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Graphical Abstract 

 

Highlights 

 V-doped TiO2/diatomite composite photocatalyst was synthesized.  

 The physiochemical property and solar light photoactivity were characterized. 

 The presence and influence of V ions in TiO2 matrix was systematically analyzed. 
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 The photocatalysis for Rhodamine B were studied under solar light illumination. 

Abstract 

V-doped TiO2/diatomite composite photocatalysts with different vanadium concentrations 

were synthesized by a modified sol‒gel method. The diatomite was responsible for the well 

dispersion of TiO2 nanoparticles on the matrix and consequently inhibited the agglomeration. 

V-TiO2/diatomite hybrids showed red shift in TiO2 absorption edge with enhanced absorption 

intensity. Most importantly, the dopant energy levels were formed in the TiO2 bandgap due to 

V4+ ions substituted to Ti4+ sites. The 0.5% V-TiO2/diatomite photocatalyst displayed 

narrower bandgap (2.95 eV) compared to undoped sample (3.13 eV) and other doped samples 

(3.05 eV) with higher doping concentration. The photocatalytic activities of V doped 

TiO2/diatomite samples for the degradation of Rhodamine B under stimulated solar light 

illumination were significantly improved compared with the undoped sample. In our case, 

V4+ ions incorporated in TiO2 lattice were responsible for increased visible-light absorption 

and electron transfer to oxygen molecules adsorbed on the surface of TiO2 to produce 

superoxide radicals ∙O2
‒, while V5+ species presented on the surface of TiO2 particles in the 

form of V2O5 contributed to e‒‒h+ separation. In addition, due to the combination of 

diatomite as support, this hybrid photocatalyst could be separated from solution quickly by 

natural settlement and exhibited good reusability. 

Key words 

photocatalytic degradation, doping TiO2, diatomite, sol‒gel method 

 

1. Introduction  

Currently, organic dyes and their effluents have become one of the main sources of 

water pollution due to the greater demand in industry such as textile, paper, and plastic. These 

organic dyes are composed of certain organic compounds, which are toxic to microorganism, 

aquatic life and human beings, and constituting a serious concern to the ecosystem [1]. Be 

different from the traditional techniques such as absorption on carbon, ultrafiltration, reverse 

osmosis, coagulation by chemicals, etc., photocatalysis is one of the best routes for the 

complete mineralization of organic compounds to CO2, water, and mineral acids. Until now, 

TiO2 photocatalyst has been widely studied because of its high corrosion and photo-corrosion 
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resistance in aqueous media, strong oxidizing power, environmental friendliness, and easy 

availability [2]. However, a major drawback of pure TiO2 is the large bandgap, which means 

it can only be activated by irradiation with UV-light (λ≤387 nm for anatase), limiting the 

practical efficiency for solar applications [3]. Therefore, in order to enhance its low 

utilization of solar energy, it is necessary to facilitate the visible-light absorption. Transition 

metals doped TiO2 has shown great promise in extending the spectral response and achieving 

visible-light-activated photocatalysis [4]. The incorporation of transition metals in the titania 

crystal lattice may result in the formation of new energy levels between valence band (VB) 

and conduction band (CB), indicating a shift of light absorption towards the visible-light 

region. Vanadium doped TiO2 seems one of the best alternatives for this object [5, 6]. The 

researchers attributed the enhanced photocatalytic activity of V-doped TiO2 to the following 

one or several reasons: (i) the enhanced absorption in the visible-light region; (ii) the 

improved quantum efficiency owing to the effective e‒‒h+ pair separation; and (iii) the 

presence of both V4+ and V5+ species in the V-doped TiO2 materials. Additionally, the former 

can contribute to the increased visible-light absorption and electron transfer, while the latter 

is just a potential electron acceptor and enhances e‒‒h+ separation [7-9].  

