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ABSTRACT 14 

 15 

Accurate estimations of carbon stocks across large tracts of tropical forests are key for 16 

participation in programs promoting avoided deforestation and carbon sequestration, such as 17 

the UN REDD+ framework. Trained local technicians can provide such data, and this, 18 

combined with satellite imagery, allows robust carbon stock estimation across vegetation 19 

classes and large areas. In the first comprehensive survey in Guyana conducted by indigenous 20 

people, ground data from 21 study sites in the Rupununi region were used to estimate above 21 

ground tree carbon stocks across a diversity of ecosystems and land use types. Carbon stocks 22 

varied between village sites from 1 Tg to 22.7 Tg, and these amounts were related to stem 23 

counts as well as tree size. This variation was linked to vegetation type across the region, 24 

with trees in savannas holding on average 14.5 MgC ha-1 and forest 141.9 MgC ha-1. The 25 

results indicated that previous estimates based on remotely sensed data for this area may be 26 
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inaccurate. There were also differences in carbon stocks between the north and south 27 

Rupununi regions, as well as between village sites and uninhabited control areas. Differences 28 

between north and south probably reflect vegetation type, regional hydrology, geology and 29 

topography, while differences between inhabited and uninhabited areas are presumably 30 

driven by community use. Recruiting local technicians for field work allowed a) large 31 

amounts of ground data to be collected for a wide region otherwise hard to access, and b) 32 

ensured that local people were directly involved in Guyana’s Low Carbon Development 33 

Strategy. This is the first such comprehensive survey of carbon stocks and vegetation types 34 

over a large area in Guyana, one of the first countries to develop such a program. The 35 

potential inclusion of forests held by indigenous peoples in REDD+ programs is a global 36 

issue: we clearly show that indigenous people are capable of assessing and monitoring carbon 37 

on their lands, and should therefore be partners in such programs. 38 

 39 
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 52 

INTRODUCTION 53 

 54 

The importance of trees and forests, especially tropical forests, as carbon sinks and stocks is 55 

well established, with forests globally sequestering 2.4 ± 0.4 PgC yr-1 by one estimate (Pan et 56 

al. 2011). Forests are under multiple development pressures, including logging, fragmentation 57 

for mining, and clearing for agriculture. The latter is particularly critical in tropical regions, 58 

where land conversion accounted for carbon emissions of 1.3 ± 0.7 PgC yr-1 between 1990 59 

and 2007 (Pan et al. 2011). In addition to development stressors, climate change itself is a 60 

key threat to forests in the Amazon basin (Malhi et al. 2008), and in order to mitigate rapid 61 

climate change, it is essential that forests are kept as intact as possible so they can continue as 62 

carbon sinks (Gibbs et al. 2007).  63 

 64 

Recognition and understanding of the global importance of forest carbon stocks and forest 65 

ecosystem functioning has led to the development of several schemes whereby the 66 

maintenance of forest cover and carbon sequestration is remunerated, such as the UN 67 

REDD/REDD+ program (Reducing Emissions from Deforestation and forest Degradation; 68 

http://www.un-redd.org). These schemes, and others, such as national and international 69 

carbon trading programs, and voluntary payments for carbon sequestration services, require 70 

the measurement of carbon stock baselines, and subsequent monitoring and reporting of 71 

carbon pools (Cedgren 2009), through a combination of remote sensing and ground truthing 72 

methods. To achieve support for REDD+ schemes and ensure that they fairly compensate 73 

forest stewards, it is essential that local stakeholders understand the carbon measurement 74 

process. This has been achieved through participatory approaches whereby local, trained, 75 
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citizen scientists provide useful data across large areas, as has been demonstrated (Butt et al. 76 

2013, Danielsen et al. 2013, Torres 2014).  77 

 78 

Guyana was one of the first countries to submit a REDD Readiness Plan for testing national 79 

payments for carbon storage to the Forest Carbon Partnership Facility, a global partnership 80 

between national governments and other entities focussed on REDD+ 81 

(www.forestcarbonpartnership.org/sites/forestcarbonpartnership.org/files/Documents/PDF/Pa82 

nama_PC_meeting_summary_for_website_clean.pdf), and also one of the first to establish a 83 

national REDD program. The Guyana REDD+ Investment Fund (GRIF) was set up as part of 84 

