and ‘increasing’ condition (corresponding to distributions in Figure 3-4). Stars           

(**: p<0.01, ***: p<0.001) correspond to significant findings from Rayleigh’s test of 

uniformity for each group, and indicate that the groups distribution of mean vector angles are 

non-uniform. 

 

 

Figure B-2: Feedback sensor sensitivity to turning when affected by walking speed. A, The 

measured relationship between walking speed and turning sensitivity for CM sensors 

(parameterised by turning rate). Measured by comparing simultaneous measurement from 

FicTrac (treated as ground truth) to those made using CM sensors during open-loop stimulation 

with a bar rotating in alternating directions (at 6 o.s-1). B, Imposed coupling between walking 

speed and turning sensitivity, with both measured by FicTrac, as used in Figure 3-4. 
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 Supplementary material for Chapter 4 

 

C.1 Supplementary figures 

 

Figure C-1: Mean vectors for each bee in each stimulus condition.  Mean vector lengths are 

plotted in Figure 4-4 for each gain condition. The average mean vector orientation of each 

group is shown using a triangle on the perimeter of the plot. Stars (***) denote that the 

orientation of the vectors in a group is significantly different from random distribution at 

p<0.001 (Section C.5). N=11 repeated all gain conditions. 
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Figure C-2: The expected turning rate, ω, as function of stimulus position, ψ. This function 

varies depending on the gain condition. N=11 repeated all gain conditions. 

 

 

Figure C-3: The motion-dependent response for counter-clockwise rotation. Calculated for 

each gain condition using Eq. (C-11), as labelled in A to F. Curves are parameterised by turning 

rate, ω, in 4.2 o.s-1 increments, as for Figure 4-6. N=11 repeated all gain conditions. 
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Figure C-4: RMS scale of the motion-dependent functions in both directions, for all gain 

conditions. Equations are for linear regressions (black lines) fitting the average between CW 

and CCW motion, and describe am + bm x v (where v is the stimulus velocity) in Figure 4-7. 

Note that all plots span the turning rate range of 0 to 150o.s-1. N=11 repeated all gain conditions. 
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Figure C-5: Comparison of various model components effects on fixation. A, no forced 

displacements. B, neither the discrete time latency, nor the AR filter are used. C, the discrete 

time latency, but not the AR filter is used. D, the AR filter, but not the discrete time latency is 
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used. Disturbances occur in B, C and D. Except where noted specifically, all model parameters 

are identical to those used in Figure 4-7, and use simulation gains matched to experimental 

gains. For all plots, i shows radial histograms of stimulus position, ψ, and ii shows the 

corresponding autocorrelations of turning rate, ω.  

 

C.2 Motion from front to back details 

Using Eq. (4-17) the responses to motion in both directions, and the reflections of these 

responses can be expressed using the following four equations,  

               , A M A M A M

D DR v P P M M M M v               (C-1) 

               , A M A M A M

D DR v P P M M M M v                  (C-2) 

               , A M A M A M

D DR v P P M M M M v                     (C-3) 

               , A M A M A M

D DR v P P M M M M v                    (C-4) 

 

These equations can then be rewritten in terms of positive ψ using the identities specific to 

asymmetric and mirror symmetric functions, Eqs. (4-15) and (4-16), leading to, 

               , A M A M A M

D DR v P P M M M M v              (C-5) 

               , A M A M A M

D DR v P P M M M M v               (C-6) 

               , A M A M A M

D DR v P P M M M M v                (C-7) 

               , A M A M A M

D DR v P P M M M M v                 (C-8) 

 

Combining these equations as in Eq. (4-23) can find  CWM v . To find  CCWM v , firstly note 

that using the identities for symmetric functions (Eqs. (4-15) and (4-16)), Eqs. (4-19) and (4-20) 

can also be written as,  

             , , , , 4 A A

DR v R v R v R v P M v                 (C-9) 

              , , , , 4 M M

DR v R v R v R v M M v                 (C-10) 

 

Then the sum of Eq. (C-10), (4-21) and  AP   minus Eq. (C-9) finds  CCWM v , 

 
          

          

, 3 , , , 4 A

A M A M

D D CCW

R v R v R v R v P

M M M M v M v

    

    

       

      
  (C-11) 
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C.3 Effects of motion blur 

Because of the time delays and the temporal dynamics of the responses at various levels of the 

visual pathway, a given neuron will not respond instantaneously to the visual stimulus that it 

receives. As a consequence, when an image moves rapidly across the eye the neural 

representation of this image will be a blurred (smoothed) version that lags behind its optical 

representation in the retina (Srinivasan & Bernard, 1975). Consequently, if a bar moves rapidly 

from left to right past the visual field of a neuron that looks in a given direction, ψ, the response 

of this neuron to the moving bar will be a maximum when the bar has moved past the centre of 

the neuron’s receptive field, to the right. This will result in erroneous estimates of the 

sensitivities of behavioural responses to various bar positions, and the errors will depend upon 

the speed and direction of the movement of the bar.   

