
�������� ��	
���
��

Flow deflection over a foredune

Patrick A. Hesp, Thomas A.G. Smyth, Peter Nielsen, Ian J. Walker,
Bernard O. Bauer, Robin Davidson-Arnott

PII: S0169-555X(14)00542-X
DOI: doi: 10.1016/j.geomorph.2014.11.005
Reference: GEOMOR 4973

To appear in: Geomorphology

Received date: 30 May 2014
Revised date: 3 November 2014
Accepted date: 7 November 2014

Please cite this article as: Hesp, Patrick A., Smyth, Thomas A.G., Nielsen, Peter, Walker,
Ian J., Bauer, Bernard O., Davidson-Arnott, Robin, Flow deflection over a foredune,
Geomorphology (2014), doi: 10.1016/j.geomorph.2014.11.005

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/43361396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.geomorph.2014.11.005
http://dx.doi.org/10.1016/j.geomorph.2014.11.005


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Flow deflection over a foredune  

Patrick A. Hesp
1
, Thomas A.G. Smyth

1
, Peter Nielsen

2
, Ian J. Walker

3,
 Bernard O. 

Bauer
4
, and Robin Davidson-Arnott

5
 
 

1School of the Environment, Faculty of Science and Engineering, Flinders University, 

Bedford Park, South Australia 5042 

Patrick.hesp@flinders.edu.au; Thomas.smyth@flinders.edu.au 

 

2School of Civil Engineering, University of Queensland, St Lucia, Qld. 4072 

p.nielsen@uq.edu.au  

 

3Dept of Geography, University of Victoria, P.O. Box 3060, Station CSC, Victoria, BC 

Canada V8W 3R4 

ijwalker@uvic.ca 

 

4Earth and Environmental Sciences & Geography, University of British Columbia, 

Okanagan, Kelowna, BC Canada V1V 1V7 

bernard.bauer@ubc.ca 

 

5Dept of Geography, University of Guelph, Guelph, ON Canada N1G2W1 

rdarnott@uoguelph.ca 

 

Flow deflection of surface winds is common across coastal foredunes and blowouts. Incident 

winds approaching obliquely to the dune toe and crestline tend to be deflected towards a 

more crest-normal orientation across the stoss slope of the foredune. This paper examines 
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field measurements for obliquely incident winds, and compares them to computational fluid 

dynamics (CFD) modelling of flow deflection in 10° increments from onshore (0°) to 

alongshore (90°) wind approach angles. The mechanics of flow deflection are discussed, 

followed by a comparative analysis of measured and modelled flow deflection data that 

shows strong agreement. CFD modelling of the full range of onshore to alongshore incident 

winds reveals that deflection of the incident wind flow is minimal at 0° and gradually 

increases as the incident wind turns towards 30° to the dune crest.  The greatest  deflection 

occurs between 30° and 70° incident to the dune crest. The degree of flow deflection depends 

secondarily on height above the dune surface, with the greatest effect near the surface and 

toward the dune crest. Topographically forced flow acceleration ("speed-up") across the stoss 

slope of the foredune is greatest for winds less than 30° (i.e., roughly perpendicular) and 

declines significantly for winds with more oblique approach angles. There is less lateral 

uniformity in the wind field when the incident wind approaches from >60° because the effect 

of aspect ratio on topographic forcing and streamline convergence is less pronounced. 

KEY WORDS: Foredune, flow deflection, Computational fluid dynamics (CFD), oblique 

winds. 

 

Introduction 

Flow  deflection of near surface (i.e., z <10 m) winds approaching dunes and blowouts from 

an oblique angle is commonly observed (e.g., Svasek and Terwindt, 1974; Mikkelsen, 1989; 

Rasmussen, 1989; Arens et al., 1995; Hesp and Pringle, 2001; Hesp, 2002; Walker et al., 

2006; 2009; Lynch et al., 2008, 2009, 2013; Smyth et al., 2011; 2012; 2013; 2014). Over 

coastal foredunes and other ridges such as transverse dunes, oblique winds tend to be 

deflected towards more crest-normal as the flow approaches and crosses the stoss slope of the 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 2 

dune or ridge (e.g., Svasek and Terwindt, 1974; P. Jackson, 1977; 1979; Tsoar, 1983a, b; 

Walker et al., 2006; 2009; Lynch et al., 2008; 2010; Jackson et al., 2011; Bauer et al., 2012; 

Rubin and Rubin, 2013; Walker and Shugar, 2013). This phenomenon is important for 

several reasons, including: (i) oblique winds can transport sediment onto a foredune or away 

from it depending on the incidence angle (Arens, 1996; Walker et al., 2006; Lynch et al., 

2008; 2010), thereby affecting the sediment supply to the dune system (Arens et al., 1995; 

Arens, 1996); (ii) wind deflection can strongly influence net transport pathways and 

sedimentation patterns on a foredune (Svasek and Terwindt, 1974; Hesp, 2002; Walker et al., 

2006; 2009; Bauer et al., 2012); (iii) beach transport conditions may be decoupled from 

foredune transport conditions at certain approach angles (Bauer et al., 2012); (iv) sedimentary 

strata may be deposited more crest transverse than the wind regime would indicate (Hesp, 

1988), thereby leading to erroneous paleo-environmental interpretations; and (v) fetch 

distances and sand transport pathways into and over dunes may be greater or less than 

predicted depending on the nature and magnitude of  flow deflection (Svasek and Terwindt, 

1974; Walker et al., 2006; 2009; Walker and Shugar, 2013). 

