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Abstract 31 

Understanding the human and social dimensions of conservation opportunity is crucial for 32 

conservation planning in multiple-use landscapes. However, factors that influence the 33 

feasibility of implementing conservation actions such as the history of landscape 34 

management and landholders’ willingness to engage are difficult or time-consuming to 35 

quantify, and are rarely incorporated into planning. We examine how conservation agencies 36 

could reduce costs of acquiring such data, by developing predictive models of management 37 

feasibility. Our models are parameterized with social and biophysical factors likely to 38 

influence landholders’ decisions to engage in management, with the best-supported model 39 

including property size, number of neighbors, distance from conservation reserves, and 40 

recorded biodiversity surveys on the property. To test the utility of our best-supported model, 41 

we develop four alternative investment scenarios based on different input data for 42 

conservation planning: social data only, biological data only, potential conservation 43 

opportunity using modeled feasibility that incurs no social data collection costs, and existing 44 

conservation opportunity using feasibility data that incurred collection costs. We consider a 45 

case study in south-west Australia, an internationally recognized biodiversity hotspot 46 

managed for agriculture and conservation. Using spatially explicit information on 47 

biodiversity values, feasibility and management costs, we prioritize areas to control an 48 

invasive predator that is detrimental to both agricultural and biodiversity values: the red fox 49 

(Vulpes vulpes). We find the most cost-effective investment scenario is to use a predictive 50 

model of feasibility when social data collection costs are moderate to high, but combining 51 

actual feasibility data with biological data is more-cost-effective for prioritizing management 52 

when social data collection costs are low (<4% of the total budget). Calls for more data to 53 

inform conservation planning should take into account the costs and benefits of collecting 54 

and using such data, to ensure that limited funding for conservation is spent in the most cost-55 

efficient and effective manner.   56 
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Introduction 57 

An understanding of the history of human use of a landscape, and associated opportunities for 58 

implementing conservation actions, is useful to effectively identify priority areas for 59 

management (Knight et al. 2010). Many regions of high conservation value are contained 60 

within private land (Curtis & Mendham 2011), and uncertainty in the opportunities for 61 

conservation in these areas means that information on the ease of management 62 

implementation can avoid misplaced effort in areas with low likelihood of landholder 63 

engagement, or that conflict with human resource use (Ban et al. 2013). Management 64 

feasibility, a component of conservation opportunity (Moon et al. this issue), predicts the 65 

likelihood of successfully implementing an action. Data reflecting feasibility are increasingly 66 

collected and included in conservation priority-setting exercises, including information on 67 

landholder willingness-to-sell (e.g. Guerrero et al. 2010) and social or cultural values of the 68 

landscape (Whitehead et al. in press). Because funding for conservation is limited, cost-69 

effectiveness analysis is often used to solve problems of deciding where to do conservation 70 

actions, by choosing the strategy with the highest rate of conservation return relative to 71 

management costs (e.g. Joseph et al. 2009; Carwardine et al. 2012).  These prioritization 72 

decisions usually account only for the costs of actions (Hughey et al. 2003), and rarely 73 

include the costs of investing in data (Baxter & Possingham 2011). No studies have examined 74 

how sensitive decisions are to the costs of data collected to inform the feasibility of 75 

management implementation (but see Grantham et al. 2008). 76 

For any uncertain action constrained by time or funding, conservation agencies must trade-off 77 

the decision to collect additional biological, social or economic data against the urgency of 78 

the problem, and the resources allocated to action instead of planning (Grantham et al. 2008). 79 

Data on human characteristics used to assess and map feasibility are traditionally collected at 80 

a local-scale through social surveys or interviews, which can be costly, time consuming and 81 

riddled with uncertainty (Lechner et al., this issue). For example, Knight et al. (2010) 82 

undertook 48 interviews lasting an average of 3 hours each to understand opportunities and 83 

constraints over a 1466 km2 region that represented a quarter of the local municipality area. 84 

The data collected therefore represented only a small fraction of the population. Scaling-up 85 

the surveys to encompass the remainder of the 4400 km2 local municipality could have 86 

required four times the survey costs. Although more resources spent collecting data means 87 

fewer resources for action, an insufficient understanding of the planning region due to too 88 
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few data can result in lost efficiencies and poorly-located management (Grantham et al. 89 

2008).  90 

Models of management feasibility could decrease the costs of obtaining social data by 91 

predicting likelihood of implementation (e.g. Guerrero et al. 2010), however there have been 92 

few attempts to create such models as human behavior is difficult to predict. Economic, 93 

social and environmental factors influence the willingness of a landholder to participate in a 94 

particular management action (Pannell et al. 2006; Raymond & Brown 2011). Important 95 

factors shown to influence management feasibility include budget constraints and profit 96 

expectations (e.g. Cary et al. 2001), property size and land use (e.g. Abadi Ghadim et al. 97 

2005), existence and strength of landholders’ social networks and local organizations (Sobels 98 

et al. 2001), membership of organizations such as catchment groups (Kington & Pannell 99 