The most commonly used TiO2 morphology is that of mono-dispersed nanoparticles 

wherein the diameter is controlled to give benefits from the small crystallite size (high 

surface area, reduced bulk recombination) without the detrimental effects associated with 

very small particles (surface recombination, low crystallinity) [10]. However, the fabrication 

procedure and apply this TiO2 nanoparticle in pollutant elimination suffer from several 

difficulties, such as agglomeration, separation and recovery of fine catalyst particles, which 

limit to exploit its best photo-efficiency [11]. In recent years, combining TiO2 nanoparticles 

with carbon materials (such as carbon nanotube, graphene and graphene oxide) or magnetic 

materials is an effective method to overcome these disadvantages [12-15]. Graphene oxide is 

a chemically modified graphene with oxygen functional groups [16]. In addition, the carbon 

materials may improve the e‒‒h+ pair separation as well. Unfortunately, the processing 

technique of these carbon materials and magnetic materials is complicated and not 

environmental friendly. Thus from the point of economical view, many researchers have 

started to study the natural support materials. Porous minerals are regarded as optimal support 

for photocatalyst due to their high porosity, large specific surface area, high stability and 

abundance. Therefore, nano-TiO2/mineral composites have been postulated as suitable 

alternative photocatalyst in environmental remediation [17-23]. Because there are a lot of 
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silicon hydroxyls and hydrogen bonds on the surface of diatomite, which can form strong 

forces with TiO2 nanoparticles. Consequently it can inhibit the agglomeration of TiO2 and 

protect them from being washed away in flow system. Based on these, we have synthesized 

the TiO2/diatomite hybrid catalysts by sol‒gel method under facile condition [20]. 

Advantages of such structure are their tailored morphology, unified porosity, well reusability 

and high mechanical strength, which result in enhanced performance in photo-induced 

applications, mainly in photocatalysis.  

Motivated by the above successful applications and fascinating advantages our current 

work focuses on the preparation of vanadium doped TiO2/diatomite hybrids. So far, though 

V-doped TiO2 nanoparticles and diatomite supported TiO2 composites have shown either 

efficient visible-light photocatalytic activity or improved reusability, few reports are 

published on vanadium doped TiO2/diatomite junction system. We expect that vanadium 

doped TiO2/diatomite material may demonstrate a new and efficient photocatalytic system 

with a view to practical applications. Herein, metallic vanadium doped TiO2/diatomite 

composites (V-TiO2/diatomite) with well dispersion of TiO2 nanoparticles on the surface of 

diatomite were prepared by a modified sol‒gel method. This good dispersion or reduced 

agglomeration of TiO2 nanoparticles is expected to increase the contact opportunity between 

active site and reactant and facilitate the light absorption. Accordingly, the photocatalytic 

efficiency of the V-TiO2/diatomite hybrids will be increased. The physicochemical properties 

of the resulting hybrids were characterized by X-ray diffraction (XRD), Raman spectrometer, 

transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis 

diffuse reflectance spectrometer (UV-vis DRS), and fluorophotometer. Subsequently, their 

solar-light photocatalytic activity was evaluated by the degradation of dye Rhodamine B. 

And the V concentration, adsorption behaviours of dye and recycling ability were also 

investigated. 

2. Experimental methods 

2.1. Materials 

The chemicals used in the present study were of analytical grade. Tetrabutyl titanate 

(C16H36O4Ti, TBOT), ethanol (C2H5OH), hydrochloric acid (HCl), acetic acid (CH3COOH) 

and ammonium metavanadate were purchased from Sigma-Aldrich Co. LLC. For synthesis 

the chemicals were used as received without further purification. Rhodamine B (RhB) was 

purchased from Beijing Reagent Co. (Beijing, China). 
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2.2. Preparation of V-TiO2/diatomite hybrid catalysts 

Purified diatomite (DE) was used as carrier of the vanadium doped TiO2/diatomite 

(V/TD). The purification process has been described in detail elsewhere [24]. The preparation 

of V/TD hybrid catalysts was undertaken by a modified sol‒gel method [20]. DE suspensions 

with different molar ratios (0.25, 0.5, 1.0 and 1.5%) of vanadium ions were prepared by 

dispersing 1.0 g of DE in a mixture constituted by 14.0 mL of ethanol and 1.0 mL of acetic 

acid, under stirring for 30 min. Afterwards 1.5 mL of TBOT were added dropwise into the 

DE suspension, under continuous stirring, followed by the addition of 12.0 mL of ethanol: 

water solution (v: v=1:1; pH=2) which led the hydrolysis of TBOT at moderate rate. The 

mixture was then stirred continuously for 12 h to immobilize the as-generated TiO2 colloids 

on the DE surface. The final product was dried in an oven at 105oC for 4 h, followed by 

calcination (650oC for 2 h in air, heating rate of 2.5°/min). Undoped TiO2/diatomite (TD) was 

prepared by a similar method as V/TD without metal salts. Pure V-TiO2 without diatomite as 

reference was also synthesized, which was denoted as V/T. 