Several studies have suggested that near-surface flow deflection occurs in response to 

pressure differences upwind of the dune toe and up the stoss slope (Svasek and Terwindt, 

1974; Bradley, 1983; Mikkelsen, 1989). The resulting pressure gradient produces deviations 

of streamline orientations from the incident direction as a consequence of mass and 

momentum conservation. Reviews of related topographic forcing and steering effects in near-

surface airflow over foredunes are provided in Walker et al. (2006; 2009), and over 

transverse ridges more generally (Finnigan et al., 1990; Weng et al., 1991; Wiggs et al., 1996; 

Belcher and Hunt, 1998, Wood, 2000; Parson et al., 2004; Ayotte and Hughes, 2004; Bauer et 

al., 2013; Walker and Shugar, 2013). The greatest deflection occurs when incident winds 

approach the dune at moderate to highly oblique approach angles (Mikkelsen, 1989).  
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According to Svasek and Terwindt (1974), maximum deflection occurs at incident angles 

between 30° and 60° and the degree of deflection is most pronounced near the surface 

(Mikkelsen, 1989; Walker et al., 2009).  Bradley (1983) and Walker et al. (2009) found an 

inverse relationship between incident flow direction and speed, such that when the flow was 

more oblique to the dune crestline, the flow speed decreased over the dune (cf. Arens, 1995; 

1996; Lynch et al., 2010; Jackson et al., 2011), which implies that less sand can be delivered 

to the foredune crest and lee-side region. Arens et al. (1995) found that, as winds became 

more oblique, the effective slope (i.e., aspect ratio) diminished and, in response, transport 

rates up the stoss slope decreased because topographically-forced flow acceleration is not as 

pronounced as with perpendicular approach angles. 

The degree of flow steering found in empirical studies varies. Bradley (1983) examined flow 

over a long low hill in the field and found only slight deflection (~1-2°) of the obliquely 

incident winds.  This may be a partly methodological issue because they compared winds at 

the crest to those at the base of the slope (rather than the incident conditions some distance 

upwind of the toe).  Moreover, the topographic profile of the ridge was low. Walker et al. 

(2006; 2009) and Bauer et al. (2012) report that incident flow is already partly deflected at 

the base of a foredune. For a separate theoretical case, Bradley (1983) found a deflection of 

~4° for an incident oblique wind approaching the ridge at 24°. Rasmussen (1989), following 

on the fieldwork of Mikkelsen (1989), examined flow vectors and steering at 1 m height over 

a 2-D symmetrical dune ridge. For an incident oblique wind 30° to crest-normal, Rasmussen 

(1989) found that flow was deflected more crest-normal by 10° by the mid-stoss slope and 15° 

by the dune crest. For flow approaching a steep, 70- to 90-m high scarp at an angle of 45° to 

normal, it was found that flow separated in front of the scarp base and was deflected 

alongshore, while higher up the scarp the flow crossed at an oblique angle. Arens et al. 

(1995) argued that flow deflection increased with increasing foredune height. They found 
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flow deflections of less than 15° up to 30° for low (1-2 m high) to high (12-15 m) foredunes, 

respectively.  

Walker et al. (2006) examined flow responses over a foredune at Prince Edward Island (PEI), 

Canada, and found that the flow veered 7° from the backshore into the dune toe and another 

12° from the dune toe to lower stoss slope, despite the regional flow being oblique offshore. 

At the same study site, Walker et al. (2009) found that, during very oblique incident flow 

conditions, there was significant deflection of flow (as much as 37°) from the backshore to 

the crest of the 12-m high foredune. In a subsequent study at the PEI site, Bauer et al. (2012) 

documented pronounced deflection of oblique incident winds over the foredune, and found 

that wind directions on the beach during a storm event were far less variable than those on the 

dune crest for the same incident winds. During alongshore incident flow conditions Lynch et 

al. (2009) found that wind near the dune crest was deflected more offshore compared to the 

flow along the beach and, for obliquely onshore winds, they found a deflection of ~20° 

towards shore-normal. 

Despite the number of studies that have documented deflection of near-surface winds and that 

have speculated on the implications for aeolian transport pathways (e.g., Walker and 

Nickling, 2002; Baddock et al., 2007; Walker and Shugar, 2013), and its importance in 

contributing to foredune evolution and form, there have been few detailed studies dedicated 

to the nature of flow deflection, and little modelling of the process. In this paper, we examine 

the nature of flow deflection over a foredune for a full range of onshore to alongshore 

incident winds (0° to 90°) using empirical observations and computational fluid dynamics 

modelling (CFD).  

