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ABSTRACT 

In situ recovery (ISR) has become an increasingly utilized technology 

worldwide for the economical extraction of uranium (U). Microorganisms play 

a significant role in U mobilization/immobilization and have therefore been 

used for the bioremediation of U contaminated sites. In natural environments 

a wide range of microorganisms have the ability to oxidize or reduce U 

compounds as part of their metabolism. Hence, microbiota are very likely to 

play an important role at all stages of U ISR, however the effect of resident 

microbial communities subject to ISR has not been investigated. Therefore, 

this review focuses on the interactions between microorganisms and U and 

the possible effects this could have on ISR operations. Microorganisms may 

affect ISR in either a positive or negative way, e.g. assisting in U mobilization 

via the oxidation of U or immobilizing U by reducing it into an insoluble form. 

The use of native microbial communities to influence the 

mobilization/immobilization of U during ISR could help to increase U recovery 

rates or speed-up post-mining remediation. 

 

Abbreviations 

GHG: Greenhouse gas; ISR: in situ recovery; XFM: X-ray fluorescence 

mapping. 
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Introduction 

With the effects of global warming being felt world-wide, there has never been 

a stronger, more vocal push to protect the stable, yet fragile environment 

which Earth‘s creatures inhabit. Governments are being called upon to make 

urgent, yet dramatic changes to implement legislation, which may help to 

mitigate global warming. In addition to the environmental impacts of climate 

change, Stern (1) estimates that global warming could decrease global GDP 

by as much as 25 % by 2090, while reducing our Greenhouse Gas (GHG) 

emissions to offset global warming would only cost about 1 % of the current 

global GDP. We therefore must make changes to the amount of GHG being 

emitted into the Earth‘s atmosphere and those changes must be made 

expeditiously. The major source of GHG emissions is the use of fossil fuels to 

produce energy (2). To cut down GHG emissions it is imperative that we find 

energy producing solutions that do not require the use of fossil fuels (which, in 

itself is a limited, increasingly scarce resource). Such technologies exist and 

include ―renewable‖ energies, such as wind, solar and geothermal energy, as 

well as nuclear. Of these solutions nuclear energy is seen as an attractive 

alternative to fossil fuels in many countries, with 430 nuclear power stations 

currently in operation and 70 under construction across 31 countries 

worldwide. Proponents of nuclear technologies argue that it produces more 

power, with often lower costs than ―renewable‖ energy sources (3, 4). In 2009, 

Adamantiades and Kessides (3) stated that nuclear power had contributed to 

a 10 % reduction in CO2 emissions from energy production. The 4th 

generation nuclear reactor designs being developed by a US-led association 

of 13 countries may help to address some of the concerns that traditionally 
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come with the use of nuclear technologies, further promoting the use of 

nuclear power (3). Hence, it appears that nuclear energy is here to stay and 

future energy needs will be increasingly met through nuclear energy in some 

countries. 

 Driven by the world‘s ever-increasing need for nuclear power, uranium 

(U) consumption has been rapidly increasing (Figure 1). Conservative 

estimates speculate that the annual demand for U in 2030 will reach between 

80,000 t and 148,500 t (5), increasing by 50 to 179 % from the 58,000 t 

having been being produced in 2012 (Figures 2). Kazakhstan (36.5%), 

Canada (15%) and Australia (12%) currently account for approximately 63.5% 

of the world‘s U production (Figure 2). Uranium has been mined using 

underground mining, open pit mining or in situ recovery (ISR) methods from a 

great diversity of deposits (7). Over the past two decades, the use of ISR has 

been progressively increasing and now accounts for 45% of the worlds U 

production (6). The Chinese appear to have been the first to use ISR for the 

extraction of copper in 907 A.D., with references of solution mining dating 

back to 177 B.C. (8, 9). This was proceeded with the ISR of elemental sulfur 

by the French and gold by the Russians (8, 9). During the 1960‘s the ISR of U 

was developed by the USA and the Soviet Union (10). By the 1990s ISR 

accounted for 95% of U mined in the USA, and the technology is being 

increasingly globally applied (6, 11). 

