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Abstract

Detecting an itinerant microwave photon with high efficiency is an outstanding problem

in quantum optics at microwave frequencies and in the fundamental quantum mechanics

experimental toolbox. This subject has attracted a lot of attention and there are growing

number of excellent experimental demonstrations and theoretical proposals towards this

aim. However, due to the extremely low energy of microwave quanta, efficiently detecting a

propagating microwave photon in a non-absorbing manner is still an unresolved challenge

and it is the focus of the major part of this thesis.

Motivated by a recent experiment that shows a superconducting artificial atom (a transmon)

in a one-dimensional microwave transmission line exhibits gigantic cross-Kerr nonlineari-

ties, 1000 times larger than in comparable optical systems, I investigate the possibility of

detection single microwave photons using a transmon induced cross-Kerr-like interaction

between two microwave fields. The photon number in one field is inferred through the

measurement of the displacement of the other field. The first project on this subject is to

investigate the feasibility of detecting a single microwave photon with signal-to-noise ratio

(SNR) greater than unity using a three-level approximation for the transmon in an open

transmission line, due to the saturation of transmon response to the probe intensity.

After that, an improved scheme was proposed to overcome the limitations in the preceding

work. By using a cavity probe field the signal photon induced probe displacement is strongly

enhanced. Further additional transmon-cavity units can be cascaded to further improve

the detection efficiency. It is shown that with only two transmons the distinguishability to

resolve a single-photon state from the vacuum is up to 90%. One advantage of this photon

detection scheme is that it does not rely on the absorption of single microwave photons,

which enables repeated measurements and further applications. Moreover, I also show how

the measurement diminishes coherence in the photon number basis thereby illustrating a

fundamental principle of quantum measurement: the higher the measurement efficiency,

the greater is the decoherence.

Apart from the investigation on the single microwave photon detection, this thesis also stud-

ies nonlinear dynamics of a hybrid coupled-resonator and opto-mechanical system. It is
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shown that the saddle-node bifurcation and the Hopf bifurcation appear in the system,

which leads to bistability and limit cycle dynamics of the mechanical position and the output

light intensity. More importantly, the opto-mechanical nonlinearity dramatically changes the

transparency window of the coupled resonator induced transparency (CRIT) and based on

the narrow and bistable CRIT transparency window, the proposed system is shown to be a

good platform for the weak impulsive force detection with a good sensitivity.
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Chapter 1

Introduction

Since early 20th century, especially after the realization of isolating and manipulating single

quantum systems in 1970s, quantum physics has made dramatic progress in fundamental

quantum physics and applications in quantum information processing.

A new class of engineered quantum systems, such as quantum superconducting circuits

and quantum micro/nano mechanical systems, have impressed the world with their advan-

tages over natural systems in applications of quantum computing and research of radiation-

matter interaction. In particular, quantum superconducting circuits are stable solid-state sys-

tems, mature in fabrication techniques, flexible in quantum control and strong in radiation-

matter interaction, which makes them a promising platform for quantum computing. To fully

realise the quanutm toolbox in solid-state quantum technologies, there are a few key in-

gredients, such as superconducting qubits, microwave photon sources, microwave photon

detectors, quantum gates of qubits and memory units.

To this end, the first topic of thesis is focused on a non-absorbing high-efficiency detector

for single microwave photons, which is still a missing piece in microwave photonics and

microwave information science.

The second topic of this thesis is the cavity optomechanics, which is an intersection of op-

tical cavities and micro/nano mechanical resonators. The well-developed micro/nano fabri-

cation technologies and cooling techniques enable mechanical resonators show quantum

effects. With the merits of optical resonators and mechanical resonators, cavity optome-

chanical systems become a useful tool in fundamental physics investigation, ultrasensitive

sensing and quantum information processing. In this thesis we study nonlinear phenom-

ena of a coupled-resonator system with optomechanical interaction and finally a potential

1



2 Introduction

application of the system for weak impulsive force sense is proposed.

1.1 Outline of the thesis

The present thesis is organized as follows: Chapter 2 starts with an overview of the basics

of quantum superconducting circuits, including the quantization of electric circuits, coplanar

transmission lines and transmon qubits. These are the building blocks of the models in

Chapter 3 and Chapter 4. Then the theories of quantum measurements and quantum

trajectories are introduced and an example of a two-level system is used to illustrate the

application of quantum trajectories in the measurement of an open quantum system. The

last two sections of Chapter 2 introduce two formulations used for treating quantum systems

with single-photon or Fock-state inputs.

In Chapter 3, the feasibility of a cross-Kerr-like nonlinearity induced by a three-level trans-

mon in an open transmission line for single photon counting is investigated. A short review

on the cross-Kerr effect is given in the beginning, which is followed by the derivation of an

effective cross-Kerr model in the dispersive coupling regime. After that, a scheme for single

microwave photon counting using the cross-Kerr interaction between two microwave fields

mediated by a transmon is presented. By stochastic simulations of the model in the quan-

tum frame with inclusion of spontaneous emissions of the transmon, it is shown that the

transmon transition saturates, limiting its efficacy for photon detection. Besides the basic

configuration, other configurations like a squeezed probe, N-transmon ensemble, N cas-

caded transmons and the N-type four-level system are studied for photon counting and the

results turn out to agree with that of the basic configuration in the relevant limits..

In Chapter 4 we present an improved scheme to overcome the limitations in the single-

photon counting. In this scheme a probe cavity is added to enhance the signal photon

induced probe displacement. We show a substantial improvement compared to the perfor-

mance established in chapter 3. Due to the non-Gaussian property of the statistics, another

quantity–the distinguishability between one photon and zero photon is used to evaluate the

detection efficiency and in the single transmon case the distinguishability is about 84.0%

with an optimal linear filter and 84.65% with a nonlinear filter. Second, one more transmon-
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cavity system is cascaded through a unidirectional circulator to further improve the detection

performance and the distinguishability is improved to 90%. Additionally, the measurement

induced pulse distortion and decoherence effect are discussed.

Chapter 5 is concerned with opto-mechanical resonator. It describes various nonlinear

dynamics of a coupled-resonator and optomechanical system. The coupled-resonator in-

duced transparency (CRIT) is introduced first, followed by the review of nonlinear dynam-

ics, linearized analysis method and bifurcations. Then, a brief introduction to cavity op-

tomechanics is given. After that, a model with two coupled resonators with one resonator

vibrating is studied. It is observed that there are saddle-node and Hopf bifurcations in the

system equilibrium diagram and bistability and limit cycles occur due to the two bifurcations.

Moreover, the influence of opto-mechanical interacton on the CRIT effect is studied and it is

shown that weak impulsive forces can be detected with good sensitivity at the narrow and

bistable CRIT window.

Finally, a short summary of the thesis and potential future work are given in Chapter 6.



Chapter 2

Basic concepts and theories

2.1 A single photon and its detection

A photon is the basic excitation and the smallest energy unit of the electromagnetic field.

The name of photon was introduced by Lewis in 1926 Lewis (1926). In fact, as early as

in 1900 Planck proposed the quantization of harmonic oscillators in a black body which

radiates electromagnetic fields to explain the black-body radiation Planck (1900) and in

1905 Einstein for the first time used the concept of the light quanta for interpreting the

photoelectric effect Einstein (1905).

Strictly speaking, a single photon can never be exactly monochromatic, instead, its state

can be expressed as a superposition of different spectral modes:

|1⟩ =
∫ +∞

−∞
f(ω)â†(ω)dω|0⟩ (2.1)

where â† is the creation operator of photons with frequency ω and the distribution coefficient

f(ω) satisfies
∫ +∞
−∞ |f(ω)|2 = 1, which indicates that the total photon number integrated over

all modes is 1. Since its photon number is fixed, its phase (the conjugate variable to the

number) is completely random, according to the Heisenburg uncertainty relation.

Single photons have been playing significant roles in testing foundations of quantum me-

chanics Shadbolt et al. (2014), quantum cryptography Beveratos et al. (2002a) and quantum

computation Knill et al. (2001). Since very early days, photons have been used to perform

experiments for testing wave-particle duality Taylor (1909) and nonlocality Freedman and

Clauser (1972) and many other basic concepts in quantum mechanics. Photons have multi-

4
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ple degrees of freedom (polarization, energy and momentum) which can be used to encode

information. They are excellent information carriers between processors and memory de-

vices, often referred as "flying qubit". Another important application of photons is quantum

computation, especially the linear optics quantum computation Knill et al. (2001), which is

realized by linear optics and measurements of single photons.

Since photons are so crucial to the fundamental physics and a wide range of applications,

the production and detection of them is essential. Up to now, there are various ways to pro-

duce single photons Eisaman et al. (2011). One mature experimental approach to prepare

single photon sources is to generate a pair of photons through the parametric down con-

version process Aspect et al. (1981); Kwiat and Chiao (1991) or four-wave mixing process

Smith et al. (2009) in nonlinear crystals and atomic systems. This type of photon source is

heralded but not on demand. Another promising approach is to use a single microscopic

emitter. The emitter can be a quantum dot Chang et al. (2006), a NV center Beveratos et al.

(2002b), a trapped ion Keller et al. (2004) and an atom Hijlkema et al. (2007); McKeever

et al. (2004). These sources are more controllable and have higher efficiency. Other than

these two methods, there are some less frequently used novel schemes, such as converting

or truncating a coherent state to a single-photon state Fan et al. (2009); Pegg et al. (1998).

The history of photodetection can date back to mid-20th century. In 1960s, Glauber and

Mandel developed quantum theory for photodetection Glauber (1963a); Mandel et al. (1964)

and afterwards a variety of photon detection mechanisms and experimental demonstrations

appeared. In the visible, near infrared and infrared ranges, there are various commer-

cial photon detectors Eisaman et al. (2011), such as the photomultiplier tube (PMT), the

avalanche photodiode (APD) Lacaita et al. (1996); Yuan et al. (2007), the semiconducting

quantum dot detector Komiyama et al. (2000), the superconducting single photon detec-

tor Rosfjord et al. (2006) and the up-conversion photon detector Albota and Wong (2004).

There are also proposals for detecting single photons in the quantum non-demolition fash-

ion Helmer et al. (2009); Munro et al. (2005a); Reiserer et al. (2013). However, in the

microwave range and radio frequency range, a practical photon detector is still a missing

piece.

One of key objects appearing in the following chapters is the microwave photon. A mi-
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crowave photon is a photon in the microwave regime, typically 105 ∼ 106 times less en-

ergy per photon than a visible photon. Its applications ranges from astronomy to nano-

scale devices. Especially, in a quantum superconducting circuit, microwave photons are

the basic information carriers. As quantum superconducting circuits are looking more and

more promising as a stable solid-state platform for quantum computing, the demand for

the sources and detectors of microwave photons become more and more urgent. Single

microwave photons can generated from emission of a single superconducting qubit inside

a cavity Bozyigit et al. (2011); Houck et al. (2007), but most of the recent experiments at

the single quantum level in quantum superconducting circuit systems use faint coherent mi-

crowave fields as approximate single microwave photon sources. Single microwave photons

and faint coherent microwave fields are either confined as standing waves in a supercon-

ducting resonator or traveling along a transmission line, in order to be efficiently coupled

with superconducting qubits.

Due to their extremely low energy, the detection of single microwave photons is very chal-

lenging. Despite this, single photon schemes have attracted lots of attention and there are

a number of excellent pioneering theoretical proposals and experimental demonstrations

Chen et al. (2011); Guerlin et al. (2007); Johnson et al. (2010); Peaudecerf et al. (2014);

Peropadre et al. (2011); Romero et al. (2009a,b); Sathyamoorthy et al. (2014). The pro-

posals and experiments on single microwave photon detection can be roughly summarized

in terms of a few types. The first type is absorptive detection and it usually happens in a

Lambda-type three-level system Chen et al. (2011); Peropadre et al. (2011); Romero et al.

(2009a,b). A single microwave photon excites the system to the excited state and the excited

state then rapidly decays to a metastable level or continuum, which is macroscopically de-

tectable Guerlin et al. (2007); Johnson et al. (2010); Peaudecerf et al. (2014). The second

type of detection method stores a single microwave photon in a high-Q cavity and, during

the life time of the photon, the probe mode coupled to the single photon can be measured

many times. Another type of detection method non-destructively measures a propagating

microwave photon using the nonlinear response of a three-level transmon Sathyamoorthy

et al. (2014). An alternative way to measure microwave field is intensity measurements by

signal amplification using a High-electron-mobility transistor (HEMT) Mimura (2002) or a

Josephson parametric amplifier (JPA) Yurke (1987). All these schemes are making impor-
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tant steps towards a practical single microwave photon detector from both theoretical and

experimental aspect.

2.2 Quantum superconducting circuits and transmon qubits

2.2.1 Quantum circuits

Conventionally, electrical circuits are described by classical laws, such as Kirchhoff’s volt-

age and current laws. The key circuit elements are capacitors and inductors and the circuit

dynamics are characterized by classical variables. Since quantum properties of various sys-

tems, such as atomic ensembles, large molecules and micro-mirrors, have been explored

and demonstrated, it is natural to investigate the quantumness of electric circuits.

Being a large and complex system, there are inevitable sources of noises and decoherence

in an electrical circuit. Therefore, there are a few requirements for an electrical circuit to be-

have quantum mechanically Devoret (1995). Firstly, thermal noises have to be significantly

suppressed, i.e., the energy of thermal fluctuations KBT should be much lower than the

typical energy of the circuit ~ω0. For instance, at the temperature of 1K, KBT/~ ≈ 20GHz,

it is impossible to resolve the dynamics of a qubit with transition frequency at a few GHz.

Therefore, cooling of eletrical circuits is an inevitable step. Currently, the typical operation

temperature of quantum circuit experiments is a few tens of mK. Secondly, large dissipation

of electrical circuits should be avoided in order to obtain long coherence time. Fortunately,

the discovery of superconductivity makes this condition be easily satisfied. The existing

of the superconducting energy gap makes superconducting electrons (Cooper pairs) in a

superconductor free from dissipative scattering, leading to a long-range coherence of a su-

perconductor. Therefore, metallic parts of quantum circuits are made of superconducting

materials such as aluminum and niobium.

Besides, the inclusion of Josephson junctions makes electrical circuits exhibit nonlinearities

and therefore energy levels suitable for artificial atoms are prepared. These superconduct-

ing artificial atoms interacting with microwave resonators implement a new type of cavity
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quantum electrodynamics (QED), the so-called circuit QED Blais et al. (2004); Schoelkopf

and Girvin (2008).

The field of quantum circuits has made impressive advances in the last decade. From the

fundamental physics side, quantum circuits have been used to demonstrate the dynamical

Casimir effect Wilson et al. (2011), to mimic the behavior of natural atoms You and Nori

(2011), to test the violation of a Bell inequality Ansmann et al. (2009) and so on. In terms

of applications in quantum information, quantum circuit technology is a very promising can-

didate for on-chip quantum computation Plantenberg et al. (2007); Yamamoto et al. (2003),

thanks to system stability, mature techniques of fabrication and integration, long coherence

of superconducting qubits Rigetti et al. (2012), the ability to interface with variety of systems

Xiang et al. (2013), and strong coupling between qubits and field Niemczyk et al. (2010);

Wallraff et al. (2004). Especially, hybrid systems of quantum circuits with atomic systems

Deng et al. (2010); Verdú et al. (2009), spins Kubo et al. (2011); Zhu et al. (2011), quantum

dots Childress et al. (2004) and other systems have shown their great promise in connecting

optical and microwave frequency, information transfer between solid-state devices to flying

qubits and forming more controllable quantum systems.

2.2.2 Quantization of electrical circuits

In this section I will give a brief review of the quantization of electrical circuits and more

systematic theories can be found in Devoret (1995).

I first consider the simplest electrical circuit, the L-C circuit, shown in Fig. 2.1(b). The

dynamics of a L-C circuit is the same as a harmonic oscillator (Fig. 2.1(a)) Feynman (1965).

The flux Φ and the charge Q of a circuit play the roles of the position X and the momentum

P in a harmonic oscillator. The analogy between these two models is presented in Table

1.1.

Following a similar procedure to that used in the quantization of a harmonic oscillator, clas-
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Mk

(a) (b)

+Q

-Q

L C

Figure 2.1 – (a) a harmonic oscillator system; (b) a L-C circuit.

sic variables Φ and Q are replaced by quantum operators Φ̂ and Q̂:

Q→ Q̂ (2.2)

Φ → Φ̂

and we have the commutation relation [Φ̂, Q̂] = i~, where Q̂ = i~ ∂
∂Φ

and Φ̂ = −i~ ∂

∂Q̂
. The

Hamiltonian of the L-C circuit is given by

Ĥ =
Q̂2

2C
+

Φ̂2

2L
(2.3)

= ~ω0(â
†â+

1

2
)

here ω0 = 1/
√
LC is the frequency of the L-C resonator and the operator

â =
Φ̂

Φ0

+ i
Q̂

Q0

(2.4)

with Φ0 =
√
2~Z0, Q0 =

√
2~/Z0 and Z0 =

√
L/C. Z0 is the characterization impendence,

Spring-Mass system L-C circuit

H(X,P ) = kX2

2
+ P 2

2M
H(Φ, Q) = Φ2

2L
+ Q2

2C

Position X Flux Φ
Momentum P Charge Q

Spring stiffness k Capacitance 1/L
Mass M Inverse of inductance C

Table 2.1 – The analogy between a harmonic oscillator and a L-C circuit.
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Superconductor

Superconductor

Insulator

Cooper pair

(a) (b)

Figure 2.2 – (a). A Josephson junction consists of two superconducting electrodes connected via a
thin insulator. (b). Circuit representation of a Josephson junction–a boxed cross.

a typical value for it in quantum circuit systems is 50 Ohm.

Circuits consisting of linear elements like capacitors and inductors are harmonic oscillators,

thus their energy levels are evenly-spaced. To have atom-like unevenly-spaced energy

levels, or anharmonicity, nonlinear elements are required. In available quantum circuit sys-

tems, the key nonlinear ingredient is the Josephson junction, which offers the nonlinearity

for superconducing qubits Clarke and Wilhelm (2008), Josephson parametric amplifiers

Yurke (1987), superconducting-quantum-interference-devices (SQUID) Clarke and Bragin-

ski (2004) and other important components of quantum circuits. A Josephson junction is a

junction with two superconducting electrodes sandwiching a thin insulating layer (see Fig.

2.2 (a)), behaving as a dissipationless nonlinear inductor in a electric circuit and providing

the anharmonicity for forming an artificial superconducting atom.

Superconducting circuit experiments operate at very low temperature, i.e., a few tens of

mK. Electrons in such circuits are correlated in pairs (Cooper pairs), which form supercon-

ductors in two nodes of Josephson junctions. As stated in the celebrated Josephson effect

Josephson (1962)Tinkham (2012), Cooper pairs are able to tunnel across the insulating

barrier and there is a relation between the current of Cooper pairs and the phase difference

of two superconductors:

I = Icsin(δ) (2.5)



2.2 Quantum superconducting circuits and transmon qubits 11

where Ic is the critical current and δ = 2πΦ/Φ0 is the dimensionless phase difference of

two superconductors in a Josephson junction with Φ0 = h/2e the superconducting flux

quantum. The tunneling energy is

EJ =

∫ t

−∞
I(τ)V (τ)dτ (2.6)

=
~Ic
2e

∫ t

∞
sin(δ(τ))δ̇(τ)dτ

= −EJcos(δ(t))

where EJ = ~Ic/2e. In 2.7, the relation V = ϕ̇J = ˙~δ/2e was used. δ is the dimensionless

phase difference between two superconductors of a junction. Eqs. (2.5) and (2.7) shows

nonlinear dependence of the current and the tunnelling energy on the phase difference.

One can describe properties of a Josephson junction in terms of the charge number passing

the junction or in terms of the phase difference. Quantum mechanically, the number of

Cooper pairs passing the junction should be described by an operator,

n̂ =
∑
n

n|n⟩ ⟨n| (2.7)

The conjugate operator to the number operator n̂ is the phase operator δ̂, which is defined

as:

eiδ̂ =
+∞∑
−∞

|n⟩ ⟨n+ 1| (2.8)

and it is easily to calculate that eiδ̂|n+1⟩ = |n⟩ and [δ̂, n̂] = i. Thus one can write the phase

in the charge number basis by a Fourier transformation:

|δ⟩ =
∑
n

einδ|n⟩ (2.9)

Similarly, the charge number can be written in the phase basis:

|n⟩ = 1

2π

∫ 2π

0

dδe−inδ|δ⟩ (2.10)
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where the periodic property of the phase was considered.

Based on these, the Josephson tunneling Hamiltonian in a charge basis can be obtained:

ĤJ = −EJcos(δ̂) (2.11)

= −EJ

2

1

2π

∫ 2π

0

dδ(eiδ + e−iδ)|δ⟩ ⟨δ|

= −EJ

2

1

2π

∫ 2π

0

dδ(eiδ + e−iδ)
∑
n

∑
n′

einδ|n⟩ ⟨n′| e−in′δ

= −EJ

2

1

2π

∫ 2π

0

dδ
∑
n

∑
n′

(eiδ(n+1−n′) + e−iδ(n′+1−n))|n⟩ ⟨n′|

= −EJ

2

∑
n

∑
n′

(δD(n+ 1− n′) + δD(n
′ + 1− n))|n⟩ ⟨n′|

= −EJ

2

∑
n

(|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|)

where δD denotes the Dirac delta function and the completeness condition 1
2π

∫ 2π

0
dδ|δ⟩ ⟨δ| =

1 was introduced.

In addition, the Josephson tunneling Hamiltonian can be also written in the phase basis:

ĤJ = −EJcos(δ̂) (2.12)

= −EJ

2π

∫ 2π

0

dδ|δ⟩cos(δ) ⟨δ| .

It is worthy to mention that in a junction made of two normal conductors and an insulating

barrier single electron tunneling occurs. However, this type of process is dissipative since

single electrons are subject to normal resistive scattering processes. Therefore, Josephson

junctions are extremely important components for providing dissipationless nonlinearities.

2.2.3 Coplanar transmission lines and microwave resonators

In superconducting circuits, the role of a transmission line is like a waveguide in optical

systems, supporting the propagation of traveling microwave fields. The transmission line
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Figure 2.3 – (a). Sketch of a coplanar transmission line. (b). Sketch of a coplanar transmission line
resonator. (c).The circuit representation of a coplanar transmission line. L0, C0, R0 and G0 are the
inductance, capacitor, resistance and conductance of unit length of the circuit.

we would like to discuss here is the coplanar transmission line, which is consisted of a

central conductor and two lateral ground plane in the same plane, see Figure 1.3 (a). The

central conductor is used for propagating microwave signals and the lateral ground planes

are used as the reference potential. Figure 1.3 (c) is the circuit representation of a coplanar

transmission line and it can be taken as an infinitely-long chain of L-C oscillators for small

conductance (G0) and small resistance (R0).

The Lagrangian is

L(ϕ1, ϕ̇1, ...ϕN , ϕ̇N) =
N∑

n=1

(
C0ϕ̇

2
n

2
− (ϕn − ϕn−1)

2

2L0

) (2.13)

In the limit of N → ∞ , Eq. 1.10 can be transformed to the frequency domain as

L(Φ1, Φ̇1, ...) =
∞∑
n

(
CnΦ̇n

2
− Φ2

n

2Ln

) (2.14)

where Cn = C0d/2, Ln = 2dL0/(n
2π2) and d is the length of the transmission line. After

quantization using the same procedure as in the quantization of the L-C circuit, the quan-

tized Hamiltonian for a coplanar transmission line is

Ĥ = ~
∑
n

ωn(â
†
nân +

1

2
) (2.15)

with ωn = nπ/(
√
C0L0d). There are plenty of microwave field modes co-propagate in a
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transmission line.

If two gap capacitors are made on the center conductor of a coplanar transmission line, a

transmission line resonator forms, which is also called the coplanar waveguide resonator

Göppl et al. (2008) (Figure 1.3 (b)). The two capacitors act like reflective mirrors in conven-

tional optical cavities and they are used to coupled to input and output transmission lines.

The typical frequency of a coplanar waveguide resonator ranges from 2 GHz to 10 GHz and

the typical quality factor Q is about 105 − 106 thanks to the low loss rate. Besides, since

very small resonator volume, microwave fields in the resonators can be very intense and

therefore very strong field-atom interaction can be achieved in transmission line resonators.

