
 i

A Model-Driven Framework for

Context-Dependent Component Testing

Abu Zafer Javed

Master of Computer Science

Bachelor of Computer Science

A thesis submitted for the degree of Doctor of Philosophy at

The University of Queensland in 2014

School of information Technology and Electrical Engineering

 ii

Abstract

A model-driven framework for context-dependent testing of components (MD-CDCT) is the

outcome of this research. Component-based Software Development (CSD) is a process in which

software applications are developed by reusing existing components. Primarily, this research

devises a technique for evaluating and extending the test adequacy of a component for its reuse in a

new context (system). Secondly, it uses the Model-Driven Architecture (MDA) in the context of

component testing and CSD. MDA is an emerging approach for developing software applications

from high-level models. In MDA, models at various levels of abstraction are used to automate

software development and testing activities.

When a general-purpose component is used in a new context, it needs to be thoroughly

tested for that context. MD-CDCT models the usage of a component, in a context of interest, using

usage scenarios and interaction diagrams. From these scenarios, test cases for performing CDCT are

automatically generated using a model-driven tool. We then evaluate and extend the adequacy of

the generated test cases by comparing them with the test cases that were executed during

component testing by the component developer which are provided with the component as

metadata. Finally, we execute the extended set of test cases to test the component for the new

context.

This approach is novel in that it applies the emerging MDA technology to context-

dependent testing of components. The proposed framework benefits from the advantages of an

MDA-based approach, such as portability, interoperability and maintainability. Another novelty is

the use of test cases, which are executed during component testing, to evaluate and extend the

adequacy of component testing. We have developed two prototype tools (a tool for test case

execution, and a tool for test suite comparison) to provide tool support for this approach.

Five case studies are used to illustrate and evaluate the MD-CDCT. The first is a simulation

of a Vending Machine system. This case study illustrates the application of MD-CDCT. The second

is a simulation of an ATM system. This case study shows how to generate test cases from software

models by making use of the model transformation technology. The third and fourth case studies

show how the comparison of test suites can be used to evaluate and extend their test adequacy. The

final case study evaluates the framework and the prototype tool support on a non-trivial system,

which is Lucene (a search engine).

 iii

Declaration by author

This thesis is composed of my original work, and contains no material previously published or

written by another person except where due reference has been made in the text. I have clearly

stated the contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical

assistance, survey design, data analysis, significant technical procedures, professional editorial

advice, and any other original research work used or reported in my thesis. The content of my thesis

is the result of work I have carried out since the commencement of my research higher degree

candidature and does not include a substantial part of work that has been submitted to qualify for

the award of any other degree or diploma in any university or other tertiary institution. I have

clearly stated which parts of my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and,

subject to the General Award Rules of The University of Queensland, immediately made available

for research and study in accordance with the Copyright Act 1968.

I acknowledge that copyright of all material contained in my thesis resides with the copyright

holder(s) of that material. Where appropriate I have obtained copyright permission from the

copyright holder to reproduce material in this thesis.

 iv

Publications during candidature

[1] Javed, P. Strooper, and G. Watson, "Automated Generation of Test Cases Using Model-

Driven Architecture," in Proceedings of the 2nd International Workshop on Automation of

Software Test, held at the 29th International Conference on Software Engineering,

Minneapolis, USA, 2007.

Publications included in this thesis

[1] Incorporated as part of Chapter 3.

Strooper provided guidance on the presentation of the paper's contributions. He also provided proof

reading. Watson provided proof reading and feedback on the paper's contributions. Duddy was

involved with the Eclipse modelling technologies. The breakdown of contributions in terms of the

work done during research and writing the paper is summarised below:

Contributor Statement of contribution

Abu Zafer Javed (Candidate) Developed approach (70%)

Designed and developed tool support (70%)

Designed and carried out case study (80%)

Wrote and edited the paper (80%)

Paul Strooper Developed approach (10%)

Designed and developed tool support (10%)

Designed and carried out case study (10%)

Wrote and edited the paper (10%)

Geoffrey Watson Developed approach (10%)

Designed and developed tool support (10%)

Designed and carried out case study (10%)

Wrote and edited the paper (10%)

Keith Duddy Developed approach (10%)

Designed and developed tool support (10%)

 v

Contributions by others to the thesis

Prof. Paul Strooper was the primary supervisor during the candidature. Paul's contribution steered

the academic arguments of the thesis topics and encouraged the exploration of ideas. He provided a

sounding board for ideas and topics of conversation.

Dr Geoffrey Norman Watson was a secondary supervisor during the candidature. He provided

advice about the thesis topics relationship to the state of the art in industry. He proof read and

provided feedback on papers and this thesis.

Keith Duddy was not directly connected with the university. His contribution was as an industry

advisor whose experience guided the application of model-transformation technology to the testing

domain.

Statement of parts of the thesis submitted to qualify for the award of another degree

None

 vi

Acknowledgements

As my thesis journey was ending, my daughter's life journey was beginning. This thesis is dedicated

to my daughter, Anaya, with a hope that she would one day realise that education is most powerful

weapon you can use to change the world.

There are many people whom I would like to thank for their help during the course of my research.

In particular, I would express my heartfelt gratitude to supervisors Professor Paul Strooper for his

discussions to guide my research. He has been very encouraging and motivating advisor. Whenever,

the vastness of research got me lost, he provided me the right direction to finding the solution to

research-related problems. I also thank Dr Geoffrey Watson for his advice throughout my

candidature, and Keith Duddy for his consultation at the initial stage of this research project.

Finally, I would also like to thanks my parents Javed Alam and Safia Khanam for their love, and

support which is of immeasurable help throughout my doctoral studies.

 vii

Keywords

Component-based testing

Component-based software development

Model-drive testing

Model-based testing

Model-driven software development

Australian and New Zealand Standard Research Classifications (ANZSRC)

ANZSRC code: 080309, Software Engineering, 100%

Fields of Research (FoR) Classification

FoR code: 0803, Computer Software, 100%

 viii

 1

TABLE OF CONTENTS

LIST OF FIG URES __ 7

LIST OF TABLES ___ 9

LIST OF ABBRE VI ATIO NS ___ 11

CH APTE R 1 - IN TROD UCTION __ 13

1.1. Background ___ 13

1.1.1. Component-based software development __ 13

1.1.2. Context-dependent component testing ___ 14

1.1.3. Model-driven architecture ___ 15

1.2. The Problems in Context-Dependent Testing of Components ______________________________ 16

1.3. Overview of Approach ___ 17

1.4. Contributions ___ 20

1.5. Thesis Structure __ 20

CH APTE R 2 - THE FRAMEWO RK ___ 23

2.1. Introduction __ 23

2.2. MD-CDCT: A Model-Driven Framework for Context-Dependent Component Testing ____ 23

2.3. An Example Application ___ 28

2.3.1. Vending machine system ___ 28

2.3.1.1. Implementation of the Vending Machine System _______________________________ 29
2.3.1.2. Test Suite for component testing of Dispenser _________________________________ 33

2.3.2. Applying the framework ___ 34

2.3.2.1. Modelling usage scenarios of CB software ____________________________________ 34
2.3.2.2. Deriving component test cases for CDCT _____________________________________ 37
2.3.2.3. Comparing test suites ___ 37
2.3.2.4. Enriching CT ___ 39
2.3.2.5. Execute enriched test suite ___ 41

2.4. Related Work ___ 41

2.4.1. Built-in testing __ 41

2.4.2. Component metadata ___ 42

2.4.3. Component certification __ 43

2.4.4. Component contracts ___ 45

2.4.5. Testable architecture ___ 46

2.4.6. Other approaches ___ 48

 2

2.4.7. IEC Standards ___ 49

2.4.7.1. IEC-62814 ___ 49
2.4.7.2. IEC-61508 ___ 50
2.4.7.3. IEC-62628 ___ 51

2.4.8. IEEE Standards __ 51

2.4.8.1. IEEE Standard 982.1-1988 ___ 51
2.4.8.2. IEEE Standard 1517-2010__ 52

2.4.9. Summary of the related work __ 54

2.5. Discussion __ 55

CH APTE R 3 - MODEL-DRIVEN TES T CASE GE NERATION _______________________________ 59

3.1. Introduction __ 59

3.2. Model-Driven Testing __ 59

3.3. MTCG: A Method for Automating Test Case Generation ____________________________________ 60

3.3.1. Generating test cases using model-driven architecture _____________________________ 63

3.3.1.1. Step 1: Transforming SMC into xUnit___ 65
3.3.1.2. Step 2: Generating JUnit from xUnit __ 65
3.3.1.3. SMC Meta-model ___ 66
3.3.1.4. xUnit Meta-model ___ 67

3.3.2. Tracing ___ 68

3.4. Case Study: Determining Applicability of MTCG ___ 68

3.4.1. Introduction ___ 68

3.4.2. Object description __ 69

3.4.3. Interface of ATM __ 69

3.4.4. Experimental planning ___ 70

3.4.5. Applying MTCG to the case study __ 70

3.4.5.1. An example sequence diagram __ 70
3.4.5.2. SMC model __ 72
3.4.5.3. xUnit model __ 73
3.4.5.4. Test data file ___ 74
3.4.5.5. JUnit test case __ 75
3.4.5.6. Traces __ 78

3.4.6. Reuse of vertical transformation rules __ 78

3.4.7. Discussion ___ 80

3.4.8. Threats to validity __ 81

3.5. Related Work ___ 81

3.5.1. Model-based testing __ 82

3.5.1.1. Model validation using interaction diagrams __________________________________ 82
3.5.1.2. Implementation verification using interaction diagrams ________________________ 82

 3

3.5.2. Model-driven testing ___ 85

3.6. Discussion __ 87

3.7. Limitations of MTCG Prototype ___ 88

CH APTE R 4 - COM PARISON OF TES T SUI TES ___ 89

4.1. Introduction __ 89

4.2. TestSuiteComparator: A Method for Comparing Test Suites _______________________________ 89

4.3. Case Studies __ 93

4.3.1. Case Study: Determining applicability of TestSuiteComparator ____________________ 93

4.3.1.1. Introduction ___ 93
4.3.1.2. Object description __ 93
4.3.1.3. Experimental planning __ 94
4.3.1.4. Applying TestSuiteComparator to the case study ______________________________ 95
4.3.1.5. Data interpretation __ 100
4.3.1.6. Discussion __ 101
4.3.1.7. Threats to validity ___ 102

4.3.2. Case Study: Evaluating effectiveness of TestSuiteComparator ____________________ 102

4.3.2.1. Introduction __ 102
4.3.2.2. Object description ___ 103
4.3.2.3. Experimental planning ___ 104
4.3.2.4. Applying TestSuiteComparator to the case study _____________________________ 105
4.3.2.5. Extending the test suites using the gaps identified by TSC ______________________ 109
4.3.2.7. Validating the effectiveness of TSC using a mutation-based criterion _____________ 113
4.3.2.8. Discussion __ 115
4.3.2.9. Threats to validity ___ 118

4.4. Related Work ___ 118

4.5. Discussion __ 121

CH APTE R 5 - A CASE STUDY ___ 125

5.1. Introduction __ 125

5.2. Object Description ___ 125

5.2.1. Lucene queries __ 126

5.2.2. Components (modules) of Lucene ___ 128

5.2.3. Tasks performed by Searcher __ 129

5.2.4. Overloaded implementations of the search method _______________________________ 130

5.3. Experimental Planning __ 132

5.4. Applying the Framework to the Case Study __ 134

5.4.1. Modelling usage scenarios of CB software __ 134

5.4.2. Deriving component test cases for CDCT ___ 137

5.4.3. Comparing test suites __ 137

5.4.3.1. Instrumenting CT __ 137

 4

5.4.3.2. Capturing execution traces of CT ___ 138
5.4.3.4. Comparing test suites __ 139

5.4.4. Enriching CT ___ 141

5.4.5. Executing enriched test suite __ 141

5.4.5.1. Transforming the extending test suite into an executable test suite using MTCG ___ 142
5.4.5.2. Executing the enriched test suite ___ 142

5.5. Data Interpretation __ 143

5.6. Discussion __ 144

5.6.1. Challenges in comparing test suites ___ 145

5.6.2. Limitations of MTCG __ 147

5.6.3. An improvement in TSC __ 150

5.6.4. Limitations of the case study ___ 150

5.7. Threats to Validity ___ 151

CH APTE R 6 - CON CLUS ION ___ 153

6.1. Summary __ 153

6.2. Discussion __ 154

6.2.1. MD-CDCT __ 154

6.2.2. Evaluation of MD-CDCT __ 155

6.3. Future Work __ 156

REFERE NCES __ 159

APPE NDIX A: VENDI N G MACHI NE EX AM PLE ___ 173

A.1: Test Suite for Dispenser (CT) ___ 173

A.2: SMC-Model for Vending Machine (CDCT) __ 174

A.3: Test data for Vending Machine (CDCT) __ 175

A.4: xUnit-Model for Vending Machine (CDCT) ___ 178

A.5: Test suite for Vending Machine (CDCT) __ 179

A.6: Execution Traces of test suite for Vending Machine (CDCT) _____________________________ 185

A.7: Test Suite for ∆CT __ 186

APPE NDIX B: MODEL-DRIVEN TES T CASE GE NERATION _____________________________ 187

B.1: Tefkat rules (horizontal transformation) __ 187

B.2: MOFScript rules (vertical transformation) __ 191

B.2.1: Rules for xUnit to JUnit ___ 191

B.2.2: Rules for xUnit to SUnit __ 202

 5

B.3: JUnit test cases generated by MTCG __ 214

B.3.1: JUnit test case for withdrawal operation ___ 214

B.3.2: JUnit test case for deposit operation __ 215

B.3.3: JUnit test case for transfer operation ___ 216

B.3.4: JUnit test case for balance inquiry operation _______________________________________ 217

B.4: SUnit test cases generated by MTCG ___ 218

B.4.1: SUnit test case for withdrawal operation ___ 218

B.4.2: SUnit test case for deposit operation ___ 219

B.4.3: SUnit test case for transfer operation ___ 220

B.4.4: SUnit test case for balance inquiry operation ______________________________________ 221

APPE NDIX C: COM PARISON OF TES T SUI TES___ 223

C.1: Implementation of Dijkstra’s shortest-path algorithm____________________________________ 223

C.2: Test suites for the shortest-path case study ___ 226

C.2.1: Test suite 1 for the shortest-path case study _______________________________________ 226

C.2.2: Test suite 2 for the shortest-path case study _______________________________________ 232

C.2.3: Test suite 3 the shortest-path case study ___ 238

C.3: Execution traces of test suites for the shortest-path case study _________________________ 243

C.4: Equivalence classes for the shortest-path case study ____________________________________ 244

C.5: Implementation of Boyer Moore’s pattern-matching algorithm _________________________ 245

C.6: Test suites for the pattern-matching case study___ 247

C.6.1: Test suite 1 for the pattern-matching case study __________________________________ 247

C.6.2: Test suite 2 for the pattern-matching case study __________________________________ 249

C.6.3: Test suite 3 for the pattern-matching case study __________________________________ 250

C.7: Execution traces of test suites for the pattern-matching case study _____________________ 251

C.8: Equivalence classes for the pattern-matching case study ________________________________ 252

C.9: Defects seeded in the pattern-matching case study _______________________________________ 254

APPE NDIX D: LUCENE CASE STUDY ___ 255

D.1: Unique traces of CDCT (CDCTUNIQUE-TRACES) ___ 255

D.2: Unique traces of CT (CTUNIQUE-TRACES) __ 256

D.3: Pairs in CDCTUNIQUE_TRACES (CDCTPAIRS)___ 257

D.4: Pairs in CTUNIQUE_TRACES (CTPAIRS) ___ 258

D.5: Abstract test suite for enriching CDCT (∆CDCT) __ 259

D.6: Sequence diagrams for the use cases of Searcher in ∆CDCT _____________________________ 262

D.7: SMC Model for smc1 ___ 274

 6

D.8: Test data for smc1 ___ 275

D.9: xUnit Model for smc1 __ 276

D.10: Concrete test cases for ∆CDCT __ 277

D.11: Methods added for comparing outputs ___ 299

 7

LIST OF FIGURES

Figure 1: Component testing vs. context-dependent component testing ... 15

Figure 2: Overview of approach .. 19

Figure 3: Adequacy of testing and component acceptability .. 25

Figure 4: Component diagram of the vending machine system .. 28

Figure 5: The application: Vending Machine System .. 31

Figure 6: The component: Dispenser .. 32

Figure 7: Vending Machine GUI (front-end) ... 32

Figure 8: Interaction diagram for the Vending Machine System ... 33

Figure 9: Overall process for generating test cases .. 61

Figure 10: Architectural Diagram ... 62

Figure 11: Overview of methodology .. 64

Figure 12: An example Tefkat rule .. 65

Figure 13: Example MOFScript rules ... 66

Figure 14: SMC meta-model .. 67

Figure 15: xUnit meta-model .. 68

Figure 16: An example sequence diagram for the ATM case study ... 72

Figure 17: SMC model for the example sequence diagram.. 74

Figure 18: xUnit model for the example sequence diagram ... 74

Figure 19: Test data file for the example sequence diagram .. 75

Figure 20: JUnit test case for the example sequence diagram ... 77

Figure 21: Execution trace for the example sequence diagram .. 78

Figure 22: M2T rules for mapAssertion, mapMethod and mapExpectedValue ... 79

Figure 23: Overview of TestSuiteComparator ... 92

Figure 24: Component diagram of Lucene .. 129

Figure 25: Example trace and its description for the Lucene case study .. 138

Figure 26: Code snippets of test suite for Searcher .. 146

Figure 27: Changing M2M and M2T rules for access modifiers .. 149

Figure 28: Changing M2M and M2T rules for declaring arrays ... 150

 8

 9

LIST OF TABLES

Table 1: Adequacy of CDCT and CT .. 26

Table 2: Test suite for component testing of Dispenser (CT) ... 35

Table 3: Usage scenarios of the Vending Machine System which use Dispenser .. 36

Table 4 Test Cases of CDCT of Dispenser... 36

Table 5: Test cases extracted from CDCT of Dispenser ... 38

Table 6: Gaps in CT and CDCT ... 40

Table 7: Test cases for the gaps in the component testing of Dispenser (∆CT) ... 40

Table 8: Comparison of CBT approaches ... 55

Table 9: Code reusability matrix of M2T rules .. 80

Table 10: Test cases extracted from test suites for shortest-path case study .. 96

Table 11: Test cases and their equivalence classes for shortest-path case study ... 99

Table 12: Equivalence-class representation of test suites for shortest-path case study 99

Table 13: Comparison of test suites for shortest-path case study ... 100

Table 14: Test cases extracted from test suites for pattern-matching case study .. 106

Table 15: Test cases and equivalence classes for pattern-matching case study .. 108

Table 16: Equivalence-class representation of test suites for pattern-matching case study 109

Table 17: Comparison of test suites for pattern-matching case study ... 109

Table 18: The enriched test suites for pattern-matching case study .. 111

Table 19: Coverage of the original and extended test suites for pattern-matching case study 112

Table 20: Results of coverage analysis for pattern-matching case study ... 113

Table 21: Mutants killed by the original and extended test suites for pattern-matching case study 114

Table 22: Results of the mutation analysis for pattern-matching case study ... 114

Table 23: Executing conditions of a test case for the Lucene case study .. 135

Table 24: Data-partitioning of query text (content of query object) for the Lucene case study 135

Table 25: Pairs missing in CT .. 140

Table 26: Execution results of ∆CT/ ... 143

 10

 11

LIST OF ABBREVIATIONS

CBT Component-Based Testing

CB Software Component-Based Software

CDCT Context-Dependent Component Testing

CDCTUNIQUE_TRACES Unique execution traces of CDCT

CIM Computation Independent Model

COTS Commercial-Off-The-Shelf

CSD Component-based Software Development

CT Component Testing

CTUNIQUE_TRACES Unique execution traces of CT

MDA Model-Driven Architecture

MD-CDCT A Model-Driven Framework for Context-Dependent Component Testing

MD-CDCTRefined An Improved version of MD-CDCT

MTCG Model-Driven Test Case Generation

MTCGPrototype A Prototype implementation of MTCG

MTT Model Transformation Tool

M2M Model to Model Transformation

M2T Model to Text Transformation

OMG Object Management Group

PIM Platform Independent Model

PSM Platform Specific Model

SMC Sequence of Method Calls

TSC Test Suite Comparator

V&V Verification and Validation

 12

 13

CHAPTER 1 - INTRODUCTION

In this thesis, we propose a novel model-driven framework for context-dependent testing of

components (CDCT). This research was primarily aimed at evaluating and extending the

adequacy of component testing in the context of Component-based Software Development

(CSD). A secondary objective of this work was to apply Model-Driven Architecture (MDA)

to component testing and CSD.

1.1. Background

Before discussing the problems and contributions, I briefly introduce three areas of software

engineering that provide the foundation for this thesis.

1.1.1. Component-based software development

The idea of components and their reuse was widely advocated by McIlroy [1] when he wrote

a paper on software components in the first ever software engineering conference held in

1968. He wrote:

"My thesis is that the software industry is weakly founded, in part

because of the absence of a software components sub-industry. A

components industry could be immensely successful.”

Component-based Software Development (CSD) is an approach in which software

applications are developed by reusing readily available components [2-5]. Two important

advantages of CSD are shorter development time and lower development cost [6-9].

The term “component” has many definitions and is used in different ways by

practitioners [10, 11]. We adopt Szyperski’s definition, who defines a component as “a unit

of composition with contractually specified interfaces and explicit context dependencies”

[12]. The interface of a component is a collection of service access points along with their

semantic specifications [13]. These interfaces are the methods, implemented by the

component developer, through which the reusing system interacts with the component.

In CSD, the component provider develops component(s) and a set of interfaces to the

component(s). The component user reuses the component(s), using their interfaces, to

develop software applications [14]. Software developed using this process is called

Component-Based (CB) software.

 14

1.1.2. Context-dependent component testing

Although CSD has advantages over traditional software development, it requires specialised

or extended testing techniques. Component testing (CT) refers to all activities that are related

to testing of a component in isolation, independent of a particular system in which it is used.

The component developers perform component testing to confirm that components exhibit

the desired behaviour. This is often referred to as unit or module testing [15], and it increases

the reliability of the component in CB software.

From a component user’s perspective, the component developer’s testing may fail to

test the component sufficiently because:

1. Components are generally developed to provide a wide range of functionally to

achieve greater applicability [16]. The component developer may not be able to

extensively test a component for all contexts of reuse because of time and resource

constraints. Instead, they perform a uniform testing across the whole range of

functionality. Thus, there is a possibility that the developer’s testing may

extensively test functionality that is not used in the user’s context, while less

thoroughly testing functionality that is intensively used in the user’s context

especially when the use of the component is novel.

2. The component may be reused in a context or manner that was not imagined when

the component was developed, and hence the component may not be tested well or

at all for that particular use. It is hard for a component developer to envisage all

possible ways in which a component can be reused. If the component developer

provides a precise specification of the behaviour of the component, for example in

the form of pre/post-conditions, then there should be no unimagined context.

However, it could well be that the original preconditions are subsequently found to

be too strong. In such a case the preconditions could be relaxed and the testing

should be expanded to check this enhanced use. More importantly, most real

software is not specified using such pre/post-conditions, in which case it is possible

that the developer has not considered and adequately tested all contexts of reuse.

The component user would benefit from more intensive testing targeting the specific context

of reuse of the component. This context-dependent component testing (CDCT), which is also

known as CB testing, refers to all activities that are related to testing a component in the

scope of CSD [17]. CDCT testing aims to increase the reliability of the component for the

 15

particular context in which it is reused. CDCT allows the component user to focus on finding

errors related to the use of the component in a specific context. Figure 1 shows the

relationship between CT, which is uniform across different possible uses, and CDCT, which

is more thorough for a particular use.

The significance of context in component testing is demonstrated by the failure of the

ARIANE 5 rocket which was launched in 1996 [18]. It crashed 40 seconds after take-off. The

subsequent investigation revealed that a software component of the ARIANE 5 that was

reused from the earlier ARIANE 4 failed to function properly. The reason for the failure was

the higher initial velocity of the ARIANE 5 compared to the ARIANE 4. The reused

component worked fine in the ARIANE 4 but it failed with the ARIANE 5. More thorough

testing of the component in the context of the ARIANE 5 (CDCT) might have detected the

problem.

Component Testing (CT)

Uniform across the range of expected uses of the component

(wide in scope but less thorough)

Context-Dependent Component Testing (CDCT)

Specific to a particular usage context

(narrow in scope but more thorough)

Figure 1: Component testing vs. context-dependent component testing

1.1.3. Model-driven architecture

MDA is an initiative by the Object Management Group (OMG) to support the development

of interoperable, portable and reusable software systems [19]. In MDA, models at various

levels of abstraction are the central software design artifacts. They are used to facilitate both

abstraction and automated development. MDA can contribute throughout the software

development life cycle. Business analysts can develop a business model which is a

computation independent model (CIM). Architects and designers develop Platform

Independent Models (PIM) using the CIM. Developers and testers derive Platform Specific

Models (PSM) from the PIM, for generating application code and test code respectively.

 16

Software maintenance teams can apply model slicing techniques to identify parts of the

model that relate to a functionality that is being changed.

Some of the advantages of an MDA-based approach are:

1. MDA tools can partially automate the development process by generating most of

the code from models, resulting in less code to hand-craft [20].

2. MDA tools for reverse engineering can automate synthesis of software models [21].

3. MDA tools can help in generating test cases from software models to verify the

software implementation [22]. In this thesis, we shall use Eclipse-based [23] MDA

tools for generating test cases from software models.

A simple use of MDA is to model a system in a platform-independent modelling

language (e.g. UML). The PIM can then be transformed into PSM by executing

transformation specifications that are mappings between the PIM and some implementation

language (e.g. Java) [24]. The same process of transforming a PIM to a PSM can be used for

automating the generation of test cases (e.g. JUnit [25] test cases for Java).

Though MDA technology has been around for over a decade, the software industry has

not fully benefited from it, especially in the area of software testing. Researchers are still

exploring different ways to maximise the use of MDA to support software testing [26]. In this

thesis, we leverage the automation of component-based testing by making use of the MDA

technology.

1.2. The Problems in Context-Dependent Testing of Components

The most significant challenge in CSD is the testing of a component in a new context [17].

There is a possibility that a component is developed and tested in one context (by the

component provider) and used in another context (by the component user) for which it was

not adequately tested. As noted above, the techniques of Context Dependent Testing have

been developed to address this. However, CDCT itself has challenges and limitations. The

most important problems are [27]:

1. Unexpected behaviour of component(s) when reused in a new context.

2. Lack of access to internal working of a component.

3. Test adequacy criteria for component reuse.

The reusing system can use the component in such a way that states are activated and

paths are exercised that were not tested by the component provider. Therefore, the use of a

 17

component in a new context can expose previously undiscovered errors. Testing of a

component in the context in which it is being reused is necessary as it can discover the

defects that are specific to this context. Moreover, more thorough testing can be performed by

focusing on the particular usage of the component.

The second problem is the lack of access to the internal working of the component. For

some components, such as Commercial-Off-The-Shelf (COTS) components, source code and

design artifacts may not be available to the component user. This lack of information limits

controllability and observability of a component. Controllability is the ease with which the

inputs and internal states of a component can be controlled [27]. Observability is the extent to

which inputs, outputs and behaviour of a component can be observed [28]. Controllability

and observability are two key aspects of testability. Often, a component that is part of CB

software may be difficult to exercise because its internal states and outputs may be obscured.

Further, it may be difficult to observe outputs of the component [29]. The correct output is

not enough to decide on the correct working of a component because sometimes a component

behaves incorrectly and still returns the correct output value. This lack of controllability and

observability reduces component testability [30, 31].

A criterion for adequate testing of a component at the time of its reuse is another

concern [32, 33]. Component interfaces can provide some information about the component

model, but they do not provide enough information for devising test adequacy criteria [16].

The component user often picks test adequacy criteria like executing all method calls that are

part of the component’s interface, but this may not be sufficient [34].

1.3. Overview of Approach

In this thesis we address the first and third problem: i) the testing of a component in the

context of a new system, and ii) determining the adequacy of component testing in the

context of its reuse. We provide a model-driven solution to these problems which includes

evaluating and extending test adequacy of component testing and generating concrete and

executable test cases by making use of the MDA technology. The solution requires that the

test suite used for component testing is provided with the component as component metadata.

An overview of our approach is shown in Figure 2 . Bold arrows represent tasks

performed by humans. Dashed lines represent associations between artefacts. Rectangles

represent inputs, intermediate or final outputs of a task (manual or automated).

 18

In this approach, first we model the usage scenarios of CB software (artefact D). For

this purpose, we identify the usage scenarios of the CB software which include the

component’s functionality. Artefacts A and B represent the CB software and the component

(which is being reused) respectively.

Second, we generate a concrete and executable test suite for CDCT (artefact E) from

the usage model of the CB software (artefact D). We generate the test suite using a model-

driven tool which is described in Chapter 3.

Third, we compare the test suite for CDCT (artefact E) with the test suite which was

used for component testing (artefact C) by the component developer. As mentioned before,

this step requires that the test suite used to perform component testing is available. The

objective of this comparison is to discover gaps (artefact F) in the component testing. These

gaps show weaknesses in the component testing by highlighting any areas of the component

which were not tested well or at all during component testing. We compare these test suites

using a tool which is described in Chapter 4. This tool is semi-automated, i.e. some tasks are

automated and some are manual, as they require human judgment.

Fourth, we devise test cases to target the gaps (artefact F) that are identified by

comparing the test suites. As the test suite for CDCT is devised from system-level usage

scenarios, it is at a higher level of abstraction than the component testing. Therefore, a gap in

component testing not only indicates a missing test case but it points to an area of the

component which is not tested well or at all. This is the area where we should extend the test

adequacy of the component testing or CDCT. Therefore, if we find a usage scenario of CDCT

which is not tested during component testing, we expand this usage scenario by devising

multiple test cases for this scenario. Depending upon the nature of the gap, testers can decide

to what level the usage scenario should be expanded and how many test cases should be

created. These test cases extensively test the area (functionality) of the component which is

used in the new context but not tested adequately during the component testing. We then add

these test cases to the test suite for component testing (artefact C) or the test suite for CDCT

(artefact E) to come up with an enriched test suite (artefact G).

 19

Task 1. Model usage scenarios of CB software

Task 2. Derive component test cases for CDCT (with tool support)

Task 3. Compare test suites (with tool support)

CB Software

Component

Gaps in
Component Testing

Test Results

Task 5. Execute enriched test suite (with tool support)

Component’s
Usage Model

Test Suite for
Component Testing

A

Test Suite for CDCT

Enriched Test Suite

Task 4. Enrich component testing or CDCT

B C

D

E

F

G

H

Figure 2: Overview of approach

 20

Finally, we execute the enriched test suite (artefact G), using the model-driven tool, to

test the component for the new CB software. The test results (artefact H) of the enriched test

suite show the component’s acceptability for the CB software.

1.4. Contributions

In this thesis, we propose a novel model-driven framework for context-dependent testing of

components for a new context. It analyses the testing performed at the time of component

development, identifies weaknesses and extends the adequacy of the testing in the context in

which the component is reused. The key aspect of this framework is the use of the emerging

MDA technology for component testing.

A second contribution is the use of MDA’s model-transformation technology to

support the automation of software testing. We design a method for automated generation of

test cases from software models in general and interaction diagrams in particular. Our MDA-

based technique transforms source models into target models using transformation

specifications as mentioned in Section 1.1.3. These transformation specifications are applied

using model transformation tools. We provide prototype tool support for this method.

A third contribution is a method for comparing two test suites to identify gaps. For this

purpose, we establish a criterion for comparing test suites (and test cases) and provide

prototype tool support. We use this tool to evaluate component testing. It identifies

weaknesses of the component testing and indicates areas which require further testing.

The last contribution is the evaluation of the framework on a real and substantial

system. We apply the framework to a search engine library to demonstrate its applicability

and effectiveness.

1.5. Thesis Structure

This thesis is organised into six chapters. As the framework proposed in this thesis makes

contributions in different areas which include: i) component-based testing, ii) model-driven

testing, and iii) test suite comparison, we chose to discuss the related work in each chapter

instead of having a separate chapter for this.

Chapter 1 provides an introduction to this thesis. It describes background, discusses the

problems addressed by this work and the contributions of this thesis. Chapter 2 describes the

framework for context-dependent component testing. The framework is illustrated using a

 21

vending machine system. It presents the related work for component testing. Chapter 3

describes the tool for automated generation of test cases (MTCG). The application of this tool

is illustrated using an ATM simulation. It discusses the related work in the area of model-

based testing. Chapter 4 describes the method for comparing test suites (TSC). The

applicability and effectiveness of TSC is demonstrated by applying it to two case studies.

Finally, the work related to comparison of test suites is discussed. Chapter 5 presents a case

study. The framework is evaluated by applying it to an existing component, a search-engine

module consisting of 112 Java source files and 18,389 lines of code. This demonstrates the

viability and effectiveness of the framework. The testing performed by the developers was

evaluated using TSC, and the test suite for CDCT was enriched to extend its test adequacy.

Concrete and executable test cases were generated for the enriched test suite using MTCG.

The enriched test suite was executed and this detected some defects which were not

discovered previously. Chapter 6 concludes, providing a summary of the work, identifying

contributions, and discussing future work.

 22

 23

CHAPTER 2 - THE FRAMEWORK

2.1. Introduction

The reuse of a component in a new context and the adequacy of a component’s testing at the

time of its reuse are the major problems which emerged with the introduction of CSD as

discussed in Section 1.2. We propose a model-driven framework to address these problems.

In this chapter we describe this framework. We illustrate the applications of the

framework using a small example. We present the related work in the area of component-

based testing. Finally, we discuss advantages and limitations of the framework.

2.2. MD-CDCT: A Model-Driven Framework for Context-Dependent

Component Testing

We propose a Model-Driven framework for Context-Dependent Component Testing (MD-

CDCT) to test a component for a new context, and to evaluate and extend the adequacy of the

testing done at the time of component development (i.e. Component Testing). The proposed

framework consists of the following tasks (shown in Figure 2):

1. Modelling usage scenarios of CB software

2. Deriving component test cases for CDCT (with tool support)

3. Comparing test suites (with tool support)

4. Enriching component testing or CDCT

5. Executing the enriched test suite (with tool support)

1. Modelling usage scenarios of CB software

First, we model the usage scenarios of CB software which use the component’s functionality

(task 1 in Figure 2). These usage scenarios can be derived from use cases. We realise these

scenarios using interaction diagrams [35]. The framework is general in that it is not specific

to a particular modelling element. For this thesis, we chose to apply this framework using

interaction diagrams. However, it can be applied using other modelling elements, such as

statecharts. We use interaction diagrams for the following reasons:

i) They are behavioural elements of a UML design that describe dynamic

interactions among the components of a system.

 24

ii) They play an important role in the software development processes that are use-

case driven [36], such as the Rational Unified Process [37].

iii) As they are constructed at an early stage of software development, testing based

on them can start early in the software life cycle.

2. Deriving component test cases for CDCT

Second, we derive test cases from the interaction diagrams, associated with each usage

scenario, for performing CDCT (task 2 in Figure 2). We generate these test cases using a

model-driven tool which is described in Chapter 3.

A test case consists of input(s), an expected result and executing conditions [38]. For a

component, a test case is a sequence of method calls (SMC), for a certain scenario, along

with their parameter values, expected return values, and in some cases executing conditions.

An executing condition of a test case is the environment in which it runs, e.g. the state of the

data store.

3. Comparing test suites

Third, we evaluate the test adequacy of the component testing by comparing it with CDCT

(task 3 in Figure 2). CDCT and the component testing are compared using our tool for

comparing test suites which is described in Chapter 4. The objective of this comparison is to

identify gaps in the component testing. These gaps indicate weaknesses of component testing

(i.e. the fewer the gaps are, the stronger the component testing is). If there are gaps in the

component testing, the component must be tested better for the new context.

We determine the adequacy of component testing which is provided with the

component as component certification metadata either as developer certification metadata

[39] or as third-party certification metadata [40]. The component certification metadata

consists of the test cases used to certify (test) the component. This step requires that the test

cases of the component (which the developer used to test the component) are available. We

compare the test cases generated for CDCT with the test cases that were executed during

component testing, to determine the adequacy of the component testing.

This comparison can identify weaknesses in both the component testing and CDCT,

which is illustrated in Figure 3. CDCT denotes the test cases that are devised for performing

CDCT, by the component user. CT denotes the test cases that were executed to certify the

component, by the component developer. CDCT ∩ CT denotes the test cases that are

 25

common to CDCT and CT. CT – CDCT denotes the test cases that are present in CT but not

in CDCT. CDCT – CT denotes the test cases that are present in CDCT but not in CT.

Weakness in CT

(component functionality used in CB

software but not tested during CT)

Potential weakness in CDCT testing

(component functionality either not used in CB

software, or used but not tested during CDCT)

Component’s reliability for the new context

(component functionality used in CB software, and already

tested during component testing)

CDCT
CT

CDCT ∩ CT

Component testing

(performed by component developer)

Context-dependent component testing

(performed by component user)

CDCT–CT CT–CDCT

Figure 3: Adequacy of testing and component acceptability

The CT is considered to be adequate if all the test cases in CDCT were already covered

during component testing, i.e. CDCT – CT = ø. However, there is a weakness in CT if some

of the test cases in CDCT were not executed during component testing, i.e., CDCT – CT ≠ ø.

The adequacy of CT shows that the component is acceptable for the new context.

Conversely, the component may not be acceptable if CT is inadequate. The discussion on the

test adequacy of CDCT and CT is summarised in Table 1.

 The CDCT is considered to be adequate if it contains all the test cases that were

executed during component testing, i.e., CT – CDCT = ø. However, CDCT is potentially

inadequate if some of the test cases in CT are not contained in CDCT, i.e., CT – CDCT ≠ ø.

This can be for the following reasons:

i) The test cases in CT – CDCT cover component functionality that is not used in

the new context.

ii) The test cases in CT – CDCT cover component functionality that is used in the

new context. In this case, CDCT can either be adequate or inadequate. This is

because CDCT is derived from system-level test cases which use interactions with

 26

systems whereas component testing consists of method calls. Therefore, CDCT is

expected to be less thorough than CT, and we expect CT – CDCT to be non-

empty in most of cases.

iii) A combination of both (i) and (ii).

 In situation (i), CDCT is considered to be adequate. In situation (ii) and (iii), CDCT

can either be adequate or inadequate (i.e. the second case in Table 1). We review the test

cases in CT – CDCT to identify any that address component functionality that is used in the

new context. If we find some functionality present in CT – CDCT which is used in the new

context but not tested in CDCT, then the CDCT is inadequate.

Component testing (CT)

Adequate CDCT – CT = ø

Inadequate CDCT – CT ≠ ø

Context-dependent component testing (CDCT)

Adequate CT – CDCT = ø

Potentially Inadequate CT – CDCT ≠ ø

Table 1: Adequacy of CDCT and CT

Comparing CT and CDCT (using the tool) requires a criterion for determining the

similarity of test cases. In Chapter 4, we will establish a comprehensive criterion for

comparing test cases (and test suites) using equivalence classes [41]. These equivalence

classes are defined by the tester. Testers can use different techniques to define these

equivalence classes, such as category-partitioning [42].

4. Enriching test suite

Fourth, we extend the adequacy of the testing to test the component for the new context (task

4 in Figure 2). This can be done by:

1) Enriching CT: This will often be the easiest way since this testing is specifically

targeted at the component. It usually has good controllability and observability of

the component. Good controllability allows testers to control the inputs and

internal states of a component. Similarly, good observability allows testers to

observe behaviour and internal states of a component, which facilitates the

definition of test oracles for the new test cases.

 27

2) Enriching CDCT: If the CT is not easy to extend, it may be possible to extend

CDCT and use the tool support, provided this has good controllability and

observability of the component. Good controllability and observability facilitate

testers to specify test inputs and monitor internal states of the system in order to

define new test cases.

3) Writing some additional custom test cases to perform additional testing.

We prefer enriching component testing for better controllability and observability than

CDCT. This is because CDCT is created from system-level test cases (usage scenarios of the

system), whereas the component testing consists of component-level test cases. Therefore,

the component testing has i) more control over input values to the component, ii) greater

control and visibility of the internal states of the component during the input processing, and

iii) better observability of the intermediate and final outputs of the component. Alternatively,

we can extend CDCT or write some additional test cases to test the functionality of the

component which was not tested well or at all during the component testing.

To extend the adequacy of component testing, we use CDCT – CT. If CDCT – CT is

non-empty, this indicates an area of weakness in the developer’s component testing. This

means that no component testing was done for the relevant scenarios, so we need to be extra

careful and should do extra testing in this area. As the test cases in CDCT are generated from

system-level usage scenarios, each of the test cases in CDCT – CT indicates an area of

functionality of the component that was not tested in CT. Therefore, we expand these test

cases (that are generated for CDCT) to target the functionality of the component that was not

tested before. These test cases are added to CT or CDCT to enrich it.

5. Executing enriched test suite

Finally, we execute the enriched test suite and examine the behaviour of the component for

the new context (task 5 in Figure 2). We do this by checking the values returned by the

methods (of the component) that are invoked in the test cases.

 If we chose to enrich CDCT in task 4, we can execute the enriched test suite using the

model-driven tool used for generating test cases in task 2.

 28

2.3. An Example Application

2.3.1. Vending machine system

We illustrate the application of the framework using a small Vending Machine System

(VMS). This system implements CB software which uses the component Dispenser as shown

in Figure 4. The notation denotes that the object on the left-hand side uses the object on

the right-hand side.

Vending Machine System Dispenser

Figure 4: Component diagram of the vending machine system

VMS allows the user to perform the following operations:

1. Insert coins into the machine.

2. Select an item to purchase.

3. Cancel the transaction. The machine returns all the coins inserted but not consumed.

4. Dispense the selected item. In this case, the machine requests the Dispenser to dispense

the selected item. If the Dispenser fails to dispense the item, the VMS prints an error

message and returns all the coins.

Dispenser has the following interface which is used by VMS.

1. public void setCredit(int nOfCoins)

This method is used to compute the credit inserted into the vending machine. It takes an

integer parameter which is the number of coins inserted. It computes the credit by

multiplying the number of coins inserted with the value of coin.

2. public int dispense(int selection)

This method takes an integer parameter representing the item which is requested to be

dispensed. It performs the following actions:

a) Ensures the user has made a valid selection.

b) Checks for availability of requested item.

 29

c) Checks for sufficient credit for the requested item.

d) Dispenses the item to the user.

If the selection is invalid, it returns -1. If the selection is valid but the selected item is

unavailable, it returns -2. If the selection is valid but the credit is insufficient to buy the

item, it returns -3. Otherwise, it dispenses the item and returns the number of coins

consumed.

2.3.1.1. Implementation of the Vending Machine System

Orso et al. [43] provide an implementation of VMS and Dispenser which is shown in Figures

5 and 6 respectively. We wrote a front-end (VendingMachineGUI) to VMS to make it an

executable system which is shown in Figure 7. Method insert increments the coin counter,

and method cancel resets the coin counter to zero. Method vend invokes the methods

setCredit and dispense of Dispenser. If the selection is valid, the selected item is available,

and the credit is sufficient to buy that item, the dispense method returns a value which is

greater than 0. In this case, the item is dispensed and the change (if any) is returned to the

user with the following message “Take your item”. If the selection is invalid, the selected

item is unavailable or the credit is insufficient to buy the item, an error message is displayed

and credit is reset to 0. These error messages are: “Invalid selection”, “Item unavailable” or

“Insufficient credit”.

We modified the vend and cancel methods of VMS to return the messages to

VendingMachineGUI instead of displaying them on the console window using

System.out.print statements. Further, we added a method reset to VMS to set it to the initial

state. We invoke this method to run each test (in the test suite) independent of other tests.

 30

VendingMachine DispenserVendingMachineGUI

setCredit

dispense (item: integer)

message: integer

vm:VendingMachine

new

d:Dispenser

vend (item: integer)

cancel

message: integer

insert

new

Figure 8 shows an interaction diagram which illustrates one usage scenario of the VMS.

In this figure, rectangles represent components of the VMS. Vertical lines show the lifelines

of the components. Solid arrows represent method calls. Dotted arrows show the values

returned by the method calls.

We have introduced a defect D1 in Dispenser (in line 26 of Figure 6) which returns the

number of coins inserted (i.e. credit / COINVALUE) instead of the number of coins consumed

(i.e. COST / COINVALUE). Consequently, VMS computes an incorrect number of coins (in line

28 of Figure 5) which are left and returns the incorrect message (in line 14 of Figure 5) back

to the VendingMachineGUI. Eventually, VendingMachineGUI displays an incorrect message

to the user on the GUI window. We will use this defect to illustrate an increase in defect-

detection capability of the enriched test suite which is obtained as a result of applying the

framework.

 31

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

public class VendingMachine {
private int coins;
private Dispenser d;
public VendingMachine() {

coins = 0;
d = new Dispenser();

}
public void insert() {

coins++;
}
public String cancel() {

String message = "";
if(coins > 0) {

message = "Take your change: (" + coins + “ coins)”;
}
coins = 0;
return message;

}
public String vend(int item) {

String message = "";
if(coins == 0) {

message = "Insufficient credit";
}
d.setCredit(coins);
int result = d.dispense(item);
if(result > 0) { // event OK

message = "Take your item";
coins -= result;

} else switch(result) { // event NOK
case -1: message = "Invalid selection"; break;
case -2: message = "Item unavailable"; break;
case -3: message = "Insufficient credit"; break;

}
cancel();
return message ;

}
public void reset() {

coins = 0;
d = new Dispenser();

}
} // class VendingMachine

Figure 5: The application: Vending Machine System

 32

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

class Dispenser {
final private int COINVALUE = 25;
final private int COST = 50;
final private int MAXSEL = 4;
private int credit;
private int itemsInStock[] = {2, 0, 0, 5, 4};
public Dispenser() {

credit = 0;
}
public void setCredit(int nOfCoins) {

System.out.print("setCredit("+ nOfCoins + ") ");
if(credit != 0)

System.out.println("Credit already set");
else

credit = nOfCoins * COINVALUE;
}
public int dispense(int selection) {

int val = 0;
if (selection > MAXSEL)

val = -1; // Invalid selection
else if (itemsInStock[selection] < 1)

val = -2; // Selection unavailable
else if (credit < COST)

val = -3; // Insufficient credit
else {

val = credit / COINVALUE;
itemsInStock[selection]--;

}
credit = 0;
return val;

}
} // class Dispenser

Figure 6: The component: Dispenser

Figure 7: Vending Machine GUI (front-end)

 33

VendingMachine DispenserVendingMachineGUI

setCredit

dispense (item: integer)

message: integer

vm:VendingMachine

new

d:Dispenser

vend (item: integer)

cancel

message: integer

insert

new

Figure 8: Interaction diagram for the Vending Machine System

2.3.1.2. Test Suite for component testing of Dispenser

To illustrate the application of the framework, we needed a test suite for component testing

of Dispenser to compare with CDCT. We devised the test suite using the following testing

scenarios:

1. The number of invocations of the dispense method

i) One invocation

ii) Two consecutive invocations (i.e. setCredit, dispense, dispense)

iii) Two invocations but not consecutive (i.e. dispense, setCredit, dispense)

2. Coins inserted before the request to dispense an item is made

i) Zero coins: No coin is inserted before the request to dispense an item is made.

ii) One coin (insufficient credit): As the cost of an item for this VMS is two coins,

one coin is insufficient to buy an item.

iii) Two coins (sufficient credit): Credit entered is sufficient to buy an item.

 34

We have omitted the scenario in which the credit inserted is more than the cost of item

to induce a weakness in the component testing and illustrate the potential benefit of the

framework.

3. Validity of the selection of item which is requested to be dispensed

i) Available: A valid item is selected and it is available. Available items are referred

to by the parameter values 0, 3 and 4 of the vend and dispense methods of the

VMS.

ii) Not Available: A valid item is selected but is not available. Unavailable items are

referred to by the parameter values 1 and 2.

iii) Invalid: An invalid item is selected. Any parameter value other than 0, 1, 2, 3,

and 4 refers to an invalid selection.

We combine these scenarios to devise test cases. The test suite for component testing of

Dispenser (CT) is shown in Table 2. We make this test suite executable by writing a JUnit

[25] test driver which is provided in Appendix A.1. JUnit is a unit testing frameworks for

testing Java classes.

2.3.2. Applying the framework

2.3.2.1. Modelling usage scenarios of CB software

We model the usage scenarios of the VMS which use the functionality of Dispenser (task 1 in

Figure 2). VMS uses the following functionality of Dispenser:

1. Setting the credit: Dispenser sets the credit inserted into the vending machine using the

setCredit method.

2. Dispensing the item: Dispenser dispenses the item using the dispense method.

Orso et al. [43] have devised usage scenarios for the VMS (shown in Table 3) in which

the vend method invokes the setCredit and dispense methods of Dispenser. They have

defined these scenarios as sequences of method calls (SMCs). In these sequences, the calls to

the constructor method of VMS are omitted for simplicity.

We create test cases for these scenarios by providing different parameter values to the

vend method in the SMC model to cover the testing scenarios in which the user selects an

item which is: i) available, ii) unavailable, and iii) invalid. Therefore, for each usage scenario

in Table 3, we have three test cases as shown in Table 4.

 35

TC
Invocations to

dispense method
Coins

inserted
Availability of
selected Item

Inputs
Expected
output(s)

1 One invocation Zero Available setCredit(0) dispense(0) -3

2 setCredit(0) dispense(3) -3

3 setCredit(0) dispense(4) -3

4 Unavailable setCredit(0) dispense(1) -2

5 Invalid selection setCredit(0) dispense(5) -1

6 One

Available setCredit(1) dispense(0) -3

7 setCredit(1) dispense(3) -3

8 setCredit(1) dispense(4) -3

9 Unavailable setCredit(1) dispense(1) -3

10 Invalid selection setCredit(1) dispense(5) -1

11 Two Available setCredit(2) dispense(0) 2

12 setCredit(2) dispense(3) 2
13 setCredit(2) dispense(4) 2
14 Unavailable setCredit(2) dispense(1) -2

15 Invalid selection setCredit(2) dispense(5) -1

16 Two
consecutive
invocations

Zero Available setCredit(0) dispense(0) dispense(0) -3 and -3

17 setCredit(0) dispense(3) dispense(3) -3 and -3

18 setCredit(0) dispense(4) dispense(4) -3 and -3

19 Unavailable setCredit(0) dispense(1) dispense(1) -2 and -2

20 Invalid selection setCredit(0) dispense(5) dispense(5) -1 and -1

21 One Available setCredit(1) dispense(0) dispense(0) -3 and -3

22 setCredit(1) dispense(3) dispense(3) -3 and -3

23 setCredit(1) dispense(4) dispense(4) -3 and -3

24 Unavailable setCredit(1) dispense(1) dispense(1) -2 and -2

25 Invalid selection setCredit(1) dispense(5) dispense(5) -1 and -1

26 Two Available setCredit(2) dispense(0) dispense(0) 2 and -3

27 setCredit(2) dispense(3) dispense(3) 2 and -3
28 setCredit(2) dispense(4) dispense(4) 2 and -3
29 Unavailable setCredit(2) dispense(1) dispense(1) -2 and -2

30 Invalid selection setCredit(2) dispense(5) dispense(5) -1 and -1

31 Two
non-consecutive
invocations

Zero Available setCredit(0) dispense(0) setCredit(0) dispense(0) -3 and -3

32 setCredit(0) dispense(3) setCredit(0) dispense(3) -3 and -3

33 setCredit(0) dispense(4) setCredit(0) dispense(4) -3 and -3

34 Unavailable setCredit(0) dispense(1) setCredit(0) dispense(1) -2 and -2

35 Invalid selection setCredit(0) dispense(5) setCredit(0) dispense(5) -1 and -1

36 One Available setCredit(1) dispense(0) setCredit(1) dispense(0) -3 and -3

37 setCredit(1) dispense(3) setCredit(1) dispense(3) -3 and -3

38 setCredit(1) dispense(4) setCredit(1) dispense(4) -3 and -3

39 Unavailable setCredit(1) dispense(1) setCredit(1) dispense(1) -2 and -2

40 Invalid selection setCredit(1) dispense(5) setCredit(1) dispense(5) -1 and -1

41 Two Available setCredit(2) dispense(0) setCredit(2) dispense(0) 2 and 2

42 setCredit(2) dispense(3) setCredit(2) dispense(3) 2 and 2
43 setCredit(2) dispense(4) setCredit(2) dispense(4) 2 and 2
44 Unavailable setCredit(2) dispense(1) setCredit(2) dispense(1) -2 and -2

45 Invalid selection setCredit(2) dispense(5) setCredit(2) dispense(5) -1 and -1

Table 2: Test suite for component testing of Dispenser (CT)

 36

Usage Scenario Inputs

1 Vend
2 insert vend
3 insert insert vend
4 insert insert insert vend
5 insert insert cancel vend
6 insert cancel insert vend
7 insert cancel insert insert vend
8 insert insert cancel insert vend
9 insert insert vend insert insert vend
10 insert insert insert insert vend vend
11 insert insert vend vend
12 insert vend insert vend

Table 3: Usage scenarios of the Vending Machine System which use Dispenser

Usage Scenario Test Case Inputs Outputs

1 1i vend(3) “Insufficient credit”
 1ii vend(2) “Insufficient credit”
 1iii vend(35) “Insufficient credit”
2 2i insert vend(3) “Insufficient credit”
 2ii insert vend(2) “Insufficient credit”
 2iii insert vend(35) “Insufficient credit”
3 3i insert insert vend(3) “Take your item”
 3ii insert insert vend(2) “Item unavailable”
 3iii insert insert vend(35) “Invalid selection”
4 4i insert insert insert vend(3) “Take your item”
 4ii insert insert insert vend(2) “Take your item”
 4iii insert insert insert vend(35) “Invalid selection”
5 5i insert insert cancel vend(3) “Take your item”
 5ii insert insert cancel vend(2) “Item unavailable”
 5iii insert insert cancel vend(35) “Item unavailable”
6 6i insert cancel insert vend(3) “Take your item”
 6ii insert cancel insert vend(2) “Item unavailable”
 6iii insert cancel insert vend(35) “Invalid selection”
7 7i insert cancel insert insert vend(3) “Take your item”
 7ii insert cancel insert insert vend(2) “Item unavailable”
 7iii insert cancel insert insert vend(35) “Invalid selection”
8 8i insert insert cancel insert vend(3) “Take your item”
 8ii insert insert cancel insert vend(2) “Item unavailable”
 8iii insert insert cancel insert vend(35) “Invalid selection”
9 9i insert insert vend(3) insert insert vend(3) “Take your item” and “Take your item”
 9ii insert insert vend(2) insert insert vend(2) “Item unavailable” and “Item unavailable”
 9iii insert insert vend(35) insert insert vend(35) “Invalid selection” and “Invalid selection”
10 10i insert insert insert insert vend(3) vend(3) “Take your item” and “Insufficient credit”
 10ii insert insert insert insert vend(2) vend(2) “Item unavailable” and “Item unavailable”
 10iii insert insert insert insert vend(35) vend(35) “Invalid selection” and “Insufficient credit”
11 11i insert insert vend(3) vend(3) “Take your item” and “Insufficient credit”
 11ii insert insert vend(2) vend(2) “Item unavailable” and “Item unavailable”
 11iii insert insert vend(35) vend(35) “Invalid selection” and “Invalid selection”
12 12i insert vend(3) insert vend(3) “Insufficient credit” and “Insufficient credit”
 12ii insert vend(2) insert vend(2) “Item unavailable” and “Item unavailable”
 12iii insert vend(35) insert vend(35) “Invalid selection” and “Invalid selection”

Table 4 Test Cases of CDCT of Dispenser

 37

2.3.2.2. Deriving component test cases for CDCT

We derive component test cases from the usage scenarios using our model-driven tool (task 2

in Figure 2). We model these usage scenarios using interaction diagrams (SMC-ModelVMS).

We then generate a concrete and executable test suite (CDCT) from SMC-ModelVMS

using our model-driven tool. The tool requires SMC-ModelVMS and test data (inputs), produces

xUnit-ModelVMS (an intermediate output), and generates concrete and executable test cases

(the final output) which are provided in Appendices A.2, A.3, A.4 and A.5 respectively. The

details of how the tool works are discussed in Chapter 3.

To extract test cases from CDCT, which is concrete and executable, we i) instrument it

to log the method calls along with parameters and the value returned by Dispenser and ii)

capture execution traces which are provided in Appendix A.6.

The vend method in CDCT invokes i) the setCredit method with an integer parameter

which represents the number of coins inserted before invoking the vend method, and ii) the

dispense method with the integer parameter which was passed to the vend method. For

example, the test case 4i (in Table 4) produces the following trace:

setCredit(3) dispense(3) output=“Take your item”

From these execution traces we extract the test cases, which are shown in Table 5. The

extraction of test cases from the execution traces is trivial as there is a one-to-one mapping

between traces and test cases.

2.3.2.3. Comparing test suites

In this step, we evaluate the test adequacy of the component testing of Dispenser. We

compare CT and CDCT to identify gaps in the component testing of Dispenser (task 3 in Figure

2). These gaps indicate weaknesses in the component testing. We compare CT and CDCT

using our tool for comparing test suites which is described in Chapter 4.

As noted before, the comparison requires a criterion for determining the similarity of

test cases. In this case, we define the following criterion for the similarity of test cases: two

test cases are considered the same if and only if they contain the same method calls in the

same order, and the parameter values for those methods belong to the same equivalence

class. For comparing the parameter values of the methods dispense and setCredit, we group

them into the following equivalence classes (EC):

 38

Test Case Inputs Output(s)

1i setCredit(0) dispense(3) -3
1ii setCredit(0) dispense(2) -3
1iii setCredit(0) dispense(35) -3
2i setCredit(1) dispense(3) -3
2ii setCredit(1) dispense(2) -3
2iii setCredit(1) dispense(35) -3
3i setCredit(2) dispense(3) 2
3ii setCredit(2) dispense(2) -2
3iii setCredit(2) dispense(35) -1
4i setCredit(3) dispense(3) 2
4ii setCredit(3) dispense(2) 2
4iii setCredit(3) dispense(35) -1
5i setCredit(0) dispense(3) 2
5ii setCredit(0) dispense(2) 2
5iii setCredit(0) dispense(35) -2
6i setCredit(1) dispense(3) 2
6ii setCredit(1) dispense(2) -2
6iii setCredit(1) dispense(35) -1
7i setCredit(2) dispense(3) 2
7ii setCredit(2) dispense(2) -2
7iii setCredit(2) dispense(35) -1
8i setCredit(1) dispense(3) 2
8ii setCredit(1) dispense(2) -2
8iii setCredit(1) dispense(35) -1
9i setCredit(2) dispense(3) setCredit(2) dispense(3) 2 and 2
9ii setCredit(2) dispense(2) setCredit(2) dispense(2) -2 and -2
9iii setCredit(2) dispense(35) setCredit(2) dispense(35) -1 and -1
10i setCredit(4) dispense(3) setCredit(0) dispense(3) 2 and -3
10ii setCredit(4) dispense(2) setCredit(0) dispense(2) -2 and -2
10iii setCredit(4) dispense(35) setCredit(0) dispense(35) -1 and -1
11i setCredit(2) dispense(3) setCredit(0) dispense(3) 2 and -3
11ii setCredit(2) dispense(2) setCredit(0) dispense(2) -2 and -2
11iii setCredit(2) dispense(35) setCredit(0) dispense(35) -1 and -1
12i setCredit(1) dispense(3) setCredit(1) dispense(3) -1 and -1
12ii setCredit(1) dispense(2) setCredit(1) dispense(2) -2 and -2
12iii setCredit(1) dispense(35) setCredit(1) dispense(35) -1 and -1

 Table 5: Test cases extracted from CDCT of Dispenser

i. Equivalence classes for the dispense method:

1. EC-1: The item which is selected by the user is available.

2. EC-2: The item which is selected by the user is unavailable.

3. EC-3: The user has made an invalid selection.

Using these equivalence classes, the following pairs of the dispense method (along

with parameter values) are considered equivalent:

1. dispense(0) and dispense(3): parameters belong to EC-1

2. dispense(0) and dispense(4): parameters belong to EC-1

3. dispense(3) and dispense(4): parameter values belong to EC-1

4. dispense(1) and dispense(2): parameter values belong to EC-2

5. dispense(x) and dispense(y) where x and y are ≥ 4 or < 0: parameter values

belong to EC-3

 39

ii. Equivalence classes for the setCredit method:

1. EC-1: The credit inserted is insufficient to buy an item.

2. EC-2: The credit inserted is sufficient to buy an item.

Using these equivalence classes, the following pairs of the setCredit method (along

with parameter values) are considered equivalent:

1. setCredit(0) and setCredit(1): parameters belong to EC-4

2. setCredit(x) where x ≥ 2: parameters belong to EC-5

The results of the comparison of CT and CDCT are shown in Table 6, in which CDCT - CT

shows gaps in CT and CT - CDCT shows the gaps in CDCT. We are interested in the gaps in CT

i.e. gaps in component testing of Dispenser as it highlights an area of Dispenser which was

not tested during component testing. The review of the gap (CDCT – CT) shows that Dispenser

is not tested when the credit inserted is more than the cost of the item. As Dispenser is a

small component providing little functionality to VMS, the gap identified in component

testing is small. However, for the components providing substantial functionality, the gaps in

component testing may be significant.

The framework is generic and the comparison of test suites is one step out of many. We

use equivalence classes for comparing test suites. However, testers can select any criterion

for comparing test suites. If equivalence classes are used, then the tester needs to define these

equivalence classes for the particular component.

2.3.2.4. Enriching CT

We generate test cases to extend the testing to cover the weaknesses identified by the gaps.

We enrich CT by adding these test cases to extend its test adequacy (task 4 in Figure 2).

We review the test cases in CDCT - CT. This review shows that Dispenser is not tested

when the credit inserted into the vending machine is more than the item’s cost. Hence, we

enrich CT by adding test cases in which the inserted coins are more than the item’s cost (i.e.

more than 2 coins are inserted). We denote these test cases by ∆CT, shown in Table 7. These

test cases are added to CT to enrich it (CT/
).

 40

Gaps Inputs Output(s)

CT-CDCT

setCredit(0) dispense(0) dispense(0) -3 and -3

setCredit(0) dispense(3) dispense(3) -3 and -3

setCredit(0) dispense(4) dispense(4) -3 and -3

setCredit(0) dispense(1) dispense(1) -2 and -2

setCredit(0) dispense(5) dispense(5) -1 and -1

setCredit(1) dispense(0) dispense(0) -3 and -3

setCredit(1) dispense(3) dispense(3) -3 and -3

setCredit(1) dispense(4) dispense(4) -3 and -3

setCredit(1) dispense(1) dispense(1) -2 and -2

setCredit(1) dispense(5) dispense(5) -1 and -1

setCredit(2) dispense(0) dispense(0) 2 and -3

setCredit(2) dispense(3) dispense(3) 2 and -3

setCredit(2) dispense(4) dispense(4) 2 and -3

setCredit(2) dispense(1) dispense(1) -2 and -2

setCredit(2) dispense(5) dispense(5) -1 and -1

setCredit(0) dispense(0) setCredit(0) dispense(0) -3 and -3

setCredit(0) dispense(3) setCredit(0) dispense(3) -3 and -3

setCredit(0) dispense(4) setCredit(0) dispense(4) -3 and -3

setCredit(0) dispense(1) setCredit(0) dispense(1) -2 and -2

setCredit(0) dispense(5) setCredit(0) dispense(5) -1 and -1

CDCT-CT

setCredit(3) dispense(3) 2

setCredit(3) dispense(2) -2

setCredit(3) dispense(35) -1

setCredit(4) dispense(3) setCredit(0) dispense(3) 2 and -3

setCredit(4) dispense(2) setCredit(0) dispense(2) -2 and -2

setCredit(4) dispense(35) setCredit(0) dispense(35) -1 and -1

Table 6: Gaps in CT and CDCT

Test Case Inputs Expected Outputs(s)

1 setCredit(3) dispense(3) 2

2 setCredit(3) dispense(2) -2

3 setCredit(3) dispense(35) -1

4 setCredit(4) dispense(3) setCredit(0) dispense(3) 2 and -3

5 setCredit(4) dispense(2) setCredit(0) dispense(2) -2 and -2

6 setCredit(4) dispense(35) setCredit(0) dispense(35) -1 and -1

7 setCredit(5) dispense(3) 2

8 setCredit(5) dispense(2) -2

9 setCredit(5) dispense(35) -1

10 setCredit(5) dispense(3) setCredit(0) dispense(3) 2 and -3

11 setCredit(5) dispense(2) setCredit(0) dispense(2) -2 and -2

12 setCredit(5) dispense(35) setCredit(0) dispense(35) -1 and -1

Table 7: Test cases for the gaps in the component testing of Dispenser (∆CT)

 41

2.3.2.5. Execute enriched test suite

Finally, we execute CT/
 to test Dispenser for the new context (task 5 in Figure 2). CT/

 is

provided in Appendix A.7.

Test cases 1, 4, 7 and 10 failed due to the defect D1. These test cases returned 3, 5, 4

and 5 respectively instead of returning 2. CT/
 has detected D1 whereas CT did not detect D1

because this defect only appears when the credit inserted is more than the cost of an available

item. This defect remains uncovered even when the coins inserted are equal to the cost of the

item (i.e. coins = COST). This toy example illustrates an extension in defect-detection

capability of CT/
 because of ∆CT which is achieved by applying MD-CDCT.

2.4. Related Work

Software testing is an important part of the software development process, which assures the

quality of software products. Software applications are tested to ensure their correct working.

Myers defines software testing as the “process of trying to discover every conceivable fault

or weakness in a work product” [41]. With the emergence of CSD, the need for Component-

Based Testing (CBT) emerged. CBT is an important activity in CSD for developing reliable

CB software. A major problem in CBT is the lack of adequate information about the

component, which makes it a challenging task (Section 1.2) [44]. Different techniques that

have been proposed for addressing these problems are discussed below.

2.4.1. Built-in testing

Built-in testing (BIT) is a technique in which built-in tests are added in the component’s

code, to add support for testing the component [44]. BIT refers to all mechanisms that add

information to a component’s code for facilitating testing or checking assertions at runtime

[17].

Yingxu et al. [45] propose a BIT approach for developing maintainable CB software in

which built-in tests are added to the component’s code such that the component user can

decide whether to execute these tests or not. The component user can run the component in

“test (maintenance) mode” or “normal mode”. In test mode, the built-in tests are executed

during execution of the component whereas in normal mode, these tests are not executed.

Yingxu’s approach increases the component size due to the added tests. To address this

problem, Hornstein and Elder [46] propose the Component+ BIT method which separates

 42

test cases from the component. The component provider produces a BIT-component and a

test-component. The BIT-component is a component that has built-in testing capabilities. The

test-component contains test cases and interacts with the built-in testing capabilities of the

BIT-component through its interfaces.

Beydeda and Gruhn [47] propose a self-testing strategy for COTS components

(STECC). They suggest augmenting the test component with analysis functionality and

testing tools. By doing this, the information that the component user needs to generate test

cases can either be encapsulated in the component, or it can be generated on demand.

Edwards [48] suggests supporting the flow of information from the component

developer to the component user using wrappers. In this approach, the component developer

adds the information that can help in CBT to the component and provides some wrappers that

can interact with the component. The component user can use these wrappers to extract

information from the component. The component user can add or remove wrappers from the

component without having access to the source code.

BIT approaches increase testability of components by adding built-in tests to the

component. However, they have the following drawbacks:

i) They increase the size of the component.

ii) Test cases are developer-oriented and the component user cannot influence the

generation of test cases.

2.4.2. Component metadata

In the component metadata approach, the component developer equips the component with

some information (component metadata) that the component user can use for performing

CBT. Component metadata can be either metadata or metamethods [43]. The metadata are

information about the component and metamethods are the methods that retrieve or calculate

information about the component.

Orso et al. [49] propose that all the software engineering artifacts which are used for the

development of a component should be shipped along with the component as component

metadata. The component provider can provide control-flow and data-flow graphs of the

component that increase understandability and testability of the component. These graphs are

also helpful in performing coverage analysis during CBT.

 43

Wu et al. [50] propose to deliver a UML model of the component as metadata. The

UML model can be used to determine context-dependent relationships among the

components, which can be helpful for CBT. Belli and Budnik [51] propose a similar

approach in which they augment the component with UML statecharts. Test cases are

generated from the UML statecharts, using model-based tools. Using these techniques, the

component user can perform coverage-based execution of the model, to achieve greater

reliability of the component. However, the component developer has to update the model

each time the component is modified.