Guyana’s Low Carbon Development Strategy (LCDS), as a climate finance mechanism by 85 

which avoided deforestation could be compensated until an international REDD+ mechanism 86 

became operational (http://www.guyanareddfund.org/index.php#). The fund was capitalized 87 

by the government of Norway.   88 

 89 

In order to become part of a scheme such as REDD/REDD+, Measurement, Reporting and 90 

Verification (MRV) activities need to be coordinated and carried out by capable people on 91 

the ground, to complement remotely sensed monitoring data. This partnership approach 92 

reflects the importance placed on both the rights of indigenous people as stakeholders, and 93 

their involvement in the REDD process, by the Guyana-Norway Agreement (Cedergren 94 

2009, Gutman and Aguilar-Amuchastegui 2012). Citizen science and other participatory 95 

approaches to monitoring provide an effective method of forest monitoring, and in the 96 

Guyana context Amerindian communities manage their resources, inform other community 97 

members of carbon stocks on their land, and gain insight and training in forest monitoring, 98 

which should enable an informed decision-making process with regard to opting in or out of 99 

the REDD program within the LCDS. Transparent and effective multi-stakeholder 100 
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consultations are ongoing and evolving in Guyana: an audit in July 2012 indicated that only 101 

three of the ten verification indicators reviewed by Rainforest Alliance (Donovan et al. 2012) 102 

had been fully met, four partially met and three not met. Two of those that were not met 103 

(“Protection of the rights of indigenous peoples” and “Transparent and effective multi-104 

stakeholder consultations continue and evolve”), referred specifically to the involvement of 105 

indigenous peoples in the process. 106 

 107 

Project Fauna was a Guyana-based initiative developed by a team of researchers from various 108 

research institutions and local indigenous leaders to examine the connected nature of 109 

indigenous people and their environment (Fragoso et al. 2005, Luzar et al. 2011). The main 110 

goal of the project was an assessment of how biodiversity influences and is influenced by 111 

changes in indigenous human culture, and of how land use change influences these elements 112 

of coupled human natural systems (Luzar and Fragoso 2013, Read et al. 2010, Luzar et al. 113 

2011). Socioeconomic and biodiversity variables were measured on titled lands using a 114 

participatory approach. The project also measured above ground vegetation carbon to 1) 115 

address the issue of links between carbon and biodiversity and contribute to the discussion of 116 

bundled ecosystem services, and 2) advance indigenous community understanding of carbon, 117 

carbon politics and REDD+ programs, thus enabling their participation in the national 118 

discussion on carbon value and payments.  119 

 120 

From 2007 to 2010, Project Fauna trained 335 indigenous technicians across 30 Amerindian 121 

communities in the Rupununi region (Figure 1) to monitor wildlife populations and hunting 122 

patterns, and to describe vegetation structure. The success of this program (Luzar and 123 

Fragoso 2013, Luzar et al. 2011, Read et al. 2010) led Project Fauna to initiate a vegetation 124 

and carbon assessment pilot study (Epps 2010; http://www.stanford.edu/group/fragoso/), 125 
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which aimed to: 1) build the scientific capacity of local communities in understanding the 126 

sources and stocks of carbon in the environment, and how to measure carbon in above ground 127 

vegetation (AGV); 2) estimate the carbon stocks in distinct vegetation types and on titled 128 

lands, and; 3) compare tree carbon around villages to that in areas unused by people. Here we 129 

describe the results of the tree measurement/carbon assessment program carried out in the 130 

Rupununi region of south western Guyana, and outline the implications for the inclusion of 131 

indigenous people in monitoring their own carbon stocks in REDD+ schemes globally.  132 

 133 

 134 

METHODS 135 

 136 

Study area 137 

 138 

The Rupununi region is classed as ‘moist tropical forest’ by the IPCC (2003), with 2000 to 139 

4000 mm yr-1 rainfall, and is dominated by savannas and forests (Read et al. 2010, Hammond 140 

2005). Ten types of vegetation were described in the study area (Cummings 2013; Levi et al. 141 

2013), and these were grouped into eight categories to maintain adequate sample sizes: High 142 