2.2.4 Superconducting qubit and transmon

As discussed in section 2.2.2, Josephson junctions provides dissipationless nonlinearities

needed for building artificial atoms in quantum circuits. Up to now, researchers have already

developed various types of superconducting qubits, classified as the charge qubit Bouchiat

et al. (1998); Nakamura et al. (1999), the flux qubit Friedman et al. (2000); Van der Wal

et al. (2000) and the phase qubit Martinis et al. (2002) according to the different ratio of

the charge energy over the josephson tunneling energy. There are also superconducting

qubits in the intermediate regimes of the three categories, such as the transmon Koch et al.

(2007a) and fluxonium Manucharyan et al. (2009). The one involved in my PhD projects is

the transmon.

The transmission-line shunted plasma oscillation qubit, in short, transmon Koch et al. (2007a),

is one of the most promising superconducting qubits. It was developed in 2007 as a charge

insensitive superconducting qubit Koch et al. (2007a). As shown in Fig. 2.4, it is a loop con-

taining two Josephson junctions and shunted with a large capacitor. This capacitor largely

reduces the ratio of Ec/EJ and the charge dispersion decreases as the ratio increases ex-

ponentially while the aharmonicity of energy levels decreases in a power law. This makes

transmons insensitive to the change fluctuations with only little anharmonicity sacrificed

Cottet (2002); Koch et al. (2007a).

Transmons have been involved in many important milestones of quantum circuits, such as
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Vg

Cg

Cs
CJ

EJ

Figure 2.4 – The circuit representation of a transmon: a SQUID loop shunted by an external large
capacitor Cs. The shunt capacitor decreases the charge energy Ec and leads to a large ratio EJ/Ec.

implementation of Toffoli gate Fedorov et al. (2011), giant cross-Kerr effect Hoi et al. (2013),

vacuum Rabi splitting Bishop et al. (2009) in quantum circuits. Recently, three-dimensional

transmon qubits have been demonstrated, exhibiting longer coherence times, up to tens of

µs Rigetti et al. (2012), much longer than that of a transmon in the coplanar structure.

The transmon has the same mathematical description as the Cooper pair box. In the fol-

lowing the Hamiltonian for a Cooper pair box/transmon will be derived. The charge energy

is analogous to the kinetic energy as

T =
CΣ

2
ϕ̇2
J =

(Qj − CgVg)
2

2CΣ

(2.16)

and the Josephson coupling energy is analogous to the potential energy as

U = −EJcos(δ)− VgCgϕ̇J (2.17)

where EJ is the Josephson tunneling energy. The Lagrangian is

L = T − U (2.18)

=
Cσ

2
ϕ̇2
J + EJcos(δ) + VgCgϕ̇J

The canonical momentum (here the charge variable) is

QJ =
∂L
∂ϕ̇J

= CΣϕ̇J + VgCg (2.19)
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Figure 2.5 – The lowest three energy levels of a Cooper pair box/transmon versus the gate charge
ng at three different ratios of EJ/EC .

and the Hamiltonian is

H = QJ ϕ̇J − L =
CΣ

2
ϕ̇2
J − EJcos(δ) (2.20)

=
(QJ − CgVg)

2

2CΣ

− Ejcos(δ)

= 4EC(n− ng)
2 − EJcosδ

where ng = CΣVg/(2e) and EC = e2/(2CΣ) is the charge energy.

Using the number and phase operators defined before, the quantized Hamiltonian of a

single Cooper-pair box or a transmon in a charge number basis is given by

Ĥ = 4EC

∞∑
n=0

(n− ng)
2 |n⟩ ⟨n| − EJ

2

∑
n

(|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|) (2.21)

The eigenenergies can be calculated by diagonalizating the Hamiltonian 2.21 in a truncated

number basis. Fig. 2.5 presents the dependence of energy levels on the off-set gate charge

ng ( the charge dispersion) at three different values of EJ/EC . The influence of the ratio

EJ/EC on the energy structure has two aspects. On one hand, from Fig. 2.5 one can see

that the charge dispersion is largely reduced as the ratio EJ/Ec rises. The larger the ratio

EJ/EC , the flatter the energy levels, which indicates better immunity ability from charge

noises. This is consistent with the conclusion in Koch et al. (2007a): charge dispersion

values of energy levels exponentially decays with
√

8EJ/EC .
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On the other hand, the charge insensitivity is at the price of the reduction of anharmonicity.

As discussed in Koch et al. (2007a), the anharmonicity changes from positive to negative

values around EJ/EC = 9 at the charge degenerate point and in the regime EJ/EC ≫ 1

there is an approximate solution for the nth transition energy
√
8EJEC − nthEC and the

relative anharmonicity is

|A| = |E21 − E10|
E1,0

≈
√
EC/(8EJ) (2.22)

It is clear that the anharmonicity A reduces with the increase ofEJ/EC . However, compared

to the exponentially decaying dependence of the charge dispersions on EJ/EC , the anhar-

monicity decreases algebraically and slowly as EJ/EC increases. Therefore, transmons

operates at the ratio EJ/EC ≫ 1, typically 10 ∼ 100 Koch et al. (2007a). For instance, for a

transmon with 7GHz first transition frequency and the ratio EJ/EC = 50, the anharmonicity

A ≈ 364MHz.

Since energy levels of transmons are well distinguished, different transitions can be ad-

dressed individually by applying suitable coupling fields. In Eq. 2.21, if we select the lowest

transition, the Hamiltonian can be presented in the spin representation:

Ĥ = 4EC(1− ng)
2σ̂z −

EJ

2
σ̂x (2.23)

where σ̂z and σ̂x = σ̂− + σ̂+ are the Pauli matrices. It is easy to transform Eq. 2.23 to a

diagonal basis by a basis rotating:

Ĥ = ~ω01σ̂
′
z (2.24)

where ω01 =
√

4E2
C(1− ng)2 + E2

J .

There are two important parameters of superconducting qubits worthy to mention, T1 and

T2, which characterize their coherence properties. T1 is defined as T1 = 1/γ, with γ the

decay rate of the excited state population and T2 is defined as T2 = 1/(γ/2 + γdp), with γdp

the decay rate of the qubit polarization. For the first transition of a transmon, the dephasing

is usually negligibly small, T2 ≈ 2T1.



18 Basic concepts and theories

2.2.5 Circuit QED

As a cavity QED system in electrical circuits, circuit QED studies quantum interaction be-

tween electromagnetic fields and “atom". Here “atoms" are superconducting artificial atoms

and fields are microwaves in resonators. As an example, the system under consideration

is a transmon qubit interacting with a single-mode microwave field in a one-dimensional

transmission line resonator. The transmon-field coupling is the dipole coupling. From Eq.

2.24, a transmon can be modeled as a two-level system and a resonator is modeled as a

quantum harmonic oscillator. The Hamiltonian describing the transmon-resonator system

is given by (~ = 1)

Ĥ = ωrâ
†â+ ω0σ̂z + g(â+ â†)(σ̂− + σ̂+) (2.25)

At the regime of the transition frequency much larger than the coupling, ω0 ≫ g, the Hamil-

tonian 2.25 can be rewritten by the rotating wave approximation (RWA):

Ĥ = ωrâ
†â+ ω0σ̂z + g(â†σ̂− + âσ̂+) (2.26)

For the resonator frequency ωr resonate with the qubit transition frequency ω0, we have the

interaction Hamiltonian:

ĤI = g(â†σ̂− + âσ̂+) (2.27)

This Hamiltonian only interacts with states µ|g, n⟩+ν|e, n−1⟩. Acting the Hamiltonian 2.27

on states µ|g, n⟩+ ν|e, n− 1⟩, we have

ĤI(µ|g, n⟩+ ν|e, n− 1⟩) = g(ν|g, n⟩+ µ|e, n− 1⟩) (2.28)

To satisfy the eigenstate property, we have µ = ±ν; and for a normalized state µ2+ ν2 = 1.

Thus we have µ = ν = ±1/
√
2 and the system eigenstates are

|ψ±⟩ = (|g, n⟩ ± |e, n− 1⟩)/
√
2 (2.29)
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Figure 2.6 – The vacuum Rabi splitting in the transmission spectrum of a transmon-resonator system
( T is the transmission rate). The system parameters are: γ = κ = 1 and ε = 0.4.

with eigenenergies ±
√
ng. This is the mode splitting of a resonator induced by the interac-

tion with a qubit, which is a signature of strong atom-field coupling, i.e. g ≫ γ, κ. When

n = 0, the mode splitting is referred as the vacuum Rabi splitting. In Fig. 2.6, the vacuum

Rabi splitting in a transmon-field system is plotted and it is seen that the splitting distance

of two modes is determined by the coupling strength. In superconducting circuits, vacuum

Rabi splitting effects have been observed in a single Cooper-pair box Wallraff et al. (2004)

and in a transmon Fink et al. (2008).

2.3 Quantum measurement and quantum trajectories

2.3.1 From a closed system to an open system

A closed system is a system which is isolated from the environment and other systems. The

quantum dynamics of a closed system is described by the Schrödinger equation

d|ψ(t)⟩/dt = −iĤ|ψ(t)⟩ (2.30)

The time evolution of the closed system is unitary. In fact, a closed system is an idealisation.

No system is really isolated, instead, every system is surrounded by an environment and
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exchanges information and energy with the environment. This kind of system is called

the open system Breuer and Petruccione (2002). The interaction with the environment (or

reservoir, bath) leads to energy dissipation and fluctuations of the system variables. There

are a number of ways to model the dynamics of an open system and among them one

widely-used theory is the quantum master equation in Lindblad form, i.e.,

dρS
dt

= −i[Ĥs, ρS] +
∑
k

γk(ĉkρS ĉ
†
k −

1

2
ĉ†kĉkρS − 1

2
ρS ĉ

†
kĉk) (2.31)

where ĉk are the system operators coupled to the environment. The linear master equation

2.31 is the unconditional master equation, which describes the average result over an en-

semble. The deterministic solutions of Eq. 2.31 can not describe the stochastic results from

realistic quantum measurements. To further investigate the properties of an open system,

stochastic Schrödinger equations or quantum trajectories Wiseman (1996); Wiseman and

Milburn (2010) are needed.

2.3.2 Quantum measurement

Quantum measurement occupies an important position in quantum mechanics and its appli-

cations. It enables us to access quantum systems and characterize quantum phenomena

through reading out classical variables. Also, quantum measurement is a way of engi-

neering quantum systems, for instance, in a quantum feedback control process, the future

dynamics of a quantum system can be altered by measurement records Wiseman (1996).

In quantum mechanics, a conventional way of describing quantum measurement is the

projective measurement theory Nielsen and Chuang (2010)Wiseman and Milburn (2010),

which is a special class of quantum measurements. Consider an observable Â and it is

decomposition as

Â =
∑
λ

λΠ̂λ (2.32)

where Π̂ is the projector onto the eigenspace of observable Â with a real eigenvalue λ.

The measurement outcome is one of the eigenvalues of the observable. The probability of



2.3 Quantum measurement and quantum trajectories 21

outcome λ occurring is

pλ = ⟨ψ| Π̂λ|ψ⟩ (2.33)

and the system state after the measurement with outcome λ is

|ψ⟩′ = Π̂λ|ψ⟩√
pλ

(2.34)

The projective quantum measurement theory fails in describing realistic quantum measure-

ments. For example, due to noise added during a measurement process, a measurement

result may not be an eigenvalue of a hermitian operator on the measured system. Another

example is the heterodyne measurement, in which non-orthogonal phase and amplitude

can be measured simultaneously.

To discuss more general and realistic quantum measurement, the “Positive Operator-Valued

Measure" (POVM) Nielsen and Chuang (2010) will be introduced below. Before that, I

would like to discuss about measurement operators first. In a quantum measurement, in

general the system is not measured directly, instead, the radiated field from the system or

the bath coupled to the system is directly measured and the measured result of the field or

the bath infers the “measurement result" of the system. The bath is called a meter or an

apparatus of the measurement. The measurement operator M̂ for the system associated

with a measurement result m of the bath was derived in Chapter one of Wiseman and

Milburn (2010):

M̂m = ⟨m| Û(t)|θ⟩ (2.35)

where |θ⟩ is the initial state of the bath and Û is the evolution operator for the system-bath

or system-meter interaction, which is given by Gardiner and Zoller (2004)

Û(t+ dt, t) = exp[ĉdB̂†
t − ĉ†dB̂t − iĤdt] (2.36)

Here ĉ is the operator of the system under measurement coupled to the bath. Suppose

that b̂(t) is the annihilation operator for the bath, the noise increment is defined as dB̂t =
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∫ t+dt

t
b̂(t)dt, which satisfies dB̂tdB̂

†
t = dt for a vacuum bath.

Now we move to the POVM. A POVM is a set of non-negative operators Êm = M̂ †
mM̂m

which add up to identity
∑

m Êm = 1̂. The set of operators can be orthogonal or non-

orthogonal and when they are orthogonal the number of Êm is the same with the system

Hilbert space dimension. Each operator Êm corresponds to one measurement output, with

the probability

Pm = Tr[Êmρ] = Tr[M̂mρM̂
†
m]. (2.37)

where the measurement result m can be an integer, fraction or even complex number. More

importantly, the measurement result is not one of eigenvalues of an Hermitian operator

corresponding to an observable but simply a measurement effect.

2.3.3 Quantum trajectories

A quantum trajectory is a time-evolution path of a conditional quantum state conditioned on

measurement records Milburn (1996). It can be used for formulating a quantum measure-

ment process and simulating and interpreting the behaviour of a quantum system suffered

in a noisy environment. In the classic sense, a trajectory is usually continuous. Due to the

nature of quantum mechanics, quantum trajectories can be discrete or continuous. When

a system experiences discrete quantum jumps, quantum trajectories are discontinuous and

for diffusion processes, quantum trajectories are continuous. These two types of trajec-

tories are two different unravelings of quantum master equations. Different unraveling of

one master equation is associated with different types of quantum measurements. For in-

stance, quantum-jump-like unraveling corresponds to direct counting of photon number in

a field while the unraveling with continuous trajectories corresponds to the Homodyne or

Heterodyne measurement of quadrature(s) of a field. Later in this chapter, an example of a

two-level atom using both jump-type and continuous quantum trajectories will be given.
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2.3.3.1 Jump-type quantum trajectories

A quantum jump is a discontinuous change in a system state and it was first observed in

a trapped ion system ITANO et al. (1987). Before that, due to the lack of techniques of

isolating and trapping single quantum systems, average effect over ensembles makes it

difficult to resolve quantum jumps. Here quantum jumps are discussed in the context of

quantum trajectories, in which a quantum jump reflects a sudden change in the observer’s

knowledge when measurements are performed on a quantum system.

In terms of realization in experiments, jump-type quantum trajectories are associated with

direct detection of photon number in a system under consideration. This type of quantum

trajectories will be reviewed here following Chapter four of Wiseman and Milburn (2010).

For photon detection of a cavity output field, ĉ =
√
κâ with κ cavity decay rate and â cavity

field operator. We assume that the initial state of the bath is the vacuum. If there is no click

on the detector, the state of the meter is still vacuum and the measurement operator with

no-detection is

M̂0 = ⟨0|B Û(t+ dt, t)|0⟩B (2.38)

= ⟨0|B (1 + ĉdB̂† − ĉ†dB̂ − iĤdt+
1

2
ĉ†ĉdB̂dB̂†)|0⟩B

≈ 1 +
1

2
ĉ†ĉdt− iĤdt

where the evolution operator was defined in Eq. 2.36. If there is a click on the detector, the

state of the meter is |1⟩ = dB̂†|0⟩/
√
dt and the measurement operator with detection is

M̂1 = ⟨1|B d ˆU(t+ dt, t)|0⟩B = ⟨0|B dB̂Û(t+ dt, t)|0⟩B/
√
dt (2.39)

≈
√
dtĉ

It is easy to verify that the completeness condition M̂ †
0M̂0 + M̂ †

1M̂1 = 1 is satisfied.

We define N(t) as the number of counts up to time t and dN(t) is the increment in the time
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interval [t, t+ dt). As a point process, dN(t) = N(t+ dt)−N(t) is either 0 or 1 and

E[dN(t)] =
⟨
M̂ †

1M̂1

⟩
= dt

⟨
ĉ†ĉ

⟩
(2.40)

dN2(t) = dN(t)

E[dN(t)] is the probability of dN(t) = 1, which is infinitesimally small. Therefore, for most

of time no detection happens (dN(t) = 0) and the system evolves via the operator M̂0 as

|ψ0(t+ dt)⟩ =
M̂0(dt)|ψ(t)⟩√⟨
M̂ †

0(dt)M̂0(dt)
⟩
(t)

(2.41)

= [1̂− dt(iĤ +
1

2
ĉ†ĉ− 1

2

⟨
ĉ†ĉ

⟩
(t))]|ψ(t)⟩

|ψ0(t+ dt)⟩ is called the system state conditioned on “no detection".

Once the detection happens, dN(t) = 1, the system experiences a finite change by the

measurement operator M̂1 and the system state condition of “dN(t) = 1" is given by

|ψ1(t+ dt)⟩ =
M̂1(dt)|ψ(t)⟩√⟨
M̂ †

1(dt)M̂1(dt)
⟩
(t)

(2.42)

=
ĉ|ψ(t)⟩√
⟨ĉ†ĉ⟩ (t)

This sudden change of the system state is called a quantum jump.

Combining the two situations conditioned on "no detection" and "have a detection" with their

weights or probabilities dN(t) and 1− dN(t), the system evolution can be described by the

stochastic Schrödinger equation:

d|ψ(t)⟩ = [dN(t)
ĉ√
ĉ†ĉ

+ (1− dN(t))[1− dt(−
⟨
ĉ†ĉ

⟩
2

+
ĉ†ĉ

2
+ iH)]]|ψ(t)⟩ (2.43)

= [dN(t)(
ĉ√
ĉ†ĉ

− 1) + dt(

⟨
ĉ†ĉ

⟩
2

− ĉ†ĉ

2
− iH)]|ψ(t)⟩

where I used dN(t)dt = o(dt). The solutions to Eq. 2.43 are quantum trajectories of
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the system under measurement. The conditional dynamics of a system observable can

be obtained from the solutions ψ(t). Due to the stochastic property of this equation, the

conditional result from each single trajectory differs from that in other trajectories but these

conditional results from all trajectories fluctuate around the unconditional result, which is

obtained from the unconditional master equation 2.31. Eq. 2.43 is called one stochastic

wave function unraveling of the stochastic master equation and it is not unique as mentioned

before. It has advantage in saving computing resources but it can not handle with inefficient

detection since in that case the system state is not a pure state.

The unconditional master equation in the Lindblad form can be derived from Eq. (2.43) by

averaging over the ensemble ρ = E(|ψ⟩ ⟨ψ|):

ρ̇ = i[Ĥ, ρ] +D[ĉ]ρ (2.44)

Here the superoperator D is defined as

D[r̂]ρ =
1

2
(r̂†r̂ρ+ ρr̂†r̂ − 2r̂ρr̂†) (2.45)

The first two terms are associated with the non-Hermitian evolution of the system and the

third term is associated with the jump process induced by the measurement.

2.3.3.2 Diffusive quantum trajectories

The second type of quantum trajectory is the diffusive quantum trajectoryWiseman and

Milburn (2010)Wiseman and Milburn (1993), which is the continuous limit of the jump-type

quantum trajectory. This type of quantum trajectory corresponds to the homodyne detection

or the heterodyne detection of a quantum system.

In a homodyne detection a radiated signal from the measured system is mixed with a strong

local coherent field through a beam splitter (for optical signal) or a IQ mixer (for microwave

signal) before reaching the detector. The strong local field is called the local oscillator, which

is usually from the same source with the probe in the system.

The signal after mixing with the local oscillator through a beam splitter can be expressed by
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the transformation of ĉ→ ĉ+ ε and Ĥ → Ĥ − i1
2
(ε∗ĉ− εĉ†) (ε is the amplitude of the local

oscillator.). Under this transformation, the unconditional master equation (3.26) is invariant.

The stochastic Schrödinger equation (2.43) will be transformed to

d|ψ(t)⟩ = (−iĤ − 1

2
(ĉ†ĉ+ εx̂−

⟨
ĉ†ĉ

⟩
− ε ⟨x̂⟩)|ψ(t)⟩dt (2.46)

+ (
ĉ+ ε√

⟨(ĉ† + ε)(ĉ+ ε)⟩
− 1)|ψ(t)⟩dN(t)

where x̂ = ĉ+ ĉ†. The average rate of photodetection in this case is

E[dN(t)] = Tr[(ε2 + εx̂ + ĉ†ĉ)ρ(t)]dt (2.47)

where the first term is a constant, only giving an offset to the measurement results. When

ε ≫
⟨
ĉ†ĉ

⟩
, the third term is ignorable. Thus the only effective term left is the second term,

which indicates that the photon number detection has been converted to field quadrature

measurement after adding the local oscillator in the continuum limit. This type detection

is called general dyne detection, usually including homodyne detection and heterodyne

detection.

In the limit of ε → ∞, the Poissonian distribution turns to a Gaussian distribution and the

rate of photodetection becomes

dN(t) = ε2dt[1 + ⟨x̂(t)⟩ /ε] + εdW (t) (2.48)

where dW is the white noise increment satisfying E[dW ] = 0, E[d2W ] = dt.

The stochastic Schrödinger equation (2.46) in this continuum limit becomes

dψ(t) = (−iĤ − 1

2
(ĉ†ĉ−

⟨
ĉ†ĉ

⟩
+ ⟨x⟩2 /4)ψ(t)dt (2.49)

+ (ĉ− ⟨x̂⟩ /2)ψ(t)

where I have used

1

(1± x)m
= 1∓mx+

m(m+ 1)

2!
x2 + ...., |x| ≪ 1 (2.50)
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By using ρ = |ψ⟩ ⟨ψ|, the normalized stochastic master equation for quantum state diffusion

can be derived Wiseman and Milburn (2010)

dρ(t) = −i[Ĥ, ρ(t)]dt+ dtD[ĉ]ρ(t) + dW (t)H[ĉ]ρ(t) (2.51)

where ρ is the reduced density matrix of the system after tracing over the environment. The

superoperator H is defined as

H[r̂]ρ = r̂ρ+ ρr̂† − Tr[r̂ρ+ ρr̂†]ρ (2.52)

The homodyne current is

J(t) = ⟨x̂(t)⟩+ ξ (2.53)

where ⟨x̂⟩ =
⟨
ĉ+ ĉ†

⟩
is the conditional mean of the measured quadrature of the system

operator ĉ. ξ = dW/dt is the Wiener process variable.

Practically in a homodyne detection, for a coherently-driven system the signal is the station-

ary homodyne current and for pulse-driven system the signal is an integrated homodyne

current over the measurement time. In the process of signal measurement, a filter is always

adopted and the filter can be linear or nonlinear. The filtered homodyne signal with a linear

filter is given by

S =

∫ ∞

0

f(t)J(t)dt (2.54)

where f is the response function of the filter. More linear and nonlinear protocols of the

signal filtering have been discussed in Gambetta et al. (2007).

The autocorrelation of the output homodyne detection is Wiseman and Milburn (2010)

F
(1)
hom(t, t+ τ) = E[J(t+ τ)J(t)] = Tr[x̂eLτ (ĉρ+ ρĉ†)] + δ(τ) (2.55)

The auto-correlation function is the amplitude-amplitude correlation. It is useful in calculat-
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ing the spectrum of a system and also it is an alternative way of evaluating the noise of the

detected signal. Now I will give the detail derivation of how the signal variance is calculated

using the first-order correlation function Eq. 2.55. Suppose that the filter is a top-hat filter,

i.e., for ith measurement, the signal is Si =
∫ T

0
Ji(t)dt and the mean value of the signal is

the average over N trajectories:

S̄ =
1

N

N∑
i=1

Si =
1

N

N∑
i=1

∫ T

0

xi(t)dt =

∫ T

0

xuc(t)dt (2.56)

here we have used E[ξ] = 0 and xuc = E[x] is the unconditional result. The variance of the

signal is

(∆S)2 =
1

N

N∑
i=1

(
Si − S̄

)2
(2.57)

=
1

N

N∑
i=1

(
S2
i − 2SiS̄ + S̄2

)
=

1

N

N∑
i=1

S2
i − S̄2

=
1

N

N∑
i=1

(∫ T

0

Ji(t)dt

)(∫ T

0

Ji(t
′)dt′

)
− S̄2

=

∫ T

0

dt

∫ T

0

dt′E[J(t)J(t′)]− S̄2

Substituting Eq. 2.55 the first term above, we have the variance of the homodyne signal:

(∆S)2 =

∫ T

0

dt

∫ T

0

dt′(u(t− t′)(Tr[x̂ exp(L(t− t′))(ĉρ(t′) + ρ(t′)ĉ†)] (2.58)

+ u(t′ − t)(Tr[x̂ exp(L(t′ − t))(ĉρ(t) + ρ(t)ĉ†)] + δ(t′ − t))− S̄2

where u(t) is the step function. Using the SNR definition SNR = S̄/(
√
(∆S)2), the SNR

can be calculated without running the stochastic simulations.