 

STUDY SITE AND METHODS 
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Study Site 

The study site was located on a foredune within the Greenwich Dunes unit of Prince Edward 

Island National Park on the north-east shore of Prince Edward Island (PEI), Canada (Fig. 1). 

The field experiments were part of a study on the airflow and sedimentary dynamics of this 

beach-dune complex (e.g. Davidson-Arnott et al., 2003, 2008, 2009, 2012; Walker et al., 

2003, 2006, 2009; Hesp et al, 2005, 2009, 2013; Bauer et al., 2009, 2012; Delgado-Fernandez 

and Davidson-Arnott, 2009; Hesp and Walker, 2012; Chapman et al., 2012, 2013;Delgado-

Fernandez et al., 2013; Ollerhead et al., 2013).  

 

 

Figure 1: Location of the Greenwich dunes unit within Prince Edward Island National Park 

on P.E.I., Canada. 

The foredune crest is ~10 m above mean water level with a steep stoss slope (20°-25°) and an 

ENE-WSW crestline orientation. The foredune has been stable in position and growing in 
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height since 1953 on this erosional coast (Ollerhead et al., 2013). The dune fronts onto a low-

gradient, microtidal (~1 m), moderate to high energy intermediate beach with a low-tide 

width of about 35 m, and backs onto the deflation plain of a large parabolic dune (see Walker 

et al., 2009; Mathew et al., 2010). Two experiment lines were originally established on the 

foredune, one on a non-scarped section and one on an initially scarped section. The latter 

section is the line examined further in this study because this is where the high-frequency 

instrumentation was deployed. The foredune displayed a non-vegetated, 0.7-m high scarp at 

the initiation of experiments, which later filled in with sand following a significant wind 

storm (see Fig. 6 in Hesp et al., 2009). The dune is vegetated by Ammophila breviligulata, 

with plant heights averaging 0.3 m and with a spatial density ranging from 2 – 45% based on 

visual assessments on contiguous transects.  

Experimental Methods and Set-up 

 

Figure 2. Crest perpendicular profile of the foredune at Prince Edward Island. The locations 

of 3-D anemometers utilized in the field measurements are indicated by circles on the profile.  

The data utilized for modelling comparison purposes were collected on the 11th October, 

2004 during a moderate to gale force wind speed event (Tropical Storm Nicole - see Fig. 2 in 
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Hesp et al., 2009, Fig. 3 in Hesp et al., 2013, and Fig. 12 in Walker et al., 2009). In this 

investigation, wind speed was measured from 7 sonic anemometers on the dune stoss face 

and crest. A cup anemometer positioned at 4 m elevation and 12.34 m seawards of the dune 

toe on the beach provided incident wind conditions. 

Three-dimensional velocity fields were measured with RM Young 3-D sonic anemometers 

aligned parallel to the slope (Fig. 2). These instruments have a wind speed resolution of 0.01 

ms-1, an accuracy of +/- 1% up to 30 ms-1, and a wind direction resolution of 0.1° and an 

accuracy of +/- 2° up to 30 ms-1. Pairs of sensors were deployed at 0.66 m, and 2.05 m above 

the bed at the base of the stoss slope, on the mid stoss slope at 0.66 m and 1.66 m, and at the 

crest, also at 0.66 m and 1.66 m. An additional 3-D sonic was deployed at 0.66 m height at 

the scarp crest. Three-dimensional velocity components (U,V and W) were measured 

continuously at 32 Hz for the duration of the storm event, and then subsets of 10-minute 

periods were extracted to characterize the range of wind velocities experienced throughout 

the storm event.  

For the results presented here, the directional reference used in some of our previous papers 

at this site has been modified, such that 0° is onshore (perpendicular to the crestline of the 

foredune), 90° is alongshore (i.e. from the east) and 180° is offshore (i.e. winds blowing 

directly offshore). This was necessary for purposes of the CFD modelling. Instrument U–V 

planes were installed parallel to the underlying surface slope so as to limit streamline 

misalignment to the sensor sampling plane (Walker, 2005).  No pitch corrections were 

applied and, therefore, mean flows in the vertical direction (i.e., perpendicular to the 

underlying topographic slope) imply a local streamline direction oriented either toward the 

surface (negative W) or away from the surface (positive W). As the sonic anemometers were 

installed to within +/- 1° of the slope, the time series were not adjusted for yaw, which rotates 
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the dataset to a coordinate system that is parallel to the wind streamlines. Nevertheless, the 

magnitude of the yaw angle for each time increment was calculated in order to provide the 

essential information on flow deflection.   

