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Abstract 

Members of the genus Flavivirus (including Japanese Encephalitis virus and West Nile 

virus) are important disease causing agents that result in considerable morbidity and mortality 

worldwide. NS1' is a C-terminally extended form of the NS1 protein produced only by encephalitic 

flaviviruses from the Japanese Encephalitis virus serogroup. The function of this unique protein 

remains elusive, and a further understanding of its production and function during viral infection is 

necessary. This thesis aims to extend our knowledge of this protein by investigating potential 

functions and characteristics of NS1' (including localisation, dimer formation and secretion), as well 

as examining the effect of NS1' mutagenesis on viral infection.  

As NS1' consists of the entire NS1 protein with a 52-amino acid C-terminal tail, it is 

possible that NS1' may behave similar to NS1 in infection. Here I show that WNV NS1' and NS1 

localise to the same cellular compartments when expressed from plasmid DNAs and also co-

localise to viral RNA replication sites in infected cells. Using complementation analysis with NS1-

deleted WNV cDNA, I demonstrated that NS1' is able to substitute for the crucial function of NS1 

in virus replication. Co-immunoprecipitation and mass spectrometry indicated that NS1' interacts 

with other non-structural proteins involved in the formation of the replication complex, further 

supporting a role for NS1' in viral replication. 

The secretable heat-labile NS1 dimer has been extensively studied and is known to be 

important for viral infection. I show here that WNV NS1' is able to form a unique sub-population of 

heat and low pH stable dimers that are sensitive to reducing treatments. The stable nature of the 

NS1' dimers can be linked to amino acids 385-394, though not specifically to the single cysteine 

residue present within this region. NS1 and NS1' also form a heterodimer in both infected and co-

transfected cells. Secretion of NS1' is lower than that of NS1, indicating that the frameshifted 

region of NS1' results in increased cellular retention of NS1' compared to NS1. 

Current NS1'-lacking WNVKUN mutants, such as A30A', abolish NS1' production through 

mutation of the ribosomal frameshift. This particular mutation results in decreased neurovirulence 

in weanling mice, however, this may be due to either the lack of NS1' or the frameshift itself. 

Separation of these potentially competing factors is necessary to fully understand the function of the 

NS1' protein. To do this, mutations were introduced to NS1' to create either a virus producing a C-

terminally truncated version of NS1' (Stop Mutant) or a virus with mutated C-terminus of NS1' 

(SCMU). Analysis of these mutants showed that Stop Mutant was much like wild type WNVKUN 
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with respect to protein production, localisation, growth kinetics, and mortality in weanling mice. 

This suggests that full length NS1' is not required for neurovirulence. SCMU on the other hand was 

surprisingly more pathogenic than WNVKUN virus in weanling mice, though showed little difference 

to WNVKUN with respect to growth kinetics (with the exception of C6/36 cells) and protein 

production in cells. Preliminary analysis indicates that the mutations introduced into both SCMU 

and Stop Mutant increase the frameshifting efficiency of the virus, suggesting that increased the 

ratio of structural to non-structural proteins induced by the frameshift is unlikely to affect viral 

pathogenicity. Both Stop Mutant and SCMU NS1' also showed an increase in NS1' secretion 

compared to wild type WNVKUN, which indicates that the sequence of the last 20 amino acids of 

NS1' may be responsible for low level WNVKUN NS1' secretion.  

Throughout this project, I have shown that NS1' co-localises with NS1 and can substitute for 

NS1 in WNV replication; NS1' forms secretable heat-stable homodimers which are linked to amino 

acids 385-394; full length NS1' is not important for WNVKUN like virulence; and that the 

frameshifting efficiency of the -1 PRF located in NS2A is unlikely to affect viral pathogenicity in a 

mouse model of infection. 
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1 Literature Review 

1.1 Flaviviruses 

The family Flaviviridae consists of enveloped viruses with a positive-sense, single-stranded 

RNA genome encoding a single polyprotein. Within this family are four genera, Hepacivirus, 

Pestivirus, Pegivirus, and Flavivirus (6, 7). The genus Flavivirus can be further subdivided into 4 

main groups: the mosquito-borne, tick-borne, no known vector and the insect-specific flavivirus 

groups (Figure 1.1) (8, 6, 9). This genus includes medically relevant pathogens, such as Dengue 

virus (DENV), Yellow Fever virus (YFV), Tick Borne encephalitis virus (TBEV) and the members 

of the Japanese encephalitis virus (JEV) serogroup. The clinical symptoms caused by the mosquito-

borne viruses predominantly fall into two distinct categories; those that cause systemic disease, 

such as DENV and YFV, and those that cause encephalitic disease, grouped together in the JEV 

serogroup. Interestingly, these two distinct groups of viruses can be further distinguished by their 

predominant vector-host relationship. Encephalitic viruses are usually transmitted by Culex vectors 

and infect avian hosts, while systemic disease-causing viruses are typically transmitted by Aedes 

vectors and infect mammalian hosts (10). The JEV serogroup includes West Nile virus (WNV), 

JEV, Murray Valley encephalitis virus (MVEV) and St Louis encephalitis virus (SLEV).  

1.2 West Nile Virus 

1.2.1 Distribution 

WNV is a mosquito-borne flavivirus within the JEV serogroup, and is currently the major 

cause of viral encephalitis in the United States. WNV is also the most widely distributed arbovirus, 

and has been endemic throughout Africa, the Middle East, Europe and parts of Asia since its first 

isolation in 1937 (11). It was introduced into the Americas in 1999 by a single point introduction in 

New York, now designated the WNVNY99 strain (12, 13). This was followed by a dramatic 

expansion across America, and resulted in WNV now being detected throughout Central and North 

America (14-17). WNV has been detected in at least 65 species of mosquito and 326 species of bird 

in North America alone, highlighting the ability of WNV to adapt to new host and vector species 

(15, 18). WNV can be divided into two main lineages (19, 20), though the possibility for eight 

distinct lineages has also been suggested (21-24, 450). Originally, to be classified as a WNV, 

lineages were defined as being less than 21% genetically divergent (25), however, the inclusion of 

the proposed lineages III to VII would result in more than 25% genetic divergence (21). The 

inclusion of these additional lineages is therefore still regarded as controversial.  
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Lineage I is the most widely distributed of the lineages, causing disease prevalent in Africa, 

Asia, Europe, Australia, North America, and Central America (13). This lineage can be further 

divided into three sub-lineages: lineage Ia, which is well established in Africa, Europe and the 

Americas; lineage Ib, also known as Kunjin (WNVKUN), and the only strain of WNV present in 

Australia; and lineage Ic, occurring throughout India (13). WNV lineage II is found primarily in 

Sub-Saharan Africa (26-28), with recent introductions detected in Europe and Russia (29-33).   

1.2.2 Transmission 

WNV transmission occurs predominantly between mosquitoes of the Culex genus and 

passeriform birds (Figure 1.2) (34, 35). The possibility of vertical transmission has also been 

shown, though it has only been observed at very low levels (36, 37). WNV does not usually cause 

widespread clinical disease in avian hosts, and the high mortality seen in birds during the WNVNY99 

outbreaks is unique to Northern America (38). However, WNV can cause neurological symptoms in 

some avian species, with other species displaying variable levels of morbidity and mortality (39-

41). Following ingestion of infected blood by mosquitoes, there are several barriers the virus must 

overcome to achieve transmission. First, the virus must successfully infect the midgut of the 

mosquito, and subsequently disseminate to the periphery. In order to then transmit the virus, high 

Figure 1.1 Genus Flavivirus. The genus Flavivirus is divided based into 4 distinct groups. The 

mosquito-borne flaviviruses are further divided based on clinical symptoms; either encephalitic or 

systemic. WNV is a mosquito-borne flavivirus within the JEV serogroup, and the focus of this thesis.!
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levels of virus must be present within the salivary glands prior to transmission during the 

mosquito’s next blood meal (42-45). The immune response of the mosquito is also involved in 

preventing successful virus infection. The primary innate immune response to viruses in mosquitoes 

is the RNA interference pathway (RNAi). The importance of this pathway has been shown through 

the use of small interfering RNAs (siRNAs) that mediate silencing through the RNAi pathway to 

provide immunity to WNV (46). However, classical innate immune pathways (such as Jak-STAT 

and Toll) are also involved in the mosquito innate immunity (47). WNV has the ability to infect 

humans and other mammals via the bite of an infected mosquito, though these are usually known as 

“dead-end” hosts as they are unable to generate a sufficiently high viraemia to transmit the virus 

further. 

 

 

1.2.3 Disease and pathogenesis 

The incubation period of WNV in the mammalian host is usually between 2 and 14 days. 

Infections with WNV are predominantly asymptomatic, with 20-25% of infected individuals 

developing a mild West Nile fever (WNF) and 1 in 150–250 developing neurological complications 

(48-53). WNF is characterised by an abrupt onset of symptoms lasting 3-6 days, though they can 

last for weeks. These symptoms usually include headache, fever, malaise, and a morbilliform or 

maculopapular rash. In less than 1% of cases, a patient may develop West Nile neurological 

disease, which can last for weeks and up to several months, and may result in death. Again, an 

Figure 1.2 Transmission cycle of WNV. WNV is maintained through a transmission cycle between birds 

and Culex mosquitoes, while causing incidental infections in other mammals (particularly humans and 

horses). 
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abrupt onset of fever and headache is seen, with signs of involvement of the central nervous system 

(CNS), including meningitis, encephalitis and acute flaccid paralysis. This neurological disease can 

range from a fairly mild, self-limiting confusional state to severe encephalopathy, coma, and 

eventually death. The fatality rate of WNV infection is approximately 10% in those who develop 

neurological disease, and is notably higher in older patients (18). Lineage I of WNV is associated 

with both WNF and neurological disease, while lineage II causes predominantly WNF, with only a 

very rare occurrence of CNS complications (26, 13, 27, 28). However, even within lineage I 

different levels of pathogenesis are observed. WNVKUN, the subtype within Australia, is a lineage I 

WNV and rarely associated with human disease (54, 55). 

WNV initially replicates in keratinocytes, skin resident dendritic cells (DCs) and 

Langerhans DCs (56, 57). WNV infected DCs then migrate to draining lymph nodes from which 

viremia develops, leading to the spread of virus to peripheral organs, and potentially the CNS (58). 

It is still unclear precisely how WNV invades the CNS (59). It is thought that WNV infection may 

disrupt the blood brain barrier integrity by the induction of cytokines (81, 451-455); WNV may 

directly infect the vascular endothelium and transmigrate into the brain parenchyma (456); viral 

particles may enter the CNS via the trafficking of infected monocytes (457-459); or WNV may 

invade the CNS by retrograde axonal transport from infected peripheral nerves (460-462).  

1.3 Immune response to WNV 

1.3.1 Cell intrinsic innate immune response 

The innate immune response is crucial for the control of WNV infection. It is predominantly 

the induction of interferon (IFN) triggered by the innate immune system (and its subsequent 

downstream effects) that is so essential. The cells of the innate immune system are the first point of 

encounter for WNV. Myeloid DCs, monocytes and macrophages are all key targets for virus 

infection, and are therefore crucial for antiviral immunity (60, 61). The host cell is able to sense 

infecting virus through the recognition of a pathogen-associated molecular pattern (PAMP) by a 

pattern recognition receptor (PRR). Plasmacytoid DCs, while resistant to direct infection, also 

contribute to the innate immune response via an interaction of the virus with PRRs present within 

endosomal compartments (61). Binding of PRRs to PAMPs results in a signalling cascade involving 

the activation of adaptor proteins, induction of transcription factors, and subsequent production of 

soluble mediators (such as proinflammatory cytokines and IFN). This leads to a potent antiviral 

response through the induction of antiviral effector genes, activation of innate immune cells, and 

humoral and cell-mediated immunity. Interferon and the PRRs (Toll-like receptors (TLRs), retinoic-
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acid inducible gene-I (RIG-I)-like receptors [RLRs], and nucleotide oligomerisation domain (Nod)-

like receptors [NLRs]) are all key players involved in the induction of the innate immune system 

(47, 62-64). 

Pathogen Recognition Receptors (PRRs) 

RLRs are a family of cytosolic RNA helicase proteins that detect the presence of foreign 

RNA (such as from an RNA virus) in the cytoplasm (65). Once activated, RLRs signal through 

IFN-promoter stimulator (IPS)-1 and mitochondrial antiviral signalling (MAVS) adaptor proteins to 

trigger the production of transcription factors IFN regulatory factor (IRF) 3 and IRF7. RNA from 

WNV has been shown to trigger RLR signalling through the receptors RIG-I and myeloma 

differentiation antigen 5 (MDA5), and the importance of this signalling cascade has been 

demonstrated at several stages (66-68). RIG-I and MDA5 knockout mice have increased mortality 

over wild-type when infected with WNV (67, 69). The absence of the adaptor protein MAVS 

correlates with a wider tissue tropism and CNS pathology, and an increase in viral load in both the 

periphery and CNS (70). Another RLR signalling factor (Caspase-12) has been shown to be 

essential for developing an anti-viral response against WNV (71). Both RIG-I and MDA5 are 

important for the immune response against WNV, with RIG-I appearing to function early in 

infection and MDA5 later in infection (72, 73).  

The TLRs detect the presence of distinct forms of foreign RNA present in endosomes; 

TLR3 recognises dsRNA and TLR7/8 recognises ssRNA (74, 75). TLRs signal through various 

adaptor molecules to activate transcription factors (such as IRF3 and IRF7) controlling IFN and 

inflammatory cytokine production. There are many studies on the control of WNV by TLRs, and 

they appear to function in a cell specific manner (76-83). For example, TLR3 is important for 

controlling WNV infection in the CNS, functioning in neurons but not macrophages or DCs to 

promote IFN production (76). TLR7 on the other hand, can trigger IFN production in neurons, 

macrophages, and keratinocytes, but not DCs (79, 82).  

NLR signalling occurs through the inflammasome (a signalling complex within the cytosol) 

and results in the production of cytokines. WNV has been shown to activate the NLRP3 

inflammasome complex and induce production of IL-1β (84). The IL-1 receptor, NLRP3, 

apoptosis-associated speck-like protein containing a CARD (ASC) adaptor protein and caspase-1 

(which are all components of inflammasome signalling) are all involved in mediating immunity 
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against WNV (85, 86, 84). In accordance with these findings, IL-1β signalling has also been 

implicated in the promotion of an anti-WNV response (87).  

Interferon 

Type-I IFNs are cytokines critical for the control of most viral infections. RLR and TLR 

signalling results in the upregulation of type-I IFNs (IFN-α and IFN-β). Type-I IFN has potent 

antiviral activity and is necessary for controlling viral replication and contributes to priming both B 

and T cell responses (88-90, 64, 91-93). One of the reasons IFN-α/β is particularly critical is that it 

is responsible for the downstream induction of many IFN stimulated genes (ISGs) that are also 

involved in inhibiting WNV infection. IFN-α/β secreted from cells binds to the IFN-α/β receptor 

(IFNAR) and signals through tyrosine kinase 2 (Tyk2) and Janus kinase 1 (Jak1) to activate signal 

transducer and activator of transcription (STAT) 1 and 2, leading to the induction of ISGs. Several 

ISG screens have been conducted, leading to the subsequent identification of a large number of 

genes that are upregulated during WNV infection (94-98). Many of these proteins have also been 

shown experimentally to have antiviral activity, for example, the IFIT family (99, 100, 98, 101); the 

IFITM family (102, 94, 98); RNase L and PKR (103-106); and viperin (94, 107). Type-II IFN, or 

IFN-γ, is also important for restricting WNV infection (108, 109), as is IFN-λ, a third type of 

interferon (110).  

WNV interference with innate immune responses 

Numerous studies have identified a wide range of mechanisms that WNV employs to evade 

the host innate immune response. WNV can evade detection by RLRs through an as of yet unknown 

mechanism (72). The envelope protein has been shown to inhibit a dsRNA-induced response (111). 

WNV NS1 appears to antagonise TLR3 signalling, though this result is somewhat controversial due 

to conflicting studies (112-114). WNV-produced sub-genomic flaviviral RNA (sfRNA) has been 

shown to inhibit IFN signalling (106). The viral non-structural proteins have been shown to inhibit 

STAT1 and STAT2 activation (115-119), activate the unfolded protein response (120, 121), and 

redistribute cellular cholesterol leading to downregulation of Jak-STAT signalling (122). WNV has 

also been implicated in the inhibition of Tyk2 phosphorylation (123) and degradation of IFNAR1 

(124).   
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1.3.2 Cell-mediated innate immune response 

Natural killer (NK) cells have been suggested to bridge the gap between the innate and the 

adaptive immune response (125). NK cells identify infected cells and induce cytokine production 

and mediate cell lysis. These cells have been shown to be involved in the antiviral response to 

WNV (126, 127). However, the precise involvement of NK cells in the induction of immunity to 

WNV is still unclear, as depletion of NK cells does not impact WNV infection (128, 129). In 

addition to NK cells, γδ T cells (a small subset of T cells with effector functions) are also important 

for protective immunity against WNV infection as an early source of IFN-γ. An absence of these 

cells was shown to be correlated with an enhanced susceptibility to WNV infection (130). 

1.3.3 Complement-mediated innate immune response  

The complement system is mediated by serum and surface proteins that are involved in 

recognition of PAMPs, altered self ligands, and immune complexes. This system consists of three 

pathways: the classical, lectin, and alternative pathways (131). Complement activation induces 

antiviral effector functions, including pathogen opsonisation and/or lysis, priming of B cells, and 

enhancement of T cell killing. Mice that are deficient in any one of numerous components of the 

complement pathway all show enhanced susceptibility to WNV infection, highlighting the 

importance of the complement system against WNV (132-135). 

1.3.4 Adaptive immune response 

The adaptive immune response is involved in promoting viral clearance, assists in the 

control of viral infection, and is crucial in preventing re-infection. Both the viral pathogens 

themselves and the innate immune responses they activate are involved in stimulating the adaptive 

immune response. This response can be broadly divided into antibody-mediated immunity and cell-

mediated immunity. Antibody-mediated immunity, or humoral immunity, is controlled by B cells 

and is essential for the restriction of WNV infection. The production of antibodies specific to WNV 

antigens can result in neutralisation of viral particles and lysis of infected cells. A lack of B cells in 

WNV infected mice correlates with an enhanced mortality, highlighting their importance in 

controlling WNV infection (136, 137). The supply of WNV-specific antibodies prior to challenge 

with infectious virus can also protect against infection (138, 137, 139, 140).  

Cell-mediated immunity is controlled by T cells, which can be sub-divided into different 

subsets of T cells with distinct roles. CD8+ T cells and CD4+ T cells are both critical for protection 
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against WNV (141-144). A lack of CD8+ T cells leads to enhanced viral replication in the CNS 

(142). Interestingly, CD8+ T cells also seem to have pathogenic role in WNV infection, with the 

presence of CD8+ T cells contributing to an increase in mortality when a high viral dose is used 

(130). CD4+ T cells play an essential role in priming B cell mediated antibody responses, mediating 

CD8+ T cell responses, and secretion of anti-viral cytokines following WNV infection (145, 143). 

Regulatory T cells have also been implicated in modulating the immune response to WNV (146).  

1.4 WNV genome 

WNV is an enveloped virus with a virion structure of approximately 50nm diameter. A 

30nm inner nucleocapsid is surrounded by a host-derived lipid membrane, in which the envelope 

and membrane proteins are inserted (147-150). The genome enclosed within the nucleocapsid is a 

single stranded positive sense RNA genome of approximately 11 000 nucleotides (151, 13, 152) 

and contains a type 1 cap (m7GpppAmp) at the 5'-terminus but no 3' polyadenylate tail (20, 153, 

154). The coding region of the WNV genome is flanked by 5' and 3' non-coding regions (NCR) that 

despite a lack of sequence conservation contain secondary structures that are highly conserved 

among flaviviruses (155-158). The 5'-NCR of WNV is approximately 100 nucleotides in length, 

and the 3'-NCR is between 600 and 700 nucleotides in length (159, 20). The WNV genome is 

translated as a single polyprotein that encodes 3 structural (capsid, membrane and envelope) and 

seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) (Figure 1.3A).   

1.5 Translation and processing  

Following translation as a single open reading frame, the WNV polyprotein is cleaved both 

co- and post-translationally by host and viral proteases (20, 160-162). The presence of multiple 

transmembrane domains determines whether individual proteins will reside on the cytoplasmic or 

the luminal side of the ER membrane (Figure 1.4B). The prM, E and NS1 proteins are localised to 

the luminal side of the ER (20). Here, the host signal peptidase cleaves the polyprotein at the N-

terminus of these proteins. For cleavage by the host signal peptidase to occur, a signal sequence is 

required. The prM, E, NS1 and NS4B proteins are all preceded a stretch of hydrophobic amino 

acids followed by Val-X-Ala (where X is His, Asn, or Ala), which is consistent with the -1, -3 rule 

for signalase cleavage (163-167). The capsid, NS3 and NS5 proteins are located on the cytoplasmic 

side of the membrane, while the NS2A, NS2B, NS4A and NS4B proteins span the ER membrane 

(20). The N-terminus of NS2B, NS3, NS4A and NS5 are all cleaved by the viral NS2B-NS3 

protease (163, 168, 164-166). The enzyme involved in the cleavage of the NS1/NS2A junction is 

still unclear. 
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1.6 WNV proteins 

1.6.1 Capsid 

The flavivirus capsid (C) is the first gene encoded by the polyprotein, producing a 14kDa 

cytosolic protein. C is cleaved from prM by co-ordinated cleavage by both the ER resident host 

signalase (at the prM junction) and the viral NS2B-NS3 protease (on the cytosolic side of the ER 

membrane) (Figure 1.3B) (169-175). The primary function of the capsid protein is to form the 

nucleocapsid in association with the viral RNA genome. C has an affinity for both lipids and 

Figure 1.3 Organisation of the WNV genome and polyprotein. A. The polyprotein translated from the 

11kB genome is processed into 3 structural (C, prM and E; blue) and 7 non-structural (NS; yellow) proteins. 

In 30-50% of translation events, a frameshift occurring within the NS2A coding region results in the 

production of a C-terminally extended form of NS1 (known as NS1'; orange) terminating in a stop codon. B. 

WNV polyprotein spans the ER membrane and is cleaved by host (signal peptidase, black arrow; furin, dark 

blue arrow; unknown, green arrow) and viral (NS2B-3; red arrow) proteases.!
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nucleic acids (176, 177, 147, 178), and charged basic residues on both the N- and C-terminus 

interact with nucleic acids (179, 147). The exact structure of nucleocapsid is still unclear, though it 

is unlikely to fully enclose the viral RNA (180-182). In addition to forming the nucleocapsid, C is 

also involved in promoting viral replication and translation (183, 184).  

1.6.2 Membrane 

The flaviviral membrane (M) protein is a small, 8kDa protein that is cleaved from its 

precursor (prM; approximately 21kDa). During virion production, this precursor protein is anchored 

to the lipid membrane that encloses the viral nucleocapsid (185-187). Here it interacts with the viral 

envelope protein as a heterodimer and assembles on the membrane surface with two additional 

heterodimer complexes (188, 185). The key function of the prM protein is to stabilize the envelope 

protein during trafficking of the immature virion through the secretory pathway (189, 188, 190). In 

the trans-Golgi the prM precursor protein is cleaved by the host protease furin into mature M. 

However, the pr peptide appears to remain associated with the viral particle until it is released from 

the cell (191, 189, 188, 192-194). The prM protein is one of three viral glycoproteins (including the 

envelope and NS1 proteins), and the addition of glycans is important for particle production and 

pathogenesis (191, 195-197, 193). prM has also been suggested to assist in the folding of the 

envelope protein (198). 

1.6.3 Envelope 

The flaviviral envelope (E) protein is a 53kDa glycoprotein containing 6 disulfide bridges 

(199). This class II viral fusion protein resides in a dimeric form on the surface of viral particles and 

triggers fusion of the viral and host cell membranes. As E is the major protein on the surface of 

virions, it is also the primary target of neutralizing antibodies (148, 200). E consists of three distinct 

domains connected by flexible hinge regions; DI, DII, and DIII (201-205). Domain I is the central 

domain and functions as the hinge point for DII (465). DII mediates dimerisation of E, and includes 

a glycine rich tip that is important for membrane fusion (206, 189, 207). Through a number of 

studies, DIII has been suggested to contain binding sites for cellular proteins (208-210, 204). The 

glycosylation of the envelope protein is important for viral pathogenesis (195, 196, 211, 212), 

though the nature of glycosylation can be variable in different WNV strains (213-216, 205).  

E is arranged in 90 homodimers on the surface of mature virions (201, 185). The low pH 

environment in the late endosomes following endocytosis of viral particles triggers a 
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conformational change in the E protein that leads to fusion between the viral and endosomal 

membranes. It has been suggested that the protonation of one or more His residues triggers this 

change (217-219). The conformational change results in the dissociation of dimeric E on the virion 

surface, and in the exposure of the fusion domain on the tip of DII. This domain subsequently 

interacts with the adjacent endosomal membrane, and monomeric E reassociates as a trimer (220). 

This triggers membrane fusion through a hemifusion intermediate, finally resulting in the formation 

of a fusion pore (219). 

1.6.4 Non-structural membrane proteins 

WNV expresses 4 small, multifunctional hydrophobic proteins with 2-3 membrane spanning 

regions. NS2A, NS2B, NS4A and NS4B are involved in a variety of roles throughout viral 

infection, from assembly, to viral RNA replication, to inhibition of the host immune system (221-

224). In fact, all four hydrophobic proteins co-localise with dsRNA and other members of the 

replication complex (RC), and thus have been implicated in viral RNA replication (225, 221, 223, 

226). In addition to this, NS2A, NS2B, NS4A and NS4B have been shown to be involved in the 

inhibition of the host immune system, specifically by blocking type 1 IFN signalling (227, 116-118, 

228). Apart from a role in RNA replication and inhibition of IFN signalling, all four proteins have 

been shown to have additional and diverse functions throughout the virus life cycle.  

NS2A is a 22kDa protein involved in virion assembly and IFN-independent apoptotic cell 

death (168, 229, 225, 230, 116, 221, 231, 232). The primary function of the small, 14kDa NS2B 

protein is a protease co-factor in combination with the C-terminal protease domain of NS3 (233, 

164, 162, 234). The 16kDa NS4A protein has been implicated in reorganisation of host cell 

membranes, with expression of NS4A alone sufficient to induce membrane proliferation (235, 221, 

222, 236, 237). In further support for this role of NS4A, structural predictions of the protein 

highlights the ability of NS4A to induce membrane curvature (238). NS4A forms oligomers that are 

important for viral infection, as mutations disrupting this result in a inhibition of viral replication 

(239). Protein binding studies carried out on NS4A show an association with the additional 

members of the replication complex, and thus supporting the theory of a role for NS4A in viral 

RNA replication (221). The 29kDa NS4B protein has also been implicated in membrane 

proliferation (223, 240). Recently, the presence of an alternative reading frame within NS4B was 

identified by bioinformatic analysis and determined to result in the production of a protein 

containing the N-terminus of NS4B with a unique C-terminus (241, 242). Both NS4A and NS4B 



 12 

have been shown to activate the unfolded protein response, leading to an inhibition of antiviral 

signalling (121).  

1.6.5 NS3 

NS3 is a 70kDa protein consisting of two distinct functional domains, a serine protease and 

a helicase. NS3 is widely distributed throughout the cell, particularly in association with 

proliferating ER membranes. NS3 has been shown to co-localise with dsRNA and other non-

structural proteins involved the formation of the replication complex, suggesting that this protein is 

also involved in RNA replication (226). The C-terminal domain of NS3 shows RNA-stimulated 

nucleoside triphosphatase (NTPase), ATPase/helicase and 5' triphosphatase (RTPase) activity (243-

245). The RTPase activity is involved in dephosphorylation of the 5' end of RNA prior to the 

addition of a cap (246). The helicase domain is able to unwind RNA, driven by NTPase hydrolysis 

(247-250). This is the domain involved in viral RNA replication. An interaction between NS3 and 

NS5 has been shown, and NS5 appears to stimulate the NTPase/helicase activity (251-253). It has 

also been suggested that the helicase activity is enhanced by an association of NS3 with NS4B 

(254). 

The N-terminal 175 residues of NS3 comprise a serine protease, which functions in 

association with NS2B (255, 243, 256). The NS3 sequence contains a conserved catalytic triad 

within the protease domain (His51, Asp75 and Ser135 for WNV) (255, 257, 243, 256). The 

structure of the NS2B-NS3 protease shows a predominantly closed confirmation, with NS2B 

wrapped around NS3 (258, 259). This protease activity results in cleavage after dibasic residues that 

are followed by a small side chain amino acid (257). This pattern occurs at multiple sites within the 

viral polyprotein, and the NS2B-NS3 protease mediated cleavage of the viral polyprotein (in 

addition to cleavage by host proteases) liberates the individual proteins (257, 260, 164, 261, 262).  

The N-terminal protease and C-terminal NTPase/helicase appear to be segregated domains 

(263, 264). The two distinct functions of the NS3 protein are also likely to occur in separate regions 

of the cell, with the protease functioning in the induced convoluted membranes to cleave the viral 

polyprotein, and the helicase functioning at the site of RNA replication in vesicle packets. In 

addition to the helicase and protease activities, NS3 has also been implicated in virion assembly (5, 

229, 261, 265, 266). In-frame deletions of the helicase domain result in an inability of virions to be 

assembled (5, 261).  
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1.6.6 NS5 

NS5, the largest of the viral proteins, is a multifunctional 100kDa protein that is essential for 

viral replication (267, 268). It contains a characteristic RNA-dependent RNA polymerase (RdRp) in 

the C-terminal two thirds of the protein (269-273) and its role in viral RNA replication has been 

confirmed by numerous studies, including co-localisation of NS5 with both dsRNA and other non-

structural proteins implicated in the formation of the flaviviral replication complex (274, 275, 252).  

This domain contains a conserved GDD active site at positions 665-667 in WNV, which is critical 

for the function of the polymerase (276, 267, 270, 277). The N-terminal region of NS5 contains an 

S-adenosyl methionine methyltransferase (MTase) with both N7 and 2'-O MTase activity. This 

domain can also function as a guanylyltransferase (278-281). Crystallisation of NS5 showed classic 

palm, thumb, and finger domains within the RdRp, in addition to highlighting an intra-molecular 

interaction between the MTase and RdRp domains (282, 272). NS5 also contains a nuclear 

localisation sequence; however this has little effect on virus replication (274, 283, 284).  

1.7 Virus Replication Cycle 

1.7.1 Attachment and entry 

WNV can infect many different cell types in culture; however, in the course of an actual 

infection the tropism of WNV is more limited. WNV predominantly targets monocytes, 

macrophages, dendritic cells, endothelial cells and neurons (20, 285). The specific receptor on the 

cell surface that is used for initial viral binding is still unclear, and it appears that in fact, multiple 

receptors can bind to WNV. One example is a transmembrane cell receptor, αVβ3 integrin, which 

has been implicated in the binding and entry of both WNV and JEV. Knockdown of this particular 

receptor results in a decrease in the efficiency of WNV infection (286). In addition to this receptor, 

glycosaminoglycans have also been implicated in flaviviral receptor binding (218).  

Following initial binding to the cell (Figure 1.4, step 1), viral particles enter the cell by 

receptor mediated endocytosis of clathrin coated pits and accumulate in early endosomes (287-293). 

Following endocytosis, viruses are trafficked to the late endosomes by microtubules (Figure 1.4, 

step 2) (288, 294, 295). Once in the late endosome, the environment becomes acidified, triggering a 

conformational change in the virion surface. The envelope protein, which forms the surface of the 

virion, is altered from a dimer form to a trimer form. This trimeric E protein mediates fusion of the 

viral and endosomal membranes, subsequently releasing the enclosed nucleocapsid (Figure 1.4, step 
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3) (296, 297). Once in the cytoplasm, the virus core uncoats, releasing the viral RNA (Figure 1.4, 

step 4) (289, 298).  

!

Figure 1.4 Flavivirus replication cycle. (1) Receptor attachment and endocytosis of clathrin-coated pits. (2) 

Trafficking to late endosome and subsequent acidification. (3) Fusion of virion and endosome membrane due 

to low-pH triggered conformational change in E. (4) Uncoating of viral RNA. (5) Translation of genome in 

rough endoplasmic reticulum (RER). (6) Non-structural proteins induce remodelling of cell membranes, 

including formation of vesicle packets (VP) and convoluted membranes/paracrystalline arrays (CM/PC). (7) 

Viral RNA replication occurs in VP. (8) Encapsidation of RNA and formation of immature virions. (9) 

Cleavage of pr from M and maturation of virion in trans-Golgi. (10) Release of mature progeny virus from 

cell.!
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1.7.2 Replication 

All viral non-structural proteins have been identified in association with dsRNA and VPs by 

immunfluorescence and electron microscopy studies, and have thus been implicated in viral RNA 

replication. In addition to a role for the non-structural proteins in the RC, a number of host proteins 

also appear to be involved in flaviviral RNA replication (299, 300). One example is the eukaryotic 

elongation factor 1 alpha (eEF-1α), an abundant host protein involved in transporting tRNAs to 

translating ribosomes (301), which has been shown to interact with WNV RNA (302-304).  

Initial translation of the incoming positive strand RNA viral genome provides the non-

structural viral proteins required for RNA replication. The RC, comprised of both host and viral 

proteins, assembles on 3' end of the positive strand genomic RNA (305). Cyclization of the genome 

by 3'-5' long distance RNA-RNA interactions is required for minus strand RNA synthesis (306, 

307, 2, 308). The low level of genomes available early in replication results in positive sense RNA 

molecules switching between a linear template for translation and a cyclic form for RNA synthesis. 

The RC transcribes minus strand RNA from the positive strand RNA, producing a double stranded 

RNA replicative form (RF). This initial replication can occur as early as 3 h post infection (309). 

Once negative sense RNA is generated, this RF acts as the template for the replication of positive 

sense RNA (310, 311). By 24 h, the exponential phase of genome synthesis begins (310), where 

multiple RNAs are simultaneously copied from a single minus strand template. As new positive 

strand RNA is being formed, it displaces the old strand. Throughout the virus life cycle, the level of 

minus strand RNA remains low in comparison to positive strand RNA, which functions as mRNA 

for translation and is also packaged to produce new viral particles.  

1.7.3 Membrane reorganisation 

WNV induces significant morphological changes in the host cell architecture. The initial 

production of non-structural proteins from incoming viral genomes is crucial for triggering the 

remodelling of the cellular architecture (312, 149). Viral non-structural proteins have been shown to 

induce proliferation of the ER membrane. This can be linked to an upregulation of cholesterol, that 

is redistributed to regions of the ER containing the replication complexes (122). This membrane 

proliferation produces two distinct structures (313-315, 226); vesicle packets (VP), which are 

produced early in infection (316, 221, 149), and convoluted membranes (CM), which are formed 

later (313, 149). Convoluted membranes may be randomly folded or arranged in highly ordered 

paracrystalline arrays (PC). VP represent the site of RNA replication, apart from very early in 
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infection (prior to membrane proliferation) (317, 318). The CM/PC on the other hand is formed as 

the site of polyprotein processing (313, 149).  