2003), the conservation values and education of the individual landholder (Burton 2014), and 100 

perceived environmental advantage (Cary 1993). Models of feasibility would require fewer 101 

resources if they could be developed from biophysical characteristics reflecting human values 102 

and land use. For example, the history of vegetation management by landholders in an 103 

agricultural landscape can be mapped using aerial photos or remote sensing to represent the 104 

production value of a property, or census data could be used to represent socio-economic 105 

factors such as organization memberships (Guerrero et al. 2010). Conservationists already 106 

apply sophisticated models based on biophysical characteristics to predict species 107 

occurrences and identify areas for prioritizing conservation efforts on the basis of highly 108 

uncertain biodiversity data (Guisan et al. 2013). Yet few studies have used biophysical 109 

characteristics to predict management feasibility (but see Guerrero et al. 2010; Mills et al. 110 

2012), and none have compared the cost-effectiveness of using modelled behavior instead of 111 

actual landholder characteristics for informing conservation planning decisions.  112 

Planning in multiple-use landscapes requires additional considerations related to the 113 

suitability and effectiveness of proposed management in any given landscape. Many resource 114 

management actions are beneficial for both farmers and biodiversity, and maximizing 115 

benefits to biodiversity may require only small modifications to existing practice at little 116 

additional cost to the conservation organization or the landholder. While most conservation 117 

planning studies assume a net negative impact of humans on biodiversity and plan to 118 

minimize interaction between resource use and biodiversity (Klein et al. 2008), land 119 

management practices can also have positive impacts. These might be intentional 120 

conservation benefits through landscape modification (e.g. restoring habitat, erosion control, 121 
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fencing off remnant vegetation to protect from grazing) and private land conservation policies 122 

such as covenants or easements, or unintentional benefits to conservation through actions to 123 

improve economic yield of their land use (e.g. killing weed species to improve crop yield, or 124 

fighting wildfire) (Raymond et al. 2013). Consideration of such practices in conservation 125 

prioritization is essential, as the degree to which actions benefit the landholder can influence 126 

whether a landholders is interested in participating in conservation actions (Pannell et al. 127 

2006).  128 

In this study we ask:  1) Can we use the geographic locations of past management actions 129 

implemented by private landholders to predict the future distribution of management effort?  130 

2) Is it possible to predict where management is most likely to be feasible based on landscape 131 

characteristics?  3) Assuming that future landholder engagement is spatially predictable, how 132 

would the priorities for conservation change when predictions of conservation opportunity 133 

are used in planning, compared with if no social data were used to prioritize actions?  4) In 134 

what circumstances is it more cost-effective to build a model of management feasibility, 135 

compared to collecting social data, to prioritize conservation management within an existing 136 

incentive scheme? Our case study is managing the invasive red fox in the south-west 137 

Australian biodiversity hotspot, where foxes predate on both livestock and native fauna. We 138 

utilize both ecological data on the distribution of six native fauna species threatened by fox 139 

predation and social data on the history of landholder engagement in fox baiting. Our 140 

objective is to minimize the cost of investing in management in a typical multiple-use 141 

landscape where conservation resources are limited.  142 

 143 

Methods 144 

Case Study: Invasive red fox management in Australia 145 

The control or eradication of invasive pests is receiving increasing attention worldwide. In 146 

Australia, the invasive red fox (Vulpes vulpes) is implicated in the decline and possible 147 

extinction of native vertebrates, loss of agricultural production due to livestock predation, and 148 

disease transmission (Saunders et al. 2010). In 2004, foxes were estimated to cost Australian 149 

agricultural industries at least AUD$227 million annually (McLeod 2004), topping the list of 150 

costs incurred by vertebrate pests. In response to this ongoing threat, fox management 151 

programs have been implemented on public and private lands across Australia, typically 152 



 

6 

using poison baits containing sodium 2-fluoroacetate (‘1080’), with over AUD$16 million 153 

spent on this annually (Saunders et al. 2010). Our study region is the area of the Fitz-Stirling 154 

(17,000 km2) in the south-west Australian biodiversity hotspot, characterized by high species 155 

endemism and high threat due to the coincidence of agricultural production and biodiverse 156 

areas (Myers et al. 2000; for additional information see Supporting Information). Until 157 

recently, most fox management was carried out in an ad hoc manner, with little cooperation 158 

or coordination between managers. However, recent work indicates that due to the high 159 

mobility and recolonization potential of foxes, increasing the frequency and spatial coverage 160 

of fox control with participatory stakeholder management increases survival of lambs 161 

(McLeod et al. 2010) and native animals (Western Australian (WA) Government Western 162 