The second-order correlation or the intensity/number correlation is Wiseman and Milburn
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(2010)

F (2)(t, t+ τ) = Tr[ĉ†ĉeLτ ĉρĉ†] + Tr[ĉ†ĉρ]δ(τ) (2.59)

which is very useful to calculate g(2) for a field in the system.

Heterodyne detection is quite similar to homodyne detection except for a frequency off-

set between the local oscillator and the signal under measurement. In Heterodyne mea-

surement two quadratures of the signal are measured simultaneously. As stated in the

Heisenberg relation, one cannot measure a pair of conjugate variables simultaneously with

arbitrary precision. Here, both quadratures will be measured with error probabilities. In fact,

the noise of the Heterodyne detection is
√
2 times that in the Homodyne detection, such as

the difference between the Husumi distribution and Wigner distribution in the phase space.

The stochastic master equation for Heterodyne detection is derived in Wiseman and Milburn

(2010) as

dρ(t) = −i[Ĥs, ρ]dt+D[ĉ]ρdt+
√

1/2(dWx(t)H[ĉ] + dWy(t)H[−iĉ])ρ(t) (2.60)

There are two Heterodyne currents:

Jx(t) = ⟨x̂⟩ (t) +
√
2ξx(t) (2.61)

Jy(t) = ⟨ŷ⟩ (t) +
√
2ξy(t) (2.62)

In Chap. 2 we will use the continuous quantum trajectory and in Chap. 3 both jump-type and

continuous-type unraveling will be used for different situations. Specially, Chap. 2 will give

details about calculating variance or signal-to-noise ratio (SNR) using the auto-correlation

function of Homodyne currents. The examples of my PhD projects in later chapters will show

that a quantum trajectory is not only a method of numerical calculation of an open system,

but also corresponds to the conditional state of a system conditioned on the stochastic

measurement record.
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2.3.3.3 Quantum trajectory with squeezed noise

In this section, I discuss a system with a correlated noise or a system in a squeezed envi-

ronment. The general form for the stochastic master equation with squeezed noise is given

by Wiseman and Milburn (2010)

dρ(t) = −i[Ĥs, ρ]dt+ dt((n̄+ 1)D[ĉ]ρ+ n̄D[â†]ρ+
m̄∗

2
[ĉ, [ĉ, ρ]] (2.63)

+
m̄

2
[ĉ†, [ĉ†, ρ]]) + dWH[

(n̄+ m̄∗ + 1)ĉ− (n̄+ m̄)ĉ†√
L

]ρ

This formula is very useful but it is not very easy to see the physics of the terms in the

equation. Here my aim is to rewrite Eq. (2.63) in a simpler and more symmetric form.

From the relation for a pure field state,

|m̄|2 = n̄(n̄+ 1) (2.64)

we have

(n̄+ m̄∗ + 1)(n̄+ m̄∗)

L
= m̄∗ (2.65)

(n̄+ m̄+ 1)(n̄+ m̄)

L
= m̄

(n̄+ m̄)(n̄+ m̄∗)

L
= n̄

(n̄+ m̄+ 1)(n̄+ m̄∗ + 1)

L
= n̄+ 1

and then we can derive

D[
(n̄+ m̄∗ + 1)ĉ− (n̄+ m̄)ĉ†√

L
]ρ = (n̄+ 1)D[ĉ]ρ+ n̄D[â†]ρ+

m̄∗

2
[ĉ, [ĉ, ρ]] (2.66)

+
m̄

2
[ĉ†, [ĉ†, ρ]]

Therefore we have a more symmetric and simpler form for Eq. (2.63) as:

dρ(t) = −i[Ĥs, ρ]dt+D[ĉM ]ρdt+ dWH[ĉM ]ρ (2.67)
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where

ĉM =
(n̄+ m̄∗ + 1)ĉ− (n̄+ m̄)ĉ†√

L
(2.68)

The Eq. (2.67) has exactly the same mathematic form as the stochastic master equation

with a vacuum noise (4.2) except the transformation ĉ→ ĉM . It indicates that no matter with

a vacuum or squeezed vacuum, the relaxation of the system and the measurement on the

system always act on the same system operator. Also, the transformation ĉ → ĉM makes

the pure relaxation term D[ĉ]ρ become a term with both quadrature diffusion and relaxation

D[ĉM ]ρ = n̄+m̄√
L
D[ĉ − ĉ†]ρ + 1√

L
D[ĉ]ρ (for m̄ = m̄∗ case). The measurement variable in the

measurement term H[ĉM ]ρ has a certain rotating over the original one in H[ĉ]ρ.

2.3.3.4 Two-level atom as example

In this subsection, we take an example of a two-level atom with relaxation for interpretation

of two types of quantum trajectories discussed above. As mentioned, different unravel-

ings of the master equation correspond to different assumptions of possible measurement

setups.

A coherently driven two-level atom with the Rabi frequency Ω and the relaxation rate γ is

under consideration. The lower and upper levels are respectively labeled as |g⟩ and |e⟩.
The system Hamiltonian is given by

Ĥs = δσ̂ee +
Ω

2
(σ̂ge + σ̂eg) (2.69)

where ∆ = ωa − ωf is the detuning between the atomic transition and the driving field. The

master equation governing the system is

ρ̇ = −i[Ĥs, ρ] + γD[σ̂ge]ρ (2.70)

Firstly, we unravel this system using a quantum jump process, in which case a direct photon

counter is assumed to be utilized. The total evolution is divided into quantum jumps and
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the non-Hermitian evolution between jumps. At each time step, a random number p is

generated to compare with the detection rate Pd = dtγ ⟨σ̂ee⟩. If p > Pd, the unnormalized

system state evolves as

d|ψ̄⟩ = −i(Ĥs − iγ/2σ̂ee)ψ̄ (2.71)

else, the quantum jump happens and the system state collapses to the ground state

|ψ̄⟩ = |g⟩. (2.72)

The normalized wave function is |ψ(t)⟩ = |ψ̄(t)⟩/
⟨
ψ̄(t)| ¯ψ(t)

⟩
.

Secondly, we unravel this system in the quantum-state diffusion way, in which case a Ho-

modyne detection setup is assumed for detecting the quadrature of the atomic emission.

The stochastic Schrödinger equation is given by

d|ψ̄⟩ = −iĤs|ψ̄⟩dt−
iγ

2
σ̂eedt+ dW (t)

√
γσ̂ge|ψ̄⟩ (2.73)

The last term is the weak continuous measurement term and dW (t) is the increment of the

Wiener process. Again, the normalization is required: |ψ⟩ = |ψ̄⟩/
⟨
ψ̄|ψ̄

⟩
.

In Fig. (2.7), the simulation results for the time evolution of the excited state population from

the unconditional master equation (3.26) and the quantum-jump unraveling are presented

for comparison. Fig. (2.8) shows the comparison for the time evolution of the atomic polar-

ization ⟨σ̂y⟩ using the unconditional master equation (3.26) and the quantum-state diffusion

unraveling.

Now I summarize the advantages and disadvantages of these three ways in treating an

open system. In terms of computational resources, the two types of stochastic wave-

function unravelings are better, but they usually need averaging over many trajectories to

obtain relatively accurate expectation values of system variables. The unconditional master

equation gives accurate average dynamics of the open system, but with quantum noise part

not included.
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Figure 2.7 – Comparison of the time evolution of the excited state population ⟨σ̂ee⟩ using the master
equation (dashed curve) and the Monte Carlo Wave function (solid curve) methods.
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Figure 2.8 – Comparison of the time evolutions of the atomic polarization ⟨σ̂y⟩ using the master
equation (dashed curve) and the quantum-state diffusion (solid curve) methods.

It is worth to note that the quantum master equation and stochastic Schrödinger/master

equations are derived under two approximations, the rotating wave approximation and the

Born-Markov approximation. The validity conditions for these two approximations are well

known. The rotating wave approximation requires the frequency width is much smaller than

the field carrier frequency or the coupling strength is smaller than the carrier frequency.

The Born-Markov approximation is also called the white noise, which requires short mem-

ory and weak coupling between the system and the bath, in which case the approximate

commutation relation [b̂(t), b̂†(t′)] = δ(t− t′) is satisfied.
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2.4 Quantum non-demolition measurement

During a measurement process, according to the Heisenberg uncertainty relation, for two

non-commutating operators Â and B̂, the product of the uncertainties satisfy ∆Â∆B̂ ≥
1
2
|ÂB̂ − B̂Â|. Performing a precise measurement to Â will lead to a large uncertainty in B̂,

which will give a back-action to Â due to their coupling.

To solve this problem, the quantum non-demolition (QND) measurement Braginsky and

Braginskiı̆; Braginsky and Khalili (1996) is introduced. QND measurements especially QND

number measurements have been frequently applied to different applications of quantum

optics Bocko and Onofrio (1996).

Suppose that there is a system observable B̂ and one wants to perform QND measurement

on B̂ by coupling it to a meter system. To keep the variable unaffected by the interaction

with the meter, a sufficient condition is

[B̂, Ĥ] = 0 (2.74)

where Ĥ is the total Hamiltonian for the coupled object-meter system, including the free

energy Hamiltonian of the system under detection and the meter system and the interaction

between them. When the observable is conserved in absence of the interaction with the

meter system, the condition (2.74) will be reduced to

[B̂, ĤI ] = 0 (2.75)

where ĤI is the interaction Hamiltonian between the system and the meter. This condition

is also called the back-action evasion condition.

For the photon number or qubit-state QND measurement, two common examples are the

cross Kerr nonlinearity

ĤI = χâ†âb̂†b̂ (2.76)
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and the dispersive field-qubit interaction

ĤI = χâ†â(b̂† + b̂) (2.77)

with χ = g2/∆.

In optical regime, the cross-Kerr effect has been suggested to the QND measurement of the

photon number Munro et al. (2005a). Typically, with an interaction between probe and signal

in a Kerr medium, ĤI = ~χâ†sâsâ†pâp, (s for signal and p for probe), the probe undergoes a

phase shift, which is dependent on the signal photon number.

In later chapters of this thesis, the cross-Kerr-like mechanism will be used to count single

microwave photons. In the quantum circuit architecture, there is no such small scale non-

linear natural crystals or photonic crystals suitable for the GHz microwave field. Instead,

a ladder-type three-level transmon simultaneously coupling with two microwaves, a probe

and a signal, is used to generate strong cross-Kerr nonlinearity between the fields. In Hoi

et al. (2013), it has been demonstrated experimentally that 20o phase shift in a microwave

field was induced by one average microwave photon via a transmon provided cross-Kerr

nonlinearity.

2.5 Quantum theory with single-photon pulse

A system interacting with a multi-mode photon pulse is difficult to describe by analytic cal-

culations or even numerically In the following, two approaches used in literature for deal-

ing with single-photon pulse or Fock-state pulse will be discussed, the cascaded master

equation method Gardiner and Zoller (2004) and the Fock-state master equation method

Baragiola et al. (2012). Of course, there are also other methods applicable for similar

circumstances, such as the formulism developed by Shanhui Fan’s group Shen and Fan

(2005).
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System 1 System 2

Figure 2.9 – Cascaded two quantum systems.

2.5.1 Cascaded master equation

The cascaded master equation method is usually used in the situation with irreversible

coupling. More specifically, for a cascaded system with two subsystems, the output of

the system 1 feeds forward to system 2 but the reverse process is not allowed. It was

independently developed by Carmichael Carmichael (1993b) and Gardiner Gardiner and

Zoller (2004); Gardiner (1993b). The irreversibility is realized by employing circulators and

isolators, in which Farady effect plays the key role.

Following the procedure in Gardiner (1993b), I briefly reproduce the cascaded master equa-

tion. Suppose that there are two cascaded subsystems 1 and 2 and the total Hamiltonian

is

Ĥs = Ĥs1 + Ĥs2 (2.78)

The Langevin equation for system operators are given by

ȧ1 = − i

~
[â1, Ĥs]− [â1, ĉ

†
1](
γ1
2
ĉ1 +

√
γ1b̂in(1, t)) + (

γ1
2
ĉ†1 +

√
γ1b̂

†
in(1, t))[â1, ĉ1](2.79)

ȧ2 = − i

~
[â2, Ĥs]− [â2, ĉ

†
2](
γ2
2
ĉ2 +

√
γ2b̂in(2, t)) + (

γ2
2
ĉ†2 +

√
γ2b̂

†
in(2, t))[â2, ĉ2]

with the input-output relations:

b̂out(1, t) = b̂in(1, t) +
√
γ1ĉ1(t) (2.80)

b̂in(2, t) = b̂out(1, t− τ)

b̂out(2, t) = b̂in(2, t) +
√
γ2ĉ2

where b̂in(t) = 1√
2π

∫
dωe−iω(t−tin)b̂in(ω) and b̂out(t) = 1√

2π

∫
dωe−iω(t−tout)b̂out(ω).
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In most experiments, the delay of light/microwave fields between the two cascaded systems

is ignorably small, so that τ can be taken as 0. The total motion equation for an arbitrary

system operator â is given by

ȧ = − i

~
[â, Ĥs]− [â, ĉ†1](

γ1
2
ĉ1 +

√
γ1b̂in(t)) + (

γ1
2
ĉ†1 +

√
γ1b̂

†
in(t))[â, ĉ1] (2.81)

− [â, ĉ†2](
γ1
2
ĉ1 +

√
γ1b̂in(t)) + (

γ1
2
ĉ†1 +

√
γ1b̂

†
in(t))[â, ĉ1]− [â, ĉ†2]

√
γ1γ2ĉ1 +

√
γ1γ2â

†
1[â, ĉ2]

Using the relation ⟨dâ(t)ρ⟩ = ⟨dâρ(t)⟩, the quantum master equation for a cascaded system

is given by

ρ̇ = i[ρ, Ĥs] + γ1D[ĉ1]ρ+ γ2D[ĉ2]ρ−
√
γ1γ2([ĉ

†
2, ĉ1ρ] + [ρĉ†1, ĉ2]) (2.82)

+
n̄

2
[[
√
γ1ĉ1 +

√
γ2ĉ2, ρ],

√
γ1ĉ

†
1 +

√
γ2ĉ

†
2] +

n̄

2
[[
√
γ1ĉ

†
1 +

√
γ2ĉ

†
2, ρ],

√
γ1ĉ1 +

√
γ2ĉ2]

− [Ein(t)(
√
γ1ĉ

†
1 +

√
γ2ĉ

†
2)− E∗

in(t)(
√
γ1ĉ1 +

√
γ2ĉ2), ρ]

In the derivation I have used

b̂in(t)dt = dB̂(t) + Ein(t)dt (2.83)

where Ein(t) is the coherent part of the input field to the first system and dB̂(t) is the

quantum noise increment as defined in early this chapter.

At zero temperature and no driving case, Eq. (2.82) can be reduced to

ρ̇ = i[Ĥs, ρ] + γ1D[ĉ1]ρ+ γ2D[ĉ2]ρ−
√
γ1γ2([ĉ

†
2, ĉ1ρ] + [ρĉ†1, ĉ2]) (2.84)

and it is equivalent to the another form for cascaded quantum systems derived in Carmichael

(1993b):

ρ̇ = −i[Ĥs + Ĥcas, ρ] +D[Ĵ ]ρ (2.85)

Ĥcas = −i√γ1γ2/2(ĉ1ĉ†2 − ĉ†1ĉ2)

Ĵ =
√
γ1ĉ1 +

√
γ2ĉ2
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This cascaded master equation (2.85) can be unraveled by using the non-Hermitian Schrödinger

equation and quantum jumps. The non-Hermitian effective Hamiltonian is given by

Ĥeff = Ĥs + Ĥeff − iĴ†Ĵ/2 (2.86)

The unnormalized non-Hermitian Schrödinger equation between jumps is

dψ̄(t) = −iĤeffψ̄(t)dt (2.87)

here the zero-temperature reservoir was assumed, N̄ = 0. When there is a quantum jump,

ψ̄(t) = Ĵ ψ̄(t) (2.88)

For situation of cascading more than two subsystems, the general form can be presented

using a general jump operator:

Ĵ =
√
γ1ĉ1 +

√
γ2ĉ2 + ...

√
γnĉn (2.89)

The general cascaded master equation is given by

dρ

dt
= −i[Ĥs + Ĥcas, ρ] +D[Ĵ ]ρ (2.90)

with

Ĥcas = −i
n∑

i,j=i+1,...n

(
√
γiγj ĉiĉ

†
j −H.c.) (2.91)

The application of the cascaded master equation to a system with the single photon pulse

is a special case, in which the first subsystem is a source cavity with a decay rate κ and

with an initial state |1⟩. Basically, this method is used for exponentially-decayed single pho-

ton pulses, i.e., single-photon pulse leaking from a source cavity. For Gaussion-distributed

single photon source or sources with other profiles, the engineering on the source cavity

decay rate might be needed, i.e., make the decay rate specially time-dependent. Fortu-
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nately, single photons generated from single emitters trapped in a cavity all belong to this

type and they are very promising on-demand single-photon sources for quantum informa-

tion processing applications.

2.5.2 Fock-state master equation

This approach was developed in 2012 by Combes and his colleagues Baragiola et al.

(2012); Gough et al. (2012). It is very powerful in treating arbitrary systems interacting

multimode Fock-state photon pulses. The basic idea is to convert the situation of solving

the total system master equation to the situation of solving a system using a few "reduced

master equations" in the subsystem dimension without the Fock state. The number of the

equations is (N + 1)2, where N is the Fock-state photon number. The nice thing is that the

equations are not coupled with each other in a complicated way, instead, one can feed the

solution of a lower level to its next upper level and solve them from the lower level to the

highest level in order.

The conditions of applying this formulism are the frequency bandwidth δω is much smaller

than the photon pulse carrier frequency ωc and the conditions for the rotating-wave ap-

proximation and the Born-Markov approximation. In fact, for optical photon pulses and

microwave photon pulse in current experimental conditions, the first condition is usually

satisfied.

Now I will give a brief review about the formulism, following Baragiola et al. (2012). Gener-

ally, a continuous-mode Fock state can be represented as

|Nξ⟩ = 1/
√
N

∫
dω(ξ(ω)â†(ω))N |0⟩ (2.92)

where ξ is the envelope function representing the shape of the Fock-state pulse. When

the pulse width in the frequency domain is much narrower than the carrier frequency, the

relative slow varying profile ξ can be approximately taken as independent to the carrier

frequency, that is, ξ(ω) ≈ ξ(ω)e−iωct.

Based on this single frequency mode approximation and the Ito calculus rules, the master
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equations for a system interacting with Fock states can be derived as:

dρm,n

dt
= −i[Ĥ, ρm,n] + L[L̂]ρm,n +

√
mξ(t)[Ŝρm−1,n, L̂

†] (2.93)

+
√
nξ∗(t)[L̂, ρm,n−1Ŝ

†] +
√
mn|ξ(t)|2(Ŝρm−1,n−1Ŝ

† − ρm−1,n−1)

with the initial conditions

ρn,n(0) = ρsys(0) (2.94)

ρm,n(0) = 0̂

where ρm,n is the reduced density matrix for the system of interest in a particular Fock

state basis m,n. L̂ is a system operator linearly coupled to the Fock-state field and Ŝ is

a system operator quadratically coupled to the Fock-state field. The initial condition of the

off-diagonal density matrix is vacuum state, since they are not physical states.

In this formulism, the expressions for output field quantities are quite straight forward. The

quadrature of the output field is given by

Ẑt = eiϕB̂t + e−iϕB̂†
t (2.95)

and the motion equation for the field quadrature is

dẐout
t = eiϕdB̂out

t + e−iϕdB̂†out
t (2.96)

= eiϕ(L̂dt+ ŜdB̂t) + e−iϕ(L̂†dt+ Ŝ†dB̂†
t )

The corresponding expectation of the motion equation is

dEm,n[Ẑ]

dt
= Em,n[e

iϕL̂+ e−iϕL̂†] + eiϕ
√
nξ(t)Em,n−1[Ŝ] + e−iϕ

√
mξ∗(t)Em−1,n[Ŝ

†] (2.97)

If the single photon pulse under description is an exponentially-decayed pulse with ξ(t) =
√
κe−κt/2, the Fock-state master equation is equivalent to the cascaded master equation

discussed in the last subsection.
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For a superposition state of different Fock states as an input field, |ψ⟩in = cm|m⟩ + cn|n⟩
(m,n are integer), the expectation value of a system observable Â needs to be averaged

over a combined density matrix

ρtot = |cm|2ρm,m + cmc
∗
nρm,n + c∗mcnρn,m + |cn|2ρn,n (2.98)

and

⟨
Â
⟩
= Tr(Âρtot) (2.99)

For instance, for an input state |ψ⟩ = 1/
√
2(|0⟩+ |1⟩), the effective density matrix is

ρtot = (ρ0,0 + ρ0,1 + ρ1,0 + ρ1,1)/2; (2.100)

One advantage of this method is that modifications are very easy to include on the input

photon state, such as some time delay and arbitrary profiles, which makes it very com-

pilable with most engineerable systems. For cascaded master equation method, if one

want to change the photon wave packet distribution, some complicated engineering on a

time-dependent decay rate of the source cavity will be required.

In terms of system dimension, this formulism is the same as the cascaded method. Sup-

pose we have a Fock-state |n⟩ coupled to a system with dimension N×N . In the cascaded

master equation, the total Hilbert space of the whole system in the cascaded master equa-

tion is (N ×N) × (n × n) and in Fock-state ME, there are n2 number of motion equations

with dimension N ×N . However, as mentioned before, since the equations can be solved

level by level, i.e., from ρ0,0 to ρ0,1 and then to ρ1,1, the computational resource can be re-

duced and for not too large system, such as Fan et al. (2013), analytical solutions can be

obtained.



Chapter 3

Breakdown of the cross-Kerr effect in single

photon counting schemes

In the last chapter, we mentioned that QND photon number detection could be realized using

a cross-Kerr nonlinearity. This chapter describes how a three-level transmon behaves like a

cross-Kerr medium and how the “atomic" saturation limits the efficiency of photon detection

based on the cross-Kerr nonlinearity.

3.1 Cross-Kerr nonlinearity and transmon as a cross-Kerr

medium

3.1.1 Cross-Kerr nonlinearity

When an optical field is applied to a dielectric medium, an dipole moment of the medium

will be induced by the electric component of the field E⃗(r⃗, t). This induced dipole moment

is usually described by the quantity of the polarization P⃗ (r⃗, t) (the dipole moment per unit

volume). In conventional optics, the polarization is linear to the incident field amplitude

E⃗(r⃗, t), i.e., P⃗ (1)(r⃗, t) = ε0χ
(1)E⃗(r⃗, t), where χ(1) is the linear susceptibility of the medium.

In 1960 the invention of the laser Maiman (1960) opened a new era of nonlinear optics, in

which both a linear and nonlinear response of the polarization of media will be induced by

incident fields. The polarization in this case can be presented as Boyd (2003):

P⃗ (r⃗, t) = P⃗ (1)(r⃗, t) + P⃗ (2)(r⃗, t) + P⃗ (3)(r⃗, t) + ... (3.1)

= ε0(χ
(1)E⃗1(r⃗, t) + χ(2)E⃗1E⃗2(r⃗, t) + χ(3)E⃗1E⃗2E⃗3(r⃗, t) + ...)

42
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where E⃗j(j = 1, 2, 3...) can be the same incident field or different incident fields. χ(2)(χ(3))

are the second-order (third-order) nonlinear susceptibility tensors. In natural materials,

higher-order susceptibilities are usually much smaller than lower-order susceptibilities, i.e.

χ(1) ≫ χ(2) ≫ χ(3). It is well established that the second-order nonlinear susceptibility χ(2)

vanishes in centrosymmetric materials Boyd (2003) therefore the third-order polarization

P⃗ (3) is the dominant nonlinear response from most materials. From the microscopic point

of view, i.e., consider a nonlinear medium made of two-level or three-level atoms, the cubic

nonlinear polarization model is valid in the dispersive coupling regime Drummond and Walls

(1980)Drummond and Walls (1981).

The cross-Kerr effect arises from the third-order nonlinear response of a medium to applied

fields. It is a phenomenon that the phase of one field is changed proportional to the intensity

of another field. Therefore, the cross-Kerr effect is also called the cross-phase modulation

(XPM), in contrast to the self-Kerr effect or self-phase modulation (SPM).