1.7.4 Assembly and maturation 

Once replicated, new positive strand genomes exit the VPs through a pore (318), after which 

they can be either replicated, translated, or assembled into virions. It is thought that the hydrophobic 

face of the capsid protein binds to the cytoplasmic side of the ER membrane, while the charged face 

binds to the RNA exiting a VP pore (147, 319). Both the envelope and membrane proteins also 

associate within the ER membrane. Assembly of virions then occurs when genomic RNA interacts 

with capsid in the same region where E and prM are associated. This leads to the budding of 

immature virions into the ER. These virions are subsequently transported through the secretory 

pathway, where glycans on prM and E are modified (320). The presence of the pr peptide in initial 

virion formation is required to protect the E protein from triggering membrane fusion within the 

low pH environment of the secretory pathway (188, 321, 190, 194). Within the trans-Golgi, prM is 

cleaved by furin to mature M. Prior to release from the cell, E is modified from the trimeric form to 

dimers, forming the mature viral particle (185, 190, 322-324). Subviral particles containing only the 

prM and E proteins, with no nucleocapsid, are also released during infection (321).  
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1.8 NS1 review 

While the focus of this thesis is on the non-structural protein NS1', an understanding of the 

NS1 protein is crucial to further the studies on NS1'. NS1' is a C-terminally extended form of NS1, 

and so contains the entire NS1 sequence. It is possible that NS1' may therefore be able to function 

like NS1.  

1.8.1 Introduction 

NS1 was first identified in the brains of DENV infected mice in 1970, though was initially 

designated as a virion-derived soluble complement fixing (SCF) antigen (325). This SCF antigen 

was later identified as NS1, the first non-structural protein encoded in the flaviviral genome (162, 

326). Flaviviral NS1 is fairly highly conserved, with a sequence consisting of 1056 nucleotides 

(327-329). NS1 is a 352 amino acid glycoprotein with a molecular weight of 46-55 kDa, depending 

on the glycosylation state (327, 326, 330). Initially produced in the ER, NS1 exists in several 

oligomeric forms as either cell associated or secreted protein (331-333). NS1 has been implicated in 

a wide range of functions during flaviviral infection, including performing a critical function in 

RNA replication, as well as both activation and inhibition of the host immune system (4).  

1.8.2 Expression and processing 

See Figure 1.5 for a depiction of NS1 processing and trafficking pathway.  

During translation of the flaviviral polyprotein, NS1 is directed to the ER due to the 

presence of a signal sequence encoded by the last 24 amino acids of the preceding E protein (334). 

NS1 is cleaved from E at the N-terminus by the ER host signal peptidase (161) and at the C-

terminus from NS2A by an unidentified host cell protease (335) (Figure 1.5, step 1). Monomeric 

NS1 contains 12 conserved cysteine residues that form 6 intramolecular disulfide bonds. The 

disulfide bond arrangement has been solved for MVEV, WNV and DENV (3, 336, 337), with the 

cysteine residues being linked as shown in Figure 1.6. The importance of these disulfide bonds has 

been determined previously, with mutagenesis studies indicating that at least the last 3 cysteine 

residues were critical for proper NS1 folding, and subsequently maturation, secretion, and 

oligomerisation (338). 
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Figure 1.5 NS1 processing and trafficking in mammalian cells. During translation, NS1 is directed to the 

ER due to the presence of a signal sequence in the C-terminus of the preceding E protein. NS1 is cleaved 

from the adjacent E and NS2A genes forming a monomer (step 1) which is modified by the addition of high-

mannose carbohydrates at 2 or 3 sites (depending on the flavivirus; step 2). Following glycosylation, NS1 

rapidly dimerises and becomes membrane associated (step 3) due to an acquired hydrophobic nature. NS1 is 

then trafficked to 3 distinct locations in infected cells. NS1 is trafficked to the site of RNA replication in 

vesicle packets (VP), where it associates with other components of the viral replication complex (RC; step 

4). Membrane associated NS1 is also trafficked to the cell surface by an as yet unidentified pathway (step 5). 

A subset of NS1 traffics through the Golgi, where the dimers associate to form a soluble hexamer (step 6). 

Here the high mannose carbohydrates are processed to more complex sugars (step 7), and the soluble 

hexamer is subsequently secreted to the extracellular fluid (step 8), where it can bind back to infected and 

uninfected cells via an association with glycosaminoglycans (GAGs). Figure modified from Muller and 

Young, 2013 (4). 



 19 

!

Following translation and cleavage, NS1 is glycosylated at multiple sites by the addition of 

high-mannose carbohydrates (Figure 1.5, step 2). The number of glycosylation sites varies 

depending on the flaviviral species. DENV, YFV and JEV contain 2 conserved sites (at Asn 130 

and Asn 207) (339-341, 326, 342), while WNV, MVEV and SLEV each contain 3 sites (an 

additional site at Asn 175) (343, 336, 344, 345, 329, 346). Once glycosylated, NS1 forms a 

detergent resistant dimer that is sensitive to heat and low pH treatment (347, 348, 333). The 

formation of an NS1 dimer was first identified through SDS-PAGE analysis of infected mammalian 

or insect cell lysate and is a consistent feature of all flaviviruses (332, 333). The loss of NS1 dimers 

by a single amino acid substitution at residue 250 of WNVKUN or MVEV NS1 resulted in 

attenuation of virus growth and a reduced virulence in mice. This work suggests that the NS1 dimer 

is important for viral pathogenesis (349, 350). However, as this mutation did not completely ablate 

virus replication, it is likely that dimeric NS1 is not critical for virus replication or that some 

dimerisation still occurred. NS1 dimers acquire a partially hydrophobic nature (348), which has 

been suggested to be the major factor in the subsequent association of NS1 with the ER membrane 

(4) (Figure 1.5, step 3).  

NS1 is trafficked to three distinct locations in infected cells following dimerisation in the 

ER: the site of RNA replication; the cell surface (351, 348); and secreted to the extracellular fluid 

(331, 352). The majority of NS1 remains within the ER, where it is trafficked to the site of RNA 

replication in vesicle packets (Figure 1.5, step 4). Here, NS1 co-localises with dsRNA and other 

members of the replication complex (268, 353, 309, 316, 226). The critical role NS1 plays in viral 

RNA replication is outlined in section 1.8.3. In addition to remaining within the ER, membrane 

associated NS1 is also trafficked to the cell surface, by an as yet unknown pathway (Figure 1.5, step 

5) (351, 348). Cross-linking of NS1 expressed on the surface of YFV infected cells indicates that 

cell surface NS1 is present in its dimeric form (351). For DENV NS1 only, a glycosyl-

phosphatidylinositol (GPI)-linked form has been identified that is produced in the ER and 

subsequently trafficked to the cell surface (354-356). This GPI-anchored form is capable of signal 

Figure 1.6 Schematic of NS1 protein. Disulfide linkages are shown between conserved cysteine residues 

(circles), and glycosylation sites are indicated by black (conserved Asn 130 and 207) and grey (additional 

glycosylation at Asn 175 for WNV, MVEV and SLEV) hexagons.  
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transduction; however, it only constitutes a small proportion of NS1 present on the cell surface 

(354).  

Once dimerised, a subset of NS1 is trafficked to the Golgi, where three dimeric units 

associate to form a soluble hexamer (Figure 1.5, step 6). During passage through the Golgi, the high 

mannose carbohydrates are processed to more complex sugars (Figure 1.5, step 7). This hexamer is 

subsequently secreted from infected mammalian cells (Figure 1.5, step 8), though not from insect 

cells (357, 331, 352, 332). This further processing and glycosylation of NS1 has been shown to be 

important for not only NS1 secretion, but also viral replication and virulence (358, 359, 341, 360, 

361). The absence of secretion from insect cells is likely to be due to insect cells lacking the 

machinery for proper processing of NS1 into a complex carbohydrate form (352, 332, 4). The 

formation of this hexameric NS1 form has thus far been confirmed to be produced from TBEV 

(357, 331), DENV (352), and WNV (362) infected cells. The NS1 hexamer is held together by 

weak hydrophobic interactions that are disrupted by detergent treatment (352). To detect this form, 

chemical cross-linking of extracellular fluid or SDS-PAGE with very low levels of SDS were 

performed. However, this was still only able to detect small amounts of the hexameric species, and 

neither technique showed complete retention of this native form (357, 331, 352).  

Secreted DENV NS1 has been shown to bind to glycosaminoglycans (GAGs) on the surface 

of infected and uninfected cells (363). NS1 is also internalised from the surface of cells by 

endocytosis, where it accumulates in the late endosomes for up to 48 h (364). DENV and JEV NS1 

have been shown to associate with lipid rafts in both infected and transfected cells (365, 355). Lipid 

rafts contain cholesterol, which has recently been implicated in flaviviral entry, RNA uncoating, 

and RNA replication (366, 365). A reciprocal relationship seems to exist between cell surface 

expression and NS1 secretion. The expression of NS1 on the surface of WNV infected cells has 

been shown to be greater than that of DENV NS1; however, the level of secreted NS1 is greater for 

DENV infected cells. This relationship was specifically linked to two N-terminal amino acids (10 

and 11) that were different between WNV and DENV, and mutagenesis of these residues could 

confer the converse expression pattern (367).  

Previous work using either cryoelectron microscopy or single particle analysis and 3D 

remodelling determined that NS1 forms a barrel-like structure comprising of three dimeric units 

(368, 369). Gutsche et al (368) also identified the presence of a central channel rich in lipids, 

consistent with the previous work showing an association of NS1 with lipid rafts (365, 355). 

Recently, the full crystal structure of WNV and DENV NS1 was solved (3). This work confirms the 
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barrel-like structure of the hexamer, with a hydrophobic interior consistent with the association with 

lipids. Briefly, the NS1 dimer was shown to consist of a central β-sheet “ladder” structure, 

containing 18 β-sheets (Figure 1.7). Each monomer was shown to have three distinct domains: a 

short β-roll dimerisation domain (amino acids 1-29; blue); a “wing” domain (amino acids 30-180; 

yellow and orange) that contained two glycosylation sites (for WNV NS1) and a mix of α-helices 

and β-sheets; and the third and most notable domain is a continuous β-sheet (amino acids 181-352; 

red), with each monomer contributing 9 strands to the central “ladder” structure. The β-roll and a 

connecter region within the “wing” domain form a distinctly hydrophobic surface (Figure 1.7C). In 

addition to the presence of amino acids involved in the interaction of NS1 with NS4B (370) within 

this region, this hydrophobicity suggested that this region is a likely candidate for an interaction 

with the ER membrane.  

It is worth noting that while the characteristics described above and outlined in Figure 1.5 

are generally accepted as being common to flaviviral NS1, some of the results have been obtained 

only for one (predominantly DENV) flaviviral species. Specifically, the identification of a GPI-

anchored form of NS1, the ability of hexameric NS1 to bind back to cells via an interaction with 

GAGs, and the internalisation of cell surface NS1 by endocytosis have only been confirmed for 

DENV (364, 363, 354-356). Only YFV NS1 has been confirmed to be in a dimeric form on the 

surface of infected cells (351). It has also been shown that not all characteristics are the same 

between flaviviruses, for example, the correlation between surface expression and secretion seen for 

WNV and DENV NS1 (367). In addition to this, a clear variation in the glycosylation pattern of 

NS1 from different flaviviral species is evident (343, 336, 344, 345, 339, 329, 340, 341, 326, 346, 

342). Inconsistencies in NS1 binding partners has also been identified, with a complement protein 

(factor H) interacting with WNV NS1, but not JEV NS1 (362, 371).  
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1.8.3 Involvement of NS1 in Flaviviral replication 

The first indication that NS1 is involved in viral RNA replication was the observation that 

DENV NS1 co-localised with dsRNA in vesicle packets with infected cells (316). This was further 

confirmed with WNV NS1, suggesting a role for NS1 in the RC (316, 226). Since then, 

mutagenesis studies (359, 372, 373) and trans-complementation experiments (268, 5, 309, 374, 

375) have shown that NS1 performs a crucial function early in replication. As NS1 is physically 

separate from the remaining components of the RC, it has been suggested that it is likely to be 

involved in RNA replication by providing an anchor mechanism to hold the RC to the ER (4). This 

Figure 1.7 Crystal structure of NS1 dimer. Figure reproduced from Akey et al, 2014 (3). “(A) NS1 

dimer with one subunit in gray and the other colored by domain (blue, b roll; yellow, wing with orange 

connector subdomain; red, central b ladder). Disulfides are shown as yellow spheres and N-linked 

glycosylation sites as black sticks. A 20-residue disordered region is indicated with dotted lines. C, C 

terminus; N, N terminus. (B) Topology diagram for NS1 monomer [colored in blue, yellow, orange, and red 

as in (A)]. Glycosylation sites are indicated with green hexagons and disulfides with yellow circles. (C) 

Perpendicular views of NS1 from the edge (left) and the end (right) of the b ladder. The b roll (blue) and b-

connector subdomain (orange) of the wing form a protrusion on one face of the b ladder with the spaghetti 

loop (pink) and glycosylation sites on the other face. The wing domain is omitted from the left image for 

clarity.” 
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is thought to happen through an interaction with one or several of the transmembrane proteins 

involved in the RC (Figure 1.8). An interaction of NS1 with both NS4A and NS4B has been shown 

by corresponding compensatory mutations (353, 370), while a physical interaction was shown only 

with NS4B (370).  

!

The trans-complementation experiments indicated that NS1 can be supplied in trans to 

recover replication-deficient flavivirus RNA lacking functional NS1 (268, 5, 309, 374, 375). 

Further work on the recovery of a defective YFV genome showed that complementation was not 

successful with addition of DENV NS1, suggesting that trans-complementation is virus-specific 

(309). It was this work that identified the genetic link between NS4A and NS1, with a 

compensatory mutation in NS4A resulting in DENV NS1 being able to complement for the YFV 

NS1-deleted genome (353). Column bound NS4A was able to precipitate all members of the RC 

(including NS1), further supporting the theory that NS1 may interact with NS4A (221). The genetic 

interaction between NS1 and NS4B was suggested due to a compensatory mutation present in 

NS4B following passaging of a WNV NS1 containing two amino acids from DENV NS1. 

Figure 1.8 Schematic of the proposed replication complex. This schematic is based on the available 

information on the flaviviral replication complex (RC). The flaviviral RC resides within vesicle packets 

formed in the ER membrane. The majority of the components of the RC (including NS2A, NS2B, NS3, 

NS4A, NS4B and NS5) are present on the cytoplasmic face of the ER membrane, with NS1 present in the 

ER lumen. NS1 is hypothesised to form an anchor due to an interaction with NS4A, NS4B, or both. Positive 

sense viral RNA (vRNA) is transcribed from the negative sense vRNA by the polymerase domain of NS5. 

Figure modified from Muller and Young, 2013 (4).  
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Subsequently, co-immunoprecipitation and mass spectrometry identified a physical interaction 

between NS1 and NS4B (370).  

Most recently, a group working with WNVNY99 confirmed the necessity of NS1 in the 

replication complex for this WNV strain (374). The authors showed that in the case of WNVNY99, 

trans-complementation with NS1 from different flaviviral species was possible without the need for 

compensatory mutations, albeit to different degrees of success. JEV NS1 complemented to similar 

degree as WNV NS1, while DENV, YFV, and SLEV NS1 complemented less efficiently with 

complemented viruses showing reduced plaque size and lower titres (374).  

1.8.4 Interaction of NS1 with the host immune response 

An interaction between NS1 and the host immune system has been known since NS1 was 

first identified as a soluble complement fixing antigen (325). NS1 has the conflicting ability to both 

activate and inhibit the host immune system.  

NS1 is potentially the major viral antigen responsible for the activation of the complement 

pathway (376, 377). Secreted NS1 is able to directly activate the complement pathway, resulting in 

an increase in the level of membrane attack complexes (376). In addition to this, the presence of 

NS1 on the surface of infected cells has also been shown to be involved in the activation of the 

complement response. Binding of NS1-specific antibodies to NS1 on the cell surface leads to the 

generation of C5b-9 membrane attack complexes. These in turn trigger cellular activation and 

production of inflammatory cytokines (376). NS1 binds directly to the complement inhibitory factor 

clusterin, which inhibits the formation of membrane attack complexes. NS1 binding therefore 

reduces the levels of clusterin, leading to an increase in C5b-9 formation (378).  

In addition to being involved in the activation of the complement system, NS1 has also been 

implicated in the evasion of complement system, both the classical/lectin pathway and the 

alternative pathway. DENV secreted NS1 was identified through co-precipitation analysis to bind to 

the complement protein C4. This interaction was found to promote cleavage of C4 to C4a and C4b 

via the recruitment of the complement specific protease C1s. This mechanism limits the amount of 

C4 available and therefore can protect the virus from neutralisation (379). Secreted NS1 from 

DENV, WNV and YFV infected cells has been shown to interact with C4 binding protein (C4BP), 

which is also likely to increase the cleavage of C4, and therefore inhibit neutralisation. The 

presence of the C4BP-NS1 complex on the surface of infected cells may also prevent cells from 
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complement mediated lysis (380). WNV NS1 has also been observed to bind to factor H (fH), a 

regulator of the alternative complement pathway. This interaction leads to a reduction in the 

formation of membrane attack complexes on cells, and therefore protects infected cells from 

complement mediated cell lysis (362). However, this particular interaction is not conserved for all 

flaviviral NS1, as it has been reported that JEV NS1 is not able to bind fH (371). 

In addition to a role in the complement pathway, NS1 has also been implicated in the 

inhibition of TLR3 signalling (113, 114). TLR3 signalling has been shown to protect against WNV 

infection (76, 78, 79, 81, 83), suggesting that an inhibition of TLR3 may contribute to WNV 

pathogenicity. The potential for an interaction between NS1 and TLR3 is still somewhat 

controversial, due to a similar study that failed to identify any inhibition of TLR3 signalling by 

DENV, YFV or WNV NS1 (112).  
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1.9 NS1' review 

1.9.1 Introduction 

NS1' is an additional non-structural protein that was first identified in JEV infected cells. 

Anti-NS1 antibodies reacted to two individual protein bands, the expected 42 kDa NS1 protein and 

an additional 58 kDa protein, which the authors designated NS1' (381). Since this first discovery, 

NS1' has been confirmed to be produced by members of the JEV serogroup, including JEV, MVEV, 

and WNV (both WNVKUN and WNVNY99) (382, 383). NS1' is absent from cells infected with 

viruses outside this serogroup, including DENV, YFV, and Kokobera (382, 330). This suggested 

that NS1' expression may be unique to the members of the JEV serogroup. NS1' was also shown to 

react with antibodies to the start of the NS2A coding region, suggesting that this additional non-

structural protein was formed by an alternate cleavage site present within the NS2A gene (381).  

1.9.2 Frameshifting and production 

In 2009, computer modelling predicted the presence of an RNA pseudoknot at the beginning 

of the NS2A gene that was conserved between members of the JEV serogroup. Due to the presence 

of this pseudoknot, the authors hypothesised that the 5'-end of the NS2A RNA may contain a -1 

programmed ribosomal frameshift (PRF) (384). A -1 frameshift at this site would produce a protein 

consistent with the observed molecular weight of NS1', containing the entire NS1 sequence plus 9 

amino acids of NS2A prior to the frameshift and 43 residues after the frameshift, terminating in a 

stop codon (384). A -1 PRF requires two signals, a heptanucleotide “slippery” site and an RNA 

pesudoknot, separated by 6-8 bases (385). Both of these signals were present and conserved 

between the members of the JEV serogroup, further supporting this hypothesis (Figure 1.9) (384). 

Following this prediction, our laboratory  experimentally demonstrated the requirement of both 

these signals for production of NS1' (1) Two different viral mutants were produced that affected 

either the slippery heptanucleotide (FSSM; frameshift silent motif) or the formation of the RNA 

pseudoknot (A30A'; silent alanine substitution at residue 30 of NS2A). Neither mutant virus 

expressed NS1', confirming that both the slippery heptanucleotide and RNA pseudoknot are 

required for NS1' production. This verified that NS1' is indeed the product of a ribosomal 

frameshift. The requirement for the pseudoknot has since been confirmed for JEV NS1' (386). 
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NS1' is produced in 30-50% of translation events, and is therefore present in infected cells at 

levels either slightly lower than or equal to the level of NS1 (332, 381, 1). NS1' has the same 

glycosylation pattern as NS1 (332), which is expected as NS1' contains the entire NS1 sequence and 

the frameshifted region contains no additional predicted glycosylation sites. Like NS1, JEV NS1' 

forms a heat-labile dimer in infected cells. However, NS1' does not appear to be secreted to the 

same degree as NS1, with only low levels of protein detected in the culture fluid of infected cells 

following pulse-chase (332). The presence of an NS1/NS1' heterodimer has also been suggested for 

both JEV and MVEV (382, 387, 388).  

1.9.3 Role in neurovirulence 

Although a specific function for NS1' in viral infection had not been identified, a role in 

viral neurovirulence has been suggested. Analysis of the NS1'-lacking mutants generated for 

examination of the -1 PRF (A30A' and FSSM) determined that while a lack of PRF/NS1' does not 

affect viral replication in vitro, it does correlate to attenuation in a mouse model. Weanling mice 

infected with wild-type WNVKUN typically show an 80% mortality rate, while A30A' and FSSM 

showed only 30 and 40% mortality, respectively (1). Further work with the A30A' mutant 

determined that a lack of PRF/NS1' has no effect on RNA synthesis, cell-to-cell spread or virus-

induced cytopathic effect (CPE) (389). It is as of yet unclear why the A30A' mutant is attenuated in 

mice.   

Figure 1.9 Predicted RNA pseudoknot structure in NS2A. Frameshift heptanucleotide (UCCUUUU) and 

codon 30 of NS2A (involved in A30A' mutation) are underlined and predicted RNA interactions contributing 

to formation of the pseudoknot are indicated by dashed lines. Figure reproduced from Melian et al, 2010 (1). 
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In agreement with the work conducted in WNVKUN, a study on the JEV vaccine strain 

(SA14-14-2) determined that a single point mutation abolished PRF and NS1' production. By 

introducing this single mutation into a JEV infectious clone, the authors determined that the lack of 

PRF and NS1' expression correlated with a reduction in neurovirulence (100% mortality of the 

parental strain verses 0% with the mutant), despite no effect on viral replication in vitro (390). This 

work, in combination with the work conducted in WNVKUN, suggested a relationship between 

PRF/NS1' production and an enhanced virulence phenotype. 

1.9.4 Additional predicted functions and characteristics of NS1' 

NS1' has previously been implicated in the assembly of viral particles (391). During the 

development of RepliVAX D2 (a single-cycle chimeric DENV vaccine expressing DENV prM/E 

genes in a WNV backbone) mutations to enhance virion packaging were introduced through blind 

passaging of the vaccine in cell culture. One of these mutations, a single amino acid substitution in 

NS2A, eliminated the ribosomal frameshift, thereby abolishing NS1' production (392, 391). This 

mutation lead to an increase in viral packaging, though had no effect on genome replication, 

highlighting a possible link between NS1' and the structural proteins. This was not the case when 

this mutation was introduced to a non-chimeric WNV vaccine (RepliVAX WN (463, 464)), 

suggesting that production of NS1' inhibits assembly of virus particles only in association with 

DENV structural proteins. Therefore, it is unlikely that NS1' is involved in virion assembly during 

natural WNV infection, as the presence of NS1' has no effect on virion production or viral 

replication when expressed in association with WNV prM/E genes (1, 391).  

Work carried out in a JEV expression system determined that NS1' is a substrate for caspase 

cleavage (386). In the process of generating expression plasmids for the examination of NS1' in 

isolation, the authors identified a small amount of truncated NS1'. This was further confirmed in 

JEV infected cells. Analysis of the C-terminal frameshifted region of JEV NS1' uncovered a 

potential caspase cleavage site (QEVDG), and the use of inhibitors confirmed that this truncated 

product was indeed due to caspase cleavage (386). The authors suggest that as caspases are 

activated to initiate apoptosis in flavivirus infected cells (393-395), NS1' may be able to modulate 

apoptosis (386). However, due to the low levels of cleaved NS1', it is unlikely to be involved in 

altering the apoptotic response.  

Interestingly, several more recent studies have suggested that the importance of NS1' lies 

not within the mammalian system, but instead in mosquito and avian systems. Recently, work 
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carried out in our laboratory studied the effect of an NS1'-lacking WNVNY99 virus in wild-caught 

house sparrows. Titration of virus particles in serum from infected house sparrows showed 

attenuation of WNVNY99 A30A' compared to wild-type WNVNY99 at the peak time of viral 

replication (3.7 log10 pfu verses 4.4 log10 pfu, respectively). These results suggest that NS1' is 

important for virulence in birds (389).  

A study using JEV infectious clones in avian cell culture and embryonated chicken eggs 

identified a role for NS1' in facilitating JEV infection in avian cells (396). NS1'-expressing viruses 

formed larger foci in chicken embryonic fibroblast (DF-1) cells and showed a log increase in virus 

production at both 48 and 72 hpi compared to viruses that lacked NS1'. The authors showed that 

this is likely due to enhanced viral RNA production, as the use of qRT-PCR determined that viruses 

expressing NS1' had significantly increased levels of RNA over those that lacked NS1'. This was 

not the case for infection of mammalian cells, as infection of BHK cells showed no difference in 

either viral titres or the level of viral RNA. A lack of NS1'-expression also correlated with a 

reduced mortality of embryonated chicken eggs. These results suggested that NS1' may be 

specifically functioning in an avian system (396). However, work conducted by our group in DF-1 

cells failed to identify any differences in viral replication between NS1'-expressing and NS1'-

lacking viruses (389). This suggests that the effect of NS1' on replication in these avian systems 

may be specific to JEV.  

In addition to the work conducted in house sparrows, Melian et al. aimed to determine 

whether PRF/ NS1' was important for viral replication and transmission in mosquitoes (389). This 

worked examined the effect of mutations abolishing PRF and NS1' expression in the context of 

whole Culex mosquitoes, as opposed to previous work which has utilised insect cell culture (1). Cx. 

annulirostris mosquitoes were exposed to blood meal containing either wild-type WNVKUN or 

A30A' (lacking PRF and NS1') virus. The level of virus present in both the body (a measure of the 

ability of the virus to initially infect) and legs (indicating the ability of the virus to disseminate) was 

lower for A30A' infected than wild-type infected mosquitoes. In addition to this, the amount of 

virus present in the saliva (indicative of the ability of the mosquito to transmit virus) was 

significantly lower in the absence of PRF and NS1'. This work suggested that PRF and/or NS1' are 

important for infection of and transmission by Cx. annulirostris mosquitoes (389).  
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1.10 Scope of thesis 

The aim of this thesis is to further the understanding of the flaviviral NS1' protein. While 

NS1' was first identified more than 25 years ago, focused studies on this elusive protein have thus 

far been limited, resulting in very little being known about NS1'. While initially thought to be the 

product of an alternate cleavage occurring within the NS2A gene, a recent bioinformatic study 

(supported by subsequent experimental evidence) determined that NS1' is produced by a -1 PRF 

(384, 1, 386). This has allowed for the development of NS1'-only expressing plasmids for the 

examination of NS1' in isolation (375). By examining the NS1' protein in isolation from NS1, we 

hope to develop a better understanding of the characteristics of NS1'. The work conducted for this 

thesis asked two distinct questions; does NS1' share any similar functions and/or characteristics 

with NS1, and does NS1' possess any unique functions and/or characteristics that differ from NS1?  

As NS1' consists of the entire NS1 protein, it is possible that NS1' may behave similar to 

NS1 in infection. Cellular localisation was examined to determine whether NS1' had similar 

distribution to NS1, and complementation analysis was used to establish whether NS1' can function 

in viral replication. The secretable heat-labile NS1 dimer has been extensively studied and is known 

to be important for viral infection. Therefore, the dimer formation and secretion of NS1' was 

examined. Co-immunoprecipitation and mass spectrometry was carried out to identify and compare 

protein-protein interactions of NS1 and NS1'. 

PRF/NS1' has been implicated in viral pathogenesis in mice, though the precise mechanism 

of action is still unclear (1, 390). Indeed, the attenuation seen for PRF/NS1'-lacking mutants may be 

due to a loss of the NS1' protein itself, or a loss of the -1 PRF. This PRF has been implicated in 

controlling the ratio of structural to non-structural proteins (389), and may therefore have a role in 

pathogenesis separate to that of the NS1' protein. To fully understand the function of the NS1' 

protein, it is necessary to separate these factors. To do this, new viral mutants that affect only NS1' 

production and not the PRF were designed and characterised. These new mutants were used to 

study the effect of NS1' on viral pathogenesis.  

In summary, the work conducted for this thesis had three main aims: 1) to identify 

similarities between the NS1' and NS1 proteins; 2) to investigate the formation of NS1' homodimers 

and NS1/NS1' heterodimers; and 3) to design and characterise viral mutants that affect NS1' 

production but not ribosomal frameshifting. 
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2 Materials and Methods 

2.1 Cell Culture 

Baby hamster kidney (BHK) and Vero76 (African green monkey) cells were maintained in 

Dulbecco’s Modified Eagle Medium (DMEM; Gibco, USA) supplemented with 5% heat-

inactivated Fetal Calf Serum (FCS; Moregate, Australia), 100 U/mL penicillin, 100 µg/mL 

streptomycin and 2 mM glutamax. Mouse embryonic fibroblasts (MEF) and human embryonic 

kidney (HEK) 293T cells were also grown in DMEM supplemented 10% FCS, 1 mM sodium 

pyruvate, and with glutamax, penicillin and streptomycin as above. Aedes albopictus cells (C6/36) 

were grown and maintained in Roswell Park Memorial Institute (RPMI) medium (Gibco, USA) 

containing 10% FCS, and glutamax, penicillin and streptomycin as above.  

2.2 Virus Stocks 

2.2.1 Electroporation 

Full-length WNVKUN infectious clone cDNA templates (FLSDX and mutants) were 

linearised with XhoI (New England BioLabs, MA, USA) as outlined below (section 2.3.3), and 

purified by phenol-chloroform extraction and ethanol precipitation. RNA was in vitro transcribed 

using 1 µg linearised DNA template, 40 U SP6 RNA polymerase (Roche, Switzerland), 10X SP6 

transcription buffer (Roche, Switzerland), 1 mM rNTP/CAP mix (Promega, WI, USA), and 20 U 

RNasin (Promega, WI, USA) in a 20 µL reaction mixture at 37°C for 2 h. One U RQ1 DNase 

(Promega, WI, USA) was added and the reaction incubated at 37°C for a further 30 min to remove 

the template DNA. BHK cells were washed three times in ice-cold diethyl pyrocarbonate-phosphate 

buffered saline (DEPC-PBS) and suspended in DEPC-PBS to a final concentration of 5 x 106 

cells/ml. Twenty µg of in vitro transcribed RNA was mixed with 2 x 106 cells in a 0.2 cm cuvette 

(Bio-Rad, CA, USA) and pulsed twice with a 10 sec interval by using a Bio-Rad Gene Pulser II (∞ 

Ω, 25 µF, 1.5 kV). Cells were incubated on ice for 5 min, resuspended in cell culture medium and 

seeded into culture flasks.  

2.2.2 Production and titration of virus stocks 

At 2 to 4 days post electroporation, P1 virus stocks were harvested and clarified by 

centrifugation at 1500 x g for 5 min at 4°C. To titrate P1 stocks, plaque assays were performed in 

six-well plates by infecting BHK cells for 2 h with virus stocks diluted from 10-2 to 10-7. Infected 
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cells were overlaid with 2 mL of plaque assay medium (70% DMEM, 2.5% FCS, 13 mM sodium 

bicarbonate, 70 µg/mL streptomycin, 70 U/mL penicillin, 14 mM HEPES, 1.4 mM glutamax, and 

0.35% low-melting-point agarose [Bio-Rad, CA, USA]) and incubated for 3 days at 37°C with 5% 

CO2. Cells were fixed with 2 mL/well 4% formaldehyde in PBS and incubated for 1 h at room 

temperature. Contents of the well were discarded and cells stained with 0.2% crystal violet in 10% 

ethanol/90% PBS for 20 min. Stain was removed and plaques were counted to calculate plaque 

forming units per mL (pfu/mL).  

Working virus stocks (P2) were generated by infection of BHK cells at low multiplicity of 

infection (MOI=0.1) with WNVKUN or mutant viruses harvested from electroporated BHK cells 

(P1). Stocks were harvested at day 3 to 5 post infection and titrated as above. 

WNVNY99 stock was provided by Judy Edmonds, and was generated by infection of Vero76 

cells with virus harvested from BHK cells electroporated with RNA transcribed from infectious 

cDNA clone of NY99 4132 isolate as described previously (397). JEV FU strain, first isolated in 

1995 (398), and MVEV 1-51, first isolated in 1951 (399), were kindly donated by Roy Hall. 

2.2.3 Infection 

Vero, BHK, WT MEF or C6/36 cells were seeded into 6-well plates and infected with 

WNVKUN or mutant viruses at MOI 1 (unless otherwise stated) for 2 h. Cells were washed 3X and 

appropriate growth media was added. For growth kinetics, 100 µL per sample was harvested at the 

indicated times post infection, clarified by centrifugation and stored at -80°C. Virus titres were 

determined by plaque assay as described. 

2.3 DNA Manipulations 

2.3.1 Transformation 

Chemical transformation. Plasmid DNA was combined with a 50 µL aliquot of chemically 

competent DH5α E. coli cells and incubated on ice for 30 min. The cells and DNA were 

subsequently heat-shocked for 45 sec at 42°C and immediately transferred to ice for a further 2 min. 

Pre-warmed Luria-Bertani (LB) broth (1% tryptone, 0.5% yeast extract, 1% NaCl) was added to the 

transformed cells which were allowed to recover at 37°C for 1 h. Transformed cells were spread on 

LB agar (LB broth with the addition of 1.5% agar) plates supplemented with ampicillin (100 

µg/mL). Plates were incubated overnight at 37°C. Once bacterial colonies developed, individual 
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colonies were picked at random, added to 5 mL LB broth containing ampicillin (100 µL/mL) and 

grown overnight at 37°C in a shaker. Cultures to be grown for midiprepping were generated by 

adding 2 mL of the above culture to 100 mL LB broth containing ampicillin, and grown overnight 

in a shaker at 37°C.  

Electrotransformation. For transformation into electrocompetent DH5α E. coli, 60 ng 

plasmid DNA was mixed with a 40 µL aliquot of competent cells. The bacteria and DNA were 

transferred to a 0.2 cm cuvette (Bio-Rad, CA, USA), pulsed once (200 Ω, 2.5 kV, 25µF) and 

transferred to ice. Electroporated cells were recovered in pre-warmed LB broth for 1 h at 37°C. 

Cells were subsequently spread onto LB agar/ampicillin plates and incubated overnight at 37°C. 

Once colonies developed, individual clones were picked and grown as described above.  

2.3.2 Purification 

Miniprep. Plasmid DNA was purified from 2 mL bacterial cultures using the Wizard Plus 

SV Plasmid Miniprep System (Promega, WI, USA) according to the manufacturer’s instructions. 

