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Abstract1

Quantitative proteomics from low biomass, biofilm samples is not well documented. In this 2

study we show successful use of SWATH-MS for quantitative proteomic analysis of a 3

microbial electrochemically active biofilm. Shewanella oneidensis MR-1 was grown on 4

carbon cloth electrodes under continuous anodic electrochemical polarizations in a 5

bioelectrochemical system (BES). Using lactate as the electron donor, anodes serving as 6

terminal microbial electron acceptors were operated at three different electrode potentials7

(+0.71V, +0.21V & -0.19V vs. SHE) and the development of catalytic activity was monitored 8

by measuring the current traces over time. Once maximum current was reached (usually 9

within 21-29 hours) the electrochemical systems were shut off and biofilm proteins were 10

extracted from the electrodes for proteomic assessment. SWATH-MS analysis identified 704 11

proteins, and quantitative comparison was made of those associated with tricarboxcylic acid 12

(TCA) cycle. Metabolic differences detected between the biofilms suggested a branching of13

the S. oneidensis TCA cycle when grown at the different electrode potentials. In addition, the 14

higher abundance of enzymes involved in the TCA cycle at higher potential indicates an 15

increase in metabolic activity, which is expected given the assumed higher energy gains. This 16

study demonstrates high numbers of identifications on BES biofilm samples can be achieved 17

in comparison to what is currently reported. This is most likely due to the minimal 18

preparation steps required for SWATH-MS. 19

Abbreviations: BES, Bioelectrochemical systems; EET, Extracellular electron transfer; 20

TCA, Tricarboxylic Acid; IDA, Information Dependent Acquisition; NADP, Nicotinamide21

Adenine Dinucleotide Phosphate; NAD, Nicotinamide Adenine Dinucleotide; SHE, Standard22

Hydrogen Electrode; KCl, Potassium Chloride; NCBI, National Center for Biotechnology 23

Information24
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Introduction3

Bioelectrochemical systems (BESs) exploit microbial oxidation and reduction reactions to 4

catalyse extracellular electron transfer (EET) and cause electron flow between an anode and a 5

cathode [22]. Currently, there is great interest around EET research, as BESs have many 6

potential applications, including bioremediation and production of valuable chemicals and 7

fuels [22]. The more common microorganisms found to proliferate in BES anodic 8

compartments are dissimilatory metal reducing bacteria [11]. For an oxidation process at an 9

anode, dissimilatory metal reducing bacteria harness the energy generated through the 10

oxidation of simple substrates (e.g. fatty acids) and the transfer of electrons to the anode 11

electrode [19]. Here they form biofilms on anodes that perform EET and provide the current 12

to the BES [23].13

Shewanella and Geobacter species are the most intensively studied bacteria for extracellular 14

respiration in BES. Both are known to respire using solid electron acceptors by passing 15

electrons through redox-proteins dominated by c-type cytochromes for EET [27]. Shewanella 16

oneidensis MR-1 is extremely versatile in that it has the ability to reduce a wide array of 17

electron acceptors [18, 30].  It has 42 possible c-type cytochromes [16] and it is apparent that 18

alternative cytochromes are used within its respiration pathways, indicating modularity of the 19

electron transfer mechanisms of S. oneidensis [7]. There is much interest in the electron 20

transfer mechanisms of S. oneidensis with a recent study proposing that nanowires are 21

extensions of the outer membrane and periplasim and containing key cytochromes involved 22

for EET [21]. There have been several proteogenomic studies conducted on Shewanella [8, 9, 23

14, 24]. However, these studies focus specifically on proteomics with the aim to improve 24
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annotation of the genome and are not comparative in that they do not study Shewanella under 1

different conditions.2

Within the scope of BES, many studies to date combine electrochemical aspects, e.g. growing 3

active biofilm and optimizing current production, with microbial physiology. A recent study 4

demonstrated biofilms of Shewanella putrefaciens produced more current and more biofilm 5

with increasing anode potential [2]. Other studies also reveal a strong effect of the anode 6

potential on EET [10, 15]. Consequently, there is great interest to study the proteomic basis 7

of the adaptation of the model organism Shewanella oneidensis MR-1 to different electrode 8

potentials.9

Recent molecular investigations of BES biofilms have aimed to determine the mechanistic 10

details of the EET process [4, 13, 17, 25]. For example, examination of S. oneidensis gene 11

expression discovered that up-regulation of genes coding for certain respiratory proteins 12