Liu et al. [52] introduce the concept of retro-components. A retro-component has a

retrospector in it, which maintains testing and dynamic execution history. It records the tests

that are conducted by the component developer and makes this testing information available

to the component user. Retrospectors enhance the component so that the user can query the

information provided and collect relevant information during their own testing activities.

In common with BIT, metadata approaches enhance the testability of components.

They have the following advantages over BIT:

i) Test cases are not stored in the component’s code and thus they do not increase

the size of the component.

ii) The component user can use the information, delivered as metadata, to generate

dynamic test cases.

iii) Metadata may support the generation of test data.

These approaches make a compromise on implementation transparency of the component.

Implementation transparency is the hiding of implementation details from the component

user. It is one of the quality objectives of component-based development [53]. However, it

affects testability of components by making it difficult to apply directly traditional white-box

techniques [50], fully exercise the software (lack of controllability), and know the result of

execution (lack of observability) [31].

2.4.3. Component certification

A component user is always concerned about the quality and reliability of a component. To

increase the component user’s trust, components can be certified before their reuse in CB

software [54, 55]. The following techniques have been proposed to certify components:

1. Third-party certification

2. Developer certification

 44

3. User certification

Counsill [40] suggests that a component should be certified by a third-party. In third-

party certification, an independent organisation tests the quality of the component and

provides the test results, along with the test environment, to the component user. Ma et al.

[56] propose a framework for third-party certification that consists of following three steps:

i) The third-party provides guidelines to the component developer.

ii) The component provider generates a test package using these guidelines.

iii) The third-party executes the test package and produces a test report.

An evaluation of this framework revealed some errors in a component, which demonstrates

its usefulness. An advantage of third-party certification is that it is conducted by a neutral

organisation, and hence the results are not biased.

The certification of a component through a third-party may be costly and small

organisations may not be able to afford it. Morris et al. [39, 57] propose that the component

developer should perform component certification in order to avoid the cost associated with

third-party certification. In this approach, the component developer attaches test cases along

with their results (as a proof of their execution) to the component. An advantage of this

approach is that the component user can determine, by examining the test cases, how

thoroughly (adequately) the component developer has tested the component.

The test cases executed during developer certification are context-independent and test results

may be biased as these test cases are created by the component developer. To address this

issue, Voas [58] proposes that the component user should certify the component using black-

box testing, in which test cases are generated from the interface specifications of the

component. The component user may use fault-injection techniques in which faults are

generated instead of testing the component with the correct inputs, to determine the reliability

of the component. Alvaro et al. [59] propose a Component Quality Model (CQM) to certify

component. The component user (evaluation team) uses CQM to specify evaluation goals

during component certification. Later, they propose a framework [60] for evaluating the

quality of software components.

An advantage of user certification is that the component user defines test requirements

and thus the component is certified using context-dependent test cases. A disadvantage of this

approach is that it does not address the problem of adequacy of component testing (Section

 45

1.2). Our framework is capable of determining and extending the adequacy of testing done at

the time of component development and component reuse.

2.4.4. Component contracts

Zheng and Budell [61, 62] propose a contract-based testing technique, Test by Contract

(TbC), for components. They extend the “Design by Contract” concept to leverage model-

based testing to design test contracts for component testing. They introduce a novel concept

of “Contract for Testability”, and devise some contract-oriented concepts such as internal and

external test contracts. Later, they use TbC to propose a novel framework, Model-Based

Software Component Testing (MBSCT) [63].

Briand et al. [16] propose a framework for component testing using Constraints on

Succeeding and Preceding Events (CSPE) testing technique [56]. They distribute the roles

and responsibilities between the component developer and the component user. The

developer generates CSPE constraints for the component interface methods, and implements

CSPE probes (which are built-in methods). These CPSE probes are used to increase

observability and controllability during component testing (e.g. controlling and observing the

internal states of the component). The user identifies the component functionalities that are

used in the component-based software being developed, selects a CSPE-based testing

criterion, generates test cases and executes them. As the CPSE-based approach does not

require source code, it can be used for the testing of COTS components. A disadvantage of

this approach is that it requires the component to provide that metadata (CPSE constraints) to

derive test sequences.

Jiang et al. [32] propose a contract-based mutation to address the test adequacy

criterion of components. They apply mutation testing to the contracts provided with

components which can identify possible misunderstandings of requirements or

implementation errors regarding contracts. They define a language to describe the interface

contracts by extending the definition of Enterprise Java Bean components. They design the

following mutation operators for the contract of the component: contract negation, condition

exchange, precondition weakening, post condition strengthening, and contract stuck-at faults.

Delamaro et al. [34] present a mutation-based criterion, named interface mutation (IM),

for integration testing of components. They devise different types of mutation operators to

generate interface mutants. They apply their criterion to SPACE, a program developed for

the European Space Agency. The experiments show that the fault-revealing capability of

 46

interface mutation is greater than selecting mutants at random. Later, they propose a

technique to determine the test adequacy of components using IM [64].

Gosh and Mathur [65] propose criteria to determine the adequacy of test cases

developed to test components and systems using the interface mutants. The description of the

component’s interface contains information about the signatures of its methods and the

exceptions that these methods can raise. This information is not enough to establish an

adequacy criterion. Therefore, they use the description of a component’s interface to generate

interface mutants. The quality of tests is judged based on their tendency to identify interface

mutants. An advantage of this approach is that the effort required to develop the tests is lower

than the effort required for developing test sets that are adequate with respect to traditional

code coverage criteria.

Hashim et al. [66] propose to inject interface faults to evaluate the quality of the test

cases. They write wrappers around interface services of a component to perform operations

such as disabling the implementation of the interface services, raising exceptions or

corrupting the inputs and outputs of interface services. These wrappers not only detect errors

related to component interactions, but can also handle exceptions which are raised when

interface faults occur.

An advantage of contract-based techniques is that they do not require source code (as

they are based on contracts), which makes them applicable to COTS component. A

disadvantage of these approaches is that they only detect the contract-related defects, i.e. they

are not good at detecting the defects that are related to the use of a component in a novel

context.

2.4.5. Testable architecture

In the testable architecture approach, the component developer equips the component with an

architecture that allows the component user to execute test cases.

Gao et al. [67] introduce testable beans to increase testability of a component. In this

approach, the component developer implements an interface for testing (test interface) and

codes test cases in the form of clients. The testable beans are components that are:

i) Deployable and executable.

ii) Traceable to allow the user to monitor and track their behaviour.

iii) Testable by implementing test interfaces to access their self-test capabilities.

 47

iv) Usable with testing tools, i.e., they can interact with these tools.

An advantage of this approach is that the test cases are stored in clients and they are not part

of the testable bean. However, the component developer has to do much work to maintain the

testable beans.

Jabeen and Rehman [68] propose a framework for testing object-oriented components,

in which the component developer, the component user and a third-party communicate test

information using descriptors. These descriptors contain requirements of the component. The

component developer prepares a component descriptor and attaches it to the component. The

component user specifies the component’s requirements in another descriptor, the component

requirement descriptor. The third-party generates test information using the information in

the component descriptor and the component requirement descriptor. Advantages of this

approach are:

i) It allows everyone (the component developer, the component user and the third-

party) to participate in CBT.

ii) It ensures that the component developer has provided the functionality that is

required by the component user.

Qiming et al. [69] emphasise the components of different platforms require their

proprietary testing languages to execute test cases. They propose a testing framework based

on XML-API to increase the testability of components in CB software. They developed a

Component Extension Test Interface (CETI) which uses XML as test specification language.

CETI provides the following extension points:

i) An XML-based API extension to test components using component interface

mutation.

ii) An XACML-based API extension to test the correctness of component access

control interface using mutation testing.

CETI is evaluated on different platforms (such as Linux) and component testing

environments (such as CORBA) to show its applicability.

Testable architecture approaches do not increase the size of the component because the

additional information is provided in the form of components’ specifications and not within

the component. However, similar to the metadata approach, they affect the implementation

transparency of the component.

 48

2.4.6. Other approaches

Hill and Gokhale [70] describe a model-driven method for testing of CB software which

consists of defining i) a domain-specific modelling language to express business logic of the

component, and ii) a programming framework that synthesises configuration files for system

simulation. They develop a domain-specific modelling language, Component Behavioural

Modelling Language (CBML). CBML can capture high-level component behaviour, and can

generate configuration and source files for system simulation using model interpreters.

Buy et al. [71] propose a framework for generating message sequences for component

testing by considering the component’s behaviour in isolation and while integrated with other

components. For testing the component behaviour in isolation, first data-flow analysis is

applied to the methods of the component, second symbolic execution is applied to the

methods to derive a formal specification for each method, and finally automated deduction is

used to derive sequences of method invocations from the information produced in the

previous two steps. For testing the component behaviour when integrated with other

components, first the order of integration of components is identified, and then the pair-wise

integration of components is performed according to the integration order specified.

Qian [72] proposes a method for testing web applications. He suggests a web

application is a composition of interacting components. In this approach, a Component

Interaction Diagram (CID) is created from the specification of the web application. From the

CID, Component Test Sequences (CTSs) are generated which are in essence the interacting

sequences of the components. The CID and CTS are described in XML format. CTSs along

with test data form concrete test cases which make the testing of web application the testing

of CB software. Finally, he evaluates the coverage of the generated test cases to demonstrate

their usefulness.

Ju and Che [73] propose some measures to evaluate the CBT. They believe the

validity of component software testing can improve the process of CBT and improve the

quality of CB software. They propose the following measure to evaluate the testing process

of CB software: i) time and budget cost of CBT, ii) defects found in CB software, and iii)

validity of unit and integration testing of the component.

 49

2.4.7. IEC Standards

The International Electrotechnical Commission (IEC) is a worldwide organization that

publishes international standards in the electrical and electronic fields [74]. IEC issued a

series of standards including IEC-62814, IEC-61508 and IEC-62628 which provide guidance

and processes for developing reliable components and CB software.

2.4.7.1. IEC-62814

IEC-62814 [75] deals with the dependability of software containing reusable components.

Fevzi [76], who chaired the realisation of this standard, defines: i) characteristics of reusable

components, ii) a process for developing components, and iii) a process for developing CB

software as follows.

1. Characteristics of reusable components: according to IEC-62814, a reusable component

should have the following characteristics [76, pp. 147]:

 A component should be composed of functionally independent modules.

 A component should have a wide range of functionality to be used in a variety

of contexts.

 Component specifications should have criteria to define test cases and test

oracles.

 Component source code and documentation should be provided to facilitate its

modification.

 A component should be developed using the state-of-art techniques regarding

interfaces, protocols, etc.

 A component should have greater adaptability to be used with other systems.

 A component should be capable of working on different platforms, i.e.

independent of programming languages, operating systems, hardware, etc.

2. Process for developing components: Only a high-quality component can produce a

quality CB software. Fevzi suggests that extra effort should be made to develop high-

quality reusable components using the following guidelines [76, pp. 148].

 The component developer should define the objectives of the component’s

reusability.

 The component developer should explain when and how the component can be

reused.

 50

 The component developer should decide whether to build the component for

single use or for reuse. They should check the library and market to find whether

such a component already exists.

 The component developer should ensure that the component meets the

characteristics of a reusable component before storing it in a library / repository.

3. Process for developing CB software

CSD differs from normal software development as it involves selection, evaluation,

modification, re-testing, and deployment of a reusable component. IEC-62814 enforces

the following process for developing CB software [76, pp. 149]:

 First, the component user should check for the availability of the reusable

component. If a reusable component exists, it should be evaluated.

 Second, if the component requires modifications, the side effects of these

modifications should be considered.

 Finally, the requirements of CB software should be validated in the new context.

IEC-62814 assists in developing quality components, and the application of this

standard increases the reliability of CB software. However, the component still needs to be

tested for the new context as the use of the component may be novel and not imagined by the

component developer. IEC-62814 briefly mentions testing the requirements of CB software

in the new context. However, it does not provide any guidelines or techniques for identifying

any weaknesses of component testing for a particular context of reuse in contrast with MD-

CDCT. MD-CDCT makes use of the context of reuse, and evaluates the component testing. If

some weaknesses are identified in the component testing, it provides tool support to enrich

the component testing.

2.4.7.2. IEC-61508

IEC-61508 [77] is a standard for functional safety of electrical / electronic systems which

contain programmable software. It defines Safety Integrity Levels (SILs) which set the

requirements on the process for how the software is developed and tested. SILs have two

attributes which are: i) the probability of failure, and ii) the frequency of failure. Software

should be developed according to the graded requirements (high SIL means high

requirements on the software process).

 51

MD-CDCT can use SILs defined in IEC-61508 while enriching the test suites. These

SILs can determine the extent to which the weakly tested parts of a component should be

tested more thoroughly. The higher SIL means that any gaps identified by MD-CDCT should

be expanded and tested more intensively.

2.4.7.3. IEC-62628

IEC-62628 [78] provides guidance on software aspects of dependability. It provides a generic

framework for software dependability requirements. It provides some approaches for

evaluating and measuring the dependability of CB software. MD-CDCT differs from these

approaches in that it finds the weaknesses of component testing regarding the context of

reuse, and then extensively tests the component’s functionality which is reused in the CB

software.

2.4.8. IEEE Standards

The IEEE Standards Association (IEEE-SA) is an organization within IEEE that develops

standards for various industries including information technology [79]. IEEE-SA has

proposed different standards to increase component dependability in CB software.

2.4.8.1. IEEE Standard 982.1-1988

IEEE Standard 982.1-1988 (IEEE-982.1) defines a range of measures for producing reliable

software (components) and accessing their dependability [80]. We categorise the measures,

defined in IEEE-982.1, into: analysing requirements, complexity, testing and faults / defects

found in the software as follow [80]:

1. Requirements-based Measures

 Requirement Tractability: Identifies the missing requirements.

 Conflicting Requirements: Determines reliability resulting from a software

architecture based on the complexity of an entity-relationship model.

 Cause and Effect Graphing: Explores inputs and expected outputs of software and

identifies ambiguous and incomplete requirements.

2. Complexity-based Measures

 Architectural Complexity: Determines the complexity of software architecture as

represented by entry and exit points defined in design.

http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/Technical_standard
http://en.wikipedia.org/wiki/Information_technology

 52

 Data Flow Complexity: Measures software reliability based on information flow

structure and complexity of interactions between modules.

 Cyclamate complexity: Determines the structural complexity of a coded module.

3. Testing-based Measures

 Minimal Unit Test Case Determination: Determines independent paths through a

module to create a minimum number of unit test cases for coverage.

 Test Coverage: Quantifies software test coverage.

 Test Accuracy: Determines the accuracy of the testing in detecting faults.

 Testing Sufficiency: Determines the sufficiency of software testing by comparing

actual to predicted faults.

4. Faults and Defects-based Measures

 Fault Density: Establishes standard fault densities, and predicts remaining faults

by comparing with the expected fault density.

 Defect Density: Indicates the reliability of a component.

 Cumulative Failure Profile: Predicts reliability through the use of failure profiles.

 Estimated Number of Faults Remaining: Determines the estimated number of

remaining faults by defect seeding which indicates the reliability of software.

 Fault-Days Number: Represents the number of days faults remains in the

software from their creation to removal.

We can use the testing-based measures for evaluating the effectiveness of MD-CDCT.

The test coverage measure can be used to measure the coverage of the enriched test suite. The

test accuracy measure and the estimated number of faults remaining measure can determine

the defect-detection capability of the enriched test suites which are produced by MD-CDCT.

In general, IEEE-982.1 assists in determining the reliability of a component at the time of

component development. However, it does not take advantage of the context of reuse to

address the adequacy of component testing. Further, these measures lack implementation in

contrast with MD-CDCDT which provides tool support to assess and augment the reliability

of a component in CB software.

2.4.8.2. IEEE Standard 1517-2010

One of the problems with CBD is the absence of any standard process for component reuse in

the software life-cycle process. IEEE Standard 1517-2010 (IEEE-1517) provides a process

for component’s reuse while developing CB software [81]. This standard provides additional

 53

activities which are applied during each phase of the software life-cycle to produce a CB

software from reusable components. IEEE-1517 proposes the following processes for

software development and software support [81, pp. 22-29]:

1. Domain Engineering Process

 The developer should select the domain architecture by consulting domain

experts, developers, and users of the CB software.

2. Implementation Process

 The developer should define a software life-cycle model which satisfies reuse

requirements of components.

 The developer should use standards, tools, and programming languages that

facilitate the practice of reuse of components.

3. Requirements Analysis Process

 The developer should include software reusability requirements in the quality

specifications of the components.

4. Architectural Design Process

 The developer should use a software architecture that is based on the selected

domain architecture.

 The developer should use a software architecture which can describe the

structures of the CB software and the components being reused.

 External interfaces and internal interfaces (interfaces between components) of the

CB software should comply with the domain architecture interfaces.

5. Detailed Design Process

 The developer should use the language and concepts from the selected domain

model.

 The developer should use data structures and naming conventions from the

selected domain model.

 The developer should develop external and internal interfaces of the CB software

that are compliant with the selected domain interface standards.

 The developer should evaluate and document the software detailed design and

test requirements.

6. Quality Assurance Process: The component user should document reliability experience

of the component.

 54

7. Documentation Management Process: The developer should reuse existing

documentation and test data.

8. Configuration and Asset Reuse Management Process: The developer should document,

archive and store reusable components in the repository which component users could

access through an asset storage and retrieval mechanism.

IEEE-1517 specifies process requirements for a component’s reuse and describes the

relationship of reuse processes to software life cycles. It describes a high-level framework for

reuse activities but does not provide details on how to perform the activities. Similarly, it

specifies the reuse activities at an abstract level but does not prescribe any specific life-cycle

model or methodology. In contrast, MD-CDCT provides a solution for evaluating and

extending the reliability of the reusable component. Moreover, IEEE-1517 specifies

provisions for acquiring reusable components but does not have provisions for using COTS

components whose source code is not supplied, whereas MD-CDCT can be applied to CB

software which reuses COTS components.

2.4.9. Summary of the related work

A summary of the advantages and disadvantages of the approaches discussed in Section 2.4 is

shown in Table 8.

The existing techniques discussed above cannot determine the test adequacy of

components especially when design and source code are not available to the component user

because:

i) The component user cannot apply traditional test adequacy techniques such as

coverage of models or source code.

ii) The component developer can use traditional CDCT techniques to certify the

component. However, the test cases executed to certify the component are

independent of the usage context of the component. Moreover, the testing can be

biased.

Even if the source code is available, all these techniques, except user certification, do not test

the component for the context of reuse.

 55

Approach Pros X Cons

Built-in testing Increase testability Increase component size

 Static test cases

Component metadata Increase testability

 Dynamic test cases

 No increase in component size

 Generate test data

 Affect Implementation
transparency

Third-party certification Impartial testing May be too costly for small
organisations to afford

Developer certification Test cases are available to user to
re-execute

 Context-independent testing

 Testing is biased by the
component developer

User certification Context-dependent testing No test adequacy criteria for
component reuse

Component contracts Does not require source code

 Lesser effort is required to develop
tests compared to traditional
coverage techniques

 Detects only contract-related
defects

Testable architecture Increase testability

 No increase in component size

 Affect Implementation
transparency

Application of IEC Standards Increase dependability May require extra effort for
developing components

Application of IEEE Standards Increase reliability Context-independent testing

 IEEE -1517 does not cover
COTS components without
source code

MD-CDCT Model-driven

 Context-dependent testing

 Addresses the problem of test
adequacy of component

 Requires component
certification (i.e. test cases
used to certify the component)

Table 8: Comparison of CBT approaches

2.5. Discussion

The techniques [49-52] which use component-metadata to perform CDCT neither evaluate

nor extend the adequacy of CDCT in contrast to our approach. Moreover, our approach takes

advantage of the testing done at the developer’s end which is an advance over existing work.

 56

Built-in testing techniques [17, 44-48] test the context-dependent behaviour of the

component in common with our approach. However, these approaches do not have any

mechanism to extend the test adequacy of component testing.

Existing mutation-based approaches [32, 34, 64-66] mutate the interface (contract) of

components to evaluate the adequacy of component testing. These approaches detect defects

which are related to understanding and implementation of the interface (contract). However,

the defect-detection capability of the enriched test suite (which is produced by our approach)

is not limited to interface or contract-related defects.

Techniques based on testable architecture [67-69] facilitate the component user to

execute test cases. However, these techniques do not address the problem of test adequacy of

components.

A salient feature of MD-CDCT is the reuse of existing testing information for testing

purposes. Testing is a costly activity, and testing a component for a specific context from

scratch requires covering a lot of the ground already covered by the developers. MD-CDCT

allows us to use the existing testing information for the component to identify gaps and to

focus on the usage context, and hence it is efficient in achieving our testing aims. Moreover,

MD-CDCT evaluates the test adequacy of components and extends it, and tests the

component with context-dependent test cases.

In this chapter, we only provide an overview of the framework, with details following

in later chapters in order to i) make it easier to understand, and ii) to illustrate using a simple

example, before going into the detail. MD-CDCT is based on MTCG (Section 3.3) and TSC

(Section 4.2) and it inherits the advantages and dis-advantages of the underlying tools. MD-

CDCT has the following potential advantages which will be discussed and evaluated later

(Sections 3.4.7, 3.6, 4.3.1.6, 4.3.2.8 and 4.5):

i) It reuses the existing testing information (test suites) for testing purposes.

ii) It evaluates the component testing done at the developer’s end, and extends it for

the context in which the component is reused.

iii) It can be used for the testing of COTS components as it does not require the

source code of the component.

iv) It is based on use-case scenarios and interaction diagrams. Since these

descriptions of behaviour are constructed at an early stage, testing based on them

can start early in the life cycle.

 57

Similarly, MD-CDCT has the following limitations which will be discussed and evaluated

later (Sections 3.7 and 5.6.2):

i) It requires the test cases used to certify the component to evaluate and extend test

adequacy of component testing.

ii) It is based on comparison of test suites. For complex systems, the extraction of

abstract test cases from concrete test suites is a non-trivial task as discussed in

Chapter 4.

The framework introduced in this chapter is the core of our research. In the next two

chapters, we introduce and explain the tools (MTCG and TSC) which support the framework.

In Chapter 5, we apply the framework to a real case study for evaluation purposes.

 58

 59

CHAPTER 3 - MODEL-DRIVEN TEST CASE GENERATION

3.1. Introduction

In this chapter, we describe our model-driven method (MTCG) for generating executable test

cases (task 2 in Figure 2). We apply MTCG to a case study to demonstrate its viability, and

discuss the threats to the validity of this case study. We present the related work in the area

of model-based and model-driven testing. Finally, we discuss advantages and limitations of

MTCG.

MTCG (Model-Driven Test Case Generation) is a novel method that uses the model

transformation technology of MDA to automate the generation of unit test cases from

software models. While executing the generated test cases, MTCG can monitor the method

invocation chains to verify the behaviour of systems for which the source code is available.

We use MTCG as a part of our model-driven framework for context-dependent testing of

components (MD-CDCT) proposed in Chapter 2. In MD-CDCT, we devise CDCT from the

component usage model, compare it with CT to identify the weaknesses of CT, and enrich

component testing or CDCT to target the component functionality which is not tested during

CT. We can then use MTCG to generate concrete and executable test cases for the enriched

test suite. These test cases are used to test the component for the new context.

This chapter is partially based on the publication regarding the automated generation of

test cases [82]. However, the work presented in the published material was updated during

the research. The proposed tool was refined to generate readable test cases. The related work

was revisited to cover the recent work done in this area. Finally, some limitations of the tool

were investigated and discussed.

3.2. Model-Driven Testing

Traditionally, software products have been tested based upon either their specifications or

implementations [83]. Recently, model-based testing has become popular [84-90]. Model-

based testing refers to processes, methods or technologies that use software models to support

testing activities. Some of the reasons for its popularity are the following:

1. The software models can contain both static and behavioural information, which

provides a sound base for conducting testing activities [91].

 60

2. As the software models are constructed at an early stage of software development,

testing activities (e.g. generation of test cases) can start early in the software life

cycle.

3. The software models are mostly defined using the Unified Modelling Language

(UML) which is the de facto industry standard [35] for software modelling.

4. Testing based on software models is independent of the software implementation,

which increases the likelihood of discovering implementation-related defects.

More recently, model-driven testing has started to emerge. Model-driven testing is a

form of model-based testing that is based on models, meta-models, transformation

specifications, and model transformation tools (MTTs) [92]. Models are the basic artifacts

that are manipulated for automating software development activities. The meta-models are

the definitions of these models and they are used by MTTs to interpret the models.

Transformation specifications are the rules that specify the model transformations. MTTs are

used in model-driven (MDA-based) techniques to execute the transformation rules on the

models to carry out their transformations. Model transformations can be horizontal

transformations or vertical transformations. A horizontal transformation is one that maintains

the abstraction level, e.g., a transformation from a Platform Independent Model (PIM) to

another PIM. A vertical transformation is one that changes the abstraction level, e.g., a

transformation from a PIM to a Platform Specific Model (PSM). Some of the advantages of

model-driven testing are an increase in productivity and quality [93].

3.3. MTCG: A Method for Automating Test Case Generation

We propose a model-driven method (MTCG) to generate test cases from UML diagrams [82],

and support it by a prototype tool (MTCGPrototype). It uses the model transformation

technology of MDA to generate unit test cases from a PIM of the system.

To demonstrate its viability, we chose the generation of test cases for xUnit family

members from sequence diagrams [35] that describe dynamic interactions among the

components of a system.

Sequence diagrams are a kind of UML interaction diagram [35] which show

interactions among components of a system in a time sequence manner. The UML interaction

diagrams represent dynamic interactions among objects, components or sub-systems.

Sequence diagrams play an important role in the software development processes that are

 61

use-case driven [36], such as in the Rational Unified Process [37]. A sequence diagram

specifies a run-time scenario in a graphical manner. It shows processes or objects as parallel

vertical lines which are called lifelines. The messages exchanged between them are shown as

horizontal arrows in the order in which they are sent.

xUnit [94] is a family of unit-testing frameworks used to write and run repeatable tests

for software applications. Developers use these frameworks for developing and executing

unit test cases, and for regression testing. Amongst the most popular family members of

xUnit are JUnit [25] and SUnit [95], which are unit testing frameworks for testing Java and

Smalltalk components respectively.

In MTCG, first we model the usage of a system using sequence diagrams and then this

model is automatically transformed into a general unit test case model (an xUnit model

which is independent of a particular unit testing framework), using model-to-model

transformations. Then model-to-text transformations are applied on the xUnit model to

generate platform-specific (JUnit, SUnit etc.) test cases that are concrete and executable.

The model-to-model transformations are the horizontal transformations which maintain

the abstraction level. The model-to-text transformations are the vertical transformations

which produce textual outputs from a structured model.

Figure 9: Overall process for generating test cases

An overview of the approach is shown in Figure 9. The generation of test cases is

performed in two steps. In the first step, a UML sequence diagram is translated into a testing

model using a horizontal transformation. In the second step, the testing model is converted

UML Model

(Sequence Diagram)
xUnit Model

Horizontal Transformation

(UML to xUnit)

JUnit Test Case SUnit Test Case
Platform Specific Model

Platform Independent Model

OR

Vertical

Transformation

(xUnit to SUnit)

Vertical

Transformation

(xUnit to JUnit)

 62

into a concrete and executable test case using a vertical transformation. This two-step

approach differs from existing techniques which generate test cases for a particular platform.

Further, they do not fully benefit from the model transformation technology unlike our

approach. Some of the researchers have used transformation specifications but they have not

provided any tool support. The intermediate xUnit model facilitates the reuse of code

(Section 3.4.6) and the developer only provides vertical transformations for generating test

cases for new platforms. The novelty of this technique is discussed in Sections 3.5.2 and 3.6

in detail.

Figure 10 provides an architectural view of the concept presented in Figure 9 for

generating test cases. Artefacts 1 and 2 in Figure 10 are the meta-models for a UML diagram

and xUnit models respectively. Artefacts 3 and 4 are the transformation rules for horizontal

and vertical transformations. Artefacts 5 and 6 are the two transformation engines (MDA

tools) that we use in our methodology to perform horizontal and vertical transformations

(Figure 9). Artefact 7 is the source model of the application (an instance of Artefact 1) from

which we generate test cases. Artefact 8 is the xUnit model (an instance of Artefact 2) which

is a testing model. The horizontal transformation engine executes horizontal (model-to-

model) transformations on the source model (7) to generate this xUnit model (8). Artefacts 9

is the final output which is a concrete and executable unit test case produced by the vertical

transformation engine. The vertical transformation engine executes vertical (model-to-text)

transformations on the xUnit model (8) to generate the unit test case (9).

1

7

5 6

2

8

3 4

9

UML Model

UML Meta-Model

xUnit Model

Horizontal
Transformation Rules

(Model-to-Model)

Horizontal
Transformation Rules

(Model-to-Text)

Unit Test Case
Horizontal

Transformation
Engine

Vertical
Transformation

Engine

xUnit Meta-Model

Figure 10: Architectural Diagram

 63

We have implemented the transformations in a prototype tool based on the Tefkat [96]

and MOFScript [97] MTTs, which are both implemented as Eclipse [88] plugins. We have

two versions of the implementation (for JUnit and SUnit). As an example, the JUnit

implementation is discussed in this section; the SUnit implementation is similar.

We test a system using sequence diagrams at two levels. At the first level, we generate

test cases from a sequence of method calls (messages) that are selected by the tester from the

sequence diagram. Typically, the selected method calls originate from a particular lifeline in

the sequence diagram and they appear as method invocations in the generated test case. Note

that method invocations that originate from subsequent lifelines are invoked indirectly by the

selected method calls. At the second level, we capture method execution traces during the

execution of test cases to ensure that this happens as specified in the sequence diagram. Test

results are checked by comparing expected and actual return values of the selected method

calls, and by comparing the execution traces with the method calls in the sequence diagram.

3.3.1. Generating test cases using model-driven architecture

As shown in Figure 9, the model-driven approach that we use for generating unit test cases

consists of two steps. The first step is the creation of a test case which is generic to all xUnit

family members and the second step is the transformation of the generic test case into a

concrete one, specific to a particular xUnit family member, e.g. a JUnit test case. In the first

step, we model a sequence diagram as a sequence of methods calls which is then

automatically transformed into an xUnit model by applying model-to-model transformations

using Tefkat. Tefkat is a model transformation engine which defines and executes mappings

from a set of source metamodels to a set of target metamodels. In the second step, JUnit test

cases are generated from the xUnit model by applying model-to-text transformations using

MOFScript. This process is shown in Figure 11.

Artefacts 1 and 2 in Figure 11 are the meta-models for a SMC and xUnit respectively.

Artefacts 3 and 4 are transformation rules for model-to-model and model-to-text

transformations. Artefacts 5 and 6 are the two transformation engines (MTTs) that execute

horizontal and vertical transformation specifications (Figure 10). Artefact 7 is the source

model of the application from which we generate test cases. Artifact 8 is the xUnit model

which is an intermediate output. Tefkat executes horizontal transformations on the source

model (7) to generate this xUnit model (8).

 64

Artifact 9 specifies test data, for the SMC model, which contains the parameter values

and expected return values of the method calls in the sequence diagram. By changing the

contents of the test data file, different test cases can be generated for the same sequence

diagram. Artifact 10 is a simple text file containing code which is copied to the top of the file

containing the test case. It can be used to define packages, import classes, etc., which are

needed for compiling and executing the generated test cases. Artifact 11 is the final output

which is a concrete and executable unit test case produced by MOFScript. MOFScript reads

the test data (9) and code header (10) while executing the vertical (model-to-text)

transformations (4) on the xUnit model (8) to generate the unit test case (11).

These artifacts are generic at different levels. Artefacts 1, 2 and 3 are independent of

platform, application and sequence diagrams. Artifact 4 is specific to a platform but

independent of application and sequence diagram. None of these artifacts (1, 2, 3 and 4) need

to be modified when testing different applications on the same platform. To test an

application from a sequence diagram, the tester must provide the SMC model (7), test data

(9) and the code header (10) file. Note that by altering the test data file, the same testing

scenario can be executed with different test data.

SMC
Meta-model

xUnit
Meta-model

SMC Model xUnit Model

Instance of
Tefkat

Model to Model
Transformation

Tool

target metamodel

Instance of

horizontal
transformation rules

source metamodel

target model

Model to Model
Transformation

Specifications

source metamodel

source model

vertical
transformation rules

MOFScript
Model to Text

Transformation
Tool

Model to Text
Transformation

Specifications

test case

Test Data
Test Data

Test Data

 Code Header

1

65

3

2

4

9

7 8

10

data

source model

JUnit Code
(with test data)Test Case

11

Figure 11: Overview of methodology

 65

3.3.1.1. Step 1: Transforming SMC into xUnit

We transform the SMC model into an xUnit model by using Tefkat transformation rules

(artefact 3 in Figure 11). Transformation rules (specifications) define how the elements of a

source model should be translated into elements of a target model. As an example, the rule in

Figure 12 creates a test case in the xUnit model for every SMC in the model. The test case is

given the same name as the SMC. The detailed syntax of the transformation specification

language of Tefkat is available online [98]. All the Tefkat rules that we have devised for the

transformation are provided in Appendix B.1.

RULE SMC_2_TestCase (smc, testCase)

 FORALL SMC smc

 MAKE TestCase testCase

 SET testCase.name = smc.name ;

Figure 12: An example Tefkat rule

3.3.1.2. Step 2: Generating JUnit from xUnit

MOFScript transformation rules are used to generate JUnit test cases from the xUnit model.

Two example MOFScript transformation rules are presented in Figure 13. The rule

model.TestSuite::main is the entry-point rule where the transformation starts. The expression

self.name is the name of the object on which the rule is being executed, i.e. the name of the

test suite in this case. The forEach keyword iterates over the collection of test cases in the test

suite and invokes the rule model.TestCase::mapTestCase to process them. This rule creates a

JUnit specific test case and invokes other rules (that are not discussed in detail) to complete

the body of the test case. The detailed syntax of the transformation specification language of

MOFScript is available online [99].

We have implemented MOFScript transformation rules for generating JUnit and SUnit

test cases from the xUnit model. All the MOFScript rules are provided in Appendix B.2.

 66

model.TestSuite::main() {

 printf(“public class Test_”+self.name +“extends TestCase {\n”)

 self.testCase->forEach (tc:model.TestCase) {

tc.mapTestCase()

 }

 printf(“} // End of Test Suite”)

}

model.TestCase::mapTestCase() {

 printf(“ \n\r\t public void Test_” + self.name + “() { ”)

 …

 printf(“ \n\r\t } //End of Test Case”)

}

Figure 13: Example MOFScript rules

3.3.1.3. SMC Meta-model

To generate test cases from sequence diagrams, we needed methods calls, parameter values

and expected values. Therefore, we confined our implementation to a meta-model of

Sequences of Method Calls (SMCs) abstracting away the unnecessary details such as

connectors, message-occurrence-specifications, message-ends and message-events [85].

Our meta-model for SMCs is shown in Figure 14. It consists of interactions, messages,

classes, parameters, expected values and literal strings. In this model, NamedElement

represents a named value and LiteralString represents a string value. An Interaction

represents part of a sequence diagram. The Messages contained in the interaction are a subset

of the method calls of the sequence diagram selected by the tester. The messages can have

Parameters and an optional ExpectedValue in them. The parameters and the expected value

are of type ScalarValue or ComplexValue. The ScalarValues are atomic data values that do

not contain any other data values. Instances of ScalarValues in Java are integer, float, String,

etc. The ComplexValues are the values that contain other values, i.e., they act as data

structures. The ComplexValues in Java are all classes except String. Moreover, every message

is associated with an OwnerClass (to which the methods belongs), which is a class that

receives the message. The owner class has parameters for its constructors that are required to

create an instance of the class in the generated test case.

 67

Message

Literal String

Class

ordered

*

Parameter

owner

Named Element

DataValue

Complex Value

1

*

*

*

*

*
*

*

Scalar Value

Interaction

ExpectedValue

Figure 14: SMC meta-model

3.3.1.4. xUnit Meta-model

The meta-model for xUnit test cases is shown in Figure 15. No meta-model for xUnit was

available, so we derived it by studying the architecture of test cases written in different unit

testing frameworks such as JUnit and SUnit. In this model, the Test Suite acts as a container

for Test Case(s). A test case can have Assertions in it. An assertion is a condition that should

hold true after executing the test case. An assertion can be of different types which are

specified by its attribute type, e.g. the JUnit framework has Equal, Not Equal, Same, Not

Same, True and False assertions. For testing using sequence diagrams, an assertion has a

method call and an expected value. The method call is the code to be tested.

After executing a test case, the unit testing framework compares the actual value (the

value returned after executing the code) with the expected value to decide on the success or

failure of the test case. As an example, the JUnit’s Equal assertion compares the actual value

and the expected value. If both values are equal, the assertion holds. Conversely, the Not

Equal assertion holds if the values are not equal. Moreover, the method can have parameters

 68

that are either scalar values or complex values as discussed in the meta-model of SMC. The

elements Message, OwnerClass, ComplexValue, ScalarValue and DataValue are the same as

in the SMC meta-model.

Named Element

Test Suite

Test Case

Assertion
type: String

Method Parameter

DataValue

Scalar Value

Complex Value

OwnerClass

ExpectedValue

*

*

*

*

*

*

*

*

*
*

Figure 15: xUnit meta-model

3.3.2. Tracing

Apart from comparing the expected values with the values returned by method calls (to

decide on the success of a test case), we also monitor the method invocation chains to have a

second check on the behaviour of the system. We do this by means of the Daikon [100]

tracing tool. We compare the observed method execution chain with the expected method

execution chain in the sequence diagram. Currently, we compare the traces manually, but this

activity can be automated in the future. However, the tracing will not be possible for

components whose source code is not available.

3.4. Case Study: Determining Applicability of MTCG

3.4.1. Introduction

The objective of this case study is to demonstrate the applicability of MTCG. We use a

system whose source code is available so that we could apply MTCG fully by performing

tracing as well as generating test cases.

 69

3.4.2. Object description

We have selected an Automatic Teller Machine (ATM) simulation system for this case study

[101]. An ATM allows its users to perform basic banking operations like withdrawal,

deposit, transfer and checking their balance, without having to go to a bank. In an ATM, the

user inserts an ATM card, enters a PIN (a personal identification number), selects a

transaction to be performed and provides input needed for the transaction, e.g. amount and

account in case of withdrawal. In response to the user’s actions, the ATM reads the card,

reads and validates the PIN, processes the transaction, dispenses cash, prints the receipt and

ejects the card at the end of the session.

3.4.3. Interface of ATM

The ATM system is implemented using the following classes: ATM, Simulation, Session and

Transaction. The ATM class represents an ATM. The Simulation class simulates the process

of reading an ATM card and PIN. The Session class represents a session which is a period of

time used for a particular banking activity. The Transaction class creates and executes

banking transactions which are deposit, withdraw, transfer and balance inquiry. The interface

of ATM consists of creating (or invoking) the following objects (or methods):

1. Create an ATM object

ATM atm = new ATM (id, name, place, address);

2. Create a Simulation object

Simulation simulation = new Simulation (atm);

3. Create a Session object

Session session = new Session (atm);

4. Invoke readCard() method of the simulation object

Card card = (Card) simulation.readCard();

5. Invoke readPIN() method of the simulation object

int pin = simulation.readPIN();

6. Invoke makeTransaction() method of Transaction class

Deposit d=(Deposit)Transaction.makeTransaction(atm, session, card, pin);

7. Invoke performTransaction() method of the desired transaction (e.g. Deposit) object

Deposit.performTransaction();

http://www.macmillandictionary.com/search/british/direct/?q=period
http://www.macmillandictionary.com/search/british/direct/?q=of
http://www.macmillandictionary.com/search/british/direct/?q=time
http://www.macmillandictionary.com/search/british/direct/?q=used
http://www.macmillandictionary.com/search/british/direct/?q=for
http://www.macmillandictionary.com/search/british/direct/?q=a
http://www.macmillandictionary.com/search/british/direct/?q=particular
http://www.macmillandictionary.com/search/british/direct/?q=activity

 70

3.4.4. Experimental planning

In this section, we provide only an overview of the tasks performed in this case study with the

details presented in subsequent sections. We execute the following tasks to generate test

cases:

1. Identify sequence of method calls (SMC)

We select messages that originate from a particular lifeline to observe the behaviour

originating from this lifeline. The details are provided in Section 3.4.5.1.

2. Create SMC model using these method calls (messages)

The SMC model is created manually using the graphical user interface provided by

Eclipse. The details are provided in Section 3.4.5.2.

3. Devise test data for the SMC model

The test data consists of the parameters and return values for the selected messages.

The details are provided in Section 3.4.5.4.

4. Execute horizontal and vertical transformations to generate test cases

We execute horizontal and vertical transformations to generate SUnit and JUnit test

cases. The details are provided in Sections 3.4.5.3 and 3.4.5.5.

3.4.5. Applying MTCG to the case study

To test the ATM system, we generate test cases (using MTCG) from the following sequence

diagrams: withdrawal, deposit, transfer and balance inquiry. These sequence diagrams are

derived from the information available with the ATM system [101]. For instance, the

withdrawal sequence diagram shown in Figure 16 was based on the interaction diagram

‘Withdrawal Transaction Diagram’ in the design section [101].

3.4.5.1. An example sequence diagram

Figure 16 shows the sequence diagram for the withdrawal operation. The details like

validation of the PIN and interaction with the bank are omitted to simplify the example. The

sequence diagram consists of the following classes. The class Session represents a particular

session, i.e. the operations that the user performs between inserting a card and the card being

ejected. The Simulation class is used to represent the interaction between the ATM system

and the devices attached to it, which are the card reader, cash dispenser, and customer

console. The class ATM represents a particular ATM terminal. The class Transaction is a base

class that instantiates all the transactions. The class Withdrawal represents a withdrawal

 71

operation, which is instantiated when the user opts to withdraw an amount. The CardReader

class reads the ATM card and ejects it at the end of the session. The CustomerConsole gets

input from the user, like amount, PIN etc. The class CashDispenser dispenses cash as a result

of a valid withdrawal request from the user.

In this sequence diagram, the first three messages are setup messages that are required

to create ATM, Session and Simulation objects. The messages to the devices, attached to the

ATM system, are invoked on a Simulation object. The Simulation object delegates these

messages to the representation classes of these devices. The message readCard is invoked on

CardReader objects and returns an ATM card object. The card object has an integer attribute.

The message readPIN reads the PIN from the CustomerConsole. It takes a string parameter

promptMessage (that is displayed on the customer console) as a parameter and returns the

pin (entered by the user) as an integer. The method makeTransaction creates a Withdrawal

object when the customer selects an amount. It takes ATM, session, card and PIN as

parameters. The method performTransaction reads the amount to withdraw and the account

to withdraw from. It ensures that the amount is within the daily withdrawal limit and that the

cash dispenser has enough cash to satisfy the request. It then dispenses the cash.

To generate unit test cases for CT using sequence diagrams, we select messages that

originate from a particular lifeline to observe the behaviour originating from this lifeline. For

this case study, we select the messages that originate from the high-level Session object (that

are represented with bold arrows in Figure 16). They are transformed to method invocations

in the generated test case. The messages that originate from other objects (that are

represented with thin arrows in Figure 16) are invoked indirectly and we use tracing to verify

their execution chain (as discussed in Section 3.3.2).

 72

Figure 16: An example sequence diagram for the ATM case study

3.4.5.2. SMC model

We create the input instance (SMC model) in the Eclipse editor, where it can be accessed by

the Tefkat plugin. We have created this instance manually using the graphical user interface

provided by Eclipse. The Eclipse definition for the above SMC (in Figure 16), is shown in

 73

Figure 17. The message SETUP-1 is a setup message that creates an ATM object with id,

name, place and address as its constructor’s parameters. Similarly the messages SETUP-2 and

SETUP-3 create Simulation and Session objects. Setup messages do not generate any method

calls in the test case. They are a part of configuration and environment setup. The rest of the

messages have parameters and return values.

To keep the creation of the test data file simple, we define the sub-structure (attributes)

of objects only once. Therefore, when an object that is not a simple data type is used in a

message as an owner class or a parameter for the first time, its sub-structure is specified

along with the types of its elements e.g. int, float or objects. The reason for this is that MTCG

generates code for the object the first time it encounters the object and stores it in a hash

table. Later when this object is referred to in a message call, its sub-structure does not need to

be specified. For example, in Figure 17, when the object ATM is used for the first time in the

message SETUP-1, its id, place, name and address are specified as the constructor’s

parameters. But when this object is passed as a parameter in the method makeTransaction, its

sub-structure is not specified again. Whenever a reference is made to this object during

method invocation, the variable stored in the hash table is retrieved. However, for an

expected value, the sub-structure is specified each time, as a new object needs to be created

with different data values in it.

3.4.5.3. xUnit model

Tefkat applies the horizontal transformations which were devised in Section 3.3.1.1 to

generate an output instance, in the form of an xUnit model, from the input instance. The

output instance for the input instance in Figure 17 is shown in Figure 18. In the xUnit model,

a test case is generated for each SMC. For each message in the sequence diagram, an

assertion and a method (within the assertion) are generated. For each parameter in a

message (in the source model), a parameter is created in the method (in the target model).

Similarly for the return value and owner class (which represents the class that the method

belongs to), corresponding elements in the target are created. The objects SETUP-1, SETUP-2

and SETUP-3 are created just for setting up the environment and we do not generate assertions

for these objects in the generated test case.

 74

Figure 17: SMC model for the example
sequence diagram

Figure 18: xUnit model for the example
sequence diagram

3.4.5.4. Test data file

The test data file that has the parameters and return values for the example in Figure 16 is

shown in Figure 19. It has data for the calls to SETUP-1, readCard and readPIN only. The

reason is that the parameters for other method calls (e.g. the parameters ATM, Session, Card

and PIN of the method makeTransaction) are created by previous methods.

The values for id, place, name, card number and pin (which are 41, Gorden College,

National Bank, 1 and 42 respectively) in Figure 19 are provided by the tester.

In the test data file, the class name (to which the method belongs) and a double-colon

(i.e. ::) are appended before the method’s name. This is because different classes can have the

same method name.

 75

Figure 19: Test data file for the example sequence diagram

3.4.5.5. JUnit test case

MOFScript executes the vertical transformations which were devised in Section 3.3.1.2 to

produce a JUnit test case. The JUnit test case is shown in Figure 20. Lines 1-8 are copied by

MOFScript from the Code Header file. The remaining lines are generated by MOFScript

rules. Lines 12-16 create a JUnit test suite. Line 17 contains the test method for the sequence

of calls identified. Lines 20-23 create variables that are used as the constructor’s parameters

for the ATM object. The data values for these variables, i.e. 41, Gordon College and National

Bank and null, are read from the test data file (Figure 19). The types of these variables (i.e.

int, String, InetAddress) are read from the xUnit model and originally come from the input

model during the UML to xUnit transformation. Lines 20-25 contain the code generated for

the method SETUP-1. As this is a setup message, it creates an ATM object for later use. The

attribute values of the ATM object are read from the test data file. Lines 26-27 contain the

code generated for the methods SETUP-2 and SETUP-3 respectively. They generate Simulation

and Session objects that use the previously created ATM object as their constructor’s

parameter. Lines 29-34 show the code generated for the call to readCard. As this method

returns a Card object, an expectedCard object is generated by reading the card number from

the test data file.

 Lines 36-40 show the code generated for the call to readPIN. This method returns pin

as an integer value. A variable expectedPIN is generated whose value is read from the test

 76

data file. Lines 42-46 show the code generated for the method makeTransaction. As it

returns a Withdrawal object, an expectedWithdrawal object is created. Lines 47-48 show the

code generated for the call to performTransaction and lines 50-51 show the code generated

for the call to ejectCard. Assertions are generated in lines 34, 40 and 45 for the methods that

return a value in order to compare them with the expected values.

The assertions in lines 34 and 45 use the equals method, which is supplied by the tester,

to compare the expected and the actual return value of a method. The equals method is used

for comparison of non-scalar values and user-defined types. For the comparison of scalar

values, the “= =” operator is used for comparison, as shown in line 40.

We then run these test cases to make sure they are syntactically correct and executable.

 77

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 20: JUnit test case for the example sequence diagram

 78

3.4.5.6. Traces

During the execution of these test cases, we capture their traces using the Daikon tracing

tool. The trace captured during execution of the test case in Figure 20 is shown in Figure 21.

The method invocations with grey background are those that are not included in the test case

but that are invoked by the methods that are called in the test case. For example, the test case

(in Figure 20) executes the method readCard of Simulation. This method further invokes the

method readCard of CardReader which is responsible for reading the card. This allows us to

check that the classes interact as specified in the sequence diagram for this test case.

Figure 21: Execution trace for the example sequence diagram

3.4.6. Reuse of vertical transformation rules

We analyse the vertical transformation rules for their similarity to find the possibility of code

reuse. The code reuse shows the advantage of having a two-step strategy for generating test

cases.

Most of the vertical transformation rules (xUnit to SUnit and xUnit to JUnit) have

similar logical structure that makes them reusable. They differ only in the text that is

embedded in them, e.g. for SmallTalk the statement terminator is a dot (.) whereas in Java it

is a semi-colon (;). The similarity of the logical structure of three example rules,

mapAssertion, mapExpectedValue and mapMethod is illustrated in Figure 22. For the rules

having similar structure, the implementer only needs to copy and change the language-

specific syntax in these rules. Table 9 shows the reusability in terms of non-commented lines

of code that are the same. This reusability is achieved at minimal cost due to the intermediate

 79

xUnit model. The structural mapping between SMC and xUnit is addressed during the

horizontal transformations, leaving the vertical transformations linear and almost identical

except for language-specific syntax.

xUnit-SUnit :: Assertion

1. model.Assertion::mapAssertion() {
2. returnType = self.expectedValue.first().type.trim()
3. returnVariable = “return_” + returnType
4. self.method->forEach(m:model.Method | m =

self.method.first()) { 5. methodName = m.name.trim()
6. assertionType = m.owner.assertionType // assert
7. isSetup = m.name.startsWith("SETUP_")
8. className = m.ownerClass.first().name
9. classInstance =

m.ownerClass.first().name.firstToLower() 10. m.mapMethod()
11. self.expectedValue-

>forEach(e:model.ExpectedValue) { 12. e.mapExpectedValue()
13. }
14. if(isStatic) classInstance = className
15. if(not isSetup) { // No method call for setup

messages 16. text = "\r\t\t"
17. text = returnVariable + ":= " + returnType + “

new.” 18. text = returnVariable + ":= " + classInstance +
methodName + "." 19. text = text + "\n\t\t" + assertionType + ": ("

+ expectedVariable +" equals "+
returnVariable + ")." 20. }

21. outputFile.println(text)
22. }

23. }

xUnit-JUnit :: Assertion

1. model.Assertion::mapAssertion() {
2. returnType = self.expectedValue.first().type.trim()
3. returnVariable = “return_” + returnType
4. self.method->forEach(m:model.Method | m =

self.method.first()) { 5. methodName = m.name.trim()
6. assertionType = m.owner.assertionType //

assertTrue 7. isSetup = m.name.startsWith("SETUP_")
8. className = m.ownerClass.first().name
9. classInstance =

m.ownerClass.first().name.firstToLower() 10. m.mapMethod()
11. self.expectedValue-

>forEach(e:model.ExpectedValue) { 12. e.mapExpectedValue()
13. }
14. If(isStatic) classInstance = className
15. If(not isSetup) { // No method call for setup

messages 16. text = "\r\t\t"

17.
text = text + returnType+"
"+returnVariable+" = ("+returnType + ")" +
classInstance + "." + methodName

18. text = text + "\n\t\t"+assertionType+"("+
expectedVariable+ ".equals(" +

returnVariable + "));" 19. }
20. outputFile.println(text)
21. }

22. }

xUnit-SUnit :: Method

1. model.Method::mapMethod() {
2. key = self.ownerClass.first().name
3. if(not key.equals("")) storedClassInstance =

variableMap.get(key) 4. if(storedClassInstance.equals("")) {
5. if(isStatic == false) { // No method call for setup

methods 6. text = "\n\t\t"
7. text = text + classInstance + " := " + className

+ " new."

8. }
9. outputFile.println(text)
10. variableMap.put(classInstance.trim(),

classInstance.trim()) 11. } else {
12. classInstance = storedClassInstance
13. }
14. }

xUnit-JUnit :: Method

1. model.Method::mapMethod() {
2. key = self.ownerClass.first().name
3. if(not key.equals("")) storedClassInstance =

variableMap.get(key) 4. if(storedClassInstance.equals("")) {
5. if(isStatic == false) { // No method call for

setup methods 6. text = "\n\t\t"
7. text=text + className+ " "+

classInstance+" = new "+ className+ "(
);" 8. }

9. outputFile.println(text)
10. variableMap.put(classInstance.trim(),

classInstance.trim()) 11. } else {
12. classInstance = storedClassInstance
13. }
14. }

xUnit-SUnit :: Expected Value

1. model.ExpectedValue::mapExpectedValue(scope) {
2. attributeType = self.type
3. attributeName = self.name
4. text = "\n\t\t"
5. text = text + attributeVariable + " := " + attributeType

+ " new." 6. text = "\n\t\t” + text + attributeVariable + " := "
7. text = text + "\""
8. outputFile.println(text)
9. // Following line reads test data and appends it to the

test case. 10. java ("com.m2t.WriteData", "writeTestData", scope,
"C:/xunit2text") 11. text = "\” "

12. text = "."
13. outputFile.println(text)
14. }

xUnit-JUnit :: Expected Value

1 model.ExpectedValue::mapExpectedValue(scope) {
2 attributeType = self.type
3 attributeName = self.name
4 text = "\n\t\t"
5 text = text + attributeType + " "+ attributeVariable + " = "

6 text = text + "\""
7 outputFile.println(text)
8 // Following line reads test data and appends it to the test

case. 9 java ("com.m2t.WriteData", "writeTestData", scope,
"C:/xunit2text") 10 text = "\” "

11 text = ";"
12 outputFile.println(text)
13 }

Figure 22: M2T rules for mapAssertion, mapMethod and mapExpectedValue

 80

The high degree of similarity of the vertical rules allows for reuse of these rules while

generating test cases for different target languages. This high reusability, which is 85%, is

achieved using the intermediate xUnit model. The reuse of models and transformation rules

is not uncommon in model-driven development but the level of reuse in this particular

application is over 80%, which is significant. Therefore, our technique has an advantage over

existing techniques in terms of code reusability.

Rule Structure
Lines of Code

xUnit-SUnit xUnit-JUnit Same Reuse-%

main Different 27 25 17 63

mapTestCase Different 13 20 11 55

mapAssertion Same 48 47 44 92

mapMessage Same 32 28 25 78

mapOwnerClass Same 8 8 8 100

mapParameter Same 58 56 51 88

mapConstructorParameter Same 54 52 48 89

mapExpectedValue Same 36 34 30 83

mapComplexAttribute Same 28 28 26 93

mapSimpleAttribute Same 26 25 22 85

Total 330 323 282 85

Table 9: Code reusability matrix of M2T rules

3.4.7. Discussion

This case study shows that MTCG can generate concrete and executable test cases by making

use of model transformation tools (MTTs). We have generated test cases for withdrawal,

deposit, transfer and balance inquiry operations of ATM using MTCG.

We have two versions of the implementation of MTCG to generate test cases for two

different platforms (JUnit and SUnit) which are provided in Appendices B.3 and B.4

respectively. We generated test cases for the JUnit platform as the ATM system (which is

used in this case study) was written in Java. We generated test cases for the second platform

to show that the vertical transformations for JUnit can be modified to drive vertical

transformations for other platforms with ease. For this purpose, we needed a platform whose

syntax differs greatly from Java. Therefore, we selected SUnit because the syntax of

 81

Smalltalk (the language of SUnit) differs substantially from Java, e.g. declaring and

initialising variables, passing arguments to methods, etc.

MTCG can generate test cases for CT and CDCT. When MTCG was proposed and

implemented, our objective was to generate unit test cases for CT using sequence diagrams.

Therefore, we picked messages that originate from a particular lifeline to observe the

behaviour originating from the lifeline. To use this method for CDCT, we can select the

method calls that are directed to the lifeline which represents the component (in the sequence

diagram), i.e., we focus on incoming calls to the component instead of selecting outgoing

method calls.

3.4.8. Threats to validity

This case study has the following threats to its validity which affect the application of MTCG

to other systems:

1. We have generated test cases for SUnit and JUnit only. Hence, we cannot generalise

the ability of MTCG to generate test cases for unit testing frameworks other than

xUnit ones.

2. We have generated test cases from sequence diagrams which does not demonstrate

the applicability of MTCG to systems which are modeled using other UML diagrams.

However, MTCG derives SMCs as an intermediary to generate test cases. We can

therefore generalise the applicability of MTCG to other modelling diagrams, such as

statecharts [43], that can be used to derive SMCs.

3. We have generated test cases for one small system, and hence the results cannot be

generalised to other systems.

3.5. Related Work

As our research focuses on model-driven testing of component-based software using

interaction diagrams, we will review related work in the following areas:

1. Model-based testing in general, and testing using interaction diagrams in particular

2. Model-driven testing

 82

3.5.1. Model-based testing

The Unified Modelling Language (UML) is the de facto industry standard for modelling

software applications [35]. Researchers are investigating different types of UML diagrams to

support software testing activities. The UML diagrams that are widely used to automate

software testing are: use case, activity, state machine and interaction diagrams. Use cases

represent a specific use of a system. They are used for automatic generation of test cases for

implementation verification [102, 103]. Implementation verification determines whether the

software is developed according to its specifications (requirements). Activity diagrams are an

object-oriented equivalent of Flow Charts and Data Flow Diagrams. They are used for

validating software workflows [104] and generating test cases for implementation

verification [105-107]. State machines represent the state-dependent behaviour of a system.

They are used for validating software models [108-110] and implementation verification

[111-117].

UML interaction diagrams [35] represent dynamic interactions among the components

of a system. They consist of collaboration diagrams and sequence diagrams. The former

emphasise the organisational structure of interacting components, and the latter show

interactions in a time sequence manner. Interaction diagrams are used to validate software

models, verify software implementations, determine test requirements and generate test data.

3.5.1.1. Model validation using interaction diagrams

Pilskalns et al. [118] present an approach to generate test cases from sequence diagrams.

They convert a sequence diagram into an Object Method Directed Acyclic Graph (OMDAG)

such that its objects become the nodes and its method calls become the edges of the graph.

The paths in the OMDAG are augmented with test information (different attribute values and

parameter values of methods) that is used to generate test cases.

In common with MTCG, they generate test cases from sequence diagrams. However, the

test cases generated using this approach validate the software model, i.e. they are aimed at

finding defects in software models. However, MTCG generates test cases to verify software

implementations.

3.5.1.2. Implementation verification using interaction diagrams

Basanieri and Bertolino [119] propose the UIT (Use Interaction Testing) methodology to

generate test cases by analysing use case diagrams and interaction diagrams. Later, they

 83

proposed a test strategy, named CoWTeST (Cost Weighted Test STrategy) [120], for

selecting and prioritising test cases using the UIT methodology. They automated this strategy

by implementing a tool, named CowSuite [121], that generates test cases using use case and

sequence diagrams.

Wittevrongel and Maurer [122] develop a model-based tool, SCENTOR, which creates

functional test drivers for e-business applications from sequence diagrams that have test data

(parameters and expected values of method calls) embedded in them.

Fraikin and Leonhardt [36] develop another model-based tool, SeDiTeC, which

generates test stubs using sequence diagrams that are augmented with test data. These stubs

enable testing even before the completion of the system implementation.

Ashalatha et al. [123] propose to generate test cases from interaction diagrams using

the flow graph. The process consists of three steps which are i) scenario graph synthesis, ii)

test case synthesis, and iii) test data synthesis. In the first step, a scenario graph is derived

from an interaction diagram using the objects, messages and fragments (i.e. alternate path,

loops, parallel blocks). In the second step, the scenario graph is converted into an

intermediate testable model from which test scenarios (abstract test cases) are generated. In

the third step, the domain definitions for each scenario are identified which are used to

determine input and output values (test data) for test scenarios to form a test case.

Pasternak et al. [124] propose a tool, GenUTest, to generate unit tests using the

program execution traces. GenUTest logs inter-object interactions (that occur during the

execution of Java programs) using AspectJ. These interactions are used to generate unit tests

and mock objects. The mock objects simulate the behaviour of real objects to allow for unit

testing in isolation.

Sarma et al. [125] present a model-based approach for generating test cases using UML

sequence diagram. They transform use case diagram Use case Diagram Graph (UDG), and

sequence diagram into Sequence Diagram Graph (SDG). Then, they generate System Testing

Graph (STG) by integrating UDG and SDG. Finally, the test cases are generated by

traversing the STG. The test cases can uncover interaction and scenario faults during system

testing.

Swain et al. [126] propose a technique for generating test cases using the features of

UML 2.0 sequence diagram such as conditions, iterations, asynchronous messages and

concurrent components. In this approach, test cases are derived from analysis artefacts such

 84

as use cases, their corresponding sequence diagrams and constraints specified across these

artefacts. Test case generation consists of the following steps:

1. Create activity diagram form the use case diagram.

2. Construct Use case Dependency Graph (UDG) using the activity diagram.

3. Construct Concurrent Control Flow Graph (CCFG) from the sequence diagrams.

4. Generate test sequences from the UDG and CCFG.

The test case generation technique can be used for integration and system testing. The test

cases generated are suitable for detecting object interaction and operational faults. They

derive test cases using full predicate coverage criteria unlike [125] which generates test case

using structural coverage such as message path criterion from sequence diagram. They

implement their approach in a prototype tool called ComTest.

Cartaxo et al. [127] present a technique for feature testing of mobile phone applications

using UML sequence diagrams and Labeled Transition Systems (LTS). A feature is an

increment of functionality that is added on top of a basic system. A feature is usually

developed separately from the basic system as an independent component (module). They

translate UML sequence diagrams translated into LTSs. Test cases are automatically derived

from the LTSs. They evaluate their approach on Motorola mobile phone applications.

Li et al. [128] propose an approach for generating test cases using UML sequence

diagrams and Object Constraint Language (OCL). To generate a test case, first they construct

a tree representation of a sequence diagram. Then, they traverse the tree and identify

conditional predicates on the sequence diagram. Finally, they generate test data from the

predicates. The pre- and post- conditions are derived using OCL. This technique can be used

in MTCG to generate test data for its test cases which is currently provided by testers.

Nayak and Samanta [129] suggest the UML 2.0 interaction diagrams use operation

fragments which require testing approach to derive a comprehensive system behaviour for

test case generation in the presence of multiple nested fragments. They propose an approach

to derive flow of controls from interaction diagrams. They simplify the flow of controls using

control primitives of the UML fragments to transform it to a testable form known as

Intermediate Testable Model (ITM). Later, they [130] proposed an approach of synthesizing

test data from the information embedded in model elements such as class diagrams and

sequence diagrams.

 85

Shanthi et al. present [131] a technique for generating test cases from sequence

diagram. They create a sequence diagram using IBM Rational Rose. Then, they extract the

necessary information from the sequence diagram using a parser written in Java. Based on

the extracted information, a Sequence Dependency Table (SDT) is generated. Test cases are

generated from the SDT by applying the genetic algorithm.

In the work presented above [36, 119-124, 127, 129], researchers have used sequence

diagrams to perform implementation verification similar to MTCG. Some have developed

tools to support their approaches, however these tools are model-based but not model-driven.

They do not take advantage of the model-transformation technology (MDA). Similarly, some

researchers have used interaction diagrams for generating test data [124-126, 128, 129, 131].

Others have used these diagrams for devising test requirements [132-135].

3.5.2. Model-driven testing

Model-driven testing uses the emerging MDA technology to automate testing activities. The

MDA technology uses models, meta-models and transformation specifications to leverage

automation of software development activities. In this approach, models are the basic

software development artefacts. The meta-models are definitions that are used for

interpreting models. Transformations between models are defined by mappings between the

meta-models that define the source and target models. MDA uses model-transformation tools

(MTT) to execute transformations defined in this way. By automating transformations, such

as from activity diagrams to test cases, MDA-based tools can reduce development time and

maintenance effort in model-based testing.

 Dai [136] discusses the transformation of a UML model into a UML 2.0 Testing

Profile (U2TP) model. U2TP is a general meta-model for testing, proposed by the Object

Management Group (OMG). Dai proposes generating test cases using three transformations:

i) UML model to U2TP model, ii) U2TP model to platform-specific model (PSM) and iii)

PSM to a JUnit test case. However, no tool support is provided for the proposed approach.

 Zander et al. [137] propose the transformation of a U2TP model into executable test

cases for TTCN-3, which is a standardised test technology for test definition, implementation

and execution [138]. They provide transformation rules between the source U2TP meta-

model and the target TTCN-3 meta-model. However, the implementation of the tool was left

for future work.

 86

Dinh-Trong et al. [139] develop an Eclipse Plug-in for Testing UML Designs

(EPTUD) that generates and executes test cases, using sequence diagrams. EPTUD

transforms a UML model into an executable form (EDUT, executable design under test),

adds test scaffolding (TDUT, testable design under test), executes tests and reports failures.

The test cases generated by EPTUD validate the UML model whereas the model-driven

approach that we propose verifies (tests) the implementation of CB software.

 Engels et al. [140] present a model-driven monitoring approach in which assertions

are used to monitor the behaviour (implemented by the developer) during execution. These

assertions are generated from the contracts that are added to the model. These contracts

represent the behaviour of the model and they consist of pre- and post-conditions of

operations. They use MDA to monitor (check) contracts during program execution, whereas

MTCG generates test cases for implementation verification.

Felderer et al. [141] propose a model-driven tool, Telling Test Stories (TTS), for

system testing. TTS automates the generation of tests, execution of tests and generation of

log files and test reports. TTS consists of a system model, test model, system implementation

and test implementation. The system model contains formal system requirements at a

business level based on a metamodel. A test model contains the test case specifications. The

system implementation provides services callable by the test implementation which contain

business logic and configuration services for testing purposes. The test implementation is

generated by a compiler which transforms test story files into source code files, so called test

code, of the execution language. TTS is applied to an industrial Telephony Connector

system. However, this tool does not follow the MDA-style of development which executes

transformations specifications for generating one model from another.

Later, they extend their work by devising a model-driven approach for testing of

service-oriented systems [142]. They devise a meta-model for service-oriented systems.

Their approach consists of a system model (based on system meta-models) and a test model

(based on test meta-model). The test model is transformed into Java test code by a compiler

using the meta-model and model-to-text transformations. Their implementation is based on

the Eclipse platform. Their work is closest to MTCG in that it is uses models, meta-models

and generates test cases by executing transformations. This work is different to ours as we

apply model-to-model transformations to generate xUnit test cases which are platform

independent. We then apply model-to-model transformations to generate test cases for a

particular platform. However, their approach applies model-to-text transformations on the

 87

test model to generate Java test cases. They use adapters for integration with different target

technologies. Adapter provides an interface realisation which allows a class to communicate

with an incompatible class. Moreover, they use a meta-model specific to service-oriented

systems, whereas MTCG is based on a meta-model of sequence diagrams.

Schurr et al. [143] propose a model-driven approach for black-box testing of Software

Product Lines (SPL). They construct a Feature Model Tree (FMT) which is based on a

Feature Model (FM) and Classification Tree (CT). FM is a representation of all the products

of the SPL in terms of features. CT [144] decomposes system functions into input

parameters. Test case generation using FMT consists of the following steps:

1. Define equivalence classes for input parameters.

2. Apply some heuristics to select input parameters.

3. Select representative subset of all feature combinations.

4. Derive CT for selected product of SPL.

5. Define test suite for the FMT approach using CT-based black-box testing.

To automate the generation of test cases, they define a meta-model for FMT and implement a

tool MOFLON using MOF2.x.

Ridene et al. [145] propose MATeL (Mobile Applications Testing Language) to

automate testing of mobile applications. MATel is a domain-specific modeling language built

upon an industrial platform (a test bed). Testing of different applications for a variety of

mobile handsets is repetitive and costly. MATeL provides a solution to this problem by

allowing testers to describe test scenarios in which commonalities and differences between

mobile phones can be expressed in an efficient way. These scenarios are in essence the

models that conform to this meta-model (MATeL) similar to the class-instance principle in

the object-orientation. MATeL is available as an Eclipse plug-in.