Midiprep. For purification of plasmids from larger bacterial cultures (~100 mL) 

NucleoBond® Xtra Midi kit (Macherey-Nagel, Germany) was used according to the manufacturer’s 

instructions. For pcDNA-based plasmids, NucleoBond Finalizers were used according to the 

instructions. For purification of larger plasmids (FLSDX- and pKUN-based), isopropanol 

precipitation and ethanol washes were carried out without the use of the Finalizer. The 

concentration of plasmid DNA was determined using a NanoDrop ND-1000 Spectrophotometer 

(NanoDrop, DE, USA).  

2.3.3 Enzyme digestion 

All restriction enzymes were purchased from New England BioLabs (MA, USA). Digestion 

reactions were performed in 20-100 µL with 1 – 10 U enzyme, depending on the amount of DNA to 

be digested, with 10X reaction buffer and 10X bovine serum albumin (BSA) added as required. 

Reaction were incubated for a minimum of 2 h at 37°C, prior to DNA fragments being separated by 

gel electrophoresis as outlined below.  
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2.3.4 Gel Electrophoresis 

For analysis of digested and undigested DNA, agarose gels were prepared by melting 1% 

agarose (Amresco, OH, USA) in 1X TAE buffer (40 mM Tris-acetate, 1 mM 

ethylenediaminetetraacetic acid [EDTA] pH 8.0), followed by the addition of 0.2 µg/mL ethidum 

bromide. Once gels were set, DNA samples were mixed with 6X loading dye (Fermentas, 

Lithuania) and loaded onto the gel. Electrophoresis was carried out in 1X TAE buffer at 100V for 

approximately 1 h to separate DNA fragments. DNA bands were visualised on a GelLogic 212 PRO 

UV/white light transilluminator (Carestream, NY, USA) and sizes were determined by comparison 

to the bands of a 1 kb DNA ladder (Fermentas, Lithuania).  

2.3.5 DNA extraction from gels 

The appropriate DNA fragment for purification was excised with a sterile scalpel, and DNA 

was purified from the gel fragment using the Wizard SV Gel and PCR Cleanup System (Promega, 

WI, USA) according to the manufacture’s instructions.  

2.3.6 Sequencing 

Purified DNA samples (0.2 – 1 µg) for sequencing were prepared in 12 µL reactions with 

0.85 µM sequencing primer and sterile water. Samples were submitted to the Australian Genome 

Research Facility (Brisbane, Australia) for analysis on an AB3730xl sequencer. 

2.3.7 Polymerase Chain Reaction 

For site-directed mutagenesis and cloning, high-fidelity PCR was carried out using Pfu 

DNA Polymerase (Promega, WI, USA). PCR was carried out in 50 µL reactions containing 20 ng 

template DNA, 10X Pfu DNA polymerase buffer (Promega, WI, USA), 1.25 µM each of forward 

and reverse primers, 1 µL of 10 mM dNTPs, 1 µL Pfu DNA polymerase and distilled water. A 

MyCycler Thermal Cycler (Bio-Rad, CA, USA) was used for reaction cycles, using the conditions 

outlined in Table 2.1 below.  
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Table 2.1 PCR cycle conditions 

Cycle Time Temperature Repeats 

Initial denaturation 2 min 95°C 1X 

Denaturation 30 sec 95°C 

Annealing 30 sec 45 - 60°C 

Elongation 2 min per kb 72°C 

30X 

Final elongation 20 min 72°C 

Hold ∞ 15°C 
1X 

 

2.3.8 Ligations 

Ligation reactions were carried out in a total volume of 15 µL, which included 100 ng 

vector DNA, 3-5X molar more insert DNA, 1.5 µL 10X ligation buffer and 0.5 µL T4 DNA ligase 

(New England BioLabs, MA, USA). Controls with no insert DNA (vector only), no vector DNA 

(insert only) and no T4 DNA ligase were included. Ligation reactions were incubated overnight at 

16°C prior to transformation into competent cells as outlined above (section 2.3.1).  

2.3.9 Transfections 

293T cells were seeded at 80-90% confluency in antibiotic-free medium 24 h prior to 

experiments. Transfections were carried out using Lipofectamine® 2000 (Invitrogen, OR, USA), 

according to the manufacturer’s instructions. A ratio of 0.8 µg DNA to 2 µL reagent for a 24-well 

plate was used as standard, and scaled appropriately for well size. 

2.4 Protein Analysis 

2.4.1 Cell lysis 

RIPA buffer. Transfected or infected cells were lysed at the indicated time post transfection 

or infection with 200 µL RIPA buffer per well of a 12-well plate (50mM Tris HCl pH 7.5, 150mM 

NaCl, 0.5% sodium deoxycholate, 1% Nonidet P40 [NP40], 0.1% sodium dodecyl sulfate [SDS], 

complete protease inhibitor cocktail [Roche, Switzerland]), scraped into suspension and incubated 

on ice for 30 min. Membranous material was removed by centrifugation at 14,000 x g for 10 min at 

4°C and cell lysate was subsequently stored at -80°C.  
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Co-IP buffer. Cells for co-immunoprecipitation and mass spectrometry analysis were 

washed 2X in PBS, lysed for 30 min on ice with Co-IP lysis buffer (50mM Tris HCl pH 7.5, 

250mM NaCl, 5mM EDTA, 0.02% sodium azide, 1% NP40, 1 mM sodium orthovanadate, 

complete protease inhibitor cocktail, 1 mM phenylmethanesulfonylfluoride [PMSF]) and clarified 

by centrifugation as above.  

2.4.2 SDS-PAGE 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was carried out 

using either a Mini-PROTEAN® Tetra Handcast system (Bio-Rad, CA, USA) or Bolt® Mini-Gel 

system (Novex, USA). Using the Mini-PROTEAN® system, SDS-PAGE gels were prepared with a 

10% resolving (2.5 mL Milli-Q H2O, 1.25 mL 40% Bis-Acrylamide [Bio-Rad, CA, USA], 1.25 mL 

1.5 M Tris-HCl [pH 8.8], 50 µL 10% SDS, 25 µL 10% ammonium persulfate [APS] and 25 µL 

tetramethylethylenediamine [TEMED; Bio-Rad, CA, USA]) and 4% stacking gel (2.5 mL Milli-Q 

H2O, 1.25 mL 40% Bis-Acrylamide, 1.25 mL 1.5 M Tris-HCl [pH8.8], 50 µL 10% SDS, 25 µL 

10% APS and 25 µL TEMED). Bolt® 4-12% Bis-Tris Plus Gel (Novex, USA) were used with the 

Bolt® Mini-gel system.  

To carry out SDS-PAGE, cell lysate was added to 4X NuPAGE® SDS-PAGE loading 

buffer (Novex, USA) and samples were heated (70°C for 10 min) or left untreated as indicated. For 

protein samples that were to be reduced, lysate was incubated with 5% β-mercaptoethanol prior to 

heat treatment. Protein samples were loaded into the wells of an SDS-PAGE gel and 

electrophoresed for 1 to 2 h (as required for separation) at 130 V (Mini-PROTEAN® system) or 

200 V (Bolt® system) in Tris-Glycine running buffer.  

2.4.3 Western Blot transfer 

Following SDS-PAGE, samples were transferred from the gel to a nitrocellulose membrane 

(Hybond-ECL; GE Healthcare Limited, Buckinghamshire, UK) using the Mini Trans-Blot System 

(Bio-Rad, CA, USA). The transfer cassette was assembled (fibre pad, 3 pieces of Whatman filter 

paper, gel, membrane, 3 pieces of filter paper and a second fibre pad) and submerged in cold 

transfer buffer (25 µM Tris base, 200 µM glycine, 0.1% SDS and 20% methanol) in the gel tank. 

Protein transfer was carried out at 100 V for 1.5 h. Membranes were removed from the transfer 

apparatus and washed in 1X PBS Tween-20 (PBST).  
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2.4.4 Immunoblotting 

Membranes to be immunoblotted were blocked with 2.5% non-fat milk (Bio-Rad, CA, 

USA) in PBS overnight at 4°C. The blocking solution was removed by 3 x 5 min washes with 

PBST prior to incubation with the primary antibody at an appropriate dilution in 2.5% non-fat milk 

for 1 h at room temperature. Primary antibody was removed by 3 x 10 min washes in PBST and the 

membrane incubated with the secondary antibody at an appropriate dilution (1:1000 for 

AlexaFluor680-conjugated secondary antibodies [Molecular Probes, USA] and 1:5000 for 

horseradish peroxidase [HRP]-conjugated secondary antibodies [Cell Signalling Technology, MA, 

USA]) in PBST for 1 h at room temperature protected from light (depending on secondary 

antibody). The secondary antibody was removed by 3 x 10 min washes in PBST. If AlexaFluor680-

conjugated secondary antibodies were used, signal from membranes was detected using an Odyssey 

machine. For membranes probed with HRP-conjugated secondary antibodies, signal was developed 

using Pierce ECL Plus Western Blotting Substrate (Thermo Scientific, IL, USA) according to the 

manufacture’s instructions. Membranes were exposed to X-ray film in an X-ray cassette at -80°C 

and developed. 

2.4.5 Co-immunoprecipitation 

Immunoprecipitation was carried out with 25 to 50 µL Dynabeads® Protein G (Life 

Technologies, USA) per sample according to the manufacture’s instructions. Briefly, beads were 

incubated with the described amount of antibody diluted in 200 µL PBST per sample for 30 min 

then washed to remove unbound antibody. The Dynabead®/antibody complex was incubated for 1 

h at room temperature with the appropriate cell lysate. Subsequent washes were carried out with 

PBS and proteins were eluted in 30 µL of elution buffer (20 µL 50 mM glycine [pH2.8] plus 10 µL 

NuPAGE SDS sample buffer unless otherwise stated). 

2.4.6 Mass spectrometry processing 

Eluted protein samples for mass spectrometry (MS) analysis were reduced (5 mM DTT for 

30 min at 56°C) and alkylated (25 mM iodoacetamide for 30 min at room temperature) prior to in 

solution digestion with 2-4 ng/µL trypsin overnight at 37°C. Resulting peptide mixtures were 

concentrated and purified using solid-phase extraction (C18 ZipTip; ZipTip® Pipette Tips, 

Millipore, Germany) after washes with 5% acetonitrile (ACN)/ 0.1% trifluoroacetic acid (TFA) and 

elution in 10 µL 80% ACN/ 0.1% TFA. Samples were diluted in 90 µL water prior to analysis.  
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Samples were separated using reversed-phase chromatography on a Shimadzu Prominence 

nanoLC system.  Using a flow rate of 30 µL/min, samples were first desalted on an Agilent C18 

trap (0.3 x 5 mm, 5 µm) for 3 min, followed by separation on a Vydac  Everest C18 (300 A, 5 µm, 

150 mm x 150 µm) column at a flow rate of 1 µL/min.  A gradient of 10-60% buffer B in buffer A 

over 30 min where buffer A = 1 % ACN / 0.1% FA and buffer B = 80% ACN / 0.1% FA was used 

to separate peptides.  Eluted peptides were directly analysed on a TripleTof 5600 instrument 

(ABSciex) using a Nanospray III interface. Gas and voltage settings were adjusted as required.  MS 

TOF scan across m/z 350-1600 was performed for 0.5 sec followed by information dependent 

acquisition for 20 peptides across m/z 40-1600 (0.05 sec per spectra) using high sensitivity mode.  

A collision energy spread (CE = 40 +/-15 V) was used for fragmentation.  

Data was converted to mascot generic format (mgf) and searched in MASCOT accessed via 

the Australian Proteome Computational Facility.  Database was set to ‘SwissProt’, searching all 

species, using ‘tryspin’ as enzyme with up to 2 mis-cleavages, and carbamidomethyl of cysteine 

(fixed) and oxidation of methionine (variable) modifications were included.  Mass tolerances of 50 

ppm (MS) and 0.1 Da (MS/MS) were used.  

2.4.7 Immunofluorescence 

Transfection or infection of cells seeded in a 24-well plate on coverslips was carried out as 

described above (section 2.3.9 and 2.2.3, respectively). At the stated time point, cells were washed 

in PBS and fixed with either 300 µL 4% paraformaldehyde in PBS containing 0.1% Triton X-100 

for 20 min, or 80% acetone in PBS for 5 min. Acetone fixation was used in combination with the 

anti-NS1' polyclonal antibody, due to fixation specificity of this antibody. After fixation, cells were 

washed 3 times with PBS and blocked in 1% BSA in PBS. Coverslips were incubated cell side 

down on 50 µL spots of primary antibody at an appropriate dilution in a solution of 1% BSA in PBS 

for 1 h at room temperature. Coverslips were washed 5 times with PBS, incubated cell side down on 

50 µL spots of secondary antibody at an appropriate dilution in 1% BSA in PBS and incubated for 1 

hour at room temperature. Cells were washed with PBS and incubated with a 1:5000 dilution of 

DAPI in PBS for 10 min, to counterstain the cell nuclei. DAPI was removed and coverslips washed 

a further 5 times with PBS. Cells on coverslips were mounted onto glass slides with Mowiol® 4-88 

Mounting Media (Polysciences, Inc) and images captured using ZEISS LSM 510 META Laser 

Scanning Confocal Microscope at 200X magnification, unless otherwise stated. 
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2.4.8 Antibodies 

Primary antibodies used throughout this thesis are listed below in Table 2.2, and secondary 

antibodies are listed in Table 2.3.  

Table 2.2 Primary antibodies used throughout thesis.  

Name Specificity Dilution (WB) Dilution (IFA) 

4G4 NS1 and NS1' 1:1000 1:200 

Biotinylated 4G4 NS1 and NS1' NA 1:10000 

FS-ab NS1' 1:500 1:80 

3.67G E NA 1:50 

Anti-NS3 NS3 NA 1:200 

Anti-Myc Myc tag NA 1:200 

Anti-Calnexin ER marker NA 1:200 

Anti-GM130 Golgi marker NA 1:200 

Anti-EEA-1 Early endosomes marker NA 1:400 

Anti-dsRNA dsRNA NA 1:10000 

 

Table 2.3 Secondary antibodies used throughout thesis.  

Name Supplier Dilution (WB) Dilution (IFA) 

Anti-mouse HRP Cell Signalling Technology 1:5000 NA 

Anti-rabbit HRP Cell Signalling Technology 1:5000 NA 

AlexaFluor680 goat anti-mouse Molecular Probes 1:1000 NA 

AlexaFluor680 goat anti-rabbit Molecular Probes 1:1000 NA 

AlexaFluor488 goat anti-mouse Molecular Probes NA 1:1000 

AlexaFluor488 goat anti-rabbit Molecular Probes NA 1:1000 

AlexaFluor594 goat anti-mouse Molecular Probes NA 1:1000 

AlexaFluor555 goat anti-rabbit Molecular Probes NA 1:1000 
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2.4.9 Metabolic labelling of proteins 

Pulse-chase analysis was carried out in 6-well plates of infected Vero cells (infected at an 

appropriate MOI with KUN or mutant KUN viruses) or transfected 293T cells (transfected with 

pcDNA-NS1, pcDNA-NS1' or both plasmids) at 24, 48 or 72 h. At the indicated time post infection 

or transfection, cells were starved for 30 min in methionine- and cysteine-free DMEM (Gibco, 

USA), followed by labelling for 1 to 2 h (as indicated) with 100 µCi 35S-methionine (TRAN35S-

LABEL; MP Biomedicals, USA). After labelling, cells were washed once in PBS and twice in 

DMEM, and chased for the indicated amount of time in normal medium. For the radioactive 

secretion experiments, cell monolayers were placed on ice and the culture fluids were removed, 

clarified by centrifugation at 1500 g for 5 min, and mixed with an equal volume of 2X lysis buffer 

(20 mM Tris-HCI [pH 7.5], 150 mM NaCI, 10 mM EDTA, 2% sodium deoxycholate, 2% Triton X-

l00, 0.2% SDS containing a 2X concentration of complete protease inhibitor cocktail [Roche, 

Switzerland]). The cell monolayer was rinsed with ice-cold PBS (pH 7.4), scraped from the plate in 

1X lysis buffer (10 mM Tris-HCI [pH 7.5], 150 mM NaCI, 5 mM EDTA, 1% sodium deoxycholate, 

1% Triton X-l00, 0.1% SDS) containing protease inhibitors, incubated for 30 min on ice, and 

clarified by centrifugation for 10 min at 14,000 g. For experiments examining the structural to non-

structural protein ratio, cell monolayers were lysed in RIPA buffer as outlined in section 2.4.1. 

Resulting protein preparations were immunoprecipitated with NS1-reactive mAb 4G4 using 25 µL 

Dynabeads® Protein G per sample as described above (section 2.4.5). Eluted proteins were loaded 

onto SDS-PAGE gels, electrophoresed and labelled proteins were transferred to nitrocellulose 

membranes as per sections 2.4.2 and 2.4.3. Membranes were exposed to a phosphor screen and 

scanned on a Typhoon scanner (GE Healthcare Limited, Buckinghamshire, UK) or exposed to X-

ray film in an X-ray cassette at -80°C and developed. To quantify labelled proteins, individual band 

intensities were determined by Image J software.  

2.4.10 pH treatment of lysate 

Nine microliters of harvested lysate was incubated with 3 µL 1 M glycine at the indicated 

pH for 1 h at room temperature. Samples were combined with 4X NuPAGE® SDS-PAGE loading 

buffer and subjected to SDS-PAGE and Western blotting as described above.  
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2.5 RNA manipulations 

2.5.1 RNA isolation and Northern blotting 

Total RNA was harvested from transfected cells at the indicated time point using TriReagent 

(Sigma-Aldrich, St Louis, USA) according to the manufacturer’s instructions. Cells were lysed in 1 

mL TriReagent and all other reagent amounts were altered accordingly. Samples were resuspended 

in 20 µL RNAse-free H2O and concentrations determined by Nanodrop. Isolated RNA (5 µg for 

each sample) was prepared with northern blot loading buffer (0.72 mL formamide, 0.16 mL 10X 

MOPS, 0.26 mL 37% formaldehyde, 0.18 mL DEPC- H2O, 0.1mL 80% glycerol, 0.08 mL 

bromophenol blue) and samples were denatured at 65°C for 10 min. Samples were loaded onto a 

denaturing 1.5% agarose gel (1.5 g agarose, 5 mL 20X MOPS, 90 mL DEPC-H2O, 5.4 mL 37% 

formaldehyde and 2 µL ethidium bromide) and run at 75 V for 2 h using 1X MOPS as running 

buffer. Gel was equilibrated in 10X SSC for 45 min and RNA was transferred overnight to Hybond-

N membranes (GE Healthcare Limited, Buckinghamshire, UK) by upward capillary transfer. RNA 

was crosslinked to the membrane by UV-irradiation (using UV Stratalinker® 1800 [Stratagene]) and 

Northern hybridization with a [32P]-labeled (Perkin Elmer, Waltham, USA) WNVKUN specific 3'-

UTR probe was carried out to detect accumulation of viral RNA. Briefly, the membrane was pre-

hybridized with warmed ExpressHyb hybridization solution (Clontech, CA, USA) for 1.5 h at 68°C 

before addition of 3'-UTR radioactive probe for 2 h to detect genomic RNA. The membrane was 

subsequently washed to remove unbound radioactivity, exposed to a phosphor screen overnight and 

scanned on a Typhoon scanner. 

2.5.2 miRNA isolation 

For miRNA isolation, cells were seeded in 10 cm culture dishes at an appropriate density 

and infected at MOI=1 with the indicated viruses. Small RNAs, including miRNAs, were harvested 

from infected cells at the indicated time point using the mirVanaTM miRNA Isolation Kit (Ambion, 

TX, USA), as per the manufacture’s instructions. Cells were lysed using 600 µL Lysis/Binding 

solution per plate and all other reagent volumes were altered accordingly.  

2.5.3 Small RNA Northern Blot 

A total of 5 µg of RNA was suspended in 40 µL with RNA Loading Buffer II (Ambion, TX, 

USA) and denatured by heating at 85°C for 5 min. The samples were loaded onto a pre-run 15% 

polyacrylamide Tris-borate-EDTA (TBE)-Urea gel (Invitrogen, OR, USA), and electrophoresed at 
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180 V for 65 min in 1X TBE. RNA was stained with ethidium bromide for visualisation and 

subsequently transferred to Amersham Hybond-N+ membranes (GE Healthcare Limited, 

Buckinghamshire, UK) at 35 V for 90 min in 0.5X TBE. Transferred RNA was cross-linked to the 

membrane by UV cross-linking. Prehybridization was carried out at 37°C in ExpressHyb 

hybridization solution (Clontech, CA, USA) for 90 min. Probes to detect the predicted miRNA were 

prepared by labelling of a DNA oligonucleotide complementary to the stem-loop structure with [γ-
32P] dATP (Perkin-Elmer, MA, USA) using T4 polynucleotide kinase (Roche, Switzerland). Gel 

filtration using Illustra MicroSpin G-25 columns (GE Healthcare Limited, Buckinghamshire, UK) 

was carried out to remove unincorporated nucleotides. Purified probes were hybridized to 

membranes overnight at 37°C in ExpressHyb hybridization solution. Following hybridization, the 

membranes were washed 4X for 15 min with Northern wash buffer (1% SDS, 1X SSC [0.15 M 

NaCl, 0.015 M sodium citrate]) at 37°C, and exposed overnight to a phosphor screen (GE 

Healthcare Limited, Buckinghamshire, UK). Exposed screens were scanned on a Typhoon scanner.  

2.6 Animal experimentation 

2.6.1 Mouse strain 

Swiss outbred CD1 weanling mice (18-19 days old) were used for all experimentations. 

Animal experiments were covered under the University of Queensland Animal Ethics 

(SCMB/405/11/NHMRC “The role of small, flaviviral RNA as well as non-structural protein 2 in 

West Nile virus pathogenicity”) in accordance with the Australian code of practice for the care and 

use of animals for scientific purposes (NHMRC, Australia).  

2.6.2 Infection and observation of mortality 

Groups of 10-20 mice were infected intraperitoneally with 100 or 1000 pfu of either 

WNVKUN or mutant viruses in 100 µL additive-free DMEM. Mice were monitored daily for signs of 

illness and euthanized when signs of encephalitis (severally hunched posture, partial or full 

paralysis) were evident. At the conclusion of the experiment, surviving animals were anaesthetized 

by i.p. injection of ketamine/xylazol/PBS (1:1:8) mixture, blood was collected via cardiac puncture, 

and mice were euthanized by cervical dislocation. Blood was collected in serum separator tubes, 

and serum subsequently separated from cellular content via centrifugation at 4,800 x g for 5 min at 

RT. 
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2.6.3 ELISA 

C6/36 cells were seeded in sterile, flat-bottomed tissue culture grade 96-well plates (1X 

confluent T-175 flask {approximately 1 x 108 cells} resuspended in 17.3 ml of 2% FCS RPMI 

medium seeds 12 plates). On the following day, cells were infected at MOI ~ 0.1 with WNVKUN 

and incubated for 7 days at 28°C. Plates were fixed for 2 h at 4°C with fixative buffer (20% 

acetone, 0.2% BSA in PBS). Fixative was discarded, plates dried overnight at room temperature 

and stored at -20°C. Negative control plates were prepared in the same way, with no WNVKUN 

infection.  

To check surviving mice for seroconversion, a fixed plate ELISA was carried out using 

infected and uninfected C6/36 cells. Plates were blocked in 2.5% skim milk powder in PBST for 1 h 

at 37°C. Following blocking, duplicate 5-fold dilutions (starting at 1:50) of mouse serum in 

blocking buffer was carried out down 4 wells of infected fixed plates. The same dilutions were 

carried out on uninfected plates, though not in duplicate. Serum was incubated on fixed cells for 1 h 

at 37°C, followed by 3X washes with PBST. Secondary antibody (1:20000 goat anti-mouse HRP-

conjugated antibody) diluted in PBST was added and incubated for 1 h at 37°C, followed by 

washing as before. Plates were developed with ABTS substrate buffer (25 mM citric acid, 25 mM 

trisodium citrate, 5 mg/mL ABTS, 0.012% H2O2) until sufficient colour developed, and absorbance 

at 405 nm was read using a Multiskan EX plate reader. An infected well reading double the 

corresponding result on the uninfected plate was recorded as positive. Serum samples that were 

recorded as negative indicated that the mouse did not seroconvert and was therefore excluded from 

survival analysis.   
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3 NS1' cellular localisation and role in replication 

3.1 Introduction 

NS1' is produced by a -1 PRF occurring at the beginning of the adjacent NS2A gene that 

adds an additional 52 amino acids to the NS1 protein: 9 amino acids of NS2A followed by 43 

amino acids of frameshifted sequence (384, 1, 386). Produced in 30 – 50% of translation events, it 

is present in cells at levels similar to NS1 (1). This protein has been shown to be stably produced in 

cells and have a similar glycosylation state to NS1 (387, 332), suggesting that NS1' is a functional 

protein rather than a rapidly degraded by-product. As NS1' contains the entire NS1 coding 

sequence, with only a 52 amino acid extension, it was hypothesised that NS1' may be able to 

perform similar functions to NS1 during infection.  

NS1 is known to localise to the ER (317, 316, 4, 226) due to the presence of a signal 

sequence encoded by the last 24 amino acids of the preceding E protein (334). NS1 is cleaved at the 

N-terminus by the ER-resident host signal peptidase (161) and at the C-terminus from NS2A by an 

unidentified host cell protease (335). NS1 is glycosylated at multiple sites (depending on the 

flavivirus) (341, 333) and rapidly dimerizes (348, 333). This dimer acquires a partially hydrophobic 

nature (348), which has been suggested to be the major factor in the subsequent association of NS1 

with the ER membrane (4). Once dimerised, NS1 is trafficked to three distinct locations in infected 

cells: the site of RNA replication; the cell surface (351, 348); and secreted through the Golgi to the 

extracellular fluid (331, 352). The majority of NS1 remains associated with the ER, where it co-

localises with dsRNA and other members of the replication complex (316, 226). See Figure 1.6 for 

a depiction of the processing and trafficking of NS1 outlined above.  

NS1 performs a crucial function in replication, given that mutations or deletions in the NS1 

gene result in a lack of detectable RNA replication. Trans-complementation of replication-deficient 

flavivirus RNA lacking functional NS1 has been shown by several groups. It was first shown using 

Sindbis virus replicons for stable expression of YFV NS1 in cell culture: while an internal deletion 

of 260 codons from NS1 in the YFV 17D cDNA clone completely ablated virus replication in 

vector-only expressing cells, successful RNA replication was recovered in cells expressing NS1 in 

trans (309). Similarly, a lethal mutation of WNVKUN NS1 which resulted in a complete lack of RNA 

replication could be complemented in trans by expression of wild-type WNVKUN NS1 (268). This 

trans-complementation of replication was also seen for NS1-deleted viral RNA by NS1 expressed 

from WNVKUN replicon RNA (5). It is this large (~80%), in-frame deletion of NS1 that was used 
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for the design of the CMV-promoter driven WNVKUN genomic cDNA (pKUNdNS1) used in the 

trans-complementation experiments shown in this chapter.  

To enable studies on the NS1' and NS1 proteins, CMV promoter-based plasmids expressing 

NS1' or NS1 (pcDNA-NS1' and pcDNA-NS1, respectively) were designed previously as shown in 

Figure 3.1A (published in (375)). Both constructs contained the WNVKUN envelope protein (E) 

signal sequence at the N terminus followed by cDNA for the protein of interest and C-terminal Myc 

and Flag tags to assist in protein detection. pcDNA-NS1' was generated by inserting an additional 

nucleotide (Figure 3.1B, boxed nucleotide) at the frameshift site to induce the change in reading 

frame that leads to NS1' synthesis. To prevent further frameshifting, two single-nucleotide 

mutations were also introduced into the slippery heptanucleotide of the frameshift motif, as 

published previously (1) (Figure 3.1B, circled nucleotides). Protein production from the designed 

plasmids was confirmed by SDS-PAGE and Western blotting with 4G4, a monoclonal antibody that 

recognizes both NS1 and NS1' proteins (400). NS1 (monomer) was detected in lysates from 

pcDNA-NS1-transfected cells and NS1' proteins (both monomer and dimers) were detected in 

lysates from pcDNA-NS1'-transfected cells (Figure 3.1C). These plasmids were utilized for both 

localisation and complementation analyses.  

The goal of this study was to determine whether the C-terminal 52 amino acid extension of 

NS1' interferes with the function of NS1 part of NS1' in viral RNA replication as well as to 

determine whether NS1' can substitute for NS1 in RNA replication. As NS1 localise predominantly 

to the ER and the sites of RNA replication, co-staining with antibodies against an ER marker 

(calnexin) and antibodies against dsRNA was carried out to determine cellular localisation of NS1'. 

Complementation analysis of NS1-deleted viral RNA with either pcDNA-NS1 or pcDNA-NS1' was 

performed to determine whether NS1' is able to substitute NS1 in viral RNA replication.  
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Figure 3.1 Design and characterization of plasmid DNAs expressing NS1 and NS1' genes. A. Plasmid 

constructs pcDNA-NS1 and pcDNA-NS1', for expression of NS1 and NS1', respectively, contain an N-

terminal signal sequence consisting of the last 26 codons of the preceding WNV E protein and Myc and Flag 

tags at the C terminus for easy detection. B. Alignment of the nucleic and amino acid sequences of NS2A, 

NS1' and pcDNA-NS1' showing the -1 frameshift occurring at the beginning of the NS2A gene that leads to 

the generation of NS1'. Underlining shows the slippery heptanucleotide of the frameshift motif, open boxes 

show inserted nucleotides, and circles show mutated bases. C. Western blot showing expression of NS1 and 

NS1' from pcDNA-NS1 and pcDNA-NS1', respectively. Lysates were heat denatured and analyzed by 

Western blotting with anti-NS1 MAb (4G4). 
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3.2 Results 

3.2.1 Cellular localisation of NS1' is similar to that of NS1 in plasmid DNA-transfected and 

virus-infected cells.  

To examine whether NS1' co-localises to the ER with NS1, immunofluorescence assays 

were carried out on cells expressing NS1' or NS1 proteins. HEK293T cells transfected with 

pcDNA-NS1 or pcDNA-NS1' plasmids were fixed at 48 h post transfection and stained with 4G4, 

to detect both NS1 and NS1', and with NS1'-specific (FS-ab) antibodies (1). As expected, FS-ab 

stained only pcDNA-NS1' transfected cells, while 4G4 stained both pcDNA-NS1 and pcDNA-NS1' 

transfected cells (Figure 3.2A). As 4G4 is able to detect both NS1 and NS1', it is not possible to 

distinguish NS1 and NS1' localisation in cells infected with WNVKUN, given that both proteins are 

produced. FS-ab on the other hand only recognizes NS1' protein. As the mutant virus A30A' does 

not produce NS1' protein (1), comparative co-staining with 4G4 and FS-ab of cells infected with 

wild type or A30A' mutant WNVKUN viruses was carried out to assess whether NS1 and NS1' 

proteins localise to the same or different cellular compartments. Vero76 cells infected with either 

WNVKUN or A30A' mutant virus and fixed at 24 hpi were co-stained with 4G4 and FS-ab. In 

WNVKUN infected cells, 4G4-labeled proteins co-localise with FS-ab-labeled proteins, indicating 

that NS1 and NS1' are found in the same cellular compartments (Figure 3.2B). No FS-ab-specific 

staining was seen in A30A' infected cells and staining with the NS1-specific (4G4) mAb was 

similar to that seen in WNVKUN infected cells stained with 4G4 or FS-ab. 

Using 4G4 in addition to antibodies recognizing markers for various cellular compartments, 

the localisation of NS1' and NS1 in transfected cells was further examined. HEK293T cells 

transfected with pcDNA-NS1 or pcDNA-NS1' plasmids were fixed and permeablised at 48 h post 

transfection, and stained with biotinylated 4G4 and antibodies recognizing markers of the ER 

(rabbit polyclonal antibody against calnexin [Sigma Aldrich]), Golgi apparatus (mouse monoclonal 

antibody against GM130 [Becton Dickinson]) or endosomes (mouse monoclonal antibody against 

EEA-1 [BD Transduction Laboratories]). Both NS1 and NS1' localised predominantly to the ER 

(Figure 3.3A), with a small degree of localisation in the Golgi (Figure 3.3B), and no distinct 

localisation to the endosomes (Figure 3.3C). To detect cell surface NS1 and NS1', fixed and non-

permeablised cells were stained with 4G4, washed extensively and subsequently permeablised to 

counter stain with anti-calnexin; confirming that 4G4 staining observed was indeed on the cell 

surface (Figure 3.3D). Moreover, there did not appear to be any differences in the cellular 

distribution of plasmid- expressed NS1' compared to NS1, leading to the conclusion that NS1' 

resides in the same cellular compartments as NS1. 
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To confirm that the cellular distribution of NS1 and NS1' detected in transfected cells is the 

same as in infected cells, immunofluorescence analysis was again carried out with antibodies 

detecting marker proteins for ER, Golgi apparatus and endosomes. Vero76 cells infected with 

WNVKUN or A30A' viruses were fixed at 24 h pi and stained with biotinylated 4G4 and either anti-

calnexin, anti-GM130 or anti-EEA-1 antibodies. As in transfected cells, NS1 and NS1' localised 

predominantly to the ER (Figure 3.4A), with a small degree of co-localisation with the Golgi 

(Figure 3.4B) and no localisation to the endosomes (Figure 3.4C). Again, 4G4 staining of non-

permeablised cells was carried out to detect NS1 and NS1' cell surface expression. Subsequent 

permeablisation of stained cells and counterstaining with anti-calnexin confirmed that NS1 specific 

cell surface staining was seen (Figure 3.4D) A comparison between WNVKUN and A30A' infected 

cells might show unique NS1'-specific staining, since A30A' does not produce NS1'. However, no 

differences in anti-NS1 staining between WNVKUN and A30A' infected cells indicate that NS1' and 

NS1 localise to the same cellular compartments. These results, in combination with the results from 

plasmid-transfected cells, indicate that NS1' protein has similar cellular distribution to NS1 during 

viral infection or when expressed as individual proteins.  