Computational Fluid Dynamics (CFD) Methodology 

Wind flow over the dune surface was simulated using CFD, which has been used successfully 

to simulate flow over a number of coastal dune landforms (Pattanapol et al., 2008; Wakes et 

al., 2010; Jackson et al., 2011; Smyth et al., 2012; 2013). Simulations in this study were 

performed using open-source software, OpenFOAM, which is capable of solving a range of 

complex fluid flows but also includes tools for meshing the surface topography and 

visualising the results.  The wind field over the dune was simulated assuming incompressible 

flow using a large time-step transient solver, pimpleFoam. Turbulence was modelled using 

the Renormalised Group (RNG) k-epsilon method (Yakhot et al., 1992). The turbulence 

model is based on the Reynolds-averaged Navier-Stokes (RANS) equations, which focuses 

on the effects of turbulence on the average flow rather than resolving turbulence at every 

scale, as with direct numerical simulation (DNS) or at the larger scale like a large eddy 

simulation (LES). The RNG model has been used to accurately simulate near surface flow 

over a transverse dune in a wind tunnel (Parsons et al., 2004), coastal dune complex (Wakes 

et al., 2010), and a complex foredune blowout (Smyth et al., 2012; 2013). The digital 

elevation model used to represent the dune surface within the computational domain was 

generated from RTK-DGPS points collected on site prior to the experiments.  

The surface of the domain was given a roughness height of 0.05 m, the same as that stated for 

a beach by Pattanapol et al. (2007). This height was prescribed, as at least two cells are 

recommended between the surface and the area of interest within the computational domain 

(Franke et al., 2004). In this case, the nearest field measurement point was at 0.66 m above 
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the surface, therefore a minimum cell height of 0.15 m was utilised. Although this is smaller 

than the stem height of the vegetation recorded in the field (0.3 m), the size of the near 

surface grid cell (0.6 m) required to include information on actual vegetation effects is too 

large to properly simulate the complexity of near surface flow that occurs in vegetated 

surfaces in the field. 

A mesh independence study was completed to ensure the simulation results were independent 

of the mesh resolution. This was achieved by increasing the horizontal resolution of the mesh, 

producing an increase in the total number of cells by 40%. Results at 70 locations throughout 

the computational domains were compared for 2 directions and average variance in wind 

direction was found to be below 1% for both cases.  

Flow at the upwind boundary was defined as a logarithmic profile as described by Blocken et 

al. (2007).  The turbulence model parameters k and epsilon were given initial values of 0.325 

on the assumption they would adjust to the upwind boundary conditions quickly on 

simulation commencement (as validated by e.g. Wakes et al., 2013, and Flores et al., 2013). 

Wind flow over the dune was modelled at 10° increments from parallel to the crest 

(alongshore, 90°) to perpendicular to the crest (onshore, 0°), thereby producing a total of ten 

flow simulations.  

Modelled U, V and W components were adjusted to be slope-aligned using a clockwise 

rotation of the coordinate reference frame to be consistent with the field instruments. Only 

the modelled U and W vectors were realigned in this way since V for the field and model 

results were already in the same reference frame.  

The U and W alignment algorithms are: 

Aligned CFD U = CFD U*COSINE(slope in radians) – CFD W*SIN(slope in radians)     (1) 
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Aligned CFD W  = CFD U*SIN(slope in radians) + W*COS(slope in radians)            (2) 

Wind direction was validated graphically by comparing vectors of modelled and measured 

data and by percentage difference calculations (Smyth et al., 2013), as follows:  

CFD wind direction % error = (measured – modelled)/360*100   (3) 

 

CONCEPTUALIZING FLOW DEFLECTION OVER A DUNE RIDGE  

Before examining the field and modelled data, it is useful to consider why flow deflection 

occurs when wind approaches a foredune ridge from an oblique angle. Consider an oblique, 

onshore coastal wind crossing a beach and encountering a linear, two-dimensional, shore-

parallel dune. As noted above, field observations have shown that such an oblique wind will 

be subject to topographic steering effects as it progresses up the stoss slope, such that it 

becomes more crest-perpendicular toward the crest (e.g., Arens, 1995; Walker et al., 2006, 

2009, Bauer et al., 2012). The Bernoulli equation provides a qualitative explanation for why 

topographic steering will occur.  At the outset, however, it needs to be recognized that the 

Bernoulli approach presumes incompressible, irrotational flow and an inviscid fluid. As a 

consequence, there can be no shearing motion in the internal domain of the fluid, and 

therefore lateral shear forces are considered to be a secondary effect by definition. Fig. 3 

shows two parallel streamlines connected by an infinitesimally small volume of air at the 

local ground level with mass, m, length, l, and cross-sectional area, A. The axis of the air 

volume along l is perpendicular to the streamlines, but forms a local angle with the dune line 

orientation, α. Flow velocity, V, is assumed uniform along any dune contour but is allowed to 

change as the streamline moves up the stoss slope as a function of streamline convergence. 
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Although velocity will also change with height above the bed this effect is not modelled in 

this two-dimensional approach. 

Writing the Bernoulli Equation for the two ends of the cylindrical air volume yields, 

  

           
 

 
         (4) 

where P is pressure, ρ is density, g is acceleration due to gravity, and Z is height. The 

standard application of the Bernoulli Equation is normally for two points along the same 

streamline, but when the flow is laterally uniform along a two-dimensional dune, the two 

streamlines through the ends of the parcel are equivalent and exchangeable. As wind moves 

up the dune according to the elevation difference between the two points, the near-surface 

flow field converges and accelerates. The flow acceleration, in turn, creates a pressure 

gradient, which is ultimately responsible for the steering influence. 

