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Abstract

Over the last two decades, the research community has witnessed extensive

research growth in the field of analysing and understanding scenes. Auto-

matic scene analysis can support many critical applications, from person re-

identification as an advanced security tool, to real-time action classification

as an assistive technology for disabled patients. However, building effective

systems is still a challenge due to the presence of occlusion, varying illumi-

nation, varying pose and other factors encountered in the practical environ-

ment.

To deal with the real world environment, which is naturally not free from

noise, a recent trend in computer vision is to represent a given image through

a covariance matrix of a set of extracted features. Covariance matrices are

robust to noise and are well known to be compact and informative feature

descriptors. Non-singular covariance matrices are naturally symmetric pos-

itive definite (SPD) matrices which form connected Riemannian manifolds.

As such, their underlying distance and similarity functions might not be ac-

curately defined in Euclidean space, and consequently the Riemannian ge-

ometry needs to be considered in order to solve scene analysing tasks. The

traditional methods of analysing such manifolds require embedding them in

Euclidean spaces, a process which can be interpreted as warping the fea-

ture space. However, embedding manifolds is not free from drawbacks and

it can lead to limitations, as the manifold structure may not be accurately

preserved.

In this work we propose three methods for analysing SPD matrices on

Riemannian manifolds that unlike traditional methods respect the underlying

structure of a given image, while considering the computational complexity

of the learning algorithm. While all three methods offer strong solutions

for the task of image analysis over SPD manifolds that outperform state-of-

the-art methods, each of them tends to tackle one vision application better

than the rest. This is owed to the existing differences between each vision

application. Although all of these vision tasks can be categorised as a image

classification problem, each application offers unique challenges, such as very

limited training data, strong pose variation etc. To be more specific, the
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first proposed method outperforms the rest of the proposed methods in face

recognition; the extension of the second method performs very well in the

task of person re-identification; and the last proposed method outperforms

other two in the task of texture recognition.

This work addresses the challenge of analysing SPD manifolds using the

below proposed methods:

1. Graph-Embedding Discriminant Analysis

2. Relational Divergence Based Classification

3. Random Projections

The first method proposes to embed Riemannian manifolds into Repro-

ducing Kernel Hilbert Spaces (RKHS) and then tackle the problem of dis-

criminant analysis on the Hilbert space. To achieve an efficient machinery,

we present a graph-based local discriminant analysis that utilises within-class

and between-class similarity graphs to characterise intra-class compactness

and inter-class separability. Experiments on face recognition, texture classifi-

cation and person re-identification indicate that the proposed method obtains

marked improvement in discrimination accuracy in comparison to several

state-of-the-art methods.

The second proposed method suggests direct classification on the Man-

ifold by presenting each SPD matrix through its similarity vector with the

number of other SPD matrices. In addition, to speed up the process, the

proposed method employs the recently introduced Stein divergence. Classifi-

cation problems on manifolds are then effectively converted into the problem

of finding appropriate machinery over the space of similarities. Experiments

on face recognition, texture classification and person re-identification show

that in comparison to well-known methods, the proposed approach obtains

a significant improvement in image classification, while also being several

orders of magnitude faster.

The third proposed algorithm proposes to project SPD matrices using a

set of random projection hyperplanes over an RKHS into a random projec-

tion space, which leads to representing each matrix as a vector of projec-

tion coefficients. Experiments on face recognition, person re-identification
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and texture classification show that the proposed approach, in comparison to

well-known methods, obtains a significant improvement in image classifica-

tion, while also being relatively faster.

Experiments and comparative evaluations on standard datasets from a

variety of image analysis applications suggest that the three proposed algo-

rithms obtain considerably better results (both qualitatively and quantita-

tively) than other well-known techniques available in the literature. While

all three proposed methods have been designed to work for scenes analysis,

the experiment result suggest that based on the nature of the given appli-

cation (i.e., the number of points in the training set), one of the proposed

algorithms might be favoured over the rest.
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Chapter 1

Introduction

Computer vision is a science that aims to design artificial visual machinery

that can analyse and interpret scenes information. It can be applied in vari-

ety of applications from security monitoring to enhancing medical diagnoses.

Some of the applications for scenes analysis are face recognition, cell classi-

fication, autonomous robotics, etc [CT10, JA10, YF08, FGR05]. Some exam-

ples of visual data used in object classification task are shown in Fig. 1.1.