Shield Program, unpub. data). Failure to strategically target areas of agricultural and 163 

conservation value risks severe economic losses to the agricultural industry as well as local 164 

extinctions of biodiversity.  165 

Our scale of management is the property-level, with each privately-owned land parcel 166 

representing an area that can be managed. We divided the study area into planning units on 167 

the basis of cadastral boundaries. Properties were considered an appropriate management unit 168 

because the decision to conduct fox baiting is made by the individual landholder at the scale 169 

of the property. All properties less than 1 km2 were merged with the neighboring unit that 170 

shared the longest boundary, resulting in 1337 planning parcels (area mean ± SE = 9.83 ± 171 

0.24 km2; see Supporting Information).  172 

Species distribution data 173 

We selected seven species for prioritization of invasive fox management based on results of a 174 

previous study (Tulloch et al. 2013a; Table 1). These species have suffered range and 175 

population declines over the past century (Burbidge et al. 2008), and are predicted to have 176 

greater than 50% chance of increasing under invasive predator management. One of these 177 

species, the dibbler (Parantechinus apicalis), occurs only in national parks, so this species 178 

was excluded from further analyses as we were interested in prioritizing conservation 179 

investment on private land. We modeled the distribution of the six remaining species in the 180 

software Maxent v. 3.2.1 using existing species distribution data and environmental variables 181 

(Phillips et al. 2006; for additional information see Supporting Information). 182 
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Predicting management feasibility on private land 183 

To inform management feasibility, data on landholder engagement in fox management 184 

(through poison baiting) were obtained from the WA Department of Agriculture and Food 185 

(DAFWA), from a dataset recording all baiting applications through a community 186 

engagement program ‘Red Card for Rabbits and Foxes’ that incentivized fox baiting between 187 

2003 and 2010 (Table S1).  188 

i. Feasibility model 1: Predicting future distribution of baiting effort from past effort 189 

Our first aim was to determine if landholders that have baited previously are likely to bait 190 

again, by exploring whether the spatial distribution of past landholder engagement in fox 191 

baiting can predict the distribution of future baiting. We split the dataset in two periods, early 192 

years and late years, and related the spatial distribution of management effort (number of 193 

baiting events per property parcel) from the 2007–2010 DAFWA data collection period 194 

(response variable) to the distribution in the first half of the data collection period (2003–195 

2006; explanatory variable). We used generalized linear modeling (GLM1) with a Poisson 196 

distribution to test for the significance of the relationship and thus the ability of the 197 

distribution of past management effort to predict future locations of effort (Tulloch et al. 198 

2013b).  199 

ii. Feasibility model 2: Predicting future distribution of baiting effort from landscape 200 

characteristics 201 

Our second aim was to identify factors that motivate landholders to participate in an incentive 202 

scheme that has dual benefits for production and conservation, and explore whether 203 

characteristics of the landscape can be used to predict management feasibility, i.e. the 204 

distribution of landholder engagement. We set up hypotheses for factors that motivate 205 

landholders to conduct fox baiting across the landscape, and tested them using generalized 206 

linear modeling (Elith & Leathwick 2009; Table S2). Human behavior is complex, and to 207 

fully understand the reasons for landholders to bait an area, we would ideally run 208 

questionnaires on the incentives for fox baiting engagement, but this can be costly. To test 209 

whether feasibility could be predicted using landscape characteristics only, we used coarse-210 

scale landscape surrogates representing factors that motivate landholders to bait for foxes 211 

(Table S3). Our hypotheses describing potential drivers for landholder engagement in fox 212 

baiting reflected economic, social and conservation motivations outlined in recent literature, 213 
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resulting in 17 models (see Supplementary Information). Hypotheses were compared in an 214 

information-theoretic framework using AIC model selection (e.g. Burnham & Anderson 215 

2002), and the best-supported model was used to predict management feasibility for every 216 

parcel in the region. 217 

Using management feasibility to prioritize investment in conservation action 218 

Our third aim was to develop plausible scenarios of investment prioritization of on-ground 219 

conservation management in a production landscape, to explore how the priorities for 220 

conservation might change when different types of datasets are used to inform decision-221 

making. Systematic conservation planning is increasingly used to inform decisions about 222 

where to prioritize funding, and requires information on the costs and benefits of selecting a 223 

given parcel for management. We set up four scenarios of investment prioritization by a 224 

conservation agency to fund private land management: 225 

(1) Social-only: The agency uses only social data on management feasibility based on 226 

which landholders have carried out management in the past (Feasibility model 1) to 227 

direct funding, with no biodiversity values considered. All properties with a known 228 

history of management are invested in. 229 

(2) Biodiversity-only: The agency prioritizes investment based on biodiversity values and 230 

costs of parcels, with no social data considered.  231 

(3) Conservation opportunity using current feasibility: The agency prioritizes investment 232 

based on biodiversity values, costs, and existing management feasibility based on 233 

which landholders have carried out management in the past (Feasibility model 1). 234 