 

1
P − ∆ + )2 1

P + ρ(V ∆V + ρg(Z + ∆Z ) = P + ρV 2 + ρgZ
2 2 �

� − ∆ + ��� + ∆ ��� � +
�
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Figure 3: Illustration of a parcel of air approaching the dune at an oblique angle. The initially 

oblique wind tends to become more crest-perpendicular as it climbs the dune stoss slope. 

To simplify the analysis, it is useful to combine the pressure and elevation terms into a 

piezometric pressure P*= P+ρgz, so equation (4) becomes, 

  

       
 

 
        

     
 

 
    

Then, the approximate piezometric pressure difference between the ends of the air parcel can 

be written as (omitting a negligible term in ΔV
2 given that the difference in velocity across the 

air volume is small in comparison to the absolute wind speed), 

  

         

Svasek and Terwindt (1974; Fig. 6) implicitly followed a similar line of reasoning to reach 

the same conclusions.   

As above, this piezometric pressure gradient ΔP* provides a net force,         on 

the air parcel in a direction perpendicular to its trajectory, which is proportional to a rate of 

deflection dα/dt  through Newton's Second Law of Motion; 

  (7)  

1
P * −∆P* + ρ(V ++ ∆

2 V )2 1
= P * + ρV 2

2  (5) 

∆P* = ρV∆V  (6)) 

dα
m |V | = F

dt ⊥
 

F⊥ = ∆P* A
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Using the definition of the total derivative, d/dt = V d/ds, where s is the distance along a 

streamline, Equations 6 and 7 can be manipulated as follows, 

   (8).   

�|�|
��

��
= ���

��

��
= �⊥ = ∆�∗	 ≈ −
�∆�	 

The approximation at the end of Equation 8 is drawn from Equation 6, which ignores a small, 

higher order velocity gradient term. The general form of Equation 8 can be rearranged to 

yield, 

       (9) 

��

��
=

−
∆�	

��
= −

∆�

��
 

which shows that an increase of ΔV /V up the dune (right hand side of equation) is balanced 

by an increase in the rate of deflection (left hand side of equation). Writing the velocity 

difference ΔV between the two ends of the air volume in terms of the uphill acceleration dV/dz 

and the elevation difference βl sin α, where β  is the slope of the dune surface, we arrive at a 

differential equation that describes the deflection of the wind (i.e., variation of α) in terms of 

the mean velocity, the velocity gradient in the up-dune direction, and the slope angle, 

   (10) 

m |V |
dα
dt

= mV 2 dα
ds

= F⊥ = − ∆P* A ≈ − ρV∆V A

dα
ds

=
−ρ∆V A

mV
= − ∆V

lV

dα
ds

= −
β dV

dz
V

sinα



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 14 

��

��
= −

�
��
�


�
���	� 

Equation 10 shows that if the wind is initially perpendicular to the dune (i.e. sinα = α = 0) 

there is no deflection along the streamline.  If the angle of wind approach is oblique to the 

dune, the sinα term is non-zero and wind steering occurs. The effect is most pronounced 

when the dune slope angle (β) is steep and the uphill acceleration (dV/dz) is strongest. 

Interestingly, the strength of the steering effect is inversely proportional to the mean incident 

wind speed, which may explain some of the variance in the empirical data regarding flow 

deflection over dunes.  Similarly, there is a limit to this topographic forcing because with 

very oblique angles of wind approach, the velocity gradient becomes small as it is forced over 

a much longer and gentler facet of the dune (i.e., the apparent steepness or aspect ratio of the 

dune decreases). As a very loose approximation, dV/dz ~ cosα, which leads to,  

   (11) 

��

��
~���	�	���	�	~���	2	� 

Equation 11 is zero for both 0o and 90o and maximum for α= 45o, corresponding to the 

suggestion by Svasek and Terwindt (1974) that maximum deflection should occur for 30o 

<α< 90o. 

The above derivations are admittedly simplistic in as much as the Bernoulli Equation neglects 

friction, turbulence, flow compressibility, wind unsteadiness, and various other 3-D boundary 

layer dynamics that occur as the wind approach angle shifts from onshore to alongshore. 

Nevertheless, it provides a useful heuristic explanation of why the steering effect occurs and 

suggests a means to organize the empirical data into a coherent model of flow deflection that 

dα
ds

~ sinα cosα ~ sin2α
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has four controlling variables: (1) mean incident wind speed; (2) mean angle of wind 

approach; (3) dune slope; and (4) strength of flow acceleration up the stoss slope of the dune.  

Moreover, a numerical integration of (10), which can be done in a simple spreadsheet, gives 

reasonable wind trajectories  (s)  based on measured V, dV/dz  as long as the topography 

does not depart significantly from a two-dimensional form. 