3.6. Discussion

MTCG has been implemented under Eclipse 3.1 [146]. It has been validated on an Automatic

Teller Machine (ATM) simulation system [101]. This method is model-driven and uses

model transformation technology. This is an advance over existing model-based testing

approaches that do not take advantage of the emerging MDA technology. The overall process

(Figure 9) is quite general in that it can be applied to different UML diagrams such as use

cases, sequence diagrams or state machines.

 88

The genericity of our method is extended by targeting xUnit testing frameworks and

incorporating an intermediate phase which generates test cases in a platform-independent

xUnit format (a two-step approach). Thus, the method can be used to generate test cases in

any of the xUnit family by varying the backend (artefact 4 in Figure 11). This demonstrates

the versatility and utility of the MDA approach to software development and tool

construction. It also distinguishes our tool from other tools which typically generate test

cases for one particular platform.

The SMC meta-model, the xUnit meta-model and the horizontal transformation are

created only once and do not change for different platforms, systems and sequence diagrams.

The developer needs to provide vertical transformations for each new platform. The tester

needs to provide the SMC model, the test data file and the code header to generate test cases

using this tool.

3.7. Limitations of MTCG Prototype

The prototype implementation of MTCG has the following limitations:

1. Each SMC model is created manually using the Eclipse editor. However, the

creation of SMC models could be automated by reading sequence diagrams from

their graphical representations.

2. The comparison of the actual trace with the sequence diagram is done manually but

it can also be automated.

3. As our focus was to investigate the use of models for automating software testing,

we devised our own meta-model for SMC instead of using the UML 2.0 meta-model

of sequence diagrams, which is much more complex.

4. Tracing will not be possible for the components whose source code is not available.

We use MTCG in our framework (MD-CDCT) to automate the generation of concrete test

cases for context-dependent testing of components. In Chapter 4, we shall introduce a

method for evaluating and extending test adequacy of CDCT. The test cases of the enriched

CDCT can be transformed into concrete and executable ones using MTCG.

 89

CHAPTER 4 - COMPARISON OF TEST SUITES

4.1. Introduction

In chapter 3, we presented a model-driven method for generating a concrete and executable

test suite from software models. We use this method to generate a test suite for CDCT (as

shown in Figure 2). In this chapter, we describe a method for comparing the test suite for

CDCT with the test suite used for CT to determine the adequacy of component testing.

In Chapter 2, we discussed the usefulness of comparing the test suites for CDCT and

CT in the context of component-based software. This comparison can highlight weaknesses

of the CT. If a test case relating to some functionality is present in the CDCT test suite but

the test suite for CT does not have any test cases for that functionality, it shows that the

component is not properly tested for the context in which it is being reused. This suggests a

retesting of the component with an enriched component test suite.

In this chapter we describe a method, TestSuiteComparator (TSC), for comparing two

test suites (task 3 in Figure 2) using equivalence classes. We discuss the application of this

method to some case studies to show its viability and effectiveness. We then discuss the

related work in the area of test suite comparison. Finally, we discuss the strengths and

weaknesses of this method.

4.2. TestSuiteComparator: A Method for Comparing Test Suites

To compare two test suites, we need a criterion to determine the similarity of test cases. We

use equivalence class partitioning (ECP) in TSC to compare test cases of the test suites. ECP

as proposed by Myers [41] partitions the program’s input(s) and executing conditions into a

finite number of equivalence classes. This partitioning reduces the total number of potential

test cases to a minimal set of tests that will uncover as many errors as possible. In ECP,

which is also known as category partitioning [42], testers select a representative test value for

each equivalence class. The test case that results from the representative value for a class is

considered "equivalent" to the test cases which are created from the other values in the same

class. If the test case of the representative value does not discover any error, it is reasoned

that all the other "equivalent" test cases would not identify any errors either. ECP is useful for

the following reasons:

 90

1. The large number of input values and executing conditions of a program make it

practically impossible to test the program for all of them due to time and resource

constrains.

2. Some of the input values and executing conditions are the same from a testing point

of view.

These equivalence classes form a partitioning of a program's input domain and executing

conditions for which program's behaviour is assumed to be the same [41]. These equivalence

classes are defined by the tester.

Using ECP, we can devise a set of equivalence classes in different ways:

1. Two test cases are equivalent if and only if they contain the same method calls in the

same order with the same executing conditions for those methods. This choice is too

weak because it ignores the parameter values. Two methods with different

parameters values may execute different behaviours of the system even under the

same executing conditions, even though the two test cases would be considered

equivalent according to this criterion.

2. Two test cases are equivalent if and only if they contain the same method calls in the

same order with the same parameter values for those methods. However, this is too

strong because it requires the parameter values of the two methods to be the same. It

is possible that two test cases that have different parameter values execute the same

behaviour, even though the two test cases which execute the same behaviour would

be considered different according to this criterion.

3. Two test cases are equivalent if and only if they contain the same method calls in the

same order, the parameter values for those methods belong to the same equivalence

class, and the executing conditions of the test cases belong to the same equivalence

class [41]. This criterion seems appropriate for our purposes in that it analyses the

parameter values and executing conditions to decide on their equivalence.

In TSC, we compare test suites by extracting and comparing the test cases which are

present in them. The reason for extracting test cases is that different developers code test

suites (or test drivers) in different ways which makes the comparison of test suites

complicated. We then replace each test case by its equivalence class, which results in a set of

equivalence classes for each test suite. The comparison of test suites is then performed by

comparing these sets of equivalence classes. For a test suite TS, EQ(TS) is used to denote the

set of equivalence classes.

 91

Our test suite (TS) consists of a set of test cases. We define the set of equivalence

classes for a test suite as the set of equivalence classes of the test cases in the test suite. Two

test suites are equivalent if the test cases in them belong to the same set of equivalence

classes, i.e. TS1 ~ TS2 iff EQ (TS1) = EQ (TS2).

An overview of TSC is shown in Figure 23. Solid arrows represent tasks performed by

humans (manual or automated). Dotted arrows represent the information which is required to

perform a task. Solid rectangles represent input, intermediate or final outputs of a task. TSC

consists of four main tasks which are represented by the dotted rectangles as follows:

Task A: Extracting test cases from test suites using tracing

First, we extract test cases from the test suites (artefact A) which are being

compared. This task consists of the following subtasks:

 Subtask A1: Instrument test suites (artefact B).

 Subtask A2: Execute the instrumented test suites and capture traces (artefact C).

 Subtask A3: Extract test cases (artefact D) from the traces.

In Chapter 3, we used Daikon to extract method execution traces to test whether the

method calls happen as specified in sequence diagrams. In here, we need to extract

the method calls, parameter values and expected values to extract test cases from a

test suite. However, using Daikon we can only extract method calls and parameter

values but not the expected values which are embedded in test cases. Therefore, we

decided to instrument the test suites manually.

Task B: Devising equivalence classes

Second, we devise equivalence classes for the extracted test cases. Each equivalence

class represents a group of test cases in a test suite. This task consists of the

following subtasks:

 Subtask B1: Define a criterion (artefact F) for ECP of the test cases.

 Subtask B2: Devise a set of equivalence classes (artefact G) using the criterion.

Task C: Transforming test suites into sets of equivalence classes

Third, we associate each test case to an equivalence class which results into a set of

equivalence classes for each test suite. These sets of equivalence classes (artefact H)

are the representatives of the test suites.

 92

A
Test Suites

B
Instrumented Test Suites

Subtask A1. Instrument test suites

C
Execution Traces of Test Suites

G
Equivalence Classes

Subtask A2. Capture execution traces

D
Test Cases of Test Suites

Subtask A3. Extract test cases

H
Equivalence Class

Representation of Test Suites

I
Gaps in Test Suites

Task B. Devise equivalence classes

Task C. Transform test suites into sets of
equivalence classes

Task D. Compare sets of equivalence classes

Task A. Extract test cases

System Under Test
E

F
Criteria for Equivalence

Class Partitioning

Subtask B1: Define criteria for
equivalence class partitioning

Subtask B2: Devise equivalence classes

Figure 23: Overview of TestSuiteComparator

 93

Task D: Comparing test suites using their representative sets of equivalence classes

Finally, we compare the sets of equivalence classes (artefact H) to compare the test

suites (artefact A). This comparison identifies gaps (artefact I) in the test suites.

Task A is performed manually but it can be automated using some tracing tool such as

Daikon. Task B is performed manually by the tester as it requires judgment and expertise.

Task C is performed manually but it can be automated if the extracted test cases are

represented in a structured format. Task D is automated as it involves a simple set

comparison.

4.3. Case Studies

4.3.1. Case Study: Determining applicability of TestSuiteComparator

4.3.1.1. Introduction

The objective of this case study is to demonstrate the applicability (usability) of TSC for

comparing test suites.

4.3.1.2. Object description

In this case study, we use an implementation of Dijkstra’s shortest-path algorithm [147]. This

algorithm computes a shortest path from a node (vertex) of a graph to all other nodes of the

graph. The implementation is provided in Appendix C.1.

The algorithm finds a shortest path for directed graphs with non-negative weights. The

shortest path is defined as the path with minimum cost (weight). If there are two or more

paths with the same cost, the one having the least number of edges is taken as the shortest

path. If there are two or more paths with the same cost and the same number of edges, any of

them can be returned as the shortest path.

The interface of the program consists of the following three methods:

1. The addEdge method is used to construct the graph. It takes three parameters: the

source node, the destination node and the cost of the edge. If the source and

destination nodes are not created already, they are added to the graph. It then adds

the edge to the graph even if an edge already exists between the nodes, i.e. this

implementation allows multiple edges between two nodes. The multiple edges can

 94

represent the cost from the source node to the destination node using a certain

medium such as cost of travel using a car. This method has the following signature:

void addEdge(String sourceName, String destName, double cost)

2. The dijkstra method computes shortest paths from a particular node (source node) to

all other nodes. If the source node does not exist in the graph, it throws

NoSuchElementException. If a negative weight edge exists in the graph, it throws

GraphException. This method has the following signature:

public void dijkstra(String startName)

3. The getPath method returns the shortest path, from a source node to the destination

node, as a string concatenation of nodes separated by a whitespace character (e.g. “A

B C”). It returns “0” if the source and destination nodes are the same, and “-1” if the

source and destination nodes are not connected. This poses the following restrictions

on the names of nodes:

i. A node cannot be named “0” or “-1”.

ii. A node cannot have a space in its name.

This method requires that Dijkstra’s algorithm has been applied on the source node.

Otherwise it returns “-1”. This method has the following signature:

public String getPath(String destination)

4.3.1.3. Experimental planning

We demonstrate the capability of TSC to differentiate between test suites. We execute the

following steps during the case study:

1. Devise test suites to be compared

 We devise three test suites to test the implementation of Dijkstra’s algorithm. As

the implementation is Java-based, these test suites are coded in JUnit. These test

suites are provided in Appendix C.2.

 We chose to devise three test suites so that we had three pairwise comparisons to

evaluate TSC.

 Different testers (postgraduate students) were asked to develop these test suites

so that they may vary in structure and style in order to imitate a real-world

scenario in which different people code the same test cases in different manners.

The diversity in thinking and coding styles of testers may highlight non-trivial

challenges of comparing test suites.

 95

2. Apply TSC

3. Analyse the results of the comparison

4.3.1.4. Applying TestSuiteComparator to the case study

The application of TSC is illustrated in this section. We perform the four tasks of TSC over the

three test suites and three pairwise comparisons, and show the intermediate and final outputs.

Task A: Extract test cases (from the test suites) using tracing

We extract test cases from the concrete and executable test suites using tracing. For this

purpose, we instrument the test suites and execute them to capture execution traces. The

traces are shown in Appendix C.3. The test cases, which are extracted from the traces, are

shown in Table 10.

In this case study, the description of a graph (i.e. a set of edges along with their

weights), the source and the destination nodes are the inputs, and the shorted path is the

expected result of a test case.

Task B: Devising equivalence classes

We devise equivalence classes using a black-box testing approach. Black-box testing is a

technique in which we ignore the internal mechanism of a system (or component) and focus

on the outputs generated in response to selected inputs and executing conditions [148].

For this purpose, we define a criterion for partitioning of test cases, and devise

equivalence classes using this criterion (Sub-Tasks B1 and B2 in Figure 23). We partition the

test cases at three levels:

1. Level 1 (L1): The number of nodes in the graph

2. Level 2 (L2): The number of edges on the shortest path

3. Level 3 (L3): The presence of paths other than the shortest path (i.e. multiple paths

exist between source and destination nodes)

We then devise equivalence classes for these levels. We denote a path from node A to node B

as PathA→B. Similarly, EdgeA→B denotes an edge from node A to node B.

 96

Test Suite 1

Test
Case

Graph Source
Node

Destination
Node

Shortest
Path

T1 A B 2 A B AB

T2 A B 6
B C 1

A B AB

T3 C ABC

T4 A B 6
B C 1
A C 2

A B AB

T5 C AC

T6 A B 6
B C 1
A C 8

A B AB

T7 C ABC

T8 A B 5
B C 4
C D 2
A D 5

A B AB

T9 C ABC

T10 D AD

T11 A B 6
B C 2
B D 1
C B 1
C D 2
D C 1
A D 7
A C 3

A B ACB

T12 C AC

T13 D A

Test Suite 2

Test
Case

Graph Source
Node

Destination
Node

Shortest
Path

T1 A B 2
B A 3

A A 0

T2 B AB

T3 B A BA

T4 B 0

T5 A B 2
B C 4
A C 8

A A 0

T6 B AB

T7 C ABC

T8 B A -1

T9 B 0

T10 C BC

T11 C A -1

T12 B -1

T13 C 0

T14 A B 2
B C 4
A C 8
B D 2
A D 5
C D 3

A A 0

T15 B AB

T16 C ABC

T17 D ABD

T18 B A -1

T19 B 0

T20 C BC

T21 D BD

T22 C A -1

T23 B -1

T24 C 0

T25 D CD

T26 D A -1

T27 B -1

T28 C -1

T29 D 0

Test Suite 3

Test
Case

Graph Source
Node

Destination

Node

Shortest
Path

T1 A B 6 A B AB

T2 A B 2
B C 1

A B AB

T3 C ABC

T4 A B 9
B C 1
A C 2

A B AB

T5 C AC

T6 A B 1
B A 3
B C 1
C B 7
C A 2
A C 2

A B AB

T7 C AC

T8 A B 8
B C 2
C D 7

A B AB

T9 C ABC

T10 D ABCD

T11 A B 1
B C 2
C D 7
D A 2

A B AB

T12 C ABC

T13 D ABCD

T14 A B 8
B C 2
C D 7
D A 2
A C 2

A B AB

T15 C AC

T16 D ACD

T17 A B 2
B C 2
C D 7
D A 2
A C 2
B D 1
A D 8

A B AB

T18 C AC

T19 D ABD

T20 A B 1
B C 2
C B 1
C D 7
D C 2
A D 8
D A 2
A C 2
C A 1
B D 2
D B 1

A B AB

T21 C AC

T22 D ABD

Table 10: Test cases extracted from test suites for shortest-path case study

 97

In L1, graphs with four or more nodes are put into the same category (equivalence

class). We believe four vertices are enough to present scenarios which are interesting from a

testing perspective, such as a path from one node to another containing multiple edges.

Therefore, the L1 equivalence classes are the following:

1. Graphs with zero nodes

2. Graphs with one node

3. Graphs with two nodes

4. Graphs with three nodes

5. Graphs with four or more nodes

In L2, shortest paths containing three or more edges are put into the same category

(equivalence class). We believe three edges are enough to present interesting scenarios from

a testing perspective, such as paths from one node to another containing one, two or more

edges. Therefore, the L2 equivalence classes are the following:

1. The shortest path contains zero edges, i.e. the source and destination nodes are the

same

2. The shortest path contains one edge

3. The shortest path contains two edges

4. The shortest path contains three or more edges

In L3, equivalence classes are devised based on the presence of paths, between the

source and destination nodes, other than the shortest path. This classification represents the

scenarios in which the program finds the shortest path in the presence of multiple paths

between the two nodes. As noted before, the shortest path is the one having the lowest cost

and not the one having the least number of edges. The notation “PathA→B = EdgeA→B +

EdgeB→C” is used to indicate that there is a path from node A to node B consisting of the edges

AB and BC. The L3 equivalence classes are the following:

1. Source and destination nodes are the same (PathA→A = “0”)

2. No path exists between the source and the destination nodes (PathA→B = “-1”)

3. The shortest path is the only path that exists between the two nodes

4. There exists a path between the two nodes (which is not the shortest one) with more

edges than the shortest path. E.g.,

PathA→B = EdgeA→B (the shortest)

PathA→B = EdgeA→C + EdgeC→B (not the shortest path)

 98

5. There exists a path between the two nodes (which is not the shortest one) with fewer

edges than the shortest path. E.g.,

PathA→B = EdgeA→C + EdgeC→B (the shortest path)

PathA→B = EdgeA→B (not the shortest path)

6. There exists a path between the two nodes (which is not the shortest one) with fewer

edges than the shortest path, and a path with more edges than the shortest path. E.g.,

PathA→B = EdgeA→C + EdgeC→B (the shortest path)

PathA→B = EdgeA→B (not the shortest path)

PathA→B = EdgeA→C + EdgeC→D + EdgeD→B (not the shortest path)

7. There exists a path between the two nodes that has the same cost as the shortest path

but that has more edges than the shortest path. E.g.,

PathA→B = EdgeA→B (the shortest)

PathA→B = EdgeA→C + EdgeC→B (not the shortest path)

Note: We have defined the shortest path as the path with minimum cost and

the minimum number of edges (Section 4.3.1.2)

We devise a final set of equivalence classes by combining the equivalence classes

which are devised for each level i.e. L1.L2.L3. For example, the equivalence class 2.1.1 is

obtained by combining the partition of L1 which has two vertices (i.e. graphs containing two

nodes), the partition of L2 which has one edge (i.e. graphs containing one edge), and the first

partition of L3 (i.e. the source and destination nodes are the same). A complete list of the

final equivalence classes devised by combining these partitions is provided in Appendix C.4.

These equivalence classes represent sets of test cases.

We have devised equivalence classes using the nodes and edges of the graph. This is

only one way of devising equivalence classes. However, testers can choose any other

criterion they like to devise equivalence class while applying TSC.

Task C: Transform test suites into sets of equivalence classes

We assign an equivalence class to each of the test cases in the test suites. The assignment of

equivalence classes is shown in Table 11.

We then transform each test suite into a set of equivalence classes. These sets of

equivalence classes are shown in Table 12. EQ(TestSuite_1), EQ(TestSuite_2), and

 99

EQ(TestSuite_3) are the sets of equivalence classes for TestSuite_1, TestSuite_2 and

TestSuite_3 respectively.

Test Suite 1

Test Case Equivalence Class

T1 2.1.1

T2 3.1.1

T3 3.2.1

T4 3.1.1

T5 3.2.1

T6 3.1.1

T7 3.2.2

T8 4.1.1

T9 4.2.1

T10 4.3.1

T11 4.2.4

T12 4.1.1

T13 4.2.3

Test Suite 2

Test Case Equivalence Class

T1 2.0.1

T2 2.1.1

T3 2.1.1

T4 2.0.1

T5 2.0.1

T6 3.1.1

T7 3.2.2

T8 3.0.2

T9 3.0.1

T10 3.1.1

T11 3.0.2

T12 3.0.2

T13 3.0.1

T14 4.0.1

T15 4.1.1

T16 4.2.3

T17 4.2.4

T18 4.0.2

T19 4.0.1

T20 4.1.1

T21 4.1.2

T22 4.0.2

T23 4.0.2

T24 4.0.1

T25 4.1.1

T26 4.0.2

T27 4.0.2

T28 4.0.2

T29 4.0.1

Test Suite 3

Test Case Equivalence Class

T1 2.1.1

T2 3.1.1

T3 3.2.1

T4 3.1.1

T5 3.1.2

T6 3.1.1

T7 3.1.3

T8 4.1.1

T9 4.2.1

T10 4.3.1

T11 4.1.1

T12 4.2.1

T13 4.3.1

T14 4.3.1

T15 4.1.2

T16 4.2.1

T17 4.1.1

T18 4.1.2

T19 4.2.4

T20 4.1.2

T21 4.2.4

T22 4.2.4

Table 11: Test cases and their equivalence classes for shortest-path case study

Test Suite
Equivalence Class
Representation

Equivalence Classes

TestSuite_1 EQ(TestSuite_1) { 2.1.1, 3.1.1, 3.2.1, 3.2.2, 4.1.1, 4.2.1, 4.2.3, 4.2.4, 4.3.1 }

TestSuite_2 EQ(TestSuite_2)
 { 2.0.1, 2.1.1, 3.0.2, 3.0.1, 3.1.1, 3.2.2, 4.0.1, 4.0.2, 4.1.1, 4.1.2, 4.2.3,
4.2.4}

TestSuite_3 EQ(TestSuite_3) { 2.1.1, 3.1.1, 3.1.3, 3.2.1, 4.1.1, 4.1.2, 4.2.1, 4.2.4, 4.3.1 }

Table 12: Equivalence-class representation of test suites for shortest-path case study

 100

Task D: Comparing test suites using their representative sets of equivalence classes

We compare the two sets of equivalence classes to compare the test suites. A comparison of

TestSuite_1, TestSuite_2 and TestSuite_3 is shown in Table 13. This table show the set

differences when the sets in the columns are subtracted from the sets in the rows. For

example, the third column of the second row shows EQ (TestSuite_1) - EQ (TestSuite_2).

The set difference of EQ(TestSuite_1) and EQ(TestSuite_2) shows the test cases that are

present in TestSuite_1, but missing in TestSuite_2. Similarly, the set difference of

EQ(TestSuite_2) and EQ(TestSuite_1) shows the test cases that are present in TestSuite_2, but

missing in TestSuite_1. The two test suites are equivalent if both the difference sets are

empty.

Set Difference EQ (TestSuite_1) EQ (TestSuite_2) EQ (TestSuite_3)

EQ (TestSuite_1) Ø { 3.2.1, 4.2.1, 4.3.1 } { 3.2.2, 4.2.3 }

EQ (TestSuite_2)
{ 2.0.1, 3.0.2, 3.0.1,

 4.0.1, 4.0.2, 4.1.2 }
Ø

{ 2.1.1, 3.1.1, 3.2.2,

 4.0.1, 4.0.2, 4.2.3 }

EQ (TestSuite_3) { 3.1.3, 4.1.2 } { 3.1.3, 3.2.1, 4.2.1, 4.3.1 } Ø

Table 13: Comparison of test suites for shortest-path case study

4.3.1.5. Data interpretation

The results of the comparison (shown in Table 13) show that TSC has differentiated between

the test suites. The test suites TestSuite_1, TestSuite_2 and TestSuite_3 have 13, 29 and 22

test cases respectively. Their representative sets of equivalence classes have 9, 12 and 9

equivalence classes. The difference of EQ (TestSuite_2) and EQ (TestSuite_1) indicates gaps

in TestSuite_2 compared to TestSuite_1. These gaps are due to the test cases of TestSuite_2

missing in TestSuite_1. These gaps show that TestSuite_1 does not have any test case which

executes the following scenarios (Appendix C.4):

1. The graph has 2 nodes, and the source and destination nodes are the same

(equivalence class 2.0.1).

2. The graph has 3 nodes, and the source and destination nodes are the same

(equivalence class 3.0.1).

 101

3. The graph has 3 nodes, and no path exists between the source and destination nodes

(equivalence class 3.0.2).

4. The graph has 4 nodes, and the source and destination nodes are the same (The

graph class 4.0.1).

5. The graph has 4 nodes, and no path exists between the source and destination nodes

(equivalence class 4.0.2).

6. The graph has 4 nodes, the shortest path has one edge, and there is only one path

exists between the source and destination nodes (equivalence class 4.1.2).

Similarly, the difference of EQ (TestSuite_2) and EQ (TestSuite_1) shows gaps in TestSuite_1

compared to the TestSuite_2. These gaps show TestSuite_2 has no test case which executes

the following scenarios:

1. The graph has 3 nodes, the shortest path has 2 edges, and there is only one path from

source to destination node (equivalence class 3.2.1).

2. The graph has 4 nodes, the shortest path has 2 edges, and there is only one path from

source to destination node (equivalence class 4.2.1).

3. The graph has 4 nodes, the shortest path has 3 edges, and there is only one path from

source to destination node (equivalence class 4.3.1).

The gaps identified in the test suites show the ability of TSC to differentiate test suites.

Further, these gaps can be used to enrich the test suites.

4.3.1.6. Discussion

TSC can be applied to differentiate between two test suites for the same implementation. To

demonstrate its applicability, we have applied it to three test suites that were developed by

different testers. TSC has differentiated these test suites (according to the specified criterion)

and highlighted gaps in each of these test suites. This information can be used to extend the

test adequacy of TestSuite_1 by adding one test case (of TestSuite_2) which belongs to the

equivalence class that is present in the set difference of EQ(TestSuite_2) and EQ(TestSuite_1).

TSC is general in two aspects: language independency and criteria (for devising

equivalence classes) independency. Its language-independent nature supports the comparison

of test suites written in any unit testing framework, such as JUnit or CUnit. The method also

allows for plugging-in different criteria for devising equivalence classes, e.g., the

equivalence classes devised using a black-box approach, white-box approach [148] or a

combination of these approaches.

 102

The case study used to determine the applicability of the TSC is small and simple. We

shall use a different case study, which is larger and more complex, for validating the

effectiveness of the method. The effectiveness of the method can be measured by using

coverage analysis or mutation analysis. These analyses will be performed in the next case

study in which we shall evaluate the effectiveness of the method.

4.3.1.7. Threats to validity

As our objective was to demonstrate the viability of TSC, we consider the threats to the

applicability of TSC to other systems and applications. This case study has the following

threats:

1. We have applied TSC to a small number of test suites (i.e. three test suites).

2. We have applied TSC to the test suites which are small in size. Therefore, this case

study does not demonstrate the ability of TSC to differentiate large test suites.

4.3.2. Case Study: Evaluating effectiveness of TestSuiteComparator

4.3.2.1. Introduction

The objective of this case study is to determine the effectiveness of TSC using the following

two techniques: coverage analysis and mutation analysis. Our hypothesis is that TSC can be

effectively applied to compare test suites.

We have used the shortest-path case study to determine applicability of TSC in Section

4.3.1. We could have used the same case study for evaluating the effectiveness of TSC.

However, we chose to use a different case study for evaluation of the framework for the

following two reasons: i) it does not make sense to use the same shortest-path case study

(that was used in the development of a method/tool) to evaluate that same method/tool, and

ii) the use of a different case study provides further evidence of the applicability of TSC

other than evaluating the effectiveness of TSC.

Coverage analysis is a popular and effective technique to determine test adequacy

[149-155]. With coverage analysis, we measure the coverage of each test suite.

Mutation analysis, which was proposed by Hamlet [156] and DeMillo et al. [157-159],

is another widely used technique to measure the quality of test suites [32, 64, 160-165]. With

mutation analysis, we seed some defects in the implementation of a program to create

mutants (faulty implementations), execute test suites over the mutants, and measure the

 103

number of mutants killed by each test suite. As the prime objective of a test suite is to detect

defects, the mutant-killing capability can be used as an indication of the quality of a test

suite.

We then see if the results of these analyses support the results of our comparison, i.e.,

does the test suite that has smaller gaps, give better coverage and kill more mutants?

As our motivation for devising TSC is to evaluate and extend the test adequacy of

component testing, we take effectiveness of TSC as the increase in test adequacy of a test

suite (using the gaps identified by TSC). For coverage analysis, effectiveness refers to the

increase in coverage of the extended test suite. For mutation analysis, effectiveness refers to

the increase in the number of mutants killed by the extended test suite.

4.3.2.2. Object description

In this case study, we use an implementation of the Boyer-Moore pattern-matching algorithm

[166]. It searches for a pattern in a string and returns the index of the first occurrence of the

pattern in the string. The implementation is provided in Appendix C.5.

Pattern matching algorithms address the problem of finding occurrence(s) of a pattern

(a string) within another string. National Institute of Standards and Technology (NIST)

defines a pattern as a finite number of strings that are searched for in another string [167].

Boyer and Moore have devised a fast algorithm for finding patterns in a string.

The interface of the program consists of:

1. Instantiation of the BoyerMoore object using its constructor which takes the

following two parameters of type String:

i. The pattern to be found.

ii. The text in which to search.

2. Invocation of the match method on the BoyerMoore object. This method returns an

integer as a result.

i. If the pattern is found (occurs in the string), it returns the index of the first

occurrence of the pattern in the string.

ii. If the pattern is not found, it returns -1.

If the string and the pattern are the same, we assume that the pattern is at the beginning of the

string. If the pattern is an empty string, we assume that the pattern does not occur in the

http://www.nist.gov/dads/HTML/string.html
http://www.nist.gov/dads/HTML/text.html

 104

string. If the pattern occurs at multiple places in the string, the implementation of Boyer-

Moore’s algorithm finds the first occurrence of the pattern.

The motivations for selecting this case study are the following:

1. The pattern-matching problem is simple to understand, and testers can develop test

suites without having to understand the details of the algorithm.

2. The implementation is small in size (98 lines of code) and yet complex enough for

testing. Its source code consists of four methods, eight if-else statements and ten

loops (for and while loops).

4.3.2.3. Experimental planning

During this case study, we measure the following variables:

1. The number of statements in the code

2. Statements executed by the original test suites

3. Statements executed by the extended test suites

4. The number of defects seeded in the code

5. Mutants killed by the original test suites

6. Mutants killed by the extended test suites

We execute the following steps during the case study:

1. Devise test suites to be compared

 We devise three test suites to test the implementation of Boyer-Moore’s

algorithm. As the implementation is Java-based, these test suites are coded in

JUnit. These test suites are provided in Appendix C.6.

 We chose to devise three test suites because we can perform three pairwise

comparisons, and enrich each test suite in three ways for this case study. This

data can be used to determine the effectiveness of TSC.

 These test suites are devised by different testers (postgraduate students) so that

they may vary in structure and style in order to imitate a real-world scenario.

Apply TSC using a black-box approach

2. Extend the test suites using the gaps identified by TSC

A. Extend TestSuite_1

B. Extend TestSuite_2

C. Extend TestSuite_3

 105

3. Validate the effectiveness of TSC using a white-box criterion (statement coverage)

A. Measure statement coverage of the original test suites

B. Measure statement coverage of the extended test suites

4. Validate the effectiveness of TSC using a mutation-based criterion

A. Seed defects in the code to come up with different program mutants

B. Identify the mutants killed by the original test suites

C. Identify the mutants killed by the extended test suites

5. Analyse the usefulness of TSC

A. Determine TSC’s ability to identify gaps in the test suites, and to extend them

B. Determine the increase in the statement coverage of the extended test suites

C. Determine the increase in the number of mutants killed by the extended test

suites

4.3.2.4. Applying TestSuiteComparator to the case study

The execution of the four tasks of TSC over the three test suites is illustrated along with the

intermediate and final outputs.

Task A: Extract test cases (from the test suites) using tracing

We extract test cases from the test suites using tracing. For this purpose, we instrument the

test suites and execute them to capture their execution traces. These execution traces are

shown in Appendix C.7. From these traces, the test cases are extracted which are shown in

Table 14.

In this case study, a pattern (which is being searched for) and a string (text in which the

pattern is sought) are the inputs, and an integer representing the occurrence of the pattern is

the expected result of a test case.

Task B: Devising equivalence classes

We devise equivalence classes using a black-box approach. For this purpose, we define a

criterion for partitioning of test cases, and devise equivalence classes using this criterion

(Sub-Tasks B1 and B2 in Figure 23). We partition the test cases at three levels:

1. Level 1 (L1): The number of characters that the string contains.

2. Level 2 (L2): The number of characters that the pattern contains.

3. Level 3 (L3): The occurrence (and location) of the pattern in the string.

 106

We then devise equivalence classes for these levels. We denote the length of the string and

the pattern by SLENGTH and PLENGTH respectively.

Test Suite_1

Test Suite_2

TC String Pattern Exp
T1 “” “” -1

T2 “” A -1

T3 A “” -1

T4 A a -1

T5 A Aa -1

T6 Aa “” -1

T7 Aa a 1

T8 Aa b -1

T9 Aa Aa 0

T10 Aa Ab -1

T11 A<sp> A<sp> 0

T12 <sp>A <sp>A 0

T13 Aaa “” -1

T14 Aaa A 1

T15 Aaa Aa 0

T16 Aaa aaa -1

T17 A<sp>a <sp> 1

T18 Aa<sp> <sp> 2

T19 abcdefghij k -1

T20 ababababab ab 0

T21 abcdefghij abcde 0

T22 abcdefghij fghij 5

T23 abcdefghij bcdefghij 1

T24 abcdefghij abcdefghij 0

T25 Abcdefghij abcdefghi<sp> -1

T26 abcdefghij abcdefghik -1

TC String Pattern Exp
T1 All that glitters is not gold. all -1

T2 All that glitters is not gold. gold.<sp> -1

T3 All that glitters is not gold. is not 18

T4 All that glitters is not gold. <sp>is 17

T5 All that glitters is not gold. God -1

T6 All that glitters is not gold. Is -1

T7 All that glitters is not gold. <sp>All -1

T8 All that glitters is not gold. sI -1

T9 All that glitters is not gold. all that glitters is not Gold. -1

T10 All that glitters is not gold. i s -1

T11 All that glitters is not gold. gol 25

T12 All that glitters is not gold. gld -1

T13 All that glitters is not gold. that glitters is not gold. 4

T14 All that glitters is not gold. “” -1

T15 All that glitters is not gold. gold 25

T16 “” “” -1

T17 “” <sp> -1

T18 “” abc -1

T19 <sp>glitters “” -1

T20 <sp>glitters <sp>glitters 0

Test Suite_3

TC String Pattern Exp
T1 “” “” -1

T2 The Lord of the Rings “” -1

T3 The Lord of the Rings <sp> 3

T4 The Lord of the Rings xyz -1

T5 The Lord of the Rings The 0

T6 The Lord of the Rings the 12

T7 The Lord of the Rings Lord 4

T8 The Lord of the Rings Lord of 4

T9 The Lord of the Rings the rings -1

T10 The Lord of the Rings <sp>Lord<sp> 4

T11 The Lord of the Rings of the Rings 9

T12 The Lord of the Rings The lord of The -1

T13 The Lord of the Rings TheLordoftheRings -1

T14 The Lord of the Rings The Lord of the Ring 0

T15 The Lord of the Rings The lord of the Rings 0

T16 The Lord of the Rings The lord of the Rings. -1

Legend: TC, Exp, and <sp> denote Test Case, Expected Result, and a space character respectively.

Table 14: Test cases extracted from test suites for pattern-matching case study

In L1, we devise the equivalence classes based on the length of the string. The strings

with four or more characters are put into the same category (equivalence class). Therefore,

the L1 equivalence classes are the following:

1. Empty string (SLENGTH = 0).

2. Strings that contain one character (SLENGTH = 1).

 107

3. Strings that contain two character (SLENGTH = 2).

4. Strings that contain three or more characters (SLENGTH = 3).

5. Strings that contain three or more characters (SLENGTH ≥ 4).

In L2, we devise the equivalence classes based on the length of the pattern. The

patterns with four or more characters are put into the same category (equivalence class).

Therefore, the L2 equivalence classes are the following:

1. Pattern that is an empty string (PLENGTH = 0).

2. Patterns that contain one character (PLENGTH = 1) .

3. Patterns that contain one character (PLENGTH = 2) .

4. Patterns that contain one character (PLENGTH = 3) .

5. Patterns that contain more characters than the string (PLENGTH ≥ 4).

In L3, we devise equivalence classes to group testing scenarios based on the occurrence

of the pattern (i.e. beginning, middle and end), case sensitivity of the pattern, etc. The L3

equivalence classes are the following:

1. The pattern occurs neither with actual case nor with a different case. Here, “actual

case” and “different case” represent case-sensitive and case-insensitive comparisons

respectively. For example, the patterns AB and Ab in the string ABC.

2. The pattern does not occur with actual case but occurs with a different case.

3. The pattern occurs at the beginning of the string (i.e. there is no character in the

string before the occurrence of the pattern).

4. The pattern occurs at the end of the string (i.e. there is no character in the string after

the occurrence of the pattern).

5. The pattern occurs in the middle of the string (i.e. there is at least one character in

the string before and after the occurrence of the pattern).

6. The pattern occurs more than once (i.e. multiple occurrences of the pattern).

We devise a final set of equivalence classes by combining the equivalence classes

which are devised for each level i.e. L1.L2.L3. For example, the equivalence class 2.1.3 is

obtained by combining the partition of L1 in which the strings contain two characters, the

partition of L2 in which the patterns contain one character, and the third partition of L3 (i.e.

the pattern occurs in the beginning of the string). A complete list of the final equivalence

classes devised by combining these partitions is provided in Appendix C.8.

 108

Task C: Transform test suites into sets of equivalence classes

We assign an equivalence class to each of the test cases in the test suites. The assignment of

equivalence classes is shown in Table 15.

We then transform each test suite into a set of equivalence classes. These sets of

equivalence classes are shown in Table 16. As noted before, EQ (TS) is used to denote a set of

equivalence classes for the test suite TS.

Test Suite_1

Test Case Equivalence Class

T1 0.0.1

T2 0.1.1

T3 1.0.1

T4 1.1.2

T5 1.2.1

T6 2.0.1

T7 2.1.4

T8 2.1.1

T9 2.2.3

T10 2.2.1

T11 2.2.3

T12 2.2.3

T13 3.0.1

T14 3.1.3

T15 3.2.3

T16 3.3.2

T17 3.1.5

T18 3.1.4

T19 4.1.1

T20 4.2.3

T21 4.4.3

T22 4.4.4

T23 4.4.4

T24 4.4.3

T25 4.4.1

T26 4.4.1

Test Suite_2

Test Case Equivalence Class

T1 4.3.2

T2 4.4.1

T3 4.4.5

T4 4.3.5

T5 4.3.1

T6 4.2.2

T7 4.4.1

T8 4.2.1

T9 4.4.1

T10 4.3.1

T11 4.3.5

T12 4.3.1

T13 4.4.4

T14 4.0.1

T15 4.4.5

T16 0.0.1

T17 0.1.1

T18 0.3.1

T19 4.0.1

T20 4.4.3

Test Suite_3

Test Case Equivalence Class

T1 0.0.1

T2 4.0.1

T3 4.1.5

T4 4.3.1

T5 4.3.3

T6 4.3.2

T7 4.4.5

T8 4.4.5

T9 4.4.1

T10 4.4.5

T11 4.4.4

T12 4.4.2

T13 4.4.1

T14 4.4.3

T15 4.4.3

T16 4.4.1

Table 15: Test cases and equivalence classes for pattern-matching case study

Test Suite
Equivalence Class
Representation

Equivalence Classes

TestSuite_1 EQ (TestSuite_1)
{ 0.0.1, 0.1.1, 1.0.1, 1.1.2, 1.2.1, 2.0.1, 2.1.1, 2.1.4, 2.2.1,

2.2.3, 3.0.1, 3.1.3, 3.1.4, 3.1.5, 3.2.3, 3.3.2, 4.1.1, 4.2.3, 4.4.1,
4.4.3, 4.4.4 }

TestSuite_2 EQ (TestSuite_2)
{ 0.0.1, 0.1.1, 0.3.1, 4.0.1, 4.2.1, 4.3.1, 4.3.2, 4.3.5, 4.4.1,

4.4.3, 4.4.4, 4.4.5 }

 109

TestSuite_3 EQ (TestSuite_3)
{ 0.0.1, 4.0.1, 4.1.5, 4.3.1, 4.3.2, 4.3.3, 4.4.1, 4.4.2, 4.4.3,

4.4.4, 4.4.5 }

Table 16: Equivalence-class representation of test suites for pattern-matching case study

Task D: Comparing test suites using their representative sets of equivalence classes

The comparison of TestSuite_1, TestSuite_2 and TestSuite_3 is shown in Table 17.

Set Difference EQ (TestSuite_1) EQ (TestSuite_2) EQ (TestSuite_3)

EQ (TestSuite_1) Ø

{ 1.0.1, 1.1.2, 1.2.1, 2.0.1,
2.1.1, 2.1.4, 2.2.1, 2.2.3,
3.0.1, 3.1.3, 3.1.4, 3.1.5,
3.2.3, 3.3.2, 4.1.1, 4.2.3 }

{ 0.1.1, 1.0.1, 1.1.2, 1.2.1,
2.0.1, 2.1.1, 2.1.4, 2.2.1,
2.2.3, 3.0.1, 3.1.3, 3.1.4,
3.1.5, 3.2.3, 3.3.2, 4.1.1,

4.2.3 }

EQ (TestSuite_2)

{ 0.3.1, 4.0.1, 4.2.1, 4.2.2
4.3.1, 4.3.2, 4.3.5, 4.4.5 }

Ø { 0.1.1, 0.3.1, 4.2.1, 4.3.5 }

EQ (TestSuite_3)
{ 4.0.1, 4.1.5, 4.3.1,

4.3.2, 4.3.3, 4.4.2, 4.4.5 }
{ 4.1.5, 4.3.3, 4.4.2 } Ø

Table 17: Comparison of test suites for pattern-matching case study

4.3.2.5. Extending the test suites using the gaps identified by TSC

We use the gaps identified by TSC to extend the test suites (shown in Table 18). As we have

performed three pairwise comparisons, we can extend each test suite in three ways. We

extend TestSuite_1 in the following ways:

1. Using the gaps identified by TestSuite_2

2. Using the gaps identified by TestSuite_3

3. Using the gaps identified by both TestSuite_2 and TestSuite_3

A subscript will be used to indicate a test suite which has been extended to cover gaps

identified by comparison with other test suites, e.g. TestSuite_1G2 represents TestSuite_1

extended using the gaps identified by TestSuite_2. This is explained in detail below.

 110

To extend TestSuite_1 using TestSuite_2, for each equivalence class in the set

difference of EQ(TestSuite_2) and EQ(TestSuite_1), we find a test case in TestSuite_2 that

belongs to that equivalence class. For instance, we may select test cases T1, T6, T8, T11, T12,

T14, T15 and T18 of TestSuite_2 as our representatives of the equivalence classes 4.3.2,

4.2.2, 4.2.1, 4.3.5, 4.3.1, 4.0.1, 4.4.5 and 0.3.1 respectively. We then add these test cases to

TestSuite_1 to enrich it giving TestSuite_1G2.

 111

Enriched Test Suites Test Cases

TestSuite_1G2

TestSuite_1

U { T12, T62, T82, T112, T122, T142, T152, T182 }

TestSuite_1G3

TestSuite_1

U { T23, T33, T43, T53, T63, T73, T123 }

TestSuite_1G23

TestSuite_1

U { T12, T62, T82, T112, T122, T142, T152, T182 }

U { T23, T33, T43, T53, T63, T73, T123 }

TestSuite_2G1

TestSuite_2

U { T31, T41, T51, T61, T71, T81, T101, T111, T131, T141, T151, T161, T171, T181,
T191, T201 }

TestSuite_2G3

TestSuite_2

U { T33, T53, T123 }

TestSuite_2G13

TestSuite_2

U { T31, T41, T51, T61, T71, T81, T101, T111, T131, T141, T151, T161, T171, T181,
T191, T201 }

U { T33, T53, T123 }

TestSuite_3G1

TestSuite_3

U { T21, T31, T41, T51, T61, T71, T81, T91, T101, T111, T131, T141, T151, T171, T181,
T191, T201 }

TestSuite_3G2

TestSuite_3

U { T82, T112, T172, T182 }

TestSuite_3G12

TestSuite_3

U { T21, T31, T41, T51, T61, T71, T81, T91, T101, T111, T131, T141, T151, T171, T181,
T191, T201 }

U { T82, T112, T172, T182 }

Table 18: The enriched test suites for pattern-matching case study

 112

Test Suite Statements Executed (SE)

TestSuite_1

{ 02 04 05 06 08 09 10 12 13 14 15 16 17 20 22 23 25 26 27 28 29 30 32

 33 34 35 36 39 42 43 44 46 47 48 53 54 55 58 60 61 62 63 64 65 69 70 71

 72 74 75 76 77 78 80 86 87 88 89 90 93 94 96 }

TestSuite_2

{ 02 04 05 06 08 09 10 12 13 14 15 16 17 20 22 23 25 26 27 28 29 30 32

 33 34 35 36 39 42 43 44 46 47 48 53 54 55 58 60 61 62 63 64 65 69 86 87

 88 89 90 91 92 93 94 96 }

TestSuite_3

{ 02 04 05 06 08 09 10 12 13 14 15 16 17 20 22 23 25 26 27 28 29 30 32

 33 34 35 36 39 42 43 44 46 47 48 53 54 55 58 60 61 62 63 64 65 69 70 71

 72 74 75 86 87 88 89 90 93 94 96 }

TestSuite_1G2 SE (TestSuite_1) U { 91 92 }

TestSuite_1G3 SE (TestSuite_1)

TestSuite_1G23 SE (TestSuite_1) U { 91 92 }

TestSuite_2G1 SE (TestSuite_2) U { 70 71 72 74 75 76 77 78 80 }

TestSuite_2G3 SE (TestSuite_2) U { 70 71 72 74 75 }

TestSuite_2G13 SE (TestSuite_2) U { 70 71 72 74 75 76 77 78 80 }

TestSuite_3G1 SE (TestSuite_3) U { 76 77 78 80 }

TestSuite_3G2 SE (TestSuite_3) U { 91 92 }

TestSuite_3G12 SE (TestSuite_3) U { 76 77 78 80 91 92 }

Table 19: Coverage of the original and extended test suites for pattern-matching case study

 113

Test Suite Statement Coverage (SC) Percentage SC Percentage Increase In SC

TestSuite_1 63 96.92 -

TestSuite_2 56 86.15 -

TestSuite_3 59 90.77 -

TestSuite_1G2 65 100.00 3.08

TestSuite_1G3 63 96.92 0.00

TestSuite_1G23 65 100.00 3.08

TestSuite_2G1 65 100.00 13.85

TestSuite_2G3 61 93.85 7.70

TestSuite_2G13 65 100.00 13.85

TestSuite_3G1 63 96.92 6.15

TestSuite_3G2 61 93.85 3.08

TestSuite_3G12 65 100.00 9.23

Table 20: Results of coverage analysis for pattern-matching case study

4.3.2.7. Validating the effectiveness of TSC using a mutation-based criterion

To perform mutation analysis, the author seeded some defects in the implementation

(Appendix C.5) by using common mistakes which developers might make, e.g.,

interchanging the variables used in nested loops such as i and j, the tightening or weakening

of guard conditions (such as changing i-1 to i in loops), etc. We identified 16 mutants in this

way. We seeded 16 defects which are provided in Appendix C.9. Each defect is seeded

separately, i.e. the test suites are executed over 16 mutants of the program.

We execute the original test suites, and the enriched test suites over the 16 mutants of

the program to measure the number of mutants killed by each test suite. Table 21 shows the

mutants killed by the original and the extended test suites. The results of the mutation

analysis are shown in Table 22.

 114

Test Suite Mutants Killed (MK)

TestSuite_1 { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 }

TestSuite_2 { 1 2 3 4 5 6 7 10 14 15 16 }

TestSuite_3 { 1 2 3 4 5 6 7 8 9 10 14 }

TestSuite_1G2

MK (TestSuite_1) U { 15, 16 }

TestSuite_1G3 MK (TestSuite_1)

TestSuite_1G23 MK (TestSuite_1) U {15, 16 }

TestSuite_2G1 MK (TestSuite_2) U { 8, 9, 11, 12, 13 }

TestSuite_2G3 MK (TestSuite_2) U { 8, 9 }

TestSuite_2G13 MK (TestSuite_2) U { 8, 9, 11, 12, 13 }

TestSuite_3G1 MK (TestSuite_3) U { 11, 12, 13 }

TestSuite_3G2 MK (TestSuite_3) U { 15, 16 }

TestSuite_3G12 MK (TestSuite_3) U { 11, 12, 13, 15, 16 }

Table 21: Mutants killed by the original and extended test suites for pattern-matching case study

Test Suite Total Mutants Killed (MK) Percentage MK Percentage Increase In MK

TestSuite_1 14 87.50 -

TestSuite_2 11 68.75 -

TestSuite_3 11 68.75 -

TestSuite_1G2

16 100.00 12.50

TestSuite_1G3 14 87.50 0.00

TestSuite_1G23 16 100.00 12.50

TestSuite_2G1 16 100.00 31.25

TestSuite_2G3 13 81.25 12.50

TestSuite_2G13 16 100.00 31.25

TestSuite_3G1 14 87.50 18.75

TestSuite_3G2 13 81.25 12.50

TestSuite_3G12 16 100.00 31.25

Table 22: Results of the mutation analysis for pattern-matching case study

 115

4.3.2.8. Discussion

The effectiveness of TSC is validated by comparing three JUnit test suites which are created

by different developers. Coverage and mutation analyses are performed to determine the

effectiveness of the comparison performed by TSC.

 The results of these analyses i) support the comparison performed by TSC, and ii)

demonstrate the effectiveness of the enriched test suites.

i. TestSuite_1, TestSuite_2 and TestSuite_3 have 26, 20 and 16 test cases respectively.

Their representative sets of equivalence classes have 21, 12 and 11 equivalence

classes (as shown in Table 12). TSC considers TestSuite_1 the strongest test suite.

Further, TSC considers TestSuite_2 stronger than TestSuite_3. This is because it

contains more equivalence classes, i.e. it covers more scenarios. Hence it has a

potential of detecting more defects than TestSuite_3.

ii. The coverage analysis showed that the stronger test suites have greater coverage (as

shown in Table 21). Likewise, the mutation analysis showed that the strongest test

suite killed more mutants than the other test suites (as shown in Table 23).

iii. The enriched test suites, which are obtained using the gaps identified during the

comparison, showed better coverage and killed more mutants than the original test

suites. Further, when a test suite is enriched using the strongest test suite, it showed

greater coverage and killed more mutants compared to its enrichment using a less

strong test suite. For example, TestSuite_2G1 showed 100% coverage and killed all

the 16 mutants but TestSuite_2G3 showed 93.85% coverage and killed 13 mutants.

During coverage analysis, TestSuite_1G2, and TestSuite_1G23, showed a small increase

in coverage i.e. 3.08%. This is because TestSuite_1 has already executed 63 statements out of

65, making it difficult to extend its coverage further. However, the coverage of these test

suites reached the maximum, i.e. 100%. TestSuite_1G3 did not show any increase in coverage.

This is because the test cases of TestSuite_3 that were added to TestSuite_1 did not execute

any additional statement, and hence they failed to increase the coverage of TestSuite_1G3.

TestSuite_2G1 and TestSuite_2G13 have shown the greatest increase in coverage which is

13.85%, and the coverage of these test suites reached the maximum. These test suites have

executed the statements 70, 71, 72, 74, 75, 76, 77, 78 and 80 that were not executed by

TestSuite_2. These statements were executed due to the test cases of TestSuite_1 that were

 116

added to TestSuite_2. The coverage of TestSuite_2G3 increased by 7.70% but did not reach the

maximum.

TestSuite_3G12 showed 9.23% increase in coverage and its coverage reached the

maximum. The coverage of TestSuite_3G1 and TestSuite_3G2 increased by 6.15% and 3.08%

respectively, but did not reach the maximum.

 The majority of the enriched test suites (5 out of 9) reached the maximum coverage.

The rest of the test suites did not reach the maximum (i.e. 100%) which may be due to the

following reasons:

i. The test suite is not enriched using a strong test suite.

We enrich a test suite using the gaps identified by comparing with another test suite

(the enriching test suite). Therefore, the extension of the test suite depends on the

enriching test suite. If the enriching test suite has some weaknesses, it may not

identify all the gaps in the test suite. Eventually, it fails to fully enrich the test suite,

and hence the coverage of the enriched test suite did not reach the maximum (i.e.

100%). For example, when we enrich TestSuite_2 using TestSuite_3, TestSuite_3

fails to identify all the gaps in TestSuite_2. This is because TestSuite_3 does not

contain all the equivalence classes which are devised for the comparison. Therefore,

the coverage of TestSuite_2G3 does not reach the maximum.

ii. Criteria used for identifying gaps and measuring effectiveness are different.

We enrich a test suite using the gaps which are identified using equivalence classes.

As these equivalence classes are based on a criterion which is different from the

coverage criterion, there is a possibility that the enriched test suite may not show

much increase in coverage. This is because the test cases added in the enriched test

suite may not execute further statements. For example, when we enrich TestSuite_1

using TestSuite_3, the test cases (T23, T33, T43, T53, T63, T73 and T123) which are

added to TestSuite_1 to enrich it (TestSuite_1G3) do not execute any additional

statements. Hence, they fail to increase the coverage of TestSuite_1.

If we devise equivalence classes using the same coverage criterion which is

used to measure the effectiveness, the extension in size of the test suite and the

increase in coverage of the test suite may be proportional. However, this would

make the effectiveness analysis biased and defeat its purpose.

 117

iii. Only one test case is selected for each equivalence class in the set difference.

We find one test case, from the enriching test suite, for each equivalence class

which is present in the difference set (Table 18). However, multiple test cases

belong to the equivalence class in the enriching test suite. Therefore, there is a

possibility that the test case we pick does not extend the coverage but other test

cases which we do not pick do increase the coverage.

During mutation analysis, TestSuite_1 killed 14 mutants out of 16 but TestSuite_1G2,

and TestSuite_1G23 killed all the 16 mutants. However, TestSuite_1G3 killed the same number

of mutants as TestSuite_1 and did not show any increase in mutation-detection capability.

This is because the test cases of TestSuite_3 that were added to TestSuite_1 did not kill any

additional mutants.

TestSuite_2G1 and TestSuite_2G13 killed all the mutants. These test suites killed the

mutants 8, 9, 11, 12 and 13 that were not killed by TestSuite_2. TestSuite_2G3 killed mutants

8 and 9 which were not killed by TestSuite_2, but it failed to kill all 16 mutants.

TestSuite_3G12 killed all 16 mutants. TestSuite_3G1 and TestSuite_3G2 killed more

mutants than TestSuite_3 but it did not kill all of them. These test suites failed to kill all the

mutants for the same reasons as we discussed for the coverage analysis.

The results of the coverage and mutation analyses are encouraging for the following

reasons:

i. The test suites which are considered stronger by TSC showed greater coverage and

killed more mutants than other test suites.

ii. Most of the enriched test suites (8 out of 9) showed an increase in coverage, and

killed more mutants than the original test suites.

iii. The majority of the enriched test suites (5 out of 9) showed the maximum coverage

and killed all the 16 mutants.

iv. When a test suite is enriched using the two other test suites, it showed 100%

coverage and killed all the 16 mutants.

We used coverage analysis and mutation analysis to determine the effectiveness of TSC.

These analyses have some issues with them. Though the enriched test suites showed greater

statement coverage, the execution of additional statements may not necessarily expose

defects which appear under certain executing conditions (or in certain contexts). Similarly,

 118

the mutation analysis has its own issues. In mutation analysis, we seed defects independently

(i.e. one at a time). However, if we seed all the defects simultaneously (i.e. all at once), there

is a possibility that a defect can mask other defect(s). This is a weakness of mutation analysis.

4.3.2.9. Threats to validity

This case study has the following threats to its validity which affect the application of TSC to

other systems:

1. We have applied TSC to small test suites. Therefore, this case study does not

demonstrate the ability of TSC to differentiate and enrich large test suites.

2. We have applied TSC to a small number of test suites (i.e. three test suites). Hence,

we cannot generalise the viability and effectiveness of TSC based on comparing three

test suites.

3. We have applied only one criterion for comparing test suites (black box). Hence, the

ability of TSC to use different criteria is not demonstrated by this case study.

4.4. Related Work

The need for comparing test suites emerged as a step in MD-CDCT in which we needed to

compare component-level testing against system-level testing to decide on the adequacy of

the component testing, and to extend the component testing (if necessary). We are not aware

of any work on the comparison of test suites. The work closest to the comparison of test

suites is the reduction of test suites. The reduction of test suites can be regarded as a special

case of test suite comparison in which the reduced test suite is a subset of the original test

suite. Therefore, we discuss the related work in the area of test suite reduction briefly.

Harrold et al. [168] propose to reduce a test suite using test case coverage. In this

approach, a representative set of test cases is identified which does not have redundant test

cases. The redundant test cases are those test cases that provide the same coverage which is

achieved by some other test cases in the test suite. The redundant test cases are eliminated

from the test suite which results in a smaller test suite. This approach is similar to ours, in

that TSC also transforms a test suite into a set of representative set of test cases. However, this

approach is based on specific coverage criterion whereas TSC is general in that it can use any

arbitrary criterion to define equivalence classes.

 119

Saif-Ur-Rehman and Nadeem [151] propose a tool (called TestFilter) for reducing test

suites which is closest to our work. TestFilter produces a master test suite whose statement-

coverage is equivalent to the statement-coverage of the test suite being reduced. It computes

the union of non-redundant test cases (with respect to a certain criterion) of the test suite.

Therefore, if a critical test case is missing in the test suites to be reduced, it will also be

missing in the master test suite produced by TestFilter. In contrast to TestFilter, TSC allows

the user to devise a set of equivalence classes (which can be considered as an abstract master

test suite), and hence the user can add critical test cases to the master test suite. Furthermore,

TestFilter is applied to abstract test suites whereas TSC has been validated on concrete and

executable JUnit test suites. The comparison of concrete test suites is more challenging than

comparing two abstract test suites. This is because different developers code test suites in

different ways.

Jeffrey and Neelam [169] argue that some redundancy of test cases should be permitted

while reducing a test suite. They believe that test cases that seem redundant (with respect to a

certain criterion) may execute different behaviours of a system, and hence they are not

redundant from a testing perspective. Hence, they should not be eliminated. This selective

redundancy is necessary because when a test suite is reduced by eliminating the redundant

test cases, there is a possibility that the fault-detection capability of that test suite is reduced

as the redundant test cases may test different requirements, and may execute different

behaviours.

McMaster and Memon [150] present a technique for test suite reduction using a call

stack coverage criterion. In this technique, the test cases are executed and the call stacks

produced during their execution are recorded. A “call stack” represents active function calls

in a stack-based execution environment. These call stacks are used as a coverage criterion to

reduce the test suite. However, this approach gives method-level coverage and does not

guarantee that all the statements (within a method) are executed. The effectiveness of this

method is measured by performing mutation analysis, whereas the effectiveness of TSC is

validated using both coverage analysis and mutation analysis.

Da Silva Simao et al. [170] present a technique for reducing the size of test suites for

regression testing. In this technique, each test case is summarised into a feature vector. These

feature vectors contain information about the software behaviour. Using ART-2A (a self-

organising neural network), these feature vectors are grouped into clusters. When a change is

http://portal.acm.org/author_page.cfm?id=81100459187&coll=GUIDE&dl=GUIDE&CFID=14536214&CFTOKEN=77178787

 120

made in the software, the cluster(s) that relate to the functionality being changed are

identified. Eventually the test cases that are part of the identified clusters are executed instead

of executing the whole test suite for regression testing. TSC can use the grouping of vectors

(clusters) to devise equivalence classes for comparing test suites. The test cases that belong

to the same cluster can be considered equivalent.

Vaysburg et al. [171] present a technique for reducing requirement-based test suites

using Extended Finite State Machine (EFSM) dependency analysis. In this approach,

different types of dependencies are identified between elements of the EFSM model of the

system. For each requirement being tested by a test case, dependencies are identified among

the parts of the model. This dependency information is used to reduce the test suite. Two test

cases are considered to be similar if they have the same set of dependencies i.e. the same

pattern of interactions between elements of the EFSM model. This can be used in TSC as a

criterion for defining equivalence classes, i.e. the test cases that have the same dependency-

set are put into the same equivalence class. Korel et al. [172] extend this approach to

automatically identify changes in the model. Later, the dependence-based technique was

applied to the set of test cases that were identified to execute the modified transitions. Chen

et al. [173] extend [172] to handle complex representations of model changes.

Zhang et al. [174] suggest that cost-effective test suite reduction can be achieved

through the optimisation of test requirements. The optimisation of testing requirements, such

as removing redundancies, may lead to smaller test suites.

Xu [175] devise a technique called as Modified Greedy Algorithm using Weighted Set

Covering (WSC) techniques to reduce the size of a test suite. In this technique, test cases are

assigned weight and coverage attributes. The test suite reduction becomes the problem of

finding a subset of test suite with the minimum weight having the same coverage. Recently,

Rout et al. [176] devise a priority-based technique for test suite reduction using WSC. They

calculate cost of the test requirement and test cases. Using this cost, they calculate a priority

(cost of test case divided by requirement of test case) factor for the test cases. They obtain a

reduced test suite by removing the low priority test cases.

Dale et al. [177] propose Interaction-based Test-Suite Minimization (ITSM) which

reduces a test suite without impacting its coverage of feature interactions. ITSM selects a

subset of a test suite that maintains the coverage (up to a certain level supplied by user) of

value combinations as the existing test suite. The value combinations are covered as coverage

 121

targets. In ITSM, user can define coverage targets in different forms, such as a Cartesian

product (i.e. every combination), or as explicit sets of value combinations to be covered. The

test suite reduction becomes the problem of finding a subset of the test suite maintaining the

coverage of value combinations (i.e. feature interactions).

Koochakzadeh et al. [178] propose a criterion for evaluating coverage-based test suite

reduction techniques. Using the criterion, they evaluate the following techniques: all-def-use

[179], branch [180], predicate-use [181], modified condition / decision coverage [182] and

statement mutation [183]. They compare the redundancies, identified using these techniques,

with manual redundancy decisions (performed through an inspection by a tester) in the

context of JUnit test suites.

4.5. Discussion

Comparison of test suites determines which test suite is stronger amongst the two with

respect to a certain criterion. Some advantages of comparing test suites are the following:

1. When there are multiple test suites available, the comparison can assist in choosing

the best one for the maintenance phase of software.

2. The gaps identified during the comparison can be used to enrich the test suites to

increase their test adequacy.

3. In CSD, the comparison of component testing and system testing can indicate the

adequacy of component testing.

TSC has been applied to two case studies that involve the comparison of three test

suites. These test suites were developed by different developers to simulate a real-world

scenario in which people devise different test suites and write test drivers in different ways.

TSC has compared concrete and executable test suites in contrast to many other methods for

comparing test cases which were validated on abstract test suites.

TSC transforms a test suite into a set of equivalence classes that reduces the comparison

of test suites to a simple set comparison. Apart from the simplicity of this comparison, the

method has an overhead of devising the set of equivalence classes, which in essence is an

abstract master test suite. The creation of these equivalence classes may limit the usefulness

of the comparison because if we already have devised a master test suite, then why do we

need to compare the other two test suites instead of using the master test suite, and throwing

away (ignoring) the two test suites? These limitations can be justified as follows:

 122

1. The master test suite is an abstract test suite, and it is not a concrete and executable

one. It would need to be coded before using (executing) it.

2. The set of equivalence classes can also be constructed on the fly. In this way, we can

avoid having a complete pre-fabricated master test suite.

In the context of this thesis, we expect to have a master test suite (CT) which is one of the

test suites to be compared. The second test suite (CDCT) then has two characteristics:

1. It is (largely) a subset of the master set.

2. It is has context-dependent test cases having a greater tendency to uncover the

defects related to the context of component reuse.

As TSC uses equivalence classes for comparison, to test a component for a particular context

of reuse, we can reduce the overhead in this context by devising equivalence classes to target

that particular reuse. For example, with a white-box approach, while devising equivalence

classes, we can ignore the methods of the component which are not used in the context of

reuse.

In the test cases, the effectiveness of TSC is determined by performing coverage and

mutation analyses. These analyses support the effectiveness of comparison performed by TSC

because the enriched test suites performed better than the original test suites in all cases

except one, i.e. they have shown greater coverage and killed more mutants than the original

test suites.

Most of the tasks of TSC can be automated. However, the task of devising equivalence

classes and assigning them to test cases needs to be performed manually by testers. This is

because this task requires judgment and expertise. However, if we use trace-based

equivalence classes, this task can also be automated, which is demonstrated in Chapter 5.

Despite the threats to validity of this case study, we believe TSC is applicable to

different contexts as it supports the use of different. For example, we can devise equivalence

classes using one the following criteria:

1. Black-box criterion

2. White-box criterion

a. Method coverage

b. Statement coverage

c. Branch coverage

d. Path coverage

 123

e. Any combination of a, b, c and d

To use white-box criterion for devising equivalence classes, we can partition test

cases based on the statements (methods, branches, paths etc.) they execute, i.e. all

those test cases which execute the same set of statements can be considered

equivalent.

3. Gray-box criterion (i.e. combination of black-box and white-box criterion)

4. Mutation-based criterion

To use mutation-based criterion for devising equivalence classes, we can partition

test cases based on the mutants (defects) which they kill, i.e. all those test cases

which kill the same set of mutants can be considered equivalent.

5. Trace-based criterion

To use trace-based criterion for devising equivalence classes, we can partition test

cases based on the traces which they produce, i.e. all those test cases which produce

same execution trace can be considered equivalent.

6. Heap-based criterion

The tester can use the state of the heap for test case comparison, such as in OCAT

(Object Capture based Automated Testing) [199]. In OCAT, testers can define

equivalence classes using object instances captured dynamically from program

executions. This technique might be useful in the context of object-oriented systems

in which the tester is particularly concerned about the state of the heap.

Furthermore, criteria proposed for test suite reduction (discussed in the related work,

Section 4.4) can be used in TSC for defining equivalence classes which demonstrates its

generality.

In this case study, the effectiveness of TSC is dependent on the gaps identified in a test

suite, and the gaps identified are based on the criterion used for devising equivalence classes.

Hence, the effectiveness is dependent on the criterion. Therefore, if we measure the

effectiveness using the same criterion that is used to devise equivalence classes, it would be

unrealistically high. For example, if we use statement-coverage both for devising equivalence

classes to compare test suites, and for measuring the effectiveness, the results will be biased.

To counter this, we chose to devise equivalence classes using a black-box approach and

measured the effectiveness using coverage analysis and mutation analysis.

 124

 125

CHAPTER 5 - A CASE STUDY

5.1. Introduction

The objective of this case study is to evaluate the viability of MD-CDCT by applying and

evaluating it on a realistic system.

We evaluate MD-CDCT by applying it to the Lucene search engine [184]. We consider

Lucene as the CB software and Searcher, one of its modules, as the component being used

(tested). We model the usage scenarios of Lucene, and devise test cases from these usage

scenarios (CDCT). We compare these test cases to the original CT of Searcher to identify

weaknesses in the CT, and enhance the CT to address these weaknesses. We then create

sequence diagrams for the usage scenarios which are used by MTCG to transform the

enhanced CT into a concrete and executable test suite. Finally, we execute the enhanced CT

to test Searcher and discuss the defects which were detected by the enhanced CT.

In this chapter, we describe Lucene and Searcher. We apply MD-CDCT to test Searcher.

We then discuss the usefulness and limitations of MD-CDCT. Finally, we discuss limitations

of this case study and threats to its validity.

5.2. Object Description

Lucene is a search engine library developed by Apache [185]. It performs full-text search,

and has been widely used in other applications, tools and web-sites as an underlying search

engine [186]. It is written in Java, and its source code consists of 331 Java files and 66,703

lines of code. The source code of Searcher consists of 112 Java files and 18,389 lines of

code. Lucene is selected for this case study for the following reasons:

1. It is an open-source project and its source code is available which facilitates

instrumentation.

2. A comprehensive test suite for component testing of Searcher (CT) is available as

developer certification metadata (Section 2.4.3) which can be compared with the

CDCT to evaluate and extend the component testing.

3. Extensive documentation is available in the form of books, online tutorials, etc.

 126

Searcher is selected against other components of Lucene for the following reasons:

1. Searcher has more usage scenarios in Lucene than other components which make it

interesting from a testing point of view.

2. The test suite for Searcher (CT) consists of over 23,160 test cases which show that

Searcher is already well tested. Hence, this case study poses a real test for MD-CDCT

to demonstrate its capability of extending test adequacy, and proving its usefulness.

3. CT is a test suite which contains other test suites developed by different testers.

These testers have coded test drivers in different ways which presents a real-world

scenario making the comparison of test suites a challenging task.

5.2.1. Lucene queries

Lucene indexes data and performs search over the indexed data stored in files. The text (to be

searched) is specified in a query object. It returns the documents which contain the query

text. Lucene supports the following types of queries:

1. Term query

2. Range query

3. Boolean query

4. Prefix query

5. Wildcard query

6. Fuzzy query

7. Phrase query

8. Multiphrase query

9. SpanFirst query

10. SpanNear query

11. SpanOr query

12. SpanNot query

A Term query (Q1) is used to search for a term. A term is a single word such as "hello".