With growing collections of images and videos, it is critical for a variety of

applications to have automated techniques for extracting reliable information

from visual data. In fact, it is fair to say that the primary task that lies at the

heart of image analysis is information extraction, that can eventually lead to

robust image analysis methods.

To recognise the patterns of the given visual data and characterise the

proximity between them, understanding the topology of the given space is

vital [Lui12]. In this context, pattern recognition can be seen as data belong-

ing to some inherent geometrical structure. Although, for some applications

with underlying non-Euclidean geometry, one can make the Euclidean ap-

proximation, these approximations are only reasonable if data is clustered

close together on the manifold. In other words, the approximations get less

accurate as data becomes more dispersed on the manifold.

Therefore, simply considering the space as a Euclidean space and ignoring

the geometrical aspect, may lead to undesired effects. Traditional approaches

often tend to ignore this effect and quantify data in a vector space, which

may not always be valid for images [Lui12, SL00]. For example, to increase
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Figure 1.1: Examples from the VIPeR person re-identification dataset [GBT07a]

robustness against noise, it is popular to present an image as a covariance of

a selected feature vectors such as colour, gradient and filter responses. The

covariance matrices belong to the space of d× d symmetric positive definite

matrices which forms a cone in the space of matrices, thus is not a vector

space [PFA06, TPM06a].

1.0.1 Matrix Manifold

To ensure that the underlying structure of the image is respected, manifold

learning techniques such as ISOmetric Mapping (ISOMAP) [TDSL00] and Lo-

cal Linear Embedding (LLE) [RS00] were introduced. These methods gener-

ally use a large amount of densely sampled training data to learn a mapping

from the ambient space to the intrinsic space; so that the projection of the

points is distance invariant.

If the underlying geometric structure of the data is already known, an-

other geometrical method can be employed which does not necessarily re-

quire the large amount of training data. The method suggests representing

images in an underlying parametrised space. This school of thought gives rise
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to the representation of a matrix manifold [Lui12]. While manifold learning

techniques tend to learn a manifold through training data, matrix manifolds

methods derive from the properties of differential geometry. To be more

specific, a matrix manifold uses algebraic operations to characterise the id-

iosyncratic aspects of the geometry of the data in some parameter space; in

fact, image data are often described as the orbit of elements under the matrix

manifolds action (i.e., rotation group) [Lui12].

The concept of matrix manifolds dates back to the 19th century [Jam99].

Since then, they have gained more attention in the mathematics, physics, and

other scientific communities. Moreover, matrix manifolds enable the devel-

opment of similarity metrics, expressions for probability distributions, means

and covariances which can be useful for designing nearest neighbour and

Bayesian classifiers, support vector machines, and clustering and tracking

algorithms.

Matrix manifolds also naturally arise in computer vision as they enable the

representation of many types of image and video features in non-Euclidean

spaces [Che12]. Furthermore, matrix manifolds provide tools for design-

ing classifiers such as nearest neighbour and support vector machine by pro-

viding the means for the development of similarity metrics, expressions for

probability distributions, means and covariances [Che12]. This is still a very

popular research area and constitutes one of the challenging aspects of recog-

nising and classifying visual data.

In this research we focus on addressing the scenes analysis challenge

through matrix manifolds. To be more specific, in the domain of differen-

tiable manifolds we use the special class of Riemannian Manifolds known as

Symmetric Positive Definite (SPD) manifolds for analysing visual data.
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1.1 Goals and Challenges

The work in this thesis proposes three approaches for analysing images over

Symmetric Positive Definite (SPD) manifolds which improves the performance

of major computer vision tasks that numerous image analysis applications are

confronted with.

Furthermore, the algorithms are designed to respect the underlying struc-

ture of the images with a view to achieve real-time performance. These three

approaches are:

1. Graph-Embedding Discriminant Analysis on Riemannian Manifolds for

Visual Recognition

2. Relational Divergence Based Classification on Riemannian Manifolds

3. Random Projections on Manifolds of Symmetric Positive Definite Matri-

ces

All three approaches are destined in a way to avoid the use of tangent

space by either mapping the data points into a Kernel Space or directly using

the similarity vectors over SPD manifolds. In the following, we will give a

brief description of the three proposed solutions.

As mentioned earlier, visual recognition is a fundamental task in a wide

range of computer vision applications such as security surveillance, person

re-identification and human-computer interaction. The general idea is to

improve the image classification system enabling reliable work in practical

environments containing pose and illumination variations, misalignment and

other varying conditions.