(mtrABC, omA and cctA) occurred when using an electrode as opposed to oxygen or iron 13

citrate as the terminal electron acceptor [25]. Recently, the first quantitative proteomic study 14

was performed to determine details of EET [20]. Protein abundances of Arcobacter butzleri 15

ED-1 using either oxygen or a BES electrode as the terminal electron acceptor were 16

compared [20]. Notable findings were that two novel cytochromes, potentially involved in 17

EET, and flagellin were upregulated during growth on the electrode. These initial yet 18

pioneering studies applying ‘omic (including genomic, proteomic, transcriptomic or 19

metabolomic) approaches are providing unique insight into the mechanisms of EET.20

Further application of proteomics could be utilised to reveal metabolic and physiological 21

details of the microorganisms performing EET. However, BESs are often operated at a small 22

scale for convenience and to simplify operation. This becomes problematic for proteomic 23

studies that require enough biomass for adequate protein extraction, especially for 24
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quantitative analyses. Indeed it was apparent that cell biomass levels were a problem in the 1

Arcobacter study mentioned above [20], as replicate electrode samples were pooled for 2

quantitative iTRAQ analysis, and relatively low numbers of unique proteins were detected, 3

ranging from 115 to 233, from any particular sample. Consequently, these shortfalls limit the 4

outcomes of proteomic investigations of electroactive biofilms in BES.5

SWATH-MS is a recently developed approach that provides extensive label-free quantitation 6

of the measurable peptide ions in a sample [33]. The approach rapidly acquires high 7

resolution Q-TOF mass spectrometer data through repeated analysis of sequential isolation 8

windows (swaths) throughout the chromatographic elution range [6]. Of the few reports on 9

the use of SWATH-MS for bacterial proteomics, to our knowledge this is the first to use the 10

method on low biomass electrode biofilms.11

Here we compared the proteome of S. oneidensis to detect functional differences while 12

growing on an anodic electrode at different potentials. We show successful quantitative 13

proteomic analysis of the anodic Shewanella biofilm samples using SWATH-MS without the 14

need for fractionation, labelling or other procedures that can contribute to protein losses.15

Furthermore, as a result of the high numbers of identifications and quantitative data obtained 16

from this study, we propose this procedure is very well suited for proteomic studies of low 17

biomass biofilms.18

19

Materials and Methods20

Three sterile BESs were assembled under anaerobic conditions and filled with a defined 21

minimal medium for all experiments using 18mM of lactate as the electron donor, carbon 22

cloth as the electron acceptor and titanium wire as the counter electrode (refer to 23
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Supplementary Information for details of BESs operation). Each BES was inoculated with S. 1

oneidensis at a constant OD600. All experiments were conducted in triplicate anaerobically 2

under potentiostatic control using the Ag/AgCl reference electrode (3M KCl, BASi (USA)) at 3

30°C. S. oneidensis biofilms were grown at the anodes of bioelectrochemical reactors 4

polarised at +0.71, +0.21 and -0.19 V vs SHE. These batch chronoaperometric experiments 5

continued until near maximum currents were produced (Figure 1A). Anodic electrodes were 6

then removed from replicate BES reactors under anaerobic conditions and stored at -80°C. 7

Used medium was filtered and analysed for lactate and acetate concentration using HPLC8

(see the Supplementary Information for details).9

Protein extractions were performed to maximise protein yield from the whole electrodes 10

containing biofilms. Precise details are described in the Supplementary Information. In brief, 11

electrodes were submerged in extraction buffer and subjected to three freeze/thaw cycles and 12

sonicated to further lyse cells. The electrode was rinsed with additional extraction buffer 13

which was combined with the cell lysate. The extraction solutions were centrifuged to 14

remove cell debris and proteins were then precipitated. Protein was recovered through 15

centrifugation, washed in cold acetone and resuspended in buffer. Total resuspended protein 16

was quantified then reduced, alkylated and digested.17

Following purification, 1µg from each digested protein sample was used for SWATH-MS 18

analyses. Additional 2µg aliquots of each sample were pooled in duplicate to create a spectral 19

library using IDA mode mass spectrometry. Samples were analysed using a Triple-Tof5 600 20

instrument (ABSciex). Mass spectrometry (MS) data from IDA analyses were combined and 21

searched using ProteinPilot software v4.5 (ABSciex, Forster City CA) a database of 22

Shewanella oneidensis MR-1 specific proteins acquired from NCBI on the 28th May 201223

containing 4052 entries. A decoy database containing reversed protein sequences was used to 24