2.3. V-TiO2/diatomite hybrid catalysts characterization 

The crystal phase properties of the samples were analysed with a D8 advance X-ray 

diffractometer (Bruker, Germany) equipped with Cu Kα radiation (λ=0.154056 nm) in the 2θ 

range from 10 to 80º with a scanning rate at 4º/min. The average crystallite sizes were 

calculated from the di�raction line width based on Scherrer's relation:  cos/89.0D ; 

where   denotes the wavelength of X-ray and   is the corrected full width at half maxima 

(FWHM). Raman spectra of the samples were taken on the Renishaw inVia Raman 

spectrometer with a 514 nm Argon laser line. Both the spectral resolution and the accuracy in 

the Raman shift are estimated to be ~2 cm-1. The morphology of hybrid catalysts were 

observed with Tecnai F20 equipped with an energy dispersive X-ray (EDX) analysis. XPS 

spectra were recorded using an X-ray photoelectron spectrometer (Kratos Axis Ultra) which 

uses Al Kα (1486.6 eV) X-ray source. The curve fitting for the high resolution C1s core level 

peaks was done using Casa XPS software by means of least square peak fitting procedure 

using a Gaussian–Lorentzian function. The optical properties of the samples were 

characterized by UV-vis diffuse reflectance spectroscopy (DRS) using a UV-vis 

spectrophotometer (Cary 500, Varian Co.), in which BaSO4 was used as the internal 

reflectance standard. The band gap value was estimated by extrapolating the linear part of the 

plot of (F(R)hv)1/2 versus hv : F(R)hv=A(hv-Eg)2, where F(R)=(1-R)2/2R stands for the 

ACCEPTED M
ANUSCRIP

T



Kubelka-Munk function calculated from the reflectance spectrum; and hv is the photon 

energy expressed in eV. The photoluminescence (PL) spectra of the samples were measured 

with Horiba Fluorolog-3 spectrometer using the 320 nm line of Xe lamp as the excitation 

source.  

2.4. Photocatalytic activity measurements  

Rhodamine B (RhB) was used as a model pollutant to evaluate the photocatalytic 

activity of the as-prepared V-TiO2/diatomite hybrid catalysts through a kinetic test. In a 

typical measurement, 0.05 g of V-TiO2/diatomite catalysts was suspended in 100 mL of 

standard RhB aqueous solution (10 mg/L). In the centre of tube, a 500W Xe lamp (having 

closet spectral match to the solar spectrum) was used as the stimulate solar-light source. Prior 

to illumination, the suspension was stirred in the dark for 1 h to establish an 

adsorption/desorption equilibrium between the photocatalyst and RhB molecules. Then, the 

photocatalytic degradation of RhB was initiated. Photodegradation was monitored by 

measuring the absorbance of the solution at 562 nm using UV-vis spectrophotometer (UV-

9000S, Shanghai Yuanxi) and plotting it as a function of illumination time. A comparative 

experiment was carried out under the same conditions using pure V-TiO2 particles (0.05 g) as 

catalysts. The recycling tests were conducted on our materials. First, the hybrids were 

allowed to settle down naturally in the reactor tube (which takes less than 30 min), and then 

were washed with ethanol and distilled water (3 times). The catalysts were then dried at 

105oC overnight before being reused and re-suspended in a fresh RhB solution. Recycling 

test was subsequently performed for four times. 