 In situ recovery of U involves drilling boreholes into the ore deposit 

(12); pumping a leaching solution down injection boreholes; flowing the 

solution through the mineralized horizon so it can dissolve the ore; retrieving 

the solution from production boreholes; and extracting U from the solution in a 
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plant at the surface (Figure 3). The solution may travel through the ore via 

natural rock porosity, or via porosity generated by mineral dissolution (acid 

leach) or artificial fragmentation (hydraulics or explosives). The leaching 

solution can be alkaline or acidic depending on the mineralogical and 

geochemical properties of the deposit. In the USA U recovery by ISR uses 

mainly alkaline chemistry, while in Russia, Kazakhstan, Australia and Asia 

acid is generally used (10, 13). Acid is used when carbonate content is less 

than 1.5-2% and is the preferred technique as recovery rates are typically 

higher than when using alkaline leaching methods (10). However, a good 

understating of hydrogeology and extensive monitoring are required as the 

use of acid can lead to heavy metals and radionuclides being mobilized and 

leached into the environment, contaminating ground water supplies. 

Despite these issues, ISR allows for the recovery of U without the need 

for removing the ore body from the ground (Figure 3). Hence, ISR of U holds 

many advantages over traditional open pit or underground mining methods, 

including: 

 Reduced environmental impact. 

The surface environmental footprint of ISR is substantially smaller 

compared to other mining methods. Brierley (14) states that as the 

world‘s populations become more urbanized, people will live closer to 

mining operations and ISR is a technology which markedly reduces the 

surface impacts of mining. Low grade U deposits, which are produced 

using open pit or underground mining methods result in large tailings 

dams contaminated in U and radionuclides; such tailings are not 

generated by ISR (15). 
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 Reduced safety hazards. 

The use of ISR has been reported to substantially reduce the radiation 

dosages experienced by mine-site employees and reduce hazards 

associated with the movement of large quantities of ore and waste rock 

(16). 

 Reduced production costs. 

Increasing environmental restrictions on U mining coupled with the 

prevalence of low-grade ore deposits and increasing energy costs has 

meant that ISR has become an attractive, economically viable 

extraction method for many U deposits. 

 

In view of the push to apply ISR technology to a wider range of 

deposits of ever decreasing grades and with increasingly stringent 

environmental and safety requirements, there are still a number of issues that 

need to be addressed in order to realize the full potential of U ISR: 

 Uranium dissolution as a result of ISR is not well understood. 

Heterogeneous hydrogeological, mineralogical, geochemical and 

geobiological conditions mean that the recovery rates from ISR vary 

greatly, and are often lower than using conventional methods (typically 

70-90% recovery using acid leaching, and 60-70% recovery from 

alkaline leaching (10)). 

 The consumption of the leaching solution by ‗parasite‘ reactions and 

reduced porosity of materials must be addressed. 

Acid leaching (mainly sulfuric acid) is the predominate form of U ISR, 

because of its low cost, availability, and relatively high recovery rates 
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(17). For acidic ISR the ore zone should contain less than 2 % calcium 

carbonate; at higher concentrations alkaline leaching is required, which 

is often less effective than acid leaching (10). Reduced porosity, which 

can be caused by the growth of biofilms or the formation of gypsum 

can greatly decrease the effectivity of leaching and is another major 

problem for acid ISR operations (13). 

 The activity of leaching solutions must be closely monitored. 

Thorough monitoring and control of leach solutions must be conducted 

in order to prevent the spread of U, other radionuclides and metals into 

previously uncontaminated groundwater. For example due to the 

mismanagement of an acid ISR U mine towards the end of the 1960s 

in Stráž, Czech Republic, 186 million m3 of groundwater across 24 km2 

was contaminated with 980,000 t of sulfuric acid, 415 t of dissolved 

aluminum and 1,000 t of dissolved U (10, 18-20). 

 Mine sites must be remediated to pre-mining use category. 