To this end, we contend that covariance matrices of the extracted image

features are the best means to model the images since they are able to pro-

vide compact and informative feature description that can accommodate the

above mentioned challenges. Non-singular covariance matrices are naturally

in the form of SPD matrices which form connected Riemannian manifolds

when endowed with a Riemannian metric over tangent spaces. Thereafter,

exploiting the non-Euclidean and curved geometry of manifolds is vital to

compare the SPD matrices without violating the underlying structure of the

matrices.
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To increase the accuracy and speed of the inference on the SPD manifolds,

we proposed three approaches:

First approach developed a graph-based local discriminant analysis to em-

bed the SPD manifold into a Reproducing Kernel Hilbert space (RKHS) with

the intra-class compactness as well as inter-class separability.

The second approach employs the Stein Divergence dissimilarity measure-

ment to calculate the similarity vectors representing each SPD matrix.

The final approach employs Random Projection over RKHS and improves

the performance of image classification.
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1.2 Contributions

Our main goal is to improve image classification on SPD manifolds without

violating the underlying structure of the manifold, while keeping the algo-

rithm computationally relatively inexpensive. In addition, our approaches

can be employed for any image analysis task.

In this thesis we propose three solutions for analysing images on SPD

manifolds with respect to the underlying structure

• Employing Graph-Embedding Discriminant Analysis on Riemannian Man-

ifolds for Visual Recognition

• Relational Divergence Based Classification on Riemannian Manifolds

• Random Projections on Manifolds of Symmetric Positive Definite Matri-

ces

Besides providing state-of-the-art algorithms to address these three tasks,

we made a series of contributions in terms of novel representation and clas-

sification approaches which could prove useful in alternative applications.

Below we enumerate our contributions per task. Note that our purpose

here is to give a brief overview of the contributions; further explanation of

the topics will be given later in the chapters attributed to each of the three

tasks.

1.2.1 Graph-Embedding Discriminant Analysis on Riemannian Mani-
folds for Visual Recognition

• Tackles the problem of Discriminant Analysis (DA) on Riemannian man-

ifolds through RKHS space

• Proposes a graph-based local DA that utilises both within-class and between-

class similarity graphs to characterise intra-class compactness and inter-

class separability, respectively
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1.2.2 Relational Divergence Based Classification on Riemannian Mani-
folds

• Introduces a new way of analysing Riemannian manifolds where em-

bedding into Euclidean spaces or RKHS is not required

• Creates similarity vectors and discriminative mapping for final classifi-

cation

• The classification task on manifolds is then converted into a task in the

space of similarity vectors,

1.2.3 Random Projections on Manifolds of Symmetric Positive Definite
Matrices

• Offers a novel approach for analysing SPD matrices which combines the

main advantage of tangent space approaches with the discriminatory

power provided by kernel space methods

• Embeds SPD manifold points into RKHS via the Stein Divergence Kernel

[Sra12a].

• Generates random projection hyperplanes in RKHS and project the em-

bedded points via the method proposed in [KG09].

• The classification task on manifolds is then converted into a task in the

Euclidean space
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1.3 Thesis Outline

The rest of this thesis is comprised of four major parts. Chapter 2 provides

an overview of the relevant mathematical terms and theoretical aspects used

in this work. Chapter 3, Chapter 4 and Chapter 5 present our proposed solu-

tions targeting image analysis task on Symmetric Positive Definite manifolds

with respect to the underlying geometrical structure (i.e., without the aid of

tangent spaces). The above three chapters represent independent solutions

and include their own literature review and proposed algorithms. Our con-

cluding remarks and possible future directions are presented in Chapter 6.

Chapters 3 to 6 are summarised below:

• Chapter 2: Background Theory.

This chapter provides an overview of the relevant theory used in this

work. It starts with defining and describing Riemannian geometry fol-

lowed by a description of a tangent space. The curved shape of the

manifolds and the effect of the curvature on computing dissimilarity

between points is then explained. Finally, the Stein Divergence which

is employed in this thesis to calculate the dissimilarity between points

over Symmetric Positive Definite manifolds is explained in detail.

• Chapter 3: Graph-Embedding Discriminant Analysis on Riemannian

Manifolds for Visual Recognition. This chapter shows how discrimi-

nant analysis can be reformulated on non-Euclidean spaces, namely the

SPD manifolds. Inference on manifold spaces can be achieved by em-

bedding the manifolds in higher dimensional Euclidean spaces, which

can be considered as flattening the manifolds. In this work we pro-

pose to tackle the problem of Discriminant Analysis (DA) on Rieman-

nian manifolds through RKHS space and propose a graph-based local

DA that utilises both within-class and between-class similarity graphs to

characterise intra-class compactness and inter-class separability, respec-

tively.