COMPARISON OF FIELD AND MODELLED CFD DATASETS 

Fig. 4 illustrates the CFD and field data for the scarped profile during an incident wind angle 

of 68° measured above the beach at 4 m above the surface. The presence of the scarp 

exacerbates the incident flow at the toe, and tends to steer the incident flow along-scarp to 

some degree as observed in other studies (Svasek and Terwindt, 1974; Arens, 1995; 

Mikkelsen, 1989; Hesp et al., 2013). Above the scarp, the streamlines converge and the flow 

is accelerated (cf. Bowen and Lindley, 1977) so the velocity is greater there than farther up 

the stoss slope. Flow accelerates towards the crest on the upper stoss slope. At 0.66 m above 

the ground, the degree of flow deflection from dune toe to crest is 33°, while at 1.66 m above 

the ground it is 13°. 

The greatest difference between the CFD results and the field data is at the dune scarp. This is 

to be expected as this is a highly turbulent region, the scarp tends to deflect the flow 

alongshore (corkscrew vortices are commonly observed here), and often turbulent jets are 

formed across the scarp crest (e.g. Bowen and Lindley, 1977; Hesp et al., 2009, 2013). 

Nevertheless, the flow deflection direction error (see Equation 3) between modelled and field 

data is less than 1% for five of the seven locations indicating a remarkably good agreement 

between the modelled and field results.  
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The CFD modelling also shows that there is a constant difference between the flow deflection 

at 0.66 m compared to 1.66 m. The near-surface wind is consistently more deflected than the 

upper wind, and this is also observed in the field data (cf., Walker et al., 2009).  

 

Figure 4. Comparison of  field measured (in dark grey wind speed and direction and 

modelled (in grey) CFD results. Direction represents that recorded at each UVW 

anemometer. 0° is onshore perpendicular to the crest of the dune and 90° is alongshore, and 

180° onshore.  Note that the upper anemometer at the foredune toe is at a height of 2.05 m, 

while the other two are at 1.66 m height. „CFD error‟ in the diagram relates to wind direction 

only. 
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CFD MODELLING OF MULTIPLE INCIDENT WIND DIRECTIONS 

The comparison of field and modelled data indicates that there is a good correlation between 

field and modelled flow deflection over the foredune. Here, we extend the range of incident 

winds observed in the field by modelling all onshore to alongshore winds in ten-degree 

increments from directly onshore (0°) to directly alongshore (90°) and examine the resulting 

degree of flow deflection. 

 

 

Figure 5. CFD modelled flow velocity at 0.66 m above the dune surface at 30° iterations for 

incident wind directions ranging from crest parallel to crest perpendicular. Arrows spaced at 

2 m intervals represent wind flow direction at 0.66 m above the surface. Elevation contours 

are spaced at 0.5 m intervals. The incident approach speed on the beach upwind was 12.2 m s-
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1 at 4 m above the beach surface in all cases. The greatest topographically-forced flow 

acceleration and least flow deflection occurs for directly onshore winds.  

Fig. 5 illustrates the 3-D flow fields produced by the CFD model for four incident wind 

directions at a consistent incident speed of 12.2 ms-1 at 4 m above the beach surface. The 

greatest topographically-forced flow acceleration and least flow deflection occurs for directly 

onshore winds. The greatest velocities occur near the foredune crest (red colours on Fig. 5). 

The greatest flow deflection across the dune occurs for winds in the 30° to 60° range, and the 

rate of deflection increases towards the dune crest (see 60° incident wind in Fig. 5). 

Interestingly, over this relatively uniform dune terrain, there is less lateral uniformity in the 

wind field when the incident wind approaches from >60° because even slight topographic 

variations are experienced more so by the more oblique to alongdune oriented winds. 

Fig. 6 illustrates a range of incident flows at 10° increments, and shows the degree of flow 

deflection  in 1 m increments across the foredune. When the flow is perpendicular (i.e. the 

zero degree lines on Fig. 6), there is minor flow deflection at both heights above the surface 

in the upper stoss slope region. This small degree of deflection probably results from 

alongshore variations in dune morphology. As the incident wind becomes more oblique, the 

degree of flow deflection increases to a maximum for incident winds arriving from 40° to 50°, 

as expected following Equation 13 and as observed by Svasek and Terwindt (1974) and 

Arens et al. (1995). Under those conditions, the flow is steered or deflected 20° more crest-

perpendicular from the dune toe and scarp to the crest. For example, at 0.66 m above the 

surface and at an incident flow of 50°, the incident direction 10 m seawards of the dune scarp 

is approaching at ~49°. This is deflected more crest parallel to ~57° at the dune scarp, and 

then deflected back to ~33° and more perpendicular at the dune crest. There is consistently 

less flow deflection at higher elevations above the dune compared to flow nearer to the bed 

(Fig. 6; Table 1). 
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At the dune toe, the flow steers along the beach due to the presence of the scarp, and the 

modelling indicates significant variations in flow directions or deflections over a short 

distance, even for incident wind approach angle as small  as 10°. This process, whereby the 

diverging wind flow at the dune toe which directs flow along the beach or up the stoss slope 

of the dune, may result in the decoupling of the dune and beach sand transport systems 

(Bauer et al., 2012). Note that there is often flow separation, topographic steering of flow 

alongshore and the common presence of corkscrew vortices in front of scarps. In addition, 

flow acceleration and the formation of a jet over the scarp crest commonly occurs (Bowen 

and Lindley, 1977; Tsoar, 1983; Hesp et al., 2009). Above and downwind of the scarp, the 

flow expands and becomes more crest-perpendicular as the flow crosses the stoss slope. 