Post-mining remediation of U ISR was overlooked for much of its early 

history (21). Although acid leach has led to major environmental 

disasters, by the end of the 1980s the Nuclear Regulatory Commission 

concluded that there were no significant long-term environmental 

effects from alkaline ISR (22). Despite this, there will be tighter 

environmental standards to which mine sites must be remediated and 

this will continue to be an issue for the mining industry. Additionally, 

current clean up costs of alkaline leach operations worldwide can run 

into the billions of dollars (21).  
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One aspect of U ISR that has remained largely overlooked, and yet 

could help to mitigate some of the issues listed above as well as improve ISR 

efficiency, is the use of in situ microbial communities to mediate U 

immobilization/mobilization by promoting dissolution/precipitation of U-bearing 

minerals. It is well established that microorganisms are key players in 

elemental cycles on Earth, e.g., the carbon, nitrogen, sulfur and phosphorous 

cycles, and strongly influence the mobility of a wide range of metals, e.g., iron, 

manganese, gold, copper and U (23). However, the impact of microorganisms 

on ISR has not been investigated despite the fact that many studies have 

shown that microbiota can have a dramatic effect on U mobility (24-31).  

 

Microbial interactions with uranium 

The transformation of U by microorganisms through the reduction of 

U(VI) to U(IV) impacts both the state and distribution of U in the environment 

(26).   Microorganisms are able to use U as an energy source, and a wide 

range of different microorganisms have the ability to transform U: in general, 

aerobic, metal-oxidizing microorganisms catalyze the oxidation of reduced 

metals, hence solubilizing and mobilizing U; while anaerobic microorganisms 

catalyze metal reduction, hence immobilizing U (32, 33). For example, some 

bacteria increase U mobility via the production of acid during iron and sulfur 

oxidation (i.e., bioleaching) (34-37); whereas others limit U mobility by 

reducing uranyl and forming highly insoluble nano-particles of secondary 

U(IV) minerals, such as uraninite (26) and coffinite (38). Hence, microbiota 

are very likely to play an important role at all stages of ISR: they can affect U 
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recovery rates in both positive and negative ways, and play a fundamental 

role in mine site remediation. Microorganisms may be able to assist in a 

number of processes that occur during ISR; conversely microorganisms are 

currently playing a yet-undefined role in ISR operations. Iron and/or sulfur 

oxidizing microorganisms may assist in U dissolution, when U is found in 

association with sulfidic ores (36) (for example, Figure 4); dissimilatory metal-

reducing microorganisms can solubilize U, assisting in U processing and 

bioremediation (39, 40); and, microorganisms present in aquifers may affect 

the ISR of U by ‗locking up‘ intracellular U (41). 

 

Microbial uranium solubilization 

Aerobically, microorganisms can directly (enzymatically) or indirectly 

(chemically) oxidize U. Indirect, microbially assisted oxidation of U(IV) to U(VI) 

is used for the recovery of U from low-grade ores worldwide (34, 35, 42). 

During this process iron and/or sulfur oxidizing microorganisms metabolize 

the iron and/or sulfur in the ore, producing Fe(III) and sulfuric acid, which act 

as effective oxidants for the insoluble U(IV) within the ore (36, 42-45); 

 

4 Fe2+ + O2(aq) + 4H+   4 Fe3+ + 2 H2O    (1) 

[microbial, aerobic]  

 

UO2(s) + 2Fe3+  UO2
2+ + 2Fe2+   (2) 

[inorganic - with Fe3+ from equation 1] 
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UO2
2+ + SO4

2-   UO2SO4(aq)  (3) 

[complexation with sulphate, enhances uranyl mobility] 

 

UO2(s) + 2H+ + ½O2  UO2
2+ + H2O  (4) 

[inorganic and microbial] 

 

5 UO2(s) + 2 NO3- + 12 H+  5 UO2
2+ + 2 N2 + 6 H2O  (5) 

[microbial, anaerobic] 

 

In some instances pyrites have been added to leaching solutions, providing 

microorganisms with the fuel to assist in the dissolution of U (44, 46). 