A Range query (Q2) searches within a range, i.e. searching from a starting term through

an ending term. For example, the Range query “year:[2002 TO 2005]” searches for the

following strings: 2002, 2003, 2004 or 2005, in the “year” field of documents. The beginning

and ending terms can be exclusive or inclusive which is controlled by a Boolean parameter in

the API of the Range query.

 127

A Boolean query (Q3) is used to combine queries using the following logical

combinations: AND, OR and NOT. For example, the Boolean query "Jakarta Apache NOT

Apache Lucene" searches for the documents which have “Jakarta Apache” in them, but do

not contain the string “Apache Lucene”.

A Prefix query (Q4) searches documents that contain terms starting with a specified

string. For example, the Prefix query “/languages” matches terms such as “/languages/Java”.

A Wildcard query (Q5) allows searching for terms with missing parts. The standard

wildcard characters are the ‘*’ and the ‘?’ symbols. For example, the Wildcard query “bal?”

matches terms like “ball”, “bale”, etc.

A Fuzzy query (Q6) searches for terms similar to the specified term. For example, the

Fuzzy query “book” would match terms like “look”, “hook”, etc. The level of similarity is

specified using a value from 0 to 1. A value closer to 1 means that terms with higher

similarity will be matched.

A Phrase query (Q7) is used to search for phrases. A phrase is a sequence of words

(terms) surrounded by double quotes such as "hello world". It can also locate terms that are

within a certain distance from each other. The allowable distance between the terms is called

slop.

A Multiphrase query (Q8) is a generalisation of the phrase query. For example, the

Multiphrase query “little (barbie doll)” will match documents containing the phrases “little

barbie” or “little doll”.

A SpanFirst query (Q9) allows for matching a span within a certain position from the

start of the document. For example, a SpanFirst query can search for the documents in which

the term “health” occurs within the first 100 words of the document.

A SpanNear query (Q10) matches terms which occur near each other, and it defines the

maximum distance between terms. The distance is expressed as a number of words in the

document. For example, a SpanNear query can search for documents in which the terms

“computers” and “intelligence” occurs within a distance of four words of each other.

A SpanOr query (Q11) allows for merging spans from other SpanQueries. For example,

a SpanOr query can search for the documents which contain the terms “mining” and “safety”

close to each other.

http://lucene.apache.org/java/2_4_1/api/org/apache/lucene/search/spans/SpanQuery.html

 128

A SpanNot query (Q12) removes matches that overlap with another SpanQuery. For

example, a SpanNot query can search for the documents in which the term “social sciences”

occurs but not close to the term "public".

 Lucene also provides the facility of caching search results, performing remote search,

and searching over multiple indexes (data stores).

5.2.2. Components (modules) of Lucene

Lucene contains the following modules:

1. Analyser

2. Indexer

3. Query Parser

4. Searcher

5. Store

6. Utils

Analyser extracts tokens from the query text. Indexer creates indexes for directories to

perform efficient search. Query Parser parses the text (to be searched) and returns a query

object. Query Parser is created using JavaCC [187]. Searcher performs search (to match the

query) over the documents in the index. The documents have to be indexed before

performing a search. The Store module deals with storing and retrieving persistent data. The

Utils module contains some useful data structures which are used for implementing the search

engine. The component diagram of Lucene is shown in Figure 24 in which the symbol

shows that the artefact is a component of a system.

Lucene is used to search for documents in the following two ways:

1. We can pass the query text to the QueryParser object. QueryParser uses Analyser to

analyse the text and generates the Query object. Finally, it passes the Query object to

Searcher which performs the search over the Indexed Data.

2. We can create a Query object and directly pass it to Searcher to perform the search.

 129

Indexed Data

Searcher

Indexer Analyser Query Parser

Query Text

Query Object

Query Object

User

Figure 24: Component diagram of Lucene

5.2.3. Tasks performed by Searcher

The Searcher component creates directory, query and searcher objects, and invokes the

search method. The directory object points to the directory containing the files to be

searched. The query object contains the query text. The searcher object performs search and

return a hits object which is a collection of the matched documents. Searcher performs the

following tasks in order to perform a search:

1. Creation of the directory object

The directory object points to the directory on which the search is to be performed.

It is created as follows:

RAMDirectory directory = new RAMDirectory();

2. Creation of the query object

The query object contains the query to be executed. A query object can be created in

the following two ways:

i) Using a query constructor:

Query query = new TermQuery(field, text);

The first parameter is the name of the field of the document within which the

search is to be executed. The second parameter is the value which is to be

searched.

 130

ii) Using the query parser object:

 SimpleAnalyzer analyzer = new SimpleAnalyzer();

QueryParser queryParser = new QueryParser(field, analyser);

Query query = queryParser.parse(text);

QueryParser requires an Analyser to extract tokens from the input stream.

3. Creation of the IndexedSearcher object:

The IndexedSearcher object is responsible for searching the document.

IndexSearcher searcher = new IndexSearcher(directory);

The parameter directory represents the data store on which the search is performed.

4. Invocation of the search method:

The search method returns a collection of the documents matched by the query. It

also computes the score of each document which is the degree of the relevance of the

matched document to the query.

Hits hits = searcher.search(query);

5.2.4. Overloaded implementations of the search method

The search method is overloaded with the following implementations:

1. Search all documents using query parameter

This implementation returns all the documents that match the query. We refer to this

method as M1 and it has the following signature:

public Hits search(query)

2. Search all documents using query and filter parameters

This implementation returns all the documents that match the query, and satisfy the

filter which is specified as a parameter. In Lucene, Filters are used to filter the query

output, i.e. reduce the scope of search. They support efficient search as they offer a

yes/no decision for each document in the index for selection or rejection during the

search operation. We refer to this method as M2 and it has the following signature:

public Hits search(query, filter)

3. Search all documents using query, filter and sort parameters

This implementation returns all the documents that match the query and satisfy the

Filter criterion. The documents are returned in the sorted order specified by the Sort

parameter. The Sort parameter represents the name of the field (of a document) on

 131

which the returned documents are sorted. We refer to this method as M3 and it has

the following signature:

public Hits search(query, filter, sort)

4. Search all documents using query and sort parameters

This implementation returns all the documents that match the query. The documents

are returned in the sorted order specified by the Sort parameter. We refer to this

method as M4 and it has the following signature:

public Hits search(query, sort)

5. Search top documents using query and int parameters

This implementation returns the top N documents that match the query. The number

N is specified as an integer parameter. We refer to this method as M5 and it has the

following signature:

public TopDocs search(query, int)

6. Search top documents using query, filter and int parameters

This implementation returns the top N documents that match the query and satisfy

the Filter criterion. We refer to this method as M6 and it has the following signature:

public TopDocs search(query, filter, int)

7. Search top documents using query, filter, int, and sort parameters

This implementation returns the top N documents that match the query and satisfy

the filter criterion. The documents are returned in the sorted order specified by the

Sort parameter. We refer to this method as M7 and it has the following signature:

public TopDocs search(query, filter, int, sort)

8. Search all documents using query and HitCollector parameters

This implementation returns the documents that match the query into an object (of

type HitCollector) which is passed as a parameter. We refer to this method as M8 and

it has the following signature:

public void search(query, hitCollector)

9. Search all documents using query, filter and HitCollector parameters

This implementation returns the documents that match the query, and satisfy the

filter criterion, into the object (HitCollector) which is passed as a parameter. We refer

to this method as M9 and it has the following signature:

 132

public void search(query, filter, HitCollector)

The search method can also perform search over more than one index (multiple

indexes), indexes which are located on remote machines (remote indexes), and it can cache

the search results for performance purposes.

5.3. Experimental Planning

In Chapter 4, we compared test suites by devising equivalence classes using a black-box

approach. In this case study, CT which is provided with Lucene as developer certification

consists of 16,387 lines of code and it has over 23 thousand test cases. Hence, devising

equivalence classes using a black-box approach is expensive due to the manual effort

required for devising equivalence classes and assigning these equivalence classes to the test

cases of CT. Therefore, we devise equivalence classes using the execution traces of the test

suites being compared.

Searcher executes different types of queries. Further, it has different overloaded

implementations of the search method to execute different kinds of searches (Section 5.2.4).

Therefore, Searcher has a large number of usage scenarios in Lucene making the second step

costly for this case study. To apply MD-CDCT in a cost-effective manner, we defer the

generation of executable test cases to the last step which is the execution of the extended test

suite. This is because we perform trace-based comparison of test suites and we can predict

the traces of a test suite without executing it. By doing this, we avoid the extraction of test

cases from a concrete test suite to reduce the cost of the second step. Eventually, in the last

step we convert only those test cases into concrete and executable form which were not

executed during the component testing, reducing the cost of the framework. This alteration

makes the framework cost-effective when the system has a large number of usage scenarios.

 Previously, we defined a test case as a sequence of method calls along with their

parameter values, expected return values and executing conditions. For this case study, we

use trace-based equivalence classes, and our test cases produce the following trace:

1. Method: the search method (overloaded implementation) invoked by the test case.

2. Query type: the type of query (such as Phrase query) executed by the test case.

3. Query data category: the category of the query text contained in the query object.

4. Executing condition: the executing condition in which the test case runs. For this

case study, it refers to the documents in the data store on which a test case runs.

 133

We take these traces as the features (attributes) of a test case which will be used for

comparing test cases. For this case study, our test case is the search method (being tested)

along with parameter (query type which is a parameter type and query data which is the

parameter value), the number of documents that the query is expected to match and the

number of documents in the index (data store) which are represented by the feature

“executing condition” of the trace of a test case.

We execute the following steps in the case study:

1. Modelling usage scenarios of Lucene which use Searcher.

2. Deriving component test cases for CDCT

3. Comparing test suites

i. Instrumenting CT (to obtain execution traces)

ii. Capturing execution traces of CT

iii. Compare CDCT with CT to find gaps in CT

4. Enriching CT

i. Devising an extending test suite (∆CT) to extend the test adequacy of CT.

We expand the functionality which is missing in CT. We create test cases for

different scenarios of the functionality which was not tested during the

component testing.

ii. Extending CT by adding ∆CT to give CT/
.

5. Executing the enriched test suite

i. Transforming CT/
 into the concrete test suite CT//

.

ii. Executing CT//
 to test Searcher

In this case study, we measure the following variables:

1. The number of test cases in CDCT

2. The number of test cases in CT

3. The number of unique traces of CDCT

As we compare test suites using traces, we take each unique trace as an equivalence

class. All the test cases which produce the same trace are considered equivalent.

4. The number of unique traces of CT

5. The number of test cases in ∆CT

6. The number of test cases of ∆CT which failed during testing

 134

The scope of this case study is confined to the basic search functionality of Searcher as

our objective is to determine the capability of MD-CDCT to identify gaps in testing of

Searcher. Therefore, we shall not consider the advanced features of Searcher, e.g., search

over multiple indexes, cached searches, remote search, etc.

5.4. Applying the Framework to the Case Study

5.4.1. Modelling usage scenarios of CB software

We model usage scenarios of Lucene which use Searcher (task 1 in Figure 2). Searcher

executes twelve types of queries. It has nine overloaded implementations of the search

method to allow for filtering, sorting etc. We model each query using each overloaded

implementation of the search method for CDCT of Searcher.

We create test cases for these usage scenarios by specifying different executing

conditions and data for the query object to cover different testing scenarios. For this purpose,

we partition the:

1. Executing conditions of test cases

We partition executing conditions of a test case (documents in data store on which a

test case runs), using the following criteria:

1) The number of documents in the index (data store) to perform search on.

a. Zero documents

b. One document

c. More than one document

2) The number of documents that the query returns (matches).

a. Zero matches

b. One match

c. More than one match

There are six valid combinations of the documents and the matches as shown in

Table 23.

2. Test data of test cases

We partition the query text (the data embedded in the query object) which is passed

to the search method. This partitioning for the different types of queries is shown in

Table 24.

 135

 Zero matches One match More than one match

Zero documents E1 - -

One document E2 E3 -

More than one document E4 E5 E6

Table 23: Executing conditions of a test case for the Lucene case study

 Query Type Data Category Description

1. Term T1 Terms containing zero characters

2. T2 Terms containing one character
3. T3 Terms containing more than one character

4. Range R1 Queries with upper and lower range inclusive

5. R2 Queries with upper and lower range exclusive

6. Boolean B1 Queries with required clause only

7. B2 Queries with prohibited clause only

8. B3 Queries with both required and prohibited clause

9. B4 Queries with neither required nor prohibited clause

10. Prefix P1 Terms containing zero characters

11. P2 Terms containing one character

12. P3 Terms containing more than one character
13. Wildcard W1 Queries that contain the ‘?’ wildcard
14. W2 Queries that contain the ‘*’ wildcard

15. W3 Queries that contain no wildcard
16. Fuzzy F1 Queries with high fuzziness (>= 0 similarity < 0.5)

17. F2 Queries with low fuzziness (>=0.5 similarity <= 1.0)
18. Phrase Ph1 Queries with zero slops
19. Ph2 Queries with one slop

20. Ph3 Queries with more than one slop

21. Multiphrase Mp1 Queries with zero phrases

22. Mp2 Queries with one phrase

23. Mp3 Queries with more than one phrase

24. SpanFirst Sf1 Spans within one word of the document

25. Sf2 Spans within more than one words of the document
26. SpanNear Sn1 Match terms within a span of one word

27. Sn2 Match terms within a span of more than one word
28. SpanNot Snot1 Span term and one remove term

29. Snot2 Span terms and more than one remove terms

30. SpanOr Sor1 One clause

31. Sor2 More than one clause

Table 24: Data-partitioning of query text (content of query object) for the Lucene case study

In this case study, we compare test suites using their traces. In the context of trace-

based comparison, a test case is represented by the trace it produces. Therefore, we need a

 136

criterion for devising equivalence classes using traces of test cases. A trace of a test case has

the following information (features / attributes): i) executing condition, ii) the search method

executed, iii) query type, and iv) query data category. We explore some combinatorial

techniques in which coverage targets are defined using value combinations such as a

Cartesian product (i.e. every combination) [177]. These combinatorial techniques are popular

among testers and a lot of literature exists on applying these techniques [188-192]. We

explore the following value combinations of features:

1. All features (feature criterion)

2. All combinations of features (combination criterion)

3. All pairs of features (pairwise criterion)

By feature criterion, we mean the test suite covers all the features of a test case. It requires

that a test suite should have at least one test case for every feature. By combination criterion,

we mean the test suite covers all combinations of the features. It requires that a test suite

should have at least one test case for every combination of features. By pairwise criterion, we

mean the test suite covers all pairs of the features. It requires that a test suite should have at

least one test case for every pair of input parameters. These criteria are often called feature

coverage, combination coverage, and pairwise coverage [193, 194].

We need a criterion that sits between the minimum (exercising each feature at least

once) which is not effective, and full combinatorial combination of features which is too

large (9 methods x 6 executing conditions x 12 query types x 31 query data category =

20,088 combinations) and hopelessly inefficient. Therefore, we chose the pairwise criterion.

It considers the pairing of interesting features, e.g. behaviour of a method under certain

executing conditions (which may represent a context). Therefore, we devise CDCT such that

it satisfies the pairwise criterion.

To apply pairwise criterion in CDCT, we create test cases for the following pairs of

features:

1. Search method and Executing condition (M, E)

2. Search method and Query type (M, Q)

3. Query type and Executing condition (Q, E)

4. Query type and Query data category (Q, D)

We omit the pairing of Query data category (D) with search method (M) and executing

condition (E), i.e. (M, D) and (E, D), because the Query data category (D) is specific to a

 137

particular Query type. It partitions different values of a particular Query type. Hence, its

pairing is limited to Query type.

After executing a test case, we can perform different types of output checking of the

return value. The output checking is different from the expected output value. Expected

output value refers to the value(s) which a program should return whereas output checking

means what types of checking are performed on the expected output to determine the success

of the test case. We perform the following output checks:

1. Check whether the correct number of documents are returned (O1)

2. Check whether the score of the documents is computed correctly (O2)

5.4.2. Deriving component test cases for CDCT

For this case study, we chose to perform a trace-based comparison in which a test case is

represented by its trace. We derive traces of the component test cases for CDCT from the

usage model of Searcher instead of deriving the component test cases (task 2 in Figure 2).

Moreover, the system is a shell around the component, and the component is not obscured as

it is not embedded deep inside the system which is quite unusual. Taking advantage of this,

we can derive the traces straight away without using the tool (MTCG). By doing this, we

avoid the following overhead for performing CDCT which saves time:

1. Transforming CDCT into executable form

2. Instrumenting CDCT to log execution traces

The traces of CDCT (CDCTUNIQUE_TRACES) are provided in Appendix D.1.

5.4.3. Comparing test suites

We compare CT and CDCT to identify gaps in component testing (task 3 in Figure 2). As noted

before, we shall compare these test suites by comparing their traces.

5.4.3.1. Instrumenting CT

We instrument CT to capture its execution traces. During instrumentation, we log the

following information for each test case:

1. The search method which is executed (i.e. which overloaded method is invoked).

2. The query type that is passed as a parameter to the search method.

3. The value of the query object.

4. The executing condition (documents and expected matches) on which the test runs.

 138

5.4.3.2. Capturing execution traces of CT

We execute the instrumented CT and capture the execution traces. An example trace of a test

case is shown in Figure 25. CT produced 23,160 traces, one for each test case.

Example Trace M1.Term.T1.E1

Description

M1: the method “public Hits search(Query)”

Term: the type of query object passed as a parameter

T1: the data-category of the term query (Table 24)

E1: the environment of the test case (Table 23)

Figure 25: Example trace and its description for the Lucene case study

As we devise equivalence classes using traces, we take each unique trace as an

equivalence class. CT has 151 unique traces. These unique traces (CTUNIQUE_TRACES) are shown

in Appendix D.2.

During instrumentation, we observed that CT performs different types of output

checking. It performs the following output checking after executing the search method:

1. Checks whether the correct number of documents are returned (O1).

2. Checks whether the score of matching documents is within acceptable range (O2).

3. Checks whether the actual search text exists in the retrieved documents (O3).

4. Checks whether the documents are returned in the correct order (O4).

5. Checks whether the score of the documents is computed correctly (O5).

In the earlier case studies, the behaviour checking was straightforward. In this case

study, the behaviour checking emerged as an interesting problem. Different types of output

checking performed by a test case shows that two test cases executing the same method with

the same input under the same executing conditions should be considered different if they

perform different output checking. It shows that TSC can be improved to consider the output

checking while comparing test cases, which may increase its ability to differentiate two test

cases. For this case study, we deal with the output checking at the test suite level rather than

considering it as an attribute of a test case. We capture the output checks performed by CT

and CDCT using instrumentation and log the traces for output checking in a separate file. We

then perform a simple set comparison to identify weaknesses (shortcomings) in terms of

 139

output checking. For example, output checking of CT would be considered adequate if it

performs all types of output checking that are performed by CDCT.

5.4.3.4. Comparing test suites

We identify gaps in CT using CDCT by comparing their unique traces (which act as

equivalence classes). For this purpose, we compare CTUNIQUE_TRACES and CDCTUNIQUE_TRACES.

Applying the pairwise criterion, we identify the pairs of features which are covered in

CDCT but not in CT. CDCTUNIQUE_TRACES has 265 pairs which are shown in Appendix D.3.

CTUNIQUE_TRACES has 132 pairs which are shown in Appendix D.4. CDCTUNIQUE_TRACES has 133

pairs which are not present in CTUNIQUE_TRACES (i.e. CDCTUNIQUE_TRACES – CTUNIQUE_TRACES) as shown

in Table 25.

We consider the output checking of CT adequate if it performs all types of output

checking that are performed by CDCT. For this purpose, we perform a simple set comparison.

CT performs the following output checking: O1, O2, O3, O4, and O5. CDCT performs the

following output checking: O1 and O2. Hence, there is no gap in CT regarding output checking

and it has performed adequate output checking.

 140

Method :
Executing Condition

(M :E)

Method :
Query Type

(M :Q)

Query Type :
Executing Condition

(Q :E)

Query Type :
Data Category

(Q :D)

M1 : E1

M1 : E2

M1 : E3

M1 : E4

M1 : E5

M2 : E1

M3 : E1

M3 : E2

M3 : E3

M3 : E4

M3 : E5

M3 : E6

M4 : E1

M4 : E2

M4 : E3

M4 : E4

M4 : E5

M4 : E6

M5 : E1

M5 : E2

M5 : E3

M7 : E2

M7 : E3

M1 : Boolean

M1 : Fuzzy

M1 : Multiphrase

M1 : Phrase

M1 : Prefix

M1 : Range

M1 : SpanFirst

M1 : SpanNear

M1 : SpanNot

M1 : SpanOr

M1 : Wildcard

M2 : Boolean

M2 : Fuzzy

M2 : Multiphrase

M2 : Phrase

M2 : Prefix

M2 : Range

M2 : SpanFirst

M2 : SpanNear

M2 : SpanNot

M2 : SpanOr

M2 : Wildcard

M3 : Boolean

M3 : Fuzzy

M3 : Multiphrase

M3 : Phrase

M3 : Prefix

M3 : Range

M3 : SpanFirst

M3 : SpanNear

M3 : SpanNot

M3 : SpanOr

M3 : Term

M3 : Wildcard

M4 : Boolean

M4 : Fuzzy

M4 : Multiphrase

M4 : Phrase

M4 : Prefix

M4 : Range

M4 : SpanFirst

M4 : SpanNear

M4 : SpanNot

M4 : SpanOr

M4 : Term

M4 : Wildcard

M5 : Boolean

M5 : Fuzzy

M5 : Multiphrase

M5 : Phrase

M5 : Prefix

M5 : Range

M5 : SpanFirst

M5 : SpanNot

M5 : SpanOr

M5 : Wildcard

M7 : Fuzzy

M7 : Multiphrase

M7 : Phrase

M7 : Prefix

M7 : Range

M7 : SpanFirst

M7 : SpanNear

M7 : SpanNot

M7 : SpanOr

M7 : Wildcard

M8 : Fuzzy

M8 : Prefix

M8 : Range

M8 : Wildcard

M9 : Fuzzy

M9 : Prefix

M9 : Range

M9 : Wildcard

Fuzzy : E1

Fuzzy : E2

Fuzzy : E3

Multiphrase : E1

Multiphrase : E2

Phrase : E1

Prefix : E1

Prefix : E2

Prefix : E3

Prefix : E4

Range : E1

Range : E4

SpanFirst : E1

SpanFirst : E2

SpanFirst : E3

SpanNear : E1

SpanNear : E2

SpanNear : E3

SpanNot : E1

SpanNot : E2

SpanNot : E3

SpanNot : E4

SpanNot : E5

SpanOr : E1

SpanOr : E2

SpanOr : E3

SpanOr : E4

SpanOr : E5

Wildcard : E1

Wildcard : E2

Wildcard : E3

Fuzzy : F1

Multiphrase : Mp1

Prefix : P1

SpanOr : Sor1

Term : T1

Table 25: Pairs missing in CT

 141

5.4.4. Enriching CT

We enrich CT to target the gaps identified in component testing (task 4 in Figure 2). We use

the gaps identified by the pairwise criterion for extending CT. We devise an extending test

suite (∆CT) for testing the functionality of Searcher which was not tested well or at all by CT.

To devise this test suite, we analyse the pairs missing in CT (Table 25). These gaps indicate

discrepancies in CT which can be at pair-level or feature-level.

By pair-level discrepancy, we mean a feature is tested but it is not tested when paired

with some other feature. For example, the method M1 is tested in CT but it is not tested under

the executing condition E1.

By feature-level discrepancy, we mean a feature is not tested at all. For example, the

method M1 is not tested with any of the executing conditions (E1- E6). As a method is invoked

by a test case, and the test case always runs under one of the executing conditions (E1- E6), the

absence of pairing of M1 with all six executing conditions indicates that the method is not

executed by any of the test cases in CT. This implies that the method is not tested at all by CT.

The feature-level discrepancy identifies an area which is not tested.

As noted in Section 1.3, testers can decide how to target the gap depending on the

nature of the gap. We deal with pair-level discrepancies by simply adding a test case to CDCT

which contributes (produces) the missing feature pair (e.g. M1:E1). To deal with feature-level

discrepancies, we devise multiple test cases to extensively test the area of Searcher which is

not tested instead of just filling the gap (which we did with pair-level discrepancies).

We devise an extending test suite (∆CT) to deal with these discrepancies which is

provided in Appendix D.5. We then extend CT to CT/
 by adding ∆CT to it.

5.4.5. Executing enriched test suite

We execute the enriched CT/
 to test Searcher (task 5 in Figure 2). ∆CT is an extension to CDCT

containing the test cases for the functionality of the component which was not tested by CT.

Therefore, ∆CT is likely to expose defects. However, for the CB software in which the

context of reuse of a component changes significantly, the execution of CDCT can also expose

defects. We chose to execute the ∆CT instead of executing CT/
.

 142

We generate test cases for ∆CT (by modelling corresponding usage scenarios of Lucene)

to reduce the application cost of MD-CDCT as noted before (in Section 5.3). We transform

∆CT into an executable form using MTCG and execute it to test Searcher.

5.4.5.1. Transforming the extending test suite into an executable test suite using MTCG

We create SMCs for the usage scenarios of Lucene which correspond to the test cases in ∆CT.

These SMCs are used by MTCG to generate executable test cases and they are provided in

Appendix D.7. The sequence diagrams from which the SMCs are derived are provided in

Appendix D.6.

QueryParser can generate a query object for the following seven types of queries:

Term, Boolean, Range, Fuzzy, Wildcard, Phrase and Prefix. However, QueryParser cannot

parse Multiphrase, SpanFirst, SpanNear, SpanOr and SpanNot queries. Therefore, we have to

model these queries with each of the search methods that execute these queries in ∆CDCT.

We create SMC models for each type of executing environment (i.e. E1- E6) which are: smc1,

smc2, smc3, smc4, smc5 and smc6 for E1, E2, E3, E4, E5 and E6 respectively.

The SMC model, test data and xUnit model for smc1 are provided in Appendices D.7,

D.8 and D.9 respectively. The SMC models, test data and xUnit for the remaining are

provided online [195].

We transform ∆CT into a concrete and executable test suite using MTCG. The concrete

and executable test suite is provided in Appendix D.10.

This step has highlighted some limitations of MTCGPrototype. We dealt with these

limitations by either finding a work around or, if that was not possible, modifying

transformation rules of MTCGPrototype to generate concrete and executable test cases. These

limitations are discussed in Section 5.6.2.

5.4.5.2. Executing the enriched test suite

Finally, we execute ∆CT/
 for more extensive testing of Searcher. The execution results of

∆CT/
 are shown in Table 26.

 143

Test Case Result Test Case Result Test Case Result Test Case Result

1 √ 20 √ 39 √ 58 √

2 √ 21 √ 40 √ 59 X

3 √ 22 √ 41 √ 60 √

4 √ 23 √ 42 √ 61 √

5 √ 24 √ 43 √ 62 √

6 √ 25 √ 44 √ 63 √

7 √ 26 √ 45 √ 64 √

8 √ 27 √ 46 X 65 √

9 √ 28 √ 47 X 66 √

10 X 29 √ 48 X 67 √

11 X 30 √ 49 √ 68 √

12 √ 31 √ 50 √ 69 √

13 √ 32 √ 51 √ 70 √

14 √ 33 √ 52 √ 71 √

15 X 34 √ 53 √ 72 √

16 √ 35 √ 54 √ 73 √

17 √ 36 √ 55 √ 74 √

18 √ 37 X 56 √

19 √ 38 √ 57 √

Legend: √ means passed, X means failed

Table 26: Execution results of ∆CT/

5.5. Data Interpretation

The presence of pairs M3:E1, M3:E2, M3:E3, M3:E4, M3:E5 and M3:E6 in the trace difference

(CDCTTRACE - CTTRACE) shows that the method M3 is not tested with any of the executing

condition (E1 - E6). That is, M3 is missing in CT and this is an area of Searcher which is not

tested at all. As this is a feature-level discrepancy, we expand this gap by devising multiple

test cases to target M3 instead of just filling the gap by simply adding a test case which

produces the pair M3:E1. Similarly, the method M4 is not tested by CT at all.

The following test cases failed during testing (as shown in Table 26): 10, 11, 15, 37,

46, 47, 48, and 59.

Test cases 10 and 11 threw a run-time exception. Further investigation revealed that

whenever M3 and M4 are invoked on an empty index (zero documents), they generate an

error while sorting the search results.

 144

Test case 15 failed as the method M7 threw a run-time exception. This error is

generated when no document is matched by the query and an attempt is made to sort the

search results.

Test cases 37, 46 and 47 failed because the Prefix query did not work properly with the

attribute Field.Index.ANALYSED of the field object. However, it works fine with the attribute

Field.Index.NOT_ANALYSED.

Test case 48 failed because the SpanNot query did not return the right number of

documents. The investigation revealed that the SpanNot query converts the text in documents

to lower case implicitly, which fails when the exclude clause of the SpanNot query has a

word in upper case, For example, when a SpanNot query containing “OCL” in its exclude

clause is run on a document containing the text “to automate testing, OCL can be used”, it

fails. However, if we specify the exclude clause using lowercase (i.e. “ocl”), it works fine.

The methods M3 and M4 were not tested at all. These methods sort the search results

before returning them. We created a test case in ∆CT (test case 59) to target the sorting

feature of Searcher. We tried to sort the search results on a field containing more than one

word (e.g. the body field). This test case generated the following exception:

“java.lang.RuntimeException: there are more terms than documents in field". This shows

that the sorting field cannot have a multi-word value. This can be interpreted as a defect in

the implementation of sorting functionality or a limitation of Searcher.

5.6. Discussion

This case study has demonstrated the viability and usefulness of MD-CDCT. The framework

has identified some weaknesses in the testing of Searcher (CT). These weaknesses (gaps) are

used to enrich CT which eventually discovered some defects that were not detected by CT

even though it has thousands of test cases. Code coverage would not have necessarily

detected these errors just by executing the program statements which were not executed

before. Instead, these errors are detected by running certain types of queries, containing

certain types of data under certain executing conditions, using certain methods which were

identified by MD-CDCT.

Further, this exercise showed that MTCG can generate test cases for complex

applications. Creation of sequence diagrams and instrumentation of the test suite was done

 145

manually. The use of tool support would make the application of MD-CDCT faster and more

user-friendly.

MTCG creates the expected objects for comparison with the objects returned by the

methods of components which interact with the system. For this purpose, it requires either an

API for creating these objects or the source code of the component. COTS components that

do not provide an API or access to their source code may be difficult to test using MD-CDCT.

This case study has i) highlighted some challenging aspects of test suite comparison,

ii) exposed limitations of the version of MTCG which was used to generate test cases for an

ATM simulation system in Chapter 3, and iii) suggested an improvement to TSC for

comparing test suites.

5.6.1. Challenges in comparing test suites

Test suite comparison emerged as a challenging aspect of this case study for the following

reasons:

1. The semantics of comparing a system test suite against a component test suite needs

to be investigated because a system test suite consists of interactions with system (or

components) whereas a component test suite contains method calls which are

transparent to the system. We have ignored the test cases of CT which test internal

methods of Searcher (sub-unit level test cases). We consider only those test cases

which test the interface of Searcher.

2. The extraction of abstract test cases (for comparison purposes) from a concrete test

suite is yet another challenging issue for the following reasons:

a. The definition of a test case is not standard. A JUnit test case is a test driver

which executes the test cases contained in it. The term test case may refer to

just test data in one context and can refer to a concrete and executable test case

in another context. Generally, a test case consists of a method (to be tested),

execution conditions (environment), input and expected output [38]. For

components, a test case is a sequence of method calls along with their

parameter values, executing conditions and expected output.

b. The criterion for determining the adequacy of output checking of a test case is

another challenge. For example, after executing the search method, should we

just check the number of documents returned or should we also ensure that the

 146

documents are retrieved in the correct order. Further, some output checking is

implicit, e.g. if we process the output of a test case in a loop, we are implicitly

counting the number of documents.

c. CT contains a number of test suites developed by different testers. These

testers have coded test drivers in different ways, i.e., they used different

algorithms to generate test cases in a test driver. Further, parameter values and

assertions are coded in complex ways, as follows:

i. A parameter of a method call is itself a method call (e.g. snippet 1 in

Figure 26). Further, the attribute scoreDocs of the object (which is

returned by the search method) is accessed. However, the prototype

implementation of MTCG does not support accessing attributes of

objects.

ii. The object that is passed as the second parameter (to the search method)

is defined inside the method call (e.g. snippet 2 in Figure 26). The

variation in coding style and the complexity of code makes the

extraction of test cases (from an executable test suite) a non-trivial task,

especially for this case study.

Snippet 1: result = searcher.search(csrq("data","1","6",T,T), null,1000).scoreDocs;

Snippet 2: searcher.search (pq,
 new HitCollector() {
 public final void collect(int doc, float score) {
 assertTrue(score == 2.0f);
 }
 }

);
Snippet 3: Filter filter1 = new Filter() {

 public DocIdSet getDocIdSet(IndexReader reader) {
 BitSet bitset = new BitSet(1);
 bitset.set(0);
 return new DocIdBitSet(bitset);
 }
};

Snippet 4: Hits hits = searcher.search(query1, new Filter() {public DocIdSet getDocIdSet(
IndexReader reader) { BitSet bitset=new BitSet(1); bitset.set(0); return new
DocIdBitSet(bitset);}});

Snippet 5: searcher.search(query1, new HitCollector() { public void collect(int doc, float
score) {vector.add(new Integer(doc));}});

Figure 26: Code snippets of test suite for Searcher

 147

5.6.2. Limitations of MTCG

This case study served as a real challenge for the applicability of MTCG to a large and

complex system. The test cases generated by MTCG in the ATM case study (in Chapter 3)

were simple as they only executed a method and compared the return value (variables or

objects) with the expected value using an assertion. However, the test cases of Searcher are

harder to generate than the ones generated for the ATM system because they:

1. Require type-casting.

2. Compare collections of objects instead of objects. Moreover, different overloaded

implementations of the search method return different types of collections, such as

the Hits and TopDocs. Further, these collections contain different types of objects,

such as the HitDoc, FieldDoc, and ScoreDoc.

3. Require defining a method within another method which was not considered when

MTCGPrototype was developed.

4. Use access modifiers.

5. Execute span queries which require declaring an array.

We found a work around for some of the limitations. For the remaining limitations, we

modified MTCGPrototype to generate these test cases. These workarounds and modifications are

discussed below.

MTCGPrototype does not provide a facility for type-casting. However, the test cases of

Searcher use type-casting to set the score of a document, e.g. float score = (float) 1.0;. We

worked around this problem by using a suffix ‘f’ to specify the float value in the source

model, e.g. float score = 1.0f;.

The search methods return a Hits object or TopDocs object containing the collection of

matching documents. To retrieve these documents (to compare with the expected

documents), we added the methods getHitDocs and getScoreDocs to the classes Hits.java and

TopDocs.java respectively. Similarly, for comparing the expected object with the actual

object (returned by the search method), we need a method to compare these objects. Further,

this method should also ensure that the documents are returned in the correct order.

Therefore, we created a class HitsVector.java with a method equals to check for the equality

of the expected object and the returned object (which contains the matching documents), i.e.

assertTrue (expectedHits.equals(actualHits)). This method is shown in Appendix D.11.

 148

We encountered another problem while generating the test cases which pass Filter as a

parameter to the search method (i.e. M2, M3, M6 and M7). These Filters define a method

inside the body of their constructor (e.g. snippet 3 in Figure 26). MTCGPrototype cannot define a

method inside the body of another method (or constructor). This problem was dealt with

using the freeParameterText attribute of method’s parameter in the source model. The

contents of freeParameterText are transferred from the source model to the generated test

case. This attribute is dedicated to deal with the complex code which is hard to generate by

means of transformation rules. On the one hand, it makes MTCG flexible by leveraging its

ability to generate code in complex scenarios. On the other hand, the code that is generated is

poorly formatted as the code (typed in the freeParameterText) is appended as one-line text in

the generated test case (e.g. snippet 4 in Figure 26). Similarly, the freeParameterText is used

for passing the second parameter to the methods m8 and m9, which decreases the readability

of the generated test case further (e.g. snippet 5 in Figure 26).

To support the specification of access modifiers, we modified Rule 6 and Rule 7 for the

M2M and M2T transformations respectively. These modifications are shown in Figure 27.

However, this modification supports the declaration of access modifiers only for the expected

object. We can modify this rule further to provide this facility throughout the scope of the

generated test case. When MTCGPrototype was developed, we had simple applications in mind

whose test cases did not require access modifiers. Therefore, these transformation rules did

not support the specification of access modifiers.

The test cases for Searcher which execute span queries (SpanFirst, SpanNear, SpanNot

and SpanOr) require the declaration of an array, e.g.

SpanQuery[] spanQuery1 = new SpanQuery[] {query1, query2};

We achieve this by changing Rule 3 for M2M and Rule 4 for M2T transformations. These

modifications are shown in Figure 28.

In addition to the above limitations, this case study has suggested some improvements

in MTCGPrototype to make it more user-friendly.

1. MTCG should be enhanced to support access to attributes (properties) of objects, e.g.

hits.scoreDocs.

2. MTCG should be enhanced to add comments and formatting to increase the readability

of the generated test cases.

 149

To create multiple objects of the same type, we have to specify these objects manually

in the source model. However, MTCG should be enhanced to provide a looping construct to

specify the creation of multiple objects.

Tefkat Rule 6 (Appendix B.1)

RULE ExpectedValue_2_ExpectedValue(model, testSuite, interaction, testCase, message, assertion, method, e1, e2)
EXTENDS Message_2_Assertion(model, testSuite, interaction, testCase, message, assertion, method)

FORALL ::smc::ExpectedValue e1
 WHERE e1.owner = message
 MAKE ::xUnit::ExpectedValue e2
 SET e2.name = e1.name,
 e2.type = e1.type,
 e2.setter = e1.setter,
 e2.accessModifier = e1. accessModifier,
 assertion.expectedValue = e2 ;

MOFScript Rule 7 (Appendix B.2.2)

model.ExpectedValue::mapExpectedValue() {
...................
...................
if (self.simpleAttribute.isEmpty() && self.complexAttribute.isEmpty()) { // Simple Expected PDT

...................

...................
} else {

if (self.accessModifier.equals(“”)) {
 text = text + "\n\t\t"+ expectedType + " " + self.name + " = new " + expectedType + "();"

} else {
 text = text + "\n\t\t"+ self.accessModifier+" " + expectedType + " " + self.name+" = new " + expectedType+"();"

}
paramHashtable.put("Text", text)
java ("com.m2t.CreateTemplate", "writeText", paramHashtable, "C:/eclipse/project/xunit2text")

}
...................
...................

Figure 27: Changing M2M and M2T rules for access modifiers

 150

Tefkat Rule 3 (Appendix B.1)

RULE Message_2_Assertion(model, testSuite, interaction, testCase, message, assertion, method)
EXTENDS Interaction_2_TestCase(model, testSuite, interaction, testCase)

FORALL Message message
WHERE message.owner = interaction
MAKE Assertion assertion,

 Method method
SET assertion.name = append(append(interaction.name, "_"), message.name),

 method.name = message.name,
 method.static = message.static,

method.array= message.array,
 method.freeParameterText = message.freeParameterText,
 assertion.order = message.order,
 assertion.assertionType = message.assertionType,
 assertion.method = method,
 testCase.assertion= assertion,
 testSuite.testCase = testCase

MOFScript Rule 4 (Appendix B.2.2)

model.Method::mapMethod() {
.................
.................
isArray = self.array.equalsIgnoreCase("yes")
.................
.................
if(isStatic == false) {
 text = text + "\n\r\t\t" + className + " " + classInstance + " = new " + className + "(" + cParameterText + ");"
} else {

if (isArray == true) {
text = text + "\n\r\t\t" + className + " [] " + classInstance + " = new " + className + " [] {" + cParameterText + "};"

}
}

..................

..................
isArray = false

}

Figure 28: Changing M2M and M2T rules for declaring arrays

5.6.3. An improvement in TSC

This case study has suggested an improvement to TSC. TSC does not consider the types of

output checking performed by test cases while comparing test suites. To work around this

issue, we capture the output checks performed by CT and CDCT. We then performed a simple

set comparison to identify the weaknesses (shortcomings) in output checking. For example,

output checking of CT is adequate if it performs all types of output checking that are

performed by CDCT. However, we can re-define a test case to include the output checking as

well, and refine TSC to compare test suites according to the new definition of a test case.

5.6.4. Limitations of the case study

This case study has the following limitations:

 151

1. We created sequence diagrams manually for generating concrete test cases (using

MTCG). However, some Eclipse plug-ins are available (e.g. MaintainJ, Flowchart4j)

that can automatically generate sequence diagrams from Java code.

2. We have instrumented the Searcher’s test suite (CT) manually. However, we can

investigate whether the following instrumentation tools can instrument the test suites to

serve our purpose:

i) The Java Instrumentation Engine (JIE) which is a source code processor which

inserts instrumentation code in Java source code files [196].

ii) The Java Instrument Package (“java.lang.instrument”) which came with Java

5.0. It modifies class files to insert additional byte-code.

iii) SOOT [197] which is available as an Eclipse plug-in.

3. We tested Searcher using ∆CT instead of CT/
. By doing this, we omitted the execution

of the test cases of CT (i.e. Searcher was already tested).

4. We have ignored the test cases related to the advanced features of Searcher (such as

caching of search results) to keep this case study manageable. Further, MD-CDCT is

devised for CB software, we focused on the interface methods of Searcher ignoring the

test cases related to its internal methods. If we had included the advanced features and

internal methods of Searcher, MD-CDCT would have detected at least the same defects

for basic search functionality if not more.

5.7. Threats to Validity

This case study has the following threats to its validity which affect the application of MD-

CDCT to other systems:

1. We have taken Lucene as the system and Searcher as the component. The ideal CB

software for this case study should be an application that uses a general-purpose

component which is used in other applications as well. However, this case study

makes the following compromises:

i) Lucene is a library instead of an application.

ii) Searcher is a component specifically designed for Lucene. It has dependencies

on the Analyzer and the Query Parser modules.

Though Lucene is a library and not an application, it is independently deployable.

Testers can safely take Lucene as an application to write test drivers for testing

http://www.eclipseplugincentral.com/displayarticle668.html

 152

purposes. The interface of Searcher with Lucene models a system-component

interaction (relationship) in CB software.

2. We cannot generalise the effectiveness of MD-CDCT based on one case study.

3. We have devised MD-CDCT and evaluated it ourselves. Ideally, the evaluation should

be done by someone else to eliminate any bias.

 153

CHAPTER 6 - CONCLUSION

6.1. Summary

This research was aimed at developing a framework to determine the adequacy of component

testing in the context of Component-based Software Development (CSD) by extending the

existing research in the following areas. Firstly, we devised a model-driven framework for

performing context-dependent testing of software components. Secondly, we devised a

technique for evaluating and extending the adequacy of testing at the time of a component’s

reuse. Thirdly, we extended automation of software testing by making use of model

transformation technology. Fourthly, we devised a technique for comparing test suites.

Although CSD brought some advantages to software development, it has complicated

testing. The testing performed by the component provider is independent of the context, and

the reuse of a component may require re-testing in the new context. To address this issue, we

proposed a model-driven framework (MD-CDCT) to test the component for the context of its

reuse.

Determining the adequacy of the re-testing of the component at the time of its reuse is

another problem. To address this issue, we proposed a technique for evaluating and

extending the test adequacy of component testing, and devised a method (TSC) and tool

support. TSC identifies gaps in component testing which are used to extend the test adequacy

of the context-dependent testing of the component.

Model-Driven Architecture (MDA) has emerged as a new software development

paradigm which automates software development activities, reducing development time and

cost. However, software testing has not fully benefited from MDA. This research makes

another contribution in the area of MDA. Leveraging the use of MDA, a model-driven

method (MTCG) was developed to generate concrete and executable test cases from software

models by applying horizontal and vertical transformations. Prototype tool support for this

method (MTCGPrototype) was provided and evaluated for automated generation of test cases

from sequences of method calls (SMCs).

The case studies are used to evaluate the practicability of the contributions. Briefly, the

Vending Machine example illustrates the application of MD-CDCT. The ATM case study

illustrates how MDA can be used for generating test cases from software models using

 154

MTCG. The shortest-path and pattern-matching case studies demonstrate the application of

TSC for comparing test suites. The Lucene case study evaluates MD-CDCT. It demonstrates the

viability and usefulness of MD-CDCT, and its prototype tool support. In this case study, we

identified weaknesses in the component testing of Searcher (a component of Lucene) for the

context of reuse and enriched it. The enriched test suite detected some defects in Searcher

which were not detected during component testing. This shows that i) MD-CDCT has the

potential to uncover context-dependent defects of a component which were not detected

during component testing, and ii) MDA tools can automate the generation of concrete and

executable test cases from platform-independent models of software applications.

Finally, the case studies show that we can benefit from the component testing provided

as component metadata to i) determine the reliability of the component for the context of

reuse, and ii) extend the test adequacy of CDCT of a component for the new context.

6.2. Discussion

6.2.1. MD-CDCT

MD-CDCT provides a solution to the problem of determining the test adequacy of components

at the time of reuse in a new context. The existing component testing techniques, which

include component-metadata, component certification, built-in testing and mutation-based

testing, do not specify any criterion for adequacy of the component testing for their reuse in a

new context. MD-CDCT evaluates the adequacy of component testing for the context of its

reuse, and enriches the context-dependent testing of components using the component testing

performed at the time of component development.

MD-CDCT is based on software models (i.e. usage scenarios and sequence diagrams)

which are created at an early stage of the software development. Therefore, testing activities

(e.g. generating concrete and executable test cases) can commence before the implementation

of CB software. A limitation of MD-CDCT is that it requires a component’s certification

metadata in the form of developer or third-party testing, which is used for evaluating and

extending test adequacy of CDCT.

 Another advantage of MD-CDCT is that it can be applied to COTS components as it

does not require the source code of the component. However, a COTS component which

returns a collection object but does not provide any method (API) to extract objects from the

 155

collection object (for comparing them with expected objects), cannot benefit from MD-CDCT

fully. For these components, the application of MD-CDCT is limited to identifying weaknesses

of component testing for the context of reuse and extending test adequacy of CDCT of the

component. The generation of executable test cases can be worked around by providing an

implementation of a method which extracts objects from the collection and compares them

with the expected objects.

MD-CDCT uses MTCG for generating executable test cases and TSC for comparing test

suites. This work has highlighted certain complexities involved in generating executable test

cases using our MDA-based approach. Some of these are: type-casting of objects, comparing

collections of objects instead of objects, and the use of access modifiers. Similarly, the

comparison of test suites using TSC emerged as another challenging task. The extraction of

test cases from a concrete test suite is a non-trivial task because i) the definition of a test case

is not standard, ii) the criterion for determining the adequacy of output checking of a test case

needs to be addressed, and iii) different testers code test drivers in different ways making the

extraction of a test case from a concrete test suite a non-trivial task.

6.2.2. Evaluation of MD-CDCT

The Lucene case study demonstrates that MD-CDCT can be applied to large and complex

applications, and it can detect the defects of components which appear in a certain context.

The results of this case study are encouraging because MD-CDCT has i) generated concrete

and executable test cases, and ii) detected some real defects in Searcher which was tested

previously using thousands of test cases during component testing.

The evaluation of MD-CDCT exposed some limitations of the prototype tool support.

MTCGPrototype was modified to overcome some of the limitations. The remaining limitations

were worked around.

The application of MTCGPrototype is expensive for large and complex systems.

Therefore, MTCGPrototype should be enhanced with the improvements suggested in Sections

3.7 and 5.6.2 to make it cost-effective. Some of these improvements include i) automated

extractions of SMC models from the graphical representations of sequence diagrams, ii)

automated comparison of the actual trace with the sequence diagram, and iii) provision for

using access modifiers, type-casting and comparing collections of objects. These

enhancements would make MTCGPrototype more user-friendly. MTCGPrototype generates test

 156

cases from SMC models instead of UML models, and hence it requires tool support to

incorporate UML models when applied to large and complex systems. MTCGPrototype

generates test cases from SMCs. MTCG itself is quite general in that it can be applied to

generate test cases from other UML diagrams such as statecharts.

The evaluation of TSC highlighted a potential improvement. TSC does not consider the

output checking which is performed as part of comparing test cases. This may affect the

capability of TSC to differentiate test suites. Further, the extraction of abstract test cases from

a concrete test suite proved to be a non-trivial task. Its application to systems having a large

test suite is expensive due to the manual assignment of equivalence classes to a large number

of test cases of the test suite. However, the trace-based approach (Section 4.5) reduces the

application cost of TSC by facilitating the task of devising and assigning equivalence classes

to the test cases. Further, the trace-based approach makes it possible to apply TSC to large

systems.

6.3. Future Work

TSC can be enhanced to incorporate output checking which is performed by test cases to

differentiate them while comparing test suites. This can improve its effectiveness in terms of

identifying gaps in test suites.

 We can explore different criteria for comparing test suites, and investigate i) which

criterion identifies more gaps in the test suites and ii) which criterion identifies more context

related defects, when the context of reuse changes significantly as below:

i. The component is developed on one platform but reused on another. The new

platform may have a different way of data processing giving different

interpretations of the information exchanged between the CB software and the

component [198]. Further, in the case of concurrent software, platforms may also

have different thread scheduling mechanisms which drive the program through

different thread interleavings. As such, there is a possibility that concurrent

software can work without failure on one platform, but always fail on another.

ii. The component is developed for standalone (desktop) systems but reused for web-

based systems.

iii. The component is developed for one type of system (e.g. financial systems) but

reused for a different type of system (e.g. geographical systems).

 157

 The MTCGPrototype is based on sequence diagrams. However, we can explore the

automated generation of test cases from other modelling diagrams (such as statecharts) to

determine which modelling diagram is the best for generating test cases, in terms of cost and

effectiveness.

The prototype implementation of MTCG can be enhanced to facilitate its application

and extend its usability. It can be refined to:

i. Generate test cases from UML 2.0 sequence diagrams instead of an SMC model.

ii. Access the attributes of objects and provide a facility for type-casting of objects.

iii. Add documentation comments to the generated test cases for increased readability.

iv. Add formatting tags in the code. This would allow generating readable test cases.

v. Provide a looping-construct while defining multiple objects of the same type in the

source instead of specifying them one by one. This would simplify the creation of

SMC model using MTCG.

 158

 159

REFERENCES

[1] M. D. McIlroy, "Mass-Produced Software Components," in Proceedings of the 1968
NATO Conference on Software Engineering, Garmisch, Germany, 1969, pp. 138-155.

[2] H. Krawczyk and A. Rek, "Methodology for developing Web-based applications from
reusable components using open-source tools," in Proceedings of the 2nd
International Conference on Information Technology, 2010, pp. 117-120.

[3] M. Aoyama, "New Age of Software Development: How Component-Based Software
Engineering Changes the Way of Software Development?," in Proceedings of the
International Workshop on Component-Based Software Engineering, 1998.

[4] A. W. Brown, "Selected Papers from the Software Engineering Institute,"
Component-Based Software Engineering, pp. vii - x, 1996.

[5] I. Crnkovic, S. Larsson, and J. Stafford, "Component-based software engineering
building systems from components," in Proceedings of the 26th Annual International
Computer Software and Applications Conference, 2002, pp. 816-817.

[6] A. Andrews, S. Ghosh, and C. E. Man, "A model for understanding software
components," in Proceedings of the International Conference on Software
Maintenance, 2002, pp. 359-368.

[7] J. Williams, "The business case for components," in Component-based software
engineering: putting the pieces together: Addison-Wesley Longman Publishing Co.,
Inc., 2001, pp. 79-97.

[8] A. Patrizio, "'The New Developer Portals - Buying, selling, and building components
on the web speeds companies' time to market," in Information Week, 2000, p. 81.

[9] D. Kiely, "Are Components the Future of Software?," Computer, vol. 31, pp. 10-11,
1998.

[10] J. Sametinger, Software Engineering With Reusable Components: Springer-Verlag,
1997.

[11] P. Herzum and O. Sims, Business Component Factory- A Comprehensive Overview of
Component-based Development for Enterprise: John Wiley, 2000.

[12] C. Szyperski, Component software: beyond object-oriented programming: Addison-
Wesley, 1998.

[13] J. Bosch, C. Szyperski, and W. Weck, "Summary of the Second International
Workshop on Component-Oriented Programming," in Proceedings of the 2nd
International Workshop on Component-Oriented Programming, Jyvaskyla, Finland,
1997.

[14] A. Vincenzi, J. Maldonado, M. Delamaro, E. Spoto, and W. Wong, "Component-Based
Software: An Overview of Testing," in Component-Based Software Quality, 2003, pp.
99-127.

[15] S. C. Reid, "BS 7925-2: the software component testing standard," in Proceedings of
the 1st Asia-Pacific Conference on Quality Software, Hong Kong, 2000, pp. 139-148.

 160

[16] L. Briand, Y. Labiche, and M. Sowka, "Automated, contract-based user testing of
commercial-off-the-shelf components," in Proceedings of the 28th International
Conference on Software engineering, Shanghai, China, 2006, pp. 92-101.

[17] H. Gross, Component-Based Software Testing with UML. Berlin, Germany: Springer-
Veralg, 2005.

[18] E. Weyuker, "Testing Component-Based Software: A Cautionary Tale," IEEE Software,
vol. 15, pp. 54-59, 1998.

[19] Object Management Group, "MDA Guide Version 1.0.1," 2004.

[20] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven Architecture -
Practice and Promise: Addison-Wesley, 2003.

[21] J. Bézivin and N. Ploquin, "Combining the Power of Meta-Programming and Meta-
Modeling in the OMG/MDA Framework," in Proceedings of the 2nd Workshop on
UML for Enterprise Applications, San Francisco, USA, 2001.

[22] M. Rutherford and A. Wolf, "A case for test-code generation in model-driven
systems," in Proceedings of the 2nd International Conference on Generative
Programming and Component Engineering, Erfurt, Germany, 2003, pp. 377-396.

[23] R. Sommer and B. Sommer, A Practical Guide To Behavioral Research: Tools and
Techniques, 5th Edition ed.: Oxford University Press, 2002.

[24] J. Poole, "Model-Driven Architecture: Vision, Standards and Emerging Technologies,"
in Proceedings of the 15th European Conference on Object Oriented Programming,
Budapest, Hungary, 2001.

[25] J. Rainsberger, JUnit Recipies : practical methods for programmer testing: Manning
Publications Co., 2005.

[26] M. S. Lund, "Bridging the Gap in Model-based V&V Methodology," in Proceedings of
the 5th IFIP WG 11.11 International Conference on Trust Management Copenhagen,
Denmark, 2011, pp. 389-396.

[27] J. Gao, H.-S. Tsao, and Y. Wu, Testing and Quality Assurance for Component-Based
Software. Artech House inc., 2003.

[28] R. S. Freedman, "Testability of Software Components," IEEE Transactions on
Software Engineering, vol. 17, June 1991.

[29] R. Binder, "Design for testability in object-oriented systems," Commun. ACM, vol. 37,
pp. 87-101, 1994.

[30] J. Gao and M. Shih, "A component testability model for verification and
measurement," in Proceedings of the 29th Annual International Computer Software
and Applications Conference, Edinburgh, UK, 2005, pp. 211-218.

[31] S. Kansomkeat, J. Offutt, and W. Rivepiboon, "Increasing Class Component
Testability," in Proceedings of the 23rd IASTED International Multi-Conference on
Software Engineering, Innsbruck, Austria, 2005.

[32] Y. Jiang, S.-S. Hou, J.-H. Shan, L. Zhang, and B. Xie, "Contract-Based Mutation for
Testing Components," in Proceedings of the 21st IEEE International Conference on
Software Maintenance: IEEE Computer Society, 2005, pp. 483-492.

 161

[33] D. S. Rosenblum, "Adequate Testing of Component-Based Software," Dept. of
Computer Science, University of California, Technical Report TR 97-34, 1997.

[34] M. Delamaro, J. Maidonado, and A. Mathur, "Interface Mutation: an approach for
integration testing," IEEE Transactions on Software Engineering, vol. 27, pp. 228-247,
2001.

[35] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide:
Addison-Wesley, 1999.

[36] F. Fraikin and T. Leonhardt, "SeDiTeC-testing based on sequence diagrams," in
Proceedings of the 17th IEEE International Conference on Automated Software
Engineering, Edinburgh, UK, 2002, pp. 261-266.

[37] P. Kruchten, The Rational Unified Process – An Introduction, 2nd ed.: Addison-
Wesley, 2000.

[38] Institute of Electrical and Electronics Engineers, "IEEE Standard For Software Test
Documentation - IEEE Standard 829-1998," IEEE Press, New York 1998.

[39] J. Morris, G. Lee, K. Parker, G. Bundell, and C. Lam, "Software Component
Certification," Computer, vol. 34, pp. 30-36, 2001.

[40] W. Councill, "Third-Party Testing and the Quality of Software Components," IEEE
Software, vol. 16, pp. 55-57, 1999.

[41] G. Myers, The Art of Software Testing: Wiley Interscience, 1979.

[42] T. J. Ostrand and M. J. Balcer, "The category-partition method for specifying and
generating fuctional tests," Communications of the ACM, vol. 31, pp. 676-686, 1988.

[43] A. Orso, H. Do, G. Rothermel, M. Harrold, and D. Rosenblum, "Using component
metadata to regression test component-based software," Software Testing,
Verification and Reliability, vol. 17, pp. 61-94, 2007.

[44] S. Beydeda and V. Gruhn, "State of the art in testing components," in Proceedings of
the 3rd International Conference on Quality Software, Beijing, China, 2003, pp. 146-
153.

[45] W. Yingxu, G. King, and H. Wickburg, "A method for built-in tests in component-
based software maintenance," in Proceedings of the 3rd European Conference on
Software Maintenance and Reengineering, Netherlands, 1999, pp. 186-189.

[46] J. Hornstein and H. Elder, "Test reuse in CBSE using built-in tests," in Proceedings of
the Workshop on Component-based Software Engineering, Composing systems from
components, Sweden, 2002.

[47] S. Beydeda and V. Gruhn, "Merging components and testing tools: the self-testing
COTS components (STECC) strategy," in Proceedings of the 29th Euromicro
Conference, Antalya, Turkey, 2003, pp. 107-114.

[48] S. H. Edwards, "Toward reflective metadata wrappers for formally specified software
components," in Proceedings of the Workshop on Specification and Verification of
Component Based Systems, held in conjunction with OOPSLA 2001, Florida, USA,
2001.

 162

[49] A. Orso, M. J. Harrold, D. Rosenblum, G. Rothermel, M. L. Soffa, and H. Do, "Using
component metacontent to support the regression testing of component-based
software," in Proceedings of the International Conference on Software Maintenance,
Florence, Italy, 2001, pp. 716-725.

[50] Y. Wu, M. H. Chen, and J. Offutt, "UML-based integration testing for component-
based software," in Proceedings of the Second International Conference on COTS-
Based Software Systems, Ottawa, Canada, 2003, pp. 251-60.

[51] F. Belli and C. Budnik, "Towards Self-Testing of Component-Based Software," in
Proceedings of the 29th Annual International Computer Software and Applications
Conference, 2005, pp. 205-210.

[52] C. Liu and D. Richardson, "Software components with retrospectors," in International
Workshop on the Role of Software in Testing and Analysis, Sicily, Italy, 1998, pp. 63-
68.

[53] Y. Wu and J. Offut, "Maintaining Evolving Component-based Software with UML," in
Proceedings of 7th European Conference on Software Maintenance and
Reengineering (CSMR’03), Benevento, Italy, 2003.

[54] A. Alvaro, E. Almeida, and S. Meira, "Software Component Certification: A Survey," in
Proceedings of the 31st EUROMICRO Conference on Software Engineering and
Advanced Applications, Porto, Portugal, 2005, pp. 106-113.

[55] A. Alvaro, R. Land, and I. Crnkovic, "Software component evaluation: A theoretical
study on component selection and certification," MRCT Report, 2007.

[56] Y. Ma, S. Oh, D. Bae, and Y. Kwon, "Framework for Third Party Testing of Component
Software," in Proceedings of the 8th Asia-Pacific on Software Engineering
Conference, 2001.

[57] J. Morris, C. Lam, G. Bundell, G. Lee, and K. Parker, "Setting a Framework for Trusted
Component Trading," in Component-Based Software Quality, 2003, pp. 128-158.

[58] J. Voas, "Certifying off-the-shelf software components," Computer, vol. 31, pp. 53-
59, 1998.

[59] A. Alvaro, E. S. de Almeida, and S. L. Meira, "Towards a software component
certification framework," in Seventh International Conference on Quality Software,
2007, pp. 298-303.

[60] A. Alvaro, E. Santana de Almeida, and S. Romero de Lemos Meira, "A software
component quality framework," ACM SIGSOFT Software Engineering Notes, vol. 35,
pp. 1-18, 2010.

[61] W. Zheng and G. Bundell, "Test by Contract for UML-Based Software Component
Testing," in Proceedings of the International Symposium on Computer Science and its
Applications: IEEE Computer Society, 2008.

[62] W. Zheng and G. Bundell, "Contract-Based Software Component Testing with UML
Models," International Journal of Software Engineering and its Applications, vol. 3,
2009.

 163

[63] W. Zheng and G. Bundell, "A Framework for UML-Based Software Component
Testing," in Trends in Intelligent Systems and Computer Engineering, 2008, pp. 575-
597.

[64] M. E. Delamaro, J. C. Maldonado, A. Pasquini, and A. P. Mathur, "Interface Mutation
Test Adequacy Criterion: An Empirical Evaluation," Empirical Software Engineering,
vol. 6, pp. 111-142, 2001.

[65] S. Ghosh and A. Mathur, "Interface Mutation to assess the adequacy of tests for
components and systems," in Proceedings of the 34th International Conference on
Technology of Object-Oriented Languages and Systems (TOOLS 34), 2000, pp. 37-46.

[66] N. L. Hashim, H. W. Schmidt, and S. Ramakrishnan, "Interface faults injection for
component-based integration testing," in Proceedings of the International
Conference on Computing & Informatics (ICOCI '06), 2006, pp. 1-6.

[67] J. Gao, K. Gupta, S. Gupta, and S. Shim, "On Building Testable Software
Components," in Proceedings of the 1st International Conference on COTS-Based
Software Systems, Florida, USA, 2002, pp. 108-121.

[68] F. Jabeen and M. Rehman, "A framework for object oriented component testing," in
Proceedings of the IEEE Symposium on Emerging Technologies, Islamabad, Pakistan,
2005, pp. 451-460.

[69] X. Qiming, N. Nan, Y. Junfeng, and H. Keqing, "XML API-Based Test Framework of
Extension Interface Using Software Mutation Analysis for Component," in
Proceedings of the International Conference on E-Business and Information System
Security, 2009, pp. 1-5.

[70] J. Hill and A. Gokhale, "Model-driven Engineering for Early QoS Validation of
Component-based Software Systems," Journal of Software, vol. 2, pp. 9-18, 2007.

[71] U. Buy, C. Ghezzi, A. Orso, M. Pezze, and M. Valsasna, "A framework for testing
object-oriented components," in Proceedings of the First International ICSE
Workshop Testing Distributed Component-Based Systems, Los Angeles, California,
1999.

[72] Z. Qian, "Testing Component-based Web Applications Using Component Automata,"
in Proceedings of the WASE International Conference on Information Engineering,
2009, pp. 455-458.

[73] X. J. Zihui Che, "Research on Evaluation of Component-Based Software Testing,"
Research Journal of Applied Sciences, Engineering and Technology, vol. 6, pp. 1106-
1110, 2013.

[74] International Electrotechnical Commission: http://www.iec.ch/, accessed on
06/06/2014.

[75] International Electrotechnical Commission, "IEC/PAS 62814 Edition 1.0," 2012.

[76] F. Belli, "Dependability and Software Reuse - Coupling Them by an Industrial
Standard," in Proceedings of the IEEE Seventh International Conference on Software
Security and Reliability Companion, 2013, pp. 145-154.

http://www.iec.ch/

 164

[77] D. Smith and K. Simpson, Safety Critical Systems Handbook: A Straightforward Guide
to Functional Safety, IEC 61508 (2010 Edition) and Related Standards:
Elsevier/Butterworth-Heinemann, 2010.

[78] International Electrotechnical Commission, "IEC 62628 Edition 1.0," 2012.

[79] Institute of Electrical and Electronics Engineers - Standards Association:
http://standards.ieee.org/, accessed on 28-06-2014.

[80] IEEE Standard for Dictionary of Measures to Produce Reliable Software (IEEE
Standard 982.1-1988): http://standards.ieee.org/findstds/standard/982.1-
1988.html, accessed on 8-07-2014.

[81] IEEE Standard for Information Technology - System and Software Life Cycle Processes
- Reuse Processes (IEEE Standard 1517-2010):
http://standards.ieee.org/findstds/standard/1517-2010.html, accessed on 26-07-
2014.

[82] A. Javed, P. Strooper, and G. Watson, "Automated Generation of Test Cases Using
Model-Driven Architecture," in Proceedings of the 2nd International Workshop on
Automation of Software Test, held at the 29th International Conference on Software
Engineering, Minneapolis, USA, 2007.

[83] R. Dolores and U. Roger, "Software Verification and Validation: An Overview," IEEE
Software, vol. 6, pp. 10-17, 1989.

[84] L. Apfelbaum and J. Doyle, "Model Based Testing," in Software Quality Week
Conference, Brussels, Belgium, 1997, pp. 296-300

[85] M. Utting and B. Legeard, Practical model-based testing: a tools approach: Morgan
Kaufmann, 2010.

[86] S. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. Lott, G. Patton, and B. Horowitz,
"Model-based testing in practice," in Proceedings of the 21st International
Conference on Software Engineering, Los Angeles, USA, 1999, pp. 285-294.

[87] J. Grabowski, V. Kuliamin, A.-G. V. Feudjio, A. Wu-Hen-Chang, and M. Zoric, "Towards
the Usage of MBT at ETSI," arXiv preprint arXiv:1303.1007, 2013.

[88] M. Shafique and Y. Labiche, "A systematic review of model based testing tool
support," Technical Report SCE-10-04, Carleton University, Canada, 2010.

[89] S. Weileder and H. Lackner, "System Models vs. Test Models-Distinguishing the
Undistinguishable?," GI Jahrestagung (2), vol. 10, pp. 321-326, 2010.

[90] J. Zander, I. Schieferdecker, and P. J. Mosterman, Model-based testing for embedded
systems vol. 13: CRC Press, 2012.

[91] C. E. Williams, "Software Testing and the UML," in International Symposium on
Software Reliability Engineering, Florida, USA, 1999.

[92] R. Heckel and M. Lohmann, "Towards Model-Driven Testing," in Electronic Notes in
Theoretical Computer Science. vol. 82, 2003.

[93] M. Mohamed, O. Samir, S. Waseem Al, and H.-L. Abdelwahab, "A Survey of Model-
Driven Testing Techniques," in Proceedings of the Ninth International Conference on
Quality Software: IEEE Computer Society, 2009, pp. 167-172.

http://standards.ieee.org/
http://standards.ieee.org/findstds/standard/982.1-1988.html
http://standards.ieee.org/findstds/standard/982.1-1988.html
http://standards.ieee.org/findstds/standard/1517-2010.html

 165

[94] P. Hamill, Unit Test Frameworks: O’Reilly Media, 2004.

[95] SUnit: http://sunit.sourceforge.net/, accessed on 07/08/2007.

[96] Tefkat: http://tefkat.sourceforge.net/, accessed on 07/08/2007.

[97] MOFScript: http://www.eclipse.org/gmt/mofscript/, accessed on 07/08/2007.

[98] Tefkat Language Syntax: http://tefkat.sourceforge.net/syntax.html, accessed on
01/02/2014.

[99] MOFScript Language Syntax: http://www.eclipse.org/gmt/mofscript/doc/MOFScript-
User-Guide-0.9.pdf, accessed on 01/02/2014.

[100] Daikon: http://pag.csail.mit.edu/daikon/, accessed on 07/08/2007.

[101] ATM System: http://www.math-cs.gordon.edu/courses/cs211/ATMExample/,
accessed on 07/08/2007.

[102] M. Badri, L. Badri, and M. Naha, "A Use Case Driven Testing Process: Towards a
Formal Approach Based on UML Collaboration Diagrams," in Lecture Notes in
Computer Science. vol. 2931 Heidelberg: Springer Berlin, 2004, pp. 223-235.