 

Motion blurring is the suggested cause (Heisenberg & Wolf, 1984) for unusually shaped 

reconstructions of a position function in one study where high stimulus velocities (>200 o.s-1) 

were used (Bülthoff, 1982). Recent open-loop experiments have further elucidated that in 

Drosophila, the temporal dynamics of the position and motion responses persist for tens, if not 

hundreds of milliseconds, and may differ between the two response types (Aptekar et al., 2012; 

Bahl et al., 2013). Therefore, as the stimulus velocity, v, increases, motion blur would be 

increasingly likely to confound the results, regardless of whether an experiment is conducted 

in open- or closed-loop. The effects of motion blurring are likely to be most problematic in 

closed-loop experiments, as these typically involve a wide range of stimulus velocities, and the 

resulting position and motion responses cannot be accurately related to each other if they are 

distorted by differing extents of motion blur. 

 

Motion blur may take two forms that affect the reconstruction of position- and motion-

dependent functions. The underlying functions could be angularly translated in ψ by some 

angle, θ, that varied depending on v. As an example, consider position-dependent function,

 P  in Figure 4-5, which is approximately equal to zero when ψ = 0 (  0 0P  ). If the stimulus 

is moving rapidly clockwise and passes ψ = 0, it will take some time for the bee to react to this 

(with the stimulus also rotating further), so that the bee’s position-dependent response will no 

longer be zero at ψ = 0 (   0P   ), because the response lags the stimulus.  
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A second possibility is that if the stimulus is rotating rapidly, the response from several 

stimulus positions that the bee has observed in the immediate past could contribute to the 

responses measured at a given instant of time, and as v increases, a larger number of prior 

stimulus positions would contribute to any measured response. This is akin to blurring, 

resulting from the decay time of the response. While it is easy to gauge whether these two 

artefacts are likely to occur, it is unfortunately not easy to correct for them.  

 

As an example, we will consider the effect of latency, where for any stimulus velocity, v, there 

is a constant, but unknown, angular translation, θ, that represents the honeybee’s temporal 

latency in responding to the stimulus. Then Eq. (4-17) can now be rewritten: 
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The effect arising from θ is obvious. For rotation in the opposite direction, it is reasonable to 

assume that if v results in a specific θ, then motion in the opposite direction, -v, will probably 

result in a shift of -θ, where the magnitude of the angular translations of the shift would be 

(approximately) equal, but with the polarity reversed.  

 

This latency is then not conducive to reconstructing position- and motion-dependent functions 

accurately, as they are distorted by the translation. An example is shown in Figure C-6A , where 

the bee’s zero-mean response,  ,R v , based on the position- and motion- dependent functions, 

 P   and  M   from Figure 4-3, is progressively translated between -45o and 45o, with the 

opposite translation applied being to  ,R v   (Figure C-6Ai). As the functions are translated 

further in either direction, the reconstructions of the zero-mean functions,  P   and  M v , 

become inaccurate (Figure C-6Aii-iii). Whilst the specific distortion depends on the specific 

shape of these functions, it can particularly effect  M v , because even if this function is 

uniform across ψ, progressively translating the functions can give the impression that it varies 

(if  P   has a similarly asymmetric form to the example). 

 

When Eq. (4-17) is used to calculate Eqs. (4-18) to (4-21), elements of  P   and  M v  would 

then no longer be cleanly separated (this is fully outlined in Section C.4) as θ grows larger. 

However, these functions can provide qualitative indications of when these functions deform 

either due to latency resulting in translation, or motion blurring. Eq. (4-18) ideally measures
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 MP  , but can be influenced by  MM v  if θ ≠ 0 (Eq. (C-17)). This function does appear to 

distort across all gain conditions (Figure C-6B) at turning rates greater than approximately 50 

to 100 o.s-1.  

 

Eq. (4-20) ideally measures     M M

DM M v  , but can be influenced by  AP  if θ≠0 (Eq. 