Forest Flooded, High Forest Upland, Ite Swamp, Low Forest Flooded, Low Forest Upland, 143 

Muri Shrub Upland, Savanna Flooded and Savanna Upland (Table 1). The 2006 Amerindian 144 

Act establishes land rights for Guyana’s indigenous people (Fig. 1), who may claim title of 145 

their community lands. Indigenous communities that have received ‘titled lands’ have rights 146 

to forest and above ground resources within their boundaries (Cummings 2013). Although 147 

rights to carbon stocks have not been defined, the government has acknowledged this right by 148 

giving Amerindian communities the choice of opt in or out of enrolling their lands in 149 
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Guyana’s national REDD program and to receive compensation from government under a 150 

REDD+ agreement (http://www.lcds.gov.gy March 2013 report).  151 

 152 

Of the 23 villages in the larger study (Luzar et al. 2011), members of 17 communities carried 153 

out the tree measuring work in the 20 sites: 15 ‘village’ sites and 5 ‘control’ sites Records 154 

from one village were omitted, due to inexplicable tree size discrepancies between this site 155 

and both the literature and data from our study for the local forest types (see Discussion for 156 

more detail). (Table 2; Figure 1). Transects 4 km long were randomly placed around the 157 

villages and in five control areas identified as regions where no hunting, logging or gathering 158 

occurs (see Luzar et al. 2011). There were up to eight 10 m x 10 m (0.01 ha) plots per 159 

transect, with 111 transects and 604 plots of 0.01 ha sampled overall (Table 2). This provided 160 

6.04 hectares of AGV (tree) data. The frequency of vegetation types varied widely by site and 161 

by region, with High Forest Upland and Low Forest Upland the most common types. Ite 162 

Swamp and Savanna Flooded were the least common vegetation types (only two plots for 163 

each of these types) (Table 2). 164 

 165 

Training & data collection 166 

 167 

Three-day training sessions were held in three locations across the region over a two-week 168 

period (villages 6, 14, 19; Fig. 1), and comprised both classroom instruction and field 169 

demonstrations and practise. Common sampling protocols for major carbon pools were used, 170 

in line with other forest assessment projects, such as IPCC (2003), and RAINFOR (Metcalfe 171 

et al. 2009, Marthews et al. 2012): tree diameters were standardly measured in cm at breast 172 

height (1.3 m). On average, 14 volunteers were trained at each of the three training sessions. 173 

The first part of the workshop focussed on carbon definitions, the carbon cycle and the 174 
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measurement of carbon in the field. Two field workers per site sampled trees > 10 cm DBH 175 

in the plots in their transects, and met with Project Fauna staff monthly to hand over data 176 

sheets and resolve any technical problems which might have arisen.  177 

 178 

Data analysis 179 

 180 

To reflect the fact that the Rupununi region covers two distinct geographic and political 181 

regions, separated by the Kanuku Mountains (Fig. 1), plot data were divided into ‘north’ and 182 

‘south’, based on differences in coarse vegetation types (Huber et al. 1995) and geology.  The 183 

north Rupununi is dominated by continental sands and silts, the south Rupununi by younger 184 

granites and volcanic formations (Government of Guyana 2001).  Thus, in addition to the 185 

eight categories of vegetation types, and a comparison between village and control sites, we 186 

also consider difference between the north and south region (Table 2). The distinction 187 

between north and south is also important politically, as the north is inhabited by the Makushi 188 

people and the south by the Wapishana, whose language, cultural practices and occupation 189 

patterns differ (Luzar and Fragoso 2013). Based on the regional rainfall regime, the 190 

allometric equation for ‘moist tropical forest’ was used to calculate biomass (IPCC 2003), 191 

and multiplied by 0.5 to derive above ground tree carbon:   192 

 193 

Y = 0.5 • exp[–2.289 + 2.649 • ln (DBH) – 0.021 • (ln(DBH))2]   194 

Where Y = kgC.  195 

 196 

Statistical analyses (two-sample t-tests assuming unequal variance) were carried out for 197 

different vegetation types, control vs village tree carbon, on the north/south data overall and 198 

for each vegetation type.  199 
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 200 