 

 

Figure 3.2 Cellular localisation of NS1' and NS1. A. Immunofluorescence analysis showing production of 

NS1 and NS1' using 4G4 (staining both NS1 and NS1') and FS-ab (NS1'-specific antibody) in transfected 

HEK293T cells. B. Immunofluorescence analysis showing co-localisation of NS1 and NS1' in infected 

Vero76 cells using 4G4 and FS-ab. 
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Figure 3.3 Cellular localisation of plasmid-expressed NS1' and NS1. Immunofluorescence analysis to 

investigate co-localisation of plasmid-expressed NS1 and NS1' with (A) the ER, (B) the Golgi, and (C) 

endosomes. Transfected HEK293T cells were stained with antibodies to organelle-specific markers 

(calnexin, GM130 or EEA-1 respectively; red) and biotinylated anti-NS1 (4G4; green). D. Transfected 

HEK293T cells were stained with 4G4 (red) prior to permeablisation and counterstaining with anti-calnexin 

(green) to visualize surface expression.  
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Figure 3.4 Localisation of NS1' and NS1 in WNVKUN-infected cells. Immunofluorescence analysis to 

investigate co-localisation of virally expressed NS1 and NS1' with (A) the ER, (B) the Golgi, and (C) 

endosomes. Infected cells were stained with antibodies to organelle-specific markers (calnexin, GM130 or 

EEA-1 respectively) and biotinylated anti-NS1 (4G4). D. Infected Vero76 cells were stained with 4G4 

(green) prior to permeablisation and counterstaining with anti-calnexin (red) to visualize surface expression. 
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NS1 co-localises with dsRNA at the sites of flavivirus RNA replication in WNVKUN infected 

cells (226). To determine whether NS1' also co-localises with dsRNA, Vero76 cells infected with 

WNVKUN or A30A' were fixed at 24 hpi and co-stained with an anti-dsRNA antibody and either 

biotinylated 4G4 or FS-ab. Proteins stained with both 4G4 and FS-ab co-localised with dsRNA 

(Figure 3.5A and B respectively), demonstrating that NS1' is also associated with dsRNA, and 

therefore with the sites of viral RNA replication. 

!

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5 Co-localisation of NS1' and NS1 with dsRNA in WNVKUN-infected cells. Immunofluorescence 

analysis to investigate co-localisation of NS1 and NS1' with dsRNA in infected cells stained with an anti-

dsRNA Ab and either biotinylated 4G4 (A) or  FS-ab (B). 
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3.2.2 NS1' complements replication of NS1-deleted viral RNA.  

Due to the co-localization of NS1' with NS1 in the ER and with dsRNA, it was hypothesised 

that NS1', in addition to NS1, could also play a role in viral RNA replication. To test whether NS1' 

can substitute for the function of NS1 in viral replication, a CMV-promoter driven WNVKUN 

genomic cDNA with a large (∼80%) internal deletion of the NS1 gene was constructed 

(pKUNdNS1, Figure 3.6A; see Appendix 9.2 for cloning strategy). This deletion (dNS1.1) has been 

used previously in an RNA based system to demonstrate trans-complementation of replication of 

NS1-deleted viral RNA by the NS1 expressed from WNVKUN replicon RNA (5). HEK293T cells 

were co-transfected with pKUNdNS1 and either pcDNA-NS1 or pcDNA-NS1' plasmids to 

determine whether expression in trans of NS1 or NS1' could rescue replication of replication-

deficient pKUNdNS1 (see Figure 3.6B for experimental design). Transfection of repBHK cells 

expressing all of the WNVKUN non-structural proteins, including NS1 and NS1', with pKUNdNS1 

was also performed as a positive control (5), and co-transfection of pKUNdNS1 with a green 

fluorescent protein (GFP) expressing plasmid was included as a negative control.  

Figure 3.6 Experimental design to test complementation of NS1-deleted viral RNA. A. Schematic 

diagram of pKUNdNS1 plasmid DNA containing a large deletion in the NS1 gene (amino acid 4 to amino 

acid 298) of WNVKUN genomic cDNA. CMV – Cytomegalovirus promoter, HDVr – Hepatitis delta virus 

ribozyme, pA – polyA signal, UTR – untranslated region. B. Experimental design. pKUNdNS1 alone does 

not replicate or produce virus particles. Transfection into cells stably expressing the non-structural proteins 

(repBHK cells) recovers replication and virus particle production. Experiment assessed whether expression 

of NS1' alone can trans-complement for the absence of NS1. 
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To examine rescue of RNA replication, total RNA was harvested from co-transfected cells 

at 2 or 4 days post transfection. Isolated RNA (5µg) was subjected to denaturing 1.5% agarose gel 

electrophoresis followed by transfer to Hybond-N membranes (GE Healthcare Limited, 

Buckinghamshire, UK). RNA was crosslinked to the membrane by UV-irradiation, and Northern 

hybridization with a [32P]-labeled (Perkin Elmer, Waltham, USA) WNVKUN specific 3'-UTR probe 

was carried out to detect accumulation of viral RNA. No viral RNA was detected in mock-

transfected cells (Figure 3.7A, lanes 9 and 10), and transfection of repBHK cells with pKUNdNS1 

resulted in increasing accumulation of viral genomic RNA (Figure 3.7A, lanes 11 and 12). A small 

level of RNA accumulation in the pKUNdNS1 only transfected cells was detected as expected 

(Figure 3.7A, lanes 1 and 2), due to the transcription of NS1-deficient RNA driven by CMV 

promoter. However, the levels of accumulated RNA were notably higher in cells co-transfected 

with either pcDNA-NS1 (5.5-fold increase at day 2 and 10-fold increase at day 4) (Figure 3.7A, 

lanes 3 and 4) or pcDNA-NS1' plasmids (3-fold increase at day 2 and a 5-fold increase at day 4) 

(Figure 3.7A, lanes 5 and 6) compared to those in pKUNdNS1 only transfected cells. Notably, some 

variations in the Northern blot detection of complemented genomic RNA between three different 

complementation experiments (not shown) were observed, producing a range of fold increases for 

pcDNA-NS1 complementation between 1.5 and 14 fold, and for pcDNA-NS1'-complementation 

between 1 and 5 fold. No distinct band for genomic RNA was detected in cells co-transfected with 

GFP-expressing plasmid (Figure 3.7A, lanes 7 and 8), possibly due to either inhibitory effect of 

GFP expression on transcription of pKUNdNS1 RNA or enhanced degradation of pKUNdNS1 

RNA in the presence of GFP expression. Notably, the accumulation of viral RNA in NS1 and NS1' 

complementation experiments decreased from day 2 to day 4 after transfections, while transfection 

of pKUNdNS1 into repBHK cells led to an increase in RNA level (Figure 3.7A). This is likely due 

to the ability of complemented virus to spread in repBHK cells, where 100% of cells express 

complementing NS1 and NS1' proteins, while the spread of complemented virus is not possible in 

co-transfection experiments, as untransfected cells do not support replication and thus spread of 

complemented virus. 

Trans-complementation of viral RNA replication by NS1' was further supported by 

immunofluorescence analysis of co-transfected HEK293T cells using staining with a mouse 

monoclonal anti-cmyc antibody (9E10 hybridoma, ATCC) (recognises myc-tagged NS1 or NS1' 

proteins) and rabbit polyclonal anti-NS3 antiserum (226) (recognising pKUNdNS1-expressed NS3 

protein). Increased production of NS3 protein in pcDNA-NS1 and pcDNA-NS1' co-transfected 

cells, compared to pKUNdNS1 only transfected cells (Figure 3.7B), further demonstrated that 
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trans-complementation of replication of the NS1-deleted viral RNA was successful. Therefore, it 

was concluded that NS1' protein can rescue the replication deficiency of NS1-deleted viral RNA.  

 

To detect infectious virus production from co-transfected cells, and therefore further 

confirm successful complementation, culture fluid from transfected HEK293T cells was harvested 

at 2 and 4 days post transfection and used to infect repBHK cells. If complementation was 

successful, viral particles containing the NS1-deleted RNA would be able to infect the repBHK 

cells, replicate, and form viral particles due to the continuing expression of NS1 and NS1' in the 

repBHK cells. Prior to infection the culture fluid was treated with 10 units RQ1 DNase (Promega, 

Madison, USA) and 10 µg RNase A for 2 hours at room temperature to digest any remaining 

plasmid DNA or uncoated RNA. Two days after infection, cells were fixed and stained with an anti-

E antibody to detect infected cells. Immunofluorescence images of repBHK cells infected with 

undiluted culture fluids and stained with 3.67G, a monoclonal anti-E antibody (213), showed that 

Figure 3.7 NS1' complements replication of NS1-deleted viral RNA. A. Northern blot with a 

radiolabelled 3'-UTR probe showing replicating genomic RNA. RNA was harvested from co-transfected 

cells at 2 or 4 d post transfection. B. Immunofluorescence of HEK293T cells co-transfected with 

pKUNdNS1 and either NS1 or NS1' at 2 days post transfection. Co-transfected cells were stained for cmyc 

and NS3. Transfected cells were imaged at 20X magnification.  
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only cells that were co-transfected with either pcDNA-NS1 or pcDNA-NS1' plasmids produced 

infectious viral particles (Figure 3.8A). No infectious virus was produced in pKUNdNS1 only 

transfected cells and in cells co-transfected with pKUNdNS1 and GFP-expressing plasmid (Figure 

3.8A). The lack of E-positive repBHK cells infected with DNase- and RNase-treated undiluted 

culture fluids from pKUNdNS1 only transfected and pKUNdNS1 plus GFP-expressing plasmid co-

transfected cells also demonstrates that no transfected DNA or uncoated viral RNA was carried 

over into the infection experiment.  

To determine the titres of secreted viral particles, repBHK cells infected with serial 10-fold 

dilutions of collected culture fluids were stained with anti-E antibodies and foci of E-positive cells 

were counted. Titration of viral particles was carried out for two independent complementation 

experiments and the average viral titres were determined. The viral titres were similar from NS1 

and NS1' complemented cells and both were similar to the viral titres obtained in repBHK cells at 2 

days after transfection (Figure 3.8B). Notably, the accumulation of viral RNA and viral titres in 

NS1 and NS1' complementation experiments decreased from day 2 to day 4 after transfections, 

while transfection of pKUNdNS1 into repBHK cells led to a corresponding increase in RNA level 

and no decrease in viral titres (Figure 3.7A and 3.8B). This is likely due to the ability of 

complemented virus to spread in repBHK cells where 100% of cells are expressing complementing 

NS1 and NS1' proteins, while the spread of complemented virus is not possible in co-transfection 

experiments as un-transfected cells will not support replication and spread of complemented virus. 

From these results, it was concluded that NS1' could successfully complement for deleted NS1 in 

virus replication and that there was no significant difference in the efficiency of complementation 

between NS1 and NS1'.   
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Figure 3.8 NS1' complements replication of NS1-deleted viral RNA. A. Immunofluorescence analysis 

showing production of infectious particles from cells co-transfected with pKUNdNS1 and either NS1 or 

NS1'. Culture fluid (CF) was harvested from co-transfected cells and used to infect repBHK cells. Infected 

repBHK cells were stained for E and imaged at 20X magnification. B. Titres were determined by infection of 

repBHK cells with serial dilutions of CF from co-transfected cells collected at day 2 (white bars) or 4 (grey 

bars) post transfection and counting E-positive foci at day 2 post infection. The graph is representative of 

two independent experiments, with error bars showing SEM. Difference in titres of complemented viruses 

between NS1 and NS1' was not significant (P > 0.05) as determined by a standard one-way ANOVA test. 
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3.3 Discussion 

The experiments in this chapter were designed to analyse whether the C-terminal extension 

of the NS1' protein prevents NS1' from functioning as NS1 during RNA replication. Prior to any 

functional analysis, it was necessary to determine the cellular localisation of NS1' in relation to 

NS1. It would only be reasonable to examine whether NS1' can function similar to NS1 if it is 

localised to the same cellular compartments where NS1 functions.  

Using immunofluorescence analysis of transfected cells (pcDNA-NS1 or pcDNA-NS1') and 

infected cells, it was concluded that the cellular localisation of NS1' is similar to that of NS1. Both 

proteins localised predominantly to the ER, with only a small degree of co-localisation with the 

Golgi (Figure 3.3 and 3.4). This localisation is consistent with what was expected, with the majority 

of NS1 and NS1' being localised to the ER, where it is initially produced, glycosylated and 

assembled into dimers. Moreover, given that both NS1 and NS1' are secreted proteins, it was also 

expected to find NS1/NS1'-specific staining in the Golgi compartment, which is part of the 

secretory pathway of the cell. After dimerization, a large portion of NS1 is trafficked to ER-derived 

membranes that constitute the site of RNA replication. Distinct co-localisation of NS1 with dsRNA 

is consistent with what has been seen previously (226). Interestingly, NS1' was also seen to co-

localise with dsRNA in infected cells (Figure 3.5), suggesting a possible role for NS1' in RNA 

replication.  

In relation to virally infected cells, it was not possible to determine unique NS1' localisation. 

From the nature of the antibodies used, it would have been possible to see unique NS1 staining 

(although there was none) as there would be no co-staining of NS1 antibodies (4G4) with NS1'-

specific antibodies (FS-ab). However, it is not possible to detect unique NS1' staining, as both 4G4 

and FS-ab detect NS1'. Co-staining with 4G4 and FS-ab may therefore either represent NS1' alone 

or co-localisation of NS1 and NS1'. Experiments therefore relied on the comparison of NS1'-

expressing and NS1'-lacking virus infected cells to identify unique NS1' localisation. Comparison 

of WNVKUN (NS1'-expressing) and A30A' (NS1'-lacking) infected cells showed no distinct regions 

of staining unique to WNVKUN, confirming that NS1' has a similar cellular localisation to NS1.  

In addition to being localised to the ER, NS1 is expressed on the cell surface of infected 

cells (351, 348). Moreover, NS1' glycan modifications (a mixture of high mannose and complex 

carbohydrates) are also consistent with transport of this protein to the plasma membrane (387, 332). 

The data shown in Figure 3.3D confirmed cell surface staining for NS1' expressed from pcDNA-
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NS1'. While it was possible to detect cell surface expression of NS1' on transfected cells, specific 

detection of NS1' on the surface of infected cells was not possible with the available antibodies. 

Nevertheless, it would be reasonable to assume that if NS1' expressed from transfected cells is 

trafficked to the cell surface, a similar scenario would occur for virally encoded NS1'. However, 

this could not be confirmed, as FS-ab staining was only successful in cells fixed in acetone, which 

permeabilises the plasma membrane. The surface staining shown in this chapter was carried out by 

fixation of infected or transfected cells in PFA and staining with anti-NS1 (4G4) prior to cell 

permeablisation (Figure 3.3D and 3.4D). FS-ab did not work efficiently in PFA fixed cells, 

suggesting that the protein cross-linking caused by PFA affects the FS-ab binding epitope.  

Once it was confirmed that NS1' has similar cellular localisation as NS1, experiments to 

examine whether NS1' can substitute for the function of NS1 in replication were carried out. This 

was also supported by the fact that co-localisation of NS1' with dsRNA was observed, already 

suggesting a role for NS1' in viral replication. Initial plans for trans-complementation experiments 

were similar to those that have been conducted previously: with the use of NS1-deleted viral RNA 

and NS1 or NS1' expressing stable cell lines (268, 5, 309). Unfortunately, the development of the 

stable cell lines was not successful. While transient expression of NS1' was evident in transfected 

cells, and DNA from the appropriate plasmids was detected in the stable cell lines, there was no 

expression of NS1' from the stable cell lines following antibiotic selection (data not shown). 

Although the optimal system was not successfully developed, co-transfection of a plasmid cDNA 

(pKUNdNS1) with either NS1 or NS1' from transient plasmids showed the ability of NS1 and NS1' 

to complement for the replication-deficient cDNA. There was also no significant difference in the 

efficiency of complementation between NS1 and NS1', supporting the hypothesis that the C-

terminal tail does not interfere with the ability of NS1' to function in RNA replication. 

The trans-complementation results in this chapter showing recovery of a replication-

deficient NS1-deleted WNVKUN  RNA with NS1' have since been confirmed by another group 

working with WNVNY99 (374). Using NS1' produced from VEEV replicon expressing BHK cells, 

the authors showed successful recovery of a replication-deficient WNVNY99 infectious clone that 

contained a similar internal deletion of the NS1 gene used in the experiments shown here. These 

results, in combination with those shown in this thesis chapter, provide strong evidence for a role 

for NS1' in RNA replication during flaviviral infection.  

While the data shown here do not rule out the possibility that NS1' may have a unique 

function in virus infection that is different from NS1, they do show that NS1' can substitute for NS1 
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protein in RNA replication. Given that NS1' does contain the entire NS1 coding region, it was not 

entirely unexpected that NS1' has a similar localization and can perform the same function(s) as 

NS1 in the virus life cycle. Although only the function of NS1' in viral RNA replication was 

examined in this thesis, NS1' may also be involved in other reported functions of NS1, such as 

interactions with the complement system (379, 376, 362, 378, 401) and inhibition of TLR3 

signaling (114). This was outside the scope of this thesis; however, future studies on this would 

provide further insight into the ability of NS1' to function as NS1. Moreover, the question of why 

some flaviviruses generate significant amounts of NS1' still remains to be answered. 

 



 60 

4 Attempt to identify unique NS1' interacting proteins 

4.1 Introduction 

To identify proteins interacting with NS1 and NS1', a technique known as nanoscale liquid 

chromatography mass spectrometry (nLC-MS) was used (402, 403). Briefly, a mixture of proteins 

is enzymatically digested (in this case, using trypsin digestion) and the resulting peptide fragments 

are separated by nanoscale reverse phase liquid chromatography (nLC). This separation technique 

uses a hydrophobic solid phase that results in peptides being separated by hydrophobicity (404). 

Once separated, the eluted peptides are ionised by electrospray ionisation (ESI) and analysed by 

MS. In this case, tandem mass spectrometry (MS/MS) was used, involving both a quadrupole 

(QUAD) analyser and time of flight (TOF) analyser. QUAD analysers use radio frequency and 

direct current voltage to determine the mass to charge ratio of ions. TOF on the other hand, uses a 

voltage gradient to accelerate the ions, and measures the flight time of the ions; which is 

proportional to the square root of the mass to charge ratio (405). Peptide sequences are then 

identified based on the mass to charge ratio of the ionised samples. Databases (for example, 

MASCOT) are then utilised to match the identified peptides to known genomic sequences to 

identify the protein.  

One approach to examine potential functions of a protein is to use immunoprecipitation and 

MS to identify protein-protein interactions. The identification of a specific protein interacting with 

NS1' may reveal a previously unknown function. This is a widely utilised technique that has been 

used previously to successfully identify a number of protein-protein interactions for flaviviruses 

(362, 184, 406-408, 370). For example, an interaction between the JEV NS5 protein and heat shock 

protein 70 (Hsp70), Ras related nuclear protein (Ran) and eukaryotic translation elongation factor 1 

alpha (eEF-1α) was identified using affinity purification and MS (408). The interaction of WNV 

NS1 with factor H and subsequent confirmation that NS1 is involved in evasion of the host 

complement system was also identified by co-purification and MS (362).  

Co-immunoprecipitation, and also MS, has been utilised previously to examine the role of 

NS1 in the replication complex. The exact function of NS1 in replication is still unknown, as NS1 is 

located on the lumenal side of the ER and physically separated from the remaining components of 

the replication complex. It has been suggested that it may provide structural support to the 

replication complex by anchoring it to the ER membrane (4). Previous trans-complementation work 

showed that complementation of NS1 is species-specific, as DENV NS1 could not complement for 



 61 

a YFV NS1-deleted genome. This specificity was overcome by a compensatory mutation in NS4A, 

suggesting an interaction between the two proteins. In addition to this, column bound NS4A was 

shown to interact with all components of the replication complex, including NS1 (309). Recently, 

an interaction between NS1 and NS4B has been shown by immunoprecipitation and a combination 

of western blotting and MS analysis. The authors suggested that in fact it is this interaction of NS1 

with NS4B that provides an anchor for the replication complex to the ER membrane. In addition to 

co-immunoprecipitation with NS4B, the authors showed that NS1 can also pull down NS3 (370). 

Whether this shows a direct interaction or an indirect link through other interacting proteins is still 

unclear.  

Our group has previously utilised MS to experimentally confirm that a predicted ribosomal 

frameshift is responsible for NS1' production  (384, 1). Matrix-assisted laser desorption ionization–

time of flight (MALDI-TOF) MS identified several peptide fragments consistent with the predicted 

frameshift sequence present in the excised and digested NS1' protein band following anti-NS1 

immunoprecipitation of WNVKUN infected cell lysate (1). This work was crucial to the experimental 

confirmation that NS1' is indeed produced by a -1 PRF.  

To identify proteins interacting with NS1 and NS1', two approaches were designed. The first 

(immunoprecipitation with anti-NS1 antibody [4G4]) aimed to identify unique NS1' interactions by 

comparison of wild-type WNVKUN (expressing both NS1 and NS1') and A30A' (expressing only 

NS1) infected cells. In addition, comparison of proteins immunoprecipitated with NS1 or NS1' from 

pcDNA-NS1 and pcDNA-NS1' transfected cells, respectively, was carried out. This approach will 

ideally highlight protein interactions that are unique to WNVKUN infected (or pcDNA-NS1' 

transfected) samples, indicating that they are NS1'-specific interactions. The second approach was 

to perform NS1'-specific immunoaffinity purification from WNVKUN infected cells using FS-ab. 

This would identify any proteins specifically interacting with NS1', and confirm whether proteins 

immunoprecipitated from WNVKUN infected cells using 4G4 were interacting with NS1, NS1', or 

both. Both approaches are required, as comparison of NS1' (FS-ab bound) and NS1/NS1' (4G4 mAb 

bound) associated proteins is necessary to identify which interactions are unique to NS1'.  
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4.2 Results 

To identify proteins uniquely interacting with NS1' (but not NS1), immunoaffinity 

purification and nLC-MS were carried out as outlined in Figure 4.1. Following infection with either 

WNVKUN or A30A', cells were lysed in NP-40 lysis buffer and resulting cell lysate was incubated 

with either anti-NS1 mAb (4G4) or anti-NS1' antiserum (FS-ab) bound Protein G Dynabeads®. 

Bound proteins were eluted in non-denaturing buffer, reduced and alkylated prior to overnight in-

solution trypsin digestion. Peptide fragments were subsequently subjected to MS analysis (see 

Figure 4.1 for experimental design). In addition to infected cell lysates, pcDNA-NS1 and pcDNA-

NS1' transfected cell lysates were also subjected to immunoaffinity purification and MS analysis.  

!

4.2.1 Anti-NS1 immunoprecipitation 

To confirm that anti-NS1 and NS1' immunoprecipitations with 4G4 mAb were successful, 

SDS-PAGE analysis of the original infected cell lysate, unbound proteins following Dynabead® 

immunoprecipitation, and eluted proteins (prior to reducing) was carried out. NS1 and NS1' were 

both detected in all WNVKUN samples, while only NS1 was detected in A30A' samples (Figure 4.2). 

While not all NS1 and NS1' had been immunoprecipitated (as evident by the presence of NS1 and 

NS1' in the unbound fraction), detectable levels of both NS1 and NS1' were seen in the precipitated 

and eluted fraction.  

 

Figure 4.1 Experimental design for identifying interacting proteins by MS analysis. pcDNA-NS1, 

pcDNA-NS1' or mock transfected 293T cells, or WNVKUN, A30A' or mock infected Vero76 cells, were lysed 

in NP-40 lysis buffer and immunoprecipitated with 4G4 or FS-ab coupled with Protein G Dynabeads®. 

Eluted proteins were reduced, alkylated and digested with trypsin prior to MS analysis.  
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!

Once it was confirmed that NS1 immunoaffinity purification was successful, protein 

samples from both infected and transfected cells were digested with trypsin and analysed by MS. 

Following MS analysis of infected samples, peptide hits corresponding to several viral proteins (E, 

NS3 and NS4B) were detected in both wild-type WNVKUN and A30A' infected cell lysate in 

multiple independent experiments (Table 4.1). In addition to this, binding immunoglobulin protein 

(BiP; an ER resident molecular chaperone protein) was detected in WNVKUN samples from all 7 

experiments, and in A30A' samples from 3 experiments. Peptide hits that were present in less than 

two repeat independent experiments were not included in the summary of protein matches, neither 

were any peptides also identified in mock samples. BiP was also detected in pcDNA-NS1' 

transfected samples (Table 4.2), as was alpha-1-antiproteinase (a serum trypsin inhibitor). eEF-1α 

and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were detected in both pcDNA-NS1 and -

NS1' transfected samples, suggesting a possible interaction with both NS1 and NS1'.  

Table 4.1 Proteins co-isolated with NS1/NS1' in wild-type (WT) WNVKUN and NS1 in A30A' infected cells. 

Results shown are from 7 independent experiments.  

# Experiments detected 
Protein 

WT A30A' 

E  6 5 

NS3 4 4 

NS4B 5 5 

BiP 7 3 

 

Figure 4.2 Western blot confirming that NS1 immunoaffinity purification was successful. Western blot 

with anti-NS1 (4G4) mAb of 4G4 immunoprecipitates showing presence of NS1 and NS1' in wild-type (WT) 

WNVKUN lysate (L), unbound (U) and eluted (E) fractions, and NS1 only in A30A' samples.  
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Table 4.2 Proteins co-isolated with NS1 or NS1' in pcDNA-NS1 or pcDNA-NS1' transfected cells, 

respectively. Results shown are from 6 independent experiments. 

# Experiments detected 

Protein pcDNA-

NS1 

pcDNA-

NS1' 

eEF-1α 2 5 

GAPDH 4 1 

BiP - 2 

Alpha-1-antiproteinase - 2 

 

4.2.2 Anti-NS1' immunoprecipitation  

To determine whether the protein interactions seen for 4G4 immunoprecipitation in infected 

cells was a result of NS1 or NS1' protein binding, immunoprecipitation with anti-NS1' antiserum  

(FS-ab) was carried out for both infected and transfected cells. This would also confirm the NS1'-

interacting proteins observed in transfected cells.  Again, to confirm successful 

immunoprecipitation, SDS-PAGE analysis of the cell lysate, unbound fraction and eluted protein 

was carried out. While not all the NS1' protein was immunoprecipitated (similar to the results seen 

for 4G4 pull downs) the anti-NS1' immunoaffinity purification was successful, with eluted protein 

only being detected for wild-type WNVKUN samples (Figure 4.3).  

!

Figure 4.3 Western blot confirming that NS1' immunoaffinity purification was successful. Western blot 

with anti-NS1 (4G4) mAb of FS-ab immunoprecipitates showing presence of NS1' in wild-type (WT) 

WNVKUN lysate (L), unbound (U) and eluted (E) fractions, and NS1 only in wild-type WNVKUN and A30A' 

lysate and unbound samples. 
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Following MS analysis of infected cells, several peptide hits unique to wild-type WNVKUN 

samples were detected in multiple independent experiments (Table 4.3). The same viral proteins 

detected following NS1 immunoaffinity purification of infected lysates (E, NS3 and NS4B) were 

again detected following immunoprecipitation with anti-NS1' serum. BiP was detected in wild-type 

WNVKUN infected samples for two independent experiments. Immunoprecipitation of transfected 

cell lysate with anti-NS1' resulted in the detection of several different peptide matches, including 

eEF-1α, GAPDH and BiP (Table 4.4), which was consistent with the results from anti-NS1 

immunoprecipitation in transfected cells. In addition to these hits, several new peptide matches 

were seen in multiple repeat experiments of transfected cell lysate immunoaffinity purification (see 

Table 4.4 for full list).  

Table 4.3 Proteins co-isolated with NS1' in wild-type (WT) WNVKUN or A30A' infected cells. Results shown 

are from 4 independent experiments. 

# Experiments detected 
Protein 

WT A30A' 

E 4 - 

NS3 3 - 

NS4B 3 - 

BiP 2 - 
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Table 4.4 Proteins co-isolated with NS1' in pcDNA-NS1 or pcDNA-NS1' transfected cells. Results shown 

are from 4 independent experiments. 

# Experiments detected 

Protein pcDNA-

NS1 

pcDNA-

NS1' 

eEF-1α - 3 

GAPDH - 2 

BiP - 2 

ADP-ATP translocase 2 - 4 

ATP synthase subunit α - 4 

ATP synthase subunit β - 2 

Prohibitin 1 - 3 

Prohibitin 2 - 2 

Prosaposin - 2 

T-complex protein 1 subunit β - 2 

T-complex protein 1 subunit ζ - 2 

Voltage dependent anion selective channel protein 1 - 2 

Voltage dependent anion selective channel protein 2 - 2 

L-lactate dehydrogenase A chain - 2 
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4.3 Discussion 

Mass spectrometry has previously been used successfully to identify flavivirus-host protein 

interactions, as well as interactions between the different flaviviral proteins (184, 406-408). 

Specifically for NS1, co-immunoprecipitation identified a role for NS1 in inhibition of the host 

complement pathway, and an interaction with NS4B that has provided insight into how NS1 may 

function in replication (362, 370). 

The data presented in this chapter has identified both host and viral proteins interacting with 

NS1 and NS1'. Work conducted in MVEV infected cells identified the presence of both an E-NS1 

and an E-NS1' complex (382). The E protein has also previously been immunoprecipitated with 

either NS1 or NS1' from WNVKUN infected cells (370). The work shown in this chapter confirms 

this association (Table 4.1 and 4.3), and through the use of A30A' (lacking NS1') and an NS1'-

specific antibody, verifies that E is in fact interacting with both NS1 and NS1'. This E-NS1 product 

has been suggested previously to be a non-functional aggregate, as NS1 and E did not dissociate at 

any time during infection. However, the nature of these heterodimers has not been further 

examined. It is possible that this interaction is due to an involvement of NS1 in the folding of E, 

thereby promoting virion production. It is as of yet unconfirmed whether E proteins interacting with 

NS1 can dissociate and subsequently be involved in the virion envelope. 

Immunoprecipitation of WNVKUN infected cell lysate with an anti-NS1 mAb has been 

previously shown to pull down components of the flaviviral replication complex (NS3 and NS4B) 

(370). While the authors claimed this to indicate a physical interaction between NS1 and NS4B, no 

distinction between NS1 and NS1' was made in this pull-down, suggesting that this result could 

indicate an interaction of NS4B with either NS1 or NS1'. The work shown in this chapter is the first 

confirmation that both NS1 and NS1' interact with these viral proteins. NS3 and NS4B were 

detected in both wild-type WNVKUN (expressing NS1 and NS1') and A30A' (expressing only NS1) 

infected cell lysate immunoprecipitated with an anti-NS1 mAb, verifying that NS1 is interacting 

with these viral proteins (Table 4.1). In addition, NS3 and NS4B were also detected in 

immunoprecipitates from WNVKUN infected cell lysate when NS1'-specific ab was used (Table 4.3), 

confirming that NS1' also interacts with these proteins. The detection of this interaction between 

NS1' and members of the flaviviral replication complex supports the finding that NS1' is 

functioning in the WNV replication complex during viral infection, as outlined in chapter 3 of this 

thesis. 
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In contrast to what has been previously seen, no co-precipitation of NS5 with NS1 or NS1' 

was observed. Work conducted previously in JEV infected mammalian (BHK) and avian (DF-1) 

cells indicated that NS1 co-precipitates with NS5 (396). In the work carried out for this chapter, 

NS5 did not co-precipitate with either NS1 or NS1'. Takamatsu et al (396) did show an increased 

interaction between JEV NS1' and NS5 in avian cells, and a repeat of the work shown in this 

chapter in avian cells may indicate whether this species specific enhancement of the interaction may 

also hold true for NS1' of WNVKUN.  

The work shown in this chapter identified several host cell proteins co-precipitating with 

NS1 and/or NS1', with the most consistent peptide hits being against BiP, eEF-1α and GAPDH. BiP 

(also known as the 78 kDa glucose-regulated protein, or GRP78) is a well characterised ER-resident 

molecular chaperone protein involved in the unfolded protein response (UPR) and in directing 

protein folding and assembly, among other functions (409, 410). BiP has been shown previously to 

be involved in folding and oligomerisation of several viral proteins, particularly secreted or cell 

surface expressed glycoproteins (411-418). One example is the interaction between BiP and the 

influenza virus hemagglutinin protein, where BiP has been suggested to shield cysteine residues 

during folding and prevent the formation of intermediate disulfide bonds (418). The role of BiP in 

the unfolded protein response is via an interaction with all three key proteins that control the UPR 

(protein kinase R (PKR)-like ER kinase [PERK], activating transcription factor 6 [ATF6], and 

inositol-requiring enzyme 1 [IRE1]), which prevents their activation. Following disassociation from 

these proteins and activation of the UPR, an increased production of chaperone proteins (including 

BiP itself) occurs. BiP has previously been implicated in several flaviviral protein interactions, and 

likely impacts on virus production. This chaperone protein has been shown to be secreted during 

JEV infection and impact on the infectivity or release of the virus. The authors did not observe any 

impact on viral replication, and suggested that BiP may be involved in the maturation of virus 

particles (419). In addition to a role in JEV infection, BiP has also been implicated in DENV 

infection. Previous studies have determined that BiP interacts with the DENV E protein and can 

increase production of infectious virions (415). BiP has also been suggested as a possible receptor 

for DENV in HepG2 cells (a human liver cell line) (420). The upregulation of BiP by activation of 

the UPR has been shown during WNV infection (121, 421, 422). Moreover, another group has 

shown by IFA that BiP co-localises with NS1 in WNV infected cells (120). This upregulation of 

BiP expression may have lead to the observed interaction of BiP with NS1 and NS1' (Table 4.1 – 

4.4). It is likely that BiP is functioning to assist in viral protein folding as both virally-expressed 

and plasmid-expressed NS1 and NS1' could bind to BiP. This in turn may result in the effect on 

virus infection seen previously (415, 419).   
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Both eEF-1α and GAPDH were detected in plasmid transfected samples (Table 4.2 and 4.4). 

While this may be an artefact of overexpression of NS1 and NS1', both eEF-1α and GAPDH have 

previously been shown to interact with flaviviral proteins. eEF-1α is a well conserved ubiquitous 

protein that is involved in protein synthesis. This protein interacts with the WNV genomic RNA, 

co-localises with the WNV replication complex (as shown by co-staining with both dsRNA and 

NS5/NS3), and has been shown to co-precipitate with JEV NS5 (302, 304, 408).  These results 

suggest that eEF-1α is likely to be involved in the flaviviral replication complex. However, the 

work shown in this chapter only detected an interaction of NS1 and NS1' with eEF-1α in plasmid 

transfected cells (Table 4.2 and 4.4), and not in infected cells. As eEF-1α is widely involved in 

protein translation, it is possible that the interaction between NS1 and eEF-1α is due to co-

precipitation with ribosomes during the high level of protein synthesis occurring in plasmid 

transfected cells. However, the recognition site of the anti-NS1' antibody that was used is towards 

the C-terminus of the protein, and therefore unlikely to bind to proteins that are still undergoing 

translation. Therefore, this result is more likely indicative of a protein-protein interaction occurring 

post-translation.  

GAPDH has previously been shown to co-localise with JEV NS5 in infected cells. Though 

no direct binding between NS5 and GAPDH was observed, the authors determined that GAPDH 

was able to associate with NS5 via an interaction with viral RNA (423). However, as NS1 and NS1' 

co-precipitated with GAPDH in transfected cells only, it is unlikely that this interaction is related to 

the possible role GAPDH has in flaviviral replication. In addition to being localised predominantly 

to the nucleus and cytosol (424), GAPDH has also been identified on the cell surface. A previous 

study on surface expressed GAPDH identified a possible role in endocytosis, as a mutation in 

GAPDH affected the endocytic pathway (specifically the interaction of late endosomes with 

mirotubules) (425, 426). Interestingly, NS1 has also been shown to accumulate in late endosomes 

following internalisation of surface bound NS1 by endocytosis (364). Immunofluorescence staining 

of pcDNA-NS1 and pcDNA-NS1' transfected cells confirmed the presence of NS1 and NS1' on the 

cell surface (Figure 3.3D). It is possible that the overexpression in transfected cells may have led to 

an interaction of NS1 and NS1' with GAPDH on the cell surface or in the late endosomes.  