(C-19)). Judging the distortion in this equation is more difficult because the scale of the 

function also changes with v. To facilitate comparisons, all curves were divided by their RMS 

value, thus equalising the scale of the curves. Interestingly, the shape of this curve appears 

relatively consistent for most gain conditions with 50 < ω < 100 o.s-1 (Figure C-6C), although 

it does distort as ω approaches 150 o.s-1. For some gain conditions (x1, x2 and x4), the shape 

of the curve is not consistent for ω < 25 to 35 o.s-1. This is unlikely to be the result of motion 

blurring, and possibly occurs because at low stimulus velocities, the bee’s motion receptors are 

minimally stimulated.  

 

Surprisingly, the qualitative assessments of both of these measures of distortion indicate that it 

occurs at similar turning rate ranges for all gain conditions, even though the stimulus velocities 

are not equal. It is possible that the honeybee’s turning rate also inherently distorts the 

reconstruction of functions in a similar way that motion blurring would be expected to do. 

Certainly if a bee is turning the ball rapidly in one direction or the other, then she may struggle 

to adjust her turning rate as dictated by the position and motion functions, which could cause 

latency, or even blurring, in the same manner as might be expected based on a visually guided 

response. Although, it is appealing to use as wide a range of measured turning rates as possible, 

given the distortions noted in Figure C-6, it is prudent to restrict ourselves to using a confined 

range for further analysis, which was arbitrarily decided to be 20 < |ω| < 50 o.s-1. This will 

reduce, and ideally prevent the effects of latency and blurring, regardless of their source, from 

distorting reconstructions of the position and motion functions. 
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Figure C-6: Motion blurring could distort function reconstruction. A, Example of distortion 

caused by translating CW and CCW responses in opposite directions (Section C.3). B, 

Distortions that occur when calculating mirror-symmetric component of the position- 

dependent response,  MP  (using Eq. (4-18)), when parameterised by turning rate, ω, for all 

gain conditions. C, Distortions that occur when calculating the sum of the mirror-symmetric 
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components of the motion-dependent response,     M M

DM M v   (using Eq.  (4-20)), when 

parameterised by ω, for all gain conditions. Lines are parameterised at 8.5 o.s-1 increments in 

B and C. Curves in C were divided by their RMS values, and have an equal (RMS = 1) scale. 

N=11 repeated all gain conditions. 

 

C.4 Function translations 

If an unknown angular translation, θ, is applied to Eqs. (C-5) to (C-8), such that it has positive 

magnitude for positive v and negative magnitude for negative v, those equations can be 

rewritten as, 
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If these equations are then combined to calculate Eqs. (4-18) to (4-21), the following functions 

would be found,   
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In all cases, these equations will no longer predict the same results as in Eqs. (4-18) to (4-21). 

C.5 Statistical details 

All tests were performed using a single factor, gain, consisting of 6 factor levels, gains x0.5, 

x1, x2, x3, x4, and the no-stimulus control, unless otherwise noted. All factor levels for each 
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data set were tested for normality (using a Shapiro-Wilk test); deviations from this are noted 

where they occur. Main effects were tested using either repeated measures ANOVA or 

Friedman’s non-parametric repeated measures ANOVA equivalent, depending on the presence 

and severity of non-normal factors. When using ANOVA, the assumption of sphericity was 

also tested using Mauchly’s test of sphericity, and the Greenhouse- Geisser correction was 

applied if this assumption was violated. 

 

Upon finding a significant main effect, the following post-hoc testing procedure was used. The 

factor with the mean of the largest amplitude (hereafter referred to as the ‘peak factor’) was 

compared to the highest and lowest gains (x0.5 and x4), and the no stimulus condition (if it 

was not itself one of those factors). This comparison was made using a paired sample t-test for 

normal data, or a Wilcoxon matched-pair signed-rank test for non-normal data. Additionally, 

in some cases factor levels were compared to zero. For normal data, a single factor t-test was 

performed, and for non-normal data, a Wilcoxon signed rank test comparing the group median 

to zero was used. The two types of test, for both comparisons to zero and pairwise tests, are 

respectively denoted by t and W test statistics. Rayleigh’s test of uniformity is denoted using a 

z test statistic. 

 

C.5.1 Figure 4-4 details (mean vector and mean turning rate comparisons) 

C.5.1.1 Mean vector length 

The mean vector length for the x2 gain (W11=0.82, p=0.019) and x4 gain (W11=0.85, p=0.042) 

conditions were established to be non-uniformly distributed. Friedman’s test was used to 

compare all factor levels, and showed the presence of a significant main effect, χ2
5=32.20, 

p<0.001. Post-hoc comparisons were selectively made between the peak factor (x0.5 gain), the 

highest gain (x4), and the no stimulus condition ( 

Table C-1). 

 

Table C-1: Post-hoc comparisons for mean vector lengths. 