• Chapter 4: Relational Divergence Based Classification on Rieman-

nian Manifolds. In this chapter we proposed to represent Riemannian
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points through their similarities to a set of reference points on the man-

ifold, with the aid of the recently proposed Stein divergence, which

is a symmetrised version of Bregman matrix divergence. Classification

problems on manifolds are then effectively converted into the problem

of finding appropriate machinery over the space of similarities, which

can be tackled by conventional Euclidean learning methods such as lin-

ear discriminant analysis. This is then followed by expanding the work

to explicitly address the person re-identification task.

• Chapter 5: Random Projections on Manifolds of Symmetric Positive

Definite Matrices. This chapter presents a novel solution which em-

beds the data points into a random projection space by first generating

random hyperplanes in RKHS and then projecting the data in RKHS into

the random projection space.

• Chapter 6: Conclusion. This chapter summarises the contributions of

this thesis and enumerates new avenues and improvements for future

research.

1.3.1 Comprehensive Literature Review

As this work covers several distinct yet related solutions, each proposed

method has its own literature review. The overall literature review is com-

prised of:

• The entire chapter 2, which covers relevant background theory neces-

sary to build a solution based on Riemannian Manifolds (or to be more

specific Symmetric Positive Definite Manifolds).

• Section 3.2, which covers a literature review of the state-of-the-art stud-

ies that utilised non-Euclidean geometry (mainly focusing on Rieman-

nian Manifolds) to address several computer vision problems.

• Section 4.1.2, which covers popular choices for embedding Riemannian

manifolds and other proposed alternative solutions for analysing images

on Riemann manifolds.

30



Chapter 1. Introduction

• Section 4.2.2, which introduces the person re-identification task and its

main terminology, and is followed by Section 4.2.3 which goes through

literature review of the popular algorithms that target this area.

• Section 5.2, which presents a survey of state-of-the-art approaches for

mapping manifold points to Hilbert spaces, thereby enabling the use of

existing Euclidean-based learning algorithms.
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Background theory

This chapter introduces the required mathematical concepts and technical

background to provide a foundation for the rest of this work. First, we ex-

plain the concept of differentiable manifolds and introduce necessary defi-

nitions required in order to understand the rest of this thesis. Riemannian

geometry is then explained which is followed by introducing tangent space,

and then Riemannian metrics. Two types of Riemannian manifolds used in

this work known as Grassmannian Manifolds (chapter 3) and Symmetric Pos-

itive Definite (SPD) Manifolds(chapter 3, 4 and 5), are then introduced. The

distance function on such manifolds is subsequently introduced, followed by

the concept of Tangent Space. Then, as the main topic of interest of this

thesis is SPD manifolds, from this stage on, our main focus is to detail the

related SPD manifold concepts.

2.1 Non-Euclidean Geometry

Recently, several studies have utilised non-Euclidean geometry to address

several computer vision problems including object tracking [HLL+ss], charac-

terising the diffusion of water molecules as in diffusion tensor imaging [Pen06],

face recognition [PYL08, SBMP10], human re-identification [BCBTss], tex-

ture classification [HSWL12], pedestrian detection [TPM08] and action recog-

nition [OLDss, YHL+10].

In computer vision and machine learning disciplines, the trace of covari-

ance and kernel matrices can be seen in many ways. One notable example is
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the covariance descriptor introduced by Tuzel et al. [TPM06b]. A covariance

descriptor is a structured representation and comes with several advantages

over traditional descriptors. A single covariance matrix extracted from a re-

gion (2D regions in images or 3D in videos) is usually enough to match the

region in different views and poses.

Furthermore, the covariance matrix proposes a natural way of fusing mul-

tiple features which might be correlated. The diagonal entries of the co-

variance matrix represent the variance of each feature and the non-diagonal

entries represent the covariances. The noise corrupting individual samples

are largely filtered out with an average filter during covariance computation.

Nevertheless, the space of covariance/correlation/kernel matrices (more gen-

erally symmetric positive definite matrices) is not Euclidean; it is a Rieman-

nian manifold of negative curvature.