The NS1' immunoaffinity purification of transfected cells identified a number of potential 

NS1'-specific interactions. While these proteins initially seemed to be interacting with NS1', several 

are unlikely to represent true interactions, based solely on their cellular localisation. For example, 

ADP-ATP translocase 2, which was detected in all 4 independent experiments, is a transporter 
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protein localised to the mitochondria (427-429). ATP synthase, various subunits of which were 

identified in all 4 experiments, is an enzyme also localised to the mitochondria that is involved in 

ATP synthesis (430). T-complex protein 1, detected in two independent experiments, is a molecular 

chaperone protein, though it is usually present in the cytosol (431), and therefore unlikely to interact 

with NS1' in cells. L-lactate dehydrogenase is also located in the cytosol of cells and involved in 

lactate metabolism (432). While the voltage dependent anion selective channel protein 1 has more 

recently been identified on the plasma membrane of cells, it is better characterised as a 

mitochondrial protein (433, 434). The proteins outlined here have a distinct cellular localisation that 

indicates that the co-precipitation with NS1' seen is more likely due to an artificial interaction 

during or after cell lysis preparation.   

However, not all of the proteins identified in NS1' affinity purification of transfected cells 

have such a clear cellular localisation that suggests an artificial interaction. Prohibitin is 

predominantly localised to the mitochondria, but both prohibitin 1 and 2 have been identified to 

have varying cellular localisation (435). Interestingly, prohibitin has been suggested to have some 

activity as a viral receptor protein, having been identified as a receptor for Chikungunya 

virus (CHIKV) in microglial cells (436) and DENV (but specifically not JEV) in insect cells (437). 

Prosaposin is a precursor protein that is processed into four individual glycoportiens known as 

saposins A-D. While it is predominantly localised to lysosomal compartments where processing to 

individual saposins occurs, prosaposin also exists as a membrane-bound and secretory protein 

(438). It is unclear why these particular proteins were detected in anti-NS1' and not anti-NS1 

immunoprecipitation, however, this suggests that they are unlikely to be true interactions. These 

interactions may be observed due to some unforeseen effect of the immunoaffinity purification that 

only occurred in transfected cells combined with the anti-NS1' antibody.  

In this chapter, we were unable to successfully identify unique proteins interacting with 

NS1'. However, the results shown here have confirmed that NS1' interacts with members of the 

replication complex during infection, and is therefore likely to be functioning in viral replication. 

The interaction of NS1 and NS1' with the molecular chaperone protein BiP is likely indicative of 

the stressed state of the infected or transfected cells, resulting in an upregulation of chaperone 

proteins to assist in protein folding. It is unclear from the results shown in this chapter whether this 

interaction between NS1/NS1' and BiP is important for viral replication. The observed interactions 

of NS1 and NS1' with eEF-1α and GAPDH are more likely due to the overexpression of NS1 and 

NS1', and may not represent true protein-protein interactions that would occur during viral 

infection. Several of the potential NS1'-specific interactions observed in NS1' immunoaffinity 
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purification of transfected cells were likely due to an artificial interactions occurring during or after 

lysing cells, as the known cellular localisation of these protein suggests that they would not come in 

contact with NS1'. In addition to this, the failure to confirm these potential protein interactions in 

any of the other three conditions used reinforces the hypothesis that these interactions represent an 

artefact of the procedure. 

The lack of detection of unique NS1'-interacting proteins and confirmation of NS1' 

functioning in viral replication further supports the hypothesis that NS1' may not have a unique 

function in viral infection. The production of NS1' may simply be a consequence of regulation of 

viral gene expression by the -1 PRF. Further work examining the protein-protein interactions 

identified here is necessary to confirm NS1' functioning as NS1.  
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5 NS1' secretion and stable dimerisation 

5.1 Introduction 

Following NS1 cleavage from the flaviviral polyprotein (335, 161), it is glycosylated at 

either 2 or 3 sites (341, 333) and rapidly dimerises (348, 333). The formation of an NS1 dimer is a 

consistent feature of all flaviviruses. This detergent resistant, heat-sensitive dimer (347, 333) was 

first identified through SDS-PAGE analysis of infected mammalian or insect cell lysate (332, 333). 

Formation of NS1 dimers relies on 12 cysteine residues in NS1 that form 6 intramolecular disulfide 

bonds. The importance of these disulfide bonds has been shown previously, with mutagenesis 

studies indicating that at least the C-terminal 3 cysteine residues were critical for proper folding of 

NS1, and subsequently maturation, secretion and oligomerisation (338). The NS1 dimer has been 

shown to be important for viral pathogenesis, with a single amino acid substitution at residue 250 of 

WNVKUN and MVEV NS1 resulting in a lack of detectable NS1 dimers that correlated with reduced 

neuroinvassiveness in mice (349, 350). However, this mutation did not completely ablate virus 

replication, suggesting that dimeric NS1, while important for pathogenesis, is not essential for virus 

replication.  

Once dimerised, a proportion of NS1 is trafficked through the Golgi, where the high 

mannose carbohydrates are processed to more complex sugars. Here NS1 forms a soluble hexamer, 

which is subsequently secreted from infected mammalian cells, though not from insect cells (439, 

440, 357, 331, 352, 400, 332). This is likely to be due to insect cells lacking the machinery for 

proper processing of NS1 glycans into complex carbohydrate forms (4). The hexameric form of 

NS1 is held together by weak hydrophobic interactions which are disrupted by detergent treatment 

(352). Observation of the hexamer without prior cross-linking is therefore difficult, as detergents 

that disrupt the hexameric form to dimers are present in lysis buffers and during SDS-PAGE 

analysis. Chemical cross-linking of extracellular fluid, or SDS-PAGE carried out with very low 

levels of SDS are required to detect even small amounts of the hexameric species, though neither 

technique shows complete retention of this native form (357, 331, 352).   

To examine the NS1' protein in isolation, an NS1'-expressing plasmid (pcDNA-NS1') was 

developed as outlined in chapter 3 of this thesis (Section 3.1). During the initial characterisation of 

the pcDNA-NS1' plasmid, the presence of a sub-population of heat-stable NS1' dimers was 

discovered (Figure 5.1A). These heat-stable dimers had not been identified previously. Work 

conducted in JEV infected cells noted only the presence of heat-labile NS1' dimers in addition to 



 73 

the well-characterised heat-labile dimers formed by NS1 (387). The presence of heat-stable NS1' 

dimers was also detected in WNVKUN infected cells (Figure 5.1B), confirming that this property 

was not an artefact of plasmid expression. The heat-stable dimers were sensitive to treatment with 

reducing agents (results obtained during my honours project), suggesting that the heat-stability may 

be due to the presence of an intermolecular disulfide bond. In addition to the formation of NS1 and 

NS1' homodimers, the presence of a NS1/NS1' heterodimer has previously been suggested for both 

JEV and MVEV (382, 387, 388). Initial work in infected cells conducted during my honours project 

has indicated that this heterodimer may be formed during WNVKUN infection as well (Figure 5.1B).  

!

The work presented in this chapter aims to further characterize the heat-stable nature of the 

NS1' dimer and determine the region of the frameshifted sequence that contributes to heat stability. 

In addition, secretion of WNVKUN NS1' was examined, as previous work conducted in JEV infected 

cells suggested that there is only low level secretion of NS1' during JEV infection (387, 332). 

Dimerisation and secretion of NS1 are important for flaviviral pathogenesis, and a clearer 

understanding of these properties of the NS1' protein may lead to the identification of a unique role 

for NS1' in viral infection. 

 
 
 
 
 

Figure 5.1 Identification of heat-stable NS1' dimers in transfected and infected cells. A. Western blot 

showing expression of NS1 and NS1' from pcDNA-NS1 and pcDNA-NS1' transfected 293T cells, 

respectively. Lysates were heat denatured or left untreated and analyzed by Western blotting with anti-NS1 

(4G4). B. Western blot showing expression of NS1 and NS1' from WNVKUN and NS1 only from A30A' 

mutant infected Vero76 cells. Lysates were heat denatured or left untreated and analyzed as above. 
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5.2 Results 

5.2.1 Heat-stable NS1' dimers are unique to WNV. 

Previous studies on JEV NS1' have shown only the presence of heat-labile NS1' dimers 

(387), which is contrary to our findings for WNVKUN NS1'. To examine this further, lysates from 

JEV, MVEV, WNVNY99 and WNVKUN infected Vero76 cells were subjected to SDS-PAGE and 

Western blotting with anti-NS1 antibodies to determine the presence or absence of heat-stable NS1' 

dimers. Heat-stable NS1' dimers were only detected in heated WNV (NY99 and KUN) samples 

(Figure 5.2, lanes 5 and 7), but not JEV or MVEV samples, showing that these dimers are unique to 

WNV. 

!

5.2.2 WNV NS1' dimers are heat and low pH resistant. 

Previous work by Falconar and Young (347) has shown that NS1 dimers are stable at low 

pH (pH 3.5). To assess the pH stability of NS1' dimers, pcDNA-NS1 or -NS1' transfected cell 

lysates (Figure 5.3A) and WNVKUN or A30A' infected cell lysates (Figure 5.3B) were incubated for 

1 h with 1M glycine buffered to the indicated pH prior to separation by electrophoresis. NS1 dimers 

were indeed stable until the pH was lowered to 3.5, while a sub-population of NS1' dimers were 

still stable at the lowest pH tested, pH 2.2. A range of temperature treatments was also tested on the 

same lysates to further examine the heat-stability (Figure 5.4). While NS1 dimers were stable at 

room temperature, heating to 60°C for 30 min was enough to begin to disrupt the dimeric 

interaction. NS1' on the other hand, forms a sub-population of dimers that were still stable at the 

Figure 5.2 Heat-stable NS1' dimers are unique to WNV infected cells. Lysates harvested from JEV, 

MVEV, WNVNY99 and WNVKUN infected Vero cells were heated (70°C for 10 min) or left untreated and 

proteins were separated by SDS-PAGE. Proteins were transferred to nitrocellulose membranes and NS1 and 

NS1' were detected with an anti-NS1 mAb (4G4). 
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highest temperature tested. The sub-population of NS1' that does not have this heat-stable nature 

has a similar stability to NS1 dimers, with respect to both temperature and pH treatment.  

!

 

Figure 5.4 Heat-stability of NS1 and NS1' dimers. Lysate from A) transfected or B) infected cells was 

incubated at the indicated temperature for the time shown prior to separation by electrophoresis and western 

blotting anti-NS1 (4G4). Top panel is either pcDNA-NS1 transfected (A) or WNVKUN infected (B) and 

bottom panel is either pcDNA-NS1' transfected (A) or A30A' infected (B). 

Figure 5.3 pH-stability of NS1 and NS1' dimers. Lysate from A) transfected or B) infected cells was 

incubated with 1M glycine at the indicated pH prior to separation by electrophoresis and western blotting 

with anti-NS1 (4G4). Top panel is either pcDNA-NS1 transfected (A) or WNVKUN infected (B) and bottom 

panel is either pcDNA-NS1' transfected (A) or A30A' infected (B).!
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5.2.3 NS1' dimer stability resides within penultimate 10 amino acids. 

As the NS1' heat-stable dimers are distinct from the heat-labile dimers formed by NS1, the 

stability must be linked to the presence of the frameshifted region of NS1'. To determine the region 

contributing to this stability, C-terminal 10- and 20-amino acid truncations of NS1' were generated 

by PCR mutagenesis of pcDNA-NS1' (Figure 5.5A). The presence of heat-stable dimers was 

determined by SDS-PAGE and Western blot analysis of heated or unheated lysates generated from 

HEK293T cells transfected with pcDNA-NS1, -NS1', -NS1'del10 or -NS1'del20. NS1' and 

NS1'del10 both formed a sub-population of heat-stable dimers (Figure 5.5B, lanes 3-4 and 5-6 

respectively), while NS1'del20 formed only heat-labile dimers (lanes 7-8), similar to those produced 

by NS1 (lanes 1-2). Interestingly, NS1'del20 also eliminated NS1' multimer that can be observed in 

both NS1' and NS1'del10 unheated samples (Figure 5.5 lanes 4 and 6 respectively). This indicates 

that the stable nature of the NS1' dimers can be linked to the penultimate 10 amino acids. 

To determine whether the loss of heat-stable dimers in pcDNA-NS1'del20 transfected cells 

was due to the specific amino acid sequence, or to a minimum length requirement of the 

frameshifted region, amino acids 385 to 393 were mutated to alanine (Figure 5.5A). SDS-PAGE 

and Western blot analysis of lysate from pcDNA-NS1'Ala transfected cells showed that NS1'Ala is 

similar to NS1'del20, as it does not form heat-stable dimers (Figure 5.5B, lanes 9 and 10). This 

confirms that the heat-stable dimerisation is linked to the specific sequence of amino acids 385-394, 

rather than to the length of NS1'. 

Due to the presence of a cysteine (Cys) residue within the mutated 10 aa region of NS1', we 

hypothesized that a disulfide bond may be forming between monomeric units, creating the heat-

stability seen. This was also supported by the fact that the dimers are sensitive to treatment with 

reducing agents. However, mutagenesis of this Cys residue to Ser (Figure 5.5A) failed to prevent 

the formation of the heat-stable NS1' dimers (Figure 5.5B, lanes 11 and 12) showing that this Cys is 

not involved in formation of heat-stable NS1' dimers.  
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5.2.4 NS1 and NS1' form heterodimers in infected and co-transfected cells. 

The presence of NS1/NS1' heterodimers has been suggested previously for JEV and MVEV 

(382, 387, 388). From the work shown in this chapter in infected cells, it was apparent that this 

heterodimer is also produced in WNVKUN and WNVNY99 infected cells, as three distinct dimeric 

bands were identified in unheated cell lysate (Figure 5.2, lanes 8 and 6 respectively). To confirm 

that this is indeed an NS1/NS1' heterodimer, 293T cells were singularly-transfected or co-

transfected with pcDNA-NS1 and pcDNA-NS1'. Cell lysates were either heated or left untreated 

prior to separation by SDS-PAGE. Proteins were transferred to nitrocellulose membrane and 

analysed by Western blotting with anti-NS1 mAb (4G4), to detect both NS1 and NS1'. As expected, 

single dimeric bands corresponding to the NS1 and NS1' homodimer were detected in unheated 

pcDNA-NS1 and pcDNA-NS1' singularly-transfected samples, respectively (Figure 5.6, lanes 2 and 

4). However, in the unheated co-transfected sample, three distinct dimeric bands were observed 

Figure 5.5 Region at the C-terminus of NS1' contributing to formation of heat-stable dimers. A. Design 

of C-terminally truncated (NS1'del10 and NS1'del20) or mutated (NS1'Ala and NS1' C392S) pcDNA-NS1' 

constructs to assess the region of NS1' contributing to heat-stable dimers. Underlining shows the 

frameshifted region of NS1', boxed residues show amino acid substitutions and asterisk (*) shows stop 

codons. B. Lysates harvested from HEK293T cells transfected with pcDNA-NS1, -NS1', -NS1'del10, -

NS1'del20, -NS1'Ala or -NS1' C392S were heated (70°C for 10 min) or left untreated and proteins were 

separated by SDS-PAGE. Proteins were transferred to nitrocellulose membranes and detected with anti-NS1 

mAb (4G4). 
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(Figure 5.6, lane 6). The heterodimer was dissociated by heat-treatment, suggesting that unlike the 

NS1' homodimer, the NS1/NS1' heterodimer is heat-labile. This indicates that also in the absence of 

a viral infection, NS1 and NS1' are able to form heat-labile heterodimers.  

!

5.2.5 WNV NS1' is secreted less efficiently than NS1. 

It has been shown previously that JEV NS1', unlike NS1, is not secreted efficiently from 

infected cells (387, 332). To determine whether this is also the case for WNVKUN NS1', pulse-chase 

experiments were carried out. Radiolabelled NS1 and NS1' were detected in both the cell 

monolayer and culture fluid of WNVKUN infected Vero76 cells at 24 or 72 h pi (Figure 5.7A and B, 

respectively). Quantification of individual protein bands and determination of the 

extracellular/intracellular ratio (E/I) showed that NS1' is consistently secreted to a lower degree 

compared to NS1 (Figure 5.7). To confirm the low level secretion of NS1' seen in infected cells is 

not due to the presence of other viral proteins, the secretion of NS1 and NS1' was examined in the 

context of plasmid transfected cells. A similar secretion pattern could be seen for NS1 and NS1' 

expressed from pcDNA-NS1 and pcDNA-NS1' transfected 293T cells (both co- and individually-

transfected) at 24 and 48 h post transfection (Figure 5.8A and B, respectively). Again, the E/I ratio 

showed that NS1' (whether individually- or co-transfected) was secreted to a significantly lower 

degree than NS1 (Figure 5.8C). These results indicate that the frameshifted region of NS1' results in 

increased cellular retention of NS1' compared to NS1. 

Figure 5.6 Formation of NS1/NS1' heterodimers in transfected cells. Lysate from 293T cells transfected 

with pcDNA-NS1, pcDNA-NS1' or co-transfected with both pcDNA-NS1 and pcDNA-NS1' was heated 

(70°C for 10 min) or left untreated and proteins were separated by polyacrylamide gel electrophoresis. 

Proteins were transferred to nitrocellulose membranes and detected with anti-NS1 (4G4) antibodies. 
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Figure 5.7 NS1 and NS1' production and secretion from infected cells. A-B. Production and secretion of 

NS1 and NS1' from Vero cells infected with WNVKUN or A30A'. Pulse-chase was performed at A. 24 or B. 

72hpi, culture fluids (CF) were clarified by centrifugation and cell monolayers were lysed as described. 

Protein preparations were immunoprecipitated with anti-NS1 (4G4) using Dynabeads® Protein G. Antibody-

bound proteins were eluted and samples subjected to electrophoresis. Labeled proteins were transferred to 

nitrocellulose membranes and exposed to phosphor screen for 1 day. Left-hand panels show 

immunoprecipitated cell monolayer lysate and right-hand panel shows CF. C. Extracellular/intracellular ratio 

for NS1 and NS1' produced by infected cells confirms that NS1' is secreted to a lower degree compared to 

NS1. D. E/I ratio for WT NS1 and A30A' NS1 indicates that the presence of NS1' does not affect the 

secretion of NS1. Results are expressed as the mean ± SEM of two independent experiments. 
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Figure 5.8 NS1 and NS1' production and secretion from transfected cells. A-B. Production and secretion 

of NS1 and NS1' from transfected or co-transfected 293T cells. Pulse-chase was performed at A. 24 or B. 48 

hours post transfection and samples processed as outlined in Figure 5.8. Left-hand panels show 

immunoprecipitated cell monolayer lysate and right-hand panel shows CF. C. Extracellular/intracellular ratio 

for NS1 and NS1' produced by transfected cells confirms that NS1' is secreted to a lower degree compared to 

NS1. Results are expressed as the mean ± SEM of two independent experiments and significance (*** [P < 

0.001] or * [P < 0.01]) determined by 2-way ANOVA. 



 81 

As NS1 and NS1' form a heterodimer in both infected and co-transfected cells, it is possible 

that this interaction may affect NS1 secretion. In spite of this interaction, comparison of the E/I 

ratio for either co- or singularly-transfected NS1 or NS1' indicates that the presence of NS1' does 

not affect the secretion of NS1, and vice versa (Figure 5.8C). This can also be seen in the 

comparison between NS1 expressed from WNVKUN infected cells and A30A' infected cells (Figure 

5.7D), where the presence of NS1' (in WNVKUN infected cells) does not affect the efficiency of NS1 

secretion. 
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5.3 Discussion 

The work shown in this chapter was carried out to further investigate a sub-population of 

heat-stable NS1' dimers that are produced in infected and plasmid transfected cells. This is the first 

identification of heat-stable NS1' dimers and results shown here indicate that this heat-stability is so 

far unique to WNV (Figure 5.2). This is consistent with previous studies carried out with JEV or 

MVEV that have identified only the presence of heat-labile NS1' dimers (382, 387, 383, 332, 381). 

The heat-stable dimerisation could be linked to the specific sequence between amino acids 385-394 

(Figure 5.5). This does not mean that the sequence contributing to heat-stable dimerisation must be 

entirely contained within this region, but it is likely to at least span these amino acids. Interestingly, 

although there is ~46% conservation between the examined flaviviruses, there is no conservation at 

all for amino acids 385-394 between WNV NS1' (both WNVKUN and WNVNY99) and the other 

encephalitic flavivirus NS1' (Figure 5.9). WNVKUN and WNVNY99 have 8 conserved residues 

between amino acids 385-394, suggesting that the two non-conserved residues are not involved in 

the formation of heat-stable dimers. Future work to further narrow down the region resulting in 

heat-stable dimerisation would be particularly interesting to determine whether the potential 

dimerisation motif present is conserved through additional WNV lineages.  

!

The increased stability observed here for NS1' has provided insight into the cell associated 

form of NS1', and potentially NS1. Due to the increase in dimer stability, it is possible to observe 

higher order oligomeric forms in unheated SDS-PAGE analysis of WNVKUN NS1'. Indeed, when 

Figure 5.9 NS1' frameshift sequence conservation. Underlining shows the frameshifted region 

contributing to heat-stable dimer formation and asterisk (*) shows stop codons. Amino acids conserved for 

WNV species only or conserved between all examined members of JEV serogroup (WNV, JEV and MVEV) 

are indicated. Virus sequences used: WNVKUN – GenBank:AY274504; WNVNY99 – GenBank:NC_009942; 

JEV – GenBank:NC_001437; MVEV – GenBank:NC_000943.  
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this dimer stability was abolished by truncation or mutation, not only were the heat-stable dimers 

affected, but also the detergent-stable oligomers. Based on the observed size on SDS-PAGE gels, 

these are likely to be hexamers; however, further confirmation would be required. These higher 

order oligomers are still observed in SDS-PAGE analysis when cell lysates were treated with 

iodoacetamide (to prevent disulfide exchange post-lysis), suggesting that the potential hexamer seen 

is a natural state, not a product of lysis (data not shown). This data may also shed light on the cell 

associated form of NS1, which is still unknown (4). The NS1 hexamer is held together by only 

weak hydrophobic interactions that are disrupted to dimers by detergent treatment (352), such as 

those required for cell lysis. The observation of higher order oligomers formed by NS1' may 

indicate that the subtle increase in stability seen for WNVKUN NS1' is enough to allow us to observe 

the natural state of intra-cellular NS1' without the need for cross-linking.  

One key characteristic examined in this chapter was the inefficient secretion of NS1', despite 

no distinct hydrophobic region present in the frameshifted sequence. The results shown here 

indicate that NS1' is secreted from infected and transfected cells, although less efficiently than NS1 

(Figure 5.7 and 5.8). In contrast to what has been shown in this chapter, and what has been seen in 

infected cells (Fig. 5.7 and 5.8, and (332)), previous work with plasmid expression of JEV NS1 and 

NS1' has suggested that NS1' is not secreted at all from transfected cells (388). However, this work 

was conducted prior to the confirmation that NS1' is produced by a ribosomal frameshift (384, 1, 

390), when it was assumed to be an alternate cleavage product. The plasmid design for NS1' (NS1 

with an additional 60 amino acids of NS2A; (388)) was likely to have been producing a fusion of 

NS1-NS2A, possibly without effectively frameshifting to produce NS1' itself. As the authors 

suggested, the hydrophobic nature of the N-terminal NS2A amino acids may have been resulting in 

the inhibition of protein secretion seen. However, we have shown here that when properly 

produced, NS1' is secreted from plasmid transfected cells. 

NS1 is trafficked to several different locations during viral infection, including the cell 

surface and secreted to the extracellular fluid. Secretion of NS1 to the extracellular fluid occurs 

through the Golgi pathway, and while a small amount of secreted NS1 has been shown to bind back 

to cells via an interaction with glycosaminoglycans (363), the majority of NS1 present on the 

surface of infected cells is due to an as yet unclear trafficking pathway, that is likely distinct from 

Golgi trafficking (4). Lin et al has previously suggested that the presence of NS1' affects the normal 

trafficking of NS1 (388). The authors determined that co-expression of JEV NS1 with authentic 

NS1' (through the use of a full-length NS1-NS2A plasmid system) reduced the cell surface 

expression of NS1 (388). The work conducted in this chapter suggests that the presence of WNV 
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NS1' does not impact on secretion of NS1 from cells, highlighting potential differences between 

NS1 trafficking to the cell surface and NS1 secretion. This work examined the presence of NS1 and 

NS1' in the extracellular fluid, and determined that the presence of NS1' (through co-transfection of 

pcDNA-NS1 and pcDNA-NS1' and through comparison of NS1'-expressing and NS1'-lacking 

viruses) does not affect NS1 secretion. The observation that NS1' may affect NS1 surface 

expression (388) but not secretion (work shown in this chapter) could be explained in several ways. 

First, it is possible that JEV and WNV NS1 and NS1' behave differently. There have been several 

previous studies highlighting differences between flaviviral NS1 species (371, 367), with one recent 

paper identifying just two N-terminal amino acid differences between WNV and DENV NS1 

(RQ10NK) directly impacting on secretion vs. cell surface localisation (367). The same analysis has 

not yet been conducted for JEV, which contains arginine at position 10 (same as WNV) and lysine 

at position 11 (same as DENV). Secondly, it is possible that differences in glycosylation states 

affect secretion vs. cell surface expression. JEV and WNV NS1 have a different glycosylation 

pattern (344, 339), and it has been shown previously that glycosylation affects secretion to the 

extracellular fluid but not trafficking to the cell surface (367).  Finally, it is possible that the 

presence of NS1' may affect trafficking to the cell surface, but not to the extracellular fluid. The 

specific pathway NS1 takes to the cell surface remains unclear, and it is possible that the presence 

of NS1' may impact this pathway alone. Previous work suggests that cell surface NS1 exists as a 

dimer (351), while it is secreted as a hexamer (352). It has been suggested that dimer trafficking to 

the cell surface occurs earlier in infection, and that increased concentrations of NS1 later in 

infection increases the chance of dimers forming hexamers (332, 4). It is therefore possible that 

heterodimerisation with NS1' may affect early NS1 trafficking to the cell surface, but not secretion 

to the extracellular fluid once NS1 concentrations have increased. 

The presence of heat-stable NS1' dimers that are sensitive to reducing agents suggested the 

presence of a disulfide bond; however, mutagenesis of the Cys residue within the frameshifted 

region indicates that it is not due to a simple interaction between the C-terminal Cys residues of two 

monomers. It has previously been suggested (M. Lobigs, personal communication) that NS1 may 

itself catalyse disulfide bond exchange. Viral proteins have been identified previously to contain the 

disulfide isomerisation motif, CXXC. One example is the Human T-cell leukemia virus 1 envelope 

protein, which contains a CXXC motif that controls intersubunit disulfide isomerisation, mediating 

the viral fusion reaction (441). NS1 contains a CXXC motif that is conserved for DENV, YFV and 

the JEV serogroup. These Cys residues (C10 and C11) have been shown previously to be important 

for dimer formation and NS1 secretion (338). It has been hypothesised that NS1 may be involved in 

its own folding, as well as that of other flaviviral proteins, such as E. This may explain the 



 85 

interaction between NS1 and E seen during viral infection (382). It is possible that the presence of 

the frameshifted region in NS1' may in fact impede folding of this C-terminally extended NS1 

protein. The heat-stable dimers observed may therefore represent folding intermediates involving 

intermolecular disulfide bonds between covalently linked NS1' monomers. On the other hand, as 

these heat-stable dimers appear to be secreted to some degree (Figure 5.7 and 5.8), they are unlikely 

to represent misfolded protein, as this would be retained in the cell. However, only a small amount 

of NS1' is secreted from the cell, and it is therefore difficult to conclusively determine the dimer 

stability. Further work analysing the nature of these heat-stable NS1' dimers and the possibility of 

the involvement of NS1 in disulfide bond exchange is necessary.  

The research carried out for this chapter has identified a sub-population of heat-stable NS1' 

dimers unique to WNV that is produced and secreted in infected and plasmid transfected cells. The 

stability of these dimers is dependent on amino acids 385-394; though not specifically to the 

cysteine reside at position 392. This heat-stable nature is distinct from the heat-labile dimers formed 

by NS1, and in combination with the inefficient secretion compared to NS1, suggests that the NS1' 

protein may not solely behave like NS1.  
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6 NS1' Mutagenesis 

6.1 Introduction 

While initially thought to be the product of an alternate cleavage site present in NS2A (381), 

it has since been determined that NS1' is produced by a -1 programmed ribosomal frameshift (PRF) 

occurring at the beginning of the adjacent NS2A gene (384). This ribosomal frameshift consists of 

two conserved motifs, a heptanucleotide “slippery” site followed by an RNA pseudoknot. The 

requirement of both these signals for the production of the WNVKUN NS1' protein was previously 

confirmed experimentally by our group. This was done through the use of two mutant viruses: 

A30A', which mutates two nucleotides involved in the formation of the pseudoknot (NS2A 

nucleotides C90U and G93A), and FSSM (or frameshift silent motif), which introduced two 

mutations into the slippery heptanucleotide (NS2A nucleotides U24A and U27C). Neither of these 

mutant viruses produce NS1', and both showed reduced virulence in a mouse model without notably 

affecting viral replication in BHK or C6/26 cells (1). The requirement for the pseudoknot in the 

formation of JEV NS1' has also been shown experimentally, with mutations disrupting the 

pseudoknot abolishing NS1' production (386). In agreement with the work carried out in WNVKUN, 

JEV mutant viruses lacking the PRF and NS1' showed attenuation of virulence in a mouse model 

(390).  

As the flaviviral genome is translated as a single polyprotein, the presence of the PRF (and 

subsequent stop codon producing NS1') was hypothesized to alter the ratio of proteins upstream of 

the frameshift site vs those downstream from equimolar to a greater amount of those upstream. 

Therefore, frameshifting could be measured as a ratio of structural proteins (such as E) to non-

structural proteins (such as NS5). Abolishing the PRF in the mutant viruses (such as A30A') would 

result in a decrease in the ratio of structural to non-structural proteins relative to the wild-type virus. 

Experimental work conducted in our laboratory confirmed this hypothesis by measuring the 

structural to non-structural protein ratio for wild-type WNVKUN and A30A', showing that the ratio is 

indeed reduced for the PRF-lacking virus (389). The authors also showed that a lack of PRF/NS1' 

results in a reduced virulence in house sparrows, and affected viral replication, spread and 

transmission in Culex mosquitoes. However, while this study clearly showed an effect of the PRF 

on the ratio of structural to non-structural proteins, this cannot be conclusively linked to the 

attenuation seen in sparrows and mosquitoes, as the virus used (A30A') lacks both the PRF and 

NS1'. 
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Recent work carried out with JEV has suggested a possible role for NS1' in assisting virus 

production in avian cells by increasing viral RNA levels (396). The authors also showed that NS1' 

was in fact expressed more efficiently in avian cells than mammalian cells (chicken embryonic 

fibroblasts, DF-1, vs baby hamster kidney, BHK, cells). Finally, it was shown that infection with 

NS1'-exressing viruses resulted in a higher mortality rate in embryonated chicken eggs (ECEs). 

These data suggested that NS1' facilitates JEV viral infection in an avian system (396). However, as 

with the work carried out with WNVKUN NS1'-lacking viral mutants, the observed effect could be 

either due to the function of NS1', the presence of the PRF itself, or a combination of both factors.  

NS1'-lacking WNVKUN mutants that are currently utilized, such as A30A', abolish NS1' 

production through mutation eliminating the ribosomal frameshift. Any subsequent effect observed 

may be due to either the lack of NS1' or the frameshift itself. Separation of these competing factors 

is necessary to fully understand the function of the NS1' protein. This chapter aims to characterise 

new viral mutants designed specifically to affect wild-type NS1' production and not the ribosomal 

frameshift.  
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6.2 Results 

6.2.1 Design of Stop Mutant and SCMU  

Two mutant WNVKUN viruses, Stop Mutant and Scrambled Mutant (SCMU), were designed 

to affect wild-type NS1' production without affecting the predicted frameshift (Figure 6.1). Stop 

mutant introduces a premature stop codon 20 amino acids from the end of NS1', resulting in a 

truncated version of the protein. Due to the nature of the ribosomal frameshift, and NS1' being 

encoded in the -1 open reading frame of NS2A, it was not possible to create an alanine mutant in 

the viral context without affecting the coding sequence of NS2A. Instead, SCMU was created, 

which altered 19 of the last 20 amino acids based on what nucleotide changes could be made 

without affecting NS2A (Figure 6.1). The purpose of these mutants was to separate the effect of the 

frameshift (which should still be intact) from that of the NS1' protein per se on virus growth and 

virulence properties. 

!

Figure 6.1 Design of mutant viruses with altered NS1' production. A. Nucleotide sequence of the 

frameshifted region of wild-type (WT), Stop Mutant and SCMU NS1'. Single nucleotide mutations were 

introduced to the WT NS1' sequence to introduce a stop codon (green) or to alter the amino acid sequence in 

NS1' (yellow). B. Amino acid sequence of WT, Stop Mutant and SCMU NS1'. Underlining shows the 

frameshifted region of NS1', boxed nucleotides show mutated amino acids and asterisks (*) shows stop 

codons. 
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Prior to cloning these mutations into the full-length infectious clone, the mutations were 

introduced into a cassette containing the C-terminal 26 amino acids of E through to the end of 

NS2A (pcDNA-E-NS2A). This was carried out to ensure that the designed mutations, which did not 

directly mutate the nucleotides involved in pseudoknot formation, did not have an unforeseen effect 

on the ribosomal frameshift. Using site directed PCR mutagenesis, a single point mutation was 

introduced into pcDNA-E-NS2A to generate pcDNA-E-NS2A-StopMutant. Similarly, 19 

nucleotide changes were introduced into the NS2A gene to generate pcDNA-E-NS2A-SCMU. The 

presence of NS1 and NS1' was determined by SDS-PAGE and Western blot analysis of heated or 

unheated lysates generated from HEK293T cells transfected with pcDNA-E-NS2A-StopMutant or 

pcDNA-E-NS2A-SCMU. Both 4G4 (anti-NS1 monoclonal antibody) and NS1'-specific antibodies 

(FS-ab) detected a protein band corresponding to the predicted size of the truncated NS1' in 

pcDNA-E-NS2A-StopMutant transfected lysate (Figure 6.2). While a clear protein band at the 

expected size of NS1' was detected by 4G4 in SCMU samples, there was poor detection of this 

same band by NS1'-specific antibodies. This suggests that the nature of the mutations in SCMU 

may have affected the recognition site of the NS1'-specific antibody, not by direct mutation of the 

site, but possibly by affecting protein folding. 

!

Figure 6.2 Production of NS1 and NS1' from mutated pcDNA-E-NS2A cassettes. Western blot showing 

expression of NS1 and NS1' from pcDNA-E-NS2A-Stop Mutant and -SCMU transfected 293T cells. Lysates 

were heat denatured or left untreated and analysed by Western blotting with anti-NS1 (4G4) or NS1'-specific 

antibodies (FS-ab). 
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6.2.2 Characterisation of WNVKUN viruses with Stop and SCMU mutations. 