Quantum mechanically, the cross-Kerr nonlinearity can be modeled by the interaction Hamil-

tonian Drummond and Walls (1980)

ĤcK = ~χâ†pâpâ†sâs = ~χn̂pn̂s (3.2)

where âp (âs) are the annihilation operators for the probe (signal) fields and n̂p (n̂s) are the

corresponding number operators. The nonlinear coefficient χ is proportional to the third-

order nonlinear susceptibility. Suppose that the input state is |Ψ⟩in = |ns⟩|αp⟩, the output

state after the interaction can be obtained Munro et al. (2005a)

|Ψ⟩out = Û |Ψ⟩in = e−iχtn̂pn̂s |Ψ⟩in = |ns⟩|αpe
−insχt⟩ (3.3)

where Û = e−iχtn̂pn̂s is the evolution operator. After the interaction, the Fock state (the signal

field) remains the same as the input, while the probe experiences a phase shift, which is

proportional to the nonlinear coefficient χ, the photon number in the signal field and the

interaction time. That is why in conventional cross-Kerr nonlinearity measurements a very

strong field is applied and (or) a very long cross-Kerr medium is used. The relation between

cross-Kerr phase shift and the properties of fields based on Eq. 3.3 is illustrated in Figure
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Figure 3.1 – A cartoon illustration of the cross-Kerr phase shift of a probe field induced by
a signal field using the effective cross-Kerr Hamiltonian Eq.3.2. (a) The dependence of the
probe phase displacement on the signal photon number; (b) The dependence of the probe
phase displacement on the probe amplitude.

3.1. In Figure 3.1 (a), the dependence of the phase shift angle on the signal photon number

is shown and clearly the angle increases as the signal photon number increases. Figure

3.1 (b) shows that for a certain phase shift angle and the phase displacement is linear to

the probe amplitude. These conclusions from the effective Hamiltonian Eq.3.2 seem quite

reasonable but in reality all nonlinear media are made of atoms and there are more issues

like saturation, response times and dissipation in the interaction of fields and Kerr medium

from the microscopic point of view. Later in this section, we will show that a saturation effect

appears in the cross-Kerr phase shift under more realistic consideration.

In natural materials, like in optical fibers and bulk crystals, the cross-Kerr effect is very weak

and difficult to observe. In recent years, it has been demonstrated that large cross-Kerr

nonlinearities can be realized by preparing atomic coherences in a three-level system, four-

level system Schmidt and Imamoglu (1996); Sinclair and Korolkova (2008) and five-level

system Wang et al. (2006b). Moreover, the cross-Kerr phase shift at the single quantum

level has been observed in the optical fiber Matsuda et al. (2009), the atomic ensemble

Wang et al. (2006a) and very recently in the superconducting circuit system Hoi et al. (2013).

The cross-Kerr nonlinearity has been proposed for a variety of applications, including QND

photon number measurements Imoto et al. (1985); Munro et al. (2005a), entangled state

preparation Jin et al. (2007); Silberhorn et al. (2001), teleportation Vitali et al. (2000) and

quantum gate Lin and Li (2009); Milburn (1989); Munro et al. (2005b); Wang et al. (2012).
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Due to these important applications, the investigation of the cross-Kerr nonlinearity has

been attracting more and more attention and here in this thesis I focus on its application to

QND photon number detection.

3.1.2 Transmon as a cross-Kerr medium

As discussed in the last section, a three-level atomic system can be used as a cross-Kerr

nonlinear medium Hoi et al. (2013); Perrella et al. (2013); Venkataraman et al. (2013). In

the following I will show that, under proper conditions, a system of two fields interacting

with a three-level atom can be reduced to an effective cross-Kerr interaction model of the

two fields by eliminating the atomic degrees of freedom. The Hamiltonian for a three-level

system coupling with two single-mode fields is given by

Ĥ = ω2σ̂22 + ω1σ̂11 + ωaâ
†â+ ωbb̂

†b̂+ g1(âσ̂10 + â†σ̂01) + g2(b̂σ̂21 + b̂†σ̂12) (3.4)

where â and b̂ are the annihilation operators for the fields and the energy levels of the atom

is labeled as |0⟩, |1⟩ and |2⟩. In Eq. 3.4 we have assumed |ωa − ω10| ≪ |ωa − ω21| and

|ωb−ω21| ≪ |ωb−ω10| and so that the coupling between the field â and the transition 1 → 2

and the coupling between the field b̂ and the transition 0 → 1 have been neglecting as fast

oscillating terms.

Since for optical and microwave fields, field frequencies is far larger than matter-field cou-

pling coefficients, it is valid to transform the Hamiltonian 3.4 to a rotating frame as

Ĥ = (∆2 +∆1)σ̂22 +∆1σ̂11 + g1(âσ̂10 + â†σ̂01) + g2(b̂σ̂21 + b̂†σ̂12) (3.5)

where ∆2 = ω21 − ωb and ∆1 = ω10 − ωa. The motion equations for the system operators

are

dâ

dt
= −ig1σ̂01 −

κ1
2
â (3.6)

db̂

dt
= −ig2σ̂12 −

κ2
2
b̂ (3.7)
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Figure 3.2 – The comparison of adiabatical elimination result and exact numerical simulation. The
parameters are: g1 = 1, g2 = 4, ∆1 = 30 and ∆2 = 200.

dσ̂01
dt

= −i∆1σ̂01 − ig1â(σ̂00 − σ̂11)− ig2b̂
†σ̂02 (3.8)

dσ̂12
dt

= −i∆2σ̂12 − ig2b̂(σ̂11 − σ̂22) + ig1â
†σ̂02 (3.9)

dσ̂02
dt

= −i(∆1 +∆2)σ̂02 + ig1âσ̂12 − ig2b̂σ̂01 (3.10)

here we have phenomenologically introduced the cavity decay rates κ1 and κ2.

In the dispersive regime, ∆2 ≫ ∆1, g2 and ∆1 ≫ g1, the atomic operators can be adiabati-

cally eliminated by setting the time derivatives to zeros:

Ĥeff = − g21
∆1

â†â+
g21g

2
2

∆2
1(∆1 +∆2)

b̂†b̂â†â (3.11)

Now an effective cross-Kerr interaction between the two input fields is obtained. The test

of validity of the adiabatic elimination result 3.11 is done through comparing to the exact

numerical simulation of 3.4, as shown in Fig. 3.2. One can see from the figure that they

well agrees with each other except fast and small-amplitude oscillations eliminated in the

adiabatic elimination. This effective model is derived in the dispersive regime and under the

condition of small or negligible dissipation rates of the fields and the atom. In the following

I will study the model of a three-level transmon interacting with two weak coherent fields

beyond the dispersive regime and show the dependence of probe displacement on the
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Figure 3.3 – Left:The cross-Kerr phase shift of the probe field induced by the signal field
as the detuning ∆2 is varied; Right: The cross-Kerr phase shift of the probe field induced by
the signal field as the signal amplitude αs is varied. The system parameters are: γ01 = 1,
γ12 = 2, δ1 = −0.01 and αs = 1/

√
2π for the left figure and αp = 0.1 and δ2 = −0.8 for the

right figure.
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Figure 3.4 – A cartoon illustration of the saturation effect of the probe cross-Kerr phase shift induced
by a fixed-amplitude signal field.

signal photon in this more realistic situation.

The system under consideration is as follows: a three-level transmon is embedded in a

coplanar transmission line, with the energy levels labeled as |0⟩, |1⟩ and |2⟩. Two weak

coherent fields (probe and signal fields) are coupled to the upper and lower transitions of

the transmon. This modeled has been studied experimentally in Hoi et al. (2013). The

Hamiltonian for the system is given by

Ĥs = ω1σ̂11 + ω2σ̂22 + g2(α
∗
pe

iωptσ̂12 + αpe
−iωptσ̂21) + g1(α

∗
ce

iωctσ̂01 + αce
−iωctσ̂10) (3.12)

where the coupling coefficients g1 =
√
γ01/2π and g2 =

√
γ12/2π, with γ01 and γ12 being
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the relaxation rates of the 0-1 and 1-2 transitions of the transmon, respectively. This relation

between the coupling coefficient and the “atomic" relaxation rate comes from the Markovian

approximation (see details in the appendix A.2).

Moving to an interaction picture at the frequencies of the driving fields and assuming that

the input fields are real, the Hamiltonian becomes

Ĥs = ∆1σ̂11 + (∆1 +∆2)σ̂22 + g2αp(σ̂12 + σ̂21) + g1αc(σ̂01 + σ̂10) (3.13)

where ∆1 = ω10 − ωc, ∆2 = ω21 − ωp. The unconditional quantum master equation is given

by

ρ̇ = −i[Ĥs, ρ] + γ01D[σ̂01]ρ+ γ12D[σ̂12]ρ (3.14)

Figure 3.3 presents the phase shift of the probe induced by the signal field via the transmon

provided nonlinearity. The left part of Figure 3.3 shows the probe phase shift versus the

probe frequency at different probe amplitudes. There is a saturation effect of cross-Kerr

effect as the probe amplitude is increased. This is because that for a certain amplitude

signal field, the maximal phase displacement in the probe is limited due to the limitation in

the induced “atomic" polarization. When a phase displacement is saturated, the increase

in the amplitude will lead to a decrease in the phase shift angle (which is equal to the

displacement over the amplitude), as illustrated in Figure 3.4. The saturation effect will be

discussed more in the next section. The right part of Figure 3.3 shows that, for a low signal

amplitude, there is an approximate linear relation between the phase shift and the signal

amplitude. In the regime 0 < αs < 0.3, the phase shift linearly increases as αs increases

and it can be used as a power detector of weak microwave fields.

At resonance, the analytical steady-state solution of the model above can be obtained. In
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this case, the equations of motion for the expectation of the atomic operators are given by

d

dt
⟨σ̂00⟩ = iαs

√
γ01(⟨σ̂01⟩ − ⟨σ̂10⟩) + ⟨σ̂11⟩ γ01 (3.15)

d

dt
⟨σ̂01⟩ =

−γ01 ⟨σ̂01⟩
2

+ i
√
γ01αs(⟨σ̂00⟩ − ⟨σ̂11⟩) + i

√
γ12αp ⟨σ̂02⟩ (3.16)

d

dt
⟨σ̂02⟩ =

−γ12
2

⟨σ̂02⟩ − iαs
√
γ01 ⟨σ̂12⟩+ i

√
γ12αp ⟨σ̂01⟩ (3.17)

d

dt
⟨σ̂12⟩ =

−(γ01 + γ12)

2
⟨σ̂12⟩ − i

√
γ01αs ⟨σ̂02⟩+ i

√
γ12αp(⟨σ̂11⟩ − ⟨σ̂22⟩) (3.18)

d

dt
⟨σ̂22⟩ = −iαp

√
γ12(⟨σ̂12⟩ − ⟨σ̂21⟩)− ⟨σ̂22⟩ γ12 (3.19)

For real input fields, the cross-Kerr phase displacement can be represented by ∆Q =

−i√γ12(⟨σ̂12⟩ − ⟨σ̂21⟩). The steady state solution for the transmon polarization ⟨σ̂12⟩ in the

signal turn-on case is:

⟨σ̂12⟩on =
iα2

s

√
γ12αp (1 + γ01/γ12)[(

γ01
2

+ 4α2
s

)
+ 2α2

p

] [(
Γ + 2α2

p

)
/2 + α2

sγ01/γ12
] (3.20)

where Γ = (γ01 + γ12)/2. When the signal field is off, the transmon is transparent to the

probe field. Thus the phase difference between the signal-on and signal-off is

∆Q ∼ |⟨σ̂12⟩on − 0| ≃
α2
s

√
γ12αp (1 + γ01/γ12)[(

γ01
2

+ 4α2
s

)
+ 2α2

p

] [(
Γ + 2α2

p

)
/2 + α2

sγ01/γ12
] (3.21)

At high probe intensity α≫ ξ, γ2, γ1,

∆Q ∼
α2
s

√
γ12 (1 + γ01/γ12)

2α3
p

(3.22)

The phase displacement is inversely proportional to cubic of the probe amplitude.

The calculations above give a picture of how a transmon acts as a cross-Kerr medium for

two microwave fields. The analysis is based on assuming weak coherent fields as input

fields and in the next section the cross-Kerr phase shift induced by a single microwave

photon and the breakdown of cross-Kerr nonlinearity in photon counting will be discussed.
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3.2 Break down of cross-Kerr effect on single photon de-

tection

Although the cross-Kerr nonlinearity has been frequently proposed for single-photon de-

tection and quantum computation, doubts regarding the utility of the Kerr effect in single

photon applications have been raised before. Shapiro group Shapiro (2006); Shapiro and

Razavi (2007) considered the multimode nature of the single photon pulse and found that

there is extra phase noise compared to simple single mode calculations, leading to con-

straints on the achievable phase shifts. Gea-Banacloche Gea-Banacloche (2010) pointed

out that it is impossible to obtain large phase shifts via the Kerr effect with single photon

wave-packets. Last year, Shapiro and his colleagues suggested one could cascade many

weak cross-Kerr system to achieve a large phase shift and in the same time the high state

fidelity is still guaranteed. They estimated that a π phase shift can be realized by utilizing

106 number of units Chudzicki et al. (2013). The required large number of cascaded sub-

systems makes the proposal less practical. Also, none of these schemes has taken the

microscopic energy structures of the cross-Kerr medium into consideration. Here we inves-

tigate a superconducting artificial three-level atom induced cross-Kerr phase shift with the

inclusion of spontaneous emission and quantum noise.

Recently, superconducting circuits have become important test-beds for microwave quan-

tum optics, demonstrating quantised fields, artificial “atoms" (i.e. with well-resolved energy

levels), and strong “atom"-field interactions. The transmon is a promising superconducting

artificial atom due to its insensitivity to 1/f noise, strong anharmonicity, and large dipole

moment. Indeed, the typical size of the transmon is comparable to the dielectric gap in an

on-chip microwave waveguide, and so the dipole moment is within an order of magnitude

of the maximum that it can possibly be, given the geometrical constraints of the dielectric

gap Devoret et al. (2007). This fact leads to very large cross-Kerr nonlinearities, where the

transmon provides the non-linear polarisability. Recent experiments using a superconduct-

ing transmon in a 1D microwave transmission line have demonstrated gigantic cross-Kerr

nonlinearities: a control field with on average 1 photon induces a phase shift in the probe

field of 20 degrees Hoi et al. (2013). Importantly, in this experiment, the microwave fields
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were freely propagating; no cavity was involved.

This large cross-Kerr phase shift immediately suggests the possibility of constructing a

broadband, number-resolving, microwave-photon counter, as long as the cross-Kerr in-

duced displacement of the probe exceeds the intrinsic quantum noise in the probe. In-

deed, broadband microwave photon counting is a crucial missing piece of the experimental

quantum microwave toolbox, although there are several proposals for detecting microwave

photons.

In fact, the cross-Kerr interaction is strictly an effective interaction based on weak field–

dipole coupling approximations. Ultimately it is mediated by the strong nonlinearities in-

herent in an anharmonic oscillator (e.g. an atom), so it must eventually break down. The

microscopic dynamics become important in the limit of very strong coupling, which was

achieved in Hoi et al. (2013). In the following the coupled field-transmon dynamics will

be investigated in this limit, using proposals for microwave–photon counting as a technical

objective to evaluate the validity of the cross-Kerr approximation.

3.2.1 Model

The model under consideration is as follows: two fields, a probe and a control, incident on

a transmon, which is treated as a three-level, Ξ-type system in a one-dimensional transmis-

sion line. Such three-level systems are prototypes for analysing cross-Kerr nonlinearities

Grangier et al. (1998). The transmon dynamics is treated exactly, including quantum noise

in the incident fields. The probe is assumed to be a coherent field (or possibly squeezed),

while the control field is in a Fock state, whose photon number, n, is the measurement

target. Here the photon number of the Fock state is restricted to n = 0 or n = 1.

It is shown that in spite of the very large cross-Kerr nonlinearity, the induced probe displace-

ment (i.e. the signal) in the presence of a single control photon is limited by saturation of

the transmon, and is always less than the probe’s own quantum noise. That is, the signal-

to-noise ratio (SNR) is always below unity. Moreover, this conclusion also extends to the

N-type four-level atomic level configuration, with which cross-Kerr media are often mod-

eled Chen et al. (2006); Hu et al. (2011); Kang and Zhu (2003). These conclusions have
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Figure 3.5 – (a) Illustrative experimental arrangement. A photon source emits a Fock state
microwave photon into a 1D planar transmission line with a Ξ-type three-level transmon em-
bedded in it. (b) Transmon level structure. The coherent probe couples |b⟩ ↔ |c⟩, and the
control couples |a⟩ ↔ |b⟩. The interaction induced a displacement in the probe field is de-
tected by homodyne detection. (c) Cartoon of the Kerr-induced probe displacement.

profound implications for the quantum applications of cross-Kerr phenomena.

The transmon levels are {|a⟩, |b⟩, |c⟩}, with corresponding energy levels, ωi, and decay

rates, γi, as shown in Fig. 3.5. Relaxation between transmon energy levels is fast compared

to dephasing rates, which we neglect. The probe field, b̂, is in a coherent state |β⟩, and is

nearly resonant with the |b⟩ ↔ |c⟩ transition, whilst the control field is in a Fock state of

n = 0 or 1 photons, at a frequency ωcon close to the |a⟩ ↔ |b⟩ transition. Qualitatively, the

control field induces a transient population transfer into the state |b⟩, and the probe field

induces transmon polarisation, σbc, between states |b⟩ and |c⟩. This polarisation couples

back to the probe field, so that the probe field is modified from its input state according to

the standard input-output relation

b̂out = b̂in +
√
γcσ̂bc. (3.23)

where b̂ is the annihilation operator of the probe field. The homodyne detector monitoring

the output probe field yields a photocurrent given by

Jhom
n (t) = ⟨ŷ(t)⟩+ ξ(t). (3.24)
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where ŷ = −i√γc(σ̂bc − σ̂cb) is the transmon polarisation, σ̂ij = |i⟩ ⟨j| and ξdt = dW (t) is

a Weiner process satisfying E[dW ] = 0, E[dW 2] = dt. Here E[X] represents the classical

expectation value of the variable X. Finally, the useful signal is the weighted integral of the

homodyne current over the lifetime, T , of the photon wave packet

Sn =

∫ ∞

0

dt Jhom
n (t)w(t) (3.25)

where w(t) is a weight function. To be more specific, f(t) is chosen to be “top-hat" function,

w(t) = 1 for 0 < t < T , w(t) = 0 otherwise. I have tried other weight functions and

they do not substantially change the SNR. If n = 0 the transmon dynamics are trivial, and

E[S0] = 0. For n = 1, E[S1] ̸= 0, and so S1 represents the useful signal associated with

a single photon in the control field. However, in any given measurement, the homodyne

current includes quantum noise, characterised by the variance (σSn)
2 = E[S2

n]−E[Sn]
2. To

a good approximation, σSn is independent of the photon number, n, so the signal-to-noise

ratio is defined as SNR = E[S1]/(
√
2σS). Note that the homodyne current will also include

technical noise sources, which are ignored here and so that SNR represents the quantum

limit for this scheme.

3.2.2 Cascaded master equation and Fock-state master equation meth-

ods

To study quantitatively the system consisting of a transmon interacting with propagating

microwave fields, two different (but consistent) formulations are adopted, yielding both nu-

merical and analytic results.

In the first formulation the control photon is assumed to be generated by a fictitious cavity

which is initially in a Fock state. The field in the cavity decays into the 1D waveguide, and

propagates to the transmon, which mediates the interaction between the control and the

probe. Here the cavity is included simply as a model photon source and the transmon is

outside the source cavity. To analyse this system, a stochastic cascaded master equation

(SME) Gardiner and Zoller (2004) is used.
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The SME describing the conditional dynamics of the cascaded cavity field–transmon density

matrix, ρ, is given by

dρ = (−i[Ĥs, ρ] + γconD[âcon]ρ+D[L̂b]ρ+D[L̂c]ρ)dt

+
√
γcon([L̂b, ρâ

†
con] + [âconρ, L̂

†
b])dt+H[L̂ce

−iπ/2]ρ dW (3.26)

where L̂b =
√
γbσ̂ab, L̂c =

√
γcσ̂bc and

Ĥs = ∆cσ̂cc +∆bσ̂bb + Ωp(σ̂bc + σ̂cb), (3.27)

∆b = ωba−ωcon, ∆c = ∆p+∆b (∆p = ωbc−ωp) Ωp =
√
γcβ, β is the amplitude of the coher-

ent probe field, âcon(â†con) are the annihilation (creation) operators for the control field and

γcon is the control photon linewidth. Line 2 of Eq. (3.26) describes the unidirectional evolu-

tion between the photon source and the transmon. We solve Eq. (3.26) for the conditional

state of the field–transmon system, from which we compute the conditional homodyne pho-

tocurrent, using Eq. (3.24). This approach allows us to generate a simulated measurement

record for ensembles of events in which n = 0 or 1, from which we obtain a histogram of

homodyne currents to estimate the SNR.

The second formulation uses the Fock state master equation (FME) Baragiola et al. (2012),

in which the propagating photon wave packet drives the transmon directly, i.e. no photon

source is invoked. The transmon density matrix, ρm,n, acquires indices representing coher-

ences between the transmon and photon Fock subspaces m and n. The FME is then

ρ̇m,n(t) = −i[Ĥs, ρm,n] +D[L̂b]ρm,n +D[L̂c]ρm,n (3.28)

+
√
nf ∗(t)[L̂b, ρm,n−1] +

√
mf(t)[ρm−1,n, L̂

†
b]

where f(t) is a complex valued probability amplitude that determines the photon counting

rate, |f(t)|2. We first solve the dynamics for ρ0,0(t), which drives ρ0,1(t) and ρ1,0(t), which in

turn drives ρ1,1(t). Then, using the quantum regression theorem Lax (1963), we calculate

the SNR analytically (details see the appendix A.1).

To test the consistence of these two formulations, in Fig. 3.6, the results for ⟨ŷ(t)⟩ from



3.2 Break down of cross-Kerr effect on single photon detection 55

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

γ
b
 t

<y
(t

)>

Analytical result
Numerical result

Figure 3.6 – The time evolution of the transmon polarisation: comparison between analytical
and numerical results. The parameters are: γc = 2γb, γcon = γb,∆c = ∆b = 0, β = γb.

solutions of them are presented for comparison. The green curve represents the result from

the analytical solution of the Fock-state master equation and the orange curve represents

the result from the numerical solution for the cascaded master equation. It is clear that there

is a perfect agreement between these two methods.

Now we turn to investigate the system dynamics with different pulse shapes. If the photon

is derived from exponential (E) decay of a cavity mode, then f(t) =
√
γcon exp(−γcont/2).

Further, this method can handle arbitrary photon wave packets, and we include Gaussian

(G) and rectangular (R), shown in Fig. 3.7(top), where T = 1/γcon is the pulse’s temporal

width. The photon induces a polarisation, ⟨ŷ(t)⟩, in the transmon, shown in Fig. 3.7(bottom).

Different pulse shapes yield modest differences in ⟨ŷ(t)⟩.

Fig. 3.8 shows the SNR as a function of the probe amplitude with detunings and γcon opti-

mised. The points represents 5000 trajectories of the SME, whilst the solid line is computed

from the FME, showing good agreement. The inset shows histograms of stochastic calcu-

lations of the integrated homodyne current with n = 0 and n = 1 (using parameters that

optimises the SNR). Figure 3.9 shows SNR versus the detunings ∆b and ∆c. Clearly, the

optimal SNR is located at ∆b = ∆c = 0. Moreover, the effect of varying the ratio γc/γb has
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.

also been studied, as plotted in Fig. 3.10. It is shown that the SNR saturates from γc/γb = 2

and the SNR is below unity for 1 < γc/γb < 20.

Regardless of parameter settings the SNR is less than unity, so we conclude it is impossible

to reliably distinguish between n = 0 and 1 in a single shot. This is borne out by the large

overlap of the histograms.