Factors compared Result 

x0.5 vs. No Stimulus t10=-5.99, p<0.001 

x0.5 vs. x4 W10=-2.93, p=0.003 
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C.5.1.2 Mean absolute turning rate, |ω|  

All mean turning rates were found to be normally distributed. One-way repeated measures 

ANOVA over all factor levels found a significant main effect, F5,50=6.08, p<0.001. Mauchly’s 

test of sphericity indicated that this assumption was not violated in the preceding ANOVA. 

Post-hoc comparisons were selectively made between the peak factor (x3 gain), the highest 

and lowest gains (x0.5 and x4), and the no stimulus condition (Table C-2). 

 

Table C-2: Post-hoc comparisons for absolute turning rates. 
Factors compared Result 

x3 vs. No Stimulus t10=-2.58, p=0.027 

x3 vs. x0.5 t10=-4.01, p=0.002 

x3 vs. x4 t10=-1.21, p=0.255 

 

C.5.2 Figure 4-5 details (position-dependent function comparison) 

C.5.2.1 Value of .ScP  

 The no stimulus condition was the only factor level found to be non-uniformly distributed 

(W11=0.81, p=0.012). One way repeated measures ANOVA over all factor levels found a 

significant main effect, F1.71,17.06 = 3.78, p=0.047. Mauchly’s test of sphericity indicated this 

assumption was violated in the preceding ANOVA, χ2
14=39.75, p<0.001 (ε=0.341), hence the 

Greenhouse-Geisser correction was applied (the original degrees of freedom were (5, 50)). 

Post-hoc comparisons were selectively made between the peak factor (x2 gain), the highest 

and lowest gains (x0.5 and x4), and the no stimulus condition (Table C-3).  

 

Table C-3: Post-hoc comparisons for position function scales. 
Factors compared Result 

x2 vs. No Stimulus W10=-2.67, p=0.008 

x2 vs. x0.5 t10=-2.38, p=0.039 

x2 vs. x4 t10=-2.28, p=0.046 
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Following this, all factor levels were compared to zero (Table C-4). 

Table C-4: Comparison of position function scales vs. 0. 
Factor vs. 0 Result 

No stimulus W10=0.27, p=0.790 

x0.5 t10=10.54, p=0.197 

x1 t10=15.91, p=0.019 

x2 t10=21.86, p=0.002 

x3 t10=16.85, p<0.001 

x4 t10=9.22, p<0.001 

 

C.5.3 Figure 4-6 details (motion-dependent function comparison) 

C.5.3.1 Difference between left and front visual fields for clockwise motion 

All differences were found to be normally distributed. One-way repeated measures ANOVA 

over all factor levels did not find a significant main effect, F5,50=1.80, p=0.129. Following this, 

all factor levels were compared to zero (Table C-5). 

 

Table C-5: Comparison of clockwise motion difference between left and front visual fields vs. 

0.  
Factor vs. 0 Result 

No stimulus t10= 0.62, p=0.550 

x0.5 t10=-0.48, p=0.640 

x1 t10=0.19, p=0.853 

x2 t10=2.89, p=0.016 

x3 t10=0.97, p=0.354 

x4 t10=1.93, p=0.83 

 

C.5.3.2 Differences between left and front visual fields for counter-clockwise motion 

All differences were found to be normally distributed. One-way repeated measures ANOVA 

over all factor levels found a significant main effect, F5,50=5.70, p<0.001. Mauchly’s test of 

sphericity indicated that this assumption was not violated in the preceding ANOVA. Post-hoc 

comparisons were selectively made between the peak factor (x4 gain), the lowest gain (x0.5), 

and the no stimulus condition (Table C-6). 
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Table C-6: Post-hoc comparisons of counter-clockwise motion difference between left and 

front visual fields. 
Factors compared Result 

x0.5 vs. No Stimulus t10=-4.27, p=0.002 

x0.5 vs. x4 t10=-3.65, p=0.004 

 

Following this, all factor levels were compared to zero (Table C-7). 

 

Table C-7: Comparisons of counter-clockwise motion difference between left and front visual 

fields vs. 0. 
Factor vs. 0 Result 

No stimulus t10=0.33, p=0.751 

x0.5 t10=2.38, p=0.039 

x1 t10=4.43, p=0.001 

x2 t10=6.20, p<0.001 

x3 t10=3.52 , p=0.006 

x4 t10=7.28, p<0.001 

 

C.5.3.3 Differences between right and front visual fields for clockwise motion 

All differences were found to be normally distributed. One-way repeated measures ANOVA 

over all factor levels found a significant main effect, F5,50=2.64, p<0.034. Mauchly’s test of 

sphericity indicated that this assumption was not violated in the preceding ANOVA. Post-hoc 

comparisons were selectively made between the peak factor (x4 gain), the lowest gain (x0.5), 

and the no stimulus condition (Table C-8). 