(4) Conservation opportunity using modeled feasibility: The agency prioritizes 235 

investment based on biodiversity values, costs, and management feasibility predicted 236 

by landscape characteristics (Feasibility model 2).  237 

To calculate the total investment required for the social-only scenario, we allocated funding 238 

to every parcel with a previous history of fox management. To calculate the investment 239 

required under the remaining scenarios (2 to 4), we used an extension of the conservation 240 

planning decision-support software Marxan (Ball & Possingham 2000), Marxan with Zones, 241 

which uses a simulated annealing algorithm to identify near-optimal zoning configurations 242 

that minimize the sum of planning parcel and zone boundary costs whilst meeting a suite of 243 

conservation targets (Watts et al. 2009). Marxan with Zones improves our ability to 244 

accommodate multiple socio-economic and biodiversity considerations in conservation 245 
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planning, through the addition of user-defined zones and ability to specify costs and targets 246 

for each zone. We planned for three management zones: (1) no fox management, (2) low 247 

intensity management (two baiting events per year), and (3) high intensity management (4 248 

baiting events per year). The low intensity management zone represents current landholder 249 

baiting practices, which are typically once or twice a year and provide limited benefits to 250 

biodiversity but satisfy needs to protect sheep during key breeding seasons. The high 251 

intensity management zone reflects the management practices of the State conservation 252 

agency that bait statewide every three months in national parks (Armstrong 2004), where the 253 

primary objective is to provide conservation benefits to threatened species.  254 

We considered our six threatened mammal species as the biodiversity values for each 255 

scenario, and set targets of 17% of their distributions to be managed. We assumed a species 256 

was present in a planning parcel if the maximum probability of occurrence in any remnant 257 

patch within the parcel was greater than 60%. The contribution of different land uses to the 258 

conservation of species varies depending on the relative sensitivity of species to threats and 259 

their management. We therefore developed a contribution matrix (the likely contribution of 260 

each zone to achieve targets) based on a previous study (Tulloch et al. 2013a): this was 90% 261 

for high intensity management, 50% for low intensity management, and zero for no 262 

conservation management (Table S5).  263 

The costs of each parcel were calculated in two ways. For the ‘social-only’ and ‘biodiversity-264 

only’ scenarios, we created a baseline management cost layer that identified three possible 265 

costs per parcel: no, low or high intensity management (zero, two or four baiting events per 266 

year respectively). The cost of high intensity management of parcel i, ci, was calculated as the 267 

parcel area multiplied by the annual cost of baiting per km2 of private land, estimated at 268 

$100/km2, reflecting the conservation agencies’ average management expenditure in the 269 

region. The cost per parcel was halved for low intensity management, and was zero for no 270 

management. 271 

For both conservation opportunity scenarios, we calculated the cost of baiting for foxes in 272 

each parcel (at a frequency that would benefit threatened species) by adjusting the costs of 273 

management to account for the predicted management feasibility in each parcel:   274 

hiz = ciz (1 -α), 275 
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where hiz is the adjusted cost of baiting parcel i under zone z, ciz is the baseline cost of baiting 276 

the parcel under zone z (accounting for area and baiting rate), and α is an adjustment factor 277 

applied to each parcel based on the value of management feasibility (a value from 0 to 1). If α 278 

= 0, there is no adjustment applied to the parcel (no existing management), and the cost is 279 

equal to the baseline cost. If the modeled management feasibility (α) is equal to 1, this means 280 

that the landholder is already baiting to a frequency that would benefit threatened species 281 

(four times a year), and so no additional funding is required to manage this parcel for 282 

conservation.   283 

In the conservation opportunity using current feasibility scenario, α was parameterized using 284 

the response curve of GLM1 (see section “Feasibility model 1”). Costs of managing each 285 

parcel were therefore reduced by the existing management feasibility values predicted using 286 

the DAFWA dataset on the history of past landholder management. In the conservation 287 

opportunity using modeled feasibility scenario, α was parameterized using the response curve 288 

from the best-supported GLM2 (see section “Feasibility model 2”). Costs of managing each 289 

parcel were reduced by the management feasibility values that had been predicted using 290 

landscape-level surrogates. 291 

Calculating cost-effectiveness of data and management 292 

Our fourth and final aim was to compare the cost-effectiveness of the different investment 293 

scenarios in relation to the costs and benefits of the data used to parameterize the decision 294 

solutions.  295 

Using the best solutions of our prioritizations, we first calculated the benefit M of managing 296 

the n selected parcels in each zone, which is the summed managed area of all species 297 

distributions: 298 

𝑀 = ∑ 𝑥𝑖𝑧
𝑛
𝑖=1 . 𝑏𝑖𝑧 . 𝑒𝑧 ,       (1) 299 

where x is a control variable for parcel i that takes the values 0 (not selected) or 1 (selected 300 

for management) for zone z, 𝑏𝑖𝑧is the summed area of all species distributions that fall inside 301 

planning parcel i for zone z, and 𝑒𝑧is the contribution of that zone’s level of management to 302 

the conservation of species (in our study, 0.9 for high intensity management, 0.5 for low 303 

intensity management, and 0 for no conservation management). The parameter e is equivalent 304 

to the probability that, if implemented successfully, the action would be successful in 305 

managing the threat. This has been termed ‘output success’ in previous cost-effectiveness 306 
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studies, and is likely to depend on ecological factors influencing outcomes (Tulloch et al. 307 