The fact that SNR< 1 can be understood in the following way: a single control photon

induces a variation in the transmon polarisation ŷ, which manifests as a fluctuation in the

homodyne current according to Eq. (3.24). However the polarisation of the transmon is a

bounded operator: ||ŷ|| ≤ √
γ
b
. The optimal photon wave packet width is T ∼ γ−1

b (any

shorter and the transmon cannot respond to the field; any longer and vacuum noise in the

homodyne signal grows), so the expected signal is bounded by |E[S1]| ≤
∫ T

0
dt ||ŷ|| ≤

γ
−1/2
b . Quantum noise in Eq. (3.24) gives σ2

S ≥ var[
∫ T

0
dt ξ] = γ−1

b so we see that SNR =

|E[S1]|/σS ≤ 1. Fig. 3.8 bears out this analysis: for small probe field amplitudes, the SNR
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Figure 3.8 – The SNR as a function of the probe amplitude β at optimal parameter setting.
The orange square represents the numerical SNR from the SME and the green curve repre-
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with parameters chosen to maximize the SNR.

increases, however the transmon dynamics eventually saturates at large amplitudes.

This argument suggests that the fundamental problem is the saturation of the transmon

transition. It may be thought that this can addressed by increasing the number of trans-

mons. We therefore briefly consider a system of N transmons, arranged such that the

spacing between adjacent transmons is much smaller than the wavelength, the transmons

are described by the collective atomic spin operators

Ŝij =
1√
N

∑
k

σk
ij (3.29)

The stochastic master equation describing the N -transmon system is given by

dρ = −i[Ĥs, ρ]dt+ γconD[âcon]ρdt+NγbD[Ŝab]ρdt+NγcD[Ŝbc]ρdt (3.30)

−
√
Nγconγb([Ŝba, âcρ] + [ρâ†c, Ŝab])dt+

√
NγcH[Ŝbce

−iπ/2]ρdW
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where

Ĥs = N(∆cŜcc +∆bŜb) +
√
Nγcβ(Ŝbc + Ŝcb) (3.31)

It is seen that the ensemble master equation (3.31) is the same form as the single-transmon

master equation, albeit with decay rates and energies scaled by an N -dependent factor,

leading to faster dynamics. This merely rescales the parameters in the problem, so cannot

increase the SNR above the optimised single transmon case.

It is worth commenting on a number of other avenues that have been explored, but which

yield similar negative results. In the following subsections, they will be discussed one by

one.

3.2.3 Detection with a squeezed noise

Squeezing has been extensively used to suppress quantum vacuum noise in quantum

metrology. Nevertheless, limited by the Heisenberg uncertainty relation, one can not achieve

extremely good performances even using very high degree of squeezing, as discussed in

Yonezawa et al. (2012). Even though, it can yet be regarded as a good tool in reducing the

noise of detected quadrature when a suitable degree of squeezing is chosen.

Squeezing the probe field in an appropriate quadrature reduces the Homodyne noise, and

may improve the SNR. Since we are monitoring the phase displacement of the probe field,

we should squeeze in this quadrature. However this enhances noise in the conjugate, am-

plitude quadrature. The additional noise in the probe amplitude adds noise to the transmon

dynamics arising from fluctuations in Ωp, which ultimately feed through to the output field.

We find numerically that these tradeoffs yield no net improvement in the SNR.

The stochastic master equation in a squeezed vacuum is given by

dρ = (−i[Hs, ρ] + γconD[âcon]ρ+D[̂b]ρ−
√
γcon([L̂

†
b, âconρ] + [ρâ†con, L̂b]) (3.32)

+ D[ĉm] +H[ĉm]ρdW
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where

Hs = ∆cσ̂cc +∆bσ̂bb +
√
γc

∫
dνβν(σ̂bc + σ̂cb) (3.33)

ĉm = (−i(n̄+ m̄+ 1)L̂c + i(n̄+ m̄∗)L̂†
c)/

√
L

with n̄ = sinh(r) cosh(r)eiθ, n̄ = sinh2(r) and L = 1 + 2n̄ + m̄ + m̄∗. The instantaneous

photocurrent is

Ihomc (t) = ⟨ŷ⟩c (t) +
√
Lξ(t) (3.34)

This equation indicates that the noise term ξ is multiplied by a factor of
√
L. Notice that

when θ is chosen as zero, L = e−2r and the noise is reduced while when θ = π, the noise

is amplified.

The left part of Fig. 3.11 shows the histograms of the integrated Homodyne signals for the

situation of 2 dB squeezed vacuum environment. A clear but not significant improvement

is seen compared to the histograms in the inset of Fig. 3.8. In the right part of Fig. 3.11,

the SNR varies as the squeezing in the phase quadrature increases and there is optimal

squeezing as expected. According to uncertainty relation the phase squeezing indicates an

amplification of the amplitude noise, which results in larger dynamical noise in the atomic

response.

3.2.4 Cascaded multiple transmons

Secondly, if the control photon interacts sequentially with M transmons in series, each with

independent probes, the overall SNR would be increased by a factor of M1/2. However, the

Kramers-Kronig relations require that a large phase shift implies a large reflection probabil-

ity, so that there is a tradeoff between the phase shift versus reflection probability at each

transmon. Again, the numerics shows that the tradeoff yields no net improvement in SNR.

To determine the maximal number of transmons one can cascade, firstly the transmission

rate of the signal field after passing one transmon will be evaluated. As is known that in

low dimensional systems photons will be reflected completely by qubits on resonance Shen
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Figure 3.11 – Left: The histograms of the Homodyne signal in the presence/absence of the
single photon with 2dB squeezed vacuum environment. Right: The SNR as a function of the
squeezing degree (dB); The parameters are: γc = 2γb, γcon = 0.6672γb, β = 0.4γb,∆c =
∆b = 0.

and Fan (2005). On the other hand, EIT-like effects appear when there are more energy

levels Shen and Fan (2009). In this three-level structure, two-pathway interference forms

and the familiar EIT-like transparency window appears, shown in Fig. 3.12. However, how

wide is the window and whether the parameters for this transparency window is consistent

with those at best SNR are questions. The calculation of the transmission rate by the similar

procedure in Shen and Fan (2005) will be shown in the following.

The cascaded system is equivalent to the model of transmons interacting with a single

photon pulse centered at ωc and a coherent field in the transmission line directly. After

linearizing the dispersion in the vicinity of ωc and formally adding the non-Hermitian damping

terms (which come from the Markovian approximation by tracing out the bath operators),

the Hamiltonian in the real space can be written as

H =

∫
dx[â†R(x)(ωc − ivg

∂

∂x
)âR(x) (3.35)

+ â†L(x)(ωc + ivg
∂

∂x
)âL(x)] + (ωc − ωp − iγc/2)σ̂cc

+ (ωb − iγb/2)σ̂bb +

∫
dx

√
γbδ(x)[â

†
Rσ̂ab + σ̂baâR

+ â†Lσ̂ab + σ̂baâL] +
√
γcα(σ̂bc + σ̂cb)

where vg is the group velocity of the signal photon, which depends on the geometry and
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material of the waveguide. For a typical coplanar waveguide of quantum circuit system,

vg = 1√
C′L′ = 1

C′Z0
= c/

√
ϵeff with the effective permittivity ϵeff around 5.9. The time-

independent eigen-equation is

H |Ek⟩ = Ek |Ek⟩ (3.36)

with Ek = ω = ωc + vgkR and

|Ek⟩ =

∫
dxϕRâ

†
R(x) |0R, 0L, a⟩+

∫
dxϕLâ

†
L |0R, 0L, a⟩ (3.37)

+ c1 |0R, 0L, b⟩+ c2 |0R, 0L, c⟩

Then the equations for the coefficients can be obtained:

(ωcon − ivg)
∂

∂x
ϕR + g1δ(x)c1 = ωϕR (3.38)

(ωcon + ivg)
∂

∂x
ϕL + αδ(x)c1 = ωϕL

(ωb − iγc/2)c1 +
√
γb(ϕR(0) + ϕL(0)) +

√
γcc2α = ωc1

(ωc − iγc/2− ωp)c2 +
√
γcc1α = ωc2

where

ϕR = exp(ikx)θ(−x) + texp(ikx)θ(x) (3.39)

ϕL = rexp(−ikx)θ(−x)

with θ(x) being the Heaviside step function.

By solving the equations above, the transmission amplitude can be obtained;

t =
(∆′

b + i
√
γc/2)(∆

′
c + iγc/2)− γcα

2

(∆′
b + iγc/2 + iγb/vg)(∆′

c + iγc/2)− γcα2
(3.40)

where ∆′
b = ωb − ω and ∆′

c = ωc − ωp − ω. Here the frequency width of the signal photon
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Figure 3.12 – Electromagnetic induced transparency in a three-level transmon for different
field amplitudes.

is much smaller than its central frequency, that is to say, it is a relatively narrow pulse,

therefore in the the following we use ∆b and ∆c to replace ∆′
b and ∆′

c.

From Fig. 3.12, an induced transparency window appears as expected, which is caused by

the two-channel interference between transmon transitions. The width of window is twice of

the coupling
√
γcα. One can find that to achieve a high transmission rate, either large α or

large ∆b is required. This indicates that a large transmission rate corresponds a low SNR.

Now a system with cascaded n transmons with separate probes and detectors is consid-

ered, as shown in the left part of Fig. 3.13. Ideally it is equivalent to average over n trajecto-

ries. However, after including the reflection, the effective SNRn becomes (high order terms

o(R) are omitted here):

SNRn = SNR1(
√
nT n−1 +

n−1∑
j=1

j/
√
nT j−1R) (3.41)

where T = |t|2 and R = 1 − T are the transmission and reflection rates of the photon,

respectively. SNR1 is the SNR in one transmon and one probe case. After optimizing

parameters, the SNR as a function of probe number is plotted in the right part of Fig. 3.13.

Obviously, the signal can not win the noise by cascading multiple transmons.
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3.2.5 Conversion from N-type Four-level structure to ladder-type three-

level structure

Thirdly, some schemes for inducing cross-Kerr nonlinearities in optical systems use an N-

type four-level system Schmidt and Imamoglu (1996); Sinclair and Korolkova (2008), with

a strong classical field addressing the intermediate transition. In the limit of strong driving,

this maps onto the same three-level structure we consider in this work, so the conclusions

we have reached here also apply to such N-type systems The N-type four-level structure

has been suggested to be a promising candidate for implementing cross-Kerr nonlinearity.

This subsection will show that a N-type four-level system can be approximately mapped to

a three-level ladder system.

The Hamiltonian for a four-level system coupling with a signal field β at transition 0-1, a

control field β at transition 1-2 and a probe α at transition 2-3 in a rotating frame is given by

H = (∆10 −∆12)σ̂00 +∆12σ̂11 +∆32σ̂33 (3.42)

+
√
γ01β(σ̂10 + σ̂01) +

Ω

2
(σ̂12 + σ̂21) +

√
γ32α(σ̂23 + σ̂32)

When the transition 1-2 is strongly driven by Ω, the subsystem of the transition 1-2 and the

control field can be diagonalized independently. Defining a unitary transformation U as cos θ − sin θ

sin θ cos θ

 , (3.43)
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The system Hamiltonian of the 1-2 transition and the field H12 = ∆12σ̂11 +
Ω
2
(σ̂12 + σ̂21) can

be diagonalized by performing the transformation Ω,U †H12U and θ can be solved as:

θ =
1

2
arctan(Ω/∆12) (3.44)

and the states |1⟩ , |2⟩ can be represented in the dressed states |−⟩ and |+⟩Cohen-Tannoudji

and Reynaud (1977):

|1⟩ = cos θ |−⟩ − sin θ |+⟩ (3.45)

|2⟩ = cos θ |+⟩+ sin θ |−⟩

Then the Hamiltonian can be rewritten as

H = −∆10σ̂00 +∆32σ̂33 + λ+σ̂++ + λ−σ̂−− (3.46)

+
√
γ01β(cos θ(σ̂−0 + σ̂0−)− sin θ(σ̂+0 + σ̂0+))

+
√
γ32α(cos θ(σ̂+3 + σ̂3+) + sin θ(σ̂−3 + σ̂3−))

where λ± = 1
2
∆12 ± 1

2

√
∆2

12 + Ω2.

It is assumed that the signal field and probe field are tuned to be resonant with the state

|−⟩, that is, ∆10 = λ− and ∆32 = λ−. We perform a rotating and ignore the fast-varying
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terms like ei
√

∆2
12+Ω2t, then an approximate three-level system is obtained:

Ĥ = cos θ
√
γ01β(σ̂−0 + σ̂0−) + sin θ

√
γ32α(σ̂−3 + σ̂3−) (3.47)

As shown in Fig. 3.14, it is a good approximation when there is a strong driving (Ω ≫
γ01, α, β) at the dressed transition.

3.3 Conclusion

A number of proposals suggest using weak Kerr media to build controlled phase and C-NOT

gates with fewer resources than linear optical schemes Munro et al. (2005b); Nemoto and

Munro (2004). In these schemes the cross-Kerr phase shift per photon is much less than π,

so a strong coherent bus compensates for the weak nonlinearity, such that the small cross-

Kerr phase shift manifests as a large displacement of the strong coherent field. However

the saturation of the cross-Kerr effect described above indicates that once the displacement

of the strong coherent field approaches its own quantum noise, saturation effects lead to

the breakdown of the effective cross-Kerr description, rendering such protocols ineffective.

This chapter focused on the investigation of the feasibility of microwave photon-counting

based on an induced cross-Kerr nonlinearity arising from coupling to a large anharmonic

dipole. The conclusion is that the saturation of the transmon transition limits the SNR to less

than unity. As such, it is not possible to use strong, atom-induced cross-Kerr nonlinearities

to perform single photon detection. This conclusion applies to a number of extensions

of the basic model, including multiple transmons, cascaded transmons and N-type, four-

level system. Further, it limits the applicability of any proposal that requires a cross-Kerr

nonlinearity to produce a displacement of a coherent field by an amount greater than the

intrinsic quantum noise in the coherent field: it is precisely this condition where the effective

cross-Kerr description breaks down, and saturation effects become dominant.



Chapter 4

Non-absorbing high-efficiency detector for

single microwave photons

The last chapter has shown that it is impossible to efficiently detect single microwave pho-

tons using the nonlinearity provided by a three-level transmon in an open transmission line,

due to the saturation of transmon responses to the probe amplitude. In this chapter, an

improved scheme is proposed to overcome the difficulty in the preceding work and a high-

efficiency non-absorbing microwave photon counter is presented. Moreover, the measure-

ment induced back-action including pulse distortion and decoherence will be also discussed

in details.

4.1 Single microwave photon detection using one trans-

mon

Since the early theoretical work on photodetection Glauber (1963a); Mandel et al. (1964)

both theory and technology have advanced dramatically. Conventional photon detectors,

such as avalanche photodiodes (APDs) and photomultiplier tubes (PMTs), are widely used

in practice. However, they destroy the signal photon during detection. There are a num-

ber of schemes for quantum non-demolition (QND) optical photon detection Helmer et al.

(2009); Munro et al. (2005a); Reiserer et al. (2013) but typically they require a high-Q cavity

for storing the signal mode containing the photon(s) to be detected, and a leaky cavity for

manipulating and detecting the probe mode via weak nonlinear interaction with the signal

cavity. Thus, during one lifetime of a signal photon, the probe mode undergoes many cy-

cles to accumulate information about the signal. This type of detection requires multiple

67
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measurements and the high-Q cavity limits the photodetection bandwidth. In the microwave

regime the detection of single photons Chen et al. (2011); Gleyzes et al. (2007); Govia et al.

(2012); Johnson et al. (2010); Peaudecerf et al. (2014); Peropadre et al. (2011); Poudel

et al. (2012); Romero et al. (2009a,b); Sathyamoorthy et al. (2014) is more challenging, es-

pecially non-destructive detection Gleyzes et al. (2007); Johnson et al. (2010); Peaudecerf

et al. (2014); Sathyamoorthy et al. (2014). Here we propose a scheme for non-absorbing,

high-efficiency detection of single itinerant microwave photons via the nonlinearity provided

by an artificial superconducting atom, a transmon Koch et al. (2007b).

Previously Fan et al. (2013), we considered schemes where the signal photon wave packet

propagates freely in a open transmission line Hoi et al. (2013); Peropadre et al. (2011), and

encounters the lowest transition of a transmon. The cw-probe field couples the first and

second excited states of the transmon and is monitored via continuous homodyne detection.

Displacements in the homodyne current, due to the large transmon-induced cross-Kerr

non-linearity Hoi et al. (2013), indicate the presence of a photon. We showed that, in

spite of the exceptionally large cross-Kerr nonlinearity it exhibits Hoi et al. (2013), a single

transmon in an open transmission line is insufficient for reliable microwave photon detection,

due to saturation of the transmon response to the probe field Fan et al. (2013). More

recently, Sathyamoorthy et al. (2014), we showed that multiple cascaded transmons could

achieve reliable microwave photon counting in principle, though the number of transmons

and circulators required in this scheme presents serious experimental challenges.

Inspired by the references above, a scheme that achieves reliable photon counting with as

few as a single transmon is proposed here. The key insight is to use a cavity resonant with

the probe field to enhance the probe displacements, which depends on the signal photon

number. The measurement efficiency is quantified in two ways: firstly, the signal-to-noise

ratio (SNR), and secondly the distinguishability, i.e. the probability to correctly infer the

photon number. For a single transmon, a SNR of 1.2 is achieved, corresponding to a dis-

tinguishability of F = 84% between 0 and 1 photons in the signal (i.e. the probability of

correctly discriminating these two states). This can be improved using more transmons

Sathyamoorthy et al. (2014) and it is shown that with two cascaded transmons the distin-

guishably increases to F = 90%. An important feature of the proposal is that the signal
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Figure 4.1 – The schematic of single microwave photon counting. (a) A transmon qubit
coupled to a microwave cavity is utilized as a nonlinear medium to detect the presence or
absence of single microwave photons in a semi-infinite transmission line. When there is no
photon in the transmission line, the transmon, prepared in its ground state, cannot be excited
to upper energy levels and thus it is transparent to the cavity field; with the presence of
the single photon, the cavity field will experience a change due to the interaction with the
transmon. (b) The energy level structure of the transmon.

photon is an itinerant photon pulse, enabling detection of relatively wide-band microwave

photons.

4.1.1 Model and master equation

The scheme for single microwave photon detection using a single transmon is shown in Fig.

4.1. A transmon is embedded at one end of a waveguide, in which the signal microwave

propagates. The signal field is nearly resonant with the lowest transmon transition, |0⟩ ↔
|1⟩. The transmon is also coupled to a coherently-driven microwave resonator, which is

dispersively coupled with the second transmon transition. The cavity is driven by an external

coherent probe field, which ultimately yields information about the photon population in

the signal field. This unit (consisting of the transmon in a cavity) can be cascaded using

circulators to achieve higher detection efficiency Sathyamoorthy et al. (2014).

We first analyse a single unit, and later consider cascading several. In a rotating frame the
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Hamiltonian describing a single transmon-cavity unit is

Ĥs = δ1σ̂11 + (δ1 + δ2)σ̂22 − ig12(âσ̂21 − â†σ̂12)− iE(â− â†) (4.1)

where â is the cavity annihilation operator, g is the coupling strength between the cavity field

and the transmon |1⟩ ↔ |2⟩ transition, E is the driving amplitude, and the detunings are

δ1 = ω10 − ωs, δ2 = ω21 − ωcav. The interaction between the cavity and the 0 → 1 transition

is neglected here, since the cavity is very far detuned from the 0 → 1 transition.

To model the itinerant signal field, we invoke a fictitious source-cavity initially in a Fock

state. This field leaks out, producing an itinerant Fock state, which ultimately interacts with

the transmon in the real cavity driven by the probe field. The probe field reflected from the

real cavity is measured by a homodyne detector. The resulting conditional system dynamics

are described by the cascaded, stochastic master equation Carmichael (1993a); Gardiner

(1993a); Gardiner and Zoller (2004); Wiseman and Milburn (2010):

dρ = dtLρ+√
ηdW(t)H[e−iϕ

√
κâ]ρ, (4.2)

where

Lρ = −i[Ĥs, ρ] +D[
√
γcĉ] +D[

√
γ01σ̂01]ρ (4.3)

+ D[
√
γ12σ̂12]ρ+D[

√
κâ]ρ+

√
γcγ01([ĉρ, σ̂10] + [σ̂01, ρĉ

†]),

and the corresponding homodyne photocurrent is

I(t) =
√
ηκ

⟨
e−iϕâ+ eiϕâ†

⟩
+ dW (t)/dt (4.4)

where dW is a Weiner process satisfying E[dW ] = 0, E[dW 2] = dt, η is the efficiency

of homodyne detection, ĉ is the annihilation operator of the source-cavity mode, γc is the

decay rate of the source-cavity (which determines the linewidth of the itinerant photon), the

phase angle ϕ is set by the local oscillator phase.
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4.1.2 Analysis and simulation results

Prior to arrival of the signal pulse, the cavity is driven by the probe field to its steady state,

and the transmon is initially in its ground state. The itinerant signal photon pulse arrives at

the transmon at time t0. Since the signal pulse decays over a finite time, the cavity field

is transiently displaced from its steady state. This transient displacement is reflected in

the homodyne photocurrent, which thus contains information about the number of photons

in the signal pulse. There are several methods to extract this information Gambetta et al.

(2007), the simplest of which is a linear filter applied to the homodyne current:

S =

∫ T

t0

I(t)h(t)dt, (4.5)

for some filter kernel h. The optimal linear filter takes h(t) = Ī1(t), where Ī1 is the ex-

pected homodyne current when there is a single signal photon. We have also implemented

more sophisticated non-linear filters, using hypothesis testing Gambetta et al. (2007); Tsang

(2012), which yields a small improvement, at a substantial computational cost.

As one measure of performance, we define a signal-to-noise ratio

SNR =
(S̄1 − S̄0)√

Var(S1) + Var(S0)
, (4.6)

where Sn is the filter output conditioned on a signal pulse containing n = 0 or 1 photons.

Due to the nonlinear interaction between the probe field and the transmon, S1 is not a Gaus-

sian variable, making SNR difficult to interpret. Thus, we also report the distinguishability

F , defined as the probability of correctly inferring from the homodyne current the correct

number of signal photons

F =
(
P (S < Sth|n = 0) + P (S > Sth|n = 1)

)
/2, (4.7)

where Sth is a threshold value for S which optimally discriminates between small and large

probe displacement. We have also assumed that n = 0, 1 are equally likely.

To quantify the performance of a single unit as a photon detector, we perform a Monte-Carlo
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Figure 4.2 – The histograms of filtered Homodyne signal for the presence/absence of the sig-
nal photon and the corresponding distinguishability. The black curve plots the distinguishabil-
ity versus threshold values. The signal photon pulse is an exponentially-decayed pulse from
a source cavity and the linear filter function is presented is Eq. (4.5). The parameters are:
γ01 = 1, γ12 = 0.1, g = 2.45, δ1 = −0.8, δ2 = −18, γc = 0.1, E = 0.032, κ = 0.037,
ϕ = π/2, t0 = 0 and T = 80.

study, generating many trajectories with either n = 0 or n = 1, and computing S for each.

Here we assume η = 1, which requires quantum limited amplifiers. This assumption sets an

upper bound on the performance of this scheme, and we briefly discuss amplifier noise later.

Fig. 4.2 shows histograms of S for n = 0 (grey) and n = 1 (red), for system parameters

chosen to maximise F . The peaks of the histograms are reasonably distinguished. The

black trace shows F as a function of Sth. We find SNR1 = 1.2, and F1 = 84%, where the

subscript denotes a single cavity-transmon unit. This is a substantial improvement over Fan

et al. (2013). For comparison, the fidelity using the more sophisticated hypothesis testing

filter gives slight improvement FHT
1 = 84.6%, which will be discussed in details in the next

section.

We note that the optimal choice γ12 = 0.1γ01 used in Fig. 4.2 requires that the microwave

density-of-states (DOS) in the transmission line be engineered to suppress emission at ω12.

Without DOS engineering, γ12 = 2γ01 Gambetta et al. (2007), and we find that the fidelity is

reduced to F1 = 81%.

The lifetime for the unit cavity is chosen to optimise single-photon induced transmon ex-

citation. Accordingly, the signal pulse must be a relatively long, matching the cavity life

time. With a long pulse and a good cavity, during the interaction time of the signal photon
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with the system, the intra-cavity field changes dramatically (see Fig. 1c). In comparison,

for situation without a unit cavity, the change in the probe is determined by the transmon

coherence ⟨σ̂12⟩ < ⟨σ̂11⟩, which decays quickly in that case. The cavity allows the probe

field to interact for a long time with the signal-induced coherence in the transmon, resulting

in the larger integrated homodyne signal over the measurement time.

The probe amplitude used in Fig. 2 was chosen to optimise the performance of the single-

photon detector. Increasing the probe amplitude beyond this level leads to strong saturation

effects in the transmon, consistent with the breakdown of an effective cross-Kerr description

as discussed in Fan et al. (2013).