 

Table C-8: Post-hoc comparisons of clockwise motion difference between right and front 

visual fields. 
Factors compared Result 

x0.5 vs. No Stimulus t10=-3.09, p=0.011 

x0.5 vs. x4 t10=-2.83, p=0.021 

 

Following this, all factor levels were compared to zero (Table C-9). 
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Table C-9: Comparisons of clockwise motion difference between right and front visual fields 

vs. 0. 
Factor vs. 0 Result 

No stimulus t10=-0.16, p=0.875 

x0.5 t10=0.56, p=0.586 

x1 t10=31.13, p=0.011 

x2 t10=2.72, p=0.022 

x3 t10=2.31, p=0.044 

x4 t10=3.55, p=0.005 

 

C.5.3.4 Difference between right and front visual fields for counter-clockwise motion 

Three factor levels were found to be non-normally distributed which were, no stimulus 

(W11=0.84, p=0.031), x2 gain (W11=0.75, p=0.002), and x4 gain (W11=0.83, p=0.021). Because 

of the presence of three non-uniformly distributed factor levels, Friedman’s test was used to 

compare all factor levels, and did not find a significant main effect, χ2
5=3.10, p=0.684. 

Following this, all factor levels were compared to zero (Table C-10). 

 

Table C-10: Comparisons of counter-clockwise motion difference between right and front 

visual fields vs. 0 
Factor vs. 0 Result 

No stimulus W10=-0.53, p=0.594 

x0.5 t10=-1.57, p=0.147 

x1 t10=-1.32, p=0.217 

x2 W10=0.09, p=0.929 

x3 t10=0.10, p=0.922 

x4 W10=-0.27, p=0.790 

 

C.5.4 Figure C-6 details (mean vector comparison) 

C.5.4.1 Mean vector direction 

Results of Rayleigh’s test of uniformity performed on the mean vector direction measured for 

each gain condition (Table C-11). 
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Table C-11: Results of Rayleigh’s test of uniformity for each factor. 
Factor Result 

No stimulus z10=0.80, p<0.459 

x0.5 z10=8.12, p<0.001 

x1 z10=6.75, p<0.001 

x2 z10=9.53, p<0.001 

x3 z10=5.10, p=0.001 

x4 z10=0.11, p=0.902 
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 Supplementary material for Chapter 5 

 

D.1 Supplementary figures 

 

Figure D-1: Relationships between components of walking speed and other variables. A, the 

expected longitudinal speed, WL, depending on stimulus position, ψ. B, the crosscorrelation 

between absolute turning rate, ω, and WL. C, the autocorrelation of WL. D, E, F, as for A, B 

and C, with the comparison made using transverse speed, WT. G, the crosscorrelation between 

WL and WT. A and D were calculated by finding the average value of the relevant speed 

component at each stimulus position. Shorthand correlation notation is used to denote 

   x y x y t d  



   in plots B, C, E, F and G. All plots show each gain condition as a separate 

curve. N=11 bees repeated all gain conditions. 
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Figure D-2: Path reconstruction based on individual components of walking speed. A, based 

on modulation of longitudinal speed alone,  , 0,LP W  . B, based on modulation of transverse 

speed alone,  0, ,TP W  . Paths are reconstructions using Eq. (4-30). A grey dot denotes the start 

point of all trajectories for a given condition and the arrow represents the direction to the distant 

landmark represented by the fixation stimulus. All scale bars represent 500 mm. Combined 

paths are shown in Figure 5-4. 
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Figure D-3: Autoregressive relationship for both components of walking speed. A, longitudinal 

speed, WL
t, as a function of turning rate, WL

t-1. B, average offset of each curve from the base 

curve. C and D, as for A and B, with the comparison made using transverse speed, WT. Both A 

and C are calculated using Eq. (4-36), calculation of the base curve is described in Section 

5.4.3. All plots show each gain condition as a separate curve. N=11 bees repeated all gain 

conditions. Error bars show ± S.E.M. Bars denote statistical significance (n.s.: p>0.05,                 

*: p<0.05, **: p<0.01) of the difference between the indicated groups, whereas stars in bars 

denote the statistical significance from zero. Full statistical details are provided in Section 