Following confirmation that the two mutations did not abolish ribosomal frameshifting, and 

that versions of NS1' (either truncated or mutated) were produced from the expression cassettes, the 

mutations were next cloned into the WNVKUN infectious clone, FLSDX. Once these mutations were 

introduced into FLSDX, it was necessary to verify that the ribosomal frameshift was still functional 

during translation of the full-length RNA. The presence of NS1' was determined by SDS-PAGE and 

Western blot analysis of lysate from infected Vero76, BHK, C6/36 or MEF cells. Similar to the 

results seen subgenomic expression in cells transfected with plasmid DNAs expressing mutant 

cassettes, both 4G4 and FS-ab detected a protein band corresponding to the predicted size of the 

truncated NS1' in Stop Mutant infected lysate for the different cells examined. Again, a protein 

band likely to correspond to NS1' was detected by 4G4 in SCMU samples, although there was poor 

detection by NS1'-specific antibodies. Interestingly, detection of Stop Mutant and SCMU NS1' by 

western blotting with anti-NS1 (4G4) antibody suggested that NS1' production was increased in the 

mutant viruses relative to wild-type virus. However, detection of wild-type NS1' with NS1'-specific 

antibodies was greater than detection with 4G4, suggesting that this may be an issue of antibody 

detection.  

To further characterise Stop Mutant and SCMU NS1', immunofluorescence analysis of 

WNVKUN, A30A', Stop Mutant or SCMU infected cells was carried out to assess NS1 and NS1' 

cellular localization. Infected Vero76 cells stained with anti-NS1 (4G4) and counter-stained with 

anti-calnexin (ER marker) antibodies showed that the truncation or mutation of NS1' did not alter 

cellular localisation compared to NS1' encoded by the wild-type WNVKUN (Figure 6.4), which was 

shown in chapter 3 of this thesis to be predominantly ER localised (Figure 3.3 and 3.4). 

To analyze the effect of truncation or mutation of NS1' on virus replication in cell culture, 

BHK, Vero76, C6/36 and MEFs were infected with the wild-type WNVKUN, A30A', Stop mutant 

and SCMU viruses at MOI=1 (and MOI=0.1 for C6/36 cells), and virus titres in the culture fluid 

determined every 12h (24h for C6/36) for up to 120 hpi. The results showed that truncation of NS1' 

(Stop Mutant) did not affect virus replication in any of the cell lines (Figure 6.5) suggesting that 

full-length NS1' is not required for efficient virus growth. Mutation of NS1' in SCMU had no effect 

on virus growth in BHK, Vero76 or MEF cells, however, resulted in a slight increase in virus 

growth in C6/36 cells at later time points post infection (Figure 6.5). This increase in replication 

was seen for C6/36 cells infected at both MOI=1 and 0.1. In addition, a slight attenuation of A30A' 

viral growth was observed in C6/36 cells infected at MOI=0.1 at later time points. 
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Figure 6.3 Production of NS1 and NS1' in infected cells. Western blots showing expression of NS1 and 

NS1' in wild-type (WT), A30A', Stop Mutant or SCMU FLSDX infected A. Vero76, B. BHK, C. Mouse 
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embryonic fibroblast (MEFs), or D. C6/36 cells. Lysates were heat denatured or left untreated, and analysed 

by Western blotting with anti-NS1 (4G4) or NS1'-specific antibodies (FS-ab). 

 

!

Figure 6.4 Localization of NS1' and NS1 in WNVKUN, A30A', Stop Mutant or SCMU infected cells. 

Immunofluorescence analysis showing co-localization of virally expressed NS1 and NS1' with the ER. 

Infected cells were stained with anti-calnexin and anti-NS1 (4G4). 
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Figure 6.5 Growth kinetics of WNVKUN, A30A', Stop Mutant and SCMU in A. BHK, B. Vero76, C. 

C6/36 or D. MEF cells. Cells were infected at MOI=1 (or 0.1 for C6/36 cells) and viral titers were  

determined up to 120 hpi by plaque assay. Results are expressed as the mean ± SEM of two independent 

experiments and significance (* [P < 0.01] or ** [P < 0.005]) determined by 2-way ANOVA. 
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Previous work carried out by our group indicated that abolishing the PRF affects the ratio of 

structural to non-structural proteins (389). Using the same experimental design, the structural to 

non-structural protein ratio of Stop Mutant and SCMU was examined. Vero76 cells were infected 

with WNVKUN or mutant viruses and at 24 and 48hpi, pulse-chase 35S-labelling was carried out in 

the presence of brefeldin A (BFA). BFA (at 5 mg/mL) was added to the cells during the 2 hours of 

labelling and 4 h chase to inhibit secretion of structural proteins, which could bias the ratio of 

structural to non-structural proteins. SDS-PAGE of culture fluid harvested from BFA treated or 

non-treated infected cells during pulse-chase analysis confirmed that the BFA treatment inhibited 

protein secretion (Appendix 9.2). Radiolabelled cell lysates were immunoprecipitated with anti-

NS5 or anti-E antibodies and eluted proteins visualised by exposure to X-ray film following 

separation on SDS-PAGE gels (Figure 6.6A). The majority of E and NS5 produced by infected cells 

was immunoprecipitated, as shown by detection of only low levels of protein following a repeat 

pull-down on the unbound fraction (Appendix 9.3). Quantitation of individual protein bands was 

carried out and the structural to non-structural protein ratio determined for each virus (Figure 6.6B). 

At 24hpi there was no difference in the structural to non-structural protein ratio seen between wild-

type and mutant viruses. However, by 48hpi, both Stop Mutant and SCMU showed a significant 

increase in the ratio of structural to non-structural proteins over wild-type WNVKUN. These results 

suggest that the mutations introduced into SCMU and Stop Mutant increase frameshifting 

efficiency of the viruses. Interestingly, no significant difference between the ratio of structural to 

non-structural proteins of WNVKUN and A30A' was seen.  

Due to the increased hydrophobicity of the SCMU NS1' relative to wild-type NS1', the 

secretion pattern of NS1' was tested for both mutant viruses. Results shown in chapter 5 (Figure 5.7 

and 5.8) confirmed that WNVKUN NS1', like JEV NS1' (387), has an increased cellular retention 

compared to NS1. As the mutations introduced into SCMU increased the hydrophobicity of NS1', it 

was hypothesized that SCMU NS1' may have an increased cellular retention over that of wild-type 

WNVKUN NS1'. Pulse-chase analysis of infected cells showed that NS1 and NS1' were both secreted 

from Stop Mutant and SCMU infected cells (Figure 6.7A). Quantification of individual protein 

bands showed while the level of intracellular NS1' was similar for all viruses (with the exception of 

A30A', which does not produce NS1'), the secretion of both Stop Mutant and SCMU NS1' was 

increased compared to WNVKUN.  
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Figure 6.6 Infection with Stop Mutant and SCMU result in increased ribosomal frameshifting 

efficiency at 48hpi. A. Pulse-chase was performed at 24 and 48hpi and cell monolayers were lysed with 

RIPA buffer as described in chapter 2 of this thesis. Protein preparations were immunoprecipitated with anti-

NS5 (5H1) or anti-E (3.91D) using Dynabeads® Protein G. Antibody-bound proteins were eluted and 

samples subjected to electrophoresis. Labelled proteins were transferred to nitrocellulose membranes and 

exposed to X-ray film. B. NS5 and E protein band intensities were determined and ratio of E/NS5 was 

calculated for wild-type (WT; black bar), A30A' (medium grey bar), Stop Mutant (dark grey bar) and SCMU 

(light grey bar) WNVKUN at 24 or 48 hpi. Ratios were normalised to WT WNVKUN. Results are expressed as 

the mean ± SEM of two independent experiments and significance (* [P < 0.01] or ** [P < 0.005]) 

determined by 2-way ANOVA. 
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Figure 6.7 NS1' protein secretion by Stop Mutant and SCMU is increased compared to that of the WT 

WNVKUN NS1'. A. Pulse (90 min)-chase (0, 4 or 12 h as indicated) was performed at 24 and 48hpi, culture 

fluids were clarified by centrifugation and cell monolayers were lysed as described in chapter 2 of this thesis. 

Protein preparations were immunoprecipitated with anti-NS1 (4G4) using Dynabeads® Protein G. Antibody-

bound proteins were eluted and samples subjected to electrophoresis. Labelled proteins were transferred to 

nitrocellulose membranes and exposed to X-ray film. B. Quantification of intracellular (left-hand graph) or 

secreted (right-hand graph) NS1' band intensity from WNVKUN (dark grey bar), A30A' (white bar), Stop 

Mutant (medium grey bar) or SCMU (light grey bar) infected cells at 48 hpi. Results are expressed as the 

mean ± SEM of two independent experiments and significance (P < 0.01) determined by 2-way ANOVA. 
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6.2.3 Virulence of Stop Mutant and SCMU in mice 

It was shown previously that A30A' virus, lacking both the PRF and NS1', is attenuated in 

weanling mice compared to WNVKUN (1). The attenuation of A30A' may be due to the absence of 

NS1' itself, the elimination of the ribosomal frameshift, or a combination of both. In contrast to 

A30A', the Stop and SCMU mutations prevent production of wild-type NS1', without affecting the 

ribosomal frameshift. To determine whether lack of wild-type NS1' production alone affects virus 

neuroinvasiveness, groups of ten 18 day-old mice were infected intraperitoneally with 100 or 1000 

pfu of either WNVKUN, A30A', Stop Mutant or SCMU and monitored daily for signs of 

encephalitis. These results showed that the virulence of Stop Mutant  was not significantly different 

to that of wild-type WNVKUN in mice infected with either 100 or 1000 pfu (~30% and ~40% 

survival for Stop Mutant compared to ~50% and ~20% survival for the wild type WNVKUN, 

respectively) (Figure 6.8). Interestingly, A30A' in this particular experiment showed a slightly 

increased virulence at 1000 pfu to what has been seen previously (only 45% survival for A30A' 

compared to 60% survival seen previously) (1). As there was no significant difference between Stop 

Mutant and wild-type WNVKUN, this suggests that a lack of full length NS1' does not affect 

neurovirulence. Although SCMU showed a similar mortality to WNVKUN at 100 pfu (Figure 6.8A), 

it was surprisingly more pathogenic at 1000 pfu, showing 100% mortality as early as 8 days post 

infection (Figure 6.8B; WNVKUN verses SCMU P = 0.001 as determined by Logrank test).  
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Figure 6.8 Virulence of WNVKUN, A30A', Stop Mutant and SCMU in weanling mice. Groups of ten to 

twenty 18-day old weanling Swiss-outbred CD1 mice were infected intraperitoneally with A. 100 pfu (10 

mice per group) or B. 1000 pfu (wild-type (WT) WNVKUN and Stop Mutant, 30 mice per group total; A30A' 

and SCMU, 10 mice per group) and monitored daily for signs of encephalitis. WT WNVKUN vs SCMU at 

1000 pfu statistically significant (P = 0.001) as determined by Logrank test. 
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6.2.4 SCMU Predicted miRNA 

Although subtle differences between SCMU and wild-type WNVKUN (other than virulence 

phenotypes) have been identified, such as an increase in NS1' protein secretion and an increase in 

the ratio of structural to non-structural proteins, these are unlikely to be involved in the increase in 

virulence seen. Similar increases in frameshift efficiency and NS1' secretion was also seen for Stop 

Mutant, which shows no difference in pathogenicity compared to wild type WNVKUN. This 

suggested that another factor may be involved in increased SCMU virulence. Analysis of the 

mutated region of RNA identified a potential hairpin structure present in SCMU but not wild-type 

WNVKUN or Stop Mutant, suggesting the possibility of an introduced pre-micro-RNA that can be 

processed into micro RNA (miRNA; Figure 6.9A). A WNVKUN encoded miRNA, KUN-miR-1, has 

been shown previously to impact on virus replication in insect cells (442). Interestingly, the role of 

KUN-miR-1 was shown to impact viral RNA replication specifically in insect cells, which would 

correlate with the increase in replication of SCMU in C6/36 cells (Figure 6.5) if SCMU has indeed 

produceda novel miRNA. To determine whether SCMU produces a novel miRNA, Vero76, C6/36 

or MEF cells were infected with wild-type WNVKUN or SCMU and enriched small RNAs were 

subjected to northern blotting with probes designed against the 5' or 3' stem of the predicted hairpin 

(probe 1 and 2 respectively; Figure 6.9A). Unfortunately, there was no RNA band coinciding with 

the expected size of a miRNA (20-25 nucleotides) seen for any of the cell types analyzed while 

larger bands that are likely to be RNA degradation products were detected (Figure 6.9B). These 

results show that while the pre-miRNA-like stem-loop structure encoded as the result of introduced 

mutations in SCMU was predicted, it does not result in production of a small RNA of the size 

expected for miRNA. 
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Figure 6.9 Predication and experimental analysis of potential miRNA encoded by SCMU. A. 

Nucleotide sequence and secondary structure of the predicted SCMU hairpin. Locations of probes used for 

analysis of miRNA production are shown. B. Northern blot of small RNAs harvested from wild-type (WT) 

WNVKUN, SCMU or mock infected C6/36, Vero76 or MEF cells using miRNA probe 1 and 2, as shown in 

part A. 
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6.3 Discussion 

The Stop Mutant and SCMU were designed specifically to separate the function of wild-

type NS1' from that of the ribosomal frameshift itself. Stop Mutant contains a single nucleotide 

substitution that introduces a premature stop codon in NS1', which generates a 20 amino acid C-

terminally truncated version of NS1'. SCMU on the other hand, introduces 19 point mutations that 

affect the sequence of 19 from the last 20 amino acids of NS1', but does not change NS2A amino 

acid sequence. 

Due to the intricate relationship between the ribosomal frameshift and the production of 

NS1', it is difficult to determine whether attenuation of NS1'-lacking viruses is a result of the loss of 

the NS1' protein, or the frameshift itself (1, 390). It is possible that the frameshift evolved to control 

the ratio of structural to non-structural proteins (389), and that NS1' is merely its byproduct. 

However, it is unlikely to be a non-functioning byproduct, as NS1' has been shown to be functional 

in RNA replication (chapter 3, Figure 3.7 and 3.8; (375)). Another hypothesis is that NS1' may 

behave in infection as additional NS1. The frameshift event is hypothesized to have evolved for the 

control of structural to non-structural protein ratio (389), with NS1' being produced mainly to 

increase the relative level of functioning NS1.  

The key finding from the work presented throughout this chapter is that truncation of NS1' 

did not detrimentally affect virus growth in mammalian and insect cell culture (Figure 6.5), or affect 

WNVKUN pathogenicity in mice (Figure 6.8). These results strongly support the theory that full-

length NS1' may not have a biological function that contributes to viral pathogenesis in a 

mammalian system. Furthermore, the finding that mutation of NS1' (in SCMU) actually resulted in 

a significant improvement in virus growth in mosquito cells and increased virulence in mice, 

strengthens the conclusion that wild-type NS1' does not perform a critical function in viral 

infection.  

One key characteristic identified here is that the decreased secretion of NS1' compared to 

that of NS1 identified in chapter 5 (Figure 5.7 and 5.8) of this thesis can be linked to the last 20 

amino acids of NS1' as shown by the secretion of the truncated Stop Mutant NS1' and mutated 

SCMU NS1' (Figure 6.7). This data suggests that the increase in secretion of NS1' in cells infected 

with Stop Mutant or SCMU is likely due to the loss of a potential cell retention signal in the final 20 

amino acids of NS1'. Interestingly, the sequence of the frameshifted region is not well conserved 

between flaviviruses, with only five amino acids in the last 20 conserved between WNVKUN, 
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WNVNY99, JEV and MVEV (Figure 5.9); however JEV has been shown previously to also have 

poor NS1' secretion (387). As an increase in NS1' secretion is a feature of both Stop Mutant and 

SCMU, which either truncate or mutate NS1', respectively (Figure 6.7), it is unlikely that this 

characteristic is dependent solely on the length of the C-terminal extension, supporting the 

hypothesis of a loss of a cell retention signal. However, although the increase in secretion seen for 

SCMU was noticeable, it was not significant (determined by 2-way ANOVA), and further repeats 

of this experiment will confirm whether the mutations introduced to NS1' cause a significant 

increase in protein secretion. In addition, while Stop Mutant increases NS1' secretion, the 

pathogenesis in mice is similar to that of wild-type WNVKUN. This suggests that the inefficient 

secretion identified in chapter 5 of this thesis, while an intriguing characteristic of NS1' that is 

distinct from NS1, is unlikely to contribute to virulence in the mammalian system.  

 As Stop Mutant and SCMU were originally designed to affect wild-type WNVKUN NS1' 

production but not the ribosomal frameshift, the frameshifting efficiency of the viruses was 

investigated. This was done by examining the ratio of structural to non-structural proteins, as has 

recently been published for the wild-type WNVKUN and A30A' mutant. This recent publication 

showed that a lack of the ribosomal frameshift (in A30A') results in a decreased ratio of structural 

to non-structural proteins (389). As the mutations introduced into Stop Mutant and SCMU should 

not affect the formation of the frameshift itself, it was expected that neither mutations would have 

an impact on the structural to non-structural protein ratio. The data presented here indicates that 

both Stop Mutant and SCMU actually resulted in an increased ratio at 48 hpi (Figure 6.6). Due to 

the introduction of a novel stem-loop structure into the SCMU virion RNA (Figure 6.9A), it is 

tempting to speculate that the increased base pairing at the frameshift site further increases the 

frameshifting frequency. However, Stop Mutant also results in an increase in frameshifting 

frequency, and does not have this additional stem-loop structure. Given that Stop Mutant does not 

affect virulence and SCMU has an increased virulence in mice, this result is in clear contrast to the 

recent results with A30A' mutant, which suggested that a decrease in this ratio may be linked to 

attenuation (389).These results suggest that the ratio of structural to non-structural proteins is 

unlikely to impact pathogenicity.  

Interestingly, the work carried out for this chapter is not consistent with the recent results 

showing reduction in the structural to non-structural protein ratio for A30A' compared to that of 

wild-type WNVKUN (389). The results shown here indicate that in fact, the mutation of the 

pseudoknot and elimination of the frameshift in A30A' does not appear to impact on the ratio of 

structural to non-structural proteins, as there was no difference seen between wild-type WNVKUN 
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and A30A' (Figure 6.6). The inconsistency seen here may be due to subtle differences between the 

experiments. Previous experiments utilized BHK cells, whereas the experiments conducted in this 

chapter used Vero76 cells to maintain consistency with additional characterization experiments. In 

addition, the previous work was carried out by immunoprecipitating lysate using a cocktail of anti-E 

and anti-NS5 antibodies. In the design of experiments for this thesis, it was thought that carrying 

out separate pull downs would be preferable, as this would ensure maximum protein binding. This 

was shown to be true through the repeat immunoprecipitation on the unbound fraction during the 

Dynabeads® pull down (Appendix 9.3). This confirmed that the SDS-PAGE gels run for 

quantification (Figure 6.6) were an accurate representation of the majority of E and NS5 protein 

present in the samples. No such control was included in previous experiments, and therefore the 

decrease in protein ratio seen for A30A' may have simply been an incomplete detection of all of the 

E and NS5 produced.  

Western blotting with anti-NS1 antibodies (4G4) of lysates from cells infected with 

WNVKUN or mutant viruses suggested that the production of NS1' is lower for wild-type WNVKUN 

than for Stop Mutant and SCMU (Figure 6.3). However, detection with NS1'-specific antibodies 

(FS-ab) did not show such a significant decrease in protein expression between the wild-type and 

mutant viruses. It is possible that the reduction in 4G4 signal seen for wild-type WNVKUN is solely 

due to an issue with antibody binding that was not apparent with FS-ab. Based on the data showing 

an increase in frameshifting efficiency for Stop Mutant and SCMU (Figure 6.6), it is also possible 

that there is indeed an increase in the production of NS1', however, the pulse-chase data showing 

the level of protein in viral lysates (Figure 6.7) does not support this.  

The reason for the increased virulence of the SCMU mutant over that of wild-type WNVKUN 

has yet to be uncovered. It is unlikely to be due to the increase in NS1' secretion, or the increase in 

the ratio of structural to non-structural proteins identified, as Stop Mutant also displayed these 

characteristics and has a no effect on virulence in mice. While further work to investigate the nature 

of the increased virulence of SCMU is appealing, it must be kept in mind that the mutations 

introduced into the virus were not specifically selected for pathogenesis, as there were limited 

possibilities for these mutations without affecting the sequence of NS2A. These arbitrary mutations 

may therefore have had an unforeseen effect that may have little to do with the properties and 

functions of NS1' itself. Instead, they may have simply resulted in a misfolded protein that triggered 

an unexpected response in vivo, leading to increased pathogenicity. Future work may introduce one 

or more mutations from SCMU at a time, in an effort to isolate the sequence contributing to 

pathogenesis, though this is unlikely to further the understanding of the NS1' protein. On the other 
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hand, it should be noted that gain-of-virulence phenotypes of viruses generated by targeted 

mutagenesis (without the use of known virulence determinants) are rare. Further work on the 

SCMU virus may therefore assist in determining the influence of natural selection on the mutability 

of this region.   

The goal of the experiments outlined in this chapter were to design and characterize new 

mutant viruses to separate the function of wild-type NS1' from that of the PRF. SCMU, which 

introduces 19 amino acid changes into the C-terminal 20 amino acids of NS1' is not an ideal 

candidate, as this virus displayed characteristics unlikely to be due to the function of the NS1' 

protein. In spite of the slight difference in frameshifting efficiency seen between WNVKUN and Stop 

Mutant, this mutant virus (which introduced a premature stop codon into NS1') is a promising 

candidate to further examine the function of full-length NS1' in viral replication.   
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7 Conclusions and Future directions 

This thesis has identified new characteristics of the WNV NS1' protein, determined NS1 and 

NS1' binding partners, uncovered a role for NS1' in flaviviral replication, and has developed new 

resources for future studies on NS1'.  

7.1 NS1' synthesis and trafficking 

In combination with previously published studies, the work conducted for this thesis has 

determined that NS1' functions like NS1, with some differences in dimerisation and secretion. NS1', 

like NS1, predominantly resides within the lumen of the ER (Figure 3.3 and 3.4). Following initial 

translation, NS1' is glycosylated at the same number of sites as NS1 (as determined for JEV NS1') 

(387, 332). Similar to NS1, NS1' forms a dimer, though WNV NS1' has been shown in this thesis to 

form a heat-stable dimer distinct from the NS1 heat-labile dimer (chapter 5). Following 

dimerisation, NS1' is trafficked to the same locations in the cell as NS1: the site of RNA replication, 

the cell surface, and the extracellular fluid. NS1' was shown to co-localise with dsRNA in infected 

cells and function in RNA replication (chapter 3). NS1' was detected on the cell surface following 

plasmid transfection of 293T cells (Figure 3.3D), and is likely to also be expressed on the surface of 

WNV infected cells, though further confirmation of this is necessary. NS1' was determined to be 

secreted from both infected and plasmid-transfected cells, albeit to a lower degree than NS1 (Figure 

5.7 and 5.8). This is in agreement with previous work examining the secretion of NS1' from JEV 

infected cells (332). Whether this extracellular form of NS1' is hexameric (like NS1) is yet to be 

determined.  

Results shown in chapter 4 indicates that both NS1 and NS1' interact with the molecular 

chaperone protein BiP, likely within the lumen of the ER. BiP has been implicated previously in the 

folding of viral proteins, particularly viral glycoproteins (411-418). In plasmid transfected cells, BiP 

was only co-purified with NS1' and not NS1 (Table 4.2), suggesting that the interaction of BiP with 

NS1' is either stronger or more frequent than the interaction between BiP and NS1. This could 

indicate that NS1' is seen as misfolded or requires more assistance with folding than NS1. BiP was 

also immunoprecipitated more frequently from wild-type WNVKUN infected lysate than A30A' 

infected lysate (7/7 vs 3/7 times, respectively; Table 4.1), supporting the theory that BiP has an 

increased interaction with NS1' over NS1. It is also possible that the unfolded protein response 

(UPR) is upregulated in wild-type WNVKUN infected cells compared to A30A' infected cells, 

leading to increased expression of BiP during WNVKUN infection. This could lead to the increased 
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interaction with NS1/NS1' that was observed. However, confirmation of this theory would require 

an analysis of the UPR in wild-type WNVKUN and A30A' infected cells.  

The suggestion that NS1' may have an increased interaction with BiP due to difficulties in 

protein folding supports the hypothesis that the sub-population of heat-stable dimers is due to 

misfolded intermediates with alternate disulfide bonds. It is also consistent with the reduction in 

NS1' secretion compared to NS1, suggesting that NS1' may be retained within the ER where it 

interacts with BiP. The C-terminal frameshifted region of NS1' would be located at the ends of the 

β-ladder of the NS1 dimer (see Figure 1.7 for NS1 crystal structure), and in close proximity to three 

disulfide bonds. While the crystal structure of NS1' has not been solved, it would be intriguing to 

determine whether it is consistent with the structure of NS1, or whether the C-terminal extension 

disrupts folding of the remainder of the protein. It would be particularly interesting to determine 

whether NS1' has a consistent structure, or whether the structure is in fact variable. This would shed 

light on whether the heat-stable dimers are formed due to misfolded intermediates that disrupts the 

disulfide bonds within NS1.  

The pulse-chase experiments examining NS1' protein secretion indicates that the small 

amount of NS1' that is secreted has the same secretion kinetics as NS1 (Figure 5.7 and 5.8). This 

suggests that at least a proportion of the NS1' protein is folded, dimerised and trafficked through the 

secretory pathway at the same rate as NS1. In addition, NS1' is secreted when transfected on its 

own (Figure 5.8), and is therefore unlikely to only be secreted due to heterodimer formation with 

NS1. A proportion of this secreted NS1' is also present in its heat-stable dimer form, indicating that 

this form is unlikely to be a folding intermediate as misfolded protein would most likely be retained 

in the cell. However, only a small amount of NS1' is secreted from the cell, and it is therefore 

difficult to conclusively determine the dimer stability.  

Previous work by other groups has suggested the possibility for unique functions for NS1'. 

JEV NS1' has been identified as a substrate for caspase cleavage, with the hypothesized cleavage 

site being highly conserved between NS1' from different flaviviral species (386). However, in spite 

of this conservation, the cleaved NS1' product was not observed by SDS-PAGE analysis of 

WNVKUN infected or pcDNA-NS1' plasmid transfected cell lysates in our experiments. While this 

was not confirmed by an extensive analysis, it does suggests that caspase cleavage may be unique to 

JEV NS1'.  
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NS1' and/or the ribosomal frameshift has previously been implicated in assembly of viral 

particles (391). During the development of a chimeric DENV vaccine expressing DENV prM/E 

genes in a WNV backbone, a mutation that eliminated the ribosomal frameshift (thereby abolishing 

NS1' production) was determined to enhance virion packaging (392, 391). However, this mutation 

had no effect on genome replication, highlighting a possible link between NS1' and the structural 

proteins. This was not the case when this mutation was introduced to a non-chimeric WNV vaccine, 

suggesting that production of NS1' and/or the ribosomal frameshift somehow inhibits assembly of 

virus particles only in association with DENV structural proteins. Both NS1 and NS1' have been 

suggested to form a complex with E (382), and it is possible that an interaction of NS1' with DENV 

E, given that DENV does not naturally produce NS1', negatively impacts formation of the envelope. 

However, it is unlikely that NS1' assists in virion assembly during natural WNV infection, as the 

presence of NS1' has no effect on virion production or viral replication when expressed in 

association with WNV prM/E genes (1, 391). It is also possible that since the acquired mutation 

affects the formation of the frameshift, it may affect the ratio of structural to non-structural proteins. 

Abolishing the frameshift may therefore increase the relative expression of another non-structural 

protein that may be involved in enhancing assembly, rather than NS1' inhibiting assembly. 

7.2 Function of NS1' in RNA replication 

One of the key findings from the work presented in this thesis is the identification of a role 

of NS1' in flaviviral replication. Our trans-complementation studies determined that NS1' can 

substitute for NS1 in viral replication, and shows no difference in the efficiency of 

complementation compared to NS1 (Figure 3.7 and 3.8). This work alone suggests only that the C-

terminal tail of NS1' does not interfere with NS1' functioning in replication in the absence of NS1. 

A role for NS1' in natural viral replication was supported by immunofluorescence data showing co-

localisation of NS1' with dsRNA in infected cells (Figure 3.5), suggesting that NS1' was present at 

the site of viral RNA replication during WNVKUN infection. This was further confirmed by the 

results showing a direct interaction of NS1' with components of the viral replication complex 

(specifically NS4B and NS3; Table 4.3). Taken together, the data presented throughout this thesis 

suggests that NS1' is indeed functioning in viral replication during WNVKUN infection. 

This function is not critical for viral replication, as a lack of NS1' has been shown 

previously (and been confirmed here; Figure 6.5) to not affect viral growth in several different cell 

types (1). It is more likely that NS1' simply functions in replication as additional NS1. When NS1' 

is not expressed (such as in the A30A' mutant), the level of NS1 produced is sufficient to maintain 
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viral replication. This data also has implications for the folding of NS1', as it suggests that the C-

terminal tail is unlikely to significantly impact on the folding of the NS1 portion of the protein.  

7.3 NS1' and PRF 

Ribosomal frameshifting is a strategy used by RNA viruses to minimise the size of their 

genome (443, 444). This mechanism has been identified in several medically relevant viruses, such 

as HIV-1 and SARS-CoV (445, 446). A -1 PRF has also been identified to occur in alphaviruses, 

such as Sindbis virus and Chikungunya virus. Similar to the initial identification of the pseudoknot 

in the JEV serogroup, the presence of a predicted -1 PRF was identified to occur in the 6K 

structural protein in alphaviruses (447). This frameshift was predicted to produce an extension of 

the 6K protein, resulting in an 8 kDa protein termed TransFrame (TF). TF was identified in both 

Sindbis and Chikungunya virus infected cells, and further analysis determined that a lack of this 

frameshifted protein correlated with reduced pathogenicity and a reduction in virion particle release 

(448). 

Unlike the alphavirus TF protein, the data shown throughout this thesis supports the theory 

that NS1' does not have a unique function in viral infection in a mammalian system. The actual 

frameshifted region of the NS1' protein is poorly conserved between different species (~40% 

conservation between WNV, JEV and MVEV NS1'), however, the stop codon (and therefore 

protein length) is very well conserved. This suggests that the NS1' protein is only produced as a 

byproduct of the ribosomal frameshift, and the conserved length of the protein ensured that NS1' 

could function as NS1. However, even viruses lacking both the PRF and NS1' have only a subtle 

effect on pathogenesis in the mammalian system, while perhaps having more profound effect in 

mosquitoes and birds (389). It is highly unlikely that such a conserved mechanism as -1 PRF 

producing a stable protein has evolved in a distinct group of viruses without a significant impact on 

viral growth/transmission properties in at least one of the vector or host systems. As these viruses 

predominantly cycle through the Culex mosquito and avian system, it is more likely that this is 

where the PRF and NS1' initially evolved, and therefore where it is likely to have a significant 

impact on pathogenesis.  

7.4 Future directions for NS1' 

As NS1' is produced as the result of PRF only by members of the JEV serogroup 

(encephalitic flaviviruses), it leads to the question whether this novel protein may have an effect on 
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the neurovirulence of the virus. Mosquito-borne flaviviruses causing systemic disease, and therefore 

outside of the JEV serogroup, do not express NS1'. The initial work conducted in our laboratory and 

others, identified a difference in neurovirulence in mice between PRF/NS1'-producing and 

PRF/NS1'-lacking viruses (1, 390), supporting this hypothesis. Work conducted for this thesis 

determined that full-length NS1' was not required for neurovirulence in mice. This suggests that it 

may be the PRF itself rather than its by-product NS1' that is important for neurovirulence in 

mammalian hosts. Further work in characterising the role of the PRF in WNV pathogenesis in the 

mammalian system is required.   

The JEV serogroup is also distinguished by its vector/host relationship. Viruses within the 

JEV serogroup are predominantly transmitted by Culex mosquitoes and infect avian hosts, while 

mosquito-borne flaviviruses outside of this serogroup are transmitted by Aedes mosquitoes and 

infect mammalian hosts. Rather than a link between NS1' and the development on encephalitic 

disease, there may instead be a link between the Culex/avian relationship. Recent work conducted 

in the mosquito and avian systems supports this theory, with a difference in pathogenicity in house 

sparrows and transmission in Culex mosquitoes observed between viruses encoding PRF and 

expressing NS1' and those lacking PRF/NS1' (389).  

In addition, work conducted in chicken embryonic fibroblasts (DF-1 cells) and embryonated 

chicken eggs identified a role for JEV PRF/NS1' in facilitating virus production in avian cells by 

increasing viral RNA levels (396). This is in contrast to previous work which has shown that viral 

growth in mammalian is not different between viruses lacking PRF/NS1' and those encoding PRF 

and expressing NS1' (1, 390). This suggests that PRF/NS1' may behave in a species-specific manner 

to assist in viral replication. Work in our laboratory conducted in DF-1 cells with WNVKUN failed to 

identify any differences between PRF/ NS1'-producing and PRF/NS1'-lacking viruses, suggesting 

that the effect of PRF/NS1' on replication may be specific to JEV (389). Further studies comparing 

replication of NS1'-truncated Stop Mutant generated in this thesis and previously generated 

PRF/NS1'-lacking WNV viruses (such as A30A') in avian cell culture will establish whether the 

function of NS1' in viral replication in avian cells is conserved between NS1' from different 

flaviviral species and whether NS1' role in replication is dependent on full-length NS1' protein. 

In addition to already conducted analysis in DF-1 cells performed at 37 degrees (389), 

examining the effect of the absence or truncation of NS1' in avian cells incubated at a higher 

temperature may shed light on the importance of the heat-stable NS1' dimers. The average body 

temperature of avian species is closer to 40°C, and can increase to 44°C at times of high activity 
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(449). While this seems only a subtle difference in temperature compared to the 37°C 

predominantly used for cull culture, some disruption in dimer stability is already observed at 37°C 

(Figure 5.4). Prolonged exposure to slightly higher body temperatures may therefore result in 

improved potential function of the more stable NS1' dimer.  

As a role was identified for NS1' in functioning as additional NS1 protein in viral RNA 

replication, it would be intriguing to determine whether NS1' is also involved in other NS1 

functions. One key function of NS1 is in the inhibition of the complement system (379, 380, 362, 

371). However, this function is carried out predominantly by secreted NS1, and due to low levels of 

NS1' secreted from infected cell, it is unlikely that NS1' is also involved in complement inhibition. 

Similarly, while a role for secreted NS1 in TLR3 signaling inhibition has been identified (113, 114), 

low level NS1' secretion suggests that NS1' is not likely to be involved in TLR3 inhibition either. 