According to free energy calculations, it was hypothesized that some metal-

oxidizing microorganisms maybe able to directly oxidize U(IV) to U(VI) 

(Equation 4) (37, 45, 47-49). However, at the time of these calculations, there 

was no direct evidence for the existence of microorganisms with such 

capabilities (45). In 1982, DiSpirito and Tuovinen demonstrated that the 

bioleaching microorganism, Acidithiobacillus ferrooxidans (formally 

Thiobacillus ferrooxidans), oxidized U(IV) at pH 1.5, conserving the energy 

during oxidation and then using it for carbon dioxide fixation. Bioleaching with 

iron and/or sulfur oxidizing microorganisms can only occur aerobically, 

presenting a major hindrance for ISR, which takes place in the subsurface 

(37, 48). However, during long-term studies of contaminated Oak Ridge 
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sediments high levels of dissolved oxygen have been shown to solubilize 

U(IV), despite the presences of U(VI) reducing microorganisms (50-55). In 

these samples the iron(II) oxidizing bacterium, Thiobacillus, which is able to 

oxidize U(IV) anaerobically in the presence of nitrate, was detected (Equation 

5) (55-57).  

The anaerobic oxidation of U(IV) can also occur via direct and indirect 

mechanisms. Heterotrophic and autotrophic, dissimilatory nitrate-reducing 

bacteria, have been shown to oxidize Fe(II) and U(IV) when nitrate serves as 

electron acceptor under anaerobic, near neutral conditions (57-59). The 

energy gained from U(IV) oxidation is not used for cellular growth, rather it is 

coupled to nitrate reduction (57-60). Microorganisms may employ extracellular 

proteins to anaerobically oxidize U(IV) (49, 61-63). Kalinowski et al. (49) 

showed that microorganisms can leach U anaerobically, possibly due to the 

production of chelators. Using three facultative anaerobes, Kalinowski et al. 

found that after five days 0.005% of U was leached from the ore at anaerobic, 

neutral to alkaline conditions.  

Studies of bioremediation sites have shown on multiple occasions that 

the anaerobic oxidation of U(IV) occurs in the environment (50-55). The 

closure of the mine at Ranstad, in the north of Sweden, resulted in the 

leaching of U into surrounding areas (49, 64). To stop this process, the mine 

was covered, rendering it anaerobic; despite this measure metals were still 

being leached from the mine. Studies of a U.S. Department of Energy site 

also found that U(IV) was being reoxidized, and attributed this to the presence 

of Anaeromyxobacter and Geobacter spp. which can oxidize U(IV) in the 
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presence of nitrate (29, 53, 58, 65, 66). In addition, methanogens, which 

require anerobic conditions, produce methane which has been correlated to 

the remobilization of U(VI) (50, 67). During the bioremediation of the Rife site 

in Colorado, U(IV) oxidation was reported to occur following the addition of 

acetate to groundwater; the authors suggest that certain Dechloromonas spp. 

may have actually inhibited U(IV) reduction (68). 

This suggests that microorganisms can increase the solubility of U ore 

amenable to ISR, and hence further investigations of these processes could 

lead to improvements in ISR technologies. Based on studies of microbial 

composition and activities in U-bearing sediments and deep aquifers (28, 53, 

65), it is highly likely that geobiological reactions leading to U mobilization 

occur naturally in ISR operations, and supporting the growth of these 

beneficial microorganisms would increase leaching rates. 

 

Microbial reduction of uranium  

Microorganisms can also reduce U(VI), into the sparingly soluble U(IV), 

resulting in the formation of the minerals uraninite and coffinite, or the 

biosorption, bioaccumulation and biotransformation of U (24, 25, 40, 58, 69-

71). Some microorganisms can use U(VI) as an electron acceptor and a few 

of these microorganisms have been shown to conserve energy for growth 

from U(VI) reduction (39, 72-76). Microbial U(VI) reduction is also catalyzed 

via direct and indirect mechanisms, the metabolic byproduct of iron(III) and 

sulfate reduction can chemically reduce U(VI) (77, 78). The ability to reduce 

U(VI) is widespread amongst microorganisms (39, 73, 79-81) including 
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sulfate- and iron(III)-reducing microorganisms (72, 74, 75), as well as other 

microorganisms such as Deinococcus radiodurans (82), Clostridium spp. (83) 

and Lactobacillus spp. (84). The ability to reduce U has been reviewed 

elsewhere (32, 85), hence this review will focus on the microbial reduction of 

U(VI) solely in the context of utilization by the mining industry. 