3. Results and discussion 

3.1. XRD and Raman analysis 

To investigate the crystal structure of the prepared catalysts, we employed XRD for 

the samples. Fig. 1 shows the typical XRD patterns of the prepared samples. The XRD 

pattern of DE is in good agreement with that of the referenced amorphous opal-A, which is a 

characteristic of a broad diffraction peak centred at around 2θ =21.8° [20]. And there are two 

characteristic diffraction peaks at 2θ = 21.4° and 27.2° corresponding to quartz. The spectra 

for vanadium doped TiO2/diatomite hybrids show only the presence of anatase TiO2 with the 

peaks at 25.3, 37.8, 48.1, 53.9 and 62.9o representing the crystal planes for (101), (004), (200), 

(105) and (204), respectively [25]. There is no presence of any other polymorph for TiO2 like 

rutile or brookite observed in the samples. Also, we have not observed any intense diffraction 
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peaks related to the oxides of vanadium, indicating that either the V was successfully 

incorporated into the crystal lattice of anatase TiO2 or the vanadium oxides were dispersed 

well on the surface of the TiO2 particles. The XRD intensity of the anatase peaks decrease 

first with the relative lower doping concentration (Fig. 1c and d). Then with an increase in 

doping concentration, the diffraction intensity almost keeps steady and the diffraction peaks 

become narrower (Fig.1e and f), indicating the formation of the larger TiO2 crystallites and 

the better crystalline degree, which is an important factor affecting photocatalytic efficiency 

[26]. It has been reported that transition metal ions as dopant incorporated into TiO2 might 

arouse the crystal lattice distortion [27]. Thus, to investigate the changes that V ions might 

cause in the crystal structure of TiO2, we enlarged the anatase (101) diffraction peak of the V-

TiO2/diatomite hybrids. We can see from the spectra that with the increasing V concentration 

the position of the anatase (101) peak gradually shifts towards the higher diffraction angle. 

This suggests that the V ions might successfully incorporate into the crystal lattice of anatase 

TiO2 as V4+ and/or V5+ and substituted for Ti4+. Compared with V5+ ion (0.068 nm), the ion 

radius of six-coordinated V4+ (0.072 nm) is much closer to that of Ti4+ (0.074 nm) [6]. This 

fact implies that V4+ ions are easier to substitute for Ti4+ sites and V5+ ions are apt to form 

V2O5 oxides localized on the TiO2 surface [28]. Similar results have also been found by other 

researchers [6, 29, 30]. Additionally, subsequent XPS and UV-vis DRS analysis results 

further confirm this conclusion (see Section 3.3 and 3.4). Also, the average crystalline sizes 

were calculated by the help of Scherrer’s formula from the diffraction plane (101) of the 

anatase (mentioned above in Section 2.3). And the results indicate that the crystalline size of 

TiO2 decreases first and then increases (Table 1). Thus, as depicted in Table 1, with the 

increasing vanadium doping concentration the V4+ species implantation inhibits crystallite 

growth [6, 31] and the V5+ species (as V2O5 oxides) promote it. 

 

To further confirm that the V ions as the dopants were successfully incorporated into 

the TiO2/diatomite composites, Raman spectra of undoped TiO2/diatomite and V-doped 

samples are shown in Fig. 2. The Raman spectra of all samples correspond to the anatase 

phase of TiO2. Anatase TiO2 has six Raman active modes (A1g + 2B1g + 3Eg) [32-34]. The 

dominant Eg peak appears at 144 cm-1. The other Eg peaks as low intense peak at 196 and 638 

cm-1. One B1g peak appears at 396 cm-1 and the (A1g + B1g) peak appears at 516 cm-1. Raman 

peak at around 144 cm-1 in each of the samples is attributable to the Ti‒O bending vibration 

[35]. It can be seen that the Eg peak of TiO2 exhibits a slight blue shift with the increasing V 
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concentration. This result might be attributed to the distortion of crystal lattice structure and 

the increased Ti‒O bond strength rendered by the V4+ and V5+ ions [6, 27]. Raman result 

clearly indicates that the anatase crystal structure of the TiO2 is well maintained even after 

vanadium cations (V5+/V4+) doping (it is well known that Raman spectroscopy can detect 

even minor amount of rutile or brookite phase [36]).  