Page 7 of 16

Acc
ep

te
d 

M
an

us
cr

ip
t

7

determine the false discovery rate of identifications. The IDA spectral library, protein 1

sequences and SWATH MS data were loaded into PeakView software v1.2 for processing.  2

The MSstats program [3] was used for statistical analysis of the acquired spectra and Pathway 3

Tools [12] was used to visualise the statistical data on metabolic pathways of S. oneidensis.4

5

Results and Discussion6

During operation of the BES, current production by S. oneidensis in the BES increased over 7

time for all the anodic potentials of +0.71V, +0.21V and -0.19V (SHE) (Figure 1A). Higher 8

current densities were achieved at anodes poised at higher potentials. The amounts of protein 9

extracted from the electrode biofilms were consistent between replicates, with higher 10

amounts obtained from the electrodes at higher potentials (Figure 1B).11

A total of 740 unique proteins were identified within the library acquired by information 12

dependant acquisition (IDA) with a false detection rate of 0.01 calculated using a Paragon13

method within the ProteinPilot software. Of these unique proteins SWATH-MS analysis 14

detected 704 in each biofilm sample. The number of significantly different (p<0.05) 15

abundant proteins was determined between pairwise comparisons of the BES biofilms 16

developed at the different potentials. There were 58, 115 and 41 differentially abundant 17

proteins between the comparisons of +0.21 V to - 0.19 V, +0.71 V to -0.19 V and +0.71 V to18

+0.21 V respectively (log2FC>1, p<0.05).19

The greatest number of significantly different abundant proteins was between electrode 20

biofilms at the potentials of +0.71 and -0.19 V. The TCA cycle is an essential metabolic 21

pathway enabling energy generation and synthesis for many microorganisms. Consequently, 22

to demonstrate detection of metabolic differences we focused on comparison of proteins 23
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involved in the bacterial TCA cycle at these electrode potentials (Figure 2). Although the 1

TCA cycle typically operates under aerobic conditions, S. oneidensis has been shown to use 2

this pathway partially during anaerobic respiration coupled to alternative electron acceptors 3

such as fumarate and TMAO [1, 28].4

The log2 fold change (log2FC) for the majority of the TCA cycle proteins in the comparison 5

of the +0.71 V to - 0.19 V anode biofilms were positive (Figure 2). This indicated a higher6

abundance of these proteins at +0.71 V and a more active TCA cycle in comparison to -0.197

V. This correlates with the BES chronoamperometry results, with +0.71 V showing 8

significantly higher current production and thus overall metabolic activity than that detected 9

at – 0.19 V (Figure 1A). This higher electron transfer rate was generated through increased 10

carbon substrate (lactate) oxidation activity at the higher anode potential. The enzymes 11

involved in the conversion of lactate to pyruvate (Dld, LldE,LldF & LldG) were higher in 12

abundance at +0.71 V (p<0.05), suggesting a higher rate of carbon metabolism at the higher 13

potential. This activity was confirmed as lactate utilisation was higher in the +0.71 V culture 14

in comparison to the -0.19 V culture (SI Table 1).15

16

Proteins of the TCA cycle with negative log2FC were relatively in higher abundance at -0.1917

V. The protein MaeB was statistically more abundant at -0.19 V and this enzyme catalyses an 18

NADP- dependent conversion of malate to pyruvate (Figure 2). The protein MaeA, a NAD-19

dependent malic enzyme was more abundant at +0.71 V. This protein carries out the same 20

reaction, however this uses NAD+ rather than NADP+ for conversion of malate to pyruvate. In 21

general bacterial metabolism, conversions utilising the NAD+/NADH couple are involved in 22

oxidative catabolic reactions and respiratory electron transfer [5]. In contrast the 23

NADP+/NADPH couple is utilised in anabolic reactions [5]. This appears to be a response of 24
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the cells corresponding to the different electrode potentials and is in agreement with the 1

outcomes observed here in that more respiratory activity (NAD+ reactions) was evident at 2

+0.71 V compared to -0.19 V (Figure 1A). The higher potential of the anode would provide3

more opportunity for electron transfer through the respiratory pathway, given the higher 4

energy gain associated with electron transfer between redox couples at greater potential 5

difference.6

7

Conversely, at low potential it is possible that the TCA cycle is functioning at a decreased 8

level. Although under more reduced conditions, NADH levels will be high and this is known 9

to inhibit key oxidative enzymes in the cycle [32]. Several studies report that under anaerobic 10

conditions S. oneidensis possesses an incomplete TCA cycle [26], using either an oxidative or 11

reductive branch for production of cell intermediates [1, 28]. However, activity of a complete 12