The improvement can be explained from the time evolution of key system variables, as seen

in Fig. 4.3. To more efficiently make use of the single-photon induced transmon excitation,

a good cavity with a long life time is chosen. Accordingly, the input photon pulse should

be a relatively long pulse, in order to match the long cavity life time. Here the steady state

of the cavity have been displaced out. With a long pulse and a good cavity, during the

time of the photon staying in the system, the intra-cavity photon number has a dramatic

increase compared to the excitation of |1⟩. While in the transmission line case, the change

in the probe is the atomic polarization ⟨σ̂12⟩, which is in principle smaller than ⟨σ̂11⟩. After

the main part of the photon leaves the system, the transmon excitation will drop to zero

quickly due to the relaxation of the transmon. However, at this moment, the intra-cavity field

still maintains quite high photon number and then decay to the steady state slowing. This

results in a much larger integrated homodyne signal over a measurement time.

4.1.3 Results in the phase space

We have given the analysis based on the statistics from the stochastic simulations above,

now we would like to show the cavity state change induced by the signal photon using the

quasi-probability functions in the phase space Lee (1995). There are a number of phase

space distribution functions such as the Wigner distribution function Wigner (1932), the

Husimi Q distribution function Husimi (1940) and the P representation Glauber (1963b); Su-

darshan (1963). Here we choose the Wigner distribution function Wigner (1932) to analyze
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Figure 4.3 – Responses from the transmon and the cavity field to the presence of the target
photon pulse. The parameters are the same as those in Fig. 4.2.

Figure 4.4 – The Wigner function of the cavity field for the case of (a) no signal photon and
(b) one signal photon. (c) is the sum of (a) and (b). The parameters are the same as Figure
4.2.

the system properties. The Wigner function over the position and momentum quadratures

is given by

W (X,P, t) =
1

π

∫
dX ′e−2iX′P ⟨X +X ′| ρc(t)|X −X ′⟩ (4.8)

with ρc(t) = TrS,Aρ(t) is the reduced density matrix for the cavity mode by tracing out the

signal and “atomic" modes. To express the total influence of the signal photon on the cavity

field during the interaction in the phase space, we integrate the Wigner function over the
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measurement time Tm as

W (X,P, Tm) =

∫ Tm

0

W (X,P, t)dt (4.9)

Figure 4.4 shows the integrated Wigner function W (X,P, Tm) of the cavity field for the

absence (a) and presence (b) of the signal photon at optimal parameter setting in the X-

P plane. From (a) to (b), it is clear that there is a shift of the cavity field state along the

phase quadrature of the phase space. Figure 4.4(c) is the sum of Figure 4.4 (a) and (b)

for contrast. The central parts of the two Wigner distributions are distinguishable with only

small fractions overlapped, which is quite consistent with the homodyne signal distributions

from the stochastic simulation (Figure 4.2).

4.2 Single microwave photon detection using two cascaded

transmons

The peak distinguishability of 84% for a single transmon is potentially useful in some appli-

cations. To increase it further, we follow Sathyamoorthy et al. (2014) and cascade multiple

transmons using circulators to engineer a unidirectional waveguide. The computational cost

of simulating a chain of transmons grows exponentially with the number of transmons, Ntr,

however it was shown in Sathyamoorthy et al. (2014) that the SNR grows as
√
Ntr, as might

be expected for independent, repeated, noisy measurements of the same system. For our

purposes, we consider cascading two transmons, A and B. Since our detection process is

non-absorbing, and circulators suppress back-scattering, the single microwave photon will

deterministically interact with A and then B in order, resulting in dynamical shifts for both

cavity modes. We suppose that each cavity is addressed by a separate probe field, leading

to two homodyne currents. Again, we expect this to improve the SNR by ∼
√
2.

For computational efficiency in our Monte-Carlo simulations, we unravel the master equa-

tion to produce a stochastic Schrodinger equation Moodley and Petruccione (2009); Wise-

man and Milburn (2010), including four stochastic processes – three quantum diffusion
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Figure 4.5 – Improved scheme for microwave photon detection with cascaded two transmons.
The two transmons A and B sit in two separate cavities with their own probe fields and homo-
dyne detection setups. The single-photon pulse firstly passes transmon A and then transmon
B, connected by two circulators.

processes, one per cavity and an additional process to account for cross-relaxation of the

transmon into the waveguide, and one quantum-jump process for the signal photon pulse.

Note that the jump process is solely to generate the homodyne currents (which are de-

termined by the quantum diffusion processes) and we do not subsequently use the jump

records. In the absence of a signal photon, the evolution of the unnormalized system wave

function |ψ̃⟩ is governed by

d|ψ̃(t)⟩ = dt[−i(Ĥs + Ĥcas)−
1

2
(
∑

j=A,B

κj â
†
j âj + Ĵ†Ĵ (4.10)

+ Ĵ†
2 Ĵ2) +

∑
i=A,B

(e−iϕj
√
κj âj)I

(j) + Ĵ2I2]|ψ̃c(t)⟩,

where

Ĥs =
∑

j=A,B

(δj1σ̂
j
11 + (δj1 + δj2)σ̂

j
22 − igj(âjσ̂

j
21 − â†jσ̂

j
12)− iEj(âj − â†j)) (4.11)

Ĥcas = − i

2
(
∑

j=A,B

(γcγ
j
01)

1/2ĉσ̂j
10 + (γA01γ

B
01)

1/2σ̂A
01σ̂

B
10 + (γA12γ

B
12)

1/2σ̂A
12σ̂

B
21) + h.c.

where we have defined Ĵ =
√
γcĉ

†ĉ+
∑

j=A,B
√
γj01 σ̂

j
01 and Ĵ2 =

∑
j=A,B

√
γj12 σ̂

j
12. Upon a
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jump event in the signal field, the system state evolves discontinuously

|ψ̃(t+ dt)⟩ = Ĵ |ψ̃(t)⟩. (4.12)

I(j)(j = A,B) are the homodyne signals for the outputs of two probe cavities and I2 is the

fictitious measurement signal for the emission from transmons to the transmission line:

I(j) =
√
κj

⟨
e−iϕj âj + eiϕj âj

⟩
+ dWj/dt (4.13)

I2 =
⟨
Ĵ2 + Ĵ†

2

⟩
+ dW2/dt

When there is a detection of the control photon, the system state will experience a collapse

as

|ψ̄⟩ = Ĵ |ψ̄⟩ (4.14)

For both "no detection" and "detection" cases, the wave function has to be normalized as

|ψ⟩ = |ψ̄⟩/
√⟨

ψ̄
∣∣ |ψ̄⟩.

We simulate 8000 trajectories using the same parameter values as before (assuming iden-

tical transmon-cavity units), for each choice of n, to obtain a distribution of homodyne cur-

rents, I(A) and I(B), which we integrate according to Eq. 4.5 to produce S(A) and S(B). Fig.

4.6(a) shows a scatter plot of the two homodyne signal pairs (S
(A)
n , S

(B)
n ) for n = 0 (black)

and n = 1 (red). To distinguish between these two distributions we project onto the sum

S(AB) = (S(A) + S(B))/2, shown in Fig. 4.6(b), and we calculate SNR2 = 1.7 ≈
√
2 SNR1,

as expected. Likewise, we define the distinguishability as in Eq. 4.7, replacing S with S(AB).

At the optimal Sth, we find F = 90%. We note that if the distributions were in fact Gaussian,

then this improvement in SNR would give a distinguishability of 91.5%, slightly higher than

what we achieve.

Achieving the performance above requires quantum limited amplification, so that η = 1.

Josephson parametric amplifiers provide one avenue to this limit, and are rapidly improving,

recently achieving η ≈ 0.5 Abdo et al. (2014); Mallet et al. (2011); Teufel et al. (2009). This
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Figure 4.6 – (a) The scatter plot of the filtered Homodyne signals from two probe cavities
with the presence/absence of the signal photon. (b) The histogram of the sum Homodyne
signal SAB and the corresponding distinguishability in the two cascaded transmons case.
The parameters are: γA01 = γB01 = 1, γA12 = γB12 = 0.1, gA = gB = 2.45, δ1A = δ1B = −0.8,
δ2A = δ2B = −18, γc = 0.1, EA = EB = 0.032, κA = κB = 0.037, ϕA = ϕB = π/2, t0 = 0
and T = 80.

compares very favorably to HEMT amplifiers for which η ≈ 1% Mallet et al. (2011); Teufel

et al. (2009). From Eqs. 4.2 and 4.4, we see that if η < 1, the signal is reduced by a factor

of
√
η and the total noise is also slightly reduced. Thus we estimate that for current state-

of-the-art with η = 0.5, SNR1 ≈ 0.94 which implies F ≈ 75.5%. Anticipating η = 0.8 may

be achievable in the near future, in which case we estimate SNR1 = 1.15 and F ≈ 80%.
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4.3 Quantum hypothesis testing

The single-photon detection problem in our model discussed above is actually a quantum

binary decision problem, i.e., to determine the presence/absence of a single photon. This

issue can be treated using the quantum hypothesis testing Helstrom (1967, 1968, 1969);

Tsang (2012); Van Trees (2004). Quantum hypothesis testing gives a estimation of the

state of a quantum system among a finite number set of possible states with minimum error

probabilities. Recently it has been applied to qubit state readout Gambetta et al. (2007).

To explain the basic idea of quantum hypothesis testing, we take a binary-state system

as an example. To make a decision about such a binary-state system, two hypotheses

are involved: a null hypothesis H0 and an alternative hypothesis H1, which is the event of

interest. In our case, H0 and H1 correspond to two distinct initial conditions specified by

possible photon numbers in the signal.

Based on a homodyne measurement record I(t), we make two hypotheses: there is no

photon or there is one photon in the signal. The system state conditioned on no signal

photon can be described by the unnormalized stochastic master equation:

dρ0 = dt(L0ρ0 + I(t)(e−iϕâρ0 + eiϕρ0â†)) (4.15)

where

L0ρ = −i[Ĥs, ρ] +D[
√
γ01σ̂01]ρ+D[

√
γ12σ̂12]ρ+D[

√
κâ]ρ, (4.16)

and the probability of no photon based on the measurement record I(t) is

p(0|i) ∼ Tr(ρ0) (4.17)

where i = 0 or 1, depending on which state the record I(t) corresponding to.

The system state conditioned on one signal photon can be described by the unnormalized
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stochastic master equation:

dρ1 = dt(L1ρ1 + I(t)(e−iϕâρ1 + eiϕρ1â†)) (4.18)

where

L1ρ1 = −i[Ĥs, ρ] +D[
√
γcĉ] +D[

√
γ01σ̂01]ρ (4.19)

+ D[
√
γ12σ̂12]ρ+D[

√
κâ]ρ+

√
γcγ01([ĉρ, σ̂10] + [σ̂01, ρĉ

†]),

The probability of having a single photon based on the measurement record I(t) is

p(1|i) ∼ Tr(ρ1) (4.20)

A quantity used for comparing probabilities of the two hypotheses called the likelihood ratio

is defined as

Λ =
Tr(ρ1)

Tr(ρ0)
(4.21)

which is a comparison of the probabilities of the two hypotheses. Practically, we can set

a threshold value for the likehood ratio, Λth, and for each trajectory we compare Λ with

this threshold and decide which state the signal mode is, i.e., for jth trajectory, if Λ > Λth,

conditioned on have i photon (i=0,1), Pj(0|i) = 0 amd Pj(1|i) = 1. The distinguishability F

or the correct probability Pc between no signal photon and one signal photon is defined as

F = Pc = 1− Pe (4.22)

= 1− 1

2
(

n∑
j

Pj(0|1)/n+
n∑
j

Pj(1|0)/n)

=
1

2
(

n∑
j

Pj(0|0) +
n∑
j

Pj(1|1))/n

where we have chose the priori for both no photon and one photon hypotheses as 1
2

and n

is the total number of trajectories.
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Figure 4.7 – The histogram of the likehood ratio Λ for zero and one photon states and the
distinguishability. The priori probabilities P0 = P1 = 1

2 for both no photon and one photon
hypotheses.

Figure 4.7 show the histograms of logΛi, for the cases i = 0 and i = 1. Unlike the histogram

of the filtered homodyne signals, the histograms for the likelihood values are not Gaussian

distributions due to the nonlinear filtering process. There is a slight improvement in the

distinguishability compared to the linear filter situation (F=84.6%). However, to evaluate

the distinguishability using quantum hypothesis test, one needs to solve nonlinear master

equations, which is much more time and resources consuming than stochastic unraveling

using system wave functions. Therefore, the small improvement is not worth the effort.

4.4 Measurement induced decoherence and pulse distor-

tion

In our proposed detector, there is in fact some distortion of the signal pulse envelope, as the

transmon-cavity unit coherently interacts with the signal field, closely analogous to the pulse

envelope distortion found in Sathyamoorthy et al. (2014). This is shown in Fig. 4.8(a). Here,

we have allowed the detuning δ2 to vary, in order to vary the distinguishability from almost

undistinguishable F = 0.5 to the best achievable F = 0.9. We see that the pulse envelope

is maximally distorted when F is largest, which follows since this is the condition under

which the measurement back-action in maximized. For photon counting considered in this
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Figure 4.8 – (a) Pulse envelope distortion. (b) Measurement induced decoherence of the
signal microwave photon state. The grey dash curves denote the input signal field and the
solid curves denote the output signal field at different distinguishability. The blue (δ2 = −6)
and orange (δ2 = −18) curves represent the output signal field after interacting with one
transmon and the green (δ2A = δ2B = −18) curves represent the output signal field after
interacting with two transmons. The other parameters are: γA01 = γB01 = 1, γA12 = γB12 = 0.1,
gA = gB = 2.45, δ1A = δ1B = −0.8, γc = 0.1, EA = EB = 0.032 and κA = κB = 0.037.

work, the deterministic pulse distortion is not a significant issue. However it may become

so if the transmon were to be used to induce gates between photon-encoded states (e.g.

in an interferometer), since the pulse-shape would encode some amount of ‘which-path’

information leading to a reduction in coherence between different paths Shapiro (2006).

It may be possible to circumvent this problem, albeit at the cost of significant complexity

Chudzicki et al. (2013).

Next, we turn to measurement induced decoherence effect. To study this, we consider what

happens to a signal field that is prepared in a superposition of Fock states. In this case,

QND measurement of the photon number should cause decoherence between the com-

ponents in the superposition, leaving populations unchanged Brune et al. (1996); Slichter

et al. (2012). Suppose r̂ is an operator acting on the signal field. In a QND number mea-

surement, [r̂†r̂, Ĥs] = 0, while [r̂, Ĥs] ̸= 0 so that the coherence between Fock subspaces

⟨r̂⟩ decays during the interaction.
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Figure 4.9 – (a) Discrimination of states |0⟩ and |1⟩ with distinguishability F . (b) The illustra-
tion of the relation between the system coherence and the distinguishability.

To explain the decoherence effect clearly, we first consider a toy model using a POVM to

study the relation between the measurement efficiency and the decoherence effect. Sup-

pose that we perform measurements on a binary system with states labels as |0⟩ and |1⟩.
Two positive operators associated with measurements of two states |0⟩ and |1⟩ are defined

as:

k̂0 =
√
F |0⟩ ⟨0|+

√
1− F |1⟩ ⟨1| (4.23)

k̂1 =
√
1− F |0⟩ ⟨0|+

√
F |1⟩ ⟨1|

where F is the efficiency of measuring two states and the operators k̂0 and k̂1 satisfy the

completeness condition k̂†0k̂0 + k̂†1k̂1 = 1. Assuming that the initial state is |ψin⟩ = c0|0⟩ +
c1|1⟩, the density matrix for the output state is

ρout = k̂0|ψin⟩ ⟨ψin| k̂†0 + k̂1|ψin⟩ ⟨ψin| k̂†1, (4.24)

and the off-diagonal coherence remaining after the measurements is

⟨σ̂x⟩ = Tr((|0⟩ ⟨1|+ |1⟩ ⟨0|)ρout) =
√
F(1− F)(c∗0c1 + c0c

∗
1) (4.25)

For perfect measurements, F = 1 and ⟨σ̂x⟩ = 0, which indicates that the system coher-

ence vanishes; for worst measurements or completely indistinguishable states, F = 0.5

and ⟨σ̂x⟩ = 0.5, which indicates that the system coherence remains the initial value. The

dependence of the coherence remaining in the system after measurements on the mea-
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surement efficiency F is plotted in Figure 4.9(b). In the regime that the states are not well

distinguishable or the measurement is not successful, the coherence decreases slowing

as F increases. As the measurement of the system states approaches unit efficiency, the

coherence tends to rapidly decreases as F increases.

To demonstrate this effect via our detection model, we take a superposition state (|0⟩ +
|1⟩)/

√
2 as the initial state of the fictitious source-cavity and see how ⟨r̂⟩ evolves during the

measurement process. Fig. 4.8(b) shows the time evolution of ⟨r̂⟩, for different values of

distinguishability. This confirms that when the system is tuned to maximise the distinguisha-

bility, coherence is most rapidly suppressed.

4.5 Two-photon process

The saturation effects come from the single photon transition. By going to few photon

transitions, maybe saturation effects can be reduced. To study this situation, a different

configuration is considered: the interaction between the cavity field and the transmon 1-

2 transition is a two-photon process. The remaining part of the system is the same as

the previous sections. In this configuration, once the transmon is excited from its ground

state to the middle state by the signal photon, two photons in the cavity can be absorbed

and released by the the transmon 1-2 transition in one cycle, therefore we expect that one

signal photon induces double phase shifts on the cavity field.

The Hamiltonian for a phenomenological model which we invoke as a starting point is (~ =

1)

Ĥ = g(â†2σ̂12 + â2σ̂21) (4.26)

Compared to a one-photon process described by the Jaynes-Cumming Hamiltonian H =

g(â†σ̂12 + âσ̂21), the chance for a two-photon process to occur is much lower and therefore

two-photon coupling coefficient is quite small in current lab conditions. The corresponding
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Figure 4.10 – The Wigner function of the cavity field for the case of (a) no signal photon and
(b) one signal photon in a two-photon process. (c) is the sum of (a) and (b). The parameters
are:γ = 1, γc = 0.1, κ = 0.038, g = 0.8, δ2 = −15, δ1 = −0.521 and E = 0.0452.

motion equations for the cavity field operators are

ȧ = −i2gâ†σ̂12 − κ/2â+
√
κâin (4.27)

ȧ† = i2gâσ̂21 − κ/2â† +
√
κâ†in

In the bad-cavity limit, κ≫ g, ⟨â⟩,

â =
2

κ
(−i2g( 2

κ
(2igâσ̂21 +

√
κâ†in))σ̂12 +

√
κâin) (4.28)

The first-order term of â is

â(1) =
−8ig

κ
√
κ
â†inσ̂12 +

2√
κ
âin ≈ −8igα∗

in

κ
√
κ

σ̂12 +
2√
κ
âin (4.29)

Substituting the first-order solution Eq. (4.29) into the system Hamiltonian Eq. (5.27) and

keep the leading order, we have

Ĥeff ≈ √
γeff(αinσ̂12 + αinσ̂21) (4.30)

Signal (S1 − S0) Variance 1 (V1) Variance 0 (V0) SNR
1 16.1 100.2 80 1.20
2 17.3 146.9 80 1.13

Table 4.1 – The data comparison between the one-photon transition case (1) and the two-
photon transition case (2). Vi (i=0,1) denote the variances for zero/one signal photon states.
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where we have assumed the input field is real and
√
γeff = 4gαin

κ
. The input-output relation

is

â(1)o =
√
κâ(1) − âin ≈ −2i

√
γeff σ̂12 + âin (4.31)

By comparison with the results in the one-photon process case, Ĥ =
√
γ(α∗σ̂12 + ασ̂21)

and âo = −i√γσ̂12 + âin, it is obvious that there is a factor of 2 enhancement in Eq. 4.31.

We can extend this analysis to a N-photon process using the same procedure and it is easy

to obtain the N-photon process effective Hamiltonian Ĥ(N)
eff =

√
γeff(α

∗σ̂12 + h.c.) and the

output field â(N)
o = −iN√

γeff σ̂12 + âin with γeff = (g2NαN−1/
√
κ
N
)2.

However, the analysis above requires the bad cavity limit, which conflicts with the interpre-

tation of the improvement of SNR by a good cavity. We have optimized parameters of the

system with the two-photon process using the quantum master equation

dρ

dt
= −i[Ĥs, ρ] +D[

√
γcĉ] +D[

√
γ01σ̂01]ρ (4.32)

+ D[
√
γ12σ̂12]ρ+D[

√
κâ]ρ+

√
γcγ01([ĉρ, σ̂10] + [σ̂01, ρĉ

†]),

where

Ĥs = (∆2 +∆1)σ̂22 +∆1σ̂11 − ig(â2σ̂21 − â†2σ̂12)− iE(â− â†) (4.33)

where ∆2 = ω21 − 2ωc and ∆1 = ω10 − ωs. The best SNR in this configuration is about

1.12 and for simplicity here we will not perform the numerous stochastic simulations, in-

stead, we present the Wigner distribution of the cavity field after interaction with zero/one

signal photon, see Figure 4.10. It is a little less distinguishable between zero and one pho-

ton states and the noise distribution of the one-photon input case is larger and it is more

deformed relative to a gaussian distribution, compared to its counterpart in Figure 4.4. Ta-

ble 4.1 gives the direct comparison between the results between the one-photon process

and the two-photon process. It is seen that the slight reduction in SNR of the two-photon

process is not due to the small phase shift or small signal. Actually, the phase shift is a

little larger but higher nonlinearity of the two-photon process makes the noise much larger.



4.6 Conclusion 87

Thus, there is no improvement in SNR from a one-photon process to a two-photon process.

Also, generally a two-photon process has less probability to happen, i.e., a lower coupling

rate. Therefore, we conclude that a two-photon probe transition is not optimal for the single

photon detection in our model, though in other applications its high nonlinearity may help.

4.6 Conclusion

In summary, we have demonstrated a proposal for counting itinerant microwave photons in a

non-absorbing manner, which exploits the large cross-Kerr nonlinearity of a single transmon

in a microwave waveguide Hoi et al. (2013). By synthesising results from Fan et al. (2013);

Sathyamoorthy et al. (2014), and adding a local cavity to each transmon, we find that we

can cascade multiple such devices to produce effective photon counters. With just two, we

achieve a distinguishability of 90%, which may be useful in certain microwave experiments.

We anticipate that 3 or 4 units could achieve fidelities up to 95%.

Additionally, during the investigation of the photon detection scheme, we observe the in-

evitable measurement induced backaction, even in the QND type of measurement. We

quantitatively study the measurement induced pulse distortion and decoherence and the

results confirm that the higher the measurement efficiency, the larger the measurement

induced backaction (more serious pulse distortion and more rapid decoherence).



Chapter 5

Bifurcations in a coupled-resonator and

optomechanical system

In this chapter I will talk about a subject different from preceding chapters: a system consist-

ing of two coupled ring resonators with one resonator mechanically oscillating. The stability

and dynamical phases of the system is studied using a linearized analysis. It is observed

that the system variables exhibit bistability and limit cycle dynamics and the optomechan-

ical nonlinearity has a dramatic influence on the coupled-resonator induced transparency

effect. Moreover, the system is shown to have good sensitivity for detection of weak impul-

sive forces.

5.1 Coupled-resonator induced transparency (CRIT)

In a Λ-type three-level atomic system, the transparency of light coupled to one transition of

the atomic system is induced with the presence of a strong control field coupled to the other

transition due to the destructive interference. This effect is referred as Electromagnetically

induced transparency (EIT) Harris (2008), depicted in the left panel of Fig. 5.1. This is a

well-known quantum effect in radiation-matter systems. As an introduction, I will talk about a

classical optical anology of EIT–the coupled-resonator induced transparency (CRIT) Smith

et al. (2004), a phenomenon of transparency of a light when it passes two closely located

identical ring optical resonators. The CRIT effect was first put forward in Smith et al. (2004)

and then experimentally observed in Naweed et al. (2005); Xu et al. (2006a). Below I will

show how the coupled-resonator induced transparency happens.

88
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Figure 5.1 – Left is a typical Λ-type three-level system for the EIT effect; Right is a coupled-
resonator optical waveguide system for the CRIT effect.