The data were error-checked and ‘cleaned’ before analysis by a scientist in the field, 201 

including cross-checking with tree size data available from another project for the same 202 

transects (Cummings 2013). Data from this work were available for trees larger than 25 cm 203 

DBH for 12 control and village sites in common with our dataset. The DBH values did not 204 

differ significantly between the two datasets (0.2<P<1).  205 

 206 

Estimation of carbon biomass within village titled lands 207 

 208 

An important part of the project’s engagement with local indigenous communities was the 209 

provision of estimates, for their own use, of carbon stocks within their titled lands. As the 210 

spatial distribution of vegetation types within titled land boundaries varied from that of the 211 

sample plots, the tree carbon stock measurements for each vegetation type were applied to an 212 

area-wide vegetation map in order to calculate titled land carbon stocks. A land cover 213 

classification map was constructed based on the Landsat TM imageries (Path 231, Row 57 214 

and 58) and the ground truth data (Figure S1; Levi et al. 2013, Cummings 2013). Titled land 215 

estimations of carbon stocks were calculated by applying the carbon value per hectare for 216 

each vegetation type (from the plot-based calculations) to the land cover Landsat vegetation 217 

classes (Table S1). These values were then summed for the area within the border of a 218 

village’s titled land.   219 

 220 

 221 

RESULTS 222 

 223 

Above ground tree carbon 224 
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 225 

The mean DBH of the trees across all the sample plots ranged from 10 cm to 153.4 cm, and 226 

varied by vegetation type (Figure 2). High and Low Forest Upland and Ite swamp had the 227 

largest trees, and Muri Shrub Upland and Savanna Flooded the smallest. Mean carbon per 228 

hectare ranged from 20.3 MgC ha-1 to 220.1 MgC ha-1, a function of vegetation type and type 229 

of site (‘village’ or ‘control’). The mean value was 123.7 MgC ha-1. Grouped by broad 230 

vegetation type, mean ‘forest’ carbon per hectare was 145.5 MgC ha-1 and ‘savanna’ carbon 231 

per hectare was 28.2 MgC ha-1.  232 

 233 

The Upland High and Low Forest (175.7 MgC ha-1; 130.4 MgC ha-1) and Flooded High and 234 

Low Forest (118.4 and 109.7 MgC ha-1) had the highest carbon per unit area, and both 235 

Savanna types had the least tree carbon (4.5 MgC ha-1; 28.3 MgC ha-1) (Figure 3). 236 

Comparison of carbon stocks by vegetation type revealed significant differences between all 237 

types apart from High Forest Flooded and Low Forest Flooded/Upland, Low Forest Flooded 238 

and Low Forest Upland, and Muri Shrub Upland and Savanna Upland (Table 3a). 239 

 240 

The north-south analysis showed that the northern forests had significantly (P < 0.05) greater 241 

carbon than the southern forests (150.1 MgC ha-1 and 118.4 MgC ha-1), and this was driven 242 

primarily by the Low Forest Upland vegetation group (Table 3b). Stem numbers per 243 

vegetation type differed significantly between north and south regions for Low Forest Upland 244 

(495 ha-1 and 323 ha-1, respectively), and this was reflected in the differences in carbon 245 

between the two regions (Table 3b). High Forest Upland carbon was also markedly different 246 

between regions. The ‘control’ sites had larger carbon stocks than the village sites (172.4 247 

MgC ha-1 and 127.4 MgC ha-1) (P=0.05) and a greater mean number of stems per site (182 248 

stems and 122 stems).  249 
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 250 

Above ground carbon stocks of titled lands 251 

 252 

Estimation of carbon stocks for each village’s titled land based on technicians’ ground data 253 

and satellite images reveals that the total carbon stock per titled land varies significantly 254 

(Table 4). The village titled lands with the greatest mean tree carbon MgC ha-1 were 7N and 255 

9N, and the sites with the smallest mean tree carbon per hectare were 12N and 14S (Figure 256 

4). The variance clearly reflects the extent of the different vegetation types in each titled land 257 

and the differences in size of titled land area. The lowest titled land carbon estimate, for site 258 