TCA cycle has been detected under certain anaerobic conditions [28]. Although, in that 13

instance the carbon flux through the TCA cycle was very low and acetate was a major 14

product of lactate oxidation [28]. That was not the case in this study at the higher potential, as 15

acetate production was less than 5% of the consumed lactate (Table S1), this result 16

supporting the scheme of lactate utilisation proceeding through the TCA cycle. Conversely, 17

acetate production at the low potential was significant (Table S1), and this activity has been 18

observed previously in anaerobic conditions [1]. Consequently, at the low potential the 19

acetate production was important for substrate level ATP production.20

21

The reactions of the TCA pathway that are utilised would have great impact on the number of 22

electrons consumed/produced [18], and the choice of those used is likely a dynamic process 23
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determined by environmental conditions [1]. When looking at protein abundances for each 1

side of the TCA cycle, there is evidence to support this suggestion. At +0.71 V we see higher 2

abundances for proteins involved in energy generating reactions, suggesting that the complete 3

TCA cycle is being extensively utilised. Conversely at -0.19V we observed equal abundances 4

for proteins involved in the reductive branch of the cycle, suggesting in these conditions there 5

is less use of the oxidative branch of the TCA cycle. This is in agreement with previous 6

observation where S. oneidensis uses a complete TCA cycle at higher redox potential and 7

utilisation of the branched cycle was evident at lower redox potential [28]. With regard to the 8

TCA cycle, the proteomic findings made here are in agreement with what is expected from 9

the metabolic and energetic activities of S. oneidensis.10

The number of protein identifications achieved in this study improves on quantitative 11

proteomic investigations of an electrode biofilm. The SWATH-MS approach used here is 12

advantageous for proteomic analysis on samples where biomass or protein quantities are very 13

low. The sensitivity of SWATH-MS removes the need for fractionation and being label free, 14

removes the need for several processing steps involved with labelling procedures which may 15

contribute to loss of protein [29]. The extraction method in combination with IDA analysis16

successfully obtained high levels of identifications from the electrode attached biofilm 17

samples. In particular, this method could be used for detailed interrogation of the electron 18

transfer proteins of BES biofilms. 19

Microbial electrochemical systems like microbial fuel cells have attracted attention as a 20

promising alternative to unsustainable energy sources and technologies. Among the 21

development of other components, the improved understanding and details of EET pathways 22

of model organisms, such as S. oneidensis MR-1, provides opportunity to fine tune reactor 23

conditions to the metabolic capabilities of the organism and achieve improved process 24
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performance. Establishing the SWATH-MS approach in this field opens the way for further 1

investigations to improve our understanding of electroactive biofilms for advancing the BES 2

technology3

The SWATH-MS analysis is quantitative and enabled a relative comparison of protein 4

abundance between our biofilm samples. Using this technique we gained evidence that the 5

TCA cycle of S. oneidensis electrode biofilm is more active when grown at a higher potential 6

(+0.71 V). The results also suggest that at lower potential, utilisation of reactions dependent 7

on NADPH rather than NADH was preferred, and this likely reflects decreased respiratory 8

activity in this condition. Consequently, we suggest the use of the above mentioned 9

extraction and SWATH-MS for quantitative proteomic analysis of electrode biofilm samples, 10

and in general from samples where the quantity of protein is limited.11

12

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 13

Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 14

[31] with the dataset identifier PXD001472.15

16
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Figure 1: Profiles of current production from Shewanella oneidensis MR-1 at different anode 3
potentials within the BES over time (A). Amounts of protein extracted from electrode 4
biofilms of S. oneidensis after BES operation at different anode potentials (error bars indicate 5
standard deviation) (B). 6

7

Figure 2: Shewanella oneidensis MR-1 prokaryotic TCA cycle as adapted using Pathway 8
Tools software. The colour coded expression ratios indicate the Log2 Fold Change occurring 9
between protein abundances in +0.71V relative to -0.19V electrode biofilms. Full names of 10
the abbreviated proteins are located in Table S2. Inset box shows the abundance differences 11
between the multiple enzymes that carry out the conversion of lactate to pyruvate. All Log2 12
Fold Change values are significant (p<0.05) unless indicated with an asterisk (*).13

14
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Figure 1

http://ees.elsevier.com/syapm/download.aspx?id=38496&guid=1b4a8527-1a96-47e7-ba9d-97d78433a09c&scheme=1
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Figure 2
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