The growth of U(VI) reducing (immobilizing) microorganisms during 

ISR could adversely impact dissolution rates, and the conditions which 

encourage the growth of U(VI) reducing microorganisms should be avoided. 

One practical solution to the presence of U(VI) reducing microorganisms 

could be the addition of nitrate, which is a thermodynamically more favorable 

electron acceptor for microorganisms than U(VI) (58, 86, 87). During 

processing, the ability of microorganisms to reduce U(VI) could be used to 

remove U(VI) from solution. Takehiko (84) found that Lactobacillus cells could 

remove ~2,370 µM of U per gram of dry weight cells from U-contaminated 

seawater. It has been proposed that such microorganisms could be 

immobilized on a polyacrylamide gel and repeatedly used as an absorbing 

agent for the recovery of U from nuclear fuel effluents, mine tailings, seawater 

etc. (81, 84).  

 The ability of microorganisms to reduce and immobilize U has been 

successfully utilized in the bioremediation of many sites globally (88). 

Bioremediation offers a cost-effective strategy for dealing with the 

contaminated relics of the cold war area, with over 7,200 km2 contaminated 

with radioactive wastes (30, 89, 90). However, the bioremediation of U 

remains a significant challenge as natural settings offer a diverse range of 

variables that can influence the resident microbial populations. Bioremediation 
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of U contaminated sites have been successfully conducted but they require 

constant monitoring and environmental customization (29, 65). Some sites, 

such as Oak Ridge (discussed above) have gone through U reduction, 

reoxidation followed by a final reduction phase until U contamination was 

contained to accepted environmental standards (50-55). Additionally, U 

mineralogy is complex, the U.S. geological survey recognizes 185 U (and 

thorium) minerals (17, 91). This demonstrates the need for continual research 

in the field of U bioremediation. 

Microorganisms can create U(IV) particles that are locked in cells, and 

as the live cells are attached onto mineral grains they cannot move with the 

leaching solution (92-94). Ray et    al. (41) recently showed that reduction and 

formation of nano-particulate U(IV) minerals is not the only mode by which 

microbiota affect U mobility, presenting evidence for the biota-mediated 

formation of U(VI) phosphates (Equation 6 and 7). Additionally, 

Thermoterrabacterium ferrireducens has been shown to couple organotrophic 

growth to the reduction of sparingly soluble U(VI) phosphate, precipitating 

U(IV) in the form of ningyoite (CaU(PO4)2.H2O) (95). In terms of ISR, the 

microbial uptake of U from solution could inhibit leaching, thus leaching 

conditions would be optimal when microbial uptake and complexation of U 

can be suppressed. 

 

Ca5(PO4)3F + 6 H+  5 Ca2+ + 3 H2PO4
- + F- (6) 

[microbial phosphate formation (96)]  
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2 UO2
2+ + 2 H2PO4

- + Ca2+ + xH2O  Ca(UO2)2(PO4)2.xH2O + 4 H+  (7) 

[inorganic uranium-phosphate complexation] 

 

Acidic versus alkaline ISR 

 The influence of microorganisms on U ISR would be substantially 

different for acidic or alkaline leaching. Acidic leaching occurs around a pH of 

2.0-3.0, whereas alkaline leaching occurs at pH 7.5-8.5, the microbial 

populations at these two pH ranges would vary significantly, as would their 

ability to mobilize U. At the acidic end of the spectrum, acidophilic iron and/or 

sulfur oxidizing microorganisms would assist in the leaching of U (37, 48). 

Under near neutral conditions, anaerobic U(IV) oxidation has been 

demonstrated, however under alkaline conditions microbial oxidation of U(IV) 

has not been demonstrated (97). In terms of ISR this means that microbial 

oxidation of U(IV) could especially occur during acidic ISR. However, results 

from bioremediation studies have shown that at neutral to alkaline pH, U(IV) 

oxidation continues to occur (50). At this site they found that the elevated 

levels of carbonate resulted in reducing conditions, making the oxidation of 

U(IV) thermodynamically favorable, however whether or not this was 

microbially mediated has yet to be determined. This demonstrates the 

complex interaction between U, the surrounding material and microorganisms.  