3.2. Morphology analysis 

The TEM micrographs of the DE, undoped TiO2/diatomite and V-TiO2/diatomite 

samples are illustrated in Fig. 3. As observed from the images, the diatomite as the support 

exhibit highly porous disk-like shape with radius of ~10 μm (Fig. 3a). And this structure is 

maintained well even after the coating of TiO2 nanoparticles (Fig. 3b and d). Moreover, most 

of TiO2 nanoparticles exhibit irregular spherical shapes with low level of agglomeration. This 

indicates the intimate interaction between bare TiO2 nanoparticles and diatom appears in this 

hybrid catalyst. The EDX measurement confirms the composition of the hybrids (Inset) and 

demonstrates the presence of Si, Ti and O; meanwhile Cu signal is derived from the cooper 

grid for TEM measurement. HRTEM image (Fig. 3c) of individual particles clearly shows 

the presence of lattice fringes hence indicating the crystalline nature of the photocatalyst 

particle at nano-scales. The interplanar spacing was measured to be around 0.354 nm which is 

in good agreement with the (101) family of planes for the anatase phase (0.352 nm) [36].  

 

3.3 XPS analysis 

The chemical states of the dopants incorporated into TiO2 were investigated by XPS. 

The survey and the core levels of Ti2p, O1s, and V2p in V-TiO2/diatomite composites are 

reported in Fig.4. Fig. 4a depicts the survey spectra of the prepared hybrids with different 

vanadium doping concentrations. The signals of Ti, O, and Si elements can be clearly 

observed in all the samples. In Fig. 4b, the two peaks centred at 458.6 and 464.3 eV are 

assigned to the Ti2p3/2 and Ti2p1/2 of TiO2, respectively, correspond to +4 valence state of Ti 

[37]. The doublet peaks are due to the spin-orbit splitting of Ti2p and separated by 5.7 eV. 

This result suggests that TiO2 in the product is only anatase phase, which is consistent with 

the XRD and Raman spectra. The Ti2p peak position is shifted by ~0.3 eV towards positive 

binding energy value as compared to the undoped sample (458.5 eV), thus indicating that part 

of V ions are incorporated into TiO2 lattice and influence the local chemical state of Ti4+ ions 
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[36, 38]. The deconvolution of the O1s spectrum of 1.0%-V/TD shows three peaks (Fig. 4c), 

including a dominant peak at about 533.1 eV and two lower energy peaks at approximately 

531.5 and 530.1 eV. The fitting peaks are due to Si‒O bonding, O‒H in the hydroxyl groups 

(such as absorbed H2O), and Ti‒O bonding, which account for 66.2%, 7.6%, and 26.2% 

relative atomic percentage of O in 1.0%-V/TD, respectively. The shift observed in Ti‒O 

bonding energy might be attributed to the formation of Ti‒O‒Si bond, resulting from the 

higher electronegativity of Si in comparison to Ti [39]. The XPS spectrum of the V2p region 

for 1.0%-V/TD is shown in Fig. 4d. The V species exist with a close binding energy value for 

V5+2p3/2 and V4+2p3/2. Therefore, the peak fitting at 517.3 eV can be mainly ascribed to 

V5+2p3/2, whereas that at 516.2 eV is assigned to V4+2p3/2 [6, 40]. This indicates that V 

presents in the 1.0%-V/TD hybrids in the form of V5+ and V4+, with higher quantity of V5+ 

ions as indicated by the area under the peak in XPS spectrum. According to the literature [36], 

the presence of V4+ ions might be due to the reduction of V5+ ions from the starting materials 

(NH4VO3) during the preparation. Due to the similar radii, V4+ ions could incorporate in the 

TiO2 lattice by substitutionally replacing Ti4+ ions and forming Ti‒O‒V bond. 

3.4 UV-visible diffuse reflectance spectra (UV-vis DRS) analysis 

It is well known that the photocatalytic activity of a semiconductor catalyst is related 

to its bandgap structure [25]. The bandgap energy is too large for bulk TiO2 to absorb visible-

light. Therefore, the introduction of V species with different contents is expected to decrease 

bandgap energy of TiO2 to some extent. The UV-vis optical absorption spectra obtained by 

the diffuse reflectance of undoped TiO2/diatomite and V-TiO2/diatomite composites are 

shown in Fig. 5a. As we already know, the pure titania shows absorption only in the UV-light 

region (λ≤387 nm) [41], which is associated with excitation of electrons from O 2p to Ti 3d 