Where the incident flow becomes more crest-parallel, there is naturally a greater tendency for 

the flow to steer along the scarp and the dune-parallel to the contours. Thus, there is 

progressively less deflection as the incident flow becomes more crest-parallel, and this is true 

for both anemometer heights examined. 
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Figure 6. Direction of wind flow at 1.66 m (upper panel) and 0.66 m (lower panel) above the 

surface of the transect at 1 m intervals across the dune from the beach (at 0 m on the y-axis) 

to the dune lee slope (at ~35 m). Incident wind flow was modelled at 10° intervals from crest-

perpendicular (0° and directly onshore) to crest-parallel (90° and alongshore). The greatest 

degree of flow deflection occurs in the 30° to 60° range. 

Fig. 6 also illustrates that the flow is considerably deflected once it crosses the dune crest and 

into the lee-side region, more so at lower heights above the bed and as the incident wind 

approach angle ranges between 30° and ~60°. This is a zone where flow separation often 

occurs. At small angles of approach the separation flow structure is typically a simple 

reversing vortex (e.g., Warren, 1979; Hesp et al., 1989; Walker and Nickling, 2002; Bauer et 

al., 2012; Walker and Shugar, 2013), but as the incident flow increases in obliquity, the 
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separation zone is characterized by corkscrew vortices trending downwind (cf. Walker and 

Nickling 2002; Walker and Shugar, 2013).  As the incident flow approaches 90° to directly 

along the dune crest axis, there is minimal to no flow separation and, therefore, minimal flow 

deflection. Again, the impact of the scarp is greater  nearer to the bed compared to higher 

above the dune for along-dune low. 

 

Incident wind direction 

(degrees) 

Degree difference scarp & crest 

0.66 m 1.66 m 

90 4 0 

80 1 2 

70 5 5 

60 16 11 

50 19 12 

40 19 12 

30 17 11 

20 14 8 

10 7 4 

0 2 0 

 

Table 1. Wind direction difference (in degrees) between CFD modelled flow at the scarp 

base at 0.6 m high and the crest (at 1.66 m high) for the full range of incident winds (0-90°) 

across the western foredune transect. At 90°, for example, there is only a 4° diffference 

beween wind direction at the scarp and at the crest, and zero difference at 1.66 m high 

between the two, while at 50° incident wind there is a significant difference in flow direction 

between the two heights (19° versus 12°) 

As noted in several studies, as wind becomes more crest-parallel, the degree of flow speed-up 

tends to decrease (e.g. Arens et al., 1995; Hesp, 2002; Walker et al., 2006, 2009; Bauer et al., 
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2012; Hesp et al., 2013). Fig. 7 illustrates wind speeds at 1 m horizontal intervals across the 

dune transect for five incident wind directions. As with the previous simulations, the incident 

wind speed on the beach was 12.20 m s-1 at 4 m height. The CFD modelling shows that there 

is considerable directional unsteadiness and variability in the wind speed across the 

backshore upwind of the dune especially nearer the surface due to the positive pressure 

gradient induced by the dune on the flow field. It is well known that the dune toe region is an 

area of considerable deceleration or speed-down (cf. Bowen and Lindley, 1977) and flow 

unsteadiness as turbulent flow structures are conveyed toward the bed in an area of rapid 

slope change (e.g., Wiggs et al., 1996, Walker and Nickling 2002, Walker et al., 2006, 

Chapman et al., 2012), and this is also more pronounced at or near the lower stoss slope.  

From the mid-stoss slope to the crest, the greatest flow acceleration occurs for perpendicular 

to low obliquity winds (10-30°) and uniformly decreases as the incident wind direction 

swings to 50°, at both heights (0.66 and 1.66 m) above the surface.  

There is flow separation at, and beyond, the foredune crest as visualized by multiple videos 

taken in the field of smoke bomb flow patterns (e.g. Walker, 2005; Fig. 6) for perpendicular 

and low to moderate obliquity winds. The flow structure is typically a simple reversing roller 

vortex in this region (Bauer et al., 2012) and this flow separation zone drives significant 

deceleration in wind speeds leeward of the dune crest as in Fig. 7. As the flow trends towards 

more crest parallel (from 50° towards 70°), the degree of flow deceleration declines leeward 

of the crest at 0.66 m above the bed and this pattern holds for winds higher above the surface 