The work conducted for this thesis has expanded the knowledge of the WNV NS1' protein, 

identifying and confirming its function as additional NS1 protein in viral RNA replication. As NS1' 

is inefficiently secreted compared to NS1, its primary function as additional NS1 is likely to reside 

intracellularly where viral RNA replication occurs. It is also likely that NS1' is simply a non-

functional by-product of the -1 PRF, and that the frameshift itself rather than NS1' is important for 

viral infection. The work shown here examining the truncated NS1' produced by the Stop Mutant 

virus supports this hypothesis (chapter 6), as truncation of NS1' did not have a significant impact on 

WNVKUN virulence in mammalian hosts (mice). Future work on examining the requirement of NS1' 

for viral replication in the mosquito and avian hosts will identify whether NS1' protein has a 

function in this vector-host system.   
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9 Appendices  

9.1 Primer sequences for mutagenesis 

Table 9.1 Primer sequences for mutagenesis 

Primer name Sequence 

NS1' del10 F GCGCTGCTAGTCCGCGGGAACAAAA 

NS1' del10 R TGTTCCCGCGGACTAGCAGGGCAAT 

NS1' del20 F GGTGGACAGCCAAGATCCGCGGGAACAAAAACTCATCTCAGAAGAGG 

NS1' del20 R GTTTTTGTTCCCGCGGATCTTGGCTGTCCACCTCTTGCGAAGGACC 

NS1' Ala F GTGGACAGCCAAGATGCGGCTGCCGCCGCTGCTGCTGCCGCTGCTAGTTC

TAGTGTTTGG 

NS1' Ala R CCAAACACTAGAACTAGCAGCGGCAGCAGCAGCGGCGGCAGCCGCATCT

TGGCTGTCCAC 

NS1' Cys Mut F GCATGCCAGCCATACTGATACCCT 

NS1' Cys Mut R CACTAGAACTAGCAGGGGTATCAGT 

Stop Mut F AGCCAAGATTAGCATGCCAGCCATACTGAT 

Stop Mut R GCTGGCATGCTAATCTTGGCTGTCCACCTC 

SCMU F GTGGACAGCCAAGATAAGTATGCCGGCTATCCTTATCGCGCTCCTGGTGC

TGGTTTTCGGTGGGATTACGTATACTGATGTGTTACGCTATGTCATTCT 

SCMU R TAGCGTAACACATCAGTATACGTAATCCCACCGAAAACCAGCACCAGGA

GCGCGATAAGGATAGCCGGCATACTTATCTTGGCTGTCCACCTCTTGCGA 
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9.2 Cloning strategies  

 

 

!

 

 

 

 

 

Figure 9.1 Cloning strategy for the generation of pKUNdNS1. pKUN1gE (2) and FLdNS1 (5) were 

digested with SacII and SalI and indicated fragments were ligated with T4 DNA ligase (New England 

Biolabs).  
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9.3 Western on CF from BFA treated cells 

!

9.4 Repeat E and NS5 IP 

!

Figure 9.3 Repeat immunoprecipitation of pulse-chase samples to confirm successful first round 

precipitation. Pulse-chase was performed at 24 and 48hpi and cell monolayers were lysed with RIPA buffer. 

Protein preparations were immunoprecipitated with anti-NS5 (5H1) or anti-E (3.91D) using Dynabeads® 

Protein G. Following immunoprecipitation, the unbound fraction was subjected to a repeat of the Protein G 

Dynabeads® pull-down. Antibody-bound proteins were eluted and samples subjected to electrophoresis. 

Labelled proteins were transferred to nitrocellulose membranes and exposed to X-ray film. 

!

 

Figure 9.2 Effectiveness of BFA treatment during pulse-chase. Pulse-chase was performed at 24 and 

48hpi in the presence or absence of BFA, and culture fluids harvested and clarified by centrifugation. 

Labelled proteins present in culture medium were subjected to SDS-PAGE, transferred to nitrocellulose 

membranes and exposed to X-ray film. 
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9.5 Papers published during candidature 

Young L, Melian E, Khromykh A. 2013. NS1′ colocalizes with NS1 and can substitute for 

NS1 in West Nile virus replication. J. Virol.!87:9384–90.  

Young L, Melian E, Setoh YX, Young P, Khromykh A. 2014. Last twenty amino acids of 

the West Nile Virus NS1' protein are responsible its retention in cells and formation of unique heat 

stable NS1' homodimers. Submitted to J. Virol. 

 

 



NS1= Colocalizes with NS1 and Can Substitute for NS1 in West Nile
Virus Replication

Lucy B. Young, Ezequiel Balmori Melian, Alexander A. Khromykh
Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia

NS1= is a C-terminally extended form of the NS1 protein produced only by encephalitic flaviviruses from the Japanese encephalitis vi-
rus serogroup. Here we show that West Nile virus (WNV) NS1= and NS1 localize to the same cellular compartments when ex-
pressed from plasmid DNAs and also colocalize to viral RNA replication sites in infected cells. Using complementation
analysis with NS1-deleted WNV cDNA, we demonstrated that NS1= is able to substitute for the crucial function of NS1 in
virus replication.

West Nile virus (WNV) is a mosquito-borne flavivirus within
the Japanese encephalitis virus (JEV) serogroup. This sero-

group also includes other encephalitic flaviviruses, such as JEV,
Murray Valley encephalitis virus, and St. Louis encephalitis virus
(1). The natural transmission cycle of WNV is between birds and
mosquitoes, primarily the Culex species; however, it can cause
incidental infections in humans. Since the outbreak of the more
pathogenic WNVNY99 strain in New York in 1999 (2), WNV has
emerged as a major cause of arboviral encephalitis in the United
States (3). WNV strains can be divided into two distinct lineages,
lineage 1 and lineage 2. Lineage 1 includes both WNVNY99 and
Kunjin (WNVKUN) (4), the prevalent strain within Australia (5).
Despite high sequence similarity to the WNVNY99 strain (!98%
on the amino acid level) (6), most WNVKUN strains are highly
attenuated, with only a small number of human infections and
no fatalities reported (5, 7). Since its isolation in early 1960s,
WNVKUN has been used extensively as a model for WNV infection
(8, 9).

The WNVKUN genome is a single-stranded positive-sense RNA
of 11,022 nucleotides (10–12). After translation as a single poly-
protein, it is cleaved by host and viral proteases to produce 3
structural (C, prM, and E) and 7 nonstructural (NS1, NS2A,
NS2B, NS3, NS4A, NS4B, and NS5) proteins (11, 12). NS1 is a
multifunctional glycoprotein that is involved in viral replication
(13–16) and modulation of the immune response (17–22). The
key role NS1 plays in RNA replication has been shown previously,
with mutations or deletions in the NS1 gene resulting in a lack of
detectable RNA replication. This function can be complemented
in trans by the expression of NS1 (14, 15).

An additional nonstructural protein, NS1=, is produced exclu-
sively by the members of the JEV serogroup due to the presence of
a "1 programmed ribosomal frameshift at the beginning of the
adjacent NS2A gene (23–25). This frameshift, occurring in 30 to
50% of translation events (23, 26), results in the formation of a
52-amino-acid C-terminally extended form of NS1. Although a
role in neurovirulence has previously been demonstrated (23), no
specific functions for NS1= in viral replication or virus-host inter-
actions have been identified. In the present study, we show that the
NS1= protein colocalizes with NS1 in viral RNA replication sites in
the endoplasmic reticulum (ER) of infected cells and can substi-
tute for the function of NS1 in viral replication.

Plasmid DNA-derived expression of NS1 and NS1=. NS1= is
produced in viral infection due to the presence of a slippery hep-

tanucleotide and 3= pseudoknot in the viral RNA resulting in a
ribosomal shift to the "1 reading frame (23, 25). This results in
the addition of 52 amino acids to the C terminus of NS1 protein,
including the N-terminal 9 amino acids of NS2A and 43 amino
acids after the frameshift, terminating NS1= synthesis at a stop
codon (25). To enable studies on the NS1= and NS1 proteins,
CMV promoter-based plasmids expressing NS1= or NS1 (pcDNA-
NS1= and pcDNA-NS1, respectively) were designed as shown in
Fig. 1A. Both constructs contained the WNVKUN envelope protein
(E) signal sequence at the N terminus followed by cDNA for the
protein of interest and C-terminal Myc and Flag tags to assist in
protein detection. pcDNA-NS1= was generated by inserting an
additional nucleotide (Fig. 1B, boxed nucleotide) at the frameshift
site to induce the change in reading frame that leads to NS1= syn-
thesis. To prevent further frameshifting, we also introduced two
single-nucleotide mutations into the slippery heptanucleotide of
the frameshift motif, as published previously (23) (Fig. 1B, circled
nucleotides). To confirm protein production from the designed
plasmids, HEK293T cells transfected with either pcDNA-NS1= or
-NS1 were harvested in radioimmunoprecipitation assay (RIPA)
buffer (50 mM Tris HCl, 150 mM NaCl, 1% NP-40, 0.5% sodium
deoxycholate, 1% SDS) at 2 days posttransfection. Cell lysates
were denatured for 10 min at 70°C, separated by electrophoresis in
10% polyacrylamide gels, transferred to nitrocellulose mem-
branes, and analyzed by Western blotting for the presence of NS1
and NS1=. 4G4, a monoclonal antibody that recognizes both NS1
and NS1= proteins (27), detected NS1 (monomer) in lysates from
pcDNA-NS1-transfected cells and NS1= proteins (both monomer
and dimers) in lysates from pcDNA-NS1=-transfected cells (Fig.
1C). Notably, only NS1= and not NS1 expression resulted in gen-
eration of heat-stable dimers. The results confirmed that pcDNA-
NS1 and pcDNA-NS1= plasmids express NS1 and NS1=, respec-
tively.

The cellular localization of NS1= is similar to that of NS1 in
plasmid DNA-transfected and virus-infected cells. NS1 is
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known to localize to the ER of cells during flavivirus infection (16,
28, 29). To examine whether NS1= also colocalizes to the ER with
NS1, we carried out immunofluorescence assays on cells express-
ing NS1= or NS1 proteins. HEK293T cells transfected with
pcDNA-NS1 or pcDNA-NS1= plasmids were fixed in 80% ace-
tone–20% phosphate-buffered saline (PBS) at 48 h posttransfec-
tion and stained with 4G4, to detect both NS1 and NS1=, and with
NS1=-specific antibodies (FS-Ab) (23). As expected, FS-Ab stained
only pcDNA-NS1=-transfected cells, while 4G4 stained both
pcDNA-NS1- and pcDNA-NS1=-transfected cells (Fig. 2A). Using
4G4 in addition to antibodies recognizing markers for various
cellular compartments, we were able to further examine the local-
ization of NS1= and NS1 in transfected cells. HEK293T cells trans-
fected with pcDNA-NS1 or pcDNA-NS1= plasmids were fixed at
48 h posttransfection in 4% paraformaldehyde (PFA) with 0.1%
Triton X-100 and stained with biotinylated 4G4 and antibodies
recognizing markers of the ER (rabbit polyclonal antibody against
calnexin [Sigma-Aldrich]), Golgi apparatus (mouse monoclonal
antibody against GM130 [Becton, Dickinson]), or endosomes
(mouse monoclonal antibody against EEA-1 [BD Transduction
Laboratories]). Both NS1 and NS1= localized predominantly to
the ER (Fig. 2B), with a small degree of colocalization with the
Golgi apparatus (Fig. 2C) and no distinct localization to the en-
dosomes (Fig. 2D). Moreover, there did not appear to be any
differences in the cellular distribution of plasmid-expressed NS1=

compared to NS1, leading us to conclude that NS1= resides in the
same cellular compartments as NS1.

As 4G4 is able to detect both NS1 and NS1=, it is not possible to
separate NS1 and NS1= localization in cells infected with wild-type
virus (WNVKUN), as it produces both proteins. FS-Ab, on the
other hand, recognizes only NS1= protein. We previously gener-
ated a mutant WNVKUN virus, A30A=, that does not produce NS1=
protein (23). Thus, we used comparative costaining with 4G4
and FS-Ab of cells infected with wild-type or A30A= mutant
WNVKUN viruses in order to assess whether NS1 and NS1=
proteins localize to the same or different cellular compart-
ments. To examine any specific NS1 localization, Vero76 cells
infected with either WNVKUN or A30A= mutant virus at a mul-
tiplicity of infection (MOI) of 10 and fixed at 24 h postinfection
(hpi) in 80% acetone were costained with 4G4 and FS-Ab. In
WNVKUN-infected cells, 4G4-labeled proteins colocalized with
FS-Ab-labeled proteins, indicating that NS1 and NS1= are
found in the same cellular compartments (Fig. 3A). To confirm
that the cellular distribution of NS1 and NS1= detected in trans-
fected cells is the same as in infected cells, we carried out im-
munofluorescence analysis with antibodies detecting marker
proteins for ER, Golgi apparatus, and endosomes. Vero76 cells
infected at an MOI of 10 with WNVKUN or A30A= viruses were
fixed at 24 hpi (4% PFA in PBS with 0.1% Triton X-100) and
stained with biotinylated 4G4 and either anti-calnexin, anti-
GM130, or anti-EEA-1 antibodies. As in transfected cells, NS1
and NS1= localized predominantly to the ER (Fig. 3B), with a
small degree of colocalization with the Golgi apparatus (Fig.
3C) and no localization to the endosomes (Fig. 3D). A compar-
ison between WNVKUN- and A30A=-infected cells should also
indicate unique NS1= staining. No differences in anti-NS1
staining between WNVKUN- and A30A=-infected cells indicate
that NS1= and NS1 localize to the same cellular compartments.
These results, in combination with the results from plasmid-
transfected cells, indicate that NS1= protein has a cellular
distribution similar to that of NS1 during viral infection or
when the proteins are expressed as individual proteins.

NS1 has been shown previously to colocalize with double-
stranded RNA (dsRNA) at the sites of flavivirus RNA replication
in WNVKUN-infected cells (16). To determine whether NS1= also
colocalizes with dsRNA, Vero76 cells infected with WNVKUN or
A30A= (MOI of 10) were fixed at 24 hpi (80% acetone) and
costained with anti-dsRNA antibodies and either biotinylated
4G4 or FS-Ab. Proteins stained with both 4G4 and FS-Ab colocal-
ized with dsRNA (Fig. 3E and F, respectively), demonstrating that
NS1= is also associated with dsRNA and therefore with the sites of
viral RNA replication.

NS1= complements replication of NS1-deleted viral RNA.
Due to the colocalization of NS1= with NS1 in the ER and with
dsRNA, we hypothesized that NS1=, like NS1, could also play a role in
virus replication. To test whether NS1= can substitute for the function
of NS1 in viral replication, we constructed a CMV promoter-driven
WNVKUN genomic cDNA with a large (!80%) internal deletion of
the NS1 gene (pKUNdNS1) (Fig. 4A). This deletion (dNS1.1) has
been used previously by our group in an RNA-based system to dem-
onstrate trans-complementation of replication of NS1-deleted viral
RNA by the NS1 expressed from WNVKUN replicon RNA (14). We
cotransfected HEK293T cells with pKUNdNS1 and either pcDNA-
NS1 or pcDNA-NS1= plasmids to determine whether expression in
trans of NS1 or NS1= could rescue replication of replication-deficient

FIG 1 Design and characterization of plasmid DNAs expressing NS1 and
NS1= genes. (A) Plasmid constructs pcDNA-NS1 and pcDNA-NS1=, for ex-
pression of NS1 and NS1=, respectively, contain an N-terminal signal sequence
consisting of the last 26 codons of the WNV E protein and Myc and Flag tags at
the C terminus. (B) Alignment of the nucleic and amino acid sequences of
NS2A, NS1= and pcDNA-NS1= showing the "1 frameshift occurring at the
beginning of the NS2A gene that leads to the generation of NS1=. Underlining
shows the slippery heptanucleotide of the frameshift motif, open boxes show
inserted nucleotides, and circles show mutated bases. (C) Western blot show-
ing expression of NS1 and NS1= from pcDNA-NS1 and pcDNA-NS1=, respec-
tively. Lysates were heat denatured and analyzed by Western blotting with
anti-NS1 (4G4).
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pKUNdNS1. Transfection of repBHK cells expressing all of the
WNVKUN nonstructural proteins, including NS1 and NS1=, with
pKUNdNS1 was also performed as a positive control (14), and
cotransfection of pKUNdNS1 with a green fluorescent protein
(GFP)-expressing plasmid was included as a negative control. To ex-
amine rescue of RNA replication, total RNA was harvested from
cotransfected cells at 2 or 4 days posttransfection with TriReagent
(Sigma-Aldrich, St. Louis, MO), according to the manufacturer’s in-
structions. Isolated RNA (5 #g) was subjected to denaturing 1.5%
agarose gel electrophoresis followed by transfer to Hybond-N mem-
branes (GE Healthcare Limited, Buckinghamshire, United King-
dom). RNA was cross-linked to the membrane by UV irradiation,
and Northern hybridization with a 32P-labeled (PerkinElmer, Wal-
tham, MA) WNVKUN-specific 3= untranslated-region (UTR) probe
was carried out to detect accumulation of viral RNA. No viral RNA
was detected in mock-transfected cells (Fig. 4B, lanes 9 and 10), and
transfection of repBHK cells with pKUNdNS1 resulted in increasing
accumulation of viral genomic RNA (Fig. 4B, lanes 11 and 12). A
small level of RNA accumulation in the pKUNdNS1-only-trans-
fected cells was detected as expected (Fig. 4B, lanes 1 and 2), due to the
transcription of NS1-deficient RNA driven by the CMV promoter.

However, the levels of accumulated RNA were notably higher in cells
cotransfected with either pcDNA-NS1 (a 5.5-fold increase at day 2
and a 10-fold increase at day 4) (Fig. 4B, lanes 3 and 4) or pcDNA-
NS1= plasmids (a 3-fold increase at day 2 and a 5-fold increase at day
4) (Fig. 4B, lanes 5 and 6) compared to those in pKUNdNS1-only-
transfected cells. Notably, some variations in the Northern blot de-
tection of complemented genomic RNA between three different
complementation experiments (data not shown) were observed, pro-
ducing a range of increases for pcDNA-NS1 complementation be-
tween 1.5- and 14-fold and for pcDNA-NS1= complementation be-
tween 1- and 5-fold. No distinct band for genomic RNA was detected
in cells cotransfected with GFP-expressing plasmid (Fig. 4B, lanes 7
and 8), possibly due to either an inhibitory effect of GFP expression
on transcription of KUNdNS1 RNA or enhanced degradation of
KUNdNS1 RNA in the presence of GFP expression. trans-comple-
mentation of viral RNA replication by NS1= was further supported by
immunofluorescence analysis of cotransfected HEK293T cells (fixed
in 4% PFA with 0.1% Triton X-100 at 2 days posttransfection) using
staining with mouse monoclonal anti-c-Myc antibodies (9E10 hy-
bridoma; ATCC) (NS1 or NS1= proteins) and rabbit polyclonal anti-
NS3 antibodies (16) (pKUNdNS1-expressed NS3 protein). Increased

FIG 2 Cellular localization of plasmid-expressed NS1= and NS1. (A) Immunofluorescence analysis showing production of NS1 and NS1= using 4G4 (which
stains both NS1 and NS1=) and FS-Ab (an NS1=-specific antibody) in transfected HEK293T cells. (B to D) Immunofluorescence analysis showing colocalization
of plasmid-expressed NS1 and NS1= with the ER (B), the Golgi apparatus (C), and endosomes (D). Transfected HEK293T cells were stained with antibodies to
appropriate cell markers (calnexin, GM130, and EEA-1, respectively) and biotinylated anti-NS1 (4G4).
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production of NS3 protein in pcDNA-NS1- and pcDNA-NS1=-
cotransfected cells, compared to pKUNdNS1-only-transfected cells
(Fig. 4C), further demonstrated that trans-complementation of rep-
lication of the NS1-deleted viral RNA was successful. Therefore, we
conclude that NS1= protein can rescue replication deficiency of NS1-
deleted viral RNA.

To detect virus production from cotransfected cells, and thus
further confirm successful complementation, culture fluid from
transfected HEK293T cells was harvested at 2 days posttransfec-
tion and used to infect repBHK cells. If complementation was
successful, viral particles containing the NS1-deleted RNA would
be able to infect the repBHK cells, replicate, and form viral parti-
cles due to the continuing expression of NS1 and NS1= in the

repBHK cells. Prior to infection, the culture fluid was treated with
10 units RQ1 DNase (Promega, Madison, WI) and 10 #g RNase A
for 2 h at room temperature to digest any remaining plasmid DNA
or uncoated RNA. Two days after infection, cells were fixed (4%
PFA with 0.1% Triton X-100) and stained with anti-E antibodies
to detect infected cells. Immunofluorescence images of repBHK
cells infected with undiluted culture fluids and stained with 3.67G,
a monoclonal anti-E antibody (30), showed that only cells that
were cotransfected with either pcDNA-NS1 or pcDNA-NS1= plas-
mids produced secreted viral particles (Fig. 4D). No secreted viral
particles were produced in pKUNdNS1-only-transfected cells
or in cells cotransfected with pKUNdNS1 and GFP-expressing
plasmid (Fig. 4D). The lack of E-positive repBHK cells infected

FIG 3 Localization of NS1=, NS1, and dsRNA in WNVKUN-infected cells. (A) Immunofluorescence analysis showing colocalization of NS1 and NS1= in infected
Vero76 cells using 4G4 (which stains both NS1 and NS1=) and FS-Ab (an NS1=-specific antibody). (B to D) Immunofluorescence analysis showing colocalization
of virally expressed NS1 and NS1= with the ER (B), the Golgi apparatus (C), and endosomes (D). Infected cells were stained with antibodies to appropriate cell
markers (calnexin, GM130, and EEA-1, respectively) and biotinylated anti-NS1 (4G4). (E and F) Immunofluorescence analysis showing colocalization of NS1
and NS1= with dsRNA in infected cells stained with anti-dsRNA and either biotinylated 4G4 (E) or FS-Ab (F).
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with DNase- and RNase-treated undiluted culture fluids from
pKUNdNS1-only-transfected and pKUNdNS1-plus-GFP-ex-
pressing-plasmid-cotransfected cells also demonstrates that no
transfected DNA or uncoated viral RNA was carried through to

infection. To determine the titers of secreted viral particles,
repBHK cells infected with serial 10-fold dilutions of collected
culture fluids were stained with anti-E antibodies, and foci of
E-positive cells were counted. Titration of viral particles was

FIG 4 NS1= complements replication of NS1-deleted viral RNA. (A) Schematic diagram of pKUNdNS1 plasmid DNA containing a large deletion in the NS1 gene
(amino acid 4 to amino acid 298) of WNVKUN genomic cDNA. CMV, cytomegalovirus promoter; HDVr, hepatitis delta virus ribozyme; pA, poly(A) signal; UTR,
untranslated region. (B) Northern blot with a radiolabeled 3=-UTR probe showing replicating genomic RNA. RNA was harvested from cotransfected cells at 2 or
4 days posttransfection. (C) Immunofluorescence of HEK293T cells cotransfected with pKUNdNS1 and either NS1 or NS1=. Cotransfected cells were stained for
c-Myc and NS3. (D) Immunofluorescence analysis showing production of infectious particles from cells cotransfected with pKUNdNS1 and either NS1 or NS1=.
Culture fluid (CF) was harvested from cotransfected cells and used to infect repBHK cells. Infected repBHK cells were stained for E. (E) Titers were determined
by infection of repBHK cells with serial dilutions of CF from cotransfected cells at day 2 (white bars) or 4 (gray bars) posttransfection and counting E-positive foci
at day 2 postinfection. The graph is representative of two independent experiments. The difference between titers of complemented viruses expressing NS1 and
NS1= was not significant (P $ 0.05), as determined by a standard one-way analysis of variance (ANOVA).
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carried out for two independent complementation experi-
ments, and the average viral titers were determined. The viral
titers were similar from NS1- and NS1=-complemented cells,
and both were similar to the viral titers obtained in repBHK
cells at 2 days after transfection (Fig. 4E). Notably, the accu-
mulation of viral RNA and viral titers in NS1 and NS1= com-
plementation experiments decreased from day 2 to day 4 after
transfections, while transfection of pKUNdNS1 into repBHK
cells led to a corresponding increase in RNA level and no de-
crease in viral titers (Fig. 4B and E). This is likely due to the
ability of complemented virus to spread in repBHK cells, where
100% of cells express complementing NS1 and NS1= proteins,
while the spread of complemented virus is not possible in
cotransfection experiments, as untransfected cells do not sup-
port replication and thus spread of complemented virus. From
these results, we concluded that NS1= could successfully com-
plement deletion of NS1 in virus replication and that there was
no significant difference in the efficiency of complementation
between NS1 and NS1=.

We have shown in this study that NS1= has a cellular distribu-
tion similar to that of NS1 with respect to the ER, Golgi apparatus,
and endosomes, that both NS1 and NS1= are colocalized in viral
RNA replication sites in infected cells, and that NS1= is able to
rescue replication of NS1-deleted viral RNA. From our data it is
reasonable to assume that NS1= may not have a unique function in
replication that is different from that of NS1 and thus may simply
serve as an additional NS1 protein. Given that NS1= does contain
the entire NS1 protein, it was not entirely unexpected that NS1=
has a similar localization and can perform the same function(s) as
NS1 in the virus life cycle. Although here we tested the function of
NS1= only in viral replication, NS1= may also be involved in other
reported functions of NS1, such as interactions with the comple-
ment system (17–20, 22) and inhibition of Toll-like receptor 3
(TLR3) signaling (21). Further studies are required to clarify this.
However, the presence of the additional C-terminal 52 amino ac-
ids in the NS1= protein compared to NS1 may also result in NS1=
having a unique function(s) in viral infection. Studies focused on
identifying potential differences between the NS1 and NS1= pro-
teins are under way in an effort to explain the in vivo differences
observed between NS1=-producing and NS1=-lacking WNVKUN

viruses (23).
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SUMMARY 24!

West Nile Virus (WNV), a mosquito-borne Flavivirus, is the major cause of arboviral 25!

encephalitis in the United States. As other members of the Japanese encephalitis virus 26!

serogroup, WNV produces an additional nonstructural protein, NS1', a carboxy-terminal 27!

extended product of NS1 generated as the result of a -1 programmed ribosomal frameshift 28!

(PRF). We have previously shown that mutations abolishing the PRF and consequently 29!

NS1', resulted in reduced neuroinvasiveness. However whether this was caused by the 30!

PRF event itself or by the lack of a PRF product, NS1', or a combination of both, remains 31!

undetermined. Here we show that WNV NS1' forms a unique sub-population of heat- and 32!

low pH- stable dimers. C-terminal truncations and mutational analysis employing an 33!

NS1'-expressing plasmid showed that stability of NS1' dimers is linked to the penultimate 34!

ten amino acids. To examine the role of NS1' heat-stable dimers in virus replication and 35!

pathogenicity, a stop codon mutation was introduced into NS1' to create a WNV 36!

producing a truncated version of NS1' lacking the last 20 amino acids but not affecting 37!

the PRF. NS1' protein produced by this mutant virus was secreted more efficiently than 38!

wild type NS1', indicating that the sequence of the last 20 amino acids of NS1' is 39!

responsible for its cellular retention. Further analysis of this mutant showed similar to the 40!

wild type WNVKUN growth kinetics in cells and virulence in weanling mice after 41!

peripheral infection suggesting that full length NS1' is not essential for virus replication 42!

in vitro and for virulence in mice.  43!

 44!

INTRODUCTION 45!
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West Nile Virus (WNV) is currently the major cause of arboviral encephalitis in 46!

the United States (Petersen, 2009). A member of the Japanese Encephalitis virus (JEV) 47!

serogroup, this flavivirus is maintained through a transmission cycle between birds and 48!

mosquitoes, primarily the Culex species. WNV also causes incidental infections in 49!

humans and other mammals, with approximately 5% of symptomatic infections involving 50!

neurological symptoms, such as encephalitis and meningitis (Beckham & Tyler, 2009). 51!

Kunjin  (WNVKUN) is the prevalent strain of WNV within Australia (Hall et al., 2002), 52!

and is highly attenuated compared to strains common to the US, such as the strain 53!

responsible for the spread of WNV to the US in 1999 (WNVNY99) (Lanciotti et al., 1999). 54!

WNVKUN has been used extensively as a model for WNV infection since it was first 55!

isolated in 1960 (Doherty et al., 1963; Westaway et al., 2002; 2003). 56!

WNVKUN has an 11kb positive sense single stranded RNA genome encoding for 3 57!

structural (C, prM and E) and 7 non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, 58!

NS4B and NS5). Produced as a single polyprotein, it is cleaved by both host and viral 59!

proteases to give rise to the individual proteins (Lindenbach & Rice, 2003). NS1 is a 60!

multifunctional glycoprotein involved in the formation of the replication complex (Chu & 61!

Westaway, 1992; Khromykh et al., 1999; Khromykh et al., 2000; Lindenbach & Rice, 62!

1997; Westaway et al., 1997; Youn et al., 2012) and the modulation of the host immune 63!

response (Avirutnan et al., 2010; Avirutnan et al., 2006; Chung et al., 2006; Crook et al., 64!

2014; Kurosu et al., 2007; Muller & Young, 2013; Schlesinger, 2006; Wilson et al., 65!

2008). After cleavage from the polyprotein (Falgout & Markoff, 1995; Nowak et al., 66!

1989), NS1 is glycosylated and forms a heat-labile dimer in the endoplasmic reticulum 67!

(ER) (Pryor & Wright, 1994; Winkler et al., 1989; Winkler et al., 1988). A proportion of 68!
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the dimerised protein is subsequently trafficked through the Golgi pathway and secreted 69!

from cells as a soluble hexamer (Alcon-LePoder et al., 2006; Chung & Diamond, 2008; 70!

Flamand et al., 1999; Macdonald et al., 2005).  71!

  Encephalitic flaviviruses from the JEV serogroup produce an additional non-72!

structural protein, designated NS1', as the result of a -1 programmed ribosomal frameshift 73!

(PRF) occurring at the beginning of the adjacent NS2A gene.  Produced in 30-50% of 74!

translation events, NS1' consists of the entire NS1 protein with a 52 amino acid C-75!

terminal extension encoding the first 9 amino acids of NS2A and 43 additional amino 76!

acids (Firth & Atkins, 2009; Mason, 1989; Mason et al., 1987; Melian et al., 2010). We 77!

have shown previously that NS1' is localized to the same cellular compartments as NS1 78!

and can substitute for the function of NS1 in RNA replication (Youn et al., 2013; Young 79!

et al., 2013), indicating that NS1' may function as additional NS1 in viral infection. The 80!

PRF event and consequent NS1' production have been shown to be important for the viral 81!

pathogenesis of both WNVKUN and JEV as the lack of PRF/NS1' correlated with reduced 82!

pathogenicity (Melian et al., 2010; Ye et al., 2012). Recent work has also identified that 83!

JEV PRF/NS1' enhanced virus production in avian cells (Takamatsu et al., 2014). 84!

However, as mutations used in the above studies abolished both the PRF event and NS1' 85!

production (Melian et al., 2010; Takamatsu et al., 2014; Ye et al., 2012; Young et al., 86!

2013), the role of these two events independently in virus replication and pathogenesis 87!

could not be distinguished and the unique function for NS1' in viral infection has 88!

therefore not been identified.  89!

In the present study we have focused on characterizing properties of NS1' protein 90!

and its putative function in virus replication and pathogenesis. We show that NS1' 91!



! 5!

produces a unique sub-population of heat-stable homodimers, and that the presence of the 92!

frameshifted region results in increased cellular retention of NS1' compared to NS1. By 93!

using a mutant virus in which only full-length NS1' production but not the PRF event is 94!

affected we show that the last 20 amino acids of NS1' are responsible for the cellular 95!

retention of WNVKUN NS1' and that full length NS1' is not essential for 96!

neuroinvasiveness in mice.  97!

 98!

RESULTS 99!

WNV NS1' is secreted less efficiently than NS1 from both infected and 100!

transfected cells. It has been shown previously that JEV NS1', unlike NS1, is not 101!

secreted efficiently from infected cells (Fan & Mason, 1990; Mason, 1989). To determine 102!

whether this is also the case for WNVKUN NS1', pulse- chase 35S-labelling experiments 103!

were carried out. A previously generated NS1'-lacking WNVKUN virus mutant (A30A') 104!

was included in pulse-chase labelling experiments to confirm NS1' expression from wild 105!

type WNVKUN infected cells. Radiolabelled NS1 and NS1' were detected in both the cell 106!

monolayer and culture fluid of WNVKUN infected Vero76 cells at 24 or 72 hpi (Fig. 1a 107!

and 1b, respectively). Quantification of individual protein bands and determination of the 108!

extracellular/intracellular ratio (E/I) showed that NS1' is consistently secreted to a lower 109!

degree compared to NS1 (Fig. 1c). The same could be seen for NS1 and NS1' expressed 110!

from pcDNA-NS1 and pcDNA-NS1' transfected 293T cells (both co- and individually-111!

transfected) at 24 and 48 h post transfection (Fig. 2a and 2b, respectively). Again, the E/I 112!

ratio showed that NS1' (whether individually- or co-transfected) was secreted to a 113!
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significantly lower degree than NS1 (Fig. 2c). These results indicate that the frameshifted 114!

region of NS1' results in increased cellular retention of NS1' compared to NS1. 115!

 116!

WNV infection produces unique heat-stable NS1' dimers. We have shown 117!

previously that plasmid-expressed WNVKUN NS1' retains a sub-population of dimers 118!

when heated, while heating of plasmid-expressed NS1 disrupted dimers (Young et al., 119!

2013). To confirm this stability is not an artifact from plasmid expression, lysate from 120!

WNVKUN or A30A' (as a non-NS1' expressing control) infected Vero76 cells was heated 121!

or left unheated prior to separation by SDS-PAGE. Proteins were transferred to 122!

nitrocellulose membrane and analysed by Western blotting with an anti-NS1 monoclonal 123!

antibody (4G4), which detects both NS1 and NS1'. The presence of NS1' dimers is still 124!

seen in heated WNVKUN lysate (Fig. 3a, lane 1), confirming that NS1' produced by 125!

infected cells also forms a sub-population of heat-stable dimers. Previous studies on JEV 126!

NS1' did not show the presence of these heat-stable NS1' dimers (Fan & Mason, 1990). 127!

To examine this further, lysates from JEV, Murray Valley encephalitis virus (MVEV), 128!

WNVNY99 and WNVKUN infected Vero76 cells were subjected to SDS-PAGE and 129!

Western blotting with anti-NS1 antibodies to determine the presence or absence of heat-130!

stable NS1' dimers. Heat-stable NS1' dimers were only detected in heated WNV (NY99 131!

and KUN) samples (Fig. 3b, lanes 5 and 7), but not JEV or MVEV samples, showing that 132!

these dimers are unique to WNV. The intermediate dimer band detected in all unheated 133!

samples (lanes 2, 4, 6 and 8) is likely to be an NS1/NS1' heterodimer, which has 134!

previously been shown for both JEV and MVEV (Blitvich et al., 1995; Fan & Mason, 135!

1990; Lin et al., 1998).  136!
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 137!