D.2.5. 
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Figure D-4: Analysis of the random variation longitudinal and transverse speed in the no 

stimulus condition. A, distributions of the derivative of longitudinal speed, dWL, parameterised 

by the previous longitudinal speed WL
t-1. B, as for A, with the comparison based on transverse 

speed, WT. Measured distributions for both WL and WT are shown in Figure 5-1. C, the standard 

deviation of the derivative of either speed component, as a function of the prior value of that 

speed component. The dependence of the standard deviation on the prior walking speed 

indicates that the walking speed does not result from low-pass filtered Gaussian noise, which 

would not show such dependence. D, distributions of WL resulting from longitudinal speed 

simulations based on only low-pass filtered noise (where the standard deviation depends on 

WL
t-1, see Section 5.4.4) and the parameterised offset value. Distributions can be similar to 

observed waling speed distributions (Figure 5-2) depending on the offset value. E, offset values 

used for WL simulations in Figure 5-5 depending on gain condition and simulation 

specification.  
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Figure D-5: Distributions and autocorrelations for simulated data in Figure 5-5. Both speed 

components are functions of stimulus position, turning rate, and injected noise. A, Frequency 

distributions of longitudinal speed, WL. B, Autocorrelation of WL. C and D, as for A and B, 

with the comparison made using transverse speed, WT. All plots show each gain condition as a 

separate curve. 

D.2 Statistical details 

All tests of main effects are performed using a single factor, gain, consisting of 6 factor levels, 

corresponding to gains of x0.5, x1, x2, x3, x4, and the no-stimulus control, unless otherwise 

noted. All factor levels for each data set were tested for normality (using a Shapiro-Wilk test); 

deviations from this are noted where they occur. Main effects were tested using either repeated 

measures ANOVA or Friedman’s non-parametric repeated measures ANOVA equivalent, 

depending on the presence and severity of non-normal factors. When using ANOVA, the 

assumption of sphericity was also tested using Mauchly’s test of sphericity, and the 

Greenhouse-Geisser correction was applied if this assumption was violated. 

 

Upon finding a significant main effect, the following post-hoc testing procedure was used. The 

factor with the largest magnitude mean (hereafter referred to as the ‘peak factor’) was compared 

to the highest and lowest gains, x0.5 and x4, and the no stimulus condition (if it was not itself 
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one of those factors). This comparison was made using a paired sample t-test for normal data, 

or a Wilcoxon matched-pair signed-rank test for non-normal data. If none of these post-hoc 

comparisons were successful, a final test between the factor levels that showed the largest 

difference between mean values was performed to identify the significant difference indicated 

by the main effects test. Additionally, in some cases factor levels were compared to zero, or 

between two pairs of values at each factor level. For normal data, a single factor t-test was 

performed, and for non-normal data, a Wilcoxon signed rank test comparing the group median 

to zero was used, which are respectively denoted by t and W test statistics.  

 

D.2.1 Figure 5-1 (mean longitudinal and transverse speed comparison) 

D.2.1.1 Mean longitudinal walking speed 

Both x1 gain (W11=0.79, p=0.009), and x3 gain (W11=0.84, p=0.030) were found to be non-

normally distributed. Friedman’s test over all factor levels found a significant main effect, χ2
5 

=14.58, p=0.012. Pairwise post-hoc comparisons were made between the peak factor (x2 gain), 

the lowest and highest gains (x0.5 and x4), and the no stimulus condition. None of these post-

hoc tests returned a significant result, prompting us to test maximum and minimum factor 

levels, the no stimulus and x1 gain conditions (Table D-1). A significant main effect was found 

between the no stimulus and x1 gain conditions, isolating the finding of the main effects test. 

 

Table D-1: Post-hoc comparisons for mean longitudinal speed. 
Factors compared Result 

x2 vs. x0.5 t10=1.28, p=0.227 

x2 vs. x4 t10=0.55, p=0.593 

x2 vs. No stimulus t10=-2.09, p=0.063 

x1 vs. No stimulus W10=2.40, p=0.016 

 

D.2.1.2 Mean transverse walking speed 

Only data from x1 gain (W11=0.81, p=0.014) was found to be non-normally distributed. One 

way repeated measures ANOVA performed over all factor levels did not find a significant main 

effect, F5,50=1.73, p=0.145.  
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D.2.2 Figure 5-2 details (detailed longitudinal speed comparison) 

D.2.2.1 Longitudinal speed difference between slow and fast turning rates 

The difference at x2 gain was found to be non-normally distributed (W11=0.86, p=0.023). One 

way repeated measures ANOVA performed over all factor levels found a significant main 

effect, F2.20,21.98 =7.05, p=0.004. Mauchly’s test of sphericity indicated that this assumption was 

violated in the preceding ANOVA (χ2
14=27.38, p=0.021, ε=0.44), hence, the Greenhouse-

Geisser correction was applied (the unadjusted degrees of freedom were 5,50). Pairwise post-

hoc comparisons were made between the peak factor (x1 gain), the lowest and highest gains 

(x0.5 and x4), and the no stimulus conditions (Table D-2). 