[103] C. Nebut, F. Fleurey, Y. Le Traon, and J. M. Jezequel, "Automatic test generation: a
use case driven approach," IEEE Transactions on Software Engineering, vol. 32, pp.
140-155, 2006.

[104] R. Eshuis and R. Wieringa, "Tool support for verifying UML activity diagrams," IEEE
Transactions on Software Engineering, vol. 30, pp. 437-447, 2004.

[105] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong, and Z. Guoliang,
"Generating test cases from UML activity diagram based on Gray-box method," in
Proceedings of 11th Asia-Pacific Software Engineering Conference, Busan, Korea,
2004, pp. 284-291.

[106] C. Mingsong, Q. Xiaokang, and L. Xuandong, "Automatic test case generation for
UML activity diagrams," in Proceedings of the 1st International Workshop on
Automation of Software Testing, Shanghai, China, 2006, pp. 2-8.

[107] M. Vieira, J. Leduc, B. Hasling, R. Subramanyan, and J. Kazmeier, "Automation of GUI
testing using a model-driven approach," in Proceedings of the 1st International
Workshop on Automation of Software Test, Shanghai, China, 2006, pp. 9-14.

[108] W. Shen, K. Compton, and J. Huggins, "A Toolset for Supporting UML Static and
Dynamic Model Checking," in Proceedings of the 26th International Computer
Software and Applications Conference, Oxford, UK, 2002, pp. 147-152.

[109] J. Lilius and I. Paltor, "vUML: a tool for verifying UML models," in Proceedings of the
14th International Conference on Automated Software Engineering, Florida, USA,
1999, pp. 255-258.

[110] A. Tsiolakis, "Integrating Model Information in UML Sequence Diagrams," in
Electronic Notes in Theoretical Computer Science. vol. 50: Elsevier, 2001, pp. 1-9.

[111] L. Bousquet, H. Martin, and J.-M. Jezequel, "Conformance Testing from UML
Specifications Experience Report," in Proceedings of the Workshop of the pUML-
Group held together with the Workshop on Practical UML-Based Rigorous

http://sunit.sourceforge.net/
http://tefkat.sourceforge.net/
http://www.eclipse.org/gmt/mofscript/
http://tefkat.sourceforge.net/syntax.html
http://www.eclipse.org/gmt/mofscript/doc/MOFScript-User-Guide-0.9.pdf
http://www.eclipse.org/gmt/mofscript/doc/MOFScript-User-Guide-0.9.pdf
http://pag.csail.mit.edu/daikon/
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/

 166

Development Methods - Countering or Integrating the eXtremists, Toronto, Canada,
2001, pp. 43-55.

[112] A. Cavarra, C. Crichton, and J. Davies, "A method for the automatic generation of test
suites from object models," Information and Software Technology, vol. 46, pp. 309-
14, 2004.

[113] S. Kansomkeat and W. Rivepiboon, "Automated-generating test case using UML
statechart diagrams," in Proceedings of the Annual Conference of the South African
Institute of Computer Scientists and Information Technologists, Gauteng, South
Africa, 2003 pp. 296-300.

[114] Y. G. Kim, H. S. Hong, D. H. Bae, and S. D. Cha, "Test cases generation from UML state
diagrams," Software, IEE Proceedings, vol. 146, pp. 187-192, 1999.

[115] J. Offutt and A. Abdurazik, "Generating Tests from UML Specifications," in
Proceedings of the 2nd International Conference on Unified Modelling Language,
Colorado, USA, 1999.

[116] A. Kull, "PhD Thesis: Model Based Testing of Reactive Systems," Tallinn University of
Technology, Faculty of Information Technology, Tallinn, Estonia 2009.

[117] S. Ali, L. C. Briand, M. J.-u. Rehman, H. Asghar, M. Z. Z. Iqbal, and A. Nadeem, "A
state-based approach to integration testing based on UML models," Information and
Software Technology, vol. 49, pp. 1087-1106, 2007.

[118] O. Pilskalns, A. Andrews, R. France, and S. Ghosh, "Rigorous Testing by Merging
Structural and Behavioral UML Representations," in Lecture Notes in Computer
Science. vol. 2863 San Francisco, USA: Springer, 2003, pp. 234-248.

[119] F. Basanieri and A. Bertolino, "A Practical approach to UML-based derivation of
integration tests," in Proceedings of the Fourth International Software Quality Week
Europe and International Internet Quality Week Europe, Brussels, Belgium, 2000, pp.
20-24.

[120] F. Basanieri, A. Bertolino, and E. Marchetti, "CoWTeSt: A Cost Weighed Test
Strategy," in Proceedings of the ESCOM-SCOPE, London, England, 2001, pp. 387-396.

[121] F. Basanieri, A. Bertolino, and E. Marchetti, "The Cow_Suite Approach to Planning
and Deriving Test Suites in UML Projects," in Proceedings of the 5th International
Conference on the Unified Modeling: the Language and its Applications, Dresden,
Germany, 2002, pp. 383-397.

[122] J. Wittevrongel and F. Maurer, "SCENTOR: scenario-based testing of e-business
applications," in Proceedings of the 10th IEEE International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, Cambridge, USA, 2001, pp.
41-46.

[123] N. Ashalatha and S. Debasis, "Model-based test cases synthesis using UML
interaction diagrams," SIGSOFT Software Engineering Notes, vol. 34, pp. 1-10, 2009.

[124] B. Pasternak, S. Tyszberowicz, and A. Yehudai, "GenUTest: a unit test and mock
aspect generation tool," International Journal on Software Tools for Technology
Transfer (STTT), vol. 11, pp. 273-290, 2009.

 167

[125] M. Sarma, D. Kundu, and R. Mall, "Automatic Test Case Generation from UML
Sequence Diagram," in Fifteenth International Conference on Advanced Computing
and Communications (ADCOM), Guwahati, India, 2007, pp. 60-67.

[126] S. K. Swain, D. P. Mohapatra, and R. Mall, "Test case generation based on use case
and sequence diagram," International Journal of Software Engineering, vol. 3, pp. 21-
52, 2010.

[127] E. G. Cartaxo, F. G. O. Neto, and P. D. L. Machado, "Test case generation by means of
UML sequence diagrams and labeled transition systems," in Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, 2007, pp. 1292-1297.

[128] B.-L. Li, Z.-s. Li, L. Qing, and Y.-H. Chen, "Test case automate generation from UML
sequence diagram and OCL expression," in International Conference on
Computational Intelligence and Security, 2007, pp. 1048-1052.

[129] A. Nayak and D. Samanta, "Model-based test cases synthesis using UML interaction
diagrams," ACM SIGSOFT Software Engineering Notes, vol. 34, pp. 1-10, 2009.

[130] A. Nayak and D. Samanta, "Automatic test data synthesis using uml sequence
diagrams," Journal of Object Technology, vol. 9, pp. 75-104, 2010.

[131] A. V. K. Shanthi and G. M. Kumar, "Automated Test Cases Generation from UML
Sequence Diagram," in Proceedings of the International Conference on Software and
Computer Applications, Singapore, 2012.

[132] A. Andrews, R. France, S. Ghosh, and G. Craig, "Test adequacy criteria for UML design
models," Software Testing, Verification and Reliability, vol. 13, pp. 95–127, 2003.

[133] L. Briand and Y. Labiche, "A UML-Based Approach to System Testing," Software
System Model, vol. 1, pp. 10–42, 2002.

[134] S. Supavita and T. Suwannasart, "Testing polymorphic interactions in UML sequence
diagrams," in Proceedings of the International Conference on Information
Technology: Coding and Computing, Las Vegas, USA, 2005, pp. 449-454.

[135] A. Abdurazik and J. Offutt, "Using UML Collaboration Diagrams for Static Checking
and Test Generation," in Proceedings of the 3rd International Conference on Unified
Modeling Language, York, UK, 2000.

[136] Z. Dai, "Model-Driven Testing with UML 2.0," in Proceedings of the 2nd European
Workshop on Model Driven Architecture, Kent, UK, 2004.

[137] J. Zander, Z. R. Dai, I. Schieferdecker, and G. Din, "From U2TP models to executable
tests with TTCN-3: an approach to model driven testing," in Lecture Notes in
Computer Science. vol. 3502 Montreal, Canada: Springer-Verlag, 2005, pp. 146-158.

[138] J. Grabowski, D. Hogrefe, G. Rethy, I. Schieferdecker, W. Anthony, and W. Colin, "An
introduction to the testing and test control notation (TTCN-3)," Computer Networks,
vol. 42, pp. 375-403, 2003.

[139] T. Dinh-Trong, N. Kawane, S. Ghosh, R. France, and A. Andrews, "A tool-supported
approach to testing UML design models," in Proceedings of the 10th IEEE
International Conference on Engineering of Complex Computer Systems, Shanghai,
China, 2005, pp. 519-528.

 168

[140] G. Engels, B. Güldali, and M. Lohmann, "Towards Model-Driven Unit Testing," in
Proceedings of the 3rd Workshop on Model Design and Validation, Genova, Italy,
2006, pp. 16 - 29.

[141] M. Felderer, F. Fiedler, P. Zech, and R. Breu, "Model-driven System Testing of a
Telephony Connector with Telling Test Stories," in Proceedings of the 12th
International Conference on Quality Engineering in Software Technology
(CONQUEST), Nuremberg, Germany, 2009, pp. 247-260.

[142] M. Felderer, J. Chimiakaopoka, and R. Breu, "Model-driven System Testing of Service
Oriented Systems," in Proceedings of the Ninth International Conference on Quality
Software, 2009, pp. 92-108.

[143] A. Schurr, S. Oster, and F. Markert, "Model-driven software product line testing: An
integrated approach," in SOFSEM 2010: Theory and Practice of Computer Science:
Springer, 2010, pp. 112-131.

[144] M. Grochtmann and K. Grimm, "Classification trees for partition testing," Software
Testing, Verification and Reliability, vol. 3, pp. 63-82, 1993.

[145] Y. Ridene and F. Barbier, "A model-driven approach for automating mobile
applications testing," in Proceedings of the 5th European Conference on Software
Architecture, p. 9.

[146] EMF: http://www.eclipse.org/emf/, accessed on 07/08/2007.

[147] Implementation of Dijkstra's Shortest-Path Algorithm:
www.users.cis.fiu.edu/~weiss/dsj2/code/Graph.java, accessed on 05/01/2011.

[148] Institute of Electronics and Electrical Engineers, "IEEE Standard Glossary of Software
Engineering Technology: IEEE Standard 610-12-1990," IEEE Press, New York 1990.

[149] J. McQuillan and J. Power, "A survey of UML-based coverage criteria for software
testing," Technical Report, Department of Computer Science. NUI Maynooth, Co.
Kildare, Ireland 2005.

[150] S. McMaster and A. M. Memon, "Call Stack Coverage for Test Suite Reduction," in
Proceedings of the 21st IEEE International Conference on Software Maintenance:
IEEE Computer Society, 2005, pp. 539-548.

[151] K. Saif-ur-Rehman, A. Nadeem, and A. Awais, "TestFilter: A Statement-Coverage
Based Test Case Reduction Technique," in Multitopic Conference, 2006. INMIC '06.
IEEE, 2006, pp. 275-280.

[152] J. A. Jones and M. J. Harrold, "Test-suite reduction and prioritization for modified
condition/decision coverage," Software Engineering, IEEE Transactions on, vol. 29,
pp. 195-209, 2003.

[153] C. Xia and R. L. Michael, "The effect of code coverage on fault detection under
different testing profiles," SIGSOFT Software Engineering Notes, vol. 30, pp. 1-7,
2005.

[154] W. E. Wong, Q. Yu, Z. Lei, and C. Kai-Yuan, "Effective Fault Localization using Code
Coverage," in 31st Annual International Computer Software and Applications
Conference, (COMPSAC 2007), Beijing, China, 2007, pp. 449-456.

http://www.eclipse.org/emf/
http://www.users.cis.fiu.edu/~weiss/dsj2/code/Graph.java

 169

[155] A. Piziali, Functional Verification Coverage Measurement and Analysis: Springer,
2004.

[156] R. G. Hamlet, "Testing Programs with the Aid of a Compiler," IEEE Transactions on
Software Engineering, vol. 3, pp. 279-290, 1977.

[157] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, "Hints on Test Data Selection: Help for
the Practicing Programmer," Computer, vol. 11, pp. 34-41, 1978.

[158] T. A. Budd, R. J. Lipton, F. G. Sayward, and R. A. Demillo, "The design of a prototype
mutation system for program testing," in Proceedings of the National Computer
Conference, Los Angeles, California, 1978, pp. 623-627.

[159] R. A. DeMillo, "Test Adequacy And Program Mutation," in 11th International
Conference on Software Engineering, 1989, pp. 355-356.

[160] B. Baudry, Y. L. Traon, J.-M. Jezequel, and H. Vu, "Trustable Components: Yet
Another Mutation-Based Approach," in Proceedings of the 1st Symposium on
Mutation Testing, San Jose, California, pp. 69-76.

[161] Y.-S. Ma, J. Offutt, and Y. Kwon, "MuJava: an automated class mutation system:
Research Articles," Software Testing, Verification and Reliability, vol. 15, pp. 97-133,
2005.

[162] J. Offutt, J. Pan, K. Tewary, and T. Zhang, "An experimental evaluation of data flow
and mutation testing," Software Practice and Experience, vol. 26, pp. 165-176, 1996.

[163] M. Masud, A. Nayak, M. Zaman, and N. Bansal, "Strategy for mutation testing using
genetic algorithms," in Canadian Conference on Electrical and Computer Engineering,
2005, pp. 1049-1052.

[164] R. H. Untch, "Mutation-based software testing using program schemata," in
Proceedings of the 30th annual Southeast regional conference Raleigh, North
Carolina: ACM, 1992.

[165] J. A. Clark, H. Dan, and R. M. Hierons, "Semantic mutation testing," Science of
Computer Programming, vol. 78, pp. 345-363, 2013.

[166] R. S. Boyer and J. S. Moore, "A Fast String Searching Algorithm," Communications of
the ACM (CACM), vol. 20, pp. 762-772, 1977.

[167] National Institute of Standards and Technology (NIST):
http://www.nist.gov/dads/HTML/boyermoore.html, accessed on 11/12/2008.

[168] M. J. Harrold, R. Gupta, and M. L. Soffa, "A methodology for controlling the size of a
test suite," in Proceedings of the Conference on Software Maintenance, 1990, pp.
302-310.

[169] D. Jeffrey and G. Neelam, "Test suite reduction with selective redundancy," in
Proceedings of the 21st IEEE International Conference on Software Maintenance,
2005, pp. 549-558.

[170] A. da Silva Simao, R. Fernandes de Mello, and L. J. Senger, "A Technique to Reduce
the Test Case Suites for Regression Testing Based on a Self-Organizing Neural
Network Architecture," in Proceedings of the 30th Annual International Computer
Software and Applications Conference (COMPSAC '06), 2006, pp. 93-96.

http://www.nist.gov/dads/HTML/boyermoore.html

 170

[171] B. Vaysburg, L. H. Tahat, and B. Korel, "Dependence analysis in reduction of
requirement based test suites," in Proceedings of the 2002 ACM SIGSOFT
international symposium on Software testing and analysis Roma, Italy: ACM, 2002,
pp. 107-111.

[172] B. Korel, L. H. Tahat, and B. Vaysburg, "Model based regression test reduction using
dependence analysis," in Proceedings of International Conference on Software
Maintenance, 2002, pp. 214-223.

[173] Y. Chen, R. L. Probert, and H. Ural, "Regression test suite reduction using extended
dependence analysis," in Fourth international workshop on Software quality
assurance: in conjunction with the 6th ESEC/FSE joint meeting, 2007, pp. 62-69.

[174] X. Zhang, B. Xu, Z. Chen, C. Nie, and L. Li, "An Empirical Evaluation of Test Suite
Reduction for Boolean Specification-Based Testing (Short Paper)," in Proceedings of
the Eighth International Conference on Quality Software, 2008, pp. 270-275.

[175] S. Xu, H. Miao, and H. Gao, "Test Suite Reduction Using Weighted Set Covering
Techniques," in 13th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel & Distributed Computing, 2012, pp.
307-312.

[176] J. Prakash Rout, R. Mishra, and R. Malu, "An Effective Test Suite Reduction Using
Priority Cost Technique," International Journal of Computer Science & Engineering
Technolog, 2013.

[177] B. Dale, S. Itai, T.-B. Rachel, and Z. Aviad, "Interaction-based test-suite minimization,"
in Proceedings of the 2013 International Conference on Software Engineering San
Francisco, USA: IEEE Press, 2013, pp. 182-191.

[178] N. Koochakzadeh, V. Garousi, and F. Maurer, "Test redundancy measurement based
on coverage information: evaluations and lessons learned," in International
Conference on Software Testing Verification and Validation, 2009., 2009, pp. 220-
229.

[179] M. J. Harrold, R. Gupta, and M. L. Soffa, "A methodology for controlling the size of a
test suite," ACM Transactions on Software Engineering and Methodology, vol. 2, pp.
270-285, 1993.

[180] A. J. Offutt, J. Pan, and J. M. Voas, "Procedures for reducing the size of coverage-
based test sets," in Proceedings of the 12th International Conference on Testing
Computer Software, 1995, pp. 111-123.

[181] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, "Effect of test set
minimization on fault detection effectiveness," Software Practice Experience, vol. 28,
pp. 347 - 369, 1998.

[182] J. A. Jones and M. J. Harrold, "Test-suite reduction and prioritization for modified
condition/decision coverage," IEEE Transactions on Software Engineering, vol. 29,
pp. 195-209, 2003.

[183] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, "An empirical study of the effects
of minimization on the fault detection capabilities of test suites," in Proceedings of
the International Conference on Software Maintenance, 1998, pp. 34-43.

 171

[184] E. Hatcher, O. Gospodnetić, and M. McCandless, Lucene In Action: Manning
Publications Co., 2008.

[185] Apache: http://www.apache.org/, accessed on 28/12/2008.

[186] Lucene Applications: http://wiki.apache.org/lucene-java/PoweredBy, accessed on
28/12/2008.

[187] JavaCC: https://javacc.dev.java.net/, accessed on 21/11/2009.

[188] J. Czerwonka, "Pairwise testing in real world," in Proceedings of the 24th Pacific
Northwest Software Quality Conference (PNSQ), 2006, pp. 419--430

[189] J. Jaccard, M. A. Becker, and G. Wood, "Pairwise multiple comparison procedures: a
review," Psychological Bulletin, vol. 96, p. 589, 1984.

[190] K. G. Jamieson and R. D. Nowak, "Active ranking using pairwise comparisons," Neural
Information Processing Systems, pp. 2240-2248, 2011.

[191] W. P. Maddison, "Testing character correlation using pairwise comparisons on a
phylogeny," Journal of Theoretical Biology, vol. 202, pp. 195-204, 2000.

[192] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, "The AETG system: an
approach to testing based on combinatorial design," IEEE Transactions on Software
Engineering, vol. 23, pp. 437-444, 1997.

[193] Z. Wang, C. Nie, and B. Xu, "Generating combinatorial test suite for interaction
relationship," in Proceedings of the 4th international workshop on software quality
assurance: in conjunction with the 6th ESEC/FSE joint meeting Dubrovnik, Croatia:
ACM, 2007.

[194] M. Grindal, BirgittaLindström, J. Offutt, and S. Andler, "An evaluation of combination
strategies for test case selection," Empirical Software Engineering, vol. 11, pp. 583-
611, 2006.

[195] MD-CDCT: http://www.itee.uq.edu.au/~abuzafer/, accessed on 30/07/2011.

[196] Java Instrumentation Engine: http://people.csail.mit.edu/tromer/jie/, accessed on
20/11/2009.

[197] SOOT: http://www.sable.mcgill.ca/soot/, accessed on 06/07/2014.

[198] M. Rehman and F. Jabeen, "Testing software components for integration: a survey of
isuues and techniques," Software Testing, Verification and Reliability, vol. 17, pp. 95-
133, 2007.

[199] H Jaygarl, S. Kim, T. Xie and C. K. Chang, "OCAT: object capture-based automated
testing," in Proceedings of the 19th international symposium on Software testing and
analysis, 2010, pp. 159-170

http://www.apache.org/
http://wiki.apache.org/lucene-java/PoweredBy
http://www.itee.uq.edu.au/~abuzafer/
http://people.csail.mit.edu/tromer/jie/
http://www.sable.mcgill.ca/soot/

 172

 173

APPENDIX A: VENDING MACHINE EXAMPLE

A.1: Test Suite for Dispenser (CT)

import junit.framework.*;
public class CT_Dispenser extends TestCase {

int[][] data1, data2, data3; // Test data for i) Test Case 1-15, ii) Test Cases 16-30 and iii) Test Cases 31-45

protected void setUp() {
 data1 = new int [][] {
 {0, 0, -3}, {0, 3, -3}, {0, 4, -3}, {0, 1, -2}, {0, 5, -1},
 {1, 0, -3}, {1, 3, -3}, {1, 4, -3}, {1, 1, -2}, {1, 5, -1},
 {2, 0, 2}, {2, 3, 2}, {2, 4, 2}, {2, 1, -2}, {2, 5, -1} };

 data2 = new int [][] {
 {0, 0, 0, -3, -3}, {0, 3, 3, -3, -3}, {0, 4, 4, -3, -3}, {0, 1, 1, -2, -2}, {0, 5, 5, -1, -1},
 [101 -3, -3], {1, 3, 3, -3, -3}, {1, 4, 4, -3, -3}, {1, 1, 1, -2, -2}, {1, 5, 5, -1, -1},
 {2, 0, 0, 2, -3}, {2, 3, 3, 2, -3}, {2, 4, 4, 2, -3}, {2, 1, 1, -2, -2}, {2, 5, 5, -1, -1}, };

 data3 = new int [][] {
 {0, 0, 0, 0, -3, -3}, {0, 3, 0, 3, -3, -3}, {0, 4, 0, 4, -3, -3}, {0, 1, 0, 1, -2, -2}, {0, 5, 0, 5, -1, -1},
 [101 0, -3, -3], {1, 3, 1, 3, -3, -3}, {1, 4, 1, 4, -3, -3}, {1, 1, 1, 1, -2, -2}, {1, 5, 1, 5, -1, -1},
 {2, 0, 2, 0, 2, 2}, {2, 3, 2, 3, 2, 2}, {2, 4, 2, 4, 2, 2}, {2, 1, 2, 1, -2, -2}, {2, 5, 2, 5, -1, -1}, };
}
public void testDispenser() {
 try {
 Dispenser dispenser;
 int expected_value, return_value;

 for (int i=0; i<15; i++) {
 dispenser = new Dispenser();
 dispenser.setCredit(data1[i][0]);
 return_value = (int) dispenser.dispense(data1[i][1]);
 expected_value = data1[i][2];
 assertTrue(return_value == expected_value);
 }
 for (int i=0; i<15; i++) {
 dispenser = new Dispenser();

 dispenser.setCredit(data2[i][0]);
 return_value = (int) dispenser.dispense(data2[i][1]);
 expected_value = data2[i][3];
 assertTrue(return_value == expected_value);
 return_value = (int) dispenser.dispense(data2[i][2]);
 expected_value = data2[i][4];
 assertTrue(return_value == expected_value);
 }
 for (int i=0; i<15; i++) {
 dispenser = new Dispenser();
 dispenser.setCredit(data3[i][0]);
 return_value = (int) dispenser.dispense(data3[i][1]);
 expected_value = data3[i][4];
 assertTrue(return_value == expected_value);
 dispenser.setCredit(data3[i][2]);
 return_value = (int) dispenser.dispense(data3[i][3]);
 expected_value = data3[i][5];
 assertTrue(return_value == expected_value);
 }
 } catch (Exception exp) { fail("Exception in test case execution"); }
} //End of Method
} //End of Class

 174

A.2: SMC-Model for Vending Machine (CDCT)

 175

A.3: Test data for Vending Machine (CDCT)

<?xml version="1.0" encoding="UTF-8"?>

<SequenceDiagram name="vm1">

 <Message name="Integer::SETUP_Parameter1">
 <ConstructorParameter name="item1" value="3"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message1" value="Insufficient credit"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message2" value="Insufficient credit"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message3" value="Take your item"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message4" value="Take your item:Take your change"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message5" value="Insufficient credit"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message6" value="Insufficient credit"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message7" value="Take your item"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message8" value="Insufficient credit"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message9a" value="Take your item"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message9b" value="Take your item"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message10a" value="Take your item:Take your change"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message10b" value="Insufficient credit"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message11a" value="Take your item"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message11b" value="Insufficient credit"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message12a" value="Insufficient credit"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message12b" value="Insufficient credit"/>
 </Message>

</SequenceDiagram>

 176

<?xml version="1.0" encoding="UTF-8"?>
<SequenceDiagram name="vm2">

 <Message name="Integer::SETUP_Parameter1">
 <ConstructorParameter name="item1" value="2"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message1" value="Item unavailable"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message2" value="Item unavailable"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message3" value="Item unavailable"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message4" value="Item unavailable"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message5" value="Item unavailable"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message6" value="Item unavailable"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message7" value="Item unavailable"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message8" value="Item unavailable"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message9a" value="Item unavailable"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message9b" value="Item unavailable"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message10a" value="Item unavailable"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message10b" value="Item unavailable"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message11a" value="Item unavailable"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message11b" value="Item unavailable"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message12a" value="Item unavailable"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message12b" value="Item unavailable"/>
 </Message>

</SequenceDiagram>

 177

<?xml version="1.0" encoding="UTF-8"?>

<SequenceDiagram name="vm3">

 <Message name="Integer::SETUP_Parameter1">
 <ConstructorParameter name="item1" value="35"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message1" value="Invalid selection"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message2" value="Invalid selection"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message3" value="Invalid selection"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message4" value="Invalid selection"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message5" value="Invalid selection"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message6" value="Invalid selection"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message7" value="Invalid selection"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message8" value="Invalid selection"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message9a" value="Invalid selection"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message9b" value="Invalid selection"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message10a" value="Invalid selection"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message10b" value="Invalid selection"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message11a" value="Invalid selection"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message11b" value="Invalid selection"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message12a" value="Invalid selection"/>
 </Message>
 <Message name="VendingMachine::vend">
 <ExpectedValue name="message12b" value="Invalid selection"/>
 </Message>

</SequenceDiagram>

 178

A.4: xUnit-Model for Vending Machine (CDCT)

 179

A.5: Test suite for Vending Machine (CDCT)

import junit.framework.*;

public class TestSuite_vm1 extends TestCase {

 public static void main(String args[]) {
 TestSuite testSuite = new TestSuite(TestSuite_vm1.class);
 testSuite.run(new TestResult());
 }

 public void test_vm1() {

 try {
 VendingMachine vendingMachine = new VendingMachine();
 int item1 = 3;
 Integer integer1 = new Integer(item1);
 String expected_message1 = "Insufficient credit";
 String message1 = (String) vendingMachine.vend(item1);
 assertTrue(message1.equals(expected_message1));

 vendingMachine.reset();
 vendingMachine.insert();
 String expected_message2 = "Insufficient credit";
 String message2 = (String) vendingMachine.vend(item1);
 assertTrue(message2.equals(expected_message2));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message3 = "Take your item";
 String message3 = (String) vendingMachine.vend(item1);
 assertTrue(message3.equals(expected_message3));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message4 = "Take your item:Take your change";
 String message4 = (String) vendingMachine.vend(item1);
 assertTrue(message4.equals(expected_message4));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 String cancel1 = (String) vendingMachine.cancel();
 String expected_message5 = "Insufficient credit";
 String message5 = (String) vendingMachine.vend(item1);
 assertTrue(message5.equals(expected_message5));

 vendingMachine.reset();
 vendingMachine.insert();
 String cancel2 = (String) vendingMachine.cancel();
 vendingMachine.insert();
 String expected_message6 = "Insufficient credit";
 String message6 = (String) vendingMachine.vend(item1);
 assertTrue(message6.equals(expected_message6));

 vendingMachine.reset();
 vendingMachine.insert();
 String cancel3 = (String) vendingMachine.cancel();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message7 = "Take your item";
 String message7 = (String) vendingMachine.vend(item1);
 assertTrue(message7.equals(expected_message7));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 String cancel4 = (String) vendingMachine.cancel();
 vendingMachine.insert();
 String expected_message8 = "Insufficient credit";
 String message8 = (String) vendingMachine.vend(item1);

 180

 assertTrue(message8.equals(expected_message8));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message9a = "Take your item";
 String message9a = (String) vendingMachine.vend(item1);
 assertTrue(message9a.equals(expected_message9a));

 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message9b = "Take your item";
 String message9b = (String) vendingMachine.vend(item1);
 assertTrue(message9b.equals(expected_message9b));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message10a = "Take your item:Take your change";
 String message10a = (String) vendingMachine.vend(item1);
 assertTrue(message10a.equals(expected_message10a));
 String expected_message10b = "Insufficient credit";
 String message10b = (String) vendingMachine.vend(item1);
 assertTrue(message10b.equals(expected_message10b));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message11a = "Take your item";
 String message11a = (String) vendingMachine.vend(item1);
 assertTrue(message11a.equals(expected_message11a));
 String expected_message11b = "Insufficient credit";
 String message11b = (String) vendingMachine.vend(item1);
 assertTrue(message11b.equals(expected_message11b));

 vendingMachine.reset();
 vendingMachine.insert();
 String expected_message12a = "Insufficient credit";
 String message12a = (String) vendingMachine.vend(item1);
 assertTrue(message12a.equals(expected_message12a));

 vendingMachine.insert();
 String expected_message12b = "Insufficient credit";
 String message12b = (String) vendingMachine.vend(item1);
 assertTrue(message12b.equals(expected_message12b));

 } catch (Exception exp) {
 System.out.println(exp.toString());
 fail("Exception occured during test case execution");
 }

 } //End of Method
} //End of Class

 181

import junit.framework.*;

public class TestSuite_vm2 extends TestCase {

 public static void main(String args[]) {
 TestSuite testSuite = new TestSuite(TestSuite_vm2.class);
 testSuite.run(new TestResult());
 }

 public void test_vm2() {

 try {
 VendingMachine vendingMachine = new VendingMachine();
 int item1 = 2;
 Integer integer1 = new Integer(item1);
 String expected_message1 = "Item unavailable";
 String message1 = (String) vendingMachine.vend(item1);
 assertTrue(message1.equals(expected_message1));

 vendingMachine.reset();
 vendingMachine.insert();
 String expected_message2 = "Item unavailable";
 String message2 = (String) vendingMachine.vend(item1);
 assertTrue(message2.equals(expected_message2));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message3 = "Item unavailable";
 String message3 = (String) vendingMachine.vend(item1);
 assertTrue(message3.equals(expected_message3));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message4 = "Item unavailable";
 String message4 = (String) vendingMachine.vend(item1);
 assertTrue(message4.equals(expected_message4));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 String cancel1 = (String) vendingMachine.cancel();
 String expected_message5 = "Item unavailable";
 String message5 = (String) vendingMachine.vend(item1);
 assertTrue(message5.equals(expected_message5));

 vendingMachine.reset();
 vendingMachine.insert();
 String cancel2 = (String) vendingMachine.cancel();
 vendingMachine.insert();
 String expected_message6 = "Item unavailable";
 String message6 = (String) vendingMachine.vend(item1);
 assertTrue(message6.equals(expected_message6));

 vendingMachine.reset();
 vendingMachine.insert();
 String cancel3 = (String) vendingMachine.cancel();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message7 = "Item unavailable";
 String message7 = (String) vendingMachine.vend(item1);
 assertTrue(message7.equals(expected_message7));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 String cancel4 = (String) vendingMachine.cancel();
 vendingMachine.insert();
 String expected_message8 = "Item unavailable";
 String message8 = (String) vendingMachine.vend(item1);
 assertTrue(message8.equals(expected_message8));

 182

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message9a = "Item unavailable";
 String message9a = (String) vendingMachine.vend(item1);
 assertTrue(message9a.equals(expected_message9a));

 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message9b = "Item unavailable";
 String message9b = (String) vendingMachine.vend(item1);
 assertTrue(message9b.equals(expected_message9b));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message10a = "Item unavailable";
 String message10a = (String) vendingMachine.vend(item1);
 assertTrue(message10a.equals(expected_message10a));
 String expected_message10b = "Item unavailable";
 String message10b = (String) vendingMachine.vend(item1);
 assertTrue(message10b.equals(expected_message10b));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message11a = "Item unavailable";
 String message11a = (String) vendingMachine.vend(item1);
 assertTrue(message11a.equals(expected_message11a));
 String expected_message11b = "Item unavailable";
 String message11b = (String) vendingMachine.vend(item1);
 assertTrue(message11b.equals(expected_message11b));

 vendingMachine.reset();
 vendingMachine.insert();
 String expected_message12a = "Item unavailable";
 String message12a = (String) vendingMachine.vend(item1);
 assertTrue(message12a.equals(expected_message12a));

 vendingMachine.insert();
 String expected_message12b = "Item unavailable";
 String message12b = (String) vendingMachine.vend(item1);
 assertTrue(message12b.equals(expected_message12b));

 } catch (Exception exp) {
 System.out.println(exp.toString());
 fail("Exception occured during test case execution");
 }

 } //End of Method

} //End of Class

 183

import junit.framework.*;

public class TestSuite_vm3 extends TestCase {

 public static void main(String args[]) {
 TestSuite testSuite = new TestSuite(TestSuite_vm3.class);
 testSuite.run(new TestResult());
 }

 public void test_vm3() {

 try {
 VendingMachine vendingMachine = new VendingMachine();
 int item1 = 35;
 Integer integer1 = new Integer(item1);
 String expected_message1 = "Invalid selection";
 String message1 = (String) vendingMachine.vend(item1);
 assertTrue(message1.equals(expected_message1));

 vendingMachine.reset();
 vendingMachine.insert();
 String expected_message2 = "Invalid selection";
 String message2 = (String) vendingMachine.vend(item1);
 assertTrue(message2.equals(expected_message2));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message3 = "Invalid selection";
 String message3 = (String) vendingMachine.vend(item1);
 assertTrue(message3.equals(expected_message3));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message4 = "Invalid selection";
 String message4 = (String) vendingMachine.vend(item1);
 assertTrue(message4.equals(expected_message4));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 String cancel1 = (String) vendingMachine.cancel();
 String expected_message5 = "Invalid selection";
 String message5 = (String) vendingMachine.vend(item1);
 assertTrue(message5.equals(expected_message5));

 vendingMachine.reset();
 vendingMachine.insert();
 String cancel2 = (String) vendingMachine.cancel();
 vendingMachine.insert();
 String expected_message6 = "Invalid selection";
 String message6 = (String) vendingMachine.vend(item1);
 assertTrue(message6.equals(expected_message6));

 vendingMachine.reset();
 vendingMachine.insert();
 String cancel3 = (String) vendingMachine.cancel();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message7 = "Invalid selection";
 String message7 = (String) vendingMachine.vend(item1);
 assertTrue(message7.equals(expected_message7));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 String cancel4 = (String) vendingMachine.cancel();
 vendingMachine.insert();
 String expected_message8 = "Invalid selection";
 String message8 = (String) vendingMachine.vend(item1);
 assertTrue(message8.equals(expected_message8));

 184

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message9a = "Invalid selection";
 String message9a = (String) vendingMachine.vend(item1);
 assertTrue(message9a.equals(expected_message9a));

 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message9b = "Invalid selection";
 String message9b = (String) vendingMachine.vend(item1);
 assertTrue(message9b.equals(expected_message9b));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message10a = "Invalid selection";
 String message10a = (String) vendingMachine.vend(item1);
 assertTrue(message10a.equals(expected_message10a));
 String expected_message10b = "Invalid selection";
 String message10b = (String) vendingMachine.vend(item1);
 assertTrue(message10b.equals(expected_message10b));

 vendingMachine.reset();
 vendingMachine.insert();
 vendingMachine.insert();
 String expected_message11a = "Invalid selection";
 String message11a = (String) vendingMachine.vend(item1);
 assertTrue(message11a.equals(expected_message11a));
 String expected_message11b = "Invalid selection";
 String message11b = (String) vendingMachine.vend(item1);
 assertTrue(message11b.equals(expected_message11b));

 vendingMachine.reset();
 vendingMachine.insert();
 String expected_message12a = "Invalid selection";
 String message12a = (String) vendingMachine.vend(item1);
 assertTrue(message12a.equals(expected_message12a));

 vendingMachine.insert();
 String expected_message12b = "Invalid selection";
 String message12b = (String) vendingMachine.vend(item1);
 assertTrue(message12b.equals(expected_message12b));

 } catch (Exception exp) {
 System.out.println(exp.toString());
 fail("Exception occured during test case execution");
 }

 } //End of Method

} //End of Class

 185

A.6: Execution Traces of test suite for Vending Machine (CDCT)

Test Case Trace

1i setCredit(0) dispense(3) output=-3
1ii setCredit(0) dispense(2) output=-3
1iii setCredit(0) dispense(35) output=-3
2i setCredit(1) dispense(3) output=-3
2ii setCredit(1) dispense(2) output=-3
2iii setCredit(1) dispense(35) output=-3
3i setCredit(2) dispense(3) output=2
3ii setCredit(2) dispense(2) output=-2
3iii setCredit(2) dispense(35) output=-1
4i setCredit(3) dispense(3) output=2
4ii setCredit(3) dispense(2) output=2
4iii setCredit(3) dispense(35) output=-1
5i setCredit(0) dispense(3) output=2
5ii setCredit(0) dispense(2) output=-2
5iii setCredit(0) dispense(35) output=-2
6i setCredit(1) dispense(3) output=2
6ii setCredit(1) dispense(2) output=-2
6iii setCredit(1) dispense(35) output=-1
7i setCredit(2) dispense(3) output=2
7ii setCredit(2) dispense(2) output=-2
7iii setCredit(2) dispense(35) output=-1
8i setCredit(1) dispense(3) output=2
8ii setCredit(1) dispense(2) output=-2
8iii setCredit(1) dispense(35) output=-1
9i setCredit(2) dispense(3) output=2 setCredit(2) dispense(3) output=2
9ii setCredit(2) dispense(2) output=-2 setCredit(2) dispense(2) output=-2
9iii setCredit(2) dispense(35) output=-1 setCredit(2) dispense(35) output=-1
10i setCredit(4) dispense(3) output=2 setCredit(0) dispense(3) output=-3
10ii setCredit(4) dispense(2) output=-2 setCredit(0) dispense(2) output=-2
10iii setCredit(4) dispense(35) output=-1 setCredit(0) dispense(35) output=-1
11i setCredit(2) dispense(3) output=2 setCredit(0) dispense(3) output=-3
11ii setCredit(2) dispense(2) output=-2 setCredit(0) dispense(2) output=-2
11iii setCredit(2) dispense(35) output=-1 setCredit(0) dispense(35) output=-1
12i setCredit(1) dispense(3) output=-3 setCredit(1) dispense(3) output=-3
12ii setCredit(1) dispense(2) output=-2 setCredit(1) dispense(2) output=-2
12iii setCredit(1) dispense(35) output=-1 setCredit(1) dispense(35) output=-1

 186

A.7: Test Suite for ∆CT

import junit.framework.*;
public class CT_Dispenser_Delta extends TestCase {

int[][] data1, data2, data3; // Test data for i) Test Cases 1-6, and ii) Test Cases 7-12

 protected void setUp() {
 data1 = new int [][] { {3, 3, 2}, {3, 2, -2}, {3, 35, -1},
 {5, 3, 2}, {5, 2, -2}, {5, 35, -1} };
 data2 = new int [][] { {4, 3, 0, 3, 2, -3}, {4, 2, 0, 2, -2, -2}, {4, 35, 0, 35, -1, -1},
 {5, 3, 0, 3, 2, -3}, {5, 2, 0, 2, -2, -2}, {5, 35, 0, 35, -1, -1} };
 }

 public void testDispenser() {

 try {

 Dispenser dispenser;
 int expected_value, return_value;

 for (int i=0; i<6; i++) {
 dispenser = new Dispenser();
 dispenser.setCredit(data1[i][0]);
 return_value = (int) dispenser.dispense(data1[i][1]);
 expected_value = data1[i][2];
 assertTrue(return_value == expected_value);
 }

 for (int i=0; i<6; i++) {
 dispenser = new Dispenser();
 dispenser.setCredit(data2[i][0]);
 return_value = (int) dispenser.dispense(data2[i][1]);
 expected_value = data2[i][4];
 assertTrue(return_value == expected_value);
 dispenser.setCredit(data2[i][2]);
 return_value = (int) dispenser.dispense(data2[i][3]);
 expected_value = data2[i][5];
 assertTrue(return_value == expected_value);
 }
 } catch (Exception exp) { fail("Exception in test case execution"); }
 } //End of Method
} //End of Class

 187

APPENDIX B: MODEL-DRIVEN TEST CASE GENERATION

B.1: Tefkat rules (horizontal transformation)

TRANSFORMATION smc2xunit : smc->xUnit

IMPORT http://smc
IMPORT http://xUnit

// Rule: 1
RULE Model_2_TestSuite(model, testSuite)

FORALL Model model
MAKE TestSuite testSuite
SET testSuite.name = model.name

;

// Rule: 2
RULE Interaction_2_TestCase(model, testSuite, interaction, testCase)
EXTENDS Model_2_TestSuite(model, testSuite)

FORALL Interaction interaction
WHERE interaction.owner = model
MAKE TestCase testCase
SET testCase.name = interaction.name,

testSuite.testCase = testCase
;

// Rule: 3
RULE Message_2_Assertion(model, testSuite, interaction, testCase, message, assertion, method)
EXTENDS Interaction_2_TestCase(model, testSuite, interaction, testCase)

FORALL Message message
WHERE message.owner = interaction
MAKE Assertion assertion,
 Method method
SET assertion.name = append(append(interaction.name, "_"), message.name),
 method.name = message.name,
 method.static = message.static,

method.accessModifier = message.accessModifier,
 method.freeParameterText = message.freeParameterText,
 assertion.order = message.order,
 assertion.assertionType = message.assertionType,
 assertion.method = method,
 testCase.assertion = assertion,
 testSuite.testCase = testCase

;

// Rule: 4
RULE OwnerClass_2_OwnerClass(model, testSuite, interaction, testCase, message, assertion, method, c1,
c2)
EXTENDS Message_2_Assertion(model, testSuite, interaction, testCase, message, assertion, method)

FORALL ::smc::OwnerClass c1
WHERE c1.owner = message
MAKE ::xUnit::OwnerClass c2
SET c2.name = c1.name,

c2.objectName = c1.objectName,
c2.array = c1.array,

 method.ownerClass = c2
;

// Rule: 5
RULE Parameter_2_Parameter(model, testSuite, interaction, testCase, message, assertion, method, p1,
p2)
EXTENDS Message_2_Assertion(model, testSuite, interaction, testCase, message, assertion, method)

FORALL ::smc::Parameter p1
WHERE p1.owner = message
MAKE ::xUnit::Parameter p2
SET p2.name = p1.name,
 p2.type = p1.type,
 p2.setter = p1.setter,
 method.parameter = p2

;

 188

// Rule: 6
RULE ExpectedValue_2_ExpectedValue(model, testSuite, interaction, testCase, message, assertion,
method, e1, e2)
EXTENDS Message_2_Assertion(model, testSuite, interaction, testCase, message, assertion, method)

FORALL ::smc::ExpectedValue e1
 WHERE e1.owner = message
 MAKE ::xUnit::ExpectedValue e2
 SET e2.name = e1.name,
 e2.type = e1.type,
 e2.setter = e1.setter,
 e2.accessModifier = e1. accessModifier,
 assertion.expectedValue = e2
;

// Rule: 7
RULE SimpleAttribute_2_Parameter(model, testSuite, interaction, testCase, message, assertion, method,
p1, p2, sp1, sp2)
EXTENDS Parameter_2_Parameter(model, testSuite, interaction, testCase, message, assertion, method, p1,
p2)
 FORALL ::smc::SimpleAttribute sp1
 WHERE sp1.owner = p1
 MAKE ::xUnit::SimpleAttribute sp2
 SET sp2.name = sp1.name,
 sp2.type = sp1.type,
 sp2.setter = sp1.setter,
 p2.simpleAttribute = sp2
;

// Rule: 8
RULE ComplexAttribute_2_Parameter(model, testSuite, interaction, testCase, message, assertion, method,
p1, p2, cp1, cp2)
EXTENDS Parameter_2_Parameter(model, testSuite, interaction, testCase, message, assertion, method, p1,
p2)
 FORALL ::smc::ComplexAttribute cp1
 WHERE cp1.owner = p1
 MAKE ::xUnit::ComplexAttribute cp2
 SET cp2.name = cp1.name,
 cp2.type = cp1.type,
 cp2.setter = cp1.setter,
 p2.complexAttribute = cp2
;

// Rule: 9
RULE SimpleAttribute_2_ComplexAttribute_Parameter(model, testSuite, interaction, testCase, message,
assertion, method, p1, p2, cp1, cp2, scp1, scp2)
EXTENDS ComplexAttribute_2_Parameter(model, testSuite, interaction, testCase, message, assertion,
method, p1, p2, cp1, cp2)
 FORALL ::smc::SimpleAttribute scp1
 WHERE scp1.owner = cp1
 MAKE ::xUnit::SimpleAttribute scp2

SET scp2.name = scp1.name,
 scp2.type = scp1.type,
 scp2.setter = scp1.setter,
 cp2.simpleAttribute = scp2
;

// Rule: 10
RULE ComplexAttribute_2_ComplexAttribute_Parameter(model, testSuite, interaction, testCase, message,
assertion, method, p1, p2, cp1, cp2, ccp1, ccp2)
EXTENDS ComplexAttribute_2_Parameter(model, testSuite, interaction, testCase, message, assertion,
method, p1, p2, cp1, cp2)
 FORALL ::smc::ComplexAttribute ccp1
 WHERE ccp1.owner = cp1

MAKE ::xUnit::ComplexAttribute ccp2
SET ccp2.name = ccp1.name,

 ccp2.type = ccp1.type,
ccp2.setter = ccp1.setter,
cp2.complexAttribute = ccp2
;

// Rule: 11
RULE SimpleAttribute_2_ComplexComplex_Parameter(model, testSuite, interaction, testCase, message,
assertion, method, p1, p2, cp1, cp2, ccp1, ccp2, s1, s2)

 189

EXTENDS ComplexAttribute_2_ComplexAttribute_Parameter(model, testSuite, interaction, testCase,
message, assertion, method, p1, p2, cp1, cp2, ccp1, ccp2)
 FORALL ::smc::SimpleAttribute s1
 WHERE s1.owner = ccp1

MAKE ::xUnit::SimpleAttribute s2
SET s2.name = s1.name,

 s2.type = s1.type,
s2.setter = s1.setter,
ccp2.simpleAttribute = s2

;

// Rule: 12
RULE SimpleAttribute_2_ExpectedValue(model, testSuite, interaction, testCase, message, assertion,
method, e1, e2, se1, se2)
EXTENDS ExpectedValue_2_ExpectedValue(model, testSuite, interaction, testCase, message, assertion,
method, e1, e2)
 FORALL ::smc::SimpleAttribute se1
 WHERE se1.owner = e1
 MAKE ::xUnit::SimpleAttribute se2
 SET se2.name = se1.name,
 se2.type = se1.type,
 se2.setter = se1.setter,
 e2.simpleAttribute = se2
;

// Rule: 13
RULE ComplexAttribute_2_ExpectedValue(model, testSuite, interaction, testCase, message, assertion,
method, e1, e2, ce1, ce2)
EXTENDS ExpectedValue_2_ExpectedValue(model, testSuite, interaction, testCase, message, assertion,
method, e1, e2)
 FORALL ::smc::ComplexAttribute ce1
 WHERE ce1.owner = e1
 MAKE ::xUnit::ComplexAttribute ce2
 SET ce2.name = ce1.name,
 ce2.type = ce1.type,
 ce2.setter = ce1.setter,
 e2.complexAttribute = ce2
;

// Rule: 14
RULE SimpleAttribute_2_ComplexAttribute_ExpectedValue(model, testSuite, interaction, testCase,
message, assertion, method, e1, e2, ce1, ce2, sce1, sce2)
EXTENDS ComplexAttribute_2_ExpectedValue(model, testSuite, interaction, testCase, message, assertion,
method, e1, e2, ce1, ce2)
 FORALL ::smc::SimpleAttribute sce1
 WHERE sce1.owner = ce1
 MAKE ::xUnit::SimpleAttribute sce2

SET sce2.name = sce1.name,
 sce2.type = sce1.type,
 sce2.setter = sce1.setter,
 ce2.simpleAttribute = sce2
;

// Rule: 15
RULE ComplexAttribute_2_ComplexAttribute_ExpectedValue(model, testSuite, interaction, testCase,
message, assertion, method, e1, e2, ce1, ce2, cce1, cce2)
EXTENDS ComplexAttribute_2_ExpectedValue(model, testSuite, interaction, testCase, message, assertion,
method, e1, e2, ce1, ce2)
 FORALL ::smc::ComplexAttribute cce1
 WHERE cce1.owner = ce1

MAKE ::xUnit::ComplexAttribute cce2
SET cce2.name = cce1.name,

 cce2.type = cce1.type,
 cce2.setter = cce1.setter,
 ce2.complexAttribute = cce2
;

// Rule: 16
RULE SimpleAttribute_2_ComplexComplex_ExpectedValue(model, testSuite, interaction, testCase, message,
assertion, method, e1, e2, ce1, ce2, cce1, cce2, s1, s2)
EXTENDS ComplexAttribute_2_ComplexAttribute_ExpectedValue(model, testSuite, interaction, testCase,
message, assertion, method, e1, e2, ce1, ce2, cce1, cce2)
 FORALL ::smc::SimpleAttribute s1
 WHERE s1.owner = cce1

 190

 MAKE ::xUnit::SimpleAttribute s2
SET s2.name = s1.name,

 s2.type = s1.type,
 s2.setter = s1.setter,
 cce2.simpleAttribute = s2
;
// Rule: 17
RULE ConstructorParameter_2_ConstructorParameter(model, testSuite, interaction, testCase, message,
assertion, method, c1, c2, cp1, cp2)
EXTENDS OwnerClass_2_OwnerClass(model, testSuite, interaction, testCase, message, assertion, method,
c1, c2)
 FORALL ::smc::ConstructorParameter cp1
 WHERE cp1.owner = c1
 MAKE :xUnit::ConstructorParameter cp2
 SET cp2.name = cp1.name,
 cp2.type = cp1.type,
 cp2.setter = cp1.setter,
 c2.constructorParameter = cp2
;

// Rule: 18
RULE SimpleAttribute_2_ConstructorParameter(model, testSuite, interaction, testCase, message,
assertion, method, c1, c2, cp1, cp2, se1, se2)
EXTENDS ConstructorParameter_2_ConstructorParameter(model, testSuite, interaction, testCase, message,
assertion, method, c1, c2, cp1, cp2)
 FORALL ::smc::SimpleAttribute se1
 WHERE se1.owner = cp1
 MAKE ::xUnit::SimpleAttribute se2
 SET se2.name = se1.name,
 se2.type = se1.type,
 se2.setter = se1.setter,
 cp2.simpleAttribute = se2
;

// Rule: 19
RULE ComplexAttribute_2_ConstructorParameter(model, testSuite, interaction, testCase, message,
assertion, method, c1, c2, cp1, cp2, ce1, ce2)
EXTENDS ConstructorParameter_2_ConstructorParameter(model, testSuite, interaction, testCase, message,
assertion, method, c1, c2, cp1, cp2)
 FORALL ::smc::ComplexAttribute ce1
 WHERE ce1.owner = cp1
 MAKE ::xUnit::ComplexAttribute ce2
 SET ce2.name = ce1.name,
 ce2.type = ce1.type,
 ce2.setter = ce1.setter,
 cp2.complexAttribute = ce2
;

// Rule: 20
RULE SimpleAttribute_2_ComplexAttribute_ConstructorParameter(model, testSuite, interaction, testCase,
message, assertion, method, c1, c2, cp1, cp2, ce1, ce2, sce1, sce2)
EXTENDS ComplexAttribute_2_ConstructorParameter(model, testSuite, interaction, testCase, message,
assertion, method, c1, c2, cp1, cp2, ce1, ce2)
 FORALL ::smc::SimpleAttribute sce1
 WHERE sce1.owner = ce1
 MAKE ::xUnit::SimpleAttribute sce2
 SET sce2.name = sce1.name,
 sce2.type = sce1.type,
 sce2.setter = sce1.setter,
 ce2.simpleAttribute = sce2
;

 191

B.2: MOFScript rules (vertical transformation)

B.2.1: Rules for xUnit to JUnit

/* MOFScript: version 1.1.4
To deal with limitations of this version of MOFScript, the following three java methods are used in these rules:
1. writeHeader(): it simply copies the "CodeHeader" file to the top of the output file (the test case).
2. writeText(): it simply writes the test to the output file (the test case).
3. writeTestData(): it reads data from the "TestData" file and appends it in the output file (the test case).
*/
texttransformation testM2T (in model:xUnit)

/***
Rule 1: main()
Description: This initiates the model-to-text transformation.
Invoked from: none
***/
 model.TestSuite::main() {

 paramHashtable.put("OutputFilePath", outputFilePath)
 paramHashtable.put("OutputFileName", "TestSuite_" + self.testCase.first().name)
 paramHashtable.put("OutputFileExtension", outputFileExtension)

 paramHashtable.put("TestDataFilePath", testDataFilePath)
 paramHashtable.put("TestDataFileName", testDataFileName + "_" + self.testCase.first().name)
 paramHashtable.put("TestDataFileExtension", testDataFileExtension)

 paramHashtable.put("HeaderFilePath", headerFilePath)
 paramHashtable.put("HeaderFileName", headerFileName)
 paramHashtable.put("HeaderFileExtension", headerFileExtension)

 // Copy Code_Header to the Test Case
 java ("Writer", "writeHeader", paramHashtable, "E:/UQ/project3/model2text/")

 text = text + "\npublic class TestSuite_" + self.testCase.first().name + " extends TestCase { \n\n"
 text = text + "\tpublic static void main(String args[]) { \n"
 text = text + "\t\tTestSuite testSuite = new TestSuite(TestSuite_" + self.testCase.first().name + ".class); \n"
 text = text + "\t\ttestSuite.run(new TestResult()); \n\t} \n\t"

 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")

 192

 // Generate code for each test case
 self.testCase->forEach(tc:model.TestCase) {
 tc.mapTestCase()
 }
 text = "\n\r} //End of Class\n";
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 }

/***
Rule 2: mapTestCase()
Description: This generates code for a test case.
Invoked from: main ()
***/
model.TestCase::mapTestCase() {
 variableMap = ""
 variableSuffix = 0
 testCaseCounter = 1;

 text = "\n\tpublic void test_" + self.name + "() {\n\r\ttry {"
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 text = ""
 paramHashtable.put("Interaction", self.name)

 counter = self.assertion.size()
 counter->forEach(c) {
 self.assertion->forEach(a:model.Assertion) {
 if(a.order.trim().equals(c)) {
 a.mapAssertion()
 }
 }
 }

 text = "\n\r\t} catch (Exception exp) {"
 text = text + "\n\t\tSystem.out.println(exp.toString());"
 text = text + "\r\t\tfail(\"Exception occured during test case execution\");\n\t}"
 text = text + "\n\r\t} //End of Method";
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 }

/***
Rule 3: mapAssertion()
Description: This rules creates text for assertion in the test case.
Invoked from: mapTestCase ()

 193

***/
model.Assertion::mapAssertion() {

 assertionType = self.assertionType.trim()
 var accessModifier:String = self.method.first().accessModifier
 isEmptyExpected = self.expectedValue.isEmpty()

 self.method->forEach(m:model.Method | m = self.method.first()) {

 returnType = self.expectedValue.first().type.trim()
 if (self.expectedValue.isEmpty() || self.expectedValue.first().name.equals("")) {
 returnVariable = returnType.firstToLower() + "_"+ variableSuffix
 variableSuffix = variableSuffix + 1
 } else {
 returnVariable = self.expectedValue.first().name.trim()
 }
 expectedVariable = "expected_" + self.expectedValue.first().name.trim()
 typeCast = " (" + returnType + ") "
 assertion = ""
 isSetup = m.name.startsWith("SETUP_")
 isStatic = m.static.equalsIgnoreCase("yes")

 if(isStatic) {
 classReference = m.ownerClass.first().name.trim()
 } else if (m.ownerClass.first().objectName.trim().equals("")) {
 classReference = m.ownerClass.first().name.trim() + "_"+ variableSuffix
 } else {
 classReference = m.ownerClass.first().objectName.trim()
 }

 // map method
 m.mapMethod()

 if (not(isEmptyExpected || assertionType.equals(""))) {
 self.expectedValue->forEach(p:model.ExpectedValue) {
 p.mapExpectedValue()
 }
 }

 // Store the returnVariable in the map for existing variables
 variableMap.put(returnVariable.trim(), returnVariable.trim())

 if(not isSetup) {
 if(isEmptyExpected) {
 returnType = ""
 returnVariable = ""

 194

 typeCast = ""
 assertion = ""
 }

 text = ""
 if (accessModifier.equals("final")) {
 text = "\r\t\t" + accessModifier + " " + returnType + " " + returnVariable +" = new " + returnType +"();"
 }

 if (returnVariable.equals("") || (not accessModifier.equals(""))) {
 text = text +"\r\t\t" + classReference + "." + self.method.first().name.trim() + "(" + parameterText + ");"
 } else {
 text = text + "\r\t\t" + returnType +" " + returnVariable +" = "+ typeCast + classReference + "." + self.method.first().name.trim() + "(" + parameterText + ");"
 }

 if (isStatic || assertionType.equals("")) {
 assertion = ""
 } else if(returnType.equalsIgnoreCase("int") || returnType.equalsIgnoreCase("long") ||
 returnType.equalsIgnoreCase("float") || returnType.equalsIgnoreCase("double") ||
 returnType.equalsIgnoreCase("char")) {
 typeCast = ""
 assertion = "assertTrue(" + returnVariable + " == " + expectedVariable + ");"
 text = text + "\r\t\t" + assertion + "\t\t\t\t// Test Case # " + testCaseCounter + "\r"
 testCaseCounter = testCaseCounter + 1
 } else {
 assertion = "assertTrue(" + returnVariable + ".equals(" + expectedVariable + "));"
 text = text + "\r\t\t" + assertion + "\t\t\t// Test Case # " + testCaseCounter + "\r"
 testCaseCounter = testCaseCounter + 1
 }
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 }
 text = ""
 }
 }

/***
Rule 4: mapMethod()
Description: This rules creates text for method invocation.
Invoked from mapAssertion()
***/
model.Method::mapMethod() {

 var returnType:String = self.ownerClass.first().name
 var isArray:boolean = self.ownerClass.first().array.equals("yes")

 195

 paramHashtable.put("Message", self.ownerClass.first().name.trim() + "::"+ self.name.trim())

 storedClassReference = ""
 key = self.ownerClass.first().objectName

 if(not key.equals("")) {

storedClassReference = variableMap.get(key.trim())
 }

 if(storedClassReference.equals("")) {

 self.ownerClass->forEach(cn:model.OwnerClass | cn = self.ownerClass.first()) {
 cn.mapOwnerClass()
 }

 if(isStatic == false) {

 if(isArray) {
 text = text + "\r\t\t" + returnType + " [] " + classReference + " = new " + returnType + "[] { " + cParameterText + " };"
 }
 else {
 text = text + "\r\t\t" + returnType + " " + classReference + " = new " + returnType + "(" + cParameterText + ");"
 }
 cParameterVariable = self.name + "_"+ variableSuffix
 }
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")

 variableMap.put(classReference.trim(), classReference.trim())
 }

 text = ""
 parameterText = ""
 parameterNumber = 1

 if(not isSetup) {
 self.parameter->forEach(p:model.Parameter) {
 p.mapParameter(parameterNumber)
 parameterNumber = parameterNumber + 1
 }
 }

if(not self.freeParameterText.trim().equals("")) parameterText = self.freeParameterText

}

 196

/***
Rule 5: mapOwnerClass()
Description: This rules creates an object on which the method is invoked.
Invoked from: mapMethod()
***/
model.OwnerClass::mapOwnerClass () {
 cParameterText = ""
 cParameterNumber = 1
 self.constructorParameter->forEach(cp:model.ConstructorParameter) {
 cp.mapConstructorParameter(cParameterNumber)
 cParameterNumber = cParameterNumber + 1
 }
}

/***
Rule 6: mapConstructorParameter()
Description: This rules creates constructor parameter.
Invoked from: mapMethod()
***/
model.ConstructorParameter::mapConstructorParameter(cParameterNumberStr:String) {

 cParameterSeperator = ", "
 if(cParameterNumber == 1) cParameterSeperator = ""

 cParameterType = self.type
 cParameterVariable = self.name

 storedParamVariable = variableMap.get(cParameterVariable.trim())

 // read previous parameter

 if (storedParamVariable.trim().equals("")) {
 cParameterVariable = self.name
 variableMap.put(cParameterVariable.trim(), cParameterVariable.trim())
 } else {
 cParameterVariable = storedParamVariable
 }

cParameterText = cParameterText + cParameterSeperator + self.name

if (storedParamVariable.trim().equals("")) {

 if (self.simpleAttribute.isEmpty() && self.complexAttribute.isEmpty()) {
 text = text + "\n\t\t"+ cParameterType + " " + cParameterVariable + " = "
 if (self.type.equalsIgnoreCase("String")) text = text + "\""
 paramHashtable.put("Text", text)

 197

 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 text = "\n"

 paramHashtable.put("Type", "ConstructorParameter")
 paramHashtable.put("Name", self.name.trim())
 java ("Writer", "writeTestData", paramHashtable, "E:/UQ/project3/model2text/")
 text = ";"
 if (self.type.equalsIgnoreCase("String")) text = "\";"
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 text= ""

 } else {
 text = text + "\n\t\t"+ cParameterType + " "+ cParameterVariable + " = new " + cParameterType + "();"
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 text = "\n"
 }

 complexAttributeCounter = 1
 self.complexAttribute->forEach(ca:model.ComplexAttribute) {
 ca.mapComplexAttribute(cParameterNumberStr, cParameterVariable, complexAttributeCounter)
 complexAttributeCounter = complexAttributeCounter + 1
 }

 simpleAttributeCounter = 1
 self.simpleAttribute->forEach(sa:model.SimpleAttribute) {
 sa.mapSimpleAttribute(cParameterNumberStr, cParameterVariable, simpleAttributeCounter)
 simpleAttributeCounter = simpleAttributeCounter + 1
 }
 }
}

/***
Rule 7: mapExpectedValue()
Description: This rules creates expected value for a method call.
Invoked from mapExpectedValue()
***/
model.ExpectedValue::mapExpectedValue() {

 expectedType = self.type
 expectedVariable = "expected_" + self.name
 if (self.name.equals("")) {
 returnVariable = expectedType.toLower() + "_"+ variableSuffix

 } else {

 198

 returnVariable = self.name
 }
 variableMap.put(returnVariable.trim(), returnVariable.trim())

 paramHashtable.put("Type", "ExpectedValue")

 if (self.simpleAttribute.isEmpty() && self.complexAttribute.isEmpty()) {

 text = text + "\n\t\t"+ expectedType + " " + expectedVariable + " = "
 if (self.type.equalsIgnoreCase("String")) text = text + "\""
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 paramHashtable.put("Type", "ExpectedValue")
 paramHashtable.put("Name", "expected_" + self.name.trim())
 java ("Writer", "writeTestData", paramHashtable, "E:/UQ/project3/model2text/")

 text = ";"
 if (self.type.equalsIgnoreCase("String")) text = "\";"
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 } else {
 text = text + "\n\t\t"+ expectedType + " " + expectedVariable + " = new " + expectedType + "();"
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 }
 complexAttributeCounter = 1
 self.complexAttribute->forEach(ca:model.ComplexAttribute) {
 ca.mapComplexAttribute("1", expectedVariable, complexAttributeCounter)
 complexAttributeCounter = complexAttributeCounter + 1
 }

 simpleAttributeCounter = 1
 self.simpleAttribute->forEach(sa:model.SimpleAttribute) {
 sa.mapSimpleAttribute("1", expectedVariable, simpleAttributeCounter)
 simpleAttributeCounter = simpleAttributeCounter + 1
 }
}

/***
Rule 8: mapParameter()
Description: This rules creates parameter for a method call.
Invoked from: mapMethod()
***/
model.Parameter::mapParameter(parameterNumberStr:String) {

 199

 parameterSeperator = ", "
 if(parameterNumber == 1) parameterSeperator = ""

 storedParamVariable = ""
 parameterVariable = ""

 parameterType = self.type
 parameterVariable = "expected_" + self.name.trim()

 storedParamVariable = variableMap.get(self.name.trim())
 if (storedParamVariable.equals("")) {
 storedParamVariable = variableMap.get(parameterVariable.trim())
 parameterVariable = self.name
 variableMap.put(parameterVariable.trim(), parameterVariable.trim())
 } else {
 parameterVariable = storedParamVariable
 }

 parameterText = parameterText + parameterSeperator + parameterVariable

 if (storedParamVariable.trim().equals("")) {
 text = ""
 if (self.simpleAttribute.isEmpty() && self.complexAttribute.isEmpty()) {
 text = text + "\n\t\t"+ parameterType + " " + parameterVariable + " = "
 if (self.type.equalsIgnoreCase("String")) text = text + "\""
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 text = "\n"

 paramHashtable.put("Type", "Parameter")
 paramHashtable.put("Name", self.name.trim())
 java ("Writer", "writeTestData", paramHashtable, "E:/UQ/project3/model2text/")

 text = ";"
 if (self.type.equalsIgnoreCase("String")) text = "\";"
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 text= ""

 } else {
 text = text + "\n\t\t"+ parameterType + " "+ parameterVariable + " = new " + parameterType + "();"
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 text = "\n"
 }

 200

 complexAttributeCounter = 1
 self.complexAttribute->forEach(ca:model.ComplexAttribute) {
 ca.mapComplexAttribute(parameterNumberStr, parameterVariable, complexAttributeCounter)
 complexAttributeCounter = complexAttributeCounter + 1
 }

 simpleAttributeCounter = 1
 self.simpleAttribute->forEach(sa:model.SimpleAttribute) {
 sa.mapSimpleAttribute(parameterNumberStr, parameterVariable, simpleAttributeCounter)
 simpleAttributeCounter = simpleAttributeCounter + 1
 }
 }
}

/**
Rule 9: mapComplexAttribute()
Description: This rules creates complex objects.
Invoked from: mapParameter(), mapExpectedValue(), mapConstructorParameter()
***/
model.ComplexAttribute::mapComplexAttribute(parameterNumberStr:String, parentVariable:String, complexAttributeCounterStr:String) {

 //text=""
 complexAttributeType = self.type
 complexAttributeVariable = parentVariable + "_"+ complexAttributeType.firstToLower() + complexAttributeCounterStr.firstToLower()
 storedParamVariable = variableMap.get(self.name)

 if (storedParamVariable.equals("")) {
 text = text + "\n\t\t"+complexAttributeType + " "+ complexAttributeVariable + " = new " + complexAttributeType + "();"

 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")

 complexAttributeCounter2 = 1
 self.complexAttribute->forEach(sa:model.ComplexAttribute) {
 sa.mapComplexAttribute(parameterNumberStr, parentVariable + "_"+ self.name.trim(), complexAttributeCounter2)
 complexAttributeCounter2 = complexAttributeCounter2 + 1
 }

 simpleAttributeCounter = 1
 self.simpleAttribute->forEach(sa:model.SimpleAttribute) {
 sa.mapSimpleAttribute(parameterNumberStr, parentVariable + "_"+ self.name.trim(), simpleAttributeCounter)
 simpleAttributeCounter = simpleAttributeCounter + 1
 }
 } else {
 complexAttributeVariable = self.name
 }

 201

 if(self.setter==null) {
 setter = "set" + self.name.firstToUpper()

 } else {
setter = self.setter

 }

 text = "\n\t\t" + parentVariable + "." + setter + "(" + complexAttributeVariable + ");"
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 text = ""
}