(1.66 m). In effect, the dune profile or topography that the 70° incident wind encounters is 

still relatively steep and asymmetric. Once the incident wind approaches from 90° to crest 

parallel, there is typically significantly less to no flow separation across the dune crest and 

extending on the lee slope, so the isovel distribution is quite different compared to other 

incident flows. Overall, the CFD modelling demonstrates that the degree of topographically 
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accelerated flow decreases as the incident wind becomes increasingly more oblique to the 

foredune. At 0.66 m above the bed, for example, the wind speed at the foredune crest for an 

incident wind direction of 50° and 80° is on average 25% lower than for winds in the 0 to 30° 

incident range.  As found in a much simpler CFD simulation by Parsons et al. (2004), 

however, dune height is perhaps more important than aspect ratio (h/L) in controlling near-

surface flow response over dunes, particularly at the crest.  This is because total vertical 

displacement of flow streamlines and resulting flow acceleration responses are fundamentally 

greater over taller dunes.  Although the flow responses observed here are a function of the 

observed dune geometry (i.e., a 10 m tall foredune), this study provides a more 

comprehensive picture of flow deflection and acceleration behaviour over foredunes in 

response to the full range of onshore incident flow angles. 

 

  

Figure 7. (a) Wind speed at 1.66 m above the dune at 1 m intervals for five incident wind 

directions. (b) Wind speed at 0.66 m above  the dune at 1 m intervals. The greatest speed-up 
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occurs for winds that are most perpendicular and, therefore, where the topography is steepest 

and then decreases as the incident wind becomes increasingly oblique up to ~70°. 

Fig. 8 summarises the general flow conditions and degree of deflection that occurs in the 0 to 

3 m boundary layer above the beach and foredune. It illustrates three examples of incident 

flow approaching the dune from 20°, 40° and 80°. At 20° there is slight decoupling and 

deflection to the right near the scarp and then deflection towards more crest-normal on the 

mid to upper stoss slope. At 40°, the extent of deflection is considerable and there is greater 

deflection of the lowermost streamlines compared to the upper ones. In both the 20° and 40° 

examples, the velocity is greatest near the crest (indicated by the red colours). At 80° there is 

significantly less overall deflection of the streamlines compared to that at 20° and 40°, but 

some still occurs. Speed-up  is considerably less than in the 20° and 40° cases, and local 

velocity variations are primarily due to changes in surface morphology.   
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Figure 8: Examples of lower boundary layer flow (0.66 to 2 m range) and degree of 

streamline deflection for three incident wind approach directions, 20° (uppermost), 40° 

(middle) and 80° (lowermost). The lowest streamlines show the strongest response to 

variations in surface morphological changes and display the greatest degree of deflection. 

 

CONCLUSIONS 

A comparison of field data collected during oblique winds and CFD modelling demonstrates 

that the CFD simulations are able to provide good agreement with field data. This allows for 

simulation of a complete range of incident flows from onshore to alongshore (0-90°) and 

interpretation of near-surface flow deflection and acceleration patterns.  This study provides 
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the first examination of such flow dynamics over a foredune ridge and provides several new 

insights. Key findings, include: 

(i) deflection of the incident wind flow is minimal at 0° although minor deflection occurs 

because the foredune is never perfectly smooth and „prismatic‟; 

(ii) deflection gradually increases as the incident wind turns towards 30° to the dune; 

(iii) the greatest degree of flow deflection occurs in the 30° to 70° range, and is maximum 

at ~45° as it is proportional to sin2α; 

(iv) there is a consistent difference in the degree of flow deflection with height above the 

dune, with the greatest steering occurring closest to the surface confirming 

observations in previous field studies; 

(v) the degree of deflection increases towards the dune crest; 

(vi) speed-up or topographically-forced flow acceleration up the foredune is strongly 

affected by the incident wind flow approach direction, such that speed-up is greatest 

for perpendicular to 30° oblique incident winds and declines significantly for winds 

>30° as the speed-up is proportional to cosα 

(vii) there is less lateral uniformity in the wind field when the incident wind approaches 

from >60° because the greater along-dune (compared to across-dune) topographic 

variations are “seen” more by the higher angle oblique to along-dune winds; 

(viii) in the lee zone, large variations in flow deflection occur because of potential flow 

separation at the crest. Differences in the degree of deflection at ~70° incident wind 

flow may be due to the onset of corkscrew vortex generation compared to relatively 

stationary roller vortices at perpendicular to <50° incident winds. 

 

Deflection of oblique incident winds across a foredune has important implications for 

foredune evolution, sedimentation, stratification and palaeoenvironmental interpretations. 
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For coastal environments where the winds are predominantly oblique to the coastline, across-

dune sand transport pathways will be more shore-transverse than predicted from regional 

wind analyses, sedimentation patterns will mimic that trend, and the subsequent stratification 

patterns, stratal dips and cross-bed azimuths will be more variable across the dune from toe 

to crest than anticipated or modelled. 
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HIGHLIGHTS 

 Field measurements for oblique winds over a foredune are compared to CFD 
modelling of flow deflection. 

 The mechanics of flow deflection are outlined. 
 Deflection of the incident wind flow is minimal at 0° and greatest  at ~45°. 
 Deflection decreases with height above the surface. 
 Topographically-forced flow acceleration across the stoss slope is greatest for winds 

less than 30°. 