 

Table D-2: Post-hoc comparisons for turning rate based longitudinal speed differences. 
Factors compared Result 

x1 vs. x0.5 t10=1.13, p=0.287 

x1 vs. x4 t10=0.88, p=0.400 

x1 vs. No stimulus t10=3.80, p=0.004 

 

Following this, all factor levels were compared to zero (Table D-3). 

 

Table D-3: Comparisons of turning rate based longitudinal speed differences vs. 0. 
Factor vs. 0 Result 

No stimulus t10=-3.22, p=0.009 

x0.5 t10=0.94, p=0.371 

x1 t10=2.62, p=0.026 

x2 W10=2.05, p=0.041 

x3 t10=1.73, p=0.114 

x4 t10=1.83, p=0.097 

 

D.2.2.2 Longitudinal speed difference between front and rear stimulus positions 

The difference at x0.5 gain was found to be non-normally distributed (W11=0.83, p=0.027). 

One way repeated measures ANOVA performed over all factor levels found a significant main 

effect, F5,50 =3.10, p=0.016. Mauchly’s test of sphericity indicated that this assumption was not 

violated in the preceding ANOVA. Pairwise post-hoc comparisons were made between the 

peak factor (x0.5 gain), the highest gains (x4), and the no stimulus conditions (Table D-4). 
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Table D-4: Post-hoc comparisons for stimulus position based longitudinal speed differences. 
Factors compared Result 

x0.5 vs. x4 W10=-1.33, p=0.182 

x0.5 vs. No stimulus W10=-2.58, p=0.010 

 

Following this, all factor levels were compared to zero (Table D-5). 

 

Table D-5: Comparison of stimulus position based longitudinal speed differences vs. 0. 
Factor vs. 0 Result 

No stimulus t10=-0.07, p=0.943 

x0.5 W10=2.80, p=0.005 

x1 t10=2.65, p=0.024 

x2 t10=5.67, p<0.001 

x3 t10=3.96, p=0.003 

x4 t10=5.20, p<0.001 

 

D.2.3 Figure 5-3 details (detailed transverse speed comparison) 

D.2.3.1 Transverse speed difference between positive and negative turning rates 

The difference at x4 gain was found to be non-normally distributed (W11=0.78, p=0.005). One 

way repeated measures ANOVA performed over all factor levels found a significant main 

effect, F5,50 =3.42, p=0.010. Mauchly’s test of sphericity indicated that this assumption was not 

violated in the preceding ANOVA. Pairwise post-hoc comparisons were made between the 

peak factor (x2 gain), the lowest and highest gains (x0.5 and x4), and the no stimulus conditions 

(Table D-6). 

 

Table D-6: Post-hoc comparisons for turning rate based transverse speed differences. 
Factors compared Result 

x2 vs. x0.5 t10=-2.48, p=0.033 

x2 vs. x4 W10=0.71, p=0.477 

x2 vs. No stimulus t10=-3.69, p=0.004 

 

Following this, all factor levels were compared to zero (Table D-7). 
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Table D-7: Comparisons of turning rate based transverse speed differences vs. 0. 
Factor vs. 0 Result 

No stimulus t10=1.37, p=0.200 

x0.5 t10=0.59, p=0.571 

x1 t10=-0.61, p=0.553 

x2 t10=-1.18, p=0.266 

x3 t10=-0.76, p=0.462 

x4 W10=-1.51, p=0.131 

 

D.2.3.2 Transverse speed difference between left and right stimulus positions 

The differences at both gains x0.5 (W11=0.67, p<0.001) and x1 (W11=0.72, p=0.001) were 

found to be non-normally distributed. Friedman’s test over all factor levels found a significant 

main effect, χ2
5 =15.41, p=0.009. Pairwise post-hoc comparisons were made between the peak 

factor (x2 gain), the lowest and highest gains (x0.5 and x4), and the no stimulus conditions 

(Table D-8). 

 

Table D-8: Post-hoc comparisons for stimulus position based transverse speed differences. 
Factors compared Result 

x2 vs. x0.5 W10=-1.42, p=0.155 

x2 vs. x4 t10=2.17, p=0.055 

x2 vs. No stimulus t10=3.33, p=0.008 

 

Following this, all factor levels were compared to zero (Table D-9). 