The microbial formation of phosphate, leading to the complexation and 

immobilization of U, has been demonstrated to occur at pH 3.5-8.2 (98), 

hence this process would impact both acidic and alkaline leaching. The 

reduction and immobilization of U(VI) by microorganisms occurs across a 

range of pH. At near-neutral pH, dissimilatory Fe(III)-reducing and/or sulfate 
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reducing microorganisms reduce U(VI) while Clostridium spp. can reduce 

U(VI) at pH 4.0 (99). Site-specific conditions could also exacerbate the effects 

of pH, for example varying concentrations of ferric hydroxides, manganese 

oxides or nitrates (85). The effect of pH on the net mobilization of U is 

complex and multifaceted with much basic research still required in the field.  

 

Uranium containing (palaeo) roll-fronts – A microbial perspective 

Uranium is mined from a wide range of deposits, including magmatic, 

hydrothermal, sedimentary and supergene deposits. Based on the ubiquity of 

microbial communities down to depths of several kilometers below the Earth‘s 

surface (100), it is likely that microbiota play a role in the cycling of U at many 

of these deposits post formation. The formation of some deposit styles may, 

however, occur as a result of direct and indirect microbial influences on the 

mobility of U. These types of deposits include calcrete-hosted and (palaeo)-

roll-front deposits (Figure 5). Calcrete formation in many environments is 

largely mediated by microbial processes and U-enrichment is likely the result 

of microbial co-precipitation of U with calcium carbonates and 

biomineralization of secondary U minerals, for example, carnotite and coffinite 

(100). Roll-front deposits typically are some of the largest deposit and are 

hence of high economic importance, especially as they have the advantage of 

being highly amenable to low-cost ISR. Roll-front deposits are generally 

hosted within permeable and porous sediments, most commonly sandstones 

and conglomerates (Figure 5). To form a roll-front deposit primary U is 

mobilized from a nearby source, and transported as soluble U(VI) complexes 

in the ground waters to a suitable host unit (Figure 5). The U transporting 
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groundwater is oxidizing, whereas the host unit is reducing, with high contents 

of organic carbon and biogenic sulfides, commonly pyrite (Figure 5). This 

results into deposition of U and other redox-sensitive elements (e.g., Se, V) at 

a migrating (i.e., ‗rolling‘) redox boundary. Tabular-style sandstone hosted 

deposits form via similar processes in similar environments, but display a 

different geometry. Roll-front deposits are currently mined in the United 

States, Kazakhstan and Australia. For example, the Frome Embayment in 

South Australia contains a number of sandstone-hosted deposits, including 

Honeymoon Well, Oban, Beverley and Four-Mile, the latter being one of the 

largest deposits of this kind worldwide. These deposits are hosted in 

palaeochannels filled with Cainozoic sediments and/or in Cretaceous and 

Cainozoic sediments; the U is sourced from U-rich Mesoproterozoic rocks of 

the Mount Painter Inlier and the Olary Domain of the Curnamona Province 

(101, 102). By directly or indirectly mediating the solubilization of U (discussed 

above) from the source materials microbial processes play a critical role for 

the transport of the U (Figure 5). Upon contact of oxidized U-bearing 

groundwaters, microbial communities metabolically reduce U(VI) to U(IV), 

Fe(III) to Fe(II) and sulfate to sulfide, leading to the immobilization of U 

(Figure 5). At Berverley, the reductive environment is also demonstrated by 

the presence of native metals such as Cu and Pb (103, 104). Microbially 

mediated biomineralization then leads to the formation of U-bearing sulfide 

minerals and secondary U minerals, such as uraninite and coffinite (Figure 5). 