WNV NS1' dimers are resistant to heat and low pH but susceptible to 138!

reduction. Previous work by Falconar and Young (Falconar & Young, 1990) has shown 139!

that NS1 dimers were stable at low pH (pH 3.5). To assess the pH stability of NS1' 140!

dimers, NS1 or NS1' transfected cell lysate (Fig. 4a) and WNVKUN or A30A' infected cell 141!

lysate (Fig. 4b) was incubated for 1 h prior to separation by electrophoresis with 1M 142!

glycine buffered to the indicated pH. NS1 dimers were indeed stable until the pH was 143!

lowered to 3.5, while NS1' dimers were still stable at the lowest pH tested, pH 2.2. A 144!

range of temperature treatments was also tested on the same lysates to further examine 145!

heat-stability (Fig. 4c and 4d). While NS1 dimers were stable at room temperature, 146!

heating to 60°C for 30 min was enough to begin to disrupt this species. NS1' on the other 147!

hand, forms a sub-population of dimers that were still stable at the highest temperature 148!

tested, 95°C. The sub-population of NS1' that does not have this heat-stable nature has a 149!

similar stability to NS1 dimers, with respect to both temperature and pH treatment. 150!

However, reduction of lysates with 5% β-mercaptoethanol prior to SDS-PAGE separation 151!

resulted in complete disruption of both NS1 and NS1' dimers (Fig. 4e). Therefore, WNV 152!

NS1' is able to form a sub-population of heat and low pH stable dimers but these dimers 153!

are sensitive to reducing treatment during heating.  154!

 155!

NS1' dimer stability resides within the first ten of the last twenty amino acids. 156!

As the NS1' heat-stable dimers are distinct from the heat-labile dimers formed by NS1, 157!

the stability must be linked to the presence of the frameshifted region of NS1'. To 158!

determine the region contributing to this stability, C-terminal 10- and 20-amino acid 159!
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truncations of NS1' were generated by PCR mutagenesis of pcDNA-NS1' (Fig. 5a). The 160!

presence of heat-stable dimers was determined by SDS-PAGE and Western blot analysis 161!

of heated or unheated lysates generated from HEK293T cells transfected with pcDNA-162!

NS1, -NS1', -NS1'del10 or -NS1'del20. NS1' and NS1'del10 both formed a sub-163!

population of heat-stable dimers (Fig. 5b, lanes 3-4 and 5-6 respectively), while 164!

NS1'del20 forms only heat-labile dimers (lanes 7-8), similar to those produced by NS1 165!

(lanes 1-2). Interestingly, NS1'del20 also affected the presence of a high molecular 166!

weight NS1' multimer that can be observed in both NS1' and NS1'del10 unheated samples 167!

(Fig. 5b, lanes 4 and 6 respectively), suggesting that the increased stability of NS1' 168!

dimers is associated with the penultimate 10 amino acids.  169!

To determine whether the loss of heat-stable dimers in pcDNA-NS1'del20 170!

transfected cells was due to the specific amino acid sequence, or to a minimum length 171!

requirement of the frameshifted region, amino acids 385 to 393 were mutated to alanine 172!

(Fig. 5a). SDS-PAGE and Western blot analysis of lysate from pcDNA-NS1'Ala 173!

transfected cells showed that NS1'Ala is similar to NS1'del20, as it does not form heat-174!

stable dimers (Fig 5b, lanes 9 and 10). This confirms that the heat-stable dimerisation is 175!

linked to the specific sequence of amino acids 385-394, rather than to the length of NS1'. 176!

Due to the presence of a single additional cystiene (Cys) residue within the 177!

mutated region of NS1', we reasoned that an inter-chain disulfide bond may be forming 178!

between monomeric units, creating the heat-stability seen. This was also supported by the 179!

fact that the dimers are sensitive to reducing treatment (Fig. 4e). However, mutagenesis 180!

of this Cys residue to Ser (Fig. 5a) failed to affect the formation of the heat-stable NS1' 181!

dimers (Fig. 5b, lanes 11 and 12).  182!
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 183!

Last twenty amino acids of NS1' are important for its cellular retention. To 184!

examine the importance of the heat-stable NS1' dimers in the context of viral infection, 185!

we designed a mutant virus, Stop Mutant, which should eliminate the formation of stable 186!

NS1' dimers. This mutant introduces a premature stop codon 20 amino acids from the end 187!

of NS1' (Q385 to Stop), resulting in a truncated version of the protein (Fig. 6a). Notably, 188!

the position of the mutation and subsequent truncation of NS1' mimics the pcDNA-189!

NS1'del20 construct, shown previously to not form heat-stable dimers (Fig. 5). This 190!

mutation was also introduced in a way so as not to affect the protein coding sequence of 191!

NS2A. To confirm the production of a truncated form of NS1' from Stop Mutant infected 192!

cells, SDS-PAGE and Western blot analysis of lysate from infected Vero76 cells was 193!

carried out. NS1'-specific antibodies detected a protein band corresponding to the 194!

predicted size of the truncated NS1' in Stop Mutant samples (Fig. 6b, lanes 3 and 4). This 195!

data also confirmed that Stop Mutant NS1', like pcDNA-NS1'del20, does not form heat-196!

stable dimers. Immunofluorescence analysis of WNVKUN and Stop Mutant infected cells 197!

stained with anti-NS1 (4G4) and counter-stained with anti-calnexin (ER marker) showed 198!

that the truncation of NS1' did not alter cellular localization (Fig. 6c). To determine if the 199!

truncation of NS1' in Stop Mutant virus affects NS1' secretion, pulse-chase 35S-labelling 200!

experiments were carried out at 24 and 48 hpi as before. Immunoprecipitation of cell 201!

lysate or culture fluid, harvested at various chase times following radiolabelling, with 202!

anti-NS1 (4G4) showed that Stop Mutant NS1' was secreted during infection (Fig. 6d). 203!

Quantification of individual protein bands show that the secretion of Stop Mutant NS1' 204!

was in fact increased compared to WNVKUN NS1' (Fig. 6e). The results show that the 205!
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sequence of the last 20 amino acids of NS1' is responsible for the cellular retention of 206!

WNVKUN NS1' protein. 207!

 208!

Truncation of NS1' does not significantly affect virus replication in vitro or 209!

viral neurovirulence in mice. To analyse the effect of truncation of NS1' on virus 210!

replication in vitro, Vero76, C6/36 and mouse embryonic fibroblasts (MEFs) were 211!

infected with the wild type WNVKUN and Stop mutant viruses at MOI=1 or 0.1 and virus 212!

titres in the culture fluid were determined every 12h (every 24h for C6/36) for up to 120 h 213!

after infection. The results showed that truncation of NS1' did not affect virus replication 214!

in any of the cell lines (Fig. 7a) demonstrating that full-length NS1' protein is not 215!

required for virus replication in vitro. The results are similar to our previous in vitro 216!

findings with A30A' mutant virus in which NS1' production is abolished by mutation of 217!

the ribosomal frameshift (Melian et al., 2010). In the same study we also showed that 218!

A30A' virus was attenuated in weanling mice compared to WNVKUN (Melian et al., 2010). 219!

The attenuation of A30A' may be due to the absence of NS1' itself, the elimination of the 220!

frameshift, or a combination of both. In contrast to A30A', Stop Mutant only affects 221!

production of full-length NS1', without affecting the ribosomal frameshift. To determine 222!

whether NS1' production alone affects virus neurovirulence, 18 day-old mice were 223!

infected intraperitoneally with 1000 pfu of either WNVKUN or Stop Mutant and monitored 224!

daily for signs of encephalitis. Infection with Stop Mutant resulted in a relatively similar 225!

level of mortality compared to the wild type WNVKUN (~40% survival for Stop Mutant 226!

compared to ~20% survival for the wild type WNVKUN) (Fig. 7b). This suggests that full-227!
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length NS1' protein is unlikely to play a role in viral neurovirulence, indicating that the 228!

attenuation seen in PRF/NS1'-lacking mutants is likely due to the loss of the PRF itself.  229!

 230!

DISCUSSION 231!

We have shown here that NS1' forms a sub-population of heat-stable, secretable 232!

homodimers. The stability of these dimers is dependent on amino acids 385-394; though 233!

not specifically to the cysteine reside at position 392 (Fig. 5). While NS1' is secreted 234!

from both infected and transfected cells, increased cellular retention compared to NS1 235!

was noted (Fig. 1 and 2), similar to work published previously for JEV NS1' (Mason, 236!

1989). We have also linked this increased cellular retention to the last 20 amino acids of 237!

NS1' (Fig. 6). Finally, we have shown that C-terminal truncation of the NS1' protein and 238!

loss of heat-stable NS1' dimers in WNVKUN has no effect on viral replication in vitro or 239!

viral pathogenesis in vivo (Fig. 7).  240!

The design and use of Stop Mutant was to not only examine heat-stable 241!

dimerisation in a viral context, but also to separate the function of full-length NS1' from 242!

that of the ribosomal frameshift itself. Due to the intricate relationship between the 243!

ribosomal frameshift and the production of NS1', it is difficult to determine whether 244!

attenuation of NS1'-lacking viruses is a result of the loss of the NS1' protein, or the 245!

frameshift itself (Melian et al., 2010; Ye et al., 2012). It is possible that the frameshift 246!

mechanism evolved to primarily control the ratio of structural to non-structural proteins 247!

(Melian et al., 2014), and its byproduct NS1' is generated to increase the relative level of 248!

functioning NS1. The work presented here showed that truncation of NS1' did not 249!

detrimentally affect virus growth in mammalian and insect cell culture, or WNVKUN 250!
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pathogenicity in mice after peripheral inoculation (Fig. 7). These results support the 251!

hypothesis that full-length NS1' is unlikely to have a unique biological function that 252!

contributes to viral pathogenesis in a mammalian system. This suggests that the reduced 253!

pathogenicity seen in mice for previously studied WNVKUN viruses lacking both the PRF 254!

and NS1' is more likely due to the loss of the PRF.  255!

Work conducted in chicken embryonic fibroblasts and embryonated chicken eggs 256!

identified a role for JEV PRF/NS1' in facilitating virus production in avian cells by 257!

increasing viral RNA levels (Takamatsu et al., 2014). This is in contrast to virus grown in 258!

mammalian or insect culture which has shown that viral replication in vitro is not 259!

different between viruses lacking PRF/NS1' and those encoding PRF and producing NS1' 260!

(Melian et al., 2010; Ye et al., 2012). Our other recent study has also found no difference 261!

in replication in avian DF-1 cells between WT and PRF-deficient mutant (A30A') 262!

WNVKUN viruses (Melian et al., 2014). Combined together, these results indicate that the 263!

role of PRF/NS1' in viral replication may be virus species and perhaps host species 264!

specific.  265!

The increased stability observed here for NS1' dimers has given us insight into the 266!

cell associated form of NS1', and potentially NS1. Due to the increase in dimer stability, 267!

it is possible to observe higher order oligomeric forms in unheated SDS-PAGE analysis 268!

of WNVKUN NS1' (see Fig. 3a, 4a-d, 5b, and 6b). Indeed, when this dimer stability was 269!

abolished by truncation or mutation, not only were the heat-stable dimers affected, but 270!

also the detergent-stable oligomers. Based on the observed size on SDS-PAGE gels, these 271!

are likely to be hexamers; however, further confirmation would be required. These higher 272!

order oligomers are still observed in SDS-PAGE analysis when cell lysates were treated 273!
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with iodoacetamide (to prevent disulfide exchange post-lysis, data not shown), suggesting 274!

that the potential hexamer seen is a natural state, not a product of lysis. This data may 275!

also shed light on the cell associated form of NS1, which is still unknown (Muller & 276!

Young, 2013). The NS1 hexamer is held together by only weak hydrophobic interactions 277!

that are disrupted to dimers by detergent treatment (Flamand et al., 1999), such as those 278!

required for cell lysis. The observation of higher order oligomers formed by NS1' may 279!

indicate that the subtle increase in stability seen for WNVKUN NS1' is enough to allow us 280!

to observe the natural state of intra-cellular NS1' without the need for cross-linking.  281!

One key characteristic examined here is the cellular retention of NS1', despite the 282!

absence of a distinct hydrophobic region in the frameshifted sequence. This increase in 283!

cellular retention compared to NS1 was also linked to the last 20 amino acids of NS1' as 284!

shown by more efficient secretion of the Stop Mutant NS1' lacking the last 20 amino 285!

acids. It is possible that the increase in secretion of NS1' in cells infected with Stop 286!

Mutant may not be due to the loss of a potential cell retention signal in the final 20 amino 287!

acids of NS1'. Instead, it is possible that, unlike the heat-stable dimers seen for NS1', this 288!

characteristic is dependent on the length of its C-terminal extension. Due to the nature of 289!

the ribosomal frameshift, and NS1' being encoded in the -1 open reading frame of NS2A, 290!

it is not possible to create an alanine mutant in the viral context similar to the one 291!

generated for the plasmid-expressed NS1' alanine mutant, without affecting the coding 292!

sequence of the NS2A gene. One way to determine if cellular retention is due to a 293!

specific sequence, or a minimum length requirement, would be to examine the secretion 294!

of NS1' in other flaviviral species, such as JEV and MVEV, and create similar truncation 295!

mutants. Interestingly, the sequence of the frameshifted region is not well conserved 296!
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between WNVKUN, WNVNY99, JEV and MVEV viruses (Fig. 8) however JEV NS1' has 297!

also been shown previously to be inefficiently secreted (Fan & Mason, 1990). If 298!

truncation of NS1' in other flaviviral species also results in increased NS1' secretion 299!

compared to the wild type NS1', then the cellular retention of NS1' it is more likely to be 300!

dependent on its length rather than specific amino acids. Notably, while mutation in the 301!

Stop Mutant virus removing the last 20 amino acids increased NS1' secretion, the 302!

pathogenesis in mice of this mutant virus was similar to that of the wild type WNVKUN. 303!

This suggests that the inefficient secretion, while an intriguing characteristic of NS1' that 304!

is distinct from NS1, is unlikely to contribute significantly to virus virulence in the 305!

mammalian hosts.  306!

The presence of heat-stable, reducing-sensitive NS1' dimers suggested the 307!

presence of a disulfide bond; however, mutagenesis of the Cys residue within the 308!

frameshifted region indicates that it is not due to a simple interaction between the C-309!

terminal Cys residues of two monomers. It has previously been suggested (M. Lobigs, 310!

personal communication) that NS1 may itself catalyse disulfide bond exchange. Viral 311!

proteins have been identified previously to contain the disulfide isomerisation motif, 312!

CXXC (Li et al., 2008). NS1 contains a CXXC motif that is conserved for DENV, YFV 313!

and the JEV serogroup. These Cys residues (C10 and C11) have been shown previously 314!

to be important for dimer formation and NS1 secretion (Pryor & Wright, 1993). It is 315!

possible that the presence of the frameshifted region in NS1' may in fact impede folding 316!

of this C-terminally extended NS1 protein. The heat-stable dimers observed may 317!

therefore represent folding intermediates involving intermolecular disulfide bonds 318!

between covalently linked NS1' monomers. On the other hand, as these heat-stable 319!
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dimers appear to be secreted to some degree (Fig. 1 and 2), they are unlikely to represent 320!

misfolded protein, as this would be retained in the cell. However, only a small amount of 321!

NS1' is secreted from the cell, and it is therefore difficult to conclusively determine the 322!

dimer stability. Further work analysing the nature of these heat-stable NS1' dimers and 323!

the possibility of the involvement of NS1 part of NS1' in disulfide bond exchange is 324!

necessary. 325!

While the sequence of frameshifted region is not conserved between different 326!

encephalitic flaviviruses, the stop codon and consequently the length of the NS1' 327!

extension are (Fig. 8). This suggests that the PRF event leading to production of precisely 328!

52 amino acid extension at the C-terminus of NS1 protein may evolve to perhaps ensure 329!

that the PRF product, NS1', could function as additional NS1. Given efficient secretion of 330!

NS1 from cells, the ability of inefficiently secreted NS1' to function as NS1 in infected 331!

cells may provide additional benefit to viral RNA replication.  It seems highly unlikely 332!

that such a conserved mechanism as -1 PRF producing a stable NS1' protein has evolved 333!

in a distinct group of viruses without a significant impact on viral growth/transmission 334!

properties in at least one of the vector or host systems. Relatively modest attenuation in 335!

mice of PRF- and NS1'-deficient WNVKUN virus (A30A') (49) and our data showing 336!

insignificant attenuation of Stop Mutant WNVKUN in mice suggests that mammalian hosts 337!

are unlikely to be the primary driver for the evolution of this mechanism. As mammals 338!

are only incidental hosts for these viruses, and these viruses predominantly cycle through 339!

the Culex mosquito vector and avian hosts, it is more likely that this is where the PRF 340!

mechanism has initially evolved, and where it is likely to have a significant impact on 341!

virus replication and/or transmission. Recent work with WNVKUN and JEV viruses 342!
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conducted in the mosquito and avian systems supports this hypothesis, with a difference 343!

in pathogenicity in birds, virus growth in avian cell culture, and transmission in Culex 344!

mosquitoes observed between viruses encoding PRF and expressing NS1' and those 345!

lacking PRF and NS1' (Melian et al., 2014; Takamatsu et al., 2014). 346!

In conclusion, we have shown that WNV NS1' forms a sub-population of heat-347!

stable NS1' dimers that are produced and preferentially retained both in the content of 348!

virus infection and when the NS1' protein is produced independently from plasmid DNA. 349!

We have demonstrated that both the heat-stability and cellular retention can be linked to 350!

the last 20 amino acids of NS1', with dimerisation being specifically linked to the 351!

penultimate 10 amino acids. We have also shown that viral mutant producing truncated 352!

form of NS1' but not deficient in ribosomal frameshift (Stop Mutant) replicates with the 353!

same efficiency in cells of different origin and has a relatively similar virulence in mice 354!

to the wild type WNVKUN. In combination with previous work (Melian et al., 2014; 355!

Melian et al., 2010), this suggests that the PRF itself (and not the NS1' protein) is 356!

important for viral pathogenesis in the mammalian system. Further work in the mosquito 357!

and avian hosts using Stop Mutant producing truncated NS1' will determine whether full-358!

length NS1' is indeed required for viral replication/transmission in this vector-host system.  359!

 360!

MATERIALS AND METHODS 361!

Cell culture. Baby hamster kidney (BHK) and Vero76 (African green monkey) 362!

cells were maintained in Dulbecco’s modified eagle medium (DMEM) (Gibco, USA) 363!

supplemented with 5% heat inactivated Fetal Calf Serum (FCS), 100 U/mL penicillin, 364!

100 µg/mL streptomycin and 2mM glutamax. Mouse embryonic fibroblasts (MEF) and 365!
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human embryonic kidney (HEK) 293T cells were also grown in DMEM supplemented 366!

with glutamax and penicillin/streptomycin as above, with a total of 10% FCS. HEK 293T 367!

cells were also grown in 1 mM sodium pyruvate. Aedes albopictus cells (C6/36) were 368!

grown and maintained in RPMI media (Gibco, USA), containing 10% FCS, glutamax and 369!

penicillin/streptomycin as above.  370!

Plasmid construction (i) pcDNA plasmids. Plasmids for the transient expression 371!

of NS1 and NS1' (pcDNA-NS1 and pcDNA-NS1') were described previously (Young et 372!

al., 2013). Both plasmids contain an N-terminal signal sequence consisting of the last 26 373!

codons of the WNVKUN E protein and Myc and Flag tags at the C terminus. Overlapping 374!

PCR mutagenesis using Pfu DNA Polymerase (Promega) was carried out on pcDNA-375!

NS1' to generate a plasmid containing an amino acid change at residue 392 (NS1' C392S) 376!

for cysteine mutagenesis. Overlapping PCR mutagenesis was also used to delete 10 or 20 377!

amino acids from the C-terminus of NS1' for truncation analysis, and to introduce several 378!

point mutations to change amino acids 385-393 to alanine (NS1'Ala). These reactions 379!

were subsequently transformed into E.coli DH5α cells and potential clones screened by 380!

restriction enzyme digestion prior to sequencing. Positive clones were used to inoculate 381!

LB broth and plasmid DNA was purified by NucleoBond®Xtra Midi/Maxi kit as per 382!

manufactures instructions. (ii) FLSDX mutants. Stop Mutant was generated by 383!

overlapping PCR mutagenesis on an intermediate E-NS2A cassette, prior to restriction 384!

enzyme digestion and ligation into full-length WNVKUN infectious clone, FLSDX 385!

(Khromykh et al., 1998).  386!

Transfection conditions. 293T cells were seeded at 80-90% confluency in 387!

antibiotic free media 24 h prior to experiments. Transfections were carried out using 388!
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Lipofectamine® 2000 (Invitrogen), according to the manufacturer’s instructions. A ratio 389!

of 0.8µg DNA to 2µL reagent for a 24-well plate was used as standard, and scaled 390!

appropriately for well size. 391!

In vitro transcription and electroporation. Full length cDNA templates 392!

(FLSDX and mutants) were linearised with XhoI (New England Biolabs) and purified by 393!

phenol-chloroform extraction and ethanol precipitation. In vitro transcription and 394!

electroporation of BHK cells was carried out as described previously (Leung et al., 2008), 395!

virus stocks were harvested at 2 to 4 days post electroporation and titrated on BHK cells. 396!

Virus stocks. Working virus stocks for WNVKUN, A30A' and Stop Mutant were 397!

generated by infection of BHK cells at low multiplicity of infection (MOI=0.1) with 398!

WNVKUN or mutant viruses harvested from electroporated BHK cells. Stocks were 399!

harvested at day 3 to 5 post infection and titrated as above. WNVNY99 stock was 400!

generated by infection of Vero76 cells with virus harvested from BHK cells 401!

electroporated with RNA transcribed from infectious cDNA clone of NY99 4132 isolate 402!

as described previously (Audsley et al., 2011). JEV FU strain, first isolated in 1995 403!

(Hanna et al., 1996), and MVEV 1-51, first isolated in 1951 (French, 1952), were kindly 404!

donated by Roy Hall.  405!

Virus infection and growth kinetics. BHK, WT MEF or C6/36 cells were 406!

seeded into 6-well plates and infected with WNVKUN or mutant viruses at an MOI of 0.1 407!

or 1 for 2 h. Cells were washed 3X and appropriate growth media was added. For growth 408!

kinetics, 100 µL per sample was harvested at the indicated times post infection, clarified 409!

by centrifugation and stored at -80°C. Virus titres were determined by plaque assay as 410!

previously described (Leung et al., 2008).  411!
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SDS-PAGE and Western blotting. Sodium dodecyl sulfate polyacrylamide gel 412!

elecrophoresis (SDS-PAGE) was carried out using either a Mini-PROTEAN® Tetra 413!

Handcast system (Bio-Rad®) or Bolt® Mini-Gel system (Novex®). Using the Mini-414!

PROTEAN® system, SDS-PAGE gels were prepared with a 10% resolving and 4% 415!

stacking gel. Bolt® 4-12% Bis-Tris Plus Gel (Novex®) were used with the Bolt® Mini-416!

gel system. To carry out SDS-PAGE, cell lysate was added to 4X NuPAGE® LDS-417!

PAGE loading buffer (Novex®) and samples were heated (70°C for 10 min) or left 418!

untreated as indicated. Protein samples were loaded into an SDS-PAGE gel in Tris-419!

Glycine running buffer and electrophoresed for 1 to 2 h (as required for separation) at 420!

130V (Mini-PROTEAN® system) or 200V (Bolt® system). Following SDS-PAGE, 421!

samples were transferred from the gel to a nitrocellulose membrane (GE Healthcare 422!

Hybond-ECL) using the Mini Trans-Blot System (Bio-Rad®). Membranes to be 423!

immunoblotted were removed from the transfer apparatus and washed in 1X PBS Tween-424!

20 (PBST) followed by blocking with 2.5% non-fat milk (Bio-Rad) in PBS overnight at 425!

4°C. The blocking solution was removed by 3 x 5 min washes with PBST prior to 426!

incubation with the primary antibody at an appropriate dilution in 2.5% non-fat milk for 1 427!

h at room temperature. Primary antibody was removed by 3 x 10 min washes in PBST 428!

and incubated with the secondary antibody at an appropriate dilution in PBST for 1 h at 429!

room temperature protected from light. The secondary antibody was removed by 3 x 10 430!

min washes in PBST and signal from membranes was detected using Odyssey machine.  431!

Immunofluorescence. Vero76 cells were infected with either WNVKUN or Stop 432!

Mutant at an MOI of 10 and fixed at 24 h postinfection (hpi) in 80% acetone in PBS. 433!

Fixed cells were blocked and subsequently co-stained with 4G4 and an antibody 434!
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recognizing a marker of the ER (rabbit polyclonal antibody against calnexin [Sigma-435!

Aldrich]). Alexa Fluor 488-conjugated anti-mouse and Alexa Fluor 555-conjugated anti-436!

rabbit antibodies (Invitrogen) were used for secondary labelling. Nuclei were 437!

counterstained with DAPI and images captured using an LSM510 META confocal laser-438!

scanning microscope (Carl Zeiss). 439!

Radiolabelling. Pulse-chase analysis was carried out in 6-well plates of infected 440!

Vero cells (infected at MOI=1 with WNVKUN or mutant viruses) or transfected 293T cells 441!

(transfected with pcDNA-NS1, pcDNA-NS1' or both plasmids) at 24, 48 or 72 hours. At 442!

24 and 72 hpi or 24 and 48 h post-transfection, cells were starved for 30 min in 443!

methionine and cysteine free DMEM (Gibco), followed by labelling for 1.5 hours with 444!

100µCi 35S-methionine. After labelling, cells were washed once in PBS and twice in 445!

DMEM, and chased for 0, 1, 4 or 12 h in DMEM supplemented with 5% heat FCS, 100 446!

U/mL penicillin, 100 µg/mL streptomycin and 2mM glutamax. Following radiolabelling, 447!

cell monolayers were placed on ice and the culture fluids were removed, clarified by 448!

centrifugation at 1500 g for 5 min, and mixed with equal volume of 2X lysis buffer (20 449!

mM Tris-HCI, pH 7.5, 150 mM NaCI, 10 mM EDTA, 2% sodium deoxycholate, 2% 450!

Triton X-l 00, 0.2% sodium dodecyl sulfate (SDS) containing a 2X concentration of 451!

cOmplete protease inhibitor cocktail (Roche)). The cell monolayer was rinsed with ice-452!

cold PBS (pH 7.4), scraped from the plate in 1X lysis buffer (10 mM Tris-HCI, pH 7.5, 453!

150 mM NaCI, 5 mM EDTA, 1% sodium deoxycholate, 1% Triton X-l 00, 0.1% SDS) 454!

containing protease inhibitors, incubated for 30 min on ice, and clarified by 455!

centrifugation for 10 min at 14,000 g. Resulting protein preparations, both from culture 456!

fluid and cell monolayer, were immunoprecipitated with 4G4 using 25µL Dynabeads® 457!
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Protein G per sample according to the manufactures instructions. Briefly, beads were 458!

incubated with the described amount of antibody diluted in 200 µL PBST per sample for 459!

30 min then washed to remove unbound antibody. The Dynabead®/antibody complex 460!

was incubated for 1 h at room temperature with the appropriate protein sample. 461!

Subsequent washes were carried out with PBS and proteins were eluted in 30 µL of 462!

elution buffer (20 µL 50mM Glycine at pH2.8 plus 10 µL NuPAGE LDS Sample Buffer). 463!

Eluted proteins were loaded onto SDS-PAGE gels, electrophoresed and labelled proteins 464!

were transferred to nitrocellulose membranes. Membranes were exposed to a phosphor 465!

screen and scanned on a Typhoon scanner (GE Healthcare) or exposed to X-ray film in an 466!

X-ray cassette at -80°C and developed. 467!

Virulence in mice. Groups of ten to twenty 18-day-old CD1 mice were infected 468!

intraperitoneally with 1000 plaque forming units (pfu) of either WNVKUN or Stop Mutant 469!

virus. Mice were monitored daily for signs of illness and euthanized when encephalitic 470!

symptoms were evident.  471!
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 654 

FIG 1 NS1' is secreted to a lower degree compared to NS1 from infected cells. (a-b) 655 

Production and secretion of NS1 and NS1' from Vero cells infected with WNVKUN or 656 

A30A'. Pulse-chase was performed at (a) 24 or (b) 72hpi, culture fluids were clarified by 657 

centrifugation and cell monolayers were lysed as described. Protein preparations were 658 

immunoprecipitated with anti-NS1 (4G4) using Dynabeads® Protein G. Antibody-bound 659 

proteins were eluted and samples subjected to electrophoresis. Labeled proteins were 660 



 2 

transferred to nitrocellulose membranes and exposed to phosphor screen for 1 day. (c) 661 

Extracellular/intracellular ratio for NS1 (dark bar) and NS1' (white bar) produced by 662 

infected cells. Results are expressed as the mean ± SEM of two independent experiments. 663 

  664 
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 665 

FIG 2 NS1' is secreted to a lower degree compared to NS1 from transfected cells. (a-666 

b) Production and secretion of NS1 and NS1' from transfected or co-transfected 293T 667 

cells. Pulse-chase was performed at (a) 24 or (b) 48 hours post transfection and samples 668 

processed as outlined in FIG 1. (c) Extracellular/intracellular ratio for NS1 and NS1' at 24 669 

or 48 h post transfection (with a 4 h or 12 h chase) from singly-transfected (dark or white 670 



 4 

bar, respectively) or co-transfected cells (medium grey or light grey bar, respectively). 671 

Results are expressed as the mean ± SEM of two independent experiments and statistical 672 

significance (* [P = 0.01] or *** [P = 0.001]) determined by 2-way ANOVA. 673 

  674 



 5 

 675 

FIG 3 Heat-stable NS1' dimers are unique to WNV infected cells. (a) Western blot 676 

showing expression of NS1 and NS1' from WNVKUN and NS1 only from A30A' mutant 677 

infected Vero76 cells. Lysates were heat denatured or left untreated and analyzed by 678 

Western blotting with anti-NS1 (4G4). (b) Lysates harvested from JEV, MVEV, 679 

WNVNY99 and WNVKUN infected C6/36 cells were heated (70°C for 10 min) or left 680 

untreated and proteins were separated by polyacrylamide gel electrophoresis. Proteins 681 

were transferred to nitrocellulose membranes and NS1 and NS1' were detected with anti-682 

NS1 (4G4). 683 

  684 
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 685 

FIG 4 Stability of NS1 and NS1' dimers. (a-b) Lysate from (a) transfected or (b) 686 

infected cells was incubated with 1M glycine at the indicated pH prior to separation by 687 



 7 

electrophoresis and western blotting with anti-NS1 (4G4). (c-d) Lysate from (c) 688 

transfected or (d) infected cells was incubated at the indicated temperature for the time 689 

shown prior to separation by electrophoresis and western blotting anti-NS1 (4G4). Top 690 

panel is either pcDNA-NS1 transfected (a and c) or WNVKUN infected (b and d) and 691 

bottom panel is either pcDNA-NS1' transfected (a and c) or A30A' infected (b and d). (e) 692 

Anti-NS1' western blot showing sensitivity of NS1' homodimers to reducing treatment. 693 

Lysates from WNVKUN infected Vero76 cells (lanes 1 and 2) or pcDNA-NS1' transfected 694 

293T   cells   (lanes   3   and  4)  were   reduced  with   5%  β-mercaptoethanol and subsequently 695 

heat denatured or left untreated prior to Western blotting.  696 

  697 
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 698 

FIG 5 Identification of region in WNV NS1' responsible for formation of heat-stable 699 

NS1' dimers. (a) Design of C-terminally truncated (NS1'del10 and NS1'del20) or 700 

mutated (NS1'Ala and NS1' C392S) pcDNA-NS1' constructs to assess the region of NS1' 701 

contributing to heat-stable dimers. All plasmids retain C-terminal Myc and Flag tags from 702 

original pcDNA-NS1' plasmid. Underlining shows the frameshifted region of NS1', 703 

boxed nucleotides show mutated bases and asterix (*) shows stop codons. (b) Lysates 704 

harvested from HEK293T cells transfected with pcDNA-NS1, -NS1', -NS1'del10, -705 

NS1'del20, -NS1'Ala or -NS1' C392S were heated (70°C for 10 min) or left untreated and 706 

proteins were separated by polyacrylamide gel electrophoresis. Proteins were transferred 707 

to nitrocellulose membranes and detected with anti-NS1 (4G4).  708 

  709 
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 710 

FIG 6 Last 20 amino acids of NS1' are important for cellular retention of NS1'. (a) 711 

Design of C-terminally truncated (Stop Mutuant) infectious viral clone. Underlining 712 

shows the frameshifted region of NS1' and asterix (*) shows stop codons. (b) Lysates 713 

harvested from Vero76 cells infected with WNVKUN or Stop Mutant were heated (70°C 714 

for 10 min) or left untreated and proteins were separated by polyacrylamide gel 715 
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electrophoresis. Proteins were transferred to nitrocellulose membranes and detected with 716 

anti-NS1' antibodies. (c) Immunofluorescence analysis showing localization of NS1 and 717 

NS1' in WNVKUN and Stop Mutant infected cells. Infected cells were fixed and stained 718 

with anti-NS1 (4G4; green) and an antibody against calnexin (ER marker; red). (d) 719 

Production and secretion of NS1 and NS1' from Vero cells infected with WNVKUN or 720 

Stop Mutant. Pulse-chase was performed at 24 and 48hpi and samples processed as 721 

outlined in FIG 1. (e) Quantification of secreted NS1' band intensity from WNVKUN or 722 

Stop Mutant infected cells at 24 hpi (dark or medium grey bar, respectively) and 48 hpi 723 

(light grey or white bar, respectively). Results are expressed as the mean ± SEM of two 724 

independent experiments and significance (**** [P < 0.0001] or ** [P < 0.005]) 725 

determined by 2-way ANOVA. 726 

  727 
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 728 

FIG 7 Twenty amino acid C-terminal truncation of NS1' does not significantly affect 729 

viral replication in cells or viral pathogenesis in mice. (a) Kinetics of viral replication 730 

of WNVKUN and Stop Mutant in Vero76, C6/36 or MEF cells. Cells were infected at 731 

MOI=1 or 0.1 and viral accumulation was determined up to 120 hpi by plaque assay as 732 

described previously (Leung et al., 2008). (b) Virulence of WNVKUN and Stop Mutant 733 

viruses in 18-day old weanling Swiss-outbred CD1 mice. Groups of ten (experiment 1) 734 
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and twenty (experiment 2) mice were infected intraperitoneally with 1000 pfu of each 735 

virus and monitored daily for signs of encephalitis. The graph shows survival rates 736 

calculated from the data combined from two experiments.  737 

  738 
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 739 

FIG 8 Alignment of 52 amino acid C-terminal extension sequences in NS1' of the 740 

key representative viruses from JEV serogroup. Dashes (-) indicate amino acids 741 

consistent with WNVKUN and asterisk (*) shows stop codons. Virus sequences used: 742 

WNVKUN – GenBank:AY274504; WNVNY99 – GenBank:NC_009942; JEV – 743 

GenBank:NC_001437; MVEV – GenBank:NC_000943. 744 
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