 

Table D-9: Comparisons of stimulus position based transverse speed differences vs. 0. 

Factor vs. 0 Result 

No stimulus t10=0.941, p=0.369 

x0.5 W10=2.93, p=0.003 

x1 W10=2.76, p=0.006 

x2 t10=3.54, p=0.005 

x3 t10=4.34, p=0.001 

x4 t10=4.26, p=0.002 
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D.2.4 Figure 5-4 details (path length comparisons) 

D.2.4.1 Total path length 

Path lengths for the majority of conditions were found to be non-normally distributed (NS: 

W11=0.81, p=0.011, x0.5 gain: W11=0.77, p=0.004, x1 gain: W11=0.75, p=0.002, and x4 gain: 

W11=0.83, p=0.020). Friedman’s test over all factor levels found a significant main effect, χ2
5 

=19.94, p=0.001. Pairwise post-hoc comparisons were made between the peak factor (x2 gain), 

the lowest and highest gains (x0.5 and x4), and the no stimulus condition (Table D-10). 

 

Table D-10: Post-hoc comparisons for final path lengths. 
Factors compared Result 

x2 vs. x0.5 W10=-0.89, p=0.374 

x2 vs. x4 W10=-2.49, p=0.013 

x2 vs. No stimulus W10=-2.67, p=0.008 

 

Following this, all factor levels were compared to zero (Table D-11). 

 

Table D-11: Comparisons of final path lengths vs. 0. 
Factor vs. 0 Result 

No stimulus W10=-1.42, p=0.155 

x0.5 W10=2.67, p=0.008 

x1 W10=2.31, p=0.021 

x2 t10=3.81, p=0.003 

x3 t10=4.30, p=0.002 

x4 W10=1.51, p=0.131 

 

D.2.4.2 Longitudinal and transverse based path lengths 

As for the total path length comparison, the longitudinal and transverse based path lengths were 

also non-uniformly distributed, hence non-parametric statistical tests were used for all 

comparisons. The difference between both paths lengths (longitudinally and transversely 

based) was tested using Wilcoxon matched-pair signed-rank tests (Table D-12). 
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Table D-12: Comparisons between longitudinal and transverse based distances for each factor. 
Factor vs. 0 Result 

No stimulus W10=0.62, p=0.534 

x0.5 W10=-2.93, p=0.003 

x1 W10=-2.67, p=0.008 

x2 W10=-2.93, p=0.003 

x3 W10=-1.42, p=0.155 

x4 W10=0.89, p=0.374 

 

D.2.5 Figure D-3 details (longitudinal and transverse speed offset 

comparisons) 

D.2.5.1 Longitudinal speed offset 

The offsets for all conditions were found to be uniformly distributed. One way repeated 

measures ANOVA performed over all factor levels found a significant main effect, F5,50=4.43, 

p=0.002. Mauchly’s test of sphericity indicated that this assumption was not violated in the 

preceding ANOVA. Pairwise post-hoc comparisons were made between the peak factor (x4 

gain), the lowest gain (x0.5), and the no stimulus conditions (Table D-13). 

 

Table D-13: Post-hoc comparisons for longitudinal speed offsets. 
Factors compared Result 

x4 vs. x0.5 t10=1.64, p=0.133 

x4 vs. No stimulus t10=-3.20, p=0.009 

 

Following this, all factor levels were compared to zero (Table D-14). 

 

Table D-14: Comparisons of longitudinal speed offsets vs. 0. 
Factor vs. 0 Result 

No stimulus t10=3.23, p=0.009 

x0.5 t10=0.79, p=0.446 

x1 t10=0.83, p=0.429 

x2 t10=2.04, p=0.069 

x3 t10=2.20, p=0.052 

x4 t10=2.37, p=0.039 
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D.2.5.2 Transverse speed offset 

The offsets for both gains x0.5 (W11=0.81, p<0.015) and x4 (W11=0.85, p=0.039) were found 

to be non-normally distributed. Friedman’s test over all factor levels did not find a significant 

main effect, χ2
5 =0.76, p=0.979. Following this, all factor levels were compared to zero (Table 

D-15).  

 

Table D-15: Comparison of transverse speed offsets vs. 0. 
Factor vs. 0 Result 

No stimulus t10=0.44, p=0.666 

x0.5 W10=1.60, p=0.110 

x1 t10=1.97, p=0.078 

x2 t10=1.69, p=0.121 

x3 t10=2.88, p=0.016 

x4 W10=1.42, p=0.155 
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