2013a). 308 

We then adjusted the benefit for each parcel by the probability of that parcel having been 309 

managed in the past, to give us a total expected benefit value B that accounted for feasibility 310 

in each parcel: 311 

𝐵 = ∑ 𝑥𝑖𝑧
𝑛
𝑖=1 . 𝑏𝑖𝑧 . 𝑒𝑧 . 𝑝𝑖,       (2) 312 

where pi is the probability that the action could be undertaken successfully, ranging from 0.05 313 

(no information on implementation opportunity, adjusted from a value of 0 to account for 314 

uncertainty) to 1 (100% probability of implementation – in our study, baited every year 315 

between 2003 and 2010). The parameter p was parameterized from the response curve on 316 

existing management feasibility, previously calculated from GLM1, and has been termed 317 

‘input success’ in previous cost-effectiveness studies (Tulloch et al. 2013a).  318 

The total investment allocated in the investment scenario, C, was calculated by summing the 319 

baseline (rather than adjusted) costs of each parcel selected for management in the best 320 

solution from each scenario: 321 

𝐶 = ∑ 𝑥𝑖𝑧
𝑛
𝑖=1 . 𝑐𝑖𝑧,        (3) 322 

We then derived from experts the likely investment, given the size of the study area, required 323 

to obtain two different types of data, biological and social (A. Guerrero and V. Adams, pers. 324 

comm.). Biological data costs were set at a flat rate of AUD$3,000, the standard cost of 325 

purchasing biological atlas data in Australia. Social data costs were averaged across a range 326 

of different types of surveys (face-to-face, online and mail-out), and estimated at 327 

AUD$50,000 based on the area of the study region, and the number of interviews/surveys 328 

required to collect social data across that area. We recalculated the total scenario cost as the 329 

cost of management, C, plus the cost of data, D. The social-only scenario included only social 330 

data costs, the biodiversity-only scenario and conservation opportunity with modeled 331 

feasibility scenario included only biological data costs, and the conservation opportunity with 332 

current feasibility scenario included both biological and social data costs. 333 

The total scenario cost-effectiveness (CE) was the overall benefit divided by the sum of the 334 

investment in data collection and management: 335 
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𝐶𝐸 =  
𝐵

(𝐶+𝐷)
.        (4) 336 

For each of our scenarios, we explored the results of changing the costs of social data 337 

collection, to explore whether there were thresholds at which the most cost-effective strategy 338 

changed. 339 

Results 340 

Predicting future distribution of baiting from past effort 341 

Using GLM1 we confirmed that the spatial distribution of historical data on landholder 342 

engagement was able to predict future distributions of effort (Figure 1). The distribution of 343 

the number of baiting events per property parcel during 2007–2010 (response variable) was 344 

positively associated with the number of baiting events recorded during the previous time 345 

period of 2003–2006 (explanatory variable; deviance explained 34.5%, β = 0.26, SE = 0.02; 346 

Table S4).  347 

Predicting future distribution of baiting from landscape characteristics 348 

The best-supported model for management feasibility in 2003 – 2010 was the hypothesis for 349 

social-economic and environmental motivation (Hypothesis 8), with an AIC weight of 1 350 

ranking it conclusively above others (Table 2; see Tables S1 and S2 for description of 351 

explanatory variables). This model accounted for 15.46% of the deviance. Management 352 

feasibility increased with the number of neighbors that a property parcel had and the total 353 

property area (Table 3). The mean number of neighbors per parcel was 5.64 ± 0.06, and the 354 

mean property area was 21.29 ± 0.49 (range = 1.00 – 173.26 km2). Management feasibility 355 

was higher in parcels further away from State protected areas (“distance(PAs)”; Table 3), 356 

with baiting landholders almost three times (2.97) more likely to be located further away 357 

from protected areas than non-baiting landholders. One surrogate for environmental 358 

motivations, the record of a bird survey on the property, was a significant predictor in our 359 

best-supported model, with baiting landholders 1.66 times more likely to have a bird survey 360 

record on their property compared with non-baiting landholders. 361 

Hypotheses based on purely environmental (e.g. proportion of parcel covered in remnant 362 

vegetation, record of a bird survey) or social motivations predicted poorly (Hypotheses 2 and 363 

4, Table 2), describing less than 6% of the deviance. Models using grazing potential (based 364 
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on agricultural suitability) predicted poorly (Hypothesis 3), with the total property area 365 

appearing to be a better surrogate for production benefits of fox management. 366 

The predicted values for parcels at which baiting was conducted in 2003–2010 were, on 367 

average, higher than those for unbaited parcels (0.54 and 0.35 respectively), indicating a good 368 

discrimination capability of the best model. This was confirmed by a plot of the Receiver 369 