12N - 37 MgC/ha, derives from an area of mainly grassland (Fig. 1).  259 

 260 

 261 

DISCUSSION 262 

 263 

This first comprehensive assessment of carbon stocks and vegetation types across a large 264 

region in Guyana showed the value and efficiency of using Amerindian stakeholders in 265 

REDD+ work. The implications for the LCDS and REDD+ for Guyana and indigenous 266 

people have not previously elucidated with an underpinning of observed forest data.  267 

 268 

Vegetation type & regional variation 269 

 270 

The indigenous field technicians working with Project Fauna collected and provided 271 

sufficiently accurate data to enable the estimation and assessment of their carbon stocks, as 272 

reported in other studies employing participatory methods (Butt et al. 2013, Danielsen et al. 273 

2013). The data collected by one of the 21 communities were unfortunately too problematic 274 

to be used in our analyses – the reasons remain unclear and the data were unable to be 275 
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salvaged due to a break in the research chain. Importantly, it was easy to detect when a 276 

problem had occurred with data quality as the diameter measurements were so different to 277 

those of other sites. Overall, local technicians were motivated to be as accurate as possible as 278 

they had a vested interest in knowing how much carbon is held on their titled lands, now that 279 

it has value through the climate finance mechanism. While this is a positive step, it will be 280 

important to ensure that human bias in terms of potential conflicts of interest (i.e., reporting 281 

larger carbon stocks than actually exist through provision of erroneously large diameter 282 

measurements) should be avoided. There are several possible ways of achieving this, 283 

including cross-checking measurements for the same site using different teams; re-measuring 284 

plots where diameter values are systematically higher than the overall mean, and; informing 285 

of potential penalties from deliberate over-estimates, such as disqualification from payment 286 

schemes. 287 

 288 

Although Guyana does not allow independent trading of carbon by individual land title 289 

holders, it would provide pro-rated payments to villages that ‘opt in’ to the LCDS mechanism 290 

and sign a REDD+ agreement with government (http://www.lcds.gov.gy, March 2013 291 

report). Knowledge of amounts and patterns of carbon content on the land would facilitate 292 

negotiation and decision making by Amerindian communities choosing to opt in or out of the 293 

national REDD program. It would also increase national and international understanding of 294 

the contribution of Amerindian titled lands to carbon stocks and carbon loss relative to other 295 

land use types in the country. 296 

 297 

Carbon stocks vary across the eight different vegetation types found in the Rupununi forest-298 

savanna region. Differences also occurred amongst forest categories, for example upland high 299 

forest supported more carbon than flooded high forest (175.7 MgC/ha; 118.4 MgC/ha). This 300 
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suggests that carbon stock baselines, such as for REDD and REDD+ programs, originating 301 

from generalized forest data from remote sensing, and correlated with national and 302 

international data bases, may not reflect local and regional level carbon stocks (Mitchard et 303 

al. 2014). This will have implications for measuring carbon emission changes from the 304 

baseline under carbon payment programs where inaccurate generalizations may result in 305 

incorrect values. By vegetation type, Upland High Forest had > 25% more carbon than 306 

Upland Low Forest, and > 35% more carbon than both types of Flooded Forest: this amount 307 

of difference in carbon stock between forest is policy relevant, as it can inform both the UN/ 308 

program bodies, and developing countries, on the value of investing in expensive ‘Tier III’ 309 

assessments (satellite imagery and ground measurements). 310 

 311 

While the village sites differed as to the extent of dominance of each vegetation type, overall 312 

the most frequent vegetation types across the whole area were High Forest Upland - which 313 

generally includes taller trees and denser forest - and Low Forest Upland. Muri shrub was 314 

only found in the northern sites, while there were more upland savanna sites in the south. 315 

This variation in dominance of vegetation types from village site to village site means that 316 

carbon stocks also vary between villages, as this is a function of stem density and tree size. 317 

The size of carbon stock for each village therefore depends on the local vegetation type, 318 

which has implications for the potential contribution of the titled land to the national REDD 319 