electronic orbital [42]. Compared with the spectrum of TD, all vanadium doped samples 

presented the better absorption intensity in UV-light region and an absorption tail in the 

visible-light region (400‒700 nm). Thus, the absorption spectra of V-TiO2/diatomite hybrids 

indicate that the trace incorporation of vanadium led to an absorption shift to the visible-light 

region, which could be ascribed to the formation of isolated impurity energy levels below the 

bottom of CB [38, 43]. Because of these impurity energy levels within the bandgap, the 

electrons in the VB can be excited to the impurity energy levels by absorbing visible-light 

and subsequently transferred to the CB. Using Tauc plot (Fig. 5b), i.e. (F(R)hv)1/2 versus hv 

(mentioned above in Section 2.3), the bandgap energy were deduced by extrapolating the 

linear part of the plot to intersect the photon energy axis. Eg decreases from 3.17 eV (for TD) 
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to 3.13, 2.95, 3.05 and 3.05 eV with the amount of incorporated V at a V/Ti molar ratio 

increasing from 0.25%, 0.5%, 1.0% to 1.5% (Table 1). Moreover, the narrowing of anatase 

bandgap is dominantly due to the presence of V4+ species in the samples with a relative low 

content (<1.5% in our case) of vanadium incorporation [31]. Clearly, the higher V-doping 

(V/Ti=1.0% and 1.5%) causes the bandgap to increase back to 3.05 eV. That is because the 

dominant presence of vanadium species is V5+, acting as electron acceptor and leading fewer 

V4+ incorporated into TiO2 lattice [9]. On the contrary, the presence of crystalline V2O5 

species, having a bandgap of 2 eV [36], on the surface of TiO2, makes the absorption 

threshold of 1.0%-V/TD and 1.5%V-TD is still larger than that of undoped sample. The 

absorption spectra provide thus evidence that V makes a significant influence in the light 

absorption properties of the composites, with contributions of the co-existence of V4+ and V5+ 

by leading a variation of the bandgap and the charge-transfer transition between the d-

electrons of the dopant and the CB (or VB) of TiO2 [6, 9]. That is, in the present case, V4+ 

ions present in the substitutional site of Ti4+ in TiO2 lattice are responsible for decreased 

bandgap energy while V5+ ions present on the surface of TiO2 particle in the form of V2O5 

species contribute to the efficient e‒ and h+ separation [31]. Due to the lower Fermi level of 

V2O5 species, the photo-generated electrons may immediately transfer to V5+ ions leaving 

back holes on the VB resulting in the effective separation of e‒ and h+ [44]. 

 

3.5 Photoluminescence spectra (PL) analysis 

The above deduction can be faithfully authenticated by the PL, which is widely used 

to reflect the fate of photo-generated electron‒hole pairs in semiconductor under light 

illumination. With electron‒hole pair recombination after a photocatalyst was irradiated, 

photons are emitted, resulting in photoluminescence. This behaviour is due to the reverse 

radiative deactivation from the excited state of the Ti species [45]. Fig.6 shows the PL 

spectra of the undoped and vanadium doped TiO2/diatomite composites with different mole 

ratios of V/Ti. The broad peak appears at two main regions, 375‒425 and 450‒500 nm. The 

former is ascribed to the emission of the bandgap transition, while the latter is emission signal 

originating from the charge-transfer transition of an oxygen vacancy trapped electron [46-49]. 

Because the PL emission is the result of the recombination of excited electrons and holes, the 

lower PL intensity of the doped sample indicates the lower recombination rate. As shown in 

Fig.6, the significant PL quenching of TiO2 can be observed after doping with vanadium ions. 
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The decrease in the intensity of PL spectra for the V-doped samples can be explained with the 

following conclusion. Firstly, some electrons excited by UV-light transfer to the V5+ species 

on the TiO2 surface from the TiO2 CB. Secondly, the other electrons excited by visible-light 

are collected by the newly energy levels (V3d (V4+)) generated within the bandgap of TiO2 

[31, 36]) and transfer to V5+ species. All these photo-generated electrons then reacted with 

the oxygen molecules adsorbed on the photocatalyst surface. Therefore, we believe that the 

decrease in PL intensity is in accordance with the improved electron‒hole separation and 

consequently the enhancement in photocatalytic efficiency of the V-TiO2/diatomite 

photocatalyst. In addition, the peak intensity centred at 468 nm decreases first and then 

increases with an increase in vanadium concentration. This may indicate that excess dopant 

concentration beyond the optimum value results in the recombination of electron and hole as 

a consequence of which the photocatalytic efficiency of the catalyst will be decreased.  