/**
Rule 10: mapSimpleAttribute()
Description: This rules creates simple objects.
Invoked from: mapParameter(), mapExpectedValue(), mapConstructorParameter(), mapComplexParameter()
**/
model.SimpleAttribute::mapSimpleAttribute(parameterNumberStr:String, parentVariable:String, simpleAttributeCounterStr:String) {

 text = ""
 simpleAttributeType = self.type
 simpleAttributeVariable = parentVariable + "_"+ simpleAttributeType.firstToUpper()+ simpleAttributeCounterStr

 text = text + "\n\t\t"+ simpleAttributeType + " "+ simpleAttributeVariable + " = "

 if (self.type.equalsIgnoreCase("String")) text = text + "\""
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")

 paramHashtable.put("Name", parentVariable + "_" + self.name.trim())
 java ("Writer", "writeTestData", paramHashtable, "E:/UQ/project3/model2text/")

 text = ";"
 if (self.type.equalsIgnoreCase("String")) text = "\";"
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")

 if(self.setter==null) {
 setter = "set" + self.name.firstToUpper()
 }else {
 setter = self.setter
 }
 text = "\n\t\t" + parentVariable + "." + setter + "(" + simpleAttributeVariable + ");"
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")

 202

 text = ""
}

B.2.2: Rules for xUnit to SUnit

/*
 MOFScript: version 1.1.4
 To deal with limitations of this version of MOFScript, following three java methods are used in these rules:
 1. writeHeader(): it simply copies the "CodeHeader" file to the top of the output file (the test case).
 2. writeText(): it simply writes the test to the output file (the test case).
 3. writeTestData(): it reads data from the "TestData" file and appends it in the output file (generated test case).
*/

texttransformation testM2T (in model:xUnit)

/***
Rule 1: main()
Description: This initiates the model-to-text transformation.
Invoked from: none
***/
 model.TestSuite::main() {

 paramHashtable.put("OutputFilePath", outputFilePath)
 paramHashtable.put("OutputFileName", "TestSuite_" + self.testCase.first().name)
 paramHashtable.put("OutputFileExtension", outputFileExtension)

 paramHashtable.put("TestDataFilePath", testDataFilePath)
 paramHashtable.put("TestDataFileName", testDataFileName + "_" + self.testCase.first().name)
 paramHashtable.put("TestDataFileExtension", testDataFileExtension)

 paramHashtable.put("HeaderFilePath", headerFilePath)
 paramHashtable.put("HeaderFileName", headerFileName)

paramHashtable.put("HeaderFileExtension", headerFileExtension)

 // Copy Code_Header to the Test Case
 java ("Writer", "writeHeader", paramHashtable, "E:/UQ/project3/model2text/")

// Generate code for each test case
 self.testCase->forEach(tc:model.TestCase) {

 text = "\n\tClass: Test_" + tc.name.trim()
 text = text + "\r\t\tsuperclass: TestCase"
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")

 203

 text = ""
 tc.mapTestCase()

 text = "\n\r\t\t|suite|"
 text = text + "\r\t\tsuite := TestSuite named: '" + tc.name.trim() + " Tests'."
 text = text + testCasesToAdd
 text = text + "\n\t\t^suite\n\n"
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 }
 }

/***
Rule 2: mapTestCase()
Description: This generates code for a test case.
Invoked from: main ()
***/

model.TestCase::mapTestCase() {
 variableMap = ""
 variableSuffix = 0
 testCaseCounter = 1

 testCaseName = self.name.trim()
 paramHashtable.put("Interaction", self.name)
 counter = self.assertion.size()
 counter->forEach(c) {
 self.assertion->forEach(a:model.Assertion) {
 if(a.order.trim().equals(c)) {
 a.mapAssertion()
 }

}
 }
 testCaseName = self.name.trim()
}

 204

/***
Rule 3: mapAssertion()
Description: This rules creates text for assertion in the test case.
Invoked from: mapTestCase ()
***/
model.Assertion::mapAssertion() {

 assertionType = self.assertionType.trim()
 var accessModifier:String = self.method.first().accessModifier
 isEmptyExpected = self.expectedValue.isEmpty()

 self.method->forEach(m:model.Method | m = self.method.first()) {

 returnType = self.expectedValue.first().type.trim()
 if (self.expectedValue.isEmpty() || self.expectedValue.first().name.equals("")) {
 returnVariable = returnType.firstToLower() + "_"+ variableSuffix
 variableSuffix = variableSuffix + 1
 } else {
 returnVariable = self.expectedValue.first().name.trim()
 }
 expectedVariable = "expected_" + self.expectedValue.first().name.trim()
 typeCast = " (" + returnType + ") "
 assertion = ""
 isSetup = m.name.startsWith("SETUP_")
 isStatic = m.static.equalsIgnoreCase("yes")

 if(isStatic) {
 classReference = m.ownerClass.first().name.trim()
 } else if (m.ownerClass.first().objectName.trim().equals("")) {
 classReference = m.ownerClass.first().name.trim() + "_"+ variableSuffix
 } else {
 classReference = m.ownerClass.first().objectName.trim()
 }

 // map method
 m.mapMethod()
 if (not(isEmptyExpected || assertionType.equals(""))) {
 self.expectedValue->forEach(p:model.ExpectedValue) {
 p.mapExpectedValue()
 }
 }

 variableMap.put(returnVariable.trim(), returnVariable.trim())

 if(not isSetup) {
 if(isEmptyExpected) {

 205

 returnType = ""
 returnVariable = ""
 typeCast = ""
 assertion = ""
 }

 text = ""
 if (accessModifier.equals("final")) {
 text = "\r\t\t" + accessModifier + " " + returnVariable +" := " + returnType + " new."
 }

 if (not parameterText.equals("")) parameterText = " " + parameterText
 if (returnVariable.equals("") || (not accessModifier.equals(""))) {
 text = text +"\r\t\t" + classReference + " " + self.method.first().name.trim() + parameterText + "."
 } else {
 text = text + "\r\t\t" + returnVariable +" = "+ typeCast + classReference + " " + self.method.first().name.trim() + parameterText + "."
 }
 if (isStatic || assertionType.equals("")) {
 assertion = ""
 } else if(returnType.equalsIgnoreCase("int") || returnType.equalsIgnoreCase("long") ||
 returnType.equalsIgnoreCase("float") || returnType.equalsIgnoreCase("double") ||
 returnType.equalsIgnoreCase("char")) {
 typeCast = ""
 assertion = "self assert:(" + returnVariable + " = " + expectedVariable + ")."
 text = text + "\r\t\t" + assertion + "\t\t\t\t\" Test Case # " + testCaseCounter + "\"\r"
 testCaseCounter = testCaseCounter + 1
 } else {
 assertion = "self assert:(" + returnVariable + " equals " + expectedVariable + ")."
 text = text + "\r\t\t" + assertion + "\t\t\t\" Test Case # " + testCaseCounter + "\"\r"
 testCaseCounter = testCaseCounter + 1
 }
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 }
 text = ""
 }
 }

/***
Rule 4: mapMethod()
Description: This rules creates text for method invocation.
Invoked from: mapAssertion()
***/
model.Method::mapMethod() {

 var returnType:String = self.ownerClass.first().name

 206

 var isArray:boolean = self.ownerClass.first().array.equals("yes")

 paramHashtable.put("Message", self.ownerClass.first().name.trim() + "::"+ self.name.trim())

 storedClassReference = ""
 key = self.ownerClass.first().objectName

 if(not key.equals("")) {

storedClassReference = variableMap.get(key.trim())
}

 if(storedClassReference.equals("")) {

 self.ownerClass->forEach(cn:model.OwnerClass | cn = self.ownerClass.first()) {
 cn.mapOwnerClass()
 }

 if (not cParameterText.equals("")) cParameterText = " " + cParameterText
 if(isStatic == false) {
 text = text + "\r\t\t" + classReference + " := " + returnType + " new" + cParameterText + "."
 cParameterVariable = self.name + "_"+ variableSuffix
 }
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")

 variableMap.put(classReference.trim(), classReference.trim())
 }

 text = ""
 parameterText = ""
 parameterNumber = 1

 if(not isSetup) {
 if (not assertionType.equals("")) {
 text = "\n\r\t\t" + "Test_" + testCaseName + ">>test_" + self.name
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 testCasesToAdd = testCasesToAdd + ("\r\t\tsuite addTestCase:(" + "Test_" + testCaseName + " selector: #" + "test" + self.name + ").")
 text = ""
 }

 self.parameter->forEach(p:model.Parameter) {
 p.mapParameter(parameterNumber)
 parameterNumber = parameterNumber + 1
 }
 }

 207

 if(not self.freeParameterText.trim().equals("")) parameterText = self.freeParameterText
}

/***
Rule 5: mapOwnerClass()
Description: This rules creates an object on which the method is invoked.
Invoked from: mapMethod()
***/
model.OwnerClass::mapOwnerClass () {
 cParameterText = ""
 cParameterNumber = 1
 self.constructorParameter->forEach(cp:model.ConstructorParameter) {
 cp.mapConstructorParameter(cParameterNumber)
 cParameterNumber = cParameterNumber + 1
 }
}

/***
Rule 6: mapConstructorParameter()
Description: This rules creates constructor parameter.
Invoked from: mapMethod()
***/
model.ConstructorParameter::mapConstructorParameter(cParameterNumberStr:String) {

 cParameterSeperator = " with "
 if(cParameterNumber == 1) cParameterSeperator = ""

 cParameterType = self.type
 cParameterVariable = self.name

 storedParamVariable = variableMap.get(cParameterVariable.trim())

 if (storedParamVariable.trim().equals("")) {
 cParameterVariable = self.name
 variableMap.put(cParameterVariable.trim(), cParameterVariable.trim())

 } else {
 cParameterVariable = storedParamVariable
 }

 cParameterText = cParameterText + cParameterSeperator + self.name

 if (storedParamVariable.trim().equals("")) {

 if (self.simpleAttribute.isEmpty() && self.complexAttribute.isEmpty()) {
 text = text + "\n\t\t" + cParameterVariable + " := " + cParameterType + " new."
 text = text + "\n\t\t" + cParameterVariable + " := "

 208

 if (self.type.equalsIgnoreCase("String")) text = text + "\""
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 paramHashtable.put("Type", "ConstructorParameter")
 paramHashtable.put("Name", self.name.trim())
 java ("Writer", "writeTestData", paramHashtable, "E:/UQ/project3/model2text/")

 text = "."
 if (self.type.equalsIgnoreCase("String")) text = "\"."
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 text= ""

 } else {
 text = text + "\n\t\t" + cParameterVariable + " := " + cParameterType + " new."
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 text = "\n"
 }

 complexAttributeCounter = 1
 self.complexAttribute->forEach(ca:model.ComplexAttribute) {
 ca.mapComplexAttribute(cParameterNumberStr, cParameterVariable, complexAttributeCounter)
 complexAttributeCounter = complexAttributeCounter + 1
 }

 simpleAttributeCounter = 1
 self.simpleAttribute->forEach(sa:model.SimpleAttribute) {
 sa.mapSimpleAttribute(cParameterNumberStr, cParameterVariable, simpleAttributeCounter)
 simpleAttributeCounter = simpleAttributeCounter + 1
 }
 }
}

/***
Rule 7: mapExpectedValue()
Description: This rules creates expected value for a method call.
Invoked from: mapAssertion()
***/
 model.ExpectedValue::mapExpectedValue() {

 expectedType = self.type
 expectedVariable = "expected_" + self.name
 if (self.name.equals("")) {

 returnVariable = expectedType.toLower() + "_"+ variableSuffix

 209

 } else {
 returnVariable = self.name
 }

 variableMap.put(returnVariable.trim(), returnVariable.trim())

 paramHashtable.put("Type", "ExpectedValue")

 if (self.simpleAttribute.isEmpty() && self.complexAttribute.isEmpty()) {

 text = text + "\n\t\t"+ expectedVariable + ":= " + expectedType + " new."
 text = text + "\n\t\t"+ expectedVariable + " := "
 if (self.type.equalsIgnoreCase("String")) text = text + "\""
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")

 paramHashtable.put("Type", "ExpectedValue")
 paramHashtable.put("Name", "expected_" + self.name.trim())
 java ("Writer", "writeTestData", paramHashtable, "E:/UQ/project3/model2text/")

 text = "."
 if (self.type.equalsIgnoreCase("String")) text = "\"."
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 } else {
 text = text + "\n\t\t"+ expectedVariable + ":= " + expectedVariable + " new."
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 }
 complexAttributeCounter = 1
 self.complexAttribute->forEach(ca:model.ComplexAttribute) {
 ca.mapComplexAttribute("1", expectedVariable, complexAttributeCounter)
 complexAttributeCounter = complexAttributeCounter + 1
 }

 simpleAttributeCounter = 1
 self.simpleAttribute->forEach(sa:model.SimpleAttribute) {
 sa.mapSimpleAttribute("1", expectedVariable, simpleAttributeCounter)
 simpleAttributeCounter = simpleAttributeCounter + 1
 }
}

 210

/***
Rule 8: mapParameter()
Description: This rules creates parameter for a method call.
Invoked from: mapMethod()
***/
model.Parameter::mapParameter(parameterNumberStr:String) {

 parameterSeperator = " with "
 if(parameterNumber == 1) parameterSeperator = ""

 storedParamVariable = ""
 parameterVariable = ""

 parameterType = self.type
 parameterVariable = "expected_" + self.name.trim()

 storedParamVariable = variableMap.get(self.name.trim())
 if (storedParamVariable.equals("")) {
 storedParamVariable = variableMap.get(parameterVariable.trim())
 parameterVariable = self.name
 variableMap.put(parameterVariable.trim(), parameterVariable.trim())
 } else {
 parameterVariable = storedParamVariable
 }

 parameterText = parameterText + parameterSeperator + parameterVariable

 if (storedParamVariable.trim().equals("")) {

 text = ""
 if (self.simpleAttribute.isEmpty() && self.complexAttribute.isEmpty()) {
 text = text + "\n\t\t"+ parameterVariable + ":= " + parameterType + " new."
 text = text + "\n\t\t"+ parameterVariable + ":= "
 if (self.type.equalsIgnoreCase("String")) text = text + "\""
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 text = "\n"

 paramHashtable.put("Type", "Parameter")
 paramHashtable.put("Name", self.name.trim())
 java ("Writer", "writeTestData", paramHashtable, "E:/UQ/project3/model2text/")

 text = "."
 if (self.type.equalsIgnoreCase("String")) text = "\"."
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")

 211

 text= ""

 } else {
 text = text + "\n\t\t"+ parameterVariable + ":= "+ parameterType + " new."
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 text = "\n"
 }

 complexAttributeCounter = 1
 self.complexAttribute->forEach(ca:model.ComplexAttribute) {
 ca.mapComplexAttribute(parameterNumberStr, parameterVariable, complexAttributeCounter)
 complexAttributeCounter = complexAttributeCounter + 1
 }

 simpleAttributeCounter = 1
 self.simpleAttribute->forEach(sa:model.SimpleAttribute) {
 sa.mapSimpleAttribute(parameterNumberStr, parameterVariable, simpleAttributeCounter)
 simpleAttributeCounter = simpleAttributeCounter + 1
 }
 }
}

/***
Rule 9: mapComplexAttribute()
Description: This rules creates complex objects.
Invoked from: mapParameter(), mapExpectedValue(), mapConstructorParameter()
***/
model.ComplexAttribute::mapComplexAttribute(parameterNumberStr:String, parentVariable:String, complexAttributeCounterStr:String) {

 complexAttributeType = self.type
 complexAttributeVariable = parentVariable + "_"+ complexAttributeType.firstToLower() + complexAttributeCounterStr.firstToLower()

 storedParamVariable = variableMap.get(self.name)

 if (storedParamVariable.equals("")) {
 text = text + "\n\t\t"+complexAttributeVariable + ":= "+ complexAttributeType + " new."

 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")

 complexAttributeCounter2 = 1
 self.complexAttribute->forEach(sa:model.ComplexAttribute) {
 sa.mapComplexAttribute(parameterNumberStr, parentVariable + "_"+ self.name.trim(), complexAttributeCounter2)
 complexAttributeCounter2 = complexAttributeCounter2 + 1
 }

 212

 simpleAttributeCounter = 1
 self.simpleAttribute->forEach(sa:model.SimpleAttribute) {
 sa.mapSimpleAttribute(parameterNumberStr, parentVariable + "_"+ self.name.trim(), simpleAttributeCounter)
 simpleAttributeCounter = simpleAttributeCounter + 1
 }
 } else {
 complexAttributeVariable = self.name
 }

 if(self.setter==null) {
 setter = "set" + self.name.firstToUpper()
 }else {
 setter = self.setter
 }

 text = "\n\t\t" + parentVariable + " " + setter + " " + complexAttributeVariable + "."
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 text = ""
}

/***
Rule 10: mapSimpleAttribute()
Description: This rules creates simple objects.
Invoked from: mapConstructorParameter(), mapParameter(), mapExpectedValue(), mapComplexParameter()
***/
model.SimpleAttribute::mapSimpleAttribute(parameterNumberStr:String, parentVariable:String, simpleAttributeCounterStr:String) {

 text = ""
 simpleAttributeType = self.type
 simpleAttributeVariable = parentVariable + "_"+ simpleAttributeType.firstToUpper()+ simpleAttributeCounterStr

 text = text + "\n\t\t"+ simpleAttributeVariable + ":="+ simpleAttributeType + " new."
 text = text + "\n\t\t"+ simpleAttributeVariable + ":="

 if (self.type.equalsIgnoreCase("String")) text = text + "\""
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")

 paramHashtable.put("Name", parentVariable + "_" + self.name.trim())
 java ("Writer", "writeTestData", paramHashtable, "E:/UQ/project3/model2text/")

 text = "."
 if (self.type.equalsIgnoreCase("String")) text = "\"."

 213

 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")

 if(self.setter==null) {
 setter = "set" + self.name.firstToUpper()
 }else {
 setter = self.setter
 }

 text = "\n\t\t" + parentVariable + " " + setter + " " + simpleAttributeVariable + "."
 paramHashtable.put("Text", text)
 java ("Writer", "writeText", paramHashtable, "E:/UQ/project3/model2text/")
 text = ""

}

Model-Driven Framework for Context Dependent Testing of Components 214

B.3: JUnit test cases generated by MTCG

B.3.1: JUnit test case for withdrawal operation

import atm.*;
import atm.physical.*;
import atm.transaction.*;
import banking.*;
import simulation.*;
import junit.framework.*;
import java.awt.*;
import java.awt.event.*;
import java.net.InetAddress;

public class TestSuite_withdrawal extends TestCase {

 public static void main(String args[]) {
 TestSuite testSuite = new TestSuite(TestSuite_withdrawal.class);
 testSuite.run(new TestResult());
 }

 public void test_withdrawal() {

 try {
 int id = 41;
 String place = "Gorden College";
 String name = "National Bank";
 InetAddress address = null;
 ATM aTM = new ATM(id, place, name, address);
 Session session = new Session(aTM);
 Simulation simulation = new Simulation(aTM);
 Card expected_card = new Card();
 int expected_card_Int1 = 1;
 expected_card.setNumber(expected_card_Int1);
 Card card = (Card) simulation.readCard();
 assertTrue(card.equals(expected_card)); // Test Case # 1

 CustomerConsole customerConsole = new CustomerConsole();
 String prompt = "Please enter PIN.";
 int expected_pin = 42;
 int pin = (int) customerConsole.readPIN(prompt);
 assertTrue(pin == expected_pin); // Test Case # 2

 Transaction.makeTransaction(aTM, session, card, pin);
 Withdrawal withdrawal = new Withdrawal(aTM, session, card, pin);
 withdrawal.performTransaction();
 simulation.ejectCard();

 } catch (Exception exp) {
 System.out.println(exp.toString());
 fail("Exception occured during test case execution");
 }

 } //End of Method

} //End of Class

Model-Driven Framework for Context Dependent Testing of Components 215

B.3.2: JUnit test case for deposit operation

import atm.*;
import atm.physical.*;
import atm.transaction.*;
import banking.*;
import simulation.*;
import junit.framework.*;
import java.awt.*;
import java.awt.event.*;
import java.net.InetAddress;

public class TestSuite_deposit extends TestCase {

 public static void main(String args[]) {
 TestSuite testSuite = new TestSuite(TestSuite_deposit.class);
 testSuite.run(new TestResult());
 }

 public void test_deposit() {

 try {
 int id = 41;
 String place = "Gorden College";
 String name = "National Bank";
 InetAddress address = null;
 ATM aTM = new ATM(id, place, name, address);
 Session session = new Session(aTM);
 Simulation simulation = new Simulation(aTM);
 Card expected_card = new Card();
 int expected_card_Int1 = 1;
 expected_card.setNumber(expected_card_Int1);
 Card card = (Card) simulation.readCard();
 assertTrue(card.equals(expected_card)); // Test Case # 1

 CustomerConsole customerConsole = new CustomerConsole();
 String prompt = "Please enter PIN.";
 int expected_pin = 42;
 int pin = (int) customerConsole.readPIN(prompt);
 assertTrue(pin == expected_pin); // Test Case # 2

 Transaction.makeTransaction(aTM, session, card, pin);
 Deposit deposit = new Deposit(aTM, session, card, pin);
 deposit.performTransaction();
 simulation.ejectCard();

 } catch (Exception exp) {
 System.out.println(exp.toString());
 fail("Exception occured during test case execution");
 }

 } //End of Method

} //End of Class

Model-Driven Framework for Context Dependent Testing of Components 216

B.3.3: JUnit test case for transfer operation

import atm.*;
import atm.physical.*;
import atm.transaction.*;
import banking.*;
import simulation.*;
import junit.framework.*;
import java.awt.*;
import java.awt.event.*;
import java.net.InetAddress;

public class TestSuite_transfer extends TestCase {

 public static void main(String args[]) {
 TestSuite testSuite = new TestSuite(TestSuite_transfer.class);
 testSuite.run(new TestResult());
 }

 public void test_transfer() {

 try {
 int id = 41;
 String place = "Gorden College";
 String name = "National Bank";
 InetAddress address = null;
 ATM aTM = new ATM(id, place, name, address);
 Session session = new Session(aTM);
 Simulation simulation = new Simulation(aTM);
 Card expected_card = new Card();
 int expected_card_Int1 = 1;
 expected_card.setNumber(expected_card_Int1);
 Card card = (Card) simulation.readCard();
 assertTrue(card.equals(expected_card)); // Test Case # 1

 CustomerConsole customerConsole = new CustomerConsole();
 String prompt = "Please enter PIN.";
 int expected_pin = 42;
 int pin = (int) customerConsole.readPIN(prompt);
 assertTrue(pin == expected_pin); // Test Case # 2

 Transaction.makeTransaction(aTM, session, card, pin);
 Transfer transfer = new Transfer(aTM, session, card, pin);
 transfer.performTransaction();
 simulation.ejectCard();

 } catch (Exception exp) {
 System.out.println(exp.toString());
 fail("Exception occured during test case execution");
 }

 } //End of Method

} //End of Class

Model-Driven Framework for Context Dependent Testing of Components 217

B.3.4: JUnit test case for balance inquiry operation

import atm.*;
import atm.physical.*;
import atm.transaction.*;
import banking.*;
import simulation.*;
import junit.framework.*;
import java.awt.*;
import java.awt.event.*;
import java.net.InetAddress;

public class TestSuite_inquiry extends TestCase {

 public static void main(String args[]) {
 TestSuite testSuite = new TestSuite(TestSuite_inquiry.class);
 testSuite.run(new TestResult());
 }

 public void test_inquiry() {

 try {
 int id = 41;
 String place = "Gorden College";
 String name = "National Bank";
 InetAddress address = null;
 ATM aTM = new ATM(id, place, name, address);
 Session session = new Session(aTM);
 Simulation simulation = new Simulation(aTM);
 Card expected_card = new Card();
 int expected_card_Int1 = 1;
 expected_card.setNumber(expected_card_Int1);
 Card card = (Card) simulation.readCard();
 assertTrue(card.equals(expected_card)); // Test Case # 1

 CustomerConsole customerConsole = new CustomerConsole();
 String prompt = "Please enter PIN.";
 int expected_pin = 42;
 int pin = (int) customerConsole.readPIN(prompt);
 assertTrue(pin == expected_pin); // Test Case # 2

 Transaction.makeTransaction(aTM, session, card, pin);
 Inquiry inquiry = new Inquiry(aTM, session, card, pin);
 inquiry.performTransaction();
 simulation.ejectCard();

 } catch (Exception exp) {
 System.out.println(exp.toString());
 fail("Exception occured during test case execution");
 }

 } //End of Method

} //End of Class

Model-Driven Framework for Context Dependent Testing of Components 218

B.4: SUnit test cases generated by MTCG

B.4.1: SUnit test case for withdrawal operation

import atm.*;
import atm.physical.*;
import atm.transaction.*;
import banking.*;
import simulation.*;
import junit.framework.*;
import java.awt.*;
import java.awt.event.*;
import java.net.InetAddress;

 Class: Test_withdrawal

 superclass: TestCase
 id := int new.
 id := 41.
 place := String new.
 place := "Gorden College".
 name := String new.
 name := "National Bank".
 address := InetAddress new.
 address := null.
 aTM := ATM new id with place with name with address.
 session := Session new aTM.
 simulation := Simulation new aTM.

 Test_withdrawal>>test_readCard
 expected_card:= expected_card new.
 expected_card_Int1:=int new.
 expected_card_Int1:=1.
 expected_card setNumber expected_card_Int1.
 card = (Card) simulation readCard.
 self assert:(card equals expected_card). " Test Case # 1"

 customerConsole := CustomerConsole new.

 Test_withdrawal>>test_readPIN
 prompt:= String new.
 prompt:= "Please enter PIN.".
 expected_pin:= int new.
 expected_pin := 42.
 pin = (int) customerConsole readPIN prompt.
 self assert:(pin = expected_pin). " Test Case # 2"

 Transaction makeTransaction aTM with session with card with pin.
 withdrawal := Withdrawal new aTM with session with card with pin.
 withdrawal performTransaction.
 simulation ejectCard.

 |suite|
 suite := TestSuite named: 'withdrawal Tests'.
 suite addTestCase:(Test_withdrawal selector: #testreadCard).
 suite addTestCase:(Test_withdrawal selector: #testreadPIN).
 ^suite

Model-Driven Framework for Context Dependent Testing of Components 219

B.4.2: SUnit test case for deposit operation

import atm.*;
import atm.physical.*;
import atm.transaction.*;
import banking.*;
import simulation.*;
import junit.framework.*;
import java.awt.*;
import java.awt.event.*;
import java.net.InetAddress;

 Class: Test_deposit

 superclass: TestCase
 id := int new.
 id := 41.
 place := String new.
 place := "Gorden College".
 name := String new.
 name := "National Bank".
 address := InetAddress new.
 address := null.
 aTM := ATM new id with place with name with address.
 session := Session new aTM.
 simulation := Simulation new aTM.

 Test_deposit>>test_readCard
 expected_card:= expected_card new.
 expected_card_Int1:=int new.
 expected_card_Int1:=1.
 expected_card setNumber expected_card_Int1.
 card = (Card) simulation readCard.
 self assert:(card equals expected_card). " Test Case # 1"

 customerConsole := CustomerConsole new.

 Test_deposit>>test_readPIN
 prompt:= String new.
 prompt:= "Please enter PIN.".
 expected_pin:= int new.
 expected_pin := 42.
 pin = (int) customerConsole readPIN prompt.
 self assert:(pin = expected_pin). " Test Case # 2"

 Transaction makeTransaction aTM with session with card with pin.
 deposit := Deposit new aTM with session with card with pin.
 deposit performTransaction.
 simulation ejectCard.

 |suite|
 suite := TestSuite named: 'deposit Tests'.
 suite addTestCase:(Test_deposit selector: #testreadCard).
 suite addTestCase:(Test_deposit selector: #testreadPIN).
 ^suite

Model-Driven Framework for Context Dependent Testing of Components 220

B.4.3: SUnit test case for transfer operation

import atm.*;
import atm.physical.*;
import atm.transaction.*;
import banking.*;
import simulation.*;
import junit.framework.*;
import java.awt.*;
import java.awt.event.*;
import java.net.InetAddress;

 Class: Test_transfer
 superclass: TestCase

 id := int new.
 id := 41.
 place := String new.
 place := "Gorden College".
 name := String new.
 name := "National Bank".
 address := InetAddress new.
 address := null.
 aTM := ATM new id with place with name with address.
 session := Session new aTM.
 simulation := Simulation new aTM.

 Test_transfer>>test_readCard
 expected_card:= expected_card new.
 expected_card_Int1:=int new.
 expected_card_Int1:=1.
 expected_card setNumber expected_card_Int1.
 card = (Card) simulation readCard.
 self assert:(card equals expected_card). " Test Case # 1"

 customerConsole := CustomerConsole new.

 Test_transfer>>test_readPIN
 prompt:= String new.
 prompt:= "Please enter PIN.".
 expected_pin:= int new.
 expected_pin := 42.
 pin = (int) customerConsole readPIN prompt.
 self assert:(pin = expected_pin). " Test Case # 2"

 Transaction makeTransaction aTM with session with card with pin.
 transfer := Transfer new aTM with session with card with pin.
 transfer performTransaction.
 simulation ejectCard.

 |suite|
 suite := TestSuite named: 'transfer Tests'.
 suite addTestCase:(Test_transfer selector: #testreadCard).
 suite addTestCase:(Test_transfer selector: #testreadPIN).
 ^suite

Model-Driven Framework for Context Dependent Testing of Components 221

B.4.4: SUnit test case for balance inquiry operation

import atm.*;
import atm.physical.*;
import atm.transaction.*;
import banking.*;
import simulation.*;
import junit.framework.*;
import java.awt.*;
import java.awt.event.*;
import java.net.InetAddress;

 Class: Test_inquiry

 superclass: TestCase
 id := int new.
 id := 41.
 place := String new.
 place := "Gorden College".
 name := String new.
 name := "National Bank".
 address := InetAddress new.
 address := null.
 aTM := ATM new id with place with name with address.
 session := Session new aTM.
 simulation := Simulation new aTM.

 Test_inquiry>>test_readCard
 expected_card:= expected_card new.
 expected_card_Int1:=int new.
 expected_card_Int1:=1.
 expected_card setNumber expected_card_Int1.
 card = (Card) simulation readCard.

 self assert:(card equals expected_card). " Test Case # 1"

 customerConsole := CustomerConsole new.

 Test_inquiry>>test_readPIN
 prompt:= String new.
 prompt:= "Please enter PIN.".
 expected_pin:= int new.
 expected_pin := 42.
 pin = (int) customerConsole readPIN prompt.
 self assert:(pin = expected_pin). " Test Case # 2"

 Transaction makeTransaction aTM with session with card with pin.
 inquiry := Inquiry new aTM with session with card with pin.
 inquiry performTransaction.
 simulation ejectCard.

 |suite|
 suite := TestSuite named: 'inquiry Tests'.
 suite addTestCase:(Test_inquiry selector: #testreadCard).
 suite addTestCase:(Test_inquiry selector: #testreadPIN).
 ^suite

Model-Driven Framework for Context Dependent Testing of Components 222

Model-Driven Framework for Context Dependent Testing of Components 223

APPENDIX C: COMPARISON OF TEST SUITES

C.1: Implementation of Dijkstra’s shortest-path algorithm

class GraphException extends RuntimeException

{

 public GraphException(String name)

 {

 super(name);

 }

}

class Edge

{

 public Vertex dest;

 public double cost;

 public Edge(Vertex d, double c)

 {

 dest = d;

 cost = c;

 }

}

class Path implements Comparable

{

 public Vertex dest;

 public double cost;

 public Path(Vertex d, double c)

 {

 dest = d;

 cost = c;

 }

 public int compareTo(Object rhs)

 {

 double otherCost = ((Path)rhs).cost;

 return cost < otherCost ? -1 : cost > otherCost ? 1 : 0;

 }

}

class Vertex

{

 public String name; // Vertex name

 public List adj; // Adjacent vertices

 public double dist; // Cost

 public Vertex prev; // Previous vertex on shortest path

 public int scratch;

 public Vertex(String nm) { name = nm; adj = new LinkedList(); reset(); }

 public void reset() { dist = Graph.INFINITY; prev = null; pos = null; scratch = 0; }

}

Model-Driven Framework for Context Dependent Testing of Components 224

public class Graph

{

 public static final double INFINITY = Double.MAX_VALUE;

 private Map vertexMap = new HashMap();

 public void addEdge(String sourceName, String destName, double cost)

 {

 Vertex v = getVertex(sourceName);

 Vertex w = getVertex(destName);

 v.adj.add(new Edge(w, cost));

 }

 public void printPath(String destName)

 {

 Vertex w = (Vertex) vertexMap.get(destName);

 if(w == null)

 throw new NoSuchElementException("Destination vertex not found");

 else if(w.dist == INFINITY)

 System.out.println(destName + " is unreachable");

 else {

 System.out.print("(Cost is: " + w.dist + ") ");

 printPath(w);

 System.out.println();

 }

 }

 private Vertex getVertex(String vertexName)

 {

 Vertex v = (Vertex) vertexMap.get(vertexName);

 if(v == null)

 {

 v = new Vertex(vertexName);

 vertexMap.put(vertexName, v);

 }

 return v;

 }

 private void printPath(Vertex dest)

 {

 if(dest.prev != null)

 {

 printPath(dest.prev);

 System.out.print(" to ");

 }

 System.out.print(dest.name);

 }

 private void clearAll()

 {

 for(Iterator itr = vertexMap.values().iterator(); itr.hasNext();)

 ((Vertex)itr.next()).reset();

 }

 public String getPath(String destName)

 {

 String path= "";

 Vertex w = (Vertex) vertexMap.get(destName);

 if(w == null) {

Model-Driven Framework for Context Dependent Testing of Components 225

 throw new NoSuchElementException("Destination vertex not found");

 } else if(w.dist == INFINITY) {

 path = "-1";

 } else {

 path = getPath(w);

 }

 return path;

 }

 private String getPath(Vertex dest)

 {

 String path ="";

 if(dest.prev == null) {

 path = dest.name ;

 } else {

 path = getPath(dest.prev) + " " + dest.name;

 }

 return(path);

 }

 public void dijkstra(String startName)

 {

 PriorityQueue pq = new BinaryHeap();

 Vertex start = (Vertex) vertexMap.get(startName);

 if(start == null) throw new NoSuchElementException("Start vertex not found");

 clearAll();

 pq.insert(new Path(start, 0));

 start.dist = 0;

 int nodesSeen = 0;

 while(!pq.isEmpty() && nodesSeen < vertexMap.size())

 {

 Path vrec = (Path) pq.deleteMin();

 Vertex v = vrec.dest;

 if(v.scratch != 0) continue;

 v.scratch = 1;

 nodesSeen++;

 for(Iterator itr = v.adj.iterator(); itr.hasNext();)

 {

 Edge e = (Edge) itr.next();

 Vertex w = e.dest;

 double cvw = e.cost;

 if(cvw < 0)

 throw new GraphException("Graph has negative edges");

 if(w.dist > v.dist + cvw)

 {

 w.dist = v.dist +cvw;

 w.prev = v;

 pq.insert(new Path(w, w.dist));

 }

 }

 }

 }

}

Model-Driven Framework for Context Dependent Testing of Components 226

C.2: Test suites for the shortest-path case study

C.2.1: Test suite 1 for the shortest-path case study

Test Suite 1 consists of the text files (which contain description of graph) and Java files (which contain

JUnit test cases).

Text Files

File Name graph1.txt graph2.txt graph21.txt graph22.txt graph3.txt graph31.txt

Contents A B 2 A B 6
B C 1

A B 6
B C 1
A C 2

A B 6
B C 1
A C 8

A B 5
B C 4
C D 2
A D 5

A B 4
AC 2
AD 5
C B 1

Java Files

File Name GraphTest1 GraphTest2 GraphTest21 GraphTest22 GraphTest3 GraphTest31

Contents The contents of these files are provided below.

GraphTest1.java

public class GraphTest1 extends TestCase {

public void testDijkstra() {

Graph g = new Graph();

try {

 FileReader fin = new FileReader("d:\\TestSuite_1\\graph1.txt");

 BufferedReader graphFile = new BufferedReader(fin);

 String line;

 while((line = graphFile.readLine()) != null) {

 StringTokenizer st = new StringTokenizer(line);

 try {

 if(st.countTokens() != 3) continue; // skip incorrcet line

 String source = st.nextToken();

 String dest = st.nextToken();

 int cost = Integer.parseInt(st.nextToken());

 g.addEdge(source, dest, cost);

 } catch(NumberFormatException e) { }

 } catch(IOException e) { System.err.println(e); }

 String startName;

 String destName;

 try {

 startName ="A";

 g.dijkstra(startName);

 String expectedPath;

 String actualPath;

 destName = "B";

 expectedPath = "AB";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 } catch(Exception exp) { }

 }

}

Model-Driven Framework for Context Dependent Testing of Components 227

GraphTest2.java

public class GraphTest2 extends TestCase {

 public void testDijkstra() {

 Graph g = new Graph();

 try {

FileReader fin = new FileReader("d:\\TestSuite_1\\graph2.txt");

 BufferedReader graphFile = new BufferedReader(fin);

 String line;

 while((line = graphFile.readLine()) != null) {

 StringTokenizer st = new StringTokenizer(line);

 try {

 if(st.countTokens() != 3) continue;

 String source = st.nextToken();

 String dest = st.nextToken();

 int cost = Integer.parseInt(st.nextToken());

 g.addEdge(source, dest, cost);

 } catch(NumberFormatException e) { }

 }

 } catch(IOException e) { System.err.println(e); }

 String startName = null;

 String destName = null;

 try {

 startName ="A";

 g.dijkstra(startName);

 string expectedPath;

 string actualPath;

 destName = "B";

 expectedPath = "AB";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "C";

 expectedPath = "ABC";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 } catch(Exception exp) { }

 }

}

Model-Driven Framework for Context Dependent Testing of Components 228

GraphTest21.java

public class GraphTest21 extends TestCase {

 public void testDijkstra() {

 Graph g = new Graph();

 try {

 FileReader fin =new FileReader("d:\\TestSuite_1\\graph21.txt");

 BufferedReader graphFile = new BufferedReader(fin);

 String line;

 while((line = graphFile.readLine()) != null) {

 StringTokenizer st = new StringTokenizer(line);

 try {

 if(st.countTokens() != 3) continue;

 String source = st.nextToken();

 String dest = st.nextToken();

 Int cost = Integer.parseInt(st.nextToken());

 g.addEdge(source, dest, cost);

 } catch(NumberFormatException e) { }

 }

 } catch(IOException e) { System.err.println(e); }

 String startName = null;

 String destName = null;

 try {

 startName ="A";

 g.dijkstra(startName);

 String expectedPath;

 String actualPath;

 destName = "B";

 expectedPath = "AB";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "C";

 expectedPath = "AC";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 } catch(Exception exp) { }

 }

}

Model-Driven Framework for Context Dependent Testing of Components 229

GraphTest22.java

public class GraphTest22 extends TestCase {

 public void testDijkstra() {

 Graph g = new Graph();

 try {

 FileReader fin = new FileReader("d:\\TestSuite_1\\graph22.txt");

 BufferedReader graphFile = new BufferedReader(fin);

 String line;

 while((line = graphFile.readLine()) != null) {

 StringTokenizer st = new StringTokenizer(line);

 try {

 if(st.countTokens() != 3) continue;

 String source = st.nextToken();

 String dest = st.nextToken();

 int cost = Integer.parseInt(st.nextToken());

 g.addEdge(source, dest, cost);

 } catch(NumberFormatException e) { }

 }

 } catch(IOException e) { System.err.println(e); }

 String startName = null;

 String destName = null;

 try {

 startName ="A";

 g.dijkstra(startName);

 String expectedPath;

 String actualPath;

 destName = "B";

 expectedPath = "AB";

 actualPath = g.getPath(destName);

 ssertEquals(actualPath, expectedPath);

 destName = "C";

 expectedPath = "ABC";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 } catch(Exception exp) { }

 }

}

Model-Driven Framework for Context Dependent Testing of Components 230

GraphTest3.java

public class GraphTest3 extends TestCase {

public void testDijkstra() {

 Graph g = new Graph();

 try

 {

 FileReader fin = new FileReader("d:\\TestSuite_1\\graph3.txt");

 BufferedReader graphFile = new BufferedReader(fin);

 String line;

 while((line = graphFile.readLine()) != null)

 {

 StringTokenizer st = new StringTokenizer(line);

 try

 {

 if(st.countTokens() != 3) continue;

 String source = st.nextToken();

 String dest = st.nextToken();

 int cost = Integer.parseInt(st.nextToken());

 g.addEdge(source, dest, cost);

 } catch(NumberFormatException e) { }

 }

 } catch(IOException e) { System.err.println(e); }

 String startName = null;

 String destName = null;

 try {

startName = "A";

g.dijkstra(startName);

String expectedPath;

String actualPath;

destName = "B";

 expectedPath = "AB";

actualPath = g.getPath(destName);

assertEquals(actualPath, expectedPath);

destName = "C";

expectedPath = "ABC";

actualPath = g.getPath(destName);

assertEquals(actualPath, expectedPath);

destName = "D";

expectedPath = "AD";

actualPath = g.getPath(destName);

assertEquals(actualPath, expectedPath);

 } catch(Exception exp) { }

 }

}

Model-Driven Framework for Context Dependent Testing of Components 231

GraphTest31.java

public class GraphTest31 extends TestCase {

 public void testDijkstra() {

 Graph g = new Graph();

 try {

 FileReader fin = new FileReader("d:\\TestSuite_1\\graph31.txt");

 BufferedReader graphFile = new BufferedReader(fin);

 String line;

 while((line = graphFile.readLine()) != null)

 {

 StringTokenizer st = new StringTokenizer(line);

 try

 {

 if(st.countTokens() != 3) continue;

 String source = st.nextToken();

 String dest = st.nextToken();

 int cost = Integer.parseInt(st.nextToken());

 g.addEdge(source, dest, cost);

 } catch(NumberFormatException e) { }

 }

 } catch(IOException e) { System.err.println(e); }

 String startName;

 String destName;

 try{

 startName= "A";

 g.dijkstra(startName);

 String expectedPath, actualPath;

 destName = "B";

 expectedPath = "ACB";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "C";

 expectedPath = "AC";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "D";

 expectedPath = "ACD";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 } catch (Exception exp) { }

 }

}

Model-Driven Framework for Context Dependent Testing of Components 232

C.2.2: Test suite 2 for the shortest-path case study

Test Suite 2 consists of the text files (which contain description of graph and the expected shorted paths)

and Java files (which contain JUnit test cases).

Text Files

File Name graph2.txt graph3.txt graph4.txt expected2.txt expected3.txt expected4.txt

Contents A B 2

B A 3
A B 2

B C 4

A C 8

A B 2

B C 4

A C 8

B D 2

A D 5

C D 3

A A A

A B AB

B A BA

B B B

A A A

A B AB

A C ABC

B A -1

B B B

B C BC

C A -1

C B -1

C C C

A A A

A B AB

A C ABC

A D ABD

B A -1

B B B

B C BC

B D BD

C A -1

C B -1

C C C

C D CD

D A -1

D B -1

D C -1

D D D

Java Files

File Name Graph_Test2.java Graph_Test3.java Graph_Test4.java

Contents The contents of these files are provided below.

Graph_Test2.java

public class Graph_Test2 extends TestCase {

 private Graph graph = new Graph();

 private Map expectedMap = new HashMap();

/**

* Sets up the test fixture. Called before every test case method.

*/

 protected void setUp() {

 String graphDataFile = "D:\\TestSuite_2\\graph2.txt";

 String expectedDataFile = "D:\\TestSuite_2\\expected2.txt";

 // Load Graph Data

 try

 {

 FileReader fin = new FileReader(graphDataFile);

 BufferedReader graphFile = new BufferedReader(fin);

 String line;

 while((line = graphFile.readLine()) != null)

 {

 StringTokenizer st = new StringTokenizer(line);

 try

 {

 if(st.countTokens() != 3) continue;

 String source = st.nextToken();

 String dest = st.nextToken();

 int cost = Integer.parseInt(st.nextToken());

 graph.addEdge(source, dest, cost);

 } catch(NumberFormatException e) { }

 }

 } catch(IOException e) { System.err.println(e); }

Model-Driven Framework for Context Dependent Testing of Components 233

 // Load Expected Data

 try

 {

 FileReader fin = new FileReader(expectedDataFile);

 BufferedReader graphFile = new BufferedReader(fin);

 String line;

 while((line = graphFile.readLine()) != null)

 {

 StringTokenizer st = new StringTokenizer(line);

 try

 {

 if(st.countTokens() != 3) continue;

 String source = st.nextToken();

 String dest = st.nextToken();

 String expectedPath = st.nextToken();

 expectedMap.put(source + "~" + dest, expectedPath);

 } catch(NumberFormatException e) { }

 }

 } catch(IOException e) { System.err.println(e); }

 }

/**

* Tears down the test fixture. Called after every test case method.

*/

 protected void tearDown() {

 graph = null;

 expectedMap = null;

 }

/**

* Tests check shortest path form A vertex

*/

 public void testDijkstra() throws Exception {

String startName = "";

String destName = "";

String expectedPath;

String actualPath;

String value;

Set vertexSet = graph.vertexMap.keySet();

Iterator outerIt = vertexSet.iterator();

Iterator innerIt = null;

while (outerIt.hasNext()) {

 startName = (String) outerIt.next();

 try {

 graph.dijkstra(startName);

 } catch(IOException e) { System.err.println(e); }

 innerIt = vertexSet.iterator();

 while (innerIt.hasNext()) {

 destName = (String) innerIt.next();

 value = (String) expectedMap.get(startName + "~" + destName);

 expectedPath = value;

 actualPath = graph.getPath(destName);

 assertEquals(actualPath, expectedPath);

 }

 }

 }

}

Model-Driven Framework for Context Dependent Testing of Components 234

Graph_Test3.java

public class Graph_Test3 extends TestCase {

 private Graph graph = new Graph();

 private Map expectedMap = new HashMap();

/**

* Sets up the test fixture. Called before every test case method.

*/

 protected void setUp() {

 String graphDataFile = "D:\\TestSuite_2\\graph3.txt";

 String expectedDataFile = "D:\\TestSuite_2\\expected3.txt";

 // Load Graph Data

 try

 {

 FileReader fin = new FileReader(graphDataFile);

 BufferedReader graphFile = new BufferedReader(fin);

 String line;

 while((line = graphFile.readLine()) != null)

 {

 StringTokenizer st = new StringTokenizer(line);

 try

 {

 if(st.countTokens() != 3) continue;

 String source = st.nextToken();

 String dest = st.nextToken();

 int cost = Integer.parseInt(st.nextToken());

 graph.addEdge(source, dest, cost);

 } catch(NumberFormatException e) { }

 }

 } catch(IOException e) { System.err.println(e); }

 // Load Expected Data

 try

 {

 FileReader fin = new FileReader(expectedDataFile);

 BufferedReader graphFile = new BufferedReader(fin);

 String line;

 while((line = graphFile.readLine()) != null)

 {

 StringTokenizer st = new StringTokenizer(line);

 try {

 if (st.countTokens() != 3) continue;

 String source = st.nextToken();

 String dest = st.nextToken();

 String expectedPath = st.nextToken();

 expectedMap.put(source + "~" + dest, expectedPath);

 } catch(NumberFormatException e){ }

 }

 } catch(IOException e) { System.out.println(e); }

 }

Model-Driven Framework for Context Dependent Testing of Components 235

/**

* Tears down the test fixture. Called after every test case method.

*/

 protected void tearDown() {

 graph = null;

 expectedMap = null;

 }

/**

* Tests check shortest path form A vertex

*/

 public void testDijkstra() throws Exception {

 String startName = "";

 String destName = "";

 String expectedPath;

 String actualPath;

 String value;

 Set vertexSet = graph.vertexMap.keySet();

 Iterator outerIt = vertexSet.iterator();

 Iterator innerIt = null;

 while (outerIt.hasNext())

{

 startName = (String)outerIt.next();

 try

{

 graph.dijkstra(startName);

 } catch(IOException e) { System.err.println(e); }

 innerIt = vertexSet.iterator();

 while(innerIt.hasNext())

{

 destName = (String)innerIt.next();

 value = (String)expectedMap.get(startName + "~" + destName);

 expectedPath = value;

 actualPath = graph.getPath(destName);

 assertEquals(actualPath, expectedPath);

 }

 }

 }

}

Model-Driven Framework for Context Dependent Testing of Components 236

Graph_Test4.java

public class Graph_Test4 extends TestCase {

 private Graph graph = new Graph();

 private Map expectedMap = new HashMap();

/**

* Sets up the test fixture. Called before every test case method.

*/

 protected void setUp() {

 String graphDataFile = "D:\\TestSuite_2\\graph4.txt";

 String expectedDataFile = "D:\\TestSuite_2\\expected4.txt";

 // Load Graph Data

 try

 {

 FileReader fin = new FileReader(graphDataFile);

 BufferedReader graphFile = new BufferedReader(fin);

 String line;

 while((line = graphFile.readLine()) != null) {

 StringTokenizer st = new StringTokenizer(line);

 try {

 if(st.countTokens() != 3) continue;

 String source = st.nextToken();

 String dest = st.nextToken();

 int cost = Integer.parseInt(st.nextToken());

 graph.addEdge(source, dest, cost);

 } catch(NumberFormatException e) { }

 }

 } catch(IOException e) { System.err.println(e); }

 // Load Expected Data

 try

 {

 FileReader fin = new FileReader(expectedDataFile);

 BufferedReader graphFile = new BufferedReader(fin);

 String line;

 while((line = graphFile.readLine()) != null)

 {

 StringTokenizer st = new StringTokenizer(line);

 try {

 if (st.countTokens() != 3) continue;

 String source = st.nextToken();

 String dest = st.nextToken();

 String expectedPath = st.nextToken();

 expectedMap.put(source + "~" + dest, expectedPath);

 } catch(NumberFormatException e) { }

 }

 } catch(IOException e) { System.err.println(e); }

 }

Model-Driven Framework for Context Dependent Testing of Components 237

 /**

 * Tears down the test fixture. Called after every test case method.

 */

protected void tearDown() {

 graph = null;

 expectedMap = null;

}

 /**

 * Tests check shortest path form A vertex

 */

 public void testDijkstra() throws Exception {

 String startName = "";

 String destName = "";

 String expectedPath;

 String actualPath;

 String value;

 Set vertexSet = graph.vertexMap.keySet();

 Iterator outerIt = vertexSet.iterator();

 Iterator innerIt = null;

 while (outerIt.hasNext()) {

 startName = (String)outerIt.next();

 try {

 graph.dijkstra(startName);

 } catch (IOException e) { System.out.println(e); }

 innerIt = vertexSet.iterator();

 while (innerIt.hasNext())

 {

 destName = (String)innerIt.next();

 value = (String)expectedMap.get(startName + "~" + destName);

 expectedPath = value;

 actualPath = graph.getPath(destName);

 assertEquals(actualPath, expectedPath);

 }

}

 }

}

Model-Driven Framework for Context Dependent Testing of Components 238

C.2.3: Test suite 3 the shortest-path case study

Test Suite 3 consists of text files (which contain description of graph) and Java files (which contain JUnit

test cases).

File Name Contents

graph1.txt <empty file>

graph2.txt A B 6

graph3a.txt A B 2
B C 1

graph3b.txt A B 6

graph3c.txt A B 9
B C 1
A C 2

graph4a.txt A B 8
B C 2
C D 7

graph4b.txt A B 1
B C 2
C D 7
D A 2

graph4c.txt A B 8
B C 2
C D 7
D A 2
A C 2

graph4d.txt A B 2
B C 2
C D 7
D A 2
A C 2
B D 1
A D 8

graph4e.txt A B 1
B C 2
C B 1
C D 7
D C 2
A D 8
D A 2
A C 2
C A 1
B D 2
D B 1

LoadGraph.java

The contents of these files are provided below.
GraphTest2V.java

GraphTest3V.java

GraphTest4V.java

Model-Driven Framework for Context Dependent Testing of Components 239

LoadGraph.java

public class LoadGraph {

 public static Graph loadData (String fName) {

 Graph g = new Graph();

 try

 {

 FileReader fin = new FileReader(fName);

 BufferedReader graphFile = new BufferedReader(fin);

 String line;

 while((line = graphFile.readLine()) != null) {

 StringTokenizer st = new StringTokenizer(line);

 try {

 if(st.countTokens() < 3) continue;

 String source = st.nextToken();

 String dest = st.nextToken();

 int cost = Integer.parseInt(st.nextToken());

 g.addEdge(source, dest, cost);

 } catch(NumberFormatException e) { }

 }

 } catch(IOException exp) { System.err.println(exp); }

 return g;

 }

}

GraphTest2V.java

public class GraphTest2V extends TestCase {

 public void testDijkstra() {

 Graph g = new Graph();

 String startName = null;

 String destName = null;

 try {

 g = new Graph();

 g = LoadGraph.loadData("D:\\TestSuite_3\\graph2.txt");

 startName = "A";

 g.dijkstra(startName);

 String expectedPath;

 String actualPath;

 destName = "B";

 expectedPath = "AB";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 } catch(Exception exp) { }

 }

}

Model-Driven Framework for Context Dependent Testing of Components 240

GraphTest3V.java

public class GraphTest3V extends TestCase {

 Graph g = new Graph();

 public void testDijkstra() {

 String startName, destName, expectedPath, actualPath;

 try {

 startName = "A";

 g = new Graph();

 g = LoadGraph.loadData("D:\\TestSuite_3\\graph3a.txt");

 g.dijkstra(startName);

 destName = "B";

 expectedPath = "AB";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "C";

 expectedPath = "ABC";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 g = new Graph();

 g = LoadGraph.loadData("D:\\TestSuite_3\\graph3b.txt");

 g.dijkstra(startName);

 destName = "B";

 expectedPath = "AB";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "C";

 expectedPath = "AC";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 g = new Graph();

 g = LoadGraph.loadData("D:\\TestSuite_3\\graph3c.txt");

 g.dijkstra(startName);

 destName = "B";

 expectedPath = "AB";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "C";

 expectedPath = "AC";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

} catch(Exception exp) { }

 }

}

Model-Driven Framework for Context Dependent Testing of Components 241

GraphTest4V.java

public class GraphTest4V extends TestCase {

 Graph g = new Graph();

 public void testDijkstra() {

 String startName, destName, expectedPath, actualPath;

 try {

 startName ="A";

 g = new Graph();

 g = LoadGraph.loadData("D:\\TestSuite_3\\graph4a.txt");

 g.dijkstra(startName);

 destName = "B";

 expectedPath = "AB";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "C";

 expectedPath = "ABC";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "D";

 expectedPath = "ABCD";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 g = new Graph();

 g = LoadGraph.loadData("D:\\TestSuite_3\\graph4b.txt");

 g.dijkstra(startName);

 destName = "B";

 expectedPath = "AB";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "C";

 expectedPath = "ABC";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "D";

 expectedPath = "ABCD";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 g = new Graph();

 g = LoadGraph.loadData("D:\\TestSuite_3\\graph4c.txt");

 g.dijkstra(startName);

 destName = "B";

 expectedPath = "AB";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "C";

 expectedPath = "AC";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "D";

Model-Driven Framework for Context Dependent Testing of Components 242

 expectedPath = "ACD";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 g = new Graph();

 g = LoadGraph.loadData("D:\\TestSuite_3\\graph4d.txt");

 g.dijkstra(startName);

 destName = "B";

 expectedPath = "AB";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "C";

 expectedPath = "AC";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "D";

 expectedPath = "ABD";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 g = new Graph();

 g = LoadGraph.loadData("D:\\TestSuite_3\\graph4e.txt");

 g.dijkstra(startName);

 destName = "B";

 expectedPath = "AB";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "C";

 expectedPath = "AC";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 destName = "D";

 expectedPath = "ABD";

 actualPath = g.getPath(destName);

 assertEquals(actualPath, expectedPath);

 } catch(Exception exp) { }

 }

}

Model-Driven Framework for Context Dependent Testing of Components 243

C.3: Execution traces of test suites for the shortest-path case study

Test Suite 1

T1 e(A,B,2) d(A) p(B) expected=AB
T2 e(A,B,6) e(B,C,1) d(A) p(B) expected=AB

T3 e(A,B,6) e(B,C,1) d(A) p(C) expected=ABC

T4 e(A,B,6) e(B,C,1) e(A,C,2) d(A) p(B) expected=AB

T5 e(A,B,6) e(B,C,1) e(A,C,2) d(A) p(C) expected=AC

T6 e(A,B,6) e(B,C,1) e(A,C,8) d(A) p(B) expected=AB

T7 e(A,B,6) e(B,C,1) e(A,C,8) d(A) p(C) expected=ABC

T8 e(A,B,5) e(B,C,4) e(C,D,2) e(A,D,5) d(A) p(B) expected=AB

T9 e(A,B,5) e(B,C,4) e(C,D,2) e(A,D,5) d(A) p(C) expected=ABC

T10 e(A,B,5) e(B,C,4) e(C,D,2) e(A,D,5) d(A) p(D) expected=AD
T11 e(A,B,6) e(B,C,2) e(B,D,1) e(C,B,1) e(C,D,2) e(C,D,1) e(A,D,7) e(A,C,3) d(A) p(B) expected=ACB

T12 e(A,B,6) e(B,C,2) e(B,D,1) e(C,B,1) e(C,D,2) e(C,D,1) e(A,D,7) e(A,C,3) d(A) p(C) expected=AC

T13 e(A,B,6) e(B,C,2) e(B,D,1) e(C,B,1) e(C,D,2) e(C,D,1) e(A,D,7) e(A,C,3) d(A) p(D) expected=ACD

Test Suite 2

T1 e(A,B,2) e(B,A,6) d(A) p(A) expected=0
T2 e(A,B,2) e(B,A,6) d(A) p(B) expected=AB

T3 e(A,B,2) e(B,A,6) d(B) p(A) expected=BA

T4 e(A,B,2) e(B,A,6) d(B) p(B) expected=0

T5 e(A,B,2) e(B,C,4) e(A,C,8) d(A) p(A) expected=AA

T6 e(A,B,2) e(B,C,4) e(A,C,8) d(A) p(B) expected=AB

T7 e(A,B,2) e(B,C,4) e(A,C,8) d(A) p(C) expected=AC

T8 e(A,B,2) e(B,C,4) e(A,C,8) d(B) p(A) expected=-1

T9 e(A,B,2) e(B,C,4) e(A,C,8) d(B) p(B) expected=0
T10 e(A,B,2) e(B,C,4) e(A,C,8) d(B) p(C) expected=BC

T11 e(A,B,2) e(B,C,4) e(A,C,8) d(C) p(A) expected=-1

T12 e(A,B,2) e(B,C,4) e(A,C,8) d(C) p(B) expected=-1

T13 e(A,B,2) e(B,C,4) e(A,C,8) d(C) p(C) expected=C

T14 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(A) p(A) expected=0

T15 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(A) p(B) expected=AB

T16 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(A) p(C) expected=ABC

T17 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(A) p(D) expected=ABD

T18 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(B) p(A) expected=-1

T19 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(B) p(B) expected=0
T20 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(B) p(C) expected=BC

T21 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(B) p(D) expected=BD

T22 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(C) p(A) expected=-1

T23 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(C) p(B) expected=-1

T24 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(C) p(C) expected=0

T25 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(C) p(D) expected=CD

T26 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(D) p(A) expected=-1

T27 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(D) p(B) expected=-1

T28 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(D) p(C) expected=-1
T29 e(A,B,2) e(B,C,4) e(A,C,8) e(B,D,2) e(A,A,5) e(C,D,3) d(D) p(D) expected=0

Test Suite 3

T1 e(A,B,2) d(A) p(B) expected=AB

T2 e(A,B,2) e(B,C,1) d(A) p(B) expected=AB
T3 e(A,B,2) e(B,C,1) d(A) p(C) expected=ABC

T4 e(A,B,9) e(B,C,1) e(A,C,2) d(A) p(B) expected=AB

T5 e(A,B,9) e(B,C,1) e(A,C,2) d(A) p(C) expected=AC

T6 e(A,B,1) e(B,A,3) e(B,C,1) e(C,B,7) e(C,A,2) e(A,C,2) d(A) p(B) expected=AB

T7 e(A,B,1) e(B,A,3) e(B,C,1) e(C,B,7) e(C,A,2) e(A,C,2) d(A) p(C) expected=AC

T8 e(A,B,8) e(B,C,2) e(C,D,7) d(A) p(B) expected=AB

T9 e(A,B,8) e(B,C,2) e(C,D,7) d(A) p(C) expected=ABC

T10 e(A,B,8) e(B,C,2) e(C,D,7) d(A) p(D) expected=ABCD

T11 e(A,B,1) e(B,C,2) e(C,D,7) e(D,A,2) d(A) p(B) expected=AB

T12 e(A,B,1) e(B,C,2) e(C,D,7) e(D,A,2) d(A) p(C) expected=AC
T13 e(A,B,1) e(B,C,2) e(C,D,7) e(D,A,2) d(A) p(D) expected=ACD

T14 e(A,B,8) e(B,C,2) e(C,D,7) e(D,A,2) e(A,C,2) d(A) p(B) expected=AB

T15 e(A,B,8) e(B,C,2) e(C,D,7) e(D,A,2) e(A,C,2) d(A) p(C) expected=AC

T16 e(A,B,8) e(B,C,2) e(C,D,7) e(D,A,2) e(A,C,2) d(A) p(D) expected=ACD

T17 e(A,B,2) e(B,C,2) e(C,D,7) e(D,A,2) e(A,C,2) e(B,D,1) e(A,D,8) d(A) p(B) expected=AB

T18 e(A,B,2) e(B,C,2) e(C,D,7) e(D,A,2) e(A,C,2) e(B,D,1) e(A,D,8) d(A) p(C) expected=AC

T19 e(A,B,2) e(B,C,2) e(C,D,7) e(D,A,2) e(A,C,2) e(B,D,1) e(A,D,8) d(A) p(D) expected=ABD

T20 e(A,B,1) e(B,C,2) e(C,B,1) e(C,D,7) e(D,C,2) e(A,D,8) e(D,A,2) e(A,C,2) e(C,A,1) e(B,D,2) e(D,B,1) d(A) p(B) expected=AB

T21 e(A,B,1) e(B,C,2) e(C,B,1) e(C,D,7) e(D,C,2) e(A,D,8) e(D,A,2) e(A,C,2) e(C,A,1) e(B,D,2) e(D,B,1) d(A) p(C) expected=ABC
T22 e(A,B,1) e(B,C,2) e(C,B,1) e(C,D,7) e(D,C,2) e(A,D,8) e(D,A,2) e(A,C,2) e(C,A,1) e(B,D,2) e(D,B,1) d(A) p(D) expected=ABD

Note: The methods addEdge, dijkstra and getPath are abbreviated as e, d and p repectively.

Model-Driven Framework for Context Dependent Testing of Components 244

C.4: Equivalence classes for the shortest-path case study

Graph
Nodes (L1)

Shortest
Path Edges

(L2)

Scenario
(L3)

Description
Equivalence

Class

0 0 - NA 0.0.1

1 0 1 Same source and destination 1.0.1

2 0 1 Same source and destination 2.0.1

2 No path exists between the two nodes 2.0.2

1 1 The shortest path contains one edge 2.1.1

3

0 1 Same source and destination 3.0.1

2 No path exists between the two nodes 3.0.2

1 1 The shortest path is the only path between the two nodes 3.1.1

2 There exists a path (not the shortest one) with more than one edge 3.1.2

3 There exists a path that has the minimum cost but that has more than
one edge

3.1.3

2 1 The shortest path is the only path between the two nodes 3.2.1

2 There exists a path (not the shortest) with fewer than two edges 3.2.2

≥ 4 0 1 Same source and destination 4.0.1

2 No path exists between the two nodes 4.0.2

1 1 Shortest path is the only path between the two nodes 4.1.1

2 There exists a path (not the shortest) with more than one edge 4.1.2

3 There exists a path that has the minimum cost but that has more than
one edge

4.1.3

2 1 Shortest path is the only path between the two nodes 4.2.1

2 There exists a path (not the shortest one) with more than two edges 4.2.2

3 There exists a path (not the shortest) with fewer than two edges 4.2.3

4 There exists a path with fewer than two edges, and a path with more
than two edges but they are not the shortest ones

4.2.4

5 There exists a path that has the minimum cost but that has more than
two edges

4.2.5

≥ 3 1 Shortest path is the only path between the two nodes 4.3.1

2 There exists a path (not the shortest) with more than three edges 4.3.2

3 There exists a path (not the shortest) with fewer than three edges 4.3.3

4 There exists a path with fewer than three edges, and a path with more
than three edges but they are not the shortest ones

4.3.4

5 There exists a path that has the minimum cost but that has more edges
than the shortest path

4.3.5

Model-Driven Framework for Context Dependent Testing of Components 245

C.5: Implementation of Boyer Moore’s pattern-matching algorithm

1.

2. public class BoyerMoore {

3.

4. public static final int ALPHABET_SIZE = Character.MAX_VALUE + 1;

5. private String text;

6. private String pattern;

7.

8. private int[] last;

9. private int[] match;

10. private int[] suffix;

11.

12. public BoyerMoore(String pattern, String text) {

13. this.text = text;

14. this.pattern = pattern;

15. last = new int[ALPHABET_SIZE];

16. match = new int[pattern.length()];

17. suffix = new int[pattern.length()];

18. }

19.

20. public int match() {

21.

22. computeLast();

23. computeMatch();

24.

25. int i = pattern.length() - 1;

26. int j = pattern.length() - 1;

27. while (i < text.length()) {

28. if (pattern.charAt(j) == text.charAt(i)) {

29. if (j == 0) {

30. return i;

31. }

32. j--;

33. i--;

34. } else {

35. i += pattern.length()-j-1 + Math.max(j-last[text.charAt(i)],match[j]);

36. j = pattern.length() - 1;

37. }

38. }

39. return -1;

40. }

41.

42. private void computeLast() {

43. for (int k = 0; k < last.length; k++) {

44. last[k] = -1;

45. }

46. for (int j = pattern.length()-1; j >= 0; j--) {

47. if (last[pattern.charAt(j)] < 0) {

48. last[pattern.charAt(j)] = j;

49. }

50. }

Model-Driven Framework for Context Dependent Testing of Components 246

51. }

52.

53. private void computeMatch() {

54. for (int j = 0; j < match.length; j++) {

55. match[j] = match.length;

56. }

57.

58. computeSuffix();

59.

60. for (int i = 0; i < match.length - 1; i++) {

61. int j = suffix[i + 1] - 1;

62. if (suffix[i] > j) {

63. match[j] = j - i;

64. } else {

65. match[j] = Math.min(j - i + match[i], match[j]);

66. }

67. }

68.

69. if (suffix[0] < pattern.length()) {

70. for (int j = suffix[0] - 1; j >= 0; j--) {

71. if (suffix[0] < match[j]) {

72. match[j] = suffix[0]; }

73. }

74. int j = suffix[0];

75. for (int k = suffix[j]; k < pattern.length(); k = suffix[k]) {

76. while (j < k) {

77. if (match[j] > k) {

78. match[j] = k;

79. }

80. j++;

81. }

82. }

83. }

84. }

85.