Program, and the pro-rated compensation a village might receive once it opts in to the LCDS 320 

program. 321 

 322 

The north-south analysis showed that the northern forests had significantly larger carbon 323 

stocks than the southern forests, driven by Upland Low Forest. In addition to rainfall 324 

variation between the two areas, they differ in coarse vegetation type and extent (Huber et al 325 
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1995, ter Steege 2001), and their geology (Government of Guyana 2001), which drives 326 

variation in geomorphology, hydrology and soils. These differences will affect the amount of 327 

above ground vegetation that can be supported, and thus the size of the carbon stock 328 

(Baraloto et al. 2011). 329 

 330 

Human resource use impacts on carbon stocks 331 

 332 

The ‘control’ sites had larger carbon stocks per hectare than the village sites (for the four 333 

vegetation types that occurred in the control sites: High Forest Flooded and Upland and Low 334 

Forest Flooded and Upland), and greater stem density (~50%) in these sites. Although there 335 

was no significant difference in tree diameter size between the control and village sites, the 336 

large variation in stem density may reflect the impact of local forest resource use: sites near 337 

villages have probably been subject to greater extraction intensity than those farther away. 338 

This indicates that the carbon values for undisturbed forests should not be simply applied to 339 

forest areas of titled community lands, but rather that this difference in land use impact 340 

should be explicitly acknowledged in carbon stock evaluations.  341 

 342 

Volunteer-collected data applied to carbon stock estimations have been shown to be accurate 343 

within a range of ±10% (Butt et al. 2013, and see Danielsen et al. 2013): we can state with 344 

reasonable confidence that trees > 10 cm DBH in the forests of the Rupununi region hold 345 

between 111 MgC ha-1 and 136 MgC ha-1 on average. The northern part of the region had 346 

between 135 MgC ha-1 and 165 MgC ha-1, and the southern part between 106 MgC ha-1 and 347 

130 MgC ha-1. The estimates derived from this project are in line with AGV carbon in other 348 

areas and other tropical forests globally and regionally, as derived from a combination of on-349 

the-ground and remotely-sensed data (Saatchi et al. 2011). ter Steege (2001) gave an 350 
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estimation of 150 MgC ha-1, which included (standing) dead trees, while Conservation 351 

International (CI) estimated around 180 MgC ha-1 (Cedergren 2009), and the FRA gave a 352 

South American average of  110 MgC ha-1 for Guyana forests (FAO 2006). The Guyana UN 353 

REDD+ project uses Alder and Kuijk (2009) Forestry Commission study values for their 354 

baseline estimates of forest carbon biomass (Cedergren 2009). These were reported as tCO2, 355 

including roots, equating to 167 MgC ha-1. The large variation amongst carbon stock 356 

estimates for similar forest types and regions could be the result of a number of factors, and 357 

strongly suggests the need for a standardized approach to carbon assessments. 358 

 359 

Ours is the first forest inventory of the Rupununi region of Amazonian Guyana beyond the 360 

nine sample units surveyed from 1968-73 for trees >30 cm DBH (Alder and Kuijk 2009), and 361 

the first to sample in savannah and forest, where  tropical carbon stocks in general are not 362 

well established (Houghton 2005). A comprehensive carbon stock assessment from Colombia 363 

gave 112 MgC ha-1 for primary forest in the region, and 21 MgC ha-1 for secondary forest 364 

(Sierra 2007), and cite lack of clear distinction between these forest types as one of the 365 

problems related to carbon stock estimation in tropical forests.  366 

 367 

By being aware of what carbon stocks are, and how to measure them in their local areas, 368 

indigenous groups in Guyana can better participate in national and international carbon 369 

market discussions and programs, and more efficiently monitor any compensation to which 370 

they are entitled through results-based carbon payments, such as those being implemented by 371 

Norway in Guyana, and in the REDD+ programs in general. Indigenous people in Guyana 372 

believe that their participation in the national REDD program and LCDS must be informed 373 

by self-assessment of carbon stocks (North Rupununi District Development Board and the 374 