Operating Curve, with an AUC of 0.75. The refinement of the values predicted by the model 370 

was also good, with predictions ranging from 0.05 to 0.99. 371 

Spatial conservation priorities under different data investment scenarios 372 

There were considerable spatial differences in the selected priority management areas 373 

between the scenario using only socio-economic data for spatial prioritization, and the 374 

scenarios also incorporating biological information (Figure 2). There was no correlation 375 

between results of the social-only scenario and the other three scenarios based on biological 376 

or biological and social information (Pearson’s product-moment coefficient < 0.65, Table 377 

S6), but good correlation between the scenarios incorporating biological information 378 

(Pearson’s product-moment coefficient > 0.65, d.f. = 1335, P < 0.0001). Of the 431 parcels 379 

selected for management using social-data only, 40% were not selected for management in 380 

the best solutions for both conservation opportunity scenarios. The highest correlation 381 

between prioritization solutions was between the scenarios using conservation opportunity 382 

using modeled feasibility and conservation opportunity using current feasibility (Pearson’s 383 

product-moment coefficient = 0.73, d.f. = 1335, P < 0.0001). Only 11% of the parcels 384 

selected as high priority for meeting conservation targets in the conservation opportunity 385 

using current feasibility scenario were not selected by the conservation opportunity using 386 

modeled feasibility scenario.  387 

Cost-effectiveness of investment scenarios 388 

The cost of the social-only scenario, investing in high intensity management for every 389 

landholder that had previously conducted baiting, was AUD$460,344, whereas the cost of 390 

prioritizing management using only biological-only scenario was 10% more than this 391 

(AUD$499,944). Incorporating both social and biological data into investment scenarios 392 

reduced the costs of the social-only scenario by 26% and 21% for the conservation 393 

opportunity with current and modeled feasibility scenarios respectively, and reduced the costs 394 

of the biological-only scenario by 20% and 13% for the conservation opportunity with 395 
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current and modeled feasibility scenarios respectively (Table 4). Under conservation targets 396 

of 17% for each species, the conservation opportunity with current feasibility scenario had 397 

the highest expected program cost-effectiveness (Table 4). When the cost of data collection 398 

(social and biological surveys) was added to the program costs, the conservation opportunity 399 

with modeled feasibility scenario was the highest-ranked in terms of cost-effectiveness. 400 

Sensitivity analyses showed that this result was robust to changing costs of survey data 401 

collection except when social data costs were low (below $15,000, 4% of the total 402 

management budget), with the highest-ranked scenario in terms of cost-effectiveness for low 403 

survey costs being the conservation opportunity with current feasibility scenario (Figure 3).  404 

Prioritizations using social data alone generally performed the worst in terms of total program 405 

cost-effectiveness, except when the cost of social data was zero. 406 

 407 

Discussion 408 

It is increasingly recognized that information on management feasibility is useful for finding 409 

efficient solutions to conservation planning problems (McCarthy & Possingham 2007; 410 

Carwardine et al. 2012). There is, however, an implicit assumption that collecting this 411 

information improves the overall cost-effectiveness of designing and implementing a 412 

conservation plan, but this has never been tested. We assessed the cost-effectiveness of 413 

incorporating management feasibility data into conservation planning by estimating the costs 414 

and benefits of collecting and using both social and biological data in conservation 415 

prioritizations. We found that high quality data on management feasibility, collected at a 416 

local landholder scale (our conservation opportunity with current feasibility scenario), 417 

improved decision-making compared with situations in which these data were not used. 418 

However, using these data comes at a cost (Figure 3). For managers with a limited budget for 419 

data collation (in this study, below $15,000), a conservation opportunity with modeled 420 

feasibility scenario provided the biggest improvement to conservation outcomes for the 421 

smallest cost. Our approach is applicable for agencies proposing investment in conservation 422 

in landscapes where management is undertaken for dual benefits of production and 423 

conservation. 424 

In this study, we took the perspective of a typical conservation agency working in a multiple-425 

use landscape, and considered different scenarios of possible investment to explore the value 426 

of using social data to identify investment priorities for conservation. Our social-data only 427 
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scenario is typical of many real-life situations, where local conservation agencies distributing 428 

limited funds target the stakeholders that are most likely to participate in a particular program 429 

in order to minimize costs and risk (Green et al. 2009; Sutton & Armsworth this issue). The 430 

poor performance of the social-data scenarios is not surprising, since indiscriminately 431 

allocating funds to all landholders with existing baiting plans selects the most secure projects 432 

with the lowest risk of failure, but fails to consider where the conservation benefits could be 433 

most efficiently delivered across the landscape (Ando & Mallory 2012). Incorporating 434 

conservation opportunity using modeled feasibility was the most cost-effective scenario when 435 

the cost of data on feasibility was more than 4% of combined management and data 436 

acquisition costs (Figure 3, Table 4). High costs of social data are typical of large landscape-437 

scale surveys requiring many one-on-one surveys, or surveys revisiting landholders at 438 

different points in time (e.g. Gordon et al. this issue). However, if the costs of social data are 439 

low, such as for online surveys or limited one-on-one questionnaires, our results indicate that 440 

it is more cost-effective to collect and use this data alongside ecological data to identify 441 

investment priorities. Our case study considered baiting for the invasive red fox, as there 442 

were available data on existing landholder engagement that allowed us to validate our 443 

feasibility models. However, our modeling approach could be used to inform investment in a 444 

range of other management actions with socio-economic uncertainty, such as ecological 445 

restoration, carbon plantings, fencing off remnants or creating covenants (Chen et al. 2009; 446 