86. private void computeSuffix() {

87. suffix[suffix.length-1] = suffix.length;

88. int j = suffix.length - 1;

89. for (int i = suffix.length - 2; i >= 0; i--) {

90. while (j < suffix.length - 1 && pattern.charAt(j) != pattern.charAt(i)){

91. j = suffix[j + 1] - 1;

92. }

93. if (pattern.charAt(j) == pattern.charAt(i)) {

94. j--;

95. }

96. suffix[i] = j + 1;

97. }

98. }

99. }

Model-Driven Framework for Context Dependent Testing of Components 247

C.6: Test suites for the pattern-matching case study

C.6.1: Test suite 1 for the pattern-matching case study

import junit.framework.TestCase;

public class TS_1 extends TestCase {

 public static void testSuite1() {

 BoyerMoore boyerMoore;
 int ARRAY_SIZE = 26;
 String [][] testData = new String [ARRAY_SIZE][3];

 testData[0][0] = ""; // Test Case: 1
 testData[0][1] = "";
 testData[0][2] = "-1";

 testData[1][0] = ""; // Test Case: 2
 testData[1][1] = "A";
 testData[1][2] = "-1";

 testData[2][0] = "A"; // Test Case: 3
 testData[2][1] = "";
 testData[2][2] = "-1";

 testData[3][0] = "A"; // Test Case: 4
 testData[3][1] = "a";
 testData[3][2] = "-1";

 testData[4][0] = "A"; // Test Case: 5
 testData[4][1] = "Aa";
 testData[4][2] = "-1";

 testData[5][0] = "Aa"; // Test Case: 6
 testData[5][1] = "";
 testData[5][2] = "-1";

 testData[6][0] = "Aa"; // Test Case: 7
 testData[6][1] = "a";
 testData[6][2] = "1";

 testData[7][0] = "Aa"; // Test Case: 8
 testData[7][1] = "b";
 testData[7][2] = "-1";

 testData[8][0] = "Aa"; // Test Case: 9
 testData[8][1] = "Aa";
 testData[8][2] = "0";

 testData[9][0] = "Aa"; // Test Case: 10
 testData[9][1] = "Ab";
 testData[9][2] = "-1";

 testData[10][0] = "A "; // Test Case: 11
 testData[10][1] = "A ";
 testData[10][2] = "0";

 testData[11][0] = " A"; // Test Case: 12
 testData[11][1] = " A";
 testData[11][2] = "0";

 testData[12][0] = "Aaa"; // Test Case: 13
 testData[12][1] = "";
 testData[12][2] = "-1";

 testData[13][0] = "Aaa"; // Test Case: 14
 testData[13][1] = "a";
 testData[13][2] = "1";

Model-Driven Framework for Context Dependent Testing of Components 248

 testData[14][0] = "Aaa"; // Test Case: 15
 testData[14][1] = "Aa";
 testData[14][2] = "0";

 testData[15][0] = "Aaa"; // Test Case: 16
 testData[15][1] = "aaa";
 testData[15][2] = "-1";

 testData[16][0] = "A a"; // Test Case: 17
 testData[16][1] = " ";
 testData[16][2] = "1";

 testData[17][0] = "Aa "; // Test Case: 18
 testData[17][1] = " ";
 testData[17][2] = "2";

 testData[18][0] = "abcdefghij"; // Test Case: 19
 testData[18][1] = "k";
 testData[18][2] = "-1";

 testData[19][0] = "abcdefghij"; // Test Case: 20
 testData[19][1] = "ab";
 testData[19][2] = "0";

 testData[20][0] = "abcdefghij"; // Test Case: 21
 testData[20][1] = "abcde";
 testData[20][2] = "0";

 testData[21][0] = "abcdefghij"; // Test Case: 22
 testData[21][1] = "fghij";
 testData[21][2] = "5";

 testData[22][0] = "abcdefghij"; // Test Case: 23
 testData[22][1] = "bcdefghij";
 testData[22][2] = "1";

 testData[23][0] = "abcdefghij"; // Test Case: 24
 testData[23][1] = "abcdefghij";
 testData[23][2] = "0";

 testData[24][0] = "abcdefghij"; // Test Case: 25
 testData[24][1] = "abcdefghi ";
 testData[24][2] = "-1";

 testData[25][0] = "abcdefghij"; // Test Case: 26
 testData[25][1] = "abcdefghik";
 testData[25][2] = "-1";

 try {
 int returnValue = -1;
 for (int i=0; i<ARRAY_SIZE; i++) {
 boyerMoore = new BoyerMoore(testData[i][1], testData[i][0]);
 returnValue = boyerMoore.match();
 }
 } catch (Exception exp) {

System.out.println(exp.getMessage());
}

 }
}

Model-Driven Framework for Context Dependent Testing of Components 249

C.6.2: Test suite 2 for the pattern-matching case study

import junit.framework.TestCase;

public class TS_2 extends TestCase {
 public static void testSuite2() {
 BoyerMoore bm;
 String str;
 int result;
 String [] subStrings = {
 "all", // Test Case 1
 "gold. ", // Test Case 2
 "is not", // Test Case 3
 " is", // Test Case 4
 "God", // Test Case 5
 "Is", // Test Case 6
 " All", // Test Case 7
 "sI", // Test Case 8
 "All that glitters is not Gold.", // Test Case 9
 "i s", // Test Case 10
 "gol", // Test Case 11
 "gld", // Test Case 12
 "that glitters is not gold.", // Test Case 13
 "", // Test Case 14
 "gold", // Test Case 15
 "", // Test Case 16
 " ", // Test Case 17
 "abc", // Test Case 18
 "", // Test Case 19
 " glitters" }; // Test Case 20

 int [] expectedValue = {-1, -1, 18, 17, -1, -1, -1, -1, -1, -1, 25, -1, 4, -1, 25, -1, -1, -1, -1, 0};

 try{
 str ="All that glitters is not gold.";
 for (int i=0; i < 15; i++) {
 bm = new BoyerMoore(subStrings[i], str);
 result = bm.match();
 assertEquals(result, expectedValue[i]);
 if(result!=expectedValue[i]) {
 throw new Exception();
 }
 }

 str ="";
 for (int i=15; i < 18; i++) {
 bm = new BoyerMoore(subStrings[i], str);
 result = bm.match();
 assertEquals(result, expectedValue[i]);
 if(result!=expectedValue[i]) {
 throw new Exception();
 }
 }

 str =" glitters";
 for (int i=18; i <= 19; i++) {
 bm = new BoyerMoore(subStrings[i], str);
 result = bm.match();
 assertEquals(result, expectedValue[i]);
 if(result!=expectedValue[i]) {
 throw new Exception();
 }
 }
 } catch(Exception exp) {

System.out.print(exp.getMessage());
}

 }
}

Model-Driven Framework for Context Dependent Testing of Components 250

C.6.3: Test suite 3 for the pattern-matching case study

import junit.framework.TestCase;

public class TS_3 extends TestCase{

 public static void testSuite3() {

 BoyerMoore bm;
 int result;
 final int TEST_CASES = 16;

 BMTestCase [] testCases = {
 new BMTestCase("", "", -1), // TC: 1
 new BMTestCase("The Lord of the Rings", "", -1), // TC: 2
 new BMTestCase("The Lord of the Rings", " ", 3), // TC: 3
 new BMTestCase("The Lord of the Rings", "xyz", -1), // TC: 4
 new BMTestCase("The Lord of the Rings", "The", 0), // TC: 5
 new BMTestCase("The Lord of the Rings", "the", 12), // TC: 6
 new BMTestCase("The Lord of the Rings", "Lord", 4), // TC: 7
 new BMTestCase("The Lord of the Rings", "Lord of", 4), // TC: 8
 new BMTestCase("The Lord of the Rings", "the rings", -1), // TC: 9
 new BMTestCase("The Lord of the Rings", " Lord ", 3), // TC: 10
 new BMTestCase("The Lord of the Rings", "of the Rings", 9), // TC: 11
 new BMTestCase("The Lord of the Rings", "The lord of The", -1), // TC: 12
 new BMTestCase("The Lord of the Rings", "TheLordoftheRings", -1), // TC: 13
 new BMTestCase("The Lord of the Rings", "The Lord of the Ring", 0), // TC: 14
 new BMTestCase("The Lord of the Rings", "The Lord of the Rings",0), // TC: 15
 new BMTestCase("The Lord of the Rings", "The Lord of the Rings.", -1) // TC: 16

 };
 try{
 for (int i=0; i < TEST_CASES; i++) {
 bm = new BoyerMoore(testCases[i].getPattern(), testCases[i].getStr());
 result = bm.match();
 assertEquals(result, testCases[i].getExp());
 }

 } catch(Exception exp) { System.out.print(exp.getMessage()); }

 } // End of Method
}

class BMTestCase {
 private String str;
 private String pattern;
 private int exp;

 public BMTestCase(String str, String pattern, int exp){
 this.str = str;
 this.pattern = pattern;
 this.exp = exp;
 }

 public String getStr(){
 return this.str;
 }

 public String getPattern(){
 return this.pattern;
 }

 public int getExp(){
 return this.exp;
 }
}

Model-Driven Framework for Context Dependent Testing of Components 251

C.7: Execution traces of test suites for the pattern-matching case study

Test Suite 1

1. BoyerMoore("", "") match() expected=-1
2. BoyerMoore("A", "") match() expected=-1
3. BoyerMoore("", "A") match() expected=-1
4. BoyerMoore("a", "A") match() expected=-1
5. BoyerMoore("Aa", "A") match() expected=-1
6. BoyerMoore("", "Aa") match() expected=-1
7. BoyerMoore("a", "Aa") match() expected=1
8. BoyerMoore("b", "Aa") match() expected=-1
9. BoyerMoore("Aa", "Aa") match() expected=0
10. BoyerMoore("Ab", "Aa") match() expected=-1
11. BoyerMoore("A ", "A ") match() expected=0
12. BoyerMoore(" A", " A") match() expected=0
13. BoyerMoore("", "Aaa") match() expected=-1
14. BoyerMoore("a", "Aaa") match() expected=1
15. BoyerMoore("Aa", "Aaa") match() expected=0
16. BoyerMoore("aaa", "Aaa") match() expected=-1
17. BoyerMoore(" ", "A a") match() expected=1
18. BoyerMoore(" ", "Aa ") match() expected=2
19. BoyerMoore("k", "abcdefghij") match() expected=-1
20. BoyerMoore("ab", "abcdefghij") match() expected=0
21. BoyerMoore("abcde", "abcdefghij") match() expected=0
22. BoyerMoore("fghij", "abcdefghij") match() expected=5
23. BoyerMoore("bcdefghij", "abcdefghij") mat
24. ch() expected=1
25. BoyerMoore("abcdefghij", "abcdefghij") match() expected=0
26. BoyerMoore("abcdefghi ", "abcdefghij") match() expected=-1
27. BoyerMoore("abcdefghik", "abcdefghij") match() expected=-1

Test Suite 2

1. BoyerMoore("all", "All that glitters is not gold.") match() expected=-1
2. BoyerMoore("gold. ", "All that glitters is not gold.") match() expected=-1
3. BoyerMoore("is not", "All that glitters is not gold.") match() expected=18
4. BoyerMoore(" is", "All that glitters is not gold.") match() expected=17
5. BoyerMoore("God", "All that glitters is not gold.") match() expected=-1
6. BoyerMoore("Is", "All that glitters is not gold.") match() expected=-1
7. BoyerMoore(" All", "All that glitters is not gold.") match() expected=-1
8. BoyerMoore("sI", "All that glitters is not gold.") match() expected=-1
9. BoyerMoore("All that glitters is not Gold.", "All that glitters is not gold.") match() expected=-1
10. BoyerMoore("i s", "All that glitters is not gold.") match() expected=-1
11. BoyerMoore("gol", "All that glitters is not gold.") match() expected=25
12. BoyerMoore("gld", "All that glitters is not gold.") match() expected=-1
13. BoyerMoore("that glitters is not gold.", "All that glitters is not gold.") match() expected=4
14. BoyerMoore("", "All that glitters is not gold.") match() expected=-1
15. BoyerMoore("gold", "All that glitters is not gold.") match() expected=25
16. BoyerMoore("", "") match() expected=-1
17. BoyerMoore(" ", "") match() expected=-1
18. BoyerMoore("abc", "") match() expected=-1
19. BoyerMoore("", " glitters") match() expected=-1
20. BoyerMoore(" glitters", " glitters") match() expected=0

Test Suite 3

1. BoyerMoore("", "") match() expected=-1
2. BoyerMoore("", "The Lord of the Rings") match() expected=-1
3. BoyerMoore(" ", "The Lord of the Rings") match() expected=3
4. BoyerMoore("xyz", "The Lord of the Rings") match() expected=-1
5. BoyerMoore("The", "The Lord of the Rings") match() expected=0
6. BoyerMoore("the", "The Lord of the Rings") match() expected=12
7. BoyerMoore("Lord", "The Lord of the Rings") match() expected=4
8. BoyerMoore("Lord of", "The Lord of the Rings") match() expected=4
9. BoyerMoore("the rings", "The Lord of the Rings") match() expected=-1
10. BoyerMoore(" Lord ", "The Lord of the Rings") match() expected=3
11. BoyerMoore("of the Rings", "The Lord of the Rings") match() expected=9
12. BoyerMoore("The lord of The", "The Lord of the Rings") match() expected=-1
13. BoyerMoore("TheLordoftheRings", "The Lord of the Rings") match() expected=-1
14. BoyerMoore("The Lord of the Ring", "The Lord of the Rings") match() expected=0
15. BoyerMoore("The Lord of the Rings", "The Lord of the Rings") match() expected=0
16. BoyerMoore("The Lord of the Rings.", "The Lord of the Rings") match() expected=-1

Model-Driven Framework for Context Dependent Testing of Components 252

C.8: Equivalence classes for the pattern-matching case study

String Length
(L1)

Pattern Length
(L2)

Presence of Pattern
(L3)

Equivalence Class
(L1.L2.L3)

0 0 1. The pattern does not occur in the string. 0.0.1

1 1. The pattern does not occur in the string. 0.1.1

1 0 1. The pattern does not occur in the string. 1.0.1

1 1. The pattern does not occur in the string. 1.1.1

2. The pattern occurs with different case. 1.1.2

2 1. The pattern does not occur in the string. 1.2.1

2 0 1. The pattern does not occur in the string. 2.0.1

1 1. The pattern does not occur in the string. 2.1.1

2. The pattern occurs with different case. 2.1.2
3. The pattern occurs in the beginning of the string. 2.1.3
4. The pattern occurs at the end of the string. 2.1.4
5. The pattern occurs in the middle of the string. 2.1.5
6. The pattern occurs more than once. 2.1.6

2 1. The pattern does not occur in the string. 2.2.1

2. The pattern occurs with different case. 2.2.2
3. The pattern occurs in the beginning of the string. 2.2.3
4. The pattern occurs at the end of the string. 2.2.4

≥ 3 1. The pattern does not occur in the string. 2.3.1

3 0 1. The pattern does not occur in the string. 3.0.1

1 1. The pattern does not occur in the string. 3.1.1

2. The pattern occurs with different case. 3.1.2
3. The pattern occurs in the beginning of the string. 3.1.3
4. The pattern occurs at the end of the string. 3.1.4
5. The pattern occurs in the middle of the string. 3.1.5
6. The pattern occurs more than once. 3.1.6

2 1. The pattern does not occur in the string. 3.2.1

2. The pattern occurs with different case. 3.2.2
3. The pattern occurs in the beginning of the string. 3.2.3
4. The pattern occurs at the end of the string. 3.2.4
5. The pattern occurs in the middle of the string. 3.2.5
6. The pattern occurs more than once. 3.2.6

3 1. The pattern does not occur in the string. 3.3.1

2. The pattern occurs with different case. 3.3.2
3. The pattern occurs in the beginning of the string. 3.3.3
4. The pattern occurs at the end of the string. 3.3.4
5. The pattern occurs in the middle of the string. 3.3.5
6. The pattern occurs more than once. 3.3.6

≥ 4 1. The pattern does not occur in the string. 3.4.1

4 0 1. The pattern does not occur in the string. 4.0.1

1 1. The pattern does not occur in the string. 4.1.1

2. The pattern occurs with different case. 4.1.2
3. The pattern occurs in the beginning of the string. 4.1.3
4. The pattern occurs at the end of the string. 4.1.4
5. The pattern occurs in the middle of the string. 4.1.5
6. The pattern occurs more than once. 4.1.6

2 1. The pattern does not occur in the string. 4.2.1

2. The pattern occurs with different case. 4.2.2
3. The pattern occurs in the beginning of the string. 4.2.3
4. The pattern occurs at the end of the string. 4.2.4
5. The pattern occurs in the middle of the string. 4.2.5

Model-Driven Framework for Context Dependent Testing of Components 253

6. The pattern occurs more than once. 4.2.6
3 1. The pattern does not occur in the string. 4.3.1

2. The pattern occurs with different case. 4.3.2
3. The pattern occurs in the beginning of the string. 4.3.3
4. The pattern occurs at the end of the string. 4.3.4
5. The pattern occurs in the middle of the string. 4.3.5
6. The pattern occurs more than once. 4.3.6

4 1. The pattern does not occur in the string. 4.4.1

2. The pattern occurs with different case. 4.4.2
3. The pattern occurs in the beginning of the string. 4.4.3
4. The pattern occurs at the end of the string. 4.4.4
5. The pattern occurs in the middle of the string. 4.4.5
6. The pattern occurs more than once. 4.4.6

Model-Driven Framework for Context Dependent Testing of Components 254

C.9: Defects seeded in the pattern-matching case study

Seed # Line # Actual Code Mutant Code

1 25 int i = pattern.length()-1; int i = pattern.length();

2 26 int j = pattern.length()-1 ; int j = pattern.length() ;

3 27 while (i < text.length()) while (i < text.length()-1)

4 30 return i; return j;

5 46 int j = pattern.length()-1 int j = pattern.length()

6 54 j < match.length j <= match.length

7 63 match[j] = j - i; match[j] = i - j;

8 71 if (suffix[0] < match[j]) if (suffix[i] < match[j])

9 72 match[j] = suffix[0]; match[j] = suffix[i];

10 75 int j = suffix[0]; int i = suffix[0];

11 76 k < pattern.length(); k <= pattern.length();

12 77 while (j < k) while (j <= k)

13 78 if (match[j] > k) if (match[j] >= k)

14 88 int j = suffix.length - 1; int j = suffix.length;

15 90 j < suffix.length - 1 j < suffix.length

16 91 j = suffix[j + 1] - 1; j = suffix[j + 1];

Model-Driven Framework for Context Dependent Testing of Components 255

APPENDIX D: LUCENE CASE STUDY

D.1: Unique traces of CDCT (CDCTUNIQUE-TRACES)

1. M1.Term.T1.E1

2. M2.Term.T2.E2

3. M3.Term.T3.E3

4. M4.Term.T1.E4

5. M5.Term.T2.E5

6. M6.Term.T3.E6

7. M7.Term.T1.E1

8. M8.Term.T2.E1

9. M9.Term.T3.E1

10. M1.Range.R1.E1

11. M2.Range.R2.E2

12. M3.Range.R1.E3

13. M4.Range.R2.E4

14. M5.Range.R1.E5

15. M6.Range.R2.E6

16. M7.Range.R1.E2

17. M8.Range.R2.E2

18. M9.Range.R1.E2

19. M1.Boolean.B1.E1

20. M2.Boolean.B2.E2

21. M3.Boolean.B3.E3

22. M4.Boolean.B4.E4

23. M5.Boolean.B1.E5

24. M6.Boolean.B2.E6

25. M7.Boolean.B3.E3

26. M8.Boolean.B4.E3

27. M9.Boolean.B1.E3

28. M1.Prefix.P1.E1

29. M2.Prefix.P2.E2

30. M3.Prefix.P3.E3

31. M4.Prefix.P1.E4

32. M5.Prefix.P2.E5

33. M6.Prefix.P3.E6

34. M7.Prefix.P1.E4

35. M8.Prefix.P2.E4

36. M9.Prefix.P3.E4

37. M1.Wildcard.W1.E1

38. M2.Wildcard.W2.E2

39. M3.Wildcard.W3.E3

40. M4.Wildcard.W2.E4

41. M5.Wildcard.W1.E5

42. M6.Wildcard.W2.E6

43. M7.Wildcard.W1.E5

44. M8.Wildcard.W2.E5

45. M9.Wildcard.W1.E5

46. M1.Fuzzy.F1.E1

47. M2.Fuzzy.F2.E2

48. M3.Fuzzy.F1.E3

49. M4.Fuzzy.F2.E4

50. M5.Fuzzy.F1.E5

51. M6.Fuzzy.F2.E6

52. M7.Fuzzy.F1.E6

53. M8.Fuzzy.F2.E6

54. M9.Fuzzy.F1.E6

55. M1.Phrase.Ph1.E1

56. M2.Phrase.Ph2.E2

57. M3.Phrase.Ph3.E3

58. M4.Phrase.Ph1.E4

59. M5.Phrase.Ph2.E5

60. M6.Phrase.Ph3.E6

61. M7.Phrase.Ph1.E1

62. M8.Phrase.Ph2.E1

63. M9.Phrase.Ph3.E1

64. M1.MultiPhrase.Mp1.E1

65. M2.MultiPhrase.Mp2.E2

66. M3.MultiPhrase.Mp3.E3

67. M4.MultiPhrase.Mp1.E4

68. M5.MultiPhrase.Mp2.E5

69. M6.MultiPhrase.Mp3.E6

70. M7.MultiPhrase.Mp1.E1

71. M8.MultiPhrase.Mp2.E1

72. M9.MultiPhrase.Mp3.E1

73. M1.SpanFirst.Sf1.E1

74. M2.SpanFirst.Sf2.E2

75. M3.SpanFirst.Sf1.E3

76. M4.SpanFirst.Sf2.E4

77. M5.SpanFirst.Sf1.E5

78. M6.SpanFirst.Sf2.E6

79. M7.SpanFirst.Sf1.E1

80. M8.SpanFirst.Sf2.E1

81. M9.SpanFirst.Sf1.E1

82. M1.SpanNear.Sn1.E1

83. M2.SpanNear.Sn2.E2

84. M3.SpanNear.Sn2.E3

85. M4.SpanNear.Sn2.E4

86. M5.SpanNear.Sn1.E5

87. M6.SpanNear.Sn2.E6

88. M7.SpanNear.Sn1.E1

89. M8.SpanNear.Sn2.E1

90. M9.SpanNear.Sn1.E1

91. M1.SpanNot.Snot1.E1

92. M2.SpanNot.Snot2.E2

93. M3.SpanNot.Snot1.E3

94. M4.SpanNot.Snot2.E4

95. M5.SpanNot.Snot1.E5

96. M6.SpanNot.Snot2.E6

97. M7.SpanNot.Snot1.E1

98. M8.SpanNot.Snot2.E1

99. M9.SpanNot.Snot1.E1

100. M1.SpanOr.Sor1.E1

101. M2.SpanOr.Sor2.E2

102. M3.SpanOr.Sor1.E3

103. M4.SpanOr.Sor2.E4

104. M5.SpanOr.Sor1.E5

105. M6.SpanOr.Sor2.E6

106. M7.SpanOr.Sor1.E1

107. M8.SpanOr.Sor2.E1

108. M9.SpanOr.Sor1.E1

109. M1.Term.T1.E2

110. M1.Term.T1.E3

111. M1.Term.T1.E4

112. M1.Term.T1.E5

113. M1.Term.T1.E6

114. M2.Term.T1.E1

115. M2.Term.T1.E3

116. M2.Term.T1.E4

117. M2.Term.T1.E5

118. M2.Term.T1.E6

119. M3.Term.T1.E1

120. M3.Term.T1.E2

121. M3.Term.T1.E4

122. M3.Term.T1.E5

123. M3.Term.T1.E6

124. M4.Term.T1.E1

125. M4.Term.T1.E2

126. M4.Term.T1.E3

127. M4.Term.T1.E5

128. M4.Term.T1.E6

129. M5.Term.T1.E1

130. M5.Term.T1.E2

131. M5.Term.T1.E3

132. M5.Term.T1.E4

133. M5.Term.T1.E6

134. M6.Term.T1.E1

135. M6.Term.T1.E2

136. M6.Term.T1.E3

137. M6.Term.T1.E4

138. M6.Term.T1.E5

Model-Driven Framework for Context Dependent Testing of Components 256

D.2: Unique traces of CT (CTUNIQUE-TRACES)

1. M9.Phrase.Ph1.E6

2. M8.Phrase.Ph1.E6

3. M9.Phrase.Ph2.E6

4. M8.Phrase.Ph2.E6

5. M9.MultiPhrase.Mp3.E6

6. M8.MultiPhrase.Mp3.E6

7. M9.MultiPhrase.Mp3.E5

8. M8.MultiPhrase.Mp3.E5

9. M9.Boolean.B2.E6

10. M8.Boolean.B2.E6

11. M9.Boolean.B1.E5

12. M8.Boolean.B1.E5

13. M9.Boolean.B2.E5

14. M8.Boolean.B2.E5

15. M9.Term.T2.E6

16. M8.Term.T2.E6

17. M9.SpanNot.Snot1.E6

18. M8.SpanNot.Snot1.E6

19. M9.Boolean.B1.E1

20. M8.Boolean.B1.E1

21. M9.Boolean.B1.E6

22. M8.Boolean.B1.E6

23. M1.Term.T3.E6

24. M6.Boolean.B4.E4

25. M9.Term.T2.E5

26. M8.Term.T2.E5

27. M9.Boolean.B4.E6

28. M8.Boolean.B4.E6

29. M9.Phrase.Ph1.E5

30. M8.Phrase.Ph1.E5

31. M9.Phrase.Ph3.E6

32. M8.Phrase.Ph3.E6

33. M9.Term.T3.E3

34. M8.Term.T3.E3

35. M9.Term.T3.E2

36. M8.Term.T3.E2

37. M9.Term.T2.E2

38. M8.Term.T2.E2

39. M7.Term.T2.E5

40. M7.Boolean.B2.E4

41. M7.Boolean.B1.E4

42. M7.Boolean.B1.E5

43. M7.Boolean.B1.E6

44. M7.Boolean.B3.E4

45. M7.Boolean.B4.E6

46. M7.Boolean.B3.E5

47. M7.Boolean.B2.E6

48. M7.Boolean.B4.E5

49. M7.Boolean.B2.E5

50. M7.Boolean.B3.E6

51. M7.Boolean.B4.E4

52. M6.Boolean.B2.E6

53. M6.Boolean.B2.E4

54. M6.Term.T2.E4

55. M9.Term.T2.E4

56. M9.Boolean.B3.E5

57. M8.Boolean.B3.E5

58. M9.Term.T2.E6

59. M9.SpanFirst.Sf1.E6

60. M8.SpanFirst.Sf1.E6

61. M9.SpanFirst.Sf2.E5

62. M8.SpanFirst.Sf2.E5

63. M9.SpanFirst.Sf2.E4

64. M8.SpanFirst.Sf2.E4

65. M9.SpanOr.Sor2.E6

66. M8.SpanOr.Sor2.E6

67. M9.SpanNear.Sn2.E4

68. M8.SpanNear.Sn2.E4

69. M9.SpanNear.Sn2.E6

70. M8.SpanNear.Sn2.E6

71. M9.SpanNear.Sn1.E5

72. M8.SpanNear.Sn1.E5

73. M9.SpanNear.Sn1.E6

74. M8.SpanNear.Sn1.E6

75. M5.Term.T3.E6

76. M5.Term.T3.E5

77. M5.Term.T3.E4

78. M5.SpanNear.Sn1.E5

79. M9.Term.T3.E6

80. M8.Term.T3.E6

81. M6.PrefixQuery.P3.E6

82. M6.PrefixQuery.P3.E5

83. M6.MultiPhrase.Mp3.E6

84. M6.MultiPhrase.Mp3.E4

85. M6.Range.R1.E2

86. M6.Range.R1.E3

87. M6.Range.R2.E5

88. M6.Range.R1.E6

89. M6.Boolean.B4.E5

90. M6.Term.T3.E2

91. M6.Term.T3.E3

92. M2.Term.T3.E2

93. M2.Term.T3.E3

94. M6.Term.T3.E5

95. M2.Term.T3.E6

96. M2.Term.T3.E4

97. M2.Term.T3.E5

98. M6.Term.T2.E6

99. M6.Phrase.Ph3.E2

100. M6.Boolean.B4.E6

101. M6.Boolean.B4.E3

102. M6.Boolean.B1.E3

103. M6.Boolean.B1.E5

104. M6.Boolean.B2.E5

105. M6.Boolean.B3.E5

106. M6.Boolean.B3.E4

107. M6.Phrase.Ph2.E3

108. M6.Phrase.Ph3.E3

109. M6.Phrase.Ph1.E3

110. M6.Phrase.Ph1.E2

111. M6.Phrase.Ph2.E2

112. M6.Boolean.B2.E2

113. M6.Wildcard.W3.E5

114. M6.Wildcard.W2.E6

115. M6.Wildcard.W2.E5

116. M6.Wildcard.W2.E4

117. M6.Wildcard.W1.E5

118. M6.Wildcard.W1.E4

119. M6.Wildcard.W1.E6

120. M6.PrefixQuery.P2.E6

121. M6.PrefixQuery.P2.E5

122. M7.Term.T2.E1

123. M7.Term.T2.E6

124. M6.MultiPhrase.Mp2.E3

125. M6.Boolean.B3.E6

126. M6.Phrase.Ph3.E4

127. M6.Phrase.Ph3.E5

128. M6.Phrase.Ph1.E5

129. M6.Phrase.Ph2.E5

130. M6.Phrase.Ph2.E4

131. M6.Phrase.Ph3.E6

132. M6.Phrase.Ph2.E6

133. M6.Fuzzy.F2.E4

134. M6.Fuzzy.F2.E6

135. M6.Fuzzy.F2.E5

136. M7.Term.T3.E6

137. M6.Term.T3.E6

138. M6.Term.T3.E4

139. M6.Phrase.Ph1.E6

140. M6.Phrase.Ph1.E4

141. M6.Boolean.B1.E4

142. M6.SpanNear.Sn1.E6

143. M6.SpanNear.Sn2.E6

144. M6.SpanNot.Snot1.E6

145. M6.SpanNot.Snot2.E6

146. M6.SpanOr.Sor2.E6

147. M6.SpanNear.Sn1.E5

148. M6.Boolean.B1.E6

149. M6.Term.T3.E1

150. M6.Term.T2.E5

151. M6.SpanFirst.Sf1.E6

Model-Driven Framework for Context Dependent Testing of Components 257

D.3: Pairs in CDCTUNIQUE_TRACES (CDCTPAIRS)

Method :
Execution
Condition

1. M1 : E1
2. M1 : E2
3. M1 : E3
4. M1 : E4
5. M1 : E5
6. M1 : E6

7. M2 : E1
8. M2 : E2
9. M2 : E3
10. M2 : E4
11. M2 : E5
12. M2 : E6

13. M3 : E1
14. M3 : E2
15. M3 : E3
16. M3 : E4
17. M3 : E5
18. M3 : E6

19. M4 : E1
20. M4 : E2
21. M4 : E3
22. M4 : E4
23. M4 : E5
24. M4 : E6

25. M5 : E1
26. M5 : E2
27. M5 : E3
28. M5 : E4
29. M5 : E5
30. M5 : E6

31. M6 : E1
32. M6 : E2
33. M6 : E3
34. M6 : E4
35. M6 : E5
36. M6 : E6

37. M7 : E1
38. M7 : E2
39. M7 : E3
40. M7 : E4
41. M7 : E5
42. M7 : E6

43. M8 : E1
44. M8 : E2
45. M8 : E3
46. M8 : E4
47. M8 : E5
48. M8 : E6

49. M9 : E1
50. M9 : E2
51. M9 : E3
52. M9 : E4
53. M9 : E5
54. M9 : E6

Method :

Query Type

55. M1 : Term
56. M1 : Range
57. M1 : Boolean
58. M1 : Prefix
59. M1 : Wildcard
60. M1 : Fuzzy
61. M1 : Phrase
62. M1 : MultiPhrase
63. M1 : SpanFirst
64. M1 : SpanNear
65. M1 : SpanOr
66. M1 : SpanNot

67. M2 : Term
68. M2 : Range
69. M2 : Boolean
70. M2 : Prefix
71. M2 : Wildcard
72. M2 : Fuzzy
73. M2 : Phrase
74. M2 : MultiPhrase
75. M2 : SpanFirst
76. M2 : SpanNear
77. M2 : SpanOr
78. M2 : SpanNot

79. M3 : Term
80. M3 : Range
81. M3 : Boolean
82. M3 : Prefix
83. M3 : Wildcard
84. M3 : Fuzzy
85. M3 : Phrase
86. M3 : MultiPhrase
87. M3 : SpanFirst
88. M3 : SpanNear
89. M3 : SpanOr
90. M3 : SpanNot

91. M4 : Term
92. M4 : Range
93. M4 : Boolean
94. M4 : Prefix
95. M4 : Wildcard
96. M4 : Fuzzy
97. M4 : Phrase
98. M4 : MultiPhrase
99. M4 : SpanFirst
100. M4 : SpanNear
101. M4 : SpanOr
102. M4 : SpanNot

103. M5 : Term
104. M5 : Range
105. M5 : Boolean
106. M5 : Prefix
107. M5 : Wildcard
108. M5 : Fuzzy

109. M5 : Phrase
110. M5 : MultiPhrase
111. M5 : SpanFirst
112. M5 : SpanNear
113. M5 : SpanOr
114. M5 : SpanNot

115. M6 : Term
116. M6 : Range
117. M6 : Boolean
118. M6 : Prefix
119. M6 : Wildcard
120. M6 : Fuzzy
121. M6 : Phrase
122. M6 : MultiPhrase
123. M6 : SpanFirst
124. M6 : SpanNear
125. M6 : SpanOr
126. M6 : SpanNot

127. M7 : Term
128. M7 : Range
129. M7 : Boolean
130. M7 : Prefix
131. M7 : Wildcard
132. M7 : Fuzzy
133. M7 : Phrase
134. M7 : MultiPhrase
135. M7 : SpanFirst
136. M7 : SpanNear
137. M7 : SpanOr
138. M7 : SpanNot

139. M8 : Term
140. M8 : Range
141. M8 : Boolean
142. M8 : Prefix
143. M8 : Wildcard
144. M8 : Fuzzy
145. M8 : Phrase
146. M8 : MultiPhrase
147. M8 : SpanFirst
148. M8 : SpanNear
149. M8 : SpanOr
150. M8 : SpanNot

151. M9 : Term
152. M9 : Range
153. M9 : Boolean
154. M9 : Prefix
155. M9 : Wildcard
156. M9 : Fuzzy
157. M9 : Phrase
158. M9 : MultiPhrase
159. M9 : SpanFirst
160. M9 : SpanNear
161. M9 : SpanOr
162. M9 : SpanNot

Query Type :
Execution Condition

163. Term : E1
164. Term : E2
165. Term : E3
166. Term : E4
167. Term : E5
168. Term : E6
169. Range : E1
170. Range : E2
171. Range : E3
172. Range : E4
173. Range : E5
174. Range : E6

175. Boolean : E1
176. Boolean : E2
177. Boolean : E3
178. Boolean : E4
179. Boolean : E5
180. Boolean : E6

181. Prefix : E1
182. Prefix : E2
183. Prefix : E3
184. Prefix : E4
185. Prefix : E5
186. Prefix : E6

187. Wildcard : E1
188. Wildcard : E2
189. Wildcard : E3
190. Wildcard : E4
191. Wildcard : E5
192. Wildcard : E6

193. Fuzzy : E1
194. Fuzzy : E2
195. Fuzzy : E3
196. Fuzzy : E4
197. Fuzzy : E5
198. Fuzzy : E6

199. Phrase : E1
200. Phrase : E2
201. Phrase : E3
202. Phrase : E4
203. Phrase : E5
204. Phrase : E6

205. MultiPhrase : E1
206. MultiPhrase : E2
207. MultiPhrase : E3
208. MultiPhrase : E4
209. MultiPhrase : E5
210. MultiPhrase : E6

211. SpanFirst : E1
212. SpanFirst : E2
213. SpanFirst : E3
214. SpanFirst : E4
215. SpanFirst : E5
216. SpanFirst : E6

217. SpanNear : E1
218. SpanNear : E2
219. SpanNear : E3
220. SpanNear : E4
221. SpanNear : E5
222. SpanNear : E6

223. SpanOr : E1
224. SpanOr : E2
225. SpanOr : E3
226. SpanOr : E4
227. SpanOr : E5
228. SpanOr : E6

229. SpanNot : E1
230. SpanNot : E2
231. SpanNot : E3
232. SpanNot : E4
233. SpanNot : E5
234. SpanNot : E6

Query Type :
Data Category

235. Term : T1
236. Term : T2
237. Term : T3

238. Range : R1
239. Range : R2

240. Boolean : B1
241. Boolean : B2
242. Boolean : B3
243. Boolean : B4

244. Prefix : P1
245. Prefix : P2
246. Prefix : P3

247. Wildcard : W1
248. Wildcard : W2
249. Wildcard : W3

250. Fuzzy : F1
251. Fuzzy : F2

252. Phrase : Ph1
253. Phrase : Ph2
254. Phrase : Ph3

255. MultiPhrase : Mp1
256. MultiPhrase : Mp2
257. MultiPhrase : Mp3

258. SpanFirst : Sf1
259. SpanFirst : Sf2

260. SpanNear : Sn1
261. SpanNear : Sn2

262. SpanNot : Snot1
263. SpanNot : Snot2

264. SpanOr : Sor1
265. SpanOr : Sor2

Model-Driven Framework for Context Dependent Testing of Components 258

D.4: Pairs in CTUNIQUE_TRACES (CTPAIRS)

Method :
Execution Condition

1. M1 : E6

2. M2 : E2
3. M2 : E3
4. M2 : E4
5. M2 : E5
6. M2 : E6

7. M5 : E4
8. M5 : E5
9. M5 : E6

10. M6 : E1
11. M6 : E2
12. M6 : E3
13. M6 : E4
14. M6 : E5
15. M6 : E6

16. M7 : E1
17. M7 : E4
18. M7 : E5
19. M7 : E6

20. M8 : E1
21. M8 : E2
22. M8 : E3
23. M8 : E4
24. M8 : E5
25. M8 : E6

26. M9 : E1
27. M9 : E2
28. M9 : E3
29. M9 : E4
30. M9 : E5
31. M9 : E6

Method :
Query Type

32. M1 : Range

33. M2 : Range

34. M5 : Term
35. M5 : SpanNear

36. M6 : Term
37. M6 : Range
38. M6 : Boolean
39. M6 : Prefix
40. M6 : Wildcard
41. M6 : Fuzzy
42. M6 : Phrase
43. M6 : MultiPhrase
44. M6 : SpanFirst
45. M6 : SpanNear
46. M6 : SpanOr
47. M6 : SpanNot

48. M7 : Term
49. M7 : Range

50. M8 : Term
51. M8 : Boolean
52. M8 : Phrase
53. M8 : MultiPhrase
54. M8 : SpanFirst
55. M8 : SpanNear
56. M8 : SpanOr
57. M8 : SpanNot

58. M9 : Term
59. M9 : Boolean
60. M9 : Phrase
61. M9 : MultiPhrase
62. M9 : SpanFirst
63. M9 : SpanNear
64. M9 : SpanOr
65. M9 : SpanNot

Query Type :
Execution Condition

66. Term : E1
67. Term : E2
68. Term : E3
69. Term : E4
70. Term : E5
71. Term : E6

72. Range : E2
73. Range : E3
74. Range : E5
75. Range : E6

76. Boolean : E1
77. Boolean : E2
78. Boolean : E3
79. Boolean : E4
80. Boolean : E5
81. Boolean : E6

82. Prefix : E5
83. Prefix : E6

84. Wildcard : E4
85. Wildcard : E5
86. Wildcard : E6

87. Fuzzy : E4
88. Fuzzy : E5
89. Fuzzy : E6

90. Phrase : E2
91. Phrase : E3
92. Phrase : E4
93. Phrase : E5
94. Phrase : E6

95. MultiPhrase : E3
96. MultiPhrase : E4
97. MultiPhrase : E5
98. MultiPhrase : E6
99. SpanFirst : E4
100. SpanFirst : E5
101. SpanFirst : E6

102. SpanNear : E4
103. SpanNear : E5
104. SpanNear : E6

105. SpanOr : E6

106. SpanNot : E6

Query Type :
Data Category

107. Term : T2
108. Term : T3

109. Range : R1
110. Range : R2

111. Boolean : B1
112. Boolean : B2
113. Boolean : B3
114. Boolean : B4

115. Prefix : P2
116. Prefix : P3

117. Wildcard : W1
118. Wildcard : W2
119. Wildcard : W3

120. Fuzzy : F2

121. Phrase : Ph1
122. Phrase : Ph2
123. Phrase : Ph3

Query Type :
Data Category

124. MultiPhrase : Mp2
125. MultiPhrase : Mp3

126. SpanFirst : Sf1
127. SpanFirst : Sf2

128. SpanNear : Sn1
129. SpanNear : Sn2

130. SpanNot : Snot1
131. SpanNot : Snot2

132. SpanOr : Sor2

Model-Driven Framework for Context Dependent Testing of Components 259

D.5: Abstract test suite for enriching CDCT (∆CDCT)

 Test Case
Executing
Condition

Method
Parameter Expected

Matches Query Type : Query Data Filter Sort int

Empty Index - Index has zero documents (E1)

1 E1 M1 BooleanQuery: +duck +parrot 0

2 E1 M1 RangeQuery : [1980 TO 1981] 0

3 E1 M1 WildcardQuery: mode* 0

4 E1 M1 SpanFirstQuery: uses 0

5 E1 M1 SpanNearQuery: model based 0

6 E1 M1 SpanNotQuery: model testing 0

7 E1 M1 SpanOrQuery: model based 0

8 E1 M2 BooleanQuery: +duck +parrot d1 0

9 E1 M2 FuzzyQuery: moden~ d1 0

10 E1 M3 BooleanQuery: +duck +parrot d1 author 0

11 E1 M4 BooleanQuery: +duck +parrot author 0

12 E1 M5 BooleanQuery: +duck +parrot 2 0

13 E1 M5 PhraseQuery: testing uses 2 0

14 E1 M5 PrefixQuery: /birds 2 0

15 E1 M7 RangeQuery : [1980 TO 1981] d1 author 2 0

Index containing one document (E2 and E3)

document 1 (d1) = { author: “beizer”,

body: “model based testing uses software models”,
year: “1980”,
pets: “/birds/anatidae/duck” }

16 E2 M1 FuzzyQuery: OCL~ 0

17 E2 M2 PrefixQuery: /birds d1 0

18 E2 M2 WildcardQuery: mode* d1 0

19 E2 M2 SpanFirstQuery: uses d1 0

20 E2 M2 SpanNearQuery: UML OCL d1 0

21 E2 M2 SpanNotQuery: OCL testing d1 0

22 E2 M2 SpanOrQuery: UML OCL d1 0

23 E2 M3 FuzzyQuery: OCL~ d1 author 0

24 E2 M4 FuzzyQuery: OCL~ author 0

25 E2 M5 FuzzyQuery: moden~ 2 0

26 E2 M7 MultiphraseQuery: UML OCL d1 author 2 0

27 E3 M1 MultiphraseQuery: UML OCL 1

28 E3 M3 MultiphraseQuery: UML OCL d1 author 1

29 E3 M3 WildcardQuery: mode* d1 author 1

30 E3 M3 SpanFirstQuery: uses d1 author 1

31 E3 M3 SpanNearQuery: model based d1 author 1

32 E3 M3 SpanNotQuery: testing based d1 author 1

33 E3 M3 SpanOrQuery: driven based d1 author 1

34 E3 M4 MultiphraseQuery: model based author 1

35 E3 M5 MultiphraseQuery: model based 2 1

36 E3 M7 FuzzyQuery: moden~ d1 author 2 1

37 E3 M7 PrefixQuery: /birds d1 author 2 1

38 E3 M8 FuzzyQuery: moden~ 1

Model-Driven Framework for Context Dependent Testing of Components 260

Index containing more than one document (E4, E5 and E6)

document 1 (d1) = { author: “beizer”,
body: “model based testing uses software models”,
year: “1980”,
pets: “/birds/anatidae/duck” }

document 2 (d2) = { author: “utting”,
body: “model based testing uses software models”,
year: “1981”,
pets: “/birds/anatidae/swan” }

document 3 (d3) = { author: “poston”,
body: “model based testing uses software models”,
year: “1982”,
pets: “/birds/anatidae/seagull” }

39 E4 M1 PhraseQuery: model OCL 0

40 E4 M3 PhraseQuery: model OCL d1 , d2 author 0

41 E4 M4 PhraseQuery: model OCL author 0

42 E4 M4 SpanNearQuery: model OCL author 0

43 E4 M4 SpanNotQuery: OCL testing author 0

44 E4 M8 PrefixQuery:/animals 0

45 E5 M1 PrefixQuery:/duck 1

46 E5 M3 PrefixQuery: /duck d1 , d2 author 1

47 E5 M4 PrefixQuery: /duck author 1

48 E5 M5 SpanNotQuery: OCL testing 2 1

49 E5 M5 SpanOrQuery: OCL driven 2 1

50 E6 M2 MultiphraseQuery: model testing d1 , d2 2

51 E6 M2 PhraseQuery: testing uses d1 , d2 2

52 E6 M2 RangeQuery: [1980 TO 1981] d1 , d2 2

53 E6 M3 RangeQuery: [1980 TO 1981] d1 , d2 author 2

54 E6 M3 TermQuery: model d1 , d2 author 3

55 E6 M4 RangeQuery: [1980 TO 1981] author 2

56 E6 M4 SpanFirstQuery: model author 2

57 E6 M4 SpanOrQuery: driven based author 2

58 E6 M4 TermQuery: model author 2

59 E6 M4 WildcardQuery: mode* author 2

60 E6 M5 RangeQuery: [1980 TO 1981] 2 2

61 E6 M5 SpanFirstQuery: model based 2 2

62 E6 M5 WildcardQuery: mode* 2 2

63 E6 M7 PhraseQuery: testing uses d1 , d2 author 2 2

64 E6 M7 SpanFirstQuery: uses d1 , d2 author 2 2

65 E6 M7 SpanNearQuery: driven based d1 , d2 author 2 2

66 E6 M7 SpanNotQuery: testing driven d1 , d2 author 2 2

67 E6 M7 SpanOrQuery: driven based d1 , d2 author 2 2

68 E6 M7 WildcardQuery: mode* d1 , d2 author 2 2

69 E6 M8 RangeQuery: [1980 TO 1981] 2

70 E6 M8 WildcardQuery: mode* 2

71 E6 M9 FuzzyQuery: moden~ d1 , d2 2

72 E6 M9 PrefixQuery: /birds d1 , d2 2

73 E6 M9 RangeQuery: [1980 TO 1981] d1 , d2 2

74 E6 M9 WildcardQuery: mode* d1 , d2 2

Model-Driven Framework for Context Dependent Testing of Components 261

In this table, { } represents a document, and x:y represents a field (a name-value pair) in the

document. The column “Executing Condition” specifies the executing conditions of the

search method, e.g. search method which is invoked, e.g. E6. The “Method” column specifies

the overloaded search method which is invoked, e.g. M2. The column “Query Type:Query

Data” specifies the type of the query being executed along with the search text. The column

“Filters” specifies the scope of the search, e.g. d1 shows that the search is limited to the

document 1 in index. The column “Sort” shows the field on which the result set is sorted. The

column “Expected Matches” shows the number of documents which are expected to match

this query.

Model-Driven Framework for Context Dependent Testing of Components 262

D.6: Sequence diagrams for the use cases of Searcher in ∆CDCT

UC-1: Execute Term Query using m1

Analyzer

<<Component>>

<<create>>

RAM

Directory

Indexer

<<Component>>

analyzer:SimpleAnalyzer

<<create>>

directory:RAMDirectory

writer:IndexWriter

Document

<<create>>

doc:Document

Field

<<create>> (name, value, Field.Store.NO, Field.Index.ANALYSED)

field:Field

add(field)

addDocument(doc)

close()

QueryParser

<<Component>>
Searcher

<<Component>>

<<create>> (field, analyzer)

parser:QueryParser

parse(queryText)

termQuery:TermQuery

<<create>> (directory)

searcher:IndexSearcher

search(termQuery)

hits:Hits

close()

<<create>> (directory, analyzer, true)

TermQuery

<<create>>

termQuery:TermQuery

Lucene Client

loop

Model-Driven Framework for Context Dependent Testing of Components 263

UC-2: Execute Range Query using m2

Lucene Client
Analyzer

<<Component>>

<<create>>

RAM

Directory

Indexer

<<Component>>

analyzer:SimpleAnalyzer

<<create>>

directory:RAMDirectory

writer:IndexWriter

Document

<<create>>

doc:Document

Field

<<create>> (name, value, Field.Store.NO, Field.Index.ANALYSED)

field:Field

add(field)

addDocument(doc)

close()

QueryParser

<<Component>>
Searcher

<<Component>>

<<create>> (field, analyzer)

parser:QueryParser

parse(queryText)

<<create>> (directory)

searcher:IndexSearcher

search(termQuery, filter)

hits:Hits

close()

<<create>> (directory, analyzer, true)

RangeQuery

loop

new Filter()

filter:Filter

rangeQuery:RangeQuery

<<create>>

rangeQuery:RangeQuery

Filter

Model-Driven Framework for Context Dependent Testing of Components 264

UC-3: Execute Prefix Query using m3

Lucene Client
Analyzer

<<Component>>

<<create>>

RAM

Directory

Indexer

<<Component>>

analyzer:SimpleAnalyzer

<<create>>

directory:RAMDirectory

writer:IndexWriter

Document

<<create>>

doc:Document

Field

<<create>> (name, value, Field.Store.NO, Field.Index.ANALYSED)

field:Field

add(field)

addDocument(doc)

close()

QueryParser

<<Component>>
Searcher

<<Component>>

<<create>> (field, analyzer)

parser:QueryParser

parse(queryText)

<<create>> (directory)

searcher:IndexSearcher

search(termQuery, filter, sort)

hits:Hits

close()

<<create>> (directory, analyzer, true)

Filter

loop

new Filter()

filter:Filter

prefixQuery:PrefixQuery

Sort

<<create>> (sortField)

sort:Sort

PrefixQuery

prefixQuery:PrefixQuery

<<create>>

Model-Driven Framework for Context Dependent Testing of Components 265

UC-4: Execute Boolean using m4

Lucene Client
Analyzer

<<Component>>

<<create>>

RAM

Directory

Indexer

<<Component>>

analyzer:SimpleAnalyzer

<<create>>

directory:RAMDirectory

writer:IndexWriter

Document

<<create>>

doc:Document

Field

<<create>> (name, value, Field.Store.NO, Field.Index.ANALYSED)

field:Field

add(field)

addDocument(doc)

close()

QueryParser

<<Component>>
Searcher

<<Component>>

<<create>> (field, analyzer)

parser:QueryParser

parse(queryText)

booleanQuery:BooleanQuery

<<create>> (directory)

searcher:IndexSearcher

search(booleanQuery, sort)

hits:Hits

close()

<<create>> (directory, analyzer, true)

BooleanQuery

<<create>>

booleanQuery:BooleanQuery

loop

Sort

<<create>> (sortField)

sort:Sort

Model-Driven Framework for Context Dependent Testing of Components 266

UC-5: Execute Wildcard Query using m5

Wildcard QueryLucene Client
Analyzer

<<Component>>

<<create>>

RAM

Directory

Indexer

<<Component>>

analyzer:SimpleAnalyzer

<<create>>

directory:RAMDirectory

writer:IndexWriter

Document

<<create>>

doc:Document

Field

<<create>> (name, value, Field.Store.NO, Field.Index.ANALYSED)

field:Field

add(field)

addDocument(doc)

close()

QueryParser

<<Component>>
Searcher

<<Component>>

<<create>> (field, analyzer)

parser:QueryParser

parse(queryText)

<<create>> (directory)

searcher:IndexSearcher

search(termQuery, 2)

hits:ScoreDocs

close()

<<create>> (directory, analyzer, true)

loop

wildcardQuery:WildcardQuery

<<create>> (directory)

wildcardQuery:WildcardQuery

Model-Driven Framework for Context Dependent Testing of Components 267

UC-6: Execute Fuzzy Query using m6

Lucene Client
Analyzer

<<Component>>

<<create>>

RAM

Directory

Indexer

<<Component>>

analyzer:SimpleAnalyzer

<<create>>

directory:RAMDirectory

writer:IndexWriter

Document

<<create>>

doc:Document

Field

<<create>> (name, value, Field.Store.NO, Field.Index.ANALYSED)

field:Field

add(field)

addDocument(doc)

close()

QueryParser

<<Component>>
Searcher

<<Component>>

<<create>> (field, analyzer)

parser:QueryParser

parse(queryText)

fuzzyQuery:FuzzyQuery

<<create>> (directory)

searcher:IndexSearcher

search(termQuery, filter, 2)

hits:ScoreDocs

close()

<<create>> (directory, analyzer, true)

Filter

loop

<<create>>

new Filter()

filter:Filter

fuzzyQuery:FuzzyQuery

Fuzzy Query

Model-Driven Framework for Context Dependent Testing of Components 268

UC-7: Execute Phrase Query using m7

Lucene Client
Analyzer

<<Component>>

<<create>>

RAM

Directory

Indexer

<<Component>>

analyzer:SimpleAnalyzer

<<create>>

directory:RAMDirectory

writer:IndexWriter

Document

<<create>>

doc:Document

Field

<<create>> (name, value, Field.Store.NO, Field.Index.ANALYSED)

field:Field

add(field)

addDocument(doc)

close()

Phrase Query
Searcher

<<Component>>

<<create>>

phraseQuery:PhraseQuery

add(firstTermOfPhrase)

<<create>> (directory)

searcher:IndexSearcher

search(termQuery, filter, 2)

hits:ScoreDocs

close()

<<create>> (directory, analyzer, true)

Filter

loop

add(secondTermOfPhrase)

new Filter()

filter:Filter

Sort

<<create>> (field)

sort:Sort

Model-Driven Framework for Context Dependent Testing of Components 269

UC-8: Execute Multiphrase Query using m8

Lucene Client
Analyzer

<<Component>>

<<create>>

RAM

Directory

Indexer

<<Component>>

analyzer:SimpleAnalyzer

<<create>>

directory:RAMDirectory

writer:IndexWriter

Document

<<create>>

doc:Document

Field

<<create>> (name, value, Field.Store.NO, Field.Index.ANALYSED)

field:Field

add(field)

addDocument(doc)

close()

Multiphase Query
Searcher

<<Component>>

<<create>>

multiphraseQuery:MultiphraseQuery

add(terms[])

<<create>> (directory)

searcher:IndexSearcher

search(termQuery, topDocCollector)

close()

<<create>> (directory, analyzer, true)

loop

TopDoc

Collector

new TopDocCollector(1000)

topDocCollector:TopDocCollector

Model-Driven Framework for Context Dependent Testing of Components 270

UC-9: Execute SpanFirst Query using m9

Lucene Client
Analyzer

<<Component>>

<<create>>

RAM

Directory

Indexer

<<Component>>

analyzer:SimpleAnalyzer

<<create>>

directory:RAMDirectory

writer:IndexWriter

Document

<<create>>

doc:Document

Field

<<create>> (name, value, Field.Store.NO, Field.Index.ANALYSED)

field:Field

add(field)

addDocument(doc)

close()

SpanFirst Query
Searcher

<<Component>>

<<create>> (fieldName, termText)

term:Term

<<create>> (term, 3)

rangeQuery:RangeQuery

<<create>> (directory)

searcher:IndexSearcher

search(termQuery, filter, topDocCollector)

close()

<<create>> (directory, analyzer, true)

Filter

loop

parse(filterQueryText)

new QueryFilter(rangeQuery)

filter:QueryFilter

spanFirst:SpanFirst

TopDoc

Collector

new TopDocCollector(1000)

topDocCollector:TopDocCollector

Term

Model-Driven Framework for Context Dependent Testing of Components 271

UC-10: Execute SpanNear Query using m1

Analyzer

<<Component>>

<<create>>

RAM

Directory

Indexer

<<Component>>

analyzer:SimpleAnalyzer

<<create>>

directory:RAMDirectory

writer:IndexWriter

Document

<<create>>

doc:Document

Field

<<create>> (name, value, Field.Store.NO, Field.Index.ANALYSED)

field:Field

add(field)

addDocument(doc)

close()

SpanNearQuery
Searcher

<<Component>>

<<create>> (termText)

termQuery1:TermQuery

<<create>> (SpanQuery[] {termQuery1, termQuery2}, 4, true)

spanNearQuery:SpanNearQuery

<<create>> (directory)

searcher:IndexSearcher

search(spanNearQuery)

hits:Hits

close()

<<create>> (directory, analyzer, true)

TermQueryLucene Client

<<create>> (termText)

termQuery2:TermQuery

loop

Model-Driven Framework for Context Dependent Testing of Components 272

UC-11: Execute SpanNot Query using m1

Analyzer

<<Component>>

<<create>>

RAM

Directory

Indexer

<<Component>>

analyzer:SimpleAnalyzer

<<create>>

directory:RAMDirectory

writer:IndexWriter

Document

<<create>>

doc:Document

Field

<<create>> (name, value, Field.Store.NO, Field.Index.ANALYSED)

field:Field

add(field)

addDocument(doc)

close()

SpanNearQuery
Searcher

<<Component>>

<<create>> (termText)

termQuery1:TermQuery

<<create>> (SpanQuery[] {termQuery1, termQuery2}, 4, true)

spanNearQuery:SpanNearQuery

<<create>> (directory)

searcher:IndexSearcher

search(spanNotQuery)

hits:Hits

close()

<<create>> (directory, analyzer, true)

TermQueryLucene Client

<<create>> (termText)

termQuery2:TermQuery

loop

<<create>> (termText)

termQuery3:TermQuery

<<create>> (spanNearQuery, term3)

spanNotQuery:SpanNotQuery

SpanNotQuery

Model-Driven Framework for Context Dependent Testing of Components 273

UC-12: Execute SpanOr Query using m1

Analyzer

<<Component>>

<<create>>

RAM

Directory

Indexer

<<Component>>

analyzer:SimpleAnalyzer

<<create>>

directory:RAMDirectory

writer:IndexWriter

Document

<<create>>

doc:Document

Field

<<create>> (name, value, Field.Store.NO, Field.Index.ANALYSED)

field:Field

add(field)

addDocument(doc)

close()

SpanOrQuery
Searcher

<<Component>>

<<create>> (term)

query1:SpanTermQuery

<<crate>> (SpanQuery[] { query1, query2 })

spanOrQuery:SpanOrQuery

<<create>> (directory)

searcher:IndexSearcher

search(spanOrQuery)

hits:Hits

close()

<<create>> (directory, analyzer, true)

SpanTermQueryLucene Client

<<create>> (term)

query2:SpanTermQuery

loop

Model-Driven Framework for Context Dependent Testing of Components 274

D.7: SMC Model for smc1

Model-Driven Framework for Context Dependent Testing of Components 275

D.8: Test data for smc1

<?xml version="1.0" encoding="UTF-8"?>

<SequenceDiagram name="smc1">

 <Message name="IndexWriter::SETUP_IndexWriter"> <ConstructorParameter name="boolean1" value="true"/> </Message>

 <Message name=“Sort::SETUP_Sort"> <ConstructorParameter name="sortField1" value="author"/> </Message>

 <Message name=“Integer::SETUP_TopNDocs"> <ConstructorParameter name ="intTopDocs1" value="2"/> </Message>

 <Message name=“Integer::SETUP_intSpanEnd1"> <ConstructorParameter name ="intSpanEnd1" value="3"/> </Message>

 <Message name=“Integer::SETUP_intSlop1"> <ConstructorParameter name ="intSlop1" value="1"/> </Message>

 <Message name=“QueryParser::SETUP_QueryParser"> <ConstructorParameter name="field1" value="body"/> </Message>

 <Message name=“String::SETUP_BooleanText1"> <ConstructorParameter name ="booleanText1" value="+duck +parrot"/></Message>

 <Message name=“String::SETUP_RangeText1"> <ConstructorParameter name ="rangeText1" value="[1980 TO 1981]"/> </Message>

 <Message name=“String::SETUP_WildcardText1"> <ConstructorParameter name="wildcardText1" value="mode*"/> </ Message>

 <Message name=“String::SETUP_FuzzyText1"> <ConstructorParameter name="fuzzyText1" value="moden~"/> </Message>

 <Message name=“String::SETUP_PhraseText1"> <ConstructorParameter name="phraseText1" value="testing uses"/> </Message>

 <Message name=“String::SETUP_TermText1"> <ConstructorParameter name="termText1" value="uses"/> </Message>

 <Message name=“String::SETUP_TermText2"> <ConstructorParameter name="termText2" value="model"/> </Message>

 <Message name=“String::SETUP_TermText3"> <ConstructorParameter name="termText3" value="based"/> </Message>

 <Message name=“String::SETUP_TermText4"> <ConstructorParameter name="termText4" value="testing"/> </Message>

 <Message name=“String::SETUP_PrefixText1"> <ConstructorParameter name="prefixText1" value="birds"/> </Message>

 <Message name=“Hits::getHitDocs"> <ExpectedValue name="hitsVector1" value="new HitsVector()"/> </Message>

 <Message name=“Hits::getHitDocs"> <ExpectedValue name="hitsVector2" value="expected_hitsVector1"/> </Message>

 <Message name=“Hits::getHitDocs"> <ExpectedValue name="hitsVector3" value="expected_hitsVector1"/></Message>

 <Message name=“Hits::getHitDocs"> <ExpectedValue name="hitsVector4" value="expected_hitsVector1"/></Message>

 <Message name=“Hits::getHitDocs"> <ExpectedValue name="hitsVector5" value="expected_hitsVector1"/></Message>

 <Message name=“Hits::getHitDocs"> <ExpectedValue name="hitsVector6" value="expected_hitsVector1"/></Message>

 <Message name=“Hits::getHitDocs"> <ExpectedValue name="hitsVector7" value="expected_hitsVector1"/> </Message>

 <Message name=“Hits::getHitDocs"> <ExpectedValue name="hitsVector8" value="expected_hitsVector1"/> </Message>

 <Message name=“Hits::getHitDocs"> <ExpectedValue name="hitsVector9" value="expected_hitsVector1"/> </Message>

 <Message name=“Hits::getHitDocs"> <ExpectedValue name="hitsVector10" value="expected_hitsVector1"/> </Message>

 <Message name=“Hits::getHitDocs"> <ExpectedValue name="hitsVector11" value="expected_hitsVector1"/> </Message>

 <Message name=“TopDocs::getScoreDocs"> <ExpectedValue name="hitsVector12" value="expected_hitsVector1"/> </Message>

 <Message name=“TopDocs::getScoreDocs"> <ExpectedValue name="hitsVector13" value="expected_hitsVector1"/> </Message>

 <Message name=“TopDocs::getScoreDocs"> <ExpectedValue name="hitsVector14" value="expected_hitsVector1"/> </Message>

 <Message name=“TopDocs::getScoreDocs"> <ExpectedValue name="hitsVector15" value="expected_hitsVector1"/> </Message>

</SequenceDiagram>

Model-Driven Framework for Context Dependent Testing of Components 276

D.9: xUnit Model for smc1

Model-Driven Framework for Context Dependent Testing of Components 277

D.10: Concrete test cases for ∆CDCT

Test Suite for SMC1
package org.apache.lucene.search;

import java.util.BitSet;
import java.util.Vector;
import junit.framework.*;
import org.apache.lucene.analysis.*;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.index.*;
import org.apache.lucene.document.*;
import org.apache.lucene.document.Field.Index;
import org.apache.lucene.document.Field.Store;
import org.apache.lucene.document.Field.*;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.spans.*;
import org.apache.lucene.store.*;
import org.apache.lucene.util.DocIdBitSet;
import org.apache.lucene.search.HitDoc;
import java.util.*;

public class TestSuite_smc1 extends TestCase {

 public static void main(String args[]) {
 TestSuite testSuite = new TestSuite(TestSuite_smc1.class);
 testSuite.run(new TestResult());
 }

 public void test_smc1() {

 try {
 RAMDirectory rAMDirectory1 = new RAMDirectory();
 SimpleAnalyzer simpleAnalyzer1 = new SimpleAnalyzer();
 boolean boolean1 = true;
 IndexWriter indexWriter1 = new IndexWriter(rAMDirectory1, simpleAnalyzer1, boolean1);
 IndexSearcher indexSearcher1 = new IndexSearcher(rAMDirectory1);
 String sortField1 = "author";
 Sort sort1 = new Sort(sortField1);
 int intTopDocs1 = 2;
 Integer integer1 = new Integer(intTopDocs1);
 int intSpanEnd1 = 3;
 Integer integer2 = new Integer(intSpanEnd1);
 int intSlop1 = 1;
 Integer integer3 = new Integer(intSlop1);
 String field1 = "body";
 QueryParser queryParser1 = new QueryParser(field1, simpleAnalyzer1);
 indexWriter1.optimize();
 indexWriter1.close();
 String booleanText1 = "+duck +parrot";
 String string1 = new String(booleanText1);
 String rangeText1 = "[1980 TO 1981]";
 String string2 = new String(rangeText1);
 String wildcardText1 = "mode*";
 String string3 = new String(wildcardText1);
 String fuzzyText1 = "moden~";
 String string4 = new String(fuzzyText1);
 String phraseText1 = "testing uses";
 String string5 = new String(phraseText1);
 String termText1 = "uses";
 String string6 = new String(termText1);
 String termText2 = "model";
 String string7 = new String(termText2);
 String termText3 = "based";
 String string8 = new String(termText3);
 String termText4 = "testing";
 String string9 = new String(termText4);
 String prefixText1 = "birds";
 String string10 = new String(prefixText1);
 Term term1 = new Term(field1, termText1);
 Term term2 = new Term(field1, termText2);

Model-Driven Framework for Context Dependent Testing of Components 278

 Term term3 = new Term(field1, termText3);
 Term term4 = new Term(field1, termText4);
 Term term5 = new Term(field1, prefixText1);
 PrefixQuery prefixQuery1 = new PrefixQuery(term5);
 Query query1 = (Query) queryParser1.parse(booleanText1);
 Query query2 = (Query) queryParser1.parse(rangeText1);
 Query query3 = (Query) queryParser1.parse(wildcardText1);
 Query query4 = (Query) queryParser1.parse(fuzzyText1);
 Query query5 = (Query) queryParser1.parse(phraseText1);
 Query query6 = (Query) queryParser1.parse(termText1);
 Query query7 = (Query) queryParser1.parse(termText2);
 Query query8 = (Query) queryParser1.parse(termText3);
 Query query9 = (Query) queryParser1.parse(termText4);
 SpanTermQuery spanTermQuery1 = new SpanTermQuery(term1);
 SpanTermQuery spanTermQuery2 = new SpanTermQuery(term2);
 SpanTermQuery spanTermQuery3 = new SpanTermQuery(term3);
 SpanTermQuery spanTermQuery4 = new SpanTermQuery(term4);
 SpanFirstQuery spanFirstQuery1 = new SpanFirstQuery(spanTermQuery1, intSpanEnd1);
 SpanQuery [] spanQuery1 = new SpanQuery[] { spanTermQuery2, spanTermQuery4 };
 SpanQuery [] spanQuery2 = new SpanQuery[] { spanTermQuery2, spanTermQuery3 };
 SpanNearQuery spanNearQuery1 = new SpanNearQuery(spanQuery1, intSlop1, boolean1);
 SpanNotQuery spanNotQuery1 = new SpanNotQuery(spanTermQuery2, spanTermQuery4);
 SpanOrQuery spanOrQuery1 = new SpanOrQuery(spanQuery2);
 Hits hits1 = (Hits) indexSearcher1.search(query1);
 HitsVector expected_hitsVector1 = new HitsVector();
 HitsVector hitsVector1 = (HitsVector) hits1.getHitDocs();
 assertTrue(hitsVector1.equals(expected_hitsVector1)); // Test Case # 1

 Hits hits2 = (Hits) indexSearcher1.search(query2);
 HitsVector expected_hitsVector2 = expected_hitsVector1;
 HitsVector hitsVector2 = (HitsVector) hits2.getHitDocs();
 assertTrue(hitsVector2.equals(expected_hitsVector2)); // Test Case # 2

 Hits hits3 = (Hits) indexSearcher1.search(query3);
 HitsVector expected_hitsVector3 = expected_hitsVector1;
 HitsVector hitsVector3 = (HitsVector) hits3.getHitDocs();
 assertTrue(hitsVector3.equals(expected_hitsVector3)); // Test Case # 3

 Hits hits4 = (Hits) indexSearcher1.search(spanFirstQuery1);
 HitsVector expected_hitsVector4 = expected_hitsVector1;
 HitsVector hitsVector4 = (HitsVector) hits4.getHitDocs();
 assertTrue(hitsVector4.equals(expected_hitsVector4)); // Test Case # 4

 Hits hits5 = (Hits) indexSearcher1.search(spanNearQuery1);
 HitsVector expected_hitsVector5 = expected_hitsVector1;
 HitsVector hitsVector5 = (HitsVector) hits5.getHitDocs();
 assertTrue(hitsVector5.equals(expected_hitsVector5)); // Test Case # 5

 Hits hits6 = (Hits) indexSearcher1.search(spanNotQuery1);
 HitsVector expected_hitsVector6 = expected_hitsVector1;
 HitsVector hitsVector6 = (HitsVector) hits6.getHitDocs();
 assertTrue(hitsVector6.equals(expected_hitsVector6)); // Test Case # 6

 Hits hits7 = (Hits) indexSearcher1.search(spanOrQuery1);
 HitsVector expected_hitsVector7 = expected_hitsVector1;
 HitsVector hitsVector7 = (HitsVector) hits7.getHitDocs();
 assertTrue(hitsVector7.equals(expected_hitsVector7)); // Test Case # 7