Deep South Toshao’s Council, Fragoso pers. comm.), and this work provides an example of 375 
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communities who have demonstrated they can effectively measure and monitor their regional 376 

carbon stocks, and thus play a key role in the ongoing LCDS and MRV activities necessary 377 

for REDD+. 378 

 379 

Carbon stock estimate per titled land 380 

 381 

Applying the ground-measured carbon data to the satellite land cover classes (Table A1.1) 382 

enabled the estimation of carbon stocks for each of the titled land areas in the region. This 383 

provided the participating villages and groups with detailed carbon estimates of their lands. It 384 

is crucial to engage local indigenous communities in the ‘ground-truthing’ of forest carbon 385 

data as they otherwise often miss the opportunity to receive their share of carbon payment 386 

due to the lack of information (Vitel et al. 2013, Jildal et al. 2008, Corbera et al. 2008). Our 387 

results revealed that there is a large variance in the average carbon stock among village titled 388 

lands (Table 4), which, apart from titled land area, probably reflects the non-homogenous 389 

distribution of vegetation type. For each village area, the extent of land cover classes within 390 

the titled land was calculated from the satellite imagery (Table A1.2), and this gave 391 

landscape-scale information, and provided an understanding of the differences in carbon 392 

stocks between different vegetation types in their areas, and how satellite data can contribute 393 

to carbon assessments at large scales. This emphasizes the need for freely available higher-394 

resolution remotely sensed imagery in the tropics.  395 

 396 

Future work 397 

 398 

Forest types need clear identification and characterization in all regions where local 399 

measurements are to be used to estimate carbon stocks. Lack of clarity can not only result in 400 
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large uncertainty in carbon estimates, but may also confound comparisons with satellite 401 

imagery forest data, which are important for coherent mapping of aboveground carbon 402 

(Goetz 2009).  403 

 404 

We suggest a standard protocol for undertaking large-scale carbon stock estimates, 405 

combining satellite imagery and ground measurements, as follows: 1) use the highest-406 

resolution satellite imagery available and establish which vegetation types can be definitively 407 

identified; 2) select multiple (GPS) locations in each vegetation type and assess its carbon 408 

with tree measurements. This would provide a carbon value and range for each forest type 409 

identifiable on highest resolution satellite imagery, which can then be applied to any area of 410 

forest or titled land. This method, by establishing whether forest types differ significantly in 411 

terms of carbon stock, would determine whether or not this level of satellite imagery would 412 

need to be used in all assessments. The level of accuracy of lower-resolution (cheaper) 413 

satellite imagery for vegetation type identification can be tested using the results from 2, and 414 

thus establish the level of detail the lower-resolution imagery can provide (it may not be able 415 

to distinguish between all vegetation types). Where different vegetation types have the same 416 

per hectare carbon, it will not be necessary to distinguish between them and thus lower-417 

resolution imagery could be used to assess carbon stocks. This approach addresses 418 

uncertainty in our knowledge of carbon levels in different vegetation types, providing 419 

accurate data that can usefully inform programs such as REDD+ on equitable price per 420 

hectare.  421 

 422 

 423 

Conclusion 424 

 425 
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We distinguish between three types of uncertainty/variation associated with carbon stock 426 

assessments: differences between forest/vegetation types, including differences between 427 

managed and unmanaged forest, in different areas; the spatial extent of forest/vegetation 428 

types, and; measurement error. These factors will influence remuneration levels and the first 429 

two should be incorporated into payment calculations. Effective training and management of 430 

local field technicians is crucial to reduce measurement error and should be included in 431 

baseline-setting MRV schemes. The field work and analysis carried out in the Rupununi 432 

region demonstrates that on-the-ground forest measurements done by well-trained local 433 

workers can make valuable contributions to carbon stock estimation across large areas.   434 

 435 

The results and findings of this project are of global importance, for example with regard to 436 

the potential inclusion of forests on land held by indigenous peoples in REDD+ programs. 437 

These programs are bilateral or international in nature, while it is unclear who owns the 438 

carbon on indigenous lands. As we demonstrate here, indigenous people are capable of 439 

assessing and monitoring carbon on their lands, and should therefore be partners in REDD+, 440 

and similar, schemes.  441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 
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 649 
Table 1: Description of vegetation types occurring along transects within the study region. 650 
(Meter measurement refers to tree height). 651 
 652 
Habitat type Description 

High Forest Flooded Seasonally flooded forest (20 m – 30 m) 

High Forest Upland Terra firme forest (20 m – 35 m) 