Curran et al. 2012). 447 

The models we developed in this study identify the key predictors of landholder participation, 448 

and were easy and cheap to construct due to the reliance on freely-available landscape data. 449 

We found that the most important predictor of baiting activity was the size of a landholder’s 450 

property, which is not surprising as larger properties can stock more animals, with higher 451 

prospective economic loss driving greater incentive to control predators (Lubell et al. 2013). 452 

However, our results also showed that other variables such as the number of neighboring 453 

properties are important. This was a surrogate for social networks, which enable different 454 

actors to collaborate and coordinate management efforts (Guerrero et al. 2010; Lubell et al. 455 

2013). The importance of previous bird surveys recorded on the property (a surrogate for 456 

interest in biodiversity) for predicting where resources could be most effectively allocated to 457 

management has implications for evaluating management effectiveness, as properties with a 458 

previous history of bird monitoring might also be more motivated to monitor management 459 

outcomes. The significance of the variable for proximity to protected areas suggests that 460 

rather than protected areas having a positive environmental influence on the landholders, 461 
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protected areas may act as a disincentive to manage private land for invasive predators.  The 462 

management of protected areas for foxes for over 15 years by the WA Department of 463 

Conservation appears to have resulted in many landholders adjacent to parks opting to not 464 

manage their lands, despite the potential additional benefits this may provide due to 465 

coordinated invasive species management (McLeod et al. 2010). Our findings suggest that a 466 

targeted campaign to landholders adjacent to national parks could yield improved 467 

conservation outcomes.  468 

There are a number of additional challenges to using data on feasibility to prioritize allocation 469 

of funding for conservation in multiple-use landscapes. Social data are context- and time-470 

specific, with people’s willingness to act motivated by many extrinsic and intrinsic factors 471 

that change over time (Lechner et al. this issue). Our conservation opportunity scenarios 472 

incorporated information on historical landscape management, predicting future landholder 473 

participation in a single management action by assuming that the incentives for the existing 474 

management practices would remain in place. The likelihood of a landholder carrying out 475 

another management action (such as landscape restoration) would most likely be predicted by 476 

different factors, and it would be unwise to apply models built for one objective (here fox 477 

baiting) to alternative objectives without testing them (e.g. with a small sample of social 478 

surveys). We assumed that engaging property owners with a high feasibility of future baiting 479 

would be less costly than engaging property owners with no baiting history. Previous studies 480 

have also prioritized conservation investment according to the likely cost reductions afforded 481 

by more feasible management, for example reduced transaction costs due to predicted 482 

stakeholder collaboration  (Levin et al. 2013). However, data on willingness to participate in 483 

an action do not always predict actual participation. Likewise, lack of action in the past does 484 

not rule out future participation. In this study, we set low feasibility values for properties (5% 485 

likelihood of success) that were not engaged in baiting, a pessimistic approach, but future 486 

studies could explore thresholds of uncertainty in this value.  487 

Our results support previous studies suggesting that assessing conservation opportunity 488 

improves the cost-effectiveness and efficiency of conservation decisions, due to the ability to 489 

prioritize areas for management with higher feasibility (Whitehead et al. in press). However, 490 

we show that it is not always cost-effective to collect social data. If the costs of collecting 491 

social data are high and incorporated into the total program budget, using social data can lead 492 

to lower cost-effectiveness of the decision. If low-cost social data can be obtained, they 493 

enable targeting of management to cheaper areas with a history of engagement, which avoids 494 

missed opportunities and minimizes costs of conservation decisions. Our study has 495 
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implications for conservationists and policy-makers planning private land conservation 496 

incentives, as we demonstrate a way to reward highly engaged landholders whilst identifying 497 

implementation gaps across the landscape. 498 
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Table 1. Study species and expected response to fox management (from Tulloch et al. 2013) 622 