Here I consider a simple model: a system consisting of two identical coupled ring res-

onators, one of which is evanescently coupled to a waveguide, as shown in the right panel

of Fig. 5.1. The equations of motion for resonator modes are given by:

dâ

dt
= (iω0 − κ1 − κ2) â− igb̂+

√
κ1âin (5.1)

db̂

dt
= (iω0 − κ2) b̂− igâ (5.2)

where ω0 is the frequency of ring resonators, κ1 is the decay rate of the first resonator

mode to the waveguide, κ2 is the loss rate of the resonators and g is the coupling between

two resonators. I denote âin, â and b̂ as the input mode, first resonator mode and second

resonator mode.

Using the input-output relation âout = âin − √
κ1â, the transmission rate of the waveguide

for monochromatic incident light of frequency ω is

T =

∣∣∣∣⟨âout⟩⟨âin⟩

∣∣∣∣2 (5.3)

=

∣∣∣∣∣∣1− κ1(
i∆+ g2

(i∆+κ2)
+ κ1 + κ2

)
∣∣∣∣∣∣
2

(5.4)

Fig. 5.2 shows the transmission rate of light through the waveguide as a function of the
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detuning ∆ = ω0 − ω. Around the resonance, the transmission is nearly perfect, which is

similar to the result in the EIT effect.

The CRIT effect has a variety of applications, such as slowing and stopping light Totsuka

et al. (2007); Xu et al. (2006b) and signal routing Mancinelli et al. (2011). When it works in

highly nonlinear regime, the system shows bistability Lu et al. (2008), which is suggested

as an optical switch Maes et al. (2005)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0
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1

∆
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CRIT

Figure 5.2 – The probe transmission rate versus the detuning in the CRIT system. The
parameters are κ1 = 1, κ1 = 0.001 and g = 0.2.

5.2 Cavity optomechanics

Cavity optomechanics is concerned with the interplay between electromagnetic radiations

and mechanical motions. Radiation fields can be coupled to mechanical motion through

radiation pressures. This phenomenon has its roots in the context of gravitational wave

detection Blair (2005); Braginskii and Manukin. The effects on motions of massive objects

by radiation pressures were first experimentally demonstrated at the beginning of the 20th

century Lebedew (1901); Nxcnons and Huu (1901). In the past few decades, optome-

chanical systems have been playing crucial roles in manipulating photonic and phononic

fields in the frontier research of ultrasensitive detection, quantum optics and quantum in-

formation. So far, a variety of novel optomechanical systems have been developed, such

as microtoroids Schliesser et al. (2006), optomechanical crystals Eichenfield et al. (2009),

membranes Thompson et al. (2008), micromirrors Gigan et al. (2006) and microspheres Li

et al. (2011).
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5.2.1 Hamiltonian of optomechanical interaction

Typically, there are two kinds of opto-mechanical couplings. The first is dispersive coupling,

which results from the mechanical motion modulating the resonance frequency of the op-

tical cavity. The other is dissipative coupling, in which case the position of the mechanical

resonator modulates the cavity damping rate Elste et al. (2009).

0x

Movable mirror

Figure 5.3 – Schematic diagram for the optomechanical system. The position of the movable
mirror varying the frequency of the optical cavity leads to opto-mechanical coupling.

Most work in cavity optomechanics (both theoretically and experimentally) focuses on dis-

persive coupling, which will be introduced below. A basic optomechanical system is a

Fabry-Perot cavity with a movable mirror (Fig. 5.3) and the system Hamiltonian is given by

Ĥ = ~ωc (x) â
†â+ ~ωmb̂

†b̂ (5.5)

Here the frequency of optical cavity ω(x) is mechanical position dependent. â(â†) and

b̂(b̂†), respectively, denote the annihilation (creation) operators for the optical mode and the

mechanical mode. For small displacement with respect to the original position (shown in

figure 1), the frequency of cavity can be expanded as

ωc (x) =
ωc

1 + x/L

= ωc − x
ωc

L
+ ... (5.6)

where ωc is the resonance frequency of the cavity with a length L. If we keep the leading
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term of the cavity frequency, Eq. (5.6) becomes

ωc (x) = ωc − x
ωc

L
(5.7)

where x = xZPF

(
b̂† + b̂

)
is the displacement of the end mirror with the zero-point fluc-

tuation amplitude xZPF =
√

~/2mωm. Then the Hamiltonian 5.5 can be rewritten in an

optomechanical coupling form:

H = ~ωcâ
†â+ ~ωmb̂

†b̂− ~g0â†â
(
b̂† + b̂

)
(5.8)

where g0 = xZPFωc/L is the single photon optomechanical coupling strength. The interac-

tion between the optical field and the mechanical mode Hin = −~g0â†â
(
b̂† + b̂

)
is cubic in

terms of system operators, providing the basis for rich nonlinear dynamics of optomechani-

cal systems.

5.2.2 Equations of motion for optomechanical system

We assume the optical mode of the system is driven by a laser âin with frequency ωL. With

inclusion of thermal fluctuations of mechanical resonator F̂ of the mechanical mode, the

equations of motion for the system operators are given by

·
â = (i∆− κ/2)â+ ig0â(b̂

† + b̂) +
√
κâin (5.9)

·

b̂ = (iωm − γ/2) b̂+ ig0â
†â+

√
γF̂ (5.10)

where ∆ = ωL − ωc is the detuning between the frequency of cavity and laser field, κ is the

cavity decay rate and γ is the mechanical damping. For a thermal system, F satisfies the

two-time correlation functions:

⟨
F̂ (t) F̂ † (t′)

⟩
= (nth + 1) δ (t− t′) (5.11)⟨

F̂ (t) F̂
(
t
′
)⟩

=
⟨
F̂ † (t) F̂ † (t′)

⟩
= 0 (5.12)
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where the mean excitation number of the environment nth is given by

n−1
th = e~ωm/kBT0 − 1 (5.13)

where T0 is the environmental temperature and kB is Boltzmann constant.

5.3 Bifurcations in optomechanical systems

Equations 5.9 and 5.10 are nonlinear in the field amplitudes, very rich nonlinear phenomena

have been reported in opto-mechanical systems with different input intensities or detunings

with respect to the cavity resonance, such as bistability Aldana et al. (2013); Ghobadi et al.

(2011); Jiang et al. (2013), instability Ludwig et al. (2008); Qian et al. (2012), multistability

Dong et al. (2011); Marquardt et al. (2006), self-sustained oscillations Metzger et al. (2008);

Zaitsev et al. (2011) and chaos Carmon et al. (2007); Marino and Marin (2013). The system

considered in this chapter exhibits bistability and self-sustained oscillations, therefore in the

following I will review these two nonlinear effects.

5.3.1 Fixed points, stability and linear analysis

Before talk about bifurcations, I would like to give a brief review on fixed points, stability and

linear analysis of a nonlinear system.

For a dynamical system

˙⃗x = f(x⃗), (5.14)

if x⃗∗ is a fixed point, it is independent on the time, that is, ˙⃗x∗ = 0. Therefore a fixed point is

a solution of the equation f(x⃗) = 0. If a perturbation from a fixed point damps in time, we

call it a stable fixed point; if a perturbation grows in time, we call it an unstable fixed point.

Linear stability analysis is a useful tool to quantitatively study the stability of fixed points in

a nonlinear system. It is based on the first-order perturbation equations, with high-order
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perturbations ignored. Following Strogatz (2001), a two-dimensional nonlinear system is

taken as an example to show the procedure of the linear stability analysis. The equations

of motion of the system are assumed to have the general form as

ẋ = f(x, y) (5.15)

ẏ = g(x, y) (5.16)

The fixed point of the system (x∗, y∗) can be solved by setting the time derivatives to zeros.

The fluctuations around the fixed point or the steady state solution is denoted by

u = x− x∗ (5.17)

v = y − y∗ (5.18)

The equations of motion for the fluctuations (u, v) are

u̇ = ẋ = f(x∗ + u, y∗ + v) (5.19)

= f(x∗, y∗) + u
∂f

∂x
+ v

∂f

∂y
+O(u2, v2, uv)

= u
∂f

∂x
+ v

∂f

∂y
+O(u2, v2, uv)

v̇ = u
∂g

∂x
+ v

∂g

∂y
+O(u2, v2, uv)

For small fluctuations, we ignore the quadratic terms O(u2, v2, uv) and then can write the

equations as  u̇

v̇

 ≈ J(x∗, y∗)

 u

v

 (5.20)

where J(x∗, y∗) =

 ∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

 is the Jacobian matrix. The corresponding characteristic

equation is

|J(x∗, y∗)− λ| = λn + b1λ
n−1 + ...+ bn = 0 (5.21)
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The condition for a stable point (x0, y0) is that real parts of all roots of the characteristic

equation 5.21 are negative, i.e., Reλj < 0, (j = 1, 2, ...). The condition of having a limit

cycle is that a pair of complex eigenvalues of the Jacobian matrix, i.e, λ = µ± iω, crosses

the imaginary axis or the µ = 0 line, the eigenvalues become purely imaginary and the

system loses or gains its stability. Here ω is the oscillation frequency of the periodic solution

or the limit cycle.

The sign of Reλj may be difficult to be determined directly. There are a number of criteria

can help and the one I am going to discuss here is the Routh-Hurwitz theorem. It states

that the characteristic equation 5.21 has all real roots if ∆j > 0 (j = 1, 2, ..., n), where

∆j =

∣∣∣∣∣∣∣∣∣∣∣

b1 1 0 0 ... 0

b3 b2 b1 1 ... 0

...

b2j−1 b2j−2 ... bj

∣∣∣∣∣∣∣∣∣∣∣
(5.22)

This theorem has a useful corollary to justify periodic solutions or limit cycle dynamics: the

characteristic equation 5.21 has a pair of purely imaginary roots and the all the other roots

negative if and only if bj > 0 (j = 1, 2..., n), ∆n − 1 = 0 and ∆j > 0 (j = n− 3, n− 5, ...).
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Figure 5.4 – The phase portrait of a saddle-node bifurcation based on Eqns. 5.23 and 5.24
as the parameter u increases. The phase portraits are generated using the PPlane (a Matlab
toolbox).
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5.3.2 Saddle-node and Hopf bifurcations

Mathematically, a bifurcation takes place when the equilibrium of a nonlinear system un-

dergoes qualitative changes in its solution structure with one or more system parameter(s)

varying, such as changes in the number or the stability of fixed points or limit cycles. Bi-

furcation is a signature of high nonlinearity of a system. There are various bifurcations and

the two involved in this thesis the saddle-note bifurcation and the Hopf bifurcation will be

introduced below.

In a saddle-note bifurcation the fixed points are created or destroyed as one parameter is

varied. For instance, in the proposed model in next section, the number of fixed points

changes from one to three when the input field amplitude is varied. A prototypical mathe-

matical model of a saddle-node bifurcation in two dimensions is given by

0 10 20 30 40
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u
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Figure 5.5 – (a) The phase diagram of a saddle-node bifurcation; (b) An example of a bistabil-
ity “S" curve, which consists of two saddle-node bifurcations. “SN 1" and “SN 2" denotes two
saddle-note bifurcations. Blue solid curves denote stable branches, while red dash curves
denote unstable branches.

ẋ = u− x2 (5.23)

ẏ = −y (5.24)

The phase portraits of the system for three different values of parameter u (u = −1, u = 0

and u = 1)are plotted in Fig. 5.4. At u = −1, there is no fixed point in the system and as

u increases across the imaginary axis and becomes positive, firstly one fixed point appear
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at the origin and then two fixed points appears at (±
√
u, 0), in which (

√
u, 0) is a stable

node and (−
√
u, 0) is a saddle. A typical bistability “S" curve or the hysteresis of a system

is generated by two saddle-node bifurcations, as illustrated in Fig. 5.5.
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Figure 5.6 – The phase portrait of a supercritical Hopf bifurcation based on Eqns. 5.25
and 5.26 as the parameter u increases. The phase portraits are generated using PPlane
(Matlabtoolbox).

A Hopf bifurcation occurs when a conjugated complex pair of roots crosses the boundary

of the stability axis (or the imaginary axis). A prototypical model of Hopf bifurcation is

ẋ = a(−y + x(u− (x2 + y2))) (5.25)

ẏ = a(x+ y(u− (x2 + y2))) (5.26)

For a = +1 the Hopf bifurcation is supercritical and for a = −1 the Hopf bifurcation is sub-

critical. When u varies from a negative value to a positive value, the limit cycle is changed

from a stable spiral to an unstable spiral and a stable limit cycle with the radius of
√
u, which

can be seen from phase portraits plotted in Fig. 5.6. Different from the saddle-node or other

stationary bifurcations, systems with Hopf bifurcations exhibit periodicity, resulting in self-

sustained oscillations of system variables or limit cycle dynamics. An interesting feature is

that the oscillation frequency is irrelevant to the driving frequency. For instance, periodic

behaviors are able to occur with a constant driving field in the regime of Hopf bifurcations.

In an opto-mechanical system, limit cycle dynamics usually happens at blue detuning. The

classic dynamics of limit cycles have been observed experimentally in Anetsberger et al.

(2009); Carmon et al. (2005); Metzger et al. (2008); Zaitsev et al. (2011) and studied the-

oretically Khurgin et al. (2012); Marquardt et al. (2006); Zaitsev et al. (2012) and quantum
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limit cycles have been investigated in Ludwig et al. (2008); Qian et al. (2012).

5.4 Nonlinear dynamics in a hybrid coupled-resonator and

optomechanical system

The CRIT effect Smith et al. (2004) describes a phenomenon of the transparency of light

when it passes two closely located identical ring optical resonators. This transparency

comes from the interference between two pathways of the light, the Fano effect in ring

resonator system.

Now I consider the situation where one of the ring resonators in a coupled-resonator optical

waveguide (CROW) system is mechanically vibrating and thus the coupled optical modes

and mechanical vibration mode form a joint CROW and optomechanical system. We expect

that the nonlinearity induced by the vibration of the mechanical resonator causes interesting

changes of the original CRIT effect and some other nonlinear behaviors in the joint CROW

and optomechanical system.

5.4.1 Model

The system under consideration is shown in Figure 5.7: one ring resonator a is evanescently

coupled to another ring resonator b and a waveguide on its right and left sides, respectively.

The resonator b vibrates freely while the resonator a is static. The input light is sent to the

system through the waveguide. The system Hamiltonian consists of three parts (~ = 1):

Ĥsys = Ĥ0 + Ĥint + Ĥdri (5.27)

The free Hamiltonian includes the mechanical vibration mode, optical modes in ring res-

onators:

Ĥ0 =
1

2
ωm

(
x̂2 + p̂2

)
+ ωaâ

†â+ ωbb̂
†b̂ (5.28)
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where x̂ and p̂ are dimensionless position and momentum operators which satisfy [x̂, p̂] = i.

ωm is the mechanical resonance frequency and â† (â) and b̂†(b̂) are creation(annihilation)

operators of ring resonator mode with frequency ωa and optical whispering gallery mode

with frequency ωb, respectively. The interaction Hamiltonian is given by

Ĥint = −g1b̂†b̂x̂+ g2

(
b̂â† + âb̂†

)
, (5.29)

The first term is the interaction between the optical resonator mode b and mechanical mode

with coupling strength g1 and the second term is the coupling between the two optical res-

onators with the coupling constant g2. The Hamiltonian for the driving term is

Ĥdri = i
√
κex

(
Sine

−iωintâ† − S∗
ine

iωintâ
)

(5.30)

where Sin is the amplitude of the driving laser with frequency ωin and κex is the coupling

between the waveguide and the optical resonator a.

Figure 5.7 – Schematic diagram for the coupled-resonator waveguide system with optome-
chanical coupling.

In the frame rotating at ωin, we obtain the motion equations for the expectation values of
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the system operators:

d ⟨â⟩
dt

= −
(
i∆+ κ1 +

κex
2

)
⟨â⟩ − ig2

⟨
b̂
⟩
+
√
κexSin (5.31)

d
⟨
b̂
⟩

dt
= − (i (∆ + δ) + κ2)

⟨
b̂
⟩
+ ig1 ⟨x̂⟩

⟨
b̂
⟩
− ig2 ⟨â⟩ (5.32)

d ⟨p̂⟩
dt

= −γm ⟨p̂⟩ − ωm ⟨x̂⟩+ g1

⟨
b̂†b̂

⟩
+ ξm (t) (5.33)

d ⟨x̂⟩
dt

= ωm ⟨p̂⟩ . (5.34)

where ∆ = ωa−ωin is the detuning between optical resonator and laser field, δ = ωb−ωa is

the frequency difference between two optical resonators. Here we phenomenologically in-

troduce the damping rates κ1 and κ2 of the two ring resonator modes. The mechanical mode

is affected by a viscous force with the damping rate γm and by a Brownian stochastic force

with noise ξm (t), which obeys the correlation ⟨ξm (t) ξm (t′)⟩ = 2mγmkBT0/(~ωm)δ (t− t′)

with Bolzman constant kB and environmental temperature T0.

5.4.2 Stability analysis

When the system is strongly driven, it can be characterized by the semiclassical steady-

state solution with large amplitudes for both mechanical and cavity modes. In the following,

we denote ys as the steady state mean value of the operator ŷ. The steady-state solu-

tions can be obtained by setting the time derivatives to zero and factorizing the expectation

values. Here we present the steady-state value equation for the equilibrium position:

|Ag1|2 x3s + ig1 (BA
∗ − AB∗) x2s + |B|2 xs −

g1g
2
2κexIin
ωm

= 0, (5.35)

where parameters A = i∆+(κ1 + κex/2), B = A (i (∆ + δ) + κ2)+g
2
2 and the incident light

intensity Iin = |Sin|2. Eq. (5.35) is a cubic equation for equilibrium position xs, therefore

there are at most three real roots.
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Figure 5.8 – The bifurcation diagram in the (∆, Iin) plane. The parameters are g2 = 0.04,
k1 = 0.0001, k2 = 0.02, kex = 0.04, ωm = 1, δ = 0.2, g1 = 0.01 and γm = 0.001.

The steady state optical mode in the ring resonator a is also found to be

as =

√
κex(

i∆+ κ1 + κex/2 +
g22

i(∆+δ−g1xs)+κ2

)Sin, (5.36)

According to the input-output relation Sout = Sin −
√
κexas, the output light is written as

Sout = Sin

1− κex(
i∆+ κ1 + κex/2 +

g21
i(∆+δ−g1xs)+κ2

)
 (5.37)

Hence the transmission rate of light is expressed as

T =

∣∣∣∣Sout

Sin

∣∣∣∣2
= |1− C|2 (5.38)

where

C =
κex

i∆+ κ1 + κex/2 +
g22

i(∆+δ−g1xs)+κ2

. (5.39)

Then, we turn to study the dynamics of the quantum fluctuations around the steady state

by expanding the operators around its stable-state value as ŷ = ŷs + δŷ, and introducing

the field quadrature δXc =
(
δĉ+ δĉ†

)
/
√
2 and δYc =

(
δĉ− δĉ†

)
/
(√

2i
)

(ĉ = â, b̂, Sin). The
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Figure 5.9 – Equilibrium surface of position of resonator in three dimensions. The parameters
are the same as in Figure 5.8

linearized motion equations are then written as

ẏ (t) = Jy (t) + ξ (t) (5.40)

where y (t) = [δXa, δYa, δXb, δYb, δp, δx]
T , the noise term ξ (t) =

[√
κexXin,

√
κexYin, 0, 0, 0, ξm

]T
,

and the Jacobian matrix is given by

J =



−κ ∆ 0 g2 0 0

−∆ −κ −g2 0 0 0

0 g2 −κ2 ∆eff 0 −g1Yb
−g2 0 −∆eff −κ2 0 g1Xb

0 0 g1Xb g1Yb −γm −ωm

0 0 0 0 ωm 0


, (5.41)

where κ = κ1+κex/2, ∆eff = ∆+δ−g1xs, Xb = (bs + b∗s) /
√
2, and Yb = (bs − b∗s) /

(√
2i
)
.

The steady-state solution is stable if all the eigenvalues of the Jacobian matrix have neg-

ative real parts. It can be verified with the help of the Routh-Hurwitz criterion Jeffrey and

Zwillinger (2007) to determine the stable and unstable region on the parameters space.

Figure 5.8 provides the bifurcation diagram in the parameters space (∆, Iin). The whole

plane is divided into several stable and unstable regions, which are determined by the Hopf

bifurcation and the saddle node bifurcation. Figure 5.9 presents the 3D equilibrium surface
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of mechanical resonator position against the input intensity Iin and the detuning ∆. Unlike

the usual steady-state surface in a cusp catastrophe model, Figure 5.9 demonstrates a

complicated state surface, which results from the complicated nonlinear function of Iin and

∆ in Eq. (5.35).

5.4.3 Bistability in the transparency window of CRIT

To examine the stability properties of the system, the cross sections of the folded surface

with different input intensities are shown in the figure 5.10. When Iin = 100, there are three

unstable regions. Except for a bistable branch on the main continuous curve, two isolated

branches (isolas) are above the lower main branch. When the initial equilibrium position of

mechanical resonator is on the isolated branches and the detuning is continuously swept

in an increasing or decreasing manner, the equilibrium position will jump to the lower main

branch, but not vice versa. This unique feature is a non-hysteretic multi-stability, which

may be used as unidirectional switch. For a larger input intensity, Iin = 110, one isola

merges with the bistable branch and another one becomes a mushroom structure (Figure

5.10(f)). When further increasing the input intensity, the top parts of the normal bistable

and the mushroom-like branches merge, which allow two-way switching, and another isola

forms under the main branch (Figure 5.10(g)). The size of isola becomes smaller and
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smaller, and finally vanishes. In terms of the transmission rate, from the Figure 5.10(a-d)

we see that there are also isolas structure on the transmission curves, similar to the case

of equilibrium position of the mechanical mode. This means we can observe and study the

isolas structure in our system via photoelectric detector.
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Figure 5.11 – Top panel is the transmission rate T as a function of detuning ∆ and bottom
panel is the corresponding equilibrium mechanical position. The parameters are δ = 0, ωm =
1, g2 = 0.02, κ1 = 0.06, κ2 = 0.0001, κex = 0.1, Iin = 1 and γm = 0.001

Next the effect of nonlinearity induced by the mechanical resonator on the coupled res-

onator induced transparency is discussed. Different from previous situation, here we set

the frequencies of two ring resonator identical. Figure 5.11(a) shows the transmission ver-

sus the detuning with different optomechanical coupling strengths. Obviously, when the

optomechanical coupling strength vanishes, there is a symmetric narrow transparency win-

dow in the middle of transmission spectrum (blue curve in Figure 5.11(a)), which is the CRIT

effect. As the coupling g1 increases, the transparency window bends towards right side and

the transmission becomes bistable (red curve). With further increasing g1, the transparency

window becomes severely distorted and even intersects with itself. More interesting, for

certain g1, the distorted transparency window breaks into a mother branch and a isolated

branch. In fact, we find that the nonlinearity has more influence on the transparency window

region but less on the other region.
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5.4.4 Weak impulsive force detection based on CRIT

Figure 5.11 in the last section has shown that the CRIT transparency window is narrow and

mechanical motion dependent. Bistability also be observed in the transparency window

with strong optomechanical coupling. Motivated by this, here we propose to detect a weak

force acting on the mechanical motion by measuring the transmission of the light. Weak

force detection using opto-mechanical systems have been studied in Gavartin et al. (2012);

Moser et al. (2013); Pontin et al. (2014).

Assuming that an external force f acts on the vibrating ring resonator, the Hamiltonian of

the system becomes
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Figure 5.12 – The transparency window at different detuning δ. The parameters are ωm = 1,
∆ = 0, g1 = 0.005, g2 = 0.02, κ1 = 0.06, κ2 = 0.0001, κex = 0.1, Iin = 1 and γm = 0.001

Ĥ0 =
1

2
ωm

(
x̂2 + p̂2

)
+ ωaâ

†â+ ωbb̂
†b̂

−g1b̂†b̂x̂+ g2

(
b̂â† + âb̂†

)
+ fx̂ (5.42)

The last term describes the coupling between the external force and mechanical vibration

mode.
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Figure 5.13 – (a) The incident impulsive force f = f0(400ω
−1
m < t < 500ω−1

m ); (b) One
trajectory of the time evolution of the output field intensity with the impulsive force acting on
the system. The parameters are f0 = 1, kBT0 = 10~ωm, δ = 0.006, ∆ = 0, ωm = 1,
g1 = 0.005, g2 = 0.02, κ1 = 0.06, κ2 = 0.0001, κex = 0.1, Iin = 1 and γm = 0.1

Defining x̂′ = x̂+ f
ωm

, the Hamiltonian (5.42) becomes

Ĥ =
1

2
ωm

(
x̂′

2
+ p̂2

)
+∆â†â+ (∆ + δeff) b̂

†b̂

−g1b̂†b̂x̂′ + g2

(
b̂â† + âb̂†

)
, (5.43)

where δeff = δ + g1f
ωm

. One can see that Hamiltonian (5.43) and (5.27) have the same

mathematical structure. By comparison, applying an external force is equivalent to adding

an additional frequency shift on the optical field b, or adding a change in δ. As shown in

Figure 5.12, a slight change in δ will lead to a significant shift in the CRIT window and

therefore the transmitted field intensity will have a detectable change. Suppose that a weak

impulsive force f(t) acts on the mechanical mode, then the force induced difference in the

transmitted field can be well distinguished as shown in Figure 5.13. The relation between

the transmitted field intensity and the force strength is presented in Figure 5.14 and there is

a quite large quasi-linear regime in the relation.