For example Min et al. (2005) showed that uraninite and coffinite in high-

grade ore samples (U3O8>0.3%) from the Wuyiyi, Wuyier, and Wuyisan 

sandstone-hosted roll-front U deposits, Xinjiang, northwestern China were 
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biogenically precipitated and pseudomorphically replace fungi and bacteria 

(105). The authors suggested that U(VI), which was the sole electron 

acceptor, was likely to have been enzymatically reduced. They also showed 

that post-mortem accumulation of U may have also occurred through physio-

chemical interaction between U and negatively-charged cellular sites, and 

inorganic adsorption or precipitation reactions. The nano-particulate nature 

and geochemical composition (phosphorous-rich) of coffinite at the Berverly 

U-deposit, together with the absence of reductant preserved in many ore 

samples, led Wulser et al. (103) to suggest that bacterial reduction may have 

been the main ore-forming process for this particular orebody. A recent study 

by Ingham (2013) from a typical roll-front system in the Lake Frome 

embayment (abundant organic matter as reductant) showed the presence of 

U-bearing framboidal pyrite indicative of a microbial formation history (104). 

The stable isotope composition of pyrite (34S as low as -43.9) indicated a 

strong biogenic influence on sulfide formation, with abiogenically formed U-

bearing pyrites also present at the site. This is further evidence that biogenic 

and abiogenic processes are strongly interconnected during the formation of 

rollfront deposits.  

 

Conclusion 

The use of ISR is increasing worldwide and it is a technology that will 

progress into the future. ISR is a mature technology for U mining, and may 

serve as a platform for the development of this method to other commodities. 

Not only does the potential for using microorganisms in ISR exist, 

microorganisms undoubtedly play a yet-undetermined role in current U ISR 
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operations. In the case of sandstone-hosted deposits, the ISR process 

essentially involves reverse engineering the processes that led to the 

formation of these deposits. Acidophilic iron, sulfur and U oxidizing 

microorganisms contributed to the mobilization of U and other metals (36), a 

process common in many environments (27, 49, 78, 106, 107). A detailed 

understanding of microbial community structures and their functions will lead 

not only to improved understanding of ore formation processes and controls 

on ore grade and mineralogy, but also have direct implications for the 

optimization of the ISR process. In terms of microorganism communities, ISR 

provides new opportunities and challenges, which will increase the rate and 

diversity of microbial activity, as has been observed in the case of U-

contaminated aquifers (31, 53, 54, 65). Microorganisms can interact with U 

mobility in via a wide variety of pathways (e.g. direct oxidation and reduction 

of U; controlling oxido-reduction of species that interact with U (e.g., 

Fe2+/Fe3+); controlling release and speciation of solubility-controlling ligands 

such as PO4
2-), either assisting or hindering U extraction. Encouraging or 

retarding the growth of these microorganisms could improve U extraction 

rates. The opportunity exists here for researchers to frontier the development 

of microbially assisted ISR operations as well as further developing 

bioremediation strategies. 
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Figure One. World nuclear energy consumption. 

Data extrapolated from U.S. Energy Information Administration (108). 

 

Figure Two. World uranium production. 

Data extrapolated from (6). 

 

Figure Three. In situ leaching operation. Adapted from (109). 

 

Figure Four. Synchrotron X-ray fluorescence map of the distribution of U, Fe 

and Ti in a sandstone-hosted sedimentary ore from the Frome Embayment, 

South Australia. A. full image, covering a 2 x 0.6 cm2 area at 2 µm resolution.  

B. detail of a U-rich band. The red spheres correspond to biogenic pyrite. 

The images are modified from (110); they were obtained at the XFM beamline 

at the Australian Synchrotron (111) using the 384-element Maia detector (112, 

113). The X-ray images were processes and quantified using the GeoPIXE 

software (112). 

 

Figure Five. Model of uranium roll-front deposit 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
In Situ Recovery of Uranium  Page 35/36 

 
Graphical abstract 
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HIGHLIGHTS 

 45% of uranium is mined by in situ recovery worldwide 

 Microorganisms play a significant role in the mobilization/immobilization 

of uranium 

 Microorganisms could be used to increase uranium in situ leaching and 

recovery rates, as well as be part of remediation strategies 