 Hits hits8 = (Hits) indexSearcher1.search(query1, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) {
BitSet bitset = new BitSet(1); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } });
 HitsVector expected_hitsVector8 = expected_hitsVector1;
 HitsVector hitsVector8 = (HitsVector) hits8.getHitDocs();
 assertTrue(hitsVector8.equals(expected_hitsVector8)); // Test Case # 8

 Hits hits9 = (Hits) indexSearcher1.search(query4, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) {
BitSet bitset = new BitSet(1); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } });
 HitsVector expected_hitsVector9 = expected_hitsVector1;
 HitsVector hitsVector9 = (HitsVector) hits9.getHitDocs();
 assertTrue(hitsVector9.equals(expected_hitsVector9)); // Test Case # 9

Model-Driven Framework for Context Dependent Testing of Components 279

 Hits hits10 = (Hits) indexSearcher1.search(query1, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) {
BitSet bitset = new BitSet(1); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, sort1);
 HitsVector expected_hitsVector10 = expected_hitsVector1;
 HitsVector hitsVector10 = (HitsVector) hits10.getHitDocs();
 assertTrue(hitsVector10.equals(expected_hitsVector10)); // Test Case # 10

 Hits hits11 = (Hits) indexSearcher1.search(query1, sort1);
 HitsVector expected_hitsVector11 = expected_hitsVector1;
 HitsVector hitsVector11 = (HitsVector) hits11.getHitDocs();
 assertTrue(hitsVector11.equals(expected_hitsVector11)); // Test Case # 11

 TopDocs topDocs1 = (TopDocs) indexSearcher1.search(query1, intTopDocs1);
 HitsVector expected_hitsVector12 = expected_hitsVector1;
 HitsVector hitsVector12 = (HitsVector) topDocs1.getScoreDocs();
 assertTrue(hitsVector12.equals(expected_hitsVector12)); // Test Case # 12

 TopDocs topDocs2 = (TopDocs) indexSearcher1.search(query5, intTopDocs1);
 HitsVector expected_hitsVector13 = expected_hitsVector1;
 HitsVector hitsVector13 = (HitsVector) topDocs2.getScoreDocs();
 assertTrue(hitsVector13.equals(expected_hitsVector13)); // Test Case # 13

 TopDocs topDocs3 = (TopDocs) indexSearcher1.search(prefixQuery1, intTopDocs1);
 HitsVector expected_hitsVector14 = expected_hitsVector1;
 HitsVector hitsVector14 = (HitsVector) topDocs3.getScoreDocs();
 assertTrue(hitsVector14.equals(expected_hitsVector14)); // Test Case # 14

 TopDocs topDocs4 = (TopDocs) indexSearcher1.search(query2, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(1); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 HitsVector expected_hitsVector15 = expected_hitsVector1;
 HitsVector hitsVector15 = (HitsVector) topDocs4.getScoreDocs();
 assertTrue(hitsVector15.equals(expected_hitsVector15)); // Test Case # 15

 } catch (Exception exp) {
 System.out.println(exp.toString());
 fail("Exception occured during test case execution");
 }

 } //End of Method

} //End of Class

Model-Driven Framework for Context Dependent Testing of Components 280

Test Suite for SMC2
package org.apache.lucene.search;

import java.util.BitSet;
import java.util.Vector;
import junit.framework.*;
import org.apache.lucene.analysis.*;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.index.*;
import org.apache.lucene.document.*;
import org.apache.lucene.document.Field.Index;
import org.apache.lucene.document.Field.Store;
import org.apache.lucene.document.Field.*;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.spans.*;
import org.apache.lucene.store.*;
import org.apache.lucene.util.DocIdBitSet;
import org.apache.lucene.search.HitDoc;
import java.util.*;

public class TestSuite_smc2 extends TestCase {

 public static void main(String args[]) {
 TestSuite testSuite = new TestSuite(TestSuite_smc2.class);
 testSuite.run(new TestResult());
 }

 public void test_smc2() {

 try {
 RAMDirectory rAMDirectory1 = new RAMDirectory();
 SimpleAnalyzer simpleAnalyzer1 = new SimpleAnalyzer();
 boolean boolean1 = true;
 IndexWriter indexWriter1 = new IndexWriter(rAMDirectory1, simpleAnalyzer1, boolean1);
 IndexSearcher indexSearcher1 = new IndexSearcher(rAMDirectory1);
 String sortField1 = "author";
 Sort sort1 = new Sort(sortField1);
 int intTopDocs1 = 2;
 Integer integer1 = new Integer(intTopDocs1);
 int intSpanEnd1 = 3;
 Integer integer2 = new Integer(intSpanEnd1);
 int intSlop1 = 1;
 Integer integer3 = new Integer(intSlop1);
 String name_A_1 = "body";
 String value_A_1 = "model based testing uses software models";
 Store store_A_1 = Field.Store.YES;
 Index index_A_1 = Field.Index.ANALYZED;
 Field field_A_1 = new Field(name_A_1, value_A_1, store_A_1, index_A_1);
 String name_B_1 = "author";
 String value_B_1 = "beizer";
 Store store_B_1 = Field.Store.YES;
 Index index_B_1 = Field.Index.ANALYZED;
 Field field_B_1 = new Field(name_B_1, value_B_1, store_B_1, index_B_1);
 String name_C_1 = "pets";
 String value_C_1 = "/birds/anatidae/duck";
 Store store_C_1 = Field.Store.YES;
 Index index_C_1 = Field.Index.ANALYZED;
 Field field_C_1 = new Field(name_C_1, value_C_1, store_C_1, index_C_1);
 Document document1 = new Document();
 document1.add(field_A_1);
 document1.add(field_B_1);
 document1.add(field_C_1);
 QueryParser queryParser1 = new QueryParser(name_A_1, simpleAnalyzer1);
 indexWriter1.optimize();
 indexWriter1.close();
 String wildcardText1 = "mode*";
 String string1 = new String(wildcardText1);
 String fuzzyText1 = "OCL~";
 String string2 = new String(fuzzyText1);
 String termText1 = "uses";
 String string3 = new String(termText1);

Model-Driven Framework for Context Dependent Testing of Components 281

 String termText2 = "UML";
 String string4 = new String(termText2);
 String termText3 = "OCL";
 String string5 = new String(termText3);
 String termText4 = "testing";
 String string6 = new String(termText4);
 String prefixText1 = "birds";
 String string7 = new String(prefixText1);
 Term term1 = new Term(name_A_1, termText1);
 Term term2 = new Term(name_A_1, termText2);
 Term term3 = new Term(name_A_1, termText3);
 Term term4 = new Term(name_A_1, termText4);
 Term term5 = new Term(name_A_1, prefixText1);
 PrefixQuery prefixQuery1 = new PrefixQuery(term5);
 MultiPhraseQuery multiPhraseQuery1 = new MultiPhraseQuery();
 multiPhraseQuery1.add(term2);
 multiPhraseQuery1.add(term3);
 Query query1 = (Query) queryParser1.parse(wildcardText1);
 Query query2 = (Query) queryParser1.parse(fuzzyText1);
 Query query3 = (Query) queryParser1.parse(termText1);
 Query query4 = (Query) queryParser1.parse(termText2);
 Query query5 = (Query) queryParser1.parse(termText3);
 Query query6 = (Query) queryParser1.parse(termText4);
 SpanTermQuery spanTermQuery1 = new SpanTermQuery(term1);
 SpanTermQuery spanTermQuery2 = new SpanTermQuery(term2);
 SpanTermQuery spanTermQuery3 = new SpanTermQuery(term3);
 SpanTermQuery spanTermQuery4 = new SpanTermQuery(term4);
 SpanFirstQuery spanFirstQuery1 = new SpanFirstQuery(spanTermQuery3, intSpanEnd1);
 SpanQuery [] spanQuery1 = new SpanQuery[] { spanTermQuery2, spanTermQuery3 };
 SpanNearQuery spanNearQuery1 = new SpanNearQuery(spanQuery1, intSlop1, boolean1);
 SpanNotQuery spanNotQuery1 = new SpanNotQuery(spanTermQuery2, spanTermQuery4);
 SpanOrQuery spanOrQuery1 = new SpanOrQuery(spanQuery1);
 Hits hits1 = (Hits) indexSearcher1.search(query2, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) {
BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } });
 HitsVector expected_hitsVector1 = new HitsVector();
 HitsVector hitsVector1 = (HitsVector) hits1.getHitDocs();
 assertTrue(hitsVector1.equals(expected_hitsVector1)); // Test Case # 16

 Hits hits2 = (Hits) indexSearcher1.search(prefixQuery1, new Filter() { public DocIdSet getDocIdSet(IndexReader
reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } });
 HitsVector expected_hitsVector2 = expected_hitsVector1;
 HitsVector hitsVector2 = (HitsVector) hits2.getHitDocs();
 assertTrue(hitsVector2.equals(expected_hitsVector2)); // Test Case # 17

 Hits hits3 = (Hits) indexSearcher1.search(query1, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) {
BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } });
 HitsVector expected_hitsVector3 = expected_hitsVector1;
 HitsVector hitsVector3 = (HitsVector) hits3.getHitDocs();
 assertTrue(hitsVector3.equals(expected_hitsVector3)); // Test Case # 18

 Hits hits4 = (Hits) indexSearcher1.search(spanFirstQuery1, new Filter() { public DocIdSet getDocIdSet(IndexReader
reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } });
 HitsVector expected_hitsVector4 = expected_hitsVector1;
 HitsVector hitsVector4 = (HitsVector) hits4.getHitDocs();
 assertTrue(hitsVector4.equals(expected_hitsVector4)); // Test Case # 19

 Hits hits5 = (Hits) indexSearcher1.search(spanNearQuery1, new Filter() { public DocIdSet getDocIdSet(IndexReader
reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } });
 HitsVector expected_hitsVector5 = expected_hitsVector1;
 HitsVector hitsVector5 = (HitsVector) hits5.getHitDocs();
 assertTrue(hitsVector5.equals(expected_hitsVector5)); // Test Case # 20

 Hits hits6 = (Hits) indexSearcher1.search(spanNotQuery1, new Filter() { public DocIdSet getDocIdSet(IndexReader
reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } });
 HitsVector expected_hitsVector6 = expected_hitsVector1;
 HitsVector hitsVector6 = (HitsVector) hits6.getHitDocs();
 assertTrue(hitsVector6.equals(expected_hitsVector6)); // Test Case # 21

 Hits hits7 = (Hits) indexSearcher1.search(spanOrQuery1, new Filter() { public DocIdSet getDocIdSet(IndexReader
reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } });
 HitsVector expected_hitsVector7 = expected_hitsVector1;

Model-Driven Framework for Context Dependent Testing of Components 282

 HitsVector hitsVector7 = (HitsVector) hits7.getHitDocs();
 assertTrue(hitsVector7.equals(expected_hitsVector7)); // Test Case # 22

 Hits hits8 = (Hits) indexSearcher1.search(query2, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) {
BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, sort1);
 HitsVector expected_hitsVector8 = expected_hitsVector1;
 HitsVector hitsVector8 = (HitsVector) hits8.getHitDocs();
 assertTrue(hitsVector8.equals(expected_hitsVector8)); // Test Case # 23

 Hits hits9 = (Hits) indexSearcher1.search(query2, sort1);
 HitsVector expected_hitsVector9 = expected_hitsVector1;
 HitsVector hitsVector9 = (HitsVector) hits9.getHitDocs();
 assertTrue(hitsVector9.equals(expected_hitsVector9)); // Test Case # 24

 TopDocs topDocs1 = (TopDocs) indexSearcher1.search(query2, intTopDocs1);
 HitsVector expected_hitsVector10 = expected_hitsVector1;
 HitsVector hitsVector10 = (HitsVector) topDocs1.getScoreDocs();
 assertTrue(hitsVector10.equals(expected_hitsVector10)); // Test Case # 25

 TopDocs topDocs2 = (TopDocs) indexSearcher1.search(multiPhraseQuery1, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 HitsVector expected_hitsVector11 = expected_hitsVector1;
 HitsVector hitsVector11 = (HitsVector) topDocs2.getScoreDocs();
 assertTrue(hitsVector11.equals(expected_hitsVector11)); // Test Case # 26

 } catch (Exception exp) {
 System.out.println(exp.toString());
 fail("Exception occured during test case execution");
 }

 } //End of Method

} //End of Class

Model-Driven Framework for Context Dependent Testing of Components 283

Test Suite for SMC3
package org.apache.lucene.search;

import java.util.BitSet;
import java.util.Vector;
import junit.framework.*;
import org.apache.lucene.analysis.*;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.index.*;
import org.apache.lucene.document.*;
import org.apache.lucene.document.Field.Index;
import org.apache.lucene.document.Field.Store;
import org.apache.lucene.document.Field.*;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.spans.*;
import org.apache.lucene.store.*;
import org.apache.lucene.util.DocIdBitSet;
import org.apache.lucene.search.HitDoc;
import java.util.*;

public class TestSuite_smc3 extends TestCase {

 public static void main(String args[]) {
 TestSuite testSuite = new TestSuite(TestSuite_smc3.class);
 testSuite.run(new TestResult());
 }

 public void test_smc3() {

 try {
 RAMDirectory rAMDirectory1 = new RAMDirectory();
 SimpleAnalyzer simpleAnalyzer1 = new SimpleAnalyzer();
 boolean boolean1 = true;
 IndexWriter indexWriter1 = new IndexWriter(rAMDirectory1, simpleAnalyzer1, boolean1);
 IndexSearcher indexSearcher1 = new IndexSearcher(rAMDirectory1);
 String sortField1 = "author";
 Sort sort1 = new Sort(sortField1);
 int intTopDocs1 = 2;
 Integer integer1 = new Integer(intTopDocs1);
 int intSpanEnd1 = 3;
 Integer integer2 = new Integer(intSpanEnd1);
 int intSlop1 = 1;
 Integer integer3 = new Integer(intSlop1);
 String name_A_1 = "body";
 String value_A_1 = "model based testing uses software models";
 Store store_A_1 = Field.Store.YES;
 Index index_A_1 = Field.Index.ANALYZED;
 Field field_A_1 = new Field(name_A_1, value_A_1, store_A_1, index_A_1);
 String name_B_1 = "author";
 String value_B_1 = "beizer";
 Store store_B_1 = Field.Store.YES;
 Index index_B_1 = Field.Index.ANALYZED;
 Field field_B_1 = new Field(name_B_1, value_B_1, store_B_1, index_B_1);
 String name_C_1 = "pets";
 String value_C_1 = "/birds/anatidae/duck";
 Store store_C_1 = Field.Store.YES;
 Index index_C_1 = Field.Index.ANALYZED;
 Field field_C_1 = new Field(name_C_1, value_C_1, store_C_1, index_C_1);
 QueryParser queryParser1 = new QueryParser(name_A_1, simpleAnalyzer1);
 Document document1 = new Document();
 document1.add(field_A_1);
 document1.add(field_B_1);
 document1.add(field_C_1);
 indexWriter1.optimize();
 indexWriter1.close();
 String wildcardText1 = "mode*";
 String string1 = new String(wildcardText1);
 String fuzzyText1 = "moden~";
 String string2 = new String(fuzzyText1);
 String termText1 = "uses";
 String string3 = new String(termText1);

Model-Driven Framework for Context Dependent Testing of Components 284

 String termText2 = "model";
 String string4 = new String(termText2);
 String termText3 = "based";
 String string5 = new String(termText3);
 String termText4 = "driven";
 String string6 = new String(termText4);
 String termText5 = "testing";
 String string7 = new String(termText5);
 String termText6 = "UML";
 String string8 = new String(termText6);
 String termText7 = "OCL";
 String string9 = new String(termText7);
 String prefixText1 = "birds";
 String string10 = new String(prefixText1);
 Term term1 = new Term(name_A_1, termText1);
 Term term2 = new Term(name_A_1, termText2);
 Term term3 = new Term(name_A_1, termText3);
 Term term4 = new Term(name_A_1, termText4);
 Term term5 = new Term(name_A_1, termText5);
 Term term6 = new Term(name_A_1, termText6);
 Term term7 = new Term(name_A_1, termText7);
 Term term8 = new Term(name_A_1, prefixText1);
 SpanTermQuery spanTermQuery1 = new SpanTermQuery(term1);
 SpanTermQuery spanTermQuery2 = new SpanTermQuery(term2);
 SpanTermQuery spanTermQuery3 = new SpanTermQuery(term3);
 SpanTermQuery spanTermQuery4 = new SpanTermQuery(term4);
 SpanTermQuery spanTermQuery5 = new SpanTermQuery(term5);
 SpanFirstQuery spanFirstQuery1 = new SpanFirstQuery(spanTermQuery1, intSpanEnd1);
 SpanQuery [] spanQuery1 = new SpanQuery[] { spanTermQuery1, spanTermQuery3 };
 SpanQuery [] spanQuery2 = new SpanQuery[] { spanTermQuery4, spanTermQuery3 };
 SpanNearQuery spanNearQuery1 = new SpanNearQuery(spanQuery1, intSlop1, boolean1);
 SpanNotQuery spanNotQuery1 = new SpanNotQuery(spanTermQuery5, spanTermQuery3);
 SpanOrQuery spanOrQuery1 = new SpanOrQuery(spanQuery2);
 float score1 = 1.0f;
 int id1 = 0;
 HitDoc hitDoc1 = new HitDoc(score1, id1);
 PrefixQuery prefixQuery1 = new PrefixQuery(term8);
 MultiPhraseQuery multiPhraseQuery1 = new MultiPhraseQuery();
 multiPhraseQuery1.add(term6);
 MultiPhraseQuery multiPhraseQuery2 = new MultiPhraseQuery();
 multiPhraseQuery2.add(term2);
 multiPhraseQuery1.add(term7);
 multiPhraseQuery2.add(term3);
 Query query1 = (Query) queryParser1.parse(wildcardText1);
 Query query2 = (Query) queryParser1.parse(fuzzyText1);
 Hits hits2 = (Hits) indexSearcher1.search(multiPhraseQuery1, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, sort1);
 Hits hits3 = (Hits) indexSearcher1.search(query1, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) {
BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, sort1);
 Hits hits4 = (Hits) indexSearcher1.search(spanFirstQuery1, new Filter() { public DocIdSet getDocIdSet(IndexReader
reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, sort1);
 Hits hits5 = (Hits) indexSearcher1.search(spanNearQuery1, new Filter() { public DocIdSet getDocIdSet(IndexReader
reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, sort1);
 Hits hits6 = (Hits) indexSearcher1.search(spanNotQuery1, new Filter() { public DocIdSet getDocIdSet(IndexReader
reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, sort1);
 Hits hits7 = (Hits) indexSearcher1.search(spanOrQuery1, new Filter() { public DocIdSet getDocIdSet(IndexReader
reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, sort1);
 Hits hits8 = (Hits) indexSearcher1.search(multiPhraseQuery2, sort1);
 TopDocs topDocs1 = (TopDocs) indexSearcher1.search(multiPhraseQuery2, intTopDocs1);
 TopDocs topDocs2 = (TopDocs) indexSearcher1.search(query2, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 TopDocs topDocs3 = (TopDocs) indexSearcher1.search(prefixQuery1, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 final Vector vector1 = new Vector();
 indexSearcher1.search(query2, new HitCollector() { public void collect(int doc, float score) { vector1.add(new
Integer(doc));} });
 Hits hits1 = (Hits) indexSearcher1.search(multiPhraseQuery1);
 HitsVector expected_hitsVector1 = new HitsVector();
 expected_hitsVector1.add(hitDoc1);

Model-Driven Framework for Context Dependent Testing of Components 285

 HitsVector hitsVector1 = (HitsVector) hits1.getHitDocs();
 assertTrue(hitsVector1.equals(expected_hitsVector1)); // Test Case # 27
 HitsVector expected_hitsVector2 = expected_hitsVector1;
 HitsVector hitsVector2 = (HitsVector) hits2.getHitDocs();
 assertTrue(hitsVector2.equals(expected_hitsVector2)); // Test Case # 28
 HitsVector expected_hitsVector3 = expected_hitsVector1;
 HitsVector hitsVector3 = (HitsVector) hits3.getHitDocs();
 assertTrue(hitsVector3.equals(expected_hitsVector3)); // Test Case # 29
 HitsVector expected_hitsVector4 = expected_hitsVector1;
 HitsVector hitsVector4 = (HitsVector) hits4.getHitDocs();
 assertTrue(hitsVector4.equals(expected_hitsVector4)); // Test Case # 30
 HitsVector expected_hitsVector5 = expected_hitsVector1;
 HitsVector hitsVector5 = (HitsVector) hits5.getHitDocs();
 assertTrue(hitsVector5.equals(expected_hitsVector5)); // Test Case # 31
 HitsVector expected_hitsVector6 = expected_hitsVector1;
 HitsVector hitsVector6 = (HitsVector) hits6.getHitDocs();
 assertTrue(hitsVector6.equals(expected_hitsVector6)); // Test Case # 32
 HitsVector expected_hitsVector7 = expected_hitsVector1;
 HitsVector hitsVector7 = (HitsVector) hits7.getHitDocs();
 assertTrue(hitsVector7.equals(expected_hitsVector7)); // Test Case # 33
 HitsVector expected_hitsVector8 = expected_hitsVector1;
 HitsVector hitsVector8 = (HitsVector) hits8.getHitDocs();
 assertTrue(hitsVector8.equals(expected_hitsVector8)); // Test Case # 34
 Vector expected_vector2 = expected_hitsVector1;
 Vector vector2 = (Vector) vector1.clone();
 assertTrue(vector2.equals(expected_vector2)); // Test Case # 35
 HitsVector expected_hitsVector9 = expected_hitsVector1;
 HitsVector hitsVector9 = (HitsVector) topDocs1.getScoreDocs();
 assertTrue(hitsVector9.equals(expected_hitsVector9)); // Test Case # 36
 HitsVector expected_hitsVector10 = expected_hitsVector1;
 HitsVector hitsVector10 = (HitsVector) topDocs2.getScoreDocs();
 assertTrue(hitsVector10.equals(expected_hitsVector10)); // Test Case # 37
 HitsVector expected_hitsVector11 = expected_hitsVector1;
 HitsVector hitsVector11 = (HitsVector) topDocs3.getScoreDocs();
 assertTrue(hitsVector11.equals(expected_hitsVector11)); // Test Case # 38

 } catch (Exception exp) {
 System.out.println(exp.toString());
 fail("Exception occured during test case execution");
 }

 } //End of Method

} //End of Class

Model-Driven Framework for Context Dependent Testing of Components 286

Test Suite for SMC4
package org.apache.lucene.search;

import java.util.BitSet;
import java.util.Vector;
import junit.framework.*;
import org.apache.lucene.analysis.*;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.index.*;
import org.apache.lucene.document.*;
import org.apache.lucene.document.Field.Index;
import org.apache.lucene.document.Field.Store;
import org.apache.lucene.document.Field.*;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.spans.*;
import org.apache.lucene.store.*;
import org.apache.lucene.util.DocIdBitSet;
import org.apache.lucene.search.HitDoc;
import java.util.*;

public class TestSuite_smc6 extends TestCase {

 public static void main(String args[]) {
 TestSuite testSuite = new TestSuite(TestSuite_smc6.class);
 testSuite.run(new TestResult());
 }

 public void test_smc6() {

 try {
 RAMDirectory rAMDirectory1 = new RAMDirectory();
 SimpleAnalyzer simpleAnalyzer1 = new SimpleAnalyzer();
 boolean boolean1 = true;
 IndexWriter indexWriter1 = new IndexWriter(rAMDirectory1, simpleAnalyzer1, boolean1);
 IndexSearcher indexSearcher1 = new IndexSearcher(rAMDirectory1);
 String sortField1 = "author";
 Sort sort1 = new Sort(sortField1);
 int intTopDocs1 = 2;
 Integer integer1 = new Integer(intTopDocs1);
 int intSpanEnd1 = 3;
 Integer integer2 = new Integer(intSpanEnd1);
 int intSlop1 = 1;
 Integer integer3 = new Integer(intSlop1);
 String name_A_1 = "body";
 String value_A_1 = "model based testing uses software models";
 Store store_A_1 = Field.Store.YES;
 Index index_A_1 = Field.Index.ANALYZED;
 Field field_A_1 = new Field(name_A_1, value_A_1, store_A_1, index_A_1);
 String name_A_2 = "body";
 String value_A_2 = "model driven testing uses model transformation";
 Store store_A_2 = Field.Store.YES;
 Index index_A_2 = Field.Index.ANALYZED;
 Field field_A_2 = new Field(name_A_2, value_A_2, store_A_2, index_A_2);
 String name_A_3 = "body";
 String value_A_3 = "to automate testing, OCL can be used ";
 Store store_A_3 = Field.Store.YES;
 Index index_A_3 = Field.Index.ANALYZED;
 Field field_A_3 = new Field(name_A_3, value_A_3, store_A_3, index_A_3);
 String name_B_1 = "author";
 String value_B_1 = "beizer";
 Store store_B_1 = Field.Store.YES;
 Index index_B_1 = Field.Index.ANALYZED;
 Field field_B_1 = new Field(name_B_1, value_B_1, store_B_1, index_B_1);
 String name_B_2 = "author";
 String value_B_2 = "utting";
 Store store_B_2 = Field.Store.YES;
 Index index_B_2 = Field.Index.ANALYZED;
 Field field_B_2 = new Field(name_B_2, value_B_2, store_B_2, index_B_2);
 String name_B_3 = "author";
 String value_B_3 = "poston";
 Store store_B_3 = Field.Store.YES;

Model-Driven Framework for Context Dependent Testing of Components 287

 Index index_B_3 = Field.Index.ANALYZED;
 Field field_B_3 = new Field(name_B_3, value_B_3, store_B_3, index_B_3);
 String name_C_1 = "pets";
 String value_C_1 = "/birds/anatidae/duck";
 Store store_C_1 = Field.Store.YES;
 Index index_C_1 = Field.Index.ANALYZED;
 Field field_C_1 = new Field(name_C_1, value_C_1, store_C_1, index_C_1);
 String name_C_2 = "pets";
 String value_C_2 = "/birds/anatidae/swan";
 Store store_C_2 = Field.Store.YES;
 Index index_C_2 = Field.Index.ANALYZED;
 Field field_C_2 = new Field(name_C_2, value_C_2, store_C_2, index_C_2);
 String name_C_3 = "pets";
 String value_C_3 = "/birds/anatidae/seagull";
 Store store_C_3 = Field.Store.YES;
 Index index_C_3 = Field.Index.ANALYZED;
 Field field_C_3 = new Field(name_C_3, value_C_3, store_C_3, index_C_3);
 String name_D_1 = "year";
 String value_D_1 = "1980";
 Store store_D_1 = Field.Store.YES;
 Index index_D_1 = Field.Index.ANALYZED;
 Field field_D_1 = new Field(name_D_1, value_D_1, store_D_1, index_D_1);
 String name_D_2 = "year";
 String value_D_2 = "1981";
 Store store_D_2 = Field.Store.YES;
 Index index_D_2 = Field.Index.ANALYZED;
 Field field_D_2 = new Field(name_D_2, value_D_2, store_D_2, index_D_2);
 String name_D_3 = "year";
 String value_D_3 = "1982";
 Store store_D_3 = Field.Store.YES;
 Index index_D_3 = Field.Index.ANALYZED;
 Field field_D_3 = new Field(name_D_3, value_D_3, store_D_3, index_D_3);
 Document document1 = new Document();
 Document document2 = new Document();
 Document document3 = new Document();
 document1.add(field_A_1);
 document1.add(field_B_1);
 document1.add(field_C_1);
 document1.add(field_D_1);
 document2.add(field_A_2);
 document2.add(field_B_2);
 document2.add(field_C_2);
 document2.add(field_D_2);
 document3.add(field_A_3);
 document3.add(field_B_3);
 document3.add(field_C_3);
 document3.add(field_D_3);
 QueryParser queryParser1 = new QueryParser(name_A_1, simpleAnalyzer1);
 indexWriter1.optimize();
 indexWriter1.close();
 String rangeText1 = "[1980 TO 1981]";
 String string1 = new String(rangeText1);
 String wildcardText1 = "mode*";
 String string2 = new String(wildcardText1);
 String fuzzyText1 = "moden~";
 String string3 = new String(fuzzyText1);
 String phraseText1 = "testing uses";
 String string4 = new String(phraseText1);
 String prefixText1 = "birds";
 String string5 = new String(prefixText1);
 String termText1 = "uses";
 String string6 = new String(termText1);
 String termText2 = "model";
 String string7 = new String(termText2);
 String termText3 = "based";
 String string8 = new String(termText3);
 String termText4 = "driven";
 String string9 = new String(termText4);
 String termText5 = "testing";
 String string10 = new String(termText5);
 Term term1 = new Term(name_A_1, termText1);

Model-Driven Framework for Context Dependent Testing of Components 288

 Term term2 = new Term(name_A_1, termText2);
 Term term3 = new Term(name_A_1, termText3);
 Term term4 = new Term(name_A_1, termText4);
 Term term5 = new Term(name_A_1, termText5);
 Term term6 = new Term(name_A_1, prefixText1);
 PrefixQuery prefixQuery1 = new PrefixQuery(term6);
 MultiPhraseQuery multiPhraseQuery11 = new MultiPhraseQuery();
 multiPhraseQuery11.add(term2);
 multiPhraseQuery11.add(term5);
 Query query1 = (Query) queryParser1.parse(rangeText1);
 Query query2 = (Query) queryParser1.parse(wildcardText1);
 Query query3 = (Query) queryParser1.parse(fuzzyText1);
 Query query4 = (Query) queryParser1.parse(phraseText1);
 Query query5 = (Query) queryParser1.parse(prefixText1);
 Query query6 = (Query) queryParser1.parse(termText1);
 SpanTermQuery spanTermQuery1 = new SpanTermQuery(term1);
 SpanTermQuery spanTermQuery2 = new SpanTermQuery(term2);
 SpanTermQuery spanTermQuery3 = new SpanTermQuery(term3);
 SpanTermQuery spanTermQuery4 = new SpanTermQuery(term4);
 SpanTermQuery spanTermQuery5 = new SpanTermQuery(term5);
 SpanFirstQuery spanFirstQuery1 = new SpanFirstQuery(spanTermQuery2, intSpanEnd1);
 SpanQuery [] spanQuery1 = new SpanQuery[] { spanTermQuery4, spanTermQuery3 };
 SpanNearQuery spanNearQuery1 = new SpanNearQuery(spanQuery1, intSlop1, boolean1);
 SpanNotQuery spanNotQuery1 = new SpanNotQuery(spanTermQuery5, spanTermQuery4);
 SpanOrQuery spanOrQuery1 = new SpanOrQuery(spanQuery1);
 float score1 = 1.0f;
 int id1 = 0;
 HitDoc hitDoc1 = new HitDoc(score1, id1);
 float score2 = 1.0f;
 int id2 = 1;
 HitDoc hitDoc2 = new HitDoc(score2, id2);
 Hits hits1 = (Hits) indexSearcher1.search(multiPhraseQuery11, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } });
 HitsVector expected_hitsVector1 = new HitsVector();
 expected_hitsVector1.add(hitDoc1);
 expected_hitsVector1.add(hitDoc2);
 HitsVector hitsVector1 = (HitsVector) hits1.getHitDocs();
 assertTrue(hitsVector1.equals(expected_hitsVector1)); // Test Case # 50

 Hits hits2 = (Hits) indexSearcher1.search(query4, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) {
BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } });
 HitsVector expected_hitsVector2 = expected_hitsVector1;
 HitsVector hitsVector2 = (HitsVector) hits2.getHitDocs();
 assertTrue(hitsVector2.equals(expected_hitsVector2)); // Test Case # 51

 Hits hits3 = (Hits) indexSearcher1.search(query1, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) {
BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } });
 HitsVector expected_hitsVector3 = expected_hitsVector1;
 HitsVector hitsVector3 = (HitsVector) hits3.getHitDocs();
 assertTrue(hitsVector3.equals(expected_hitsVector3)); // Test Case # 52

 Hits hits4 = (Hits) indexSearcher1.search(query1, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) {
BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, sort1);
 HitsVector expected_hitsVector4 = expected_hitsVector1;
 HitsVector hitsVector4 = (HitsVector) hits4.getHitDocs();
 assertTrue(hitsVector4.equals(expected_hitsVector4)); // Test Case # 53

 Hits hits5 = (Hits) indexSearcher1.search(query6, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) {
BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, sort1);
 HitsVector expected_hitsVector5 = expected_hitsVector1;
 HitsVector hitsVector5 = (HitsVector) hits5.getHitDocs();
 assertTrue(hitsVector5.equals(expected_hitsVector5)); // Test Case # 54

 Hits hits6 = (Hits) indexSearcher1.search(query1, sort1);
 HitsVector expected_hitsVector6 = expected_hitsVector1;
 HitsVector hitsVector6 = (HitsVector) hits6.getHitDocs();
 assertTrue(hitsVector6.equals(expected_hitsVector6)); // Test Case # 55

 Hits hits7 = (Hits) indexSearcher1.search(spanFirstQuery1, sort1);
 HitsVector expected_hitsVector7 = expected_hitsVector1;
 HitsVector hitsVector7 = (HitsVector) hits7.getHitDocs();

Model-Driven Framework for Context Dependent Testing of Components 289

 assertTrue(hitsVector7.equals(expected_hitsVector7)); // Test Case # 56

 Hits hits8 = (Hits) indexSearcher1.search(spanOrQuery1, sort1);
 HitsVector expected_hitsVector8 = expected_hitsVector1;
 HitsVector hitsVector8 = (HitsVector) hits8.getHitDocs();
 assertTrue(hitsVector8.equals(expected_hitsVector8)); // Test Case # 57

 Hits hits9 = (Hits) indexSearcher1.search(query6, sort1);
 HitsVector expected_hitsVector9 = expected_hitsVector1;
 HitsVector hitsVector9 = (HitsVector) hits9.getHitDocs();
 assertTrue(hitsVector9.equals(expected_hitsVector9)); // Test Case # 58

 Hits hits10 = (Hits) indexSearcher1.search(query2, sort1);
 HitsVector expected_hitsVector10 = expected_hitsVector1;
 HitsVector hitsVector10 = (HitsVector) hits10.getHitDocs();
 assertTrue(hitsVector10.equals(expected_hitsVector10)); // Test Case # 59

 TopDocs topDocs1 = (TopDocs) indexSearcher1.search(query1, intTopDocs1);
 HitsVector expected_hitsVector11 = expected_hitsVector1;
 HitsVector hitsVector11 = (HitsVector) topDocs1.getScoreDocs();
 assertTrue(hitsVector11.equals(expected_hitsVector11)); // Test Case # 60

 TopDocs topDocs2 = (TopDocs) indexSearcher1.search(spanFirstQuery1, intTopDocs1);
 HitsVector expected_hitsVector12 = expected_hitsVector1;
 HitsVector hitsVector12 = (HitsVector) topDocs2.getScoreDocs();
 assertTrue(hitsVector12.equals(expected_hitsVector12)); // Test Case # 61

 TopDocs topDocs3 = (TopDocs) indexSearcher1.search(query2, intTopDocs1);
 HitsVector expected_hitsVector13 = expected_hitsVector1;
 HitsVector hitsVector13 = (HitsVector) topDocs3.getScoreDocs();
 assertTrue(hitsVector13.equals(expected_hitsVector13)); // Test Case # 62

 TopDocs topDocs4 = (TopDocs) indexSearcher1.search(query4, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 HitsVector expected_hitsVector14 = expected_hitsVector1;
 HitsVector hitsVector14 = (HitsVector) topDocs4.getScoreDocs();
 assertTrue(hitsVector14.equals(expected_hitsVector14)); // Test Case # 63

 TopDocs topDocs5 = (TopDocs) indexSearcher1.search(spanFirstQuery1, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 HitsVector expected_hitsVector15 = expected_hitsVector1;
 HitsVector hitsVector15 = (HitsVector) topDocs5.getScoreDocs();
 assertTrue(hitsVector15.equals(expected_hitsVector15)); // Test Case # 64

 TopDocs topDocs6 = (TopDocs) indexSearcher1.search(spanNearQuery1, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 HitsVector expected_hitsVector16 = expected_hitsVector1;
 HitsVector hitsVector16 = (HitsVector) topDocs6.getScoreDocs();
 assertTrue(hitsVector16.equals(expected_hitsVector16)); // Test Case # 65

 TopDocs topDocs7 = (TopDocs) indexSearcher1.search(spanNotQuery1, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 HitsVector expected_hitsVector17 = expected_hitsVector1;
 HitsVector hitsVector17 = (HitsVector) topDocs7.getScoreDocs();
 assertTrue(hitsVector17.equals(expected_hitsVector17)); // Test Case # 66

 TopDocs topDocs8 = (TopDocs) indexSearcher1.search(spanOrQuery1, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 HitsVector expected_hitsVector18 = expected_hitsVector1;
 HitsVector hitsVector18 = (HitsVector) topDocs8.getScoreDocs();
 assertTrue(hitsVector18.equals(expected_hitsVector18)); // Test Case # 67

 TopDocs topDocs9 = (TopDocs) indexSearcher1.search(query2, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 HitsVector expected_hitsVector19 = expected_hitsVector1;

Model-Driven Framework for Context Dependent Testing of Components 290

 HitsVector hitsVector19 = (HitsVector) topDocs9.getScoreDocs();
 assertTrue(hitsVector19.equals(expected_hitsVector19)); // Test Case # 68

 final Vector vector1 = new Vector();
 indexSearcher1.search(query1, new HitCollector() { public void collect(int doc, float score) { vector1.add(new
Integer(doc));} });
 Vector expected_vector2 = expected_hitsVector1;
 Vector vector2 = (Vector) vector1.clone();
 assertTrue(vector2.equals(expected_vector2)); // Test Case # 69

 final Vector vector3 = new Vector();
 indexSearcher1.search(query2, new HitCollector() { public void collect(int doc, float score) { vector3.add(new
Integer(doc));} });
 Vector expected_vector4 = expected_hitsVector1;
 Vector vector4 = (Vector) vector3.clone();
 assertTrue(vector4.equals(expected_vector4)); // Test Case # 70

 final Vector vector5 = new Vector();
 indexSearcher1.search(query3, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) { BitSet bitset = new
BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, new HitCollector() { public void collect(int doc, float score) {
vector5.add(new Integer(doc));} });
 Vector expected_vector6 = expected_hitsVector1;
 Vector vector6 = (Vector) vector5.clone();
 assertTrue(vector6.equals(expected_vector6)); // Test Case # 71

 final Vector vector7 = new Vector();
 indexSearcher1.search(prefixQuery1, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) { BitSet bitset
= new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, new HitCollector() { public void collect(int doc, float score) {
vector7.add(new Integer(doc));} });
 Vector expected_vector8 = expected_hitsVector1;
 Vector vector8 = (Vector) vector7.clone();
 assertTrue(vector8.equals(expected_vector8)); // Test Case # 72

 final Vector vector9 = new Vector();
 indexSearcher1.search(query1, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) { BitSet bitset = new
BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, new HitCollector() { public void collect(int doc, float score) {
vector9.add(new Integer(doc));} });
 Vector expected_vector10 = expected_hitsVector1;
 Vector vector10 = (Vector) vector9.clone();
 assertTrue(vector10.equals(expected_vector10)); // Test Case # 73

 final Vector vector11 = new Vector();
 indexSearcher1.search(query2, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) { BitSet bitset = new
BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, new HitCollector() { public void collect(int doc, float score) {
vector11.add(new Integer(doc));} });
 Vector expected_vector12 = expected_hitsVector1;
 Vector vector12 = (Vector) vector11.clone();
 assertTrue(vector12.equals(expected_vector12)); // Test Case # 74

 } catch (Exception exp) {
 System.out.println(exp.toString());
 fail("Exception occured during test case execution");
 }

 } //End of Method

} //End of Class

Model-Driven Framework for Context Dependent Testing of Components 291

Test Suite for SMC5
package org.apache.lucene.search;

import java.util.BitSet;
import java.util.Vector;
import junit.framework.*;
import org.apache.lucene.analysis.*;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.index.*;
import org.apache.lucene.document.*;
import org.apache.lucene.document.Field.Index;
import org.apache.lucene.document.Field.Store;
import org.apache.lucene.document.Field.*;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.spans.*;
import org.apache.lucene.store.*;
import org.apache.lucene.util.DocIdBitSet;
import org.apache.lucene.search.HitDoc;
import java.util.*;

public class TestSuite_smc5 extends TestCase {

 public static void main(String args[]) {
 TestSuite testSuite = new TestSuite(TestSuite_smc5.class);
 testSuite.run(new TestResult());
 }

 public void test_smc5() {

 try {
 RAMDirectory rAMDirectory1 = new RAMDirectory();
 SimpleAnalyzer simpleAnalyzer1 = new SimpleAnalyzer();
 boolean boolean1 = true;
 IndexWriter indexWriter1 = new IndexWriter(rAMDirectory1, simpleAnalyzer1, boolean1);
 IndexSearcher indexSearcher1 = new IndexSearcher(rAMDirectory1);
 String sortField1 = "author";
 Sort sort1 = new Sort(sortField1);
 int intTopDocs1 = 2;
 Integer integer1 = new Integer(intTopDocs1);
 int intSpanEnd1 = 3;
 Integer integer2 = new Integer(intSpanEnd1);
 int intSlop1 = 1;
 Integer integer3 = new Integer(intSlop1);
 String name_A_1 = "body";
 String value_A_1 = "model based testing uses software models";
 Store store_A_1 = Field.Store.YES;
 Index index_A_1 = Field.Index.ANALYZED;
 Field field_A_1 = new Field(name_A_1, value_A_1, store_A_1, index_A_1);
 String name_A_2 = "body";
 String value_A_2 = "model driven testing uses model transformation";
 Store store_A_2 = Field.Store.YES;
 Index index_A_2 = Field.Index.ANALYZED;
 Field field_A_2 = new Field(name_A_2, value_A_2, store_A_2, index_A_2);
 String name_A_3 = "body";
 String value_A_3 = "to automate testing, OCL can be used ";
 Store store_A_3 = Field.Store.YES;
 Index index_A_3 = Field.Index.ANALYZED;
 Field field_A_3 = new Field(name_A_3, value_A_3, store_A_3, index_A_3);
 String name_B_1 = "author";
 String value_B_1 = "beizer";
 Store store_B_1 = Field.Store.YES;
 Index index_B_1 = Field.Index.ANALYZED;
 Field field_B_1 = new Field(name_B_1, value_B_1, store_B_1, index_B_1);
 String name_B_2 = "author";
 String value_B_2 = "utting";
 Store store_B_2 = Field.Store.YES;
 Index index_B_2 = Field.Index.ANALYZED;
 Field field_B_2 = new Field(name_B_2, value_B_2, store_B_2, index_B_2);
 String name_B_3 = "author";
 String value_B_3 = "poston";
 Store store_B_3 = Field.Store.YES;

Model-Driven Framework for Context Dependent Testing of Components 292

 Index index_B_3 = Field.Index.ANALYZED;
 Field field_B_3 = new Field(name_B_3, value_B_3, store_B_3, index_B_3);
 String name_C_1 = "pets";
 String value_C_1 = "/birds/anatidae/duck";
 Store store_C_1 = Field.Store.YES;
 Index index_C_1 = Field.Index.ANALYZED;
 Field field_C_1 = new Field(name_C_1, value_C_1, store_C_1, index_C_1);
 String name_C_2 = "pets";
 String value_C_2 = "/birds/anatidae/swan";
 Store store_C_2 = Field.Store.YES;
 Index index_C_2 = Field.Index.ANALYZED;
 Field field_C_2 = new Field(name_C_2, value_C_2, store_C_2, index_C_2);
 String name_C_3 = "pets";
 String value_C_3 = "/birds/anatidae/seagull";
 Store store_C_3 = Field.Store.YES;
 Index index_C_3 = Field.Index.ANALYZED;
 Field field_C_3 = new Field(name_C_3, value_C_3, store_C_3, index_C_3);
 String name_D_1 = "year";
 String value_D_1 = "1980";
 Store store_D_1 = Field.Store.YES;
 Index index_D_1 = Field.Index.ANALYZED;
 Field field_D_1 = new Field(name_D_1, value_D_1, store_D_1, index_D_1);
 String name_D_2 = "year";
 String value_D_2 = "1981";
 Store store_D_2 = Field.Store.YES;
 Index index_D_2 = Field.Index.ANALYZED;
 Field field_D_2 = new Field(name_D_2, value_D_2, store_D_2, index_D_2);
 String name_D_3 = "year";
 String value_D_3 = "1982";
 Store store_D_3 = Field.Store.YES;
 Index index_D_3 = Field.Index.ANALYZED;
 Field field_D_3 = new Field(name_D_3, value_D_3, store_D_3, index_D_3);
 QueryParser queryParser1 = new QueryParser(name_A_1, simpleAnalyzer1);
 Document document1 = new Document();
 Document document2 = new Document();
 Document document3 = new Document();
 document1.add(field_A_1);
 document1.add(field_B_1);
 document1.add(field_C_1);
 document1.add(field_D_1);
 document2.add(field_A_2);
 document2.add(field_B_2);
 document2.add(field_C_2);
 document2.add(field_D_2);
 document3.add(field_A_3);
 document3.add(field_B_3);
 document3.add(field_C_3);
 document3.add(field_D_3);
 indexWriter1.optimize();
 indexWriter1.close();
 String termText1 = "OCL";
 String string3 = new String(termText1);
 String termText2 = "driven";
 String string4 = new String(termText2);
 String termText3 = "testing";
 String string5 = new String(termText3);
 String prefixText1 = "duck";
 String string7 = new String(prefixText1);
 Term term1 = new Term(name_A_1, termText1);
 Term term2 = new Term(name_A_1, termText2);
 Term term3 = new Term(name_A_1, termText3);
 SpanTermQuery spanTermQuery1 = new SpanTermQuery(term1);
 SpanTermQuery spanTermQuery2 = new SpanTermQuery(term2);
 SpanTermQuery spanTermQuery3 = new SpanTermQuery(term3);
 SpanQuery [] spanQuery1 = new SpanQuery[] { spanTermQuery1, spanTermQuery2 };
 SpanOrQuery spanOrQuery1 = new SpanOrQuery(spanQuery1);
 SpanNotQuery spanNotQuery1 = new SpanNotQuery(spanTermQuery1, spanTermQuery3);
 float score1 = 1.0f;
 int id1 = 0;
 HitDoc hitDoc1 = new HitDoc(score1, id1);
 Term term4 = new Term(name_A_1, prefixText1);

Model-Driven Framework for Context Dependent Testing of Components 293

 PrefixQuery prefixQuery1 = new PrefixQuery(term4);
 Hits hits1 = (Hits) indexSearcher1.search(prefixQuery1);
 Hits hits2 = (Hits) indexSearcher1.search(prefixQuery1, new Filter() { public DocIdSet getDocIdSet(IndexReader
reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, sort1);
 Hits hits3 = (Hits) indexSearcher1.search(prefixQuery1, sort1);
 HitsVector expected_hitsVector1 = new HitsVector();
 expected_hitsVector1.add(hitDoc1);
 HitsVector hitsVector1 = (HitsVector) hits1.getHitDocs();
 assertTrue(hitsVector1.equals(expected_hitsVector1)); // Test Case # 45
 HitsVector expected_hitsVector2 = expected_hitsVector1;
 HitsVector hitsVector2 = (HitsVector) hits2.getHitDocs();
 assertTrue(hitsVector2.equals(expected_hitsVector2)); // Test Case # 46
 HitsVector expected_hitsVector3 = expected_hitsVector1;
 HitsVector hitsVector3 = (HitsVector) hits3.getHitDocs();
 assertTrue(hitsVector3.equals(expected_hitsVector3)); // Test Case # 47

 TopDocs topDocs1 = (TopDocs) indexSearcher1.search(spanNotQuery1, intTopDocs1);
 HitsVector expected_hitsVector4 = expected_hitsVector1;
 HitsVector hitsVector4 = (HitsVector) topDocs1.getScoreDocs();
 assertTrue(hitsVector4.equals(expected_hitsVector4)); // Test Case # 48

 TopDocs topDocs2 = (TopDocs) indexSearcher1.search(spanOrQuery1, intTopDocs1);
 HitsVector expected_hitsVector5 = expected_hitsVector1;
 HitsVector hitsVector5 = (HitsVector) topDocs2.getScoreDocs();
 assertTrue(hitsVector5.equals(expected_hitsVector5)); // Test Case # 49

 } catch (Exception exp) {
 System.out.println(exp.toString());
 fail("Exception occured during test case execution");
 }

 } //End of Method

} //End of Class

Model-Driven Framework for Context Dependent Testing of Components 294

Test Suite for SMC6
package org.apache.lucene.search;

import java.util.BitSet;
import java.util.Vector;
import junit.framework.*;
import org.apache.lucene.analysis.*;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.index.*;
import org.apache.lucene.document.*;
import org.apache.lucene.document.Field.Index;
import org.apache.lucene.document.Field.Store;
import org.apache.lucene.document.Field.*;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.spans.*;
import org.apache.lucene.store.*;
import org.apache.lucene.util.DocIdBitSet;
import org.apache.lucene.search.HitDoc;
import java.util.*;

public class TestSuite_smc6 extends TestCase {

 public static void main(String args[]) {
 TestSuite testSuite = new TestSuite(TestSuite_smc6.class);
 testSuite.run(new TestResult());
 }

 public void test_smc6() {

 try {
 RAMDirectory rAMDirectory1 = new RAMDirectory();
 SimpleAnalyzer simpleAnalyzer1 = new SimpleAnalyzer();
 boolean boolean1 = true;
 IndexWriter indexWriter1 = new IndexWriter(rAMDirectory1, simpleAnalyzer1, boolean1);
 IndexSearcher indexSearcher1 = new IndexSearcher(rAMDirectory1);
 String sortField1 = "author";
 Sort sort1 = new Sort(sortField1);
 int intTopDocs1 = 2;
 Integer integer1 = new Integer(intTopDocs1);
 int intSpanEnd1 = 3;
 Integer integer2 = new Integer(intSpanEnd1);
 int intSlop1 = 1;
 Integer integer3 = new Integer(intSlop1);
 String name_A_1 = "body";
 String value_A_1 = "model based testing uses software models";
 Store store_A_1 = Field.Store.YES;
 Index index_A_1 = Field.Index.ANALYZED;
 Field field_A_1 = new Field(name_A_1, value_A_1, store_A_1, index_A_1);
 String name_A_2 = "body";
 String value_A_2 = "model driven testing uses model transformation";
 Store store_A_2 = Field.Store.YES;
 Index index_A_2 = Field.Index.ANALYZED;
 Field field_A_2 = new Field(name_A_2, value_A_2, store_A_2, index_A_2);
 String name_A_3 = "body";
 String value_A_3 = "to automate testing, OCL can be used ";
 Store store_A_3 = Field.Store.YES;
 Index index_A_3 = Field.Index.ANALYZED;
 Field field_A_3 = new Field(name_A_3, value_A_3, store_A_3, index_A_3);
 String name_B_1 = "author";
 String value_B_1 = "beizer";
 Store store_B_1 = Field.Store.YES;
 Index index_B_1 = Field.Index.ANALYZED;
 Field field_B_1 = new Field(name_B_1, value_B_1, store_B_1, index_B_1);
 String name_B_2 = "author";
 String value_B_2 = "utting";
 Store store_B_2 = Field.Store.YES;
 Index index_B_2 = Field.Index.ANALYZED;
 Field field_B_2 = new Field(name_B_2, value_B_2, store_B_2, index_B_2);
 String name_B_3 = "author";
 String value_B_3 = "poston";
 Store store_B_3 = Field.Store.YES;

Model-Driven Framework for Context Dependent Testing of Components 295

 Index index_B_3 = Field.Index.ANALYZED;
 Field field_B_3 = new Field(name_B_3, value_B_3, store_B_3, index_B_3);
 String name_C_1 = "pets";
 String value_C_1 = "/birds/anatidae/duck";
 Store store_C_1 = Field.Store.YES;
 Index index_C_1 = Field.Index.ANALYZED;
 Field field_C_1 = new Field(name_C_1, value_C_1, store_C_1, index_C_1);
 String name_C_2 = "pets";
 String value_C_2 = "/birds/anatidae/swan";
 Store store_C_2 = Field.Store.YES;
 Index index_C_2 = Field.Index.ANALYZED;
 Field field_C_2 = new Field(name_C_2, value_C_2, store_C_2, index_C_2);
 String name_C_3 = "pets";
 String value_C_3 = "/birds/anatidae/seagull";
 Store store_C_3 = Field.Store.YES;
 Index index_C_3 = Field.Index.ANALYZED;
 Field field_C_3 = new Field(name_C_3, value_C_3, store_C_3, index_C_3);
 String name_D_1 = "year";
 String value_D_1 = "1980";
 Store store_D_1 = Field.Store.YES;
 Index index_D_1 = Field.Index.ANALYZED;
 Field field_D_1 = new Field(name_D_1, value_D_1, store_D_1, index_D_1);
 String name_D_2 = "year";
 String value_D_2 = "1981";
 Store store_D_2 = Field.Store.YES;
 Index index_D_2 = Field.Index.ANALYZED;
 Field field_D_2 = new Field(name_D_2, value_D_2, store_D_2, index_D_2);
 String name_D_3 = "year";
 String value_D_3 = "1982";
 Store store_D_3 = Field.Store.YES;
 Index index_D_3 = Field.Index.ANALYZED;
 Field field_D_3 = new Field(name_D_3, value_D_3, store_D_3, index_D_3);
 Document document1 = new Document();
 Document document2 = new Document();
 Document document3 = new Document();
 document1.add(field_A_1);
 document1.add(field_B_1);
 document1.add(field_C_1);
 document1.add(field_D_1);
 document2.add(field_A_2);
 document2.add(field_B_2);
 document2.add(field_C_2);
 document2.add(field_D_2);
 document3.add(field_A_3);
 document3.add(field_B_3);
 document3.add(field_C_3);
 document3.add(field_D_3);
 QueryParser queryParser1 = new QueryParser(name_A_1, simpleAnalyzer1);
 indexWriter1.optimize();
 indexWriter1.close();
 String rangeText1 = "[1980 TO 1981]";
 String string1 = new String(rangeText1);
 String wildcardText1 = "mode*";
 String string2 = new String(wildcardText1);
 String fuzzyText1 = "moden~";
 String string3 = new String(fuzzyText1);
 String phraseText1 = "testing uses";
 String string4 = new String(phraseText1);
 String prefixText1 = "birds";
 String string5 = new String(prefixText1);
 String termText1 = "uses";
 String string6 = new String(termText1);
 String termText2 = "model";
 String string7 = new String(termText2);
 String termText3 = "based";
 String string8 = new String(termText3);
 String termText4 = "driven";
 String string9 = new String(termText4);
 String termText5 = "testing";
 String string10 = new String(termText5);
 Term term1 = new Term(name_A_1, termText1);

Model-Driven Framework for Context Dependent Testing of Components 296

 Term term2 = new Term(name_A_1, termText2);
 Term term3 = new Term(name_A_1, termText3);
 Term term4 = new Term(name_A_1, termText4);
 Term term5 = new Term(name_A_1, termText5);
 Term term6 = new Term(name_A_1, prefixText1);
 PrefixQuery prefixQuery1 = new PrefixQuery(term6);
 MultiPhraseQuery multiPhraseQuery11 = new MultiPhraseQuery();
 multiPhraseQuery11.add(term2);
 multiPhraseQuery11.add(term5);
 Query query1 = (Query) queryParser1.parse(rangeText1);
 Query query2 = (Query) queryParser1.parse(wildcardText1);
 Query query3 = (Query) queryParser1.parse(fuzzyText1);
 Query query4 = (Query) queryParser1.parse(phraseText1);
 Query query5 = (Query) queryParser1.parse(prefixText1);
 Query query6 = (Query) queryParser1.parse(termText1);
 SpanTermQuery spanTermQuery1 = new SpanTermQuery(term1);
 SpanTermQuery spanTermQuery2 = new SpanTermQuery(term2);
 SpanTermQuery spanTermQuery3 = new SpanTermQuery(term3);
 SpanTermQuery spanTermQuery4 = new SpanTermQuery(term4);
 SpanTermQuery spanTermQuery5 = new SpanTermQuery(term5);
 SpanFirstQuery spanFirstQuery1 = new SpanFirstQuery(spanTermQuery2, intSpanEnd1);
 SpanQuery [] spanQuery1 = new SpanQuery[] { spanTermQuery4, spanTermQuery3 };
 SpanNearQuery spanNearQuery1 = new SpanNearQuery(spanQuery1, intSlop1, boolean1);
 SpanNotQuery spanNotQuery1 = new SpanNotQuery(spanTermQuery5, spanTermQuery4);
 SpanOrQuery spanOrQuery1 = new SpanOrQuery(spanQuery1);
 float score1 = 1.0f;
 int id1 = 0;
 HitDoc hitDoc1 = new HitDoc(score1, id1);
 float score2 = 1.0f;
 int id2 = 1;
 HitDoc hitDoc2 = new HitDoc(score2, id2);
 Hits hits1 = (Hits) indexSearcher1.search(multiPhraseQuery11, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } });
 HitsVector expected_hitsVector1 = new HitsVector();
 expected_hitsVector1.add(hitDoc1);
 expected_hitsVector1.add(hitDoc2);
 HitsVector hitsVector1 = (HitsVector) hits1.getHitDocs();
 assertTrue(hitsVector1.equals(expected_hitsVector1)); // Test Case # 50

 Hits hits2 = (Hits) indexSearcher1.search(query4, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) {
BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } });
 HitsVector expected_hitsVector2 = expected_hitsVector1;
 HitsVector hitsVector2 = (HitsVector) hits2.getHitDocs();
 assertTrue(hitsVector2.equals(expected_hitsVector2)); // Test Case # 51

 Hits hits3 = (Hits) indexSearcher1.search(query1, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) {
BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } });
 HitsVector expected_hitsVector3 = expected_hitsVector1;
 HitsVector hitsVector3 = (HitsVector) hits3.getHitDocs();
 assertTrue(hitsVector3.equals(expected_hitsVector3)); // Test Case # 52

 Hits hits4 = (Hits) indexSearcher1.search(query1, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) {
BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, sort1);
 HitsVector expected_hitsVector4 = expected_hitsVector1;
 HitsVector hitsVector4 = (HitsVector) hits4.getHitDocs();
 assertTrue(hitsVector4.equals(expected_hitsVector4)); // Test Case # 53

 Hits hits5 = (Hits) indexSearcher1.search(query6, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) {
BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, sort1);
 HitsVector expected_hitsVector5 = expected_hitsVector1;
 HitsVector hitsVector5 = (HitsVector) hits5.getHitDocs();
 assertTrue(hitsVector5.equals(expected_hitsVector5)); // Test Case # 54

 Hits hits6 = (Hits) indexSearcher1.search(query1, sort1);
 HitsVector expected_hitsVector6 = expected_hitsVector1;
 HitsVector hitsVector6 = (HitsVector) hits6.getHitDocs();
 assertTrue(hitsVector6.equals(expected_hitsVector6)); // Test Case # 55

 Hits hits7 = (Hits) indexSearcher1.search(spanFirstQuery1, sort1);
 HitsVector expected_hitsVector7 = expected_hitsVector1;
 HitsVector hitsVector7 = (HitsVector) hits7.getHitDocs();

Model-Driven Framework for Context Dependent Testing of Components 297

 assertTrue(hitsVector7.equals(expected_hitsVector7)); // Test Case # 56

 Hits hits8 = (Hits) indexSearcher1.search(spanOrQuery1, sort1);
 HitsVector expected_hitsVector8 = expected_hitsVector1;
 HitsVector hitsVector8 = (HitsVector) hits8.getHitDocs();
 assertTrue(hitsVector8.equals(expected_hitsVector8)); // Test Case # 57

 Hits hits9 = (Hits) indexSearcher1.search(query6, sort1);
 HitsVector expected_hitsVector9 = expected_hitsVector1;
 HitsVector hitsVector9 = (HitsVector) hits9.getHitDocs();
 assertTrue(hitsVector9.equals(expected_hitsVector9)); // Test Case # 58

 Hits hits10 = (Hits) indexSearcher1.search(query2, sort1);
 HitsVector expected_hitsVector10 = expected_hitsVector1;
 HitsVector hitsVector10 = (HitsVector) hits10.getHitDocs();
 assertTrue(hitsVector10.equals(expected_hitsVector10)); // Test Case # 59

 TopDocs topDocs1 = (TopDocs) indexSearcher1.search(query1, intTopDocs1);
 HitsVector expected_hitsVector11 = expected_hitsVector1;
 HitsVector hitsVector11 = (HitsVector) topDocs1.getScoreDocs();
 assertTrue(hitsVector11.equals(expected_hitsVector11)); // Test Case # 60

 TopDocs topDocs2 = (TopDocs) indexSearcher1.search(spanFirstQuery1, intTopDocs1);
 HitsVector expected_hitsVector12 = expected_hitsVector1;
 HitsVector hitsVector12 = (HitsVector) topDocs2.getScoreDocs();
 assertTrue(hitsVector12.equals(expected_hitsVector12)); // Test Case # 61

 TopDocs topDocs3 = (TopDocs) indexSearcher1.search(query2, intTopDocs1);
 HitsVector expected_hitsVector13 = expected_hitsVector1;
 HitsVector hitsVector13 = (HitsVector) topDocs3.getScoreDocs();
 assertTrue(hitsVector13.equals(expected_hitsVector13)); // Test Case # 62

 TopDocs topDocs4 = (TopDocs) indexSearcher1.search(query4, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 HitsVector expected_hitsVector14 = expected_hitsVector1;
 HitsVector hitsVector14 = (HitsVector) topDocs4.getScoreDocs();
 assertTrue(hitsVector14.equals(expected_hitsVector14)); // Test Case # 63

 TopDocs topDocs5 = (TopDocs) indexSearcher1.search(spanFirstQuery1, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 HitsVector expected_hitsVector15 = expected_hitsVector1;
 HitsVector hitsVector15 = (HitsVector) topDocs5.getScoreDocs();
 assertTrue(hitsVector15.equals(expected_hitsVector15)); // Test Case # 64

 TopDocs topDocs6 = (TopDocs) indexSearcher1.search(spanNearQuery1, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 HitsVector expected_hitsVector16 = expected_hitsVector1;
 HitsVector hitsVector16 = (HitsVector) topDocs6.getScoreDocs();
 assertTrue(hitsVector16.equals(expected_hitsVector16)); // Test Case # 65

 TopDocs topDocs7 = (TopDocs) indexSearcher1.search(spanNotQuery1, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 HitsVector expected_hitsVector17 = expected_hitsVector1;
 HitsVector hitsVector17 = (HitsVector) topDocs7.getScoreDocs();
 assertTrue(hitsVector17.equals(expected_hitsVector17)); // Test Case # 66

 TopDocs topDocs8 = (TopDocs) indexSearcher1.search(spanOrQuery1, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 HitsVector expected_hitsVector18 = expected_hitsVector1;
 HitsVector hitsVector18 = (HitsVector) topDocs8.getScoreDocs();
 assertTrue(hitsVector18.equals(expected_hitsVector18)); // Test Case # 67

 TopDocs topDocs9 = (TopDocs) indexSearcher1.search(query2, new Filter() { public DocIdSet
getDocIdSet(IndexReader reader) { BitSet bitset = new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } },
intTopDocs1, sort1);
 HitsVector expected_hitsVector19 = expected_hitsVector1;

Model-Driven Framework for Context Dependent Testing of Components 298

 HitsVector hitsVector19 = (HitsVector) topDocs9.getScoreDocs();
 assertTrue(hitsVector19.equals(expected_hitsVector19)); // Test Case # 68

 final Vector vector1 = new Vector();
 indexSearcher1.search(query1, new HitCollector() { public void collect(int doc, float score) { vector1.add(new
Integer(doc));} });
 Vector expected_vector2 = expected_hitsVector1;
 Vector vector2 = (Vector) vector1.clone();
 assertTrue(vector2.equals(expected_vector2)); // Test Case # 69

 final Vector vector3 = new Vector();
 indexSearcher1.search(query2, new HitCollector() { public void collect(int doc, float score) { vector3.add(new
Integer(doc));} });
 Vector expected_vector4 = expected_hitsVector1;
 Vector vector4 = (Vector) vector3.clone();
 assertTrue(vector4.equals(expected_vector4)); // Test Case # 70

 final Vector vector5 = new Vector();
 indexSearcher1.search(query3, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) { BitSet bitset = new
BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, new HitCollector() { public void collect(int doc, float score) {
vector5.add(new Integer(doc));} });
 Vector expected_vector6 = expected_hitsVector1;
 Vector vector6 = (Vector) vector5.clone();
 assertTrue(vector6.equals(expected_vector6)); // Test Case # 71

 final Vector vector7 = new Vector();
 indexSearcher1.search(prefixQuery1, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) { BitSet bitset
= new BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, new HitCollector() { public void collect(int doc, float score) {
vector7.add(new Integer(doc));} });
 Vector expected_vector8 = expected_hitsVector1;
 Vector vector8 = (Vector) vector7.clone();
 assertTrue(vector8.equals(expected_vector8)); // Test Case # 72

 final Vector vector9 = new Vector();
 indexSearcher1.search(query1, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) { BitSet bitset = new
BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, new HitCollector() { public void collect(int doc, float score) {
vector9.add(new Integer(doc));} });
 Vector expected_vector10 = expected_hitsVector1;
 Vector vector10 = (Vector) vector9.clone();
 assertTrue(vector10.equals(expected_vector10)); // Test Case # 73

 final Vector vector11 = new Vector();
 indexSearcher1.search(query2, new Filter() { public DocIdSet getDocIdSet(IndexReader reader) { BitSet bitset = new
BitSet(2); bitset.set(0);bitset.set(1); return new DocIdBitSet(bitset); } }, new HitCollector() { public void collect(int doc, float score) {
vector11.add(new Integer(doc));} });
 Vector expected_vector12 = expected_hitsVector1;
 Vector vector12 = (Vector) vector11.clone();
 assertTrue(vector12.equals(expected_vector12)); // Test Case # 74

 } catch (Exception exp) {
 System.out.println(exp.toString());
 fail("Exception occured during test case execution");
 }

 } //End of Method

} //End of Class

Model-Driven Framework for Context Dependent Testing of Components 299

D.11: Methods added for comparing outputs

Class: Hits

public Vector getHitDocs() {
HitsVector hitsVector = new HitsVector();
hitsVector.addall(this.hitDocs);
return hitsVector;

}

Class: TopDocs

public HitsVector getScoreDocs() {
ScoreDoc[] scoreDocs = this.scoreDocs;
HitsVector hitsVector = new HitsVector();
for(int i=0; i<scoreDocs.length; i++) {

hitsVector.add(scoreDocs[i]);
}
return hitsVector;

}

Class: HitsVector

class HitsVector extends Vector {

 public boolean equalsOrdered(Object object) {
 Vector vector;
 if(object.getClass().getName().equals("org.apache.lucene.search.TopDocs")) {
 TopDocs topDocs = (TopDocs) object;
 vector = (Vector) topDocs.getScoreDocs();
 } else if(object.getClass().getName().equals("org.apache.lucene.search.TopFieldDocs")) {
 TopFieldDocs topFieldDocs = (TopFieldDocs) object;
 vector = (Vector) topFieldDocs.getScoreDocs();
 } else if(object.getClass().getName().equals("org.apache.lucene.search.Hits")) {
 Hits hits = (Hits) object;
 vector = (Vector) hits.getHitDocs();
 } else {
 vector = (Vector) object;
 }

 // check the number of documents
 if (this == null & vector == null) {
 return true;
 } else if (this == null & vector != null) {
 return false;
 } else if (this != null & vector == null) {
 return false;
 } else if (this.size() != vector.size()) {
 return false;
 }

 // check the documents returned in same order as expected
 for (int i = 0; i < this.size(); i++) {
 HitDoc doc = (HitDoc) this.get(i);
 // Different search methods return a collection of different types of objects
 String vectorType = vector.get(i).getClass().getName();
 if (vectorType.equals("org.apache.lucene.search.FieldDoc")
 || vectorType.equals("org.apache.lucene.search.ScoreDoc")) {
 ScoreDoc doc1 = new ScoreDoc(doc.id, doc.score);
 ScoreDoc doc2 = (ScoreDoc) vector.get(i);
 if (doc1.doc != doc2.doc) return false;
 } else if (vectorType.equals("java.lang.Integer")) {
 int doc2 = ((Integer) vector.get(i)).intValue();
 if (doc.id != doc2) return false;
 }
 } else {
 HitDoc doc2 = (HitDoc) vector.get(i);
 if (doc.doc != doc2.doc) return false;
 }
 }
 return true;

}
}