Species no. Species name Probability of positive growth rate 

under fox management 

Number of 

records  

1 Tammar wallaby 

Macropus eugenii 

0.99 42 

2 Western brush wallaby 

Macropus irma 

1.00 269 

3 Western quoll 

Dasyurus geoffroii 

1.00 12 

4 Dibbler 

Parantechinus apicalis 

0.85 16 

5 Red-tailed phascogale 

Phascogale calura 

0.57 10 

6 Southern brown bandicoot 

Isoodon obesulus 

0.99 40 

7 Western brushtail possum 

Trichosurus vulpecula 

1.00 16 

  623 
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Table 2. Multi-model inference table for the multivariate analysis of probability of fox 624 

baiting in 1337 land parcels of south-west Australia (GLM2), showing number of model 625 

parameters K, deviance explained, corrected AIC (AICc), AIC differences (AIC) and AIC 626 

weight w. 627 

Model Rank K 
Deviance 

explained (%) 
AICc AICc w 

Socio-economic-environment 1 5 15.46 1271.86 0 1 

Economic-environment 2 2 5 14.55 1285.44 13.58 0 

Economic-environment 1 3 5 14.42 1287.32 15.46 0 

Social-economic 4 4 10.72 1340.68 68.82 0 

Production + bait store access 5 4 10.62 1342.13 70.27 0 

Production benefits 2 6 3 10.48 1342.19 70.33 0 

Production benefits 1 7 3 10.34 1344.21 72.35 0 

Social-environment 8 4 7.03 1395.72 123.87 0 

Global environmental 9 5 5.55 1419.75 147.9 0 

Conservation concern 10 3 5.13 1422.05 150.2 0 

Biodiversity restoration 11 3 4.88 1425.72 153.87 0 

Global social effects 12 3 2.74 1457.67 185.82 0 

Neighbor effects 13 2 1.62 1472.38 200.53 0 

Social group effects 14 2 1.07 1480.73 208.87 0 

Biodiversity interest 15 3 0.69 1488.29 216.43 0 

Regional incentives 16 4 0.69 1490.36 218.50 0 

Local incentives 17 4 0.50 1493.1 221.24 0 

Null model 18 1 0 1494.61 222.75 0 

  628 
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Table 3. Model parameters for the best-supported model predicting probability of fox baiting 629 

in 1337 land parcels of south-west Australia from landscape characteristics (GLM2), 630 

describing economic (area(prop)), social (neighbors) and environmental (distance(PAs)) + 631 

birdsurveys) factors. 632 

Covariates Estimate Std. Error z value Pr(>|z|) 

intercept -0.46 0.08 -5.59 <0.0001 

neighbors (standardized) 0.23 0.15 1.52 0.1300 

sqrt(area(prop)) (standardized) 1.69 0.16 10.44 <0.0001 

sqrt(distance(PAs)) (standardized) 1.09 0.14 7.60 <0.0001 

birdsurveys 0.51 0.15 3.33 0.0009 

  633 
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Table 4. Comparing the costs and benefits of data types for conservation planning, and the 634 

resulting cost-effectiveness of the conservation prioritization strategies when data costs are 635 

incorporated (most cost-effective scenario highlighted). 636 

Input data type Quality of 

data or 

model for 

predicting 

conservation 

opportunity 

Benefit 

of zone 

1 

(eq. 1) 

 

 

M 

Benefit 

of zone 

2 

(eq. 1) 

 

 

M 

Expected 

benefits 

adjusted for 

feasibility 

(eq. 2): 

B 

Investment 

in data 

($AUS) 

 

 

 

D 

Investment 

in 

management 

($AUS) 

(eq. 3) 

 

C 

Expected 

program cost-

effectiveness 

(eq. 4) 

 

 

CE = B/(C+D) 

Social data only 

- High intensity 

High 2027 0 408 50,000 A 460,344 0.080 

Social data only 

- Low intensity 

High 0 1126 226 50,000 A 230,172 0.081 

Biodiversity 

only  

Zero 3773 987 488 3,000  B 499,944 0.097 

Conservation 

opportunity 

using current 

feasibility 

High 

 

3609 602 451 53,000 A,B 369,030 0.106 

Conservation 

opportunity 

using modeled 

feasibility 

Low 3757 642 468 3,000 B 397,428 0.117 

A Social data costs based on expert elicitation of survey costs averaged across different types of 637 

surveys (face-to-face, online and mail-out) 638 

B Biodiversity costs based on standard cost of acquiring atlas data for threatened species from State 639 

Government and NGOs, all conservation opportunity model data freely available  640 
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641 

Figure 1. Comparison of results of models for (a) feasibility model 1 (GLM1) reflecting 642 

actual baiting frequency and (b) feasibility model 2 (GLM2) representing modeled 643 

conservation opportunity predicted from biophysical characteristics. Hashed areas are 644 

managed by the WA Department of Conservation. Darker areas have higher conservation 645 

opportunity. 646 
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647 

Figure 2. Comparison of results of prioritization of spending on fox baiting informed by (a) 648 

social data only, (b) biodiversity data only, (c) conservation opportunity with modeled 649 

feasibility and (d) conservation opportunity with existing feasibility (darker colors are high 650 

focus baiting, lighter are low focus).  651 
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652 

Fig. 3. Expected program cost-effectiveness for each of our four scenarios and different 653 

levels of investment in social data. The $15,000 social data budget is highlighted, below 654 

which modeled data on feasibility becomes less cost-effective than the use of actual data on 655 

feasibility. 656 
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