Ite Swamp Mauritia flexuosa palm (≤ 20 m) dominated seasonal wetland 

Low Forest Flooded Seasonally flooded forest (≤ 15 m) 

Low Forest Upland Terra firme forest (≤ 15 m) 

Muri Shrub Upland Terra firme scrub on white sand soils (≤ 10 m) 

Savanna Flooded Seasonally flooded grassland with occasional small trees (≤ 5 m) 

Savanna Upland Terra firme scrub with occasional small trees (≤ 5 m) 

 653 
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Table 2: Number of plots of each vegetation type, per site and region (‘N’=North Rupununi 687 
and South Pakaraimas, ‘S’=South Rupununi), and total number of sampled transects and 688 
plots by site. 689 
 690 
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1N 8 22  6 12    8 48 

2N  31       8 31 

3N  15  1 6   1 6 26 

4N  12   15    5 27 

5N  3   8   4 3 15 

6N 3 8 1 6 19 3  2 8 42 

7N 10 16  9 6    8 41 

8N 2 13  15 13 8   7 51 

9N 4 9  17 14 4   7 48 

10N 2 14  3 11 1   5 31 

11N 8 33  3 12    8 56 

12N 1 5  6 9    3 21 

N total 38 181 1 66 125 16 0 7 76 437 

14S 3 3  1 14   6 7 27 

15S  6  2    1 3 9 

16S 5 12   6    3 20 

17S 5 13       3 18 

18S 1 13  1 16  2 2 6 35 

19S  5   1   1 4 7 

20S   1  1   3 3 5 

21S 10 36       6 46 

S total 24 88 1 4 38 0 2 13 35 167 

Total 62 269 2 70 163 16 2 20 111 604 
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Table 3a: T-test results for comparison of mean plot carbon biomass, by vegetation type. P 705 
values are reported for significant differences.  706 
 707 

 
HFF HFU LFF LFU MSU SU 

HFF   * ~ ~ ** *** 
HFU 

 
  ** * *** *** 

LFF 
  

  ~ ** *** 
LFU 

   
  *** *** 

MSU 
    

  ~ 
SU 

     
  

 708 
 *P < 0.05 709 
**P < 0.01 710 
***P < 0.001 711 
~ = no significant difference 712 
 713 
 714 
 715 
 716 
 717 
 718 
 719 
 720 
 721 
Table 3b: T-test results for mean plot biomass, by vegetation type, north-south comparison.  722 
 723 
vegetation type    one-tail P    two-tail P 
All plots (North-South) **0.029 *0.059 
for veg types with more than two plots in each region 
High Forest Flooded 0.207 0.414 
High Forest Upland 0.12 0.241 
Low Forest Flooded 0.331 0.652 
Low Forest Upland **0.019 **0.037 
Savanna Upland *0.074 0.148 

* P<0.1 724 
**P<0.05 725 
 726 
 727 
 728 
 729 
 730 
 731 
 732 
 733 
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Table 4: Extent and total above ground carbon estimates of titled lands. Titled lands 3N and 739 
5N fall within one large communal land title. 6N also shares its titled land with other villages 740 
(not shown here). 741 
 742 

titled land 
million 
MgC area (ha) 

1N 3.01 21,925 
3N 22.71 171, 275 
5N 22.71 171, 275 
6N 6.73 61,989 
7N 7.24 48,502 
8N 5.47 48,586 
9N 7.00 48,658 

10N 6.71 54,022 
12N 0.90 24,442 
14S 3.08 38,287 
15S 4.25 36,183 
16S 4.72 42,802 
18S 4.30 34,599 
19S 5.12 56,416 
20S 5.88 53,544 
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 756 
 757 
Figure 1: Map of the Rupununi study region in Guyana.  758 
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 765 
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 766 
 767 

 768 
 769 
Figure 2: Mean DBH by vegetation type (above) and sample site (below).  N = north and S = 770 
south. The control sites are represented by striped bars. Error bars represent standard error. 771 
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 785 
Figure 3: Mean carbon biomass (MgC per hectare) by vegetation type. Error bars represent 786 
standard error. 787 
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821 
Figure 4: Average carbon biomass (MgC per hectare) by village titled land. The areas 822 
encompassing control sites, included for comparison, are represented by striped bars.  823 
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