As defined in Mancini and Tombesi (2003), the minimal detectable force can be obtained
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Figure 5.14 – The normalized output field intensity as a function of incident force. The
parameters are δ = 0.006, ∆ = 0, ωm = 1, g1 = 0.005, g2 = 0.02, κ1 = 0.06, κ2 = 0.0001,
κex = 0.1, Iin = 1 and γm = 0.1

from the relation

SNR =
Sf√
N

≤ 1 (5.44)

and the minimal detectable force

fmin =

√
N
S

(5.45)

Using Eq. 5.45, the minimal detectable force can be estimated based on Fig. 5.13 at a

fixed temperature and a fixed measurement time. Here we use a set of typical parameters

to estimate the sensitivity of impulsive force detection: ωm ∼ 10 MHz, m ∼ 1 pg, γm ∼ 1

kHz, the environment temperature T0 ∼ 10 mK, and the measurement time Tm ∼ 200ω−1
m .

Under these conditions, the minimal force can be detected is around 10−14 N·Hz−1/2.

5.4.5 Limit cycles and periodic outputs

This section shows the limit cycle dynamics of the system and it is found that limit cycles are

insensitive to thermal noise. As mentioned before, limit cycles often appear in systems with

Hopf bifurcations. Recall the bifurcation diagram (Fig. 5.9), both saddle-node bifurcation

and Hopf bifurcation exist in the regime of Iin above 100 and thus we explore limit cycle
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Figure 5.16 – The limit cycle of the mechanical mode in three-dimensional space. The pa-
rameters are: g2 = 0.04, k1 = 0.0001, k2 = 0.02, kex = 0.04, ωm = 1, ∆ = 0.01, δ = 0.2,
g1 = 0.01 and γm = 0.1.

dynamics in this strong driving regime.

Figure 5.15 presents the limit cycle dynamics or the self-sustained oscillations of the nor-

malized output optical field intensity Iout/Iin and the corresponding trajectories of one res-

onator field and the steady-state mechanical motion at two different driving field intensity.

At Iin = 130, the output field intensity oscillates with one fast and one slow frequencies,

i.e., within one slow oscillation period the variable has a few cycles of fast oscillation, and

the trajectories in the phase space have relatively complicated structure; while at Iin = 138
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the oscillations of the output field intensity is a standard sine curve and the corresponding

trajectories in the phase space are ellipses. To see the dependence of limit cycles on the

input field intensity Iin, the limit cycle is plotted in three dimensions (the x−p−Iin space) in

Figure 5.16. Thermal noises are inevitable in a finite-temperature opto-mechanical system.
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Figure 5.17 – The influence of the mechanical thermal noise on the output intensity of the
field. (a) and (c) the time evolution of normalized output field intensity in the absence of the
thermal noise for the limit cycle and the normal fixed point, respectively. (b) and (d) respond to
the counterparts of (a) and (b) with the thermal noise kBT = 300~ωm. g2 = 0.04, k1 = 0.0001,
k2 = 0.02, kex = 0.04, ωm = 1, δ = 0.2, g1 = 0.01, γm = 0.05 and Iin = 130 for (a)(b) and
Iin = 150 for (c)(d).

Now we study the effect of thermal noises on the limit cycle dynamics. Figure 5.17 com-

pares the output fields with mechanical Brownian noise between a limit cycle (a-b) and a

fixed point (c-d). The tuning from a limit cycle to a fixed point is realized simply by increasing

Iin from 130 to 150. It is clear that for the same amount of thermal noises the output state

of the limit cycle is much less noisy than that of the fixed point, The noise suppression of

limit cycles have been discussed in Kenig et al. (2012); Simpson et al. (2014). This property

suggested this system can be used as an extra stable oscillation generator.
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5.5 Conclusion

In conclusion, we investigated a system consisting of two coupled ring resonators with one

of resonators freely oscillating. This system combines the coupled-resonator induced trans-

parency effect and the optomechanical nonlinearity. It is observed that the light transmis-

sion and the equilibrium position of the mechanical resonator exhibit bistability in different

regimes. Isolas and limit cycles emerge in the system. The isolas or the isolated-branch so-

lutions allow the one-way switch of system outputs and the limit cycles show its insensitivity

to thermal noise of the mechanics. More importantly, the transparency window of the CRIT

effect is dramatically affected by the opto-mechanical nonlinearity and it is shown that the

system is a good platform of detecting weak impulsive forces based on the bistable narrow

transparency window.



Chapter 6

Conclusions and outlook

6.1 Conclusions

The results of this thesis include two main topics: single microwave photon detection using

transmons and bifurcations of a coupled-resonator and optomechanical system. The first

topic was covered in Chapters 3-4 and the second topic was discussed in Chapter 5.

Quantum superconducting devices provide strong interaction between “atoms" and fields,

which enable single superconducting “atoms" to show nonlinear optics phenomena, such

as EIT Dutton et al. (2006) and cross-Kerr effect Hoi et al. (2013). In Hoi et al. (2013) 20 de-

gree cross-Kerr phase shift of a microwave field was observed in a single transmon system.

This work motivated our first attempt towards a single microwave photon detector–using

a transmon provided cross-Kerr nonlinearity to detect the photon number in a traveling

microwave field through homodyne measurements of another field. We used continuous

quantum trajectories to simulate the homodyne detection with inclusion of “atomic" sponta-

neous emissions and the shot noise. The measurement results turned out to be negative,

however, an important limitation in photon counting based on cross-Kerr mechanism was

explored, that is, the saturation of “atomic" transitions limits the SNR of the cross-Kerr-type

photon detection. This was shown by consistent results from stochastic simulations and

analytical solutions.

To overcome to the limitation in the first work, a subsequent scheme was presented with

largely enhanced SNR. The enhancement comes from the adopt of a probe cavity, which

improves the SNR from 0.5 to 1.2, compared to the first work. Furthermore, by cascading

more transmon-cavity units, the detection efficiency could be further improved. With only

111
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two transmons, the SNR is increased to about 1.7 and the correct probability to distinguish

a single photon from the vacuum reaches 90%. In this scheme photons are not absorbed in

the detection process so that they can be repeatedly measured or used for further applica-

tions. In addition, we also showed that as the photon measurement efficiency gets higher,

the signal photon pulse becomes more distorted and the system coherence reduces more

rapidly.

Another work contributed to this thesis is about bifurcations in a CRIT system with optome-

chanical coupling. The system dynamics were analyzed in the semi-classical picture. The

presence of the coupling between two resonators and the optomechanical coupling lead

to saddle-node bifurcation and Hopf bifurcation occurring in the system and consequently

bistabilities and limit cycles of system variables were observed. Moreover, the transparency

window of the CRIT is sensitive to the optomechanical nonlinearity and detunings, based

on which the system was shown to be able to serve as a good weak impulsive force sensor.

6.2 Further work

Finally, I would like to discuss about future directions relevant to the context of the thesis

and some potential extension work based on the preceding investigations.

• Photon-number-resolving detector at microwave frequencies.

The work presented in this thesis on single-photon counting was focused on the dis-

crimination between n = 0 and n = 1, that is, the detector tells whether there is a

photon coming or not. Sometimes, to know whether a pulse contains one or more

photons is necessary, for instance, for the situation of faint coherent fields as single

photon sources, the probability of having two-photon state might not be negligible and

in this situation a photon-number-resolving detector would be needed.

• Bifurcation detector.

Bifurcations have been applied to qubit readout and one example is the single-shot

readout of superconducting qubit states using bifurcation provided by a Josephson
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parametric amplifier Mallet et al. (2009). Inspired by this, here we want to use bifurca-

tions to detect a single microwave photon. The system is the same as the transmon-

cavity detection system discussed in Chapter 4 expect for exchanged positions of

probe and signal tones. The cavity is coherently driven and its central frequency is

resonant with 0-1 transition of the transmon. We assume that the driving is so strong

that the system enters the bistability regime. Around the critical point, the system is

very sensitive even to small perturbations. Therefore, when the system is tuned to the

vicinity of the critical point of the system bistability, the presence of a single photon

with its frequency resonate with the transmon 1-2 transition would cause the switch

from one stable branch to the other and hence a significant change of the system

output would be detected.

• Improving single microwave photon detection using time-dependent coefficients.

A recent work Pierre et al. (2014) shows that it is possible to tune the coupling be-

tween a superconducting resonator and a transmission line via controlling the flux in

a SQUID loop. Motivated by this work, I suggest replace the constant cavity decay

rate κ by a time-dependent cavity decay rate κ(t) in the detection scheme presented

in Chapter 4, which could be realized by adding the SQUID to one boundary of the

probe cavity and applying a time-dependent flux. By dynamically tuning κ(t), I expect

the efficiency of the single microwave photon detection will be improved.

• Compensation of pulse distortions due to the measurement.

In Chapter 4, we have explore a fundamental principle of quantum measurement: the

higher the measurement efficiency, the greater is the decoherence and pulse distor-

tions. These effects do not change photon number measurement results but pulse

distortions might cause mismatching between the reference pulse and the measured

signal pulse, which will lead to a reduced visibility in an interferometer. Therefore, it is

important to compensate measurement induced pulse distortion effect. One potential

solution is to use an inverse process of the previous nonlinear interaction used in the

measurement.

• Using limit cycle dynamics for detecting weak external disturbances and limit cycles

in the quantum regime.
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In Chapter 5, we have shown that limit cycle dynamics are insensitive to thermal

noises and the switch between limit cycles and a stable fixed point can be realized by

simply tuning the input field power and other parameters. Based on these, limit cycle

dynamics might be useful for detecting the presence of an external perturbation, such

as a weak force or a weak magnetic field. Besides, it is interesting to study limit cycles

in quantum regimes, in particular, to study the effect of quantum noises on limit cycles.

• CRIT with two vibrating resonators.

In the proposed scheme in Chapter 5, one resonator in the original CRIT set-up is

mechanically vibrating and the system has six dimensions. If both resonators of the

CRIT system vibrate, the system will have eight dimensions, which may results in

higher-order nonlinearities and a more interesting bifurcation diagram.
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Appendix A

Appendices

A.1 The analytical solution for a three-level system on res-

onance

Here we provide the details of the analytical solution for a three-level system. As presented

in the main text, we consider a three-level transmon coupling with a coherent field at the

|b⟩ ↔ |c⟩ transition and a single photon at the |a⟩ ↔ |b⟩ transition. The one-photon Fock

state master equations Baragiola et al. (2012) are given by

ρ̇0,0(t) = −i[Ĥs, ρ0,0] +D[L̂b]ρ0,0 +D[L̂c]ρ0,0 (A.1)

ρ̇0,1(t) = −i[Ĥs, ρ0,1] +D[L̂b]ρ0,1 +D[L̂c]ρ0,1 + f ∗(t)[L̂b, ρ0,0] (A.2)

ρ̇1,1(t) = −i[Ĥs, ρ1,1] +D[L̂b]ρ1,1 +D[L̂c]ρ1,1 + f ∗(t)[L̂b, ρ1,0] + f(t)[ρ0,1, L̂
†
b] (A.3)

where the temporal profile function f(t), system operators L̂b, L̂c and system Hamiltonian

Hs have been defined in the main text. Here ρm,n is a matrix and the subscripts m and n

denote the photon number basis.

Initially the transmon is prepared at the ground state. The lowest equation for ρ0,0(t) can

be easily solved as ρ0,0(t) = ρ0,0(0). Then it is substituted to the next equation for ρ0,1(t),

which is traceless. For our system and an arbitrary input Fock state, the generalized density

matrices ρm,n in the Bloch-like representation can be parameterized as

ρm,n =
1

3
Iδ(m,n) +

1

2
ām,nλ̄ (A.4)

where I is a 3 by 3 identity matrix, vector ām,n is defined as ām,n = (a1mn, a2mn, a3mn, a4mn, a5mn, a6mn,
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a7mn, a8mn) and λ̄ = (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8). λ̄ is a tensor consisting of eight Gell-

Mann matrices Hioe (1983):

λ1 =


0 1 0

1 0 0

0 0 0

λ2 =


0 −i 0

i 0 0

0 0 0

λ3 =


1 0 0

0 −1 0

0 0 0

λ4 =


0 0 1

0 0 0

1 0 0



λ5 =


0 0 −i
0 0 0

i 0 0

λ6 =


0 0 0

0 0 1

0 1 0

λ7 =


0 0 0

0 0 −i
0 i 0

λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 (A.5)

These matrices are traceless, Hermitian, and obey the relation tr(λiλj) = 2δij .

Substituting ρ0,1 in terms of ā0,1 into the Fock master equation, we can have the coefficient

equations for ai01(t)(i = 1, 2, ...8). With initial conditions ai01(0)(i = 1, 2...8) = 0, we have

the solutions:

a101(t) = a201(t) = a301(t) = a801(t) = 0 (A.6)

a501(t) = C1C5 exp(−θ1t) + C1C6 exp(−θ1t) + C1C7 exp(−γcont/2) (A.7)

a601(t) = C1C2 exp(−θ1t) + C1C3 exp(−θ2t) + C1C4 exp(−γcont/2)] (A.8)

a401(t) = ia501(t) (A.9)

a701(t) = −ia601(t) (A.10)
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where

θ1 = 3γb/4 +
√
γbθ/4, θ2 = 3γb/4−

√
γbθ/4 (A.11)

θ =
√

−32β2 + γb (A.12)

C1 =

√
γbγcon

θ[2γb(4β2 + γb)− 3γbγcon + γ2con]
(A.13)

C2 = 4
√
γb(8β

2 − γb +
√
γbθ) + γcon(

√
γb − θ) (A.14)

C3 = 4
√
γb(−8β2 + γb +

√
γbθ − γcon(

√
γb + θ) (A.15)

C4 = −4γbθ + 2γconθ (A.16)

C5 = 2
√
2β(−3γb + 2γcon +

√
γbθ) (A.17)

C6 = 2
√
2β(3γb − 2γcon +

√
γbθ) (A.18)

C7 = 4
√

2γbβθ (A.19)

and the density matrix ρ0,1 at time t can be represented as

ρ0,1(t) =
1

2
ā0,1λ̄ =


0 0 0

0 0 0

a401(t) a601(t) 0

 (A.20)

where we used γc = 2γb (for a transmon).

The top level equation ρ1,1(t) which represents the actual system evolution is not traceless.

In the Bloch representation the equation is ρ1,1 = 1
3
I+ 1

2
ā1,1λ̄ with initial conditions: a811(t =

0) = −2/
√
3 and ai11(t = 0) = 0 for i ̸= 8. Substituting this expression and the solution for

ρ0,1 into the master equation we have the motion equation for ā1,1.

Only motion equations for a211, a311 and a811 are coupled and non-zero. We define a vector:

x = (a211, a311,a811)
T (A.21)

with initial condition

x(0) = (0, 0,− 2√
3
)T (A.22)
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dx

dt
= Ax+B(t) (A.23)

with coefficient matrices:

A =


−3γb/2 −2

√
2γbβ 0

2
√
2γbβ −5γb/2 −

√
3γb/2

0
√
3γb/2 −γb/2

 , B(t) =


−2

√
γbξa501

−γb + 2
√
γbξa601

− γb√
3
− 2

√
3γbξa601

 (A.24)

By diagonalization and integration, we obtain the solutions as:

x[i](t) (A.25)

= Vi1exp(A
D
11t)[

∫
exp(−AD

11t
′)[Q11B1(t

′) +Q12B2(t
′) +Q13B3(t

′)]dt′ − 2√
3
Q13]

+V12exp(A
D
22t)[

∫
exp(−AD

22t
′)[Q21B1(t

′) +Q22B2(t
′) +Q23B3(t

′)]dt′ − 2√
3
Q23]

+V13exp(A
D
33t)[

∫
exp(−AD

33t
′)[Q31B1(t

′) +Q32B2(t
′) +Q33B3(t

′)]dt′ − 2√
3
Q33]

= Vi1S1 + Vi2S2 + Vi3S3 −
2√
3
Vi1exp(A

D
11t)Q13 −

2√
3
Vi2exp(A

D
22t)Q23 −

2√
3
Vi3exp(A

D
33t)Q33

where

Si = exp(AD
ii t)

∫
exp(−AD

ii t
′)[Qi1B1(t

′) +Qi2B2(t
′) +Qi3B3(t

′)]dt′ (A.26)

=
γb
λi

(
Qi2 +

1√
3
Qi3

)
(1− exp (λit))

+
2
√
γbγconC1C4

γcon + λi

(
Qi2 −

√
3Qi3

)
(exp(−(γb + γcon)t)− exp (λit))

−
2
√
γbγconC1C2

∆1 + λi + γcon/2

(
Qi2 −

√
3Qi3

)
(exp(−(∆1 + γcon/2)t)− exp (λit))

−
2
√
γbγconC1C3

∆2 + λi + γcon/2

(
Qi2 −

√
3Qi3

)
(exp(−(∆2 + γcon/2)t)− exp (λit))

with matrices V , Q and AD being the eigen-vector matrix, inverse eigen-vector matrix and

the diagonalized matrix of the coefficient matrix A.
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Then we have the system density matrix at time t:

ρ1,1(t) =
1

3
I +

1

2


a311(t) +

a811(t)√
3

−ia211(t) 0

ia211(t)
a811(t)√

3
− a311(t) 0

0 0 −2a811(t)√
3

 , (A.27)

The transmon polarisation for the homodyne detection is

⟨ŷ(t)⟩ = Tr[−i(L̂c − L̂†
c)ρ1,1](t) = Tr [λ2ρ1,1] (t) = a211(t) (A.28)

The noise or the variance of the detected signal, can be calculated by the quantum regres-

sion theorem Lax (1963):

(∆S)2 = E
[
S2 − S̄2

]
(A.29)

=

∫ T

0

dt

∫ T

0

dt′u(t′ − t)Tr[ŷ(t)eL(t
′−t)(−iL̂cρ(t)

+iρ(t)L̂†
c)] + u(t− t′)Tr[ŷe(t−t′)(−iL̂cρ(t

′)

+iρ(t′)L̂†
c)] + T − S̄2

where S =
∫ T

0
dtJhom(t), S̄ =

∫ T

0
dtyuc(t) and the function u(t) = 1(t > 0);u(t) = 0(t < 0).

The subscripts uc means unconditional results.

A.2 Markovian white noise approximation

This part will give the derivation of the Markovian approximation in a system-reservoir in-

teraction model. For simplicity, the system operator coupled to the reservoir is taken as a

bosonic mode and it couples with the reservoir linearly. The Hamiltonian for the system in

a rotating wave approximation is

Ĥ = ~ωcĉ
†ĉ+ ~

∫ +∞

−∞
ωb̂†ω b̂ωdω + ~

∫ +∞

−∞
dωgω(b̂

†
ω ĉ+ ĉ†b̂ω) (A.30)
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where ĉ is a system operator and b̂ω is the annihilation operator for the excitation in the

reservoir.

The equations of motion are

db̂ω
dt

= −iωb̂ω − igω ĉ (A.31)

dĉ

dt
= −iωcĉ− i

∫ +∞

−∞
dωgωbω (A.32)

Formally integrating the motion equation for the reservoir, we have

b̂ω(t) = b̂ω(0)− igω

∫ t

0

dt′ĉ(t′)e−iω(t−t′) (A.33)

Substituting Eq. A.33 into Eq. A.32, we have

dĉ

dt
= −iωcĉ− i

∫ +∞

−∞
dωgω(b̂ω(0)− igω

∫ t

0

dt′ĉ(t′)e−iω(t−t′)) (A.34)

= −iωcĉ+ F̂ (t)−
∫ t

0

dt′
∫ +∞

−∞
dωg2ω ĉ(t

′)e−iω(t−t′))

where F̂ (t) = −i
∫ +∞
−∞ dωgω b̂ω(0) is defined as a noise operator, which only depends on the

system initial condition.

Transforming the system operator to the slowing varying annihilation operator

ĉ→ ĉeiωct, (A.35)

we have

dĉ

dt
= F̂ (t)−

∫ t

0

dt′
∫ +∞

−∞
dωg2ω ĉ(t

′)e−i(ω−ωc)(t−t′) (A.36)

Under the Markovian white noise approximation, the coupling coefficient gω varies very little

around the frequency ωc and so that it can be taken as a constant g. The second term on
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the right hand can be integrated as∫ +∞

−∞
g2ωdωe

−i(ω−ωc)(t−t′) ≈ g2
∫ +∞

−∞
dωe−i(ω−ωc)(t−t′) (A.37)

= 2πg2δ(t− t′)

and we arrive at the Langevin equation for ĉ:

dĉ

dt
= F̂ (t)− 2πg2ĉ (A.38)

= F̂ (t)− γĉ

Now we have the relation between the coupling coefficient and the decay rate in an open

environment as g =
√
γ/2π. Eq. A.39 shows that the interaction with the environment

causes two effects on the system operator ĉ: the quantum fluctuations F̂ and the dissipation

with the rate γ.

A.3 Displaced coherent state picture

When the intra-cavity photon number is large, i.e.,
⟨
â†â

⟩
= (2E/κ)2 ≫ 1, the system

Hilbert space will scale as the photon number , which causes computational difficulties. In

this case, one can displace the large coherent part away and consider the small quantum

fluctuations part of the cavity field. Here we take our photon detection model as an example

to derive the master equation in the displaced picture. The original master equation is given

by

ρ̇ = i[ρ, Ĥs] + κD[â]ρ+ γ12D[σ̂12]ρ+ γ01D[σ̂01]ρ (A.39)

+
√
γcγ01([ĉρ, σ̂10] + [σ̂01, ρĉ

†])

where

Ĥs = ∆1σ̂11 + (∆1 +∆2)σ̂22 + E(â+ â†) + g(âσ̂21 + â†σ̂12) (A.40)
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Figure A.1 – The comparison of the time evolution for the intracavity field photon number
and the transmon middle state population with the original master equation and the displaced
master equation. The parameters are: g = 4, κ = 1, γ = 4, E = 1, and γc = 1.8.

When the mean photon number of â field, say, ⟨a⟩ss = α >> 1, a displacement transforma-

tion can be made:

D̂†(α)âD̂(α) = â+ α (A.41)

Under this transformation, the Lindblad decay term becomes

κD[â]ρ = κ[(â+ α)ρ(â† + α∗)− 1/2(â† + α∗)(â+ α)ρ− 1/2ρ(â† + α∗)(â+ α)](A.42)

= κ[âρâ† + α∗âρ+ αρâ† + |α|2ρ− 1/2(â†âρ− αâ†ρ

− α∗âρ− |α|2ρ− ρâ†â− αρâ† − α∗ρâ− |α|2ρ)]

= κD[â]ρ+ 1/2κ[α∗â− αâ†, ρ]

The second term can be rewritten into the effective system Hamiltonian:

Ĥs = ∆1σ̂11 + (∆1 +∆2)σ̂22 + E(â+ â†) + g(âσ̂21 + â†σ̂12) (A.43)

+ g(ασ̂21 + α∗σ̂12) + iκ/2(α∗â− αâ)

= ∆1σ̂11 + (∆1 +∆2)σ̂22 + g(âσ̂21 + â†σ̂12) + g(ασ̂21 + α∗σ̂12)

Now we can see that after the displacement, the master equation remains its form with only

the effective system Hamiltonian changed. Figure A.1 shows the simulation results with
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original and displaced master equations. By comparing the time evolution of the cavity field

photon number and the transmon middle state population, we can see that perfect agree-

ment between the results by original and displaced master equations. I should mentioned

that in the simulation with the original master equation, the initial state of the cavity field is

the steady state ⟨â(t)⟩ = α = −i2E/κ, not the vacuum.

By the displacement, the system space dimension is reduced from |α|2 to a space dimen-

sion for small quantum fluctuations around the steady state. This results in much less

requirements of time and computation resources.