 

3.6 Photocatalytic performance 

To specify the effect of the doping concentration on the photocatalytic activities, the 

decomposition of RhB (10 mg/L) under the solar light illumination of V-TiO2/diatomite in 

different mole ratios of V/Ti was carried out and compared with undoped TiO2/diatomite and 

pure V-TiO2 particles (shown in Fig. 7). The relative concentrations of RhB were fitted by 

the apparent first-order rate equation as follows: 

                                                         ln( )
o

C kt
C

                                           (1) 

where C is the RhB concentration at time t, and k is the apparent reaction rate constant. The 

results are listed in Table 2. The table shows that the order of photocatalytic activity of the 

as-prepared samples was 0.5%-V/TD > 1.0%-V/TD > 1.5%-V/TD > 0.25%-V/TD > TD 

under solar light illumination. The photocatalytic activity was enhanced and then decreased 

with an increase in the doping content of vanadium. Clearly, the activity results indicate that 

V doped TiO2/diatomite photocatalyst showed higher activity than undoped TiO2/diatomite. 

This improvement is probably due to the increase in the visible-light absorption on the 

consequence of decrease in the bandgap energy with vanadium doping. In addition to lower 

bandgap energy there are several other factors that may have contributed towards higher 

photocatalytic activity, including the declined electron-hole recombination rate. As confirmed 
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above, the V dopants in our work present in the form of V4+ and V5+ ions. The V4+ 

substitutionally replaces Ti4+ ions in the TiO2 to form isolated impurity levels around 0.8 to 

1.0 eV below the CB of TiO2 [38]. On the other hand, V5+ species trap the photo-generated 

electrons and leave back holes in VB resulting in the efficient separation of e‒ and h+, due to 

the lower Fermi level of V2O5 species [36]. These photo-generated electrons may react with 

the oxygen molecules adsorbed on the surface of TiO2 to produce the oxidant superoxide 

radicals ∙O2
‒. As we can see in PL spectra of undoped and V doped TiO2/diatomite samples 

(Fig.6), the vanadium doping inhibits the recombination rate effectively, resulting in the 

improvement of the photocatalytic efficiency. The photocatalytic activity of 1.5%-V/TD 

declined significantly due to the overmuch doping concentration, which leads to the fast 

recombination of hole and electron pairs. The apparent reaction constants of 0.5%-V/TD, 

1.0%-V/TD and 1.5%-V/TD with efficient improvement towards RhB were 7.19, 7.17, and 

5.13 times higher than that of undoped sample, respectively.  

In order to highlight the function of diatomite support, we also prepared a series of 

pure V-TiO2 samples with the same doping concentration. During the photocatalytic test we 

used the same amount of pure V-TiO2 and V-TiO2/diatomite samples, as shown in Fig. 7a 

and b. The sample without diatomite (1.0%-V/T) only has the degradation efficiency of 

53.74% for RhB after illumination for 5 hrs. Comparatively speaking, the sample supported 

by diatomite (1.0%-V/TD) displays the degradation efficiency of 88.42% for RhB under the 

same solar light illumination. We speculate the reasonable explanation is the introduction of 

diatomite may make the photocatalytic TiO2 nanoparticle with small size and well dispersion 

in suspension system. That is, this form facilitates the e‒ and h+ transport to the surface for 

the following reaction and enlarges the active surface area for reactants and light. 

Furthermore, the weight ratio of TiO2 in this hybrid is only 10%. In the view point of 

practical applications, such a low TiO2 component and doping content meet the requirements 

for building low-cost photocatalysts that need impressive visible-light activity. 

 

The reusability of the 1.0%-V/TD sample was also investigated. As shown in Fig. 7c, 

the composite shows good reusability. The photocatalytic activity remains well after four 

reaction cycles. Additionally, the reused hybrid catalysts still exhibited certain adsorption 

towards RhB and reached equilibrium within 60 min. Compared with the performance in the 

first run, the fourth run presents slightly lower activity, which may be ascribed to 
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intermediate poison to composite surface. The intermediates from RhB degradation could be 

adsorbed on catalyst surface, making low light absorption and electron transfer for 

photocatalysis [50]. Most importantly, this micro-size hybrid catalyst could settle down 

naturally within 30 min, while to separate Degussa P25 or other nano-size catalysts 

centrifugation is necessary. 

4. Conclusion 

The photocatalytic activity of V doped TiO2/diatomite composite, synthesized by 

sol‒gel method, for the degradation of RhB under solar light illumination is significantly 

improved as compared to the undoped sample and unsupported sample. On the basis of 

physiochemical analysis, V4+ and V5+ species were co-exist in our case. V4+ ions presented in 

the substitutional site of Ti4+ in TiO2 lattice are responsible for increased visible-light 

absorption. In the meantime, V5+ species presented on the surface of TiO2 particles in the 

form of V2O5 are responsible for the efficient e‒‒h+ separation and enhanced charge-transfer 

transition towards oxygen molecules adsorbed on the surface of TiO2 for producing ∙O2
‒. The 

photodegradation rate of 0.5%-V/TD was approximately 7.19 times higher than that of the 

undoped sample. Overall, this work provides a strategy for the further enhancement of 

photoactivity of the TiO2/mineral composite catalyst, which may contribute to the deep 

environmental remediation using cost-effective photocatalyst. An interesting use of this 

vanadium doped TiO2/diatomite composites in photocatalytic applications is as filler of 

coating to purify the indoor volatile organic compounds. 
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Figure captions: 

Figure 1 XRD patterns for the diatomite, TiO2/diatomite and V-TiO2/diatomite composites: (a) DE, 

(b) TD, (c) 0.25%-V/TD, (d) 0.5%-V/TD, (e) 1.0%-V/TD and (f) 1.5%-V/TD. 

Figure 2 Raman spectra for the undoped and vanadium doped TiO2/diatomite composites. 

Figure 3 TEM images of (a) purified diatomite (DE), (b-c) undoped TiO2/diatomite, and (d) 1.0%-

V/TD sample. Inset shows the corresponding EDX result. 

Figure 4 (A) XPS survey spectra of (a) TD, (b) 0.25%-V/TD, (c) 0.5%-V/TD, (d) 1.0%-V/TD and (e) 

1.5%-V/TD; (B) Ti2p levels of (a) TD, (b) 0.25%-V/TD, (c) 0.5%-V/TD, (d) 1.0%-V/TD and (e) 

1.5%-V/TD; (C) and (D) are the O1s and V2p levels for the sample 1.0%-V/TD. 

Figure 5 (a) UV-vis diffuse reflectance spectra (DRS) of the undoped and V-doped TiO2/diatomite 

composites and (b) the plot of transformed Kubelka‒Munk function versus the energy of light. 

Figure 6 Photoluminescence spectra (λex=320 nm) of the undoped and vanadium doped 

TiO2/diatomite composites. 
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Figure 7 Photodegradation of RhB over pure TiO2 and undoped and vanadium doped TiO2/diatomite 

composites (a), first-order kinetics plots (b), and reusability test of 1.0%-V/TD (c) under solar light. 

 

Table 1 

Physiochemical properties of undoped and vanadium doped TiO2/diatomite composites 

Sample Crystalline size (nm) Bandgap energy (eV) 
TD 16.69 3.17 

0.25%-V/TD 13.21 3.13 
0.5%-V/TD 16.49 2.95 
1.0%-V/TD 20.88 3.05 
1.5%-V/TD 22.27 3.05 

 

 

Table 2  

Photocatalytic activity of undoped and vanadium doped TiO2/diatomite composites 

Sample k (10-3min-1) R2 
TD 1.19 0.99611 

0.25%-V/TD 1.66 0.99680 
0.5%-V/TD 8.56 0.99742 
1.0%-V/TD 8.53 0.99926 
1.5%-V/TD 6.10 0.99669 
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