Several studies show that better performance can be achieved when the

geometry of the Riemannian spaces is considered to its uttermost level [HL08,

TPM08, SM09, Lui12, HSSL11, TVSC11]. Exploiting the geometry of space

is especially important in the computer vision discipline since the notion of

Euclidean space is not well supported for high-dimensional vision data (c.f.,

think how inaccurate distances could be on a sphere when the geometry is

not considered).
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2.2 Differentiable Manifolds

Generally speaking, employing the theory of differentiable manifolds enables

one to extend the applications, concepts and results of the calculus on Rn

spaces to sets that do not possess the structure of a normed vector space

[DC11]. Based on this definition one can absorb that many applications of

computer vision involve recognition of patterns from data which lie on such

manifolds [TVC08].

To understand the concept of differentiable manifolds, we need to start

with defining charts (also known as coordinate systems). Let M be a set of

points, and U be a subset of M, and φ be a one-to-one map from U onto an

open subset of Rn. A chart on M is then defined as a pair (U,φ). In other

words, defining chart (U,φ) on a set M is equivalent to labelling each point

p ∈U by using n real numbers

φ(p) =
(
x1(p),x2(p), · · · ,xn(p)

)
(2.1)

, where x1(p),x2(p), · · · ,xn(p) are called the coordinates associated with the

chart (U,φ). The condition on φ that forces one-to-one mapping guarantees

that two different points of U differ at least in the value of one of the co-

ordinates. Frequently, to cover all the points of M more than one chart is

required [DC11] (Fig. 2.2), which brings us to the definition of atlas Ck on

M. To understand the concept of atlas we need to first go through a number

of other definitions.

A function F :Rn→Rm is said to be differentiable of class Ck if there exist k

continuous partial derivatives for all of the real-valued functions f1, f2, · · · , fm,

where F(q) = ( f1(q), f2(q), · · · , fm(q)). Two charts (U,φ) and (V,χ) on M, are

then called Ck-related if U ∩V = ∅, or χ ◦φ−1 and φ ◦ χ−1 are differentiable

of class Ck.

A collection of charts on M, (Ui,φ) form a Ck sub-atlas on M if for any pair

of i and j, (Ui,φi) and (U j,φ j) are Ck-related and M = U1∪U2∪ ·· · . Atlas Ck

on M is then formed from the collection of all the Ck-related charts with the

charts of a Ck sub-atlas on M.

Based on the above definitions we now define a Ck manifold of dimension

n to be a set M with a Ck atlas; then if k ≥ 1, then M is called a differentiable
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Figure 2.1: φ maps some point of M to some point of Rn.

Figure 2.2: φ maps each point of U and χ maps each point of V to some point of Rn. The
image demonstrates how more than one chart might be required to cover all the points of M
.

manifold.

In this work our attention is on Riemannian manifolds which are smooth

differentiable (infinitely differentiable C∞) manifolds on which Riemannian

metrics are defined. In the following section, Riemannian manifolds and two

types of Riemannian manifolds used in this thesis are explained.
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2.3 Riemannian Geometry

Riemannian manifolds are analytical manifolds endowed with a distance

measure which allows the measurement of similarity or dissimilarity (close-

ness or distance) of points. In other words, Reimannian manifolds are smooth

manifolds equipped with Riemannian metrics, which allow measurement of

geometric quantities such as distances and angles.

From this point on, when we say manifold, unless otherwise, we are refer-

ring to smooth differentiable manifolds. Before introducing more advanced

manifolds related concepts, we need to first go through some basic definitions

[Lee97], as follows:

Definition 2.3.1. A sub-manifold M̃ of a smooth manifold M, is a smooth
manifold M together with an injective immersion ı : M→ M̃.

So, ı(M)⊂ M̃ can be seen as an image of M. Although, we can consider M to

be a subset of M̃, in general the topology and structure of M may have only

little in common with that of M̃.

Definition 2.3.2. The inclusion map ı is considered to be an embedding, when
it is a homeomorphism onto its image with the subspace topology.

Definition 2.3.3. M is an embedded sub-manifold if the related inclusion map
ı is an embedding.

Inference on Riemannian manifolds can be accomplished through embed-

ding the manifolds into higher dimensional Euclidean spaces. The most pop-

ular choice for embedding manifolds is achieved through tangent spaces [TPM08,

PTM06].

As tangent space plays an important role in analysing points over mani-

folds, in the following section we provide a more detailed introduction. Then

we introduce geodesic distance and look at the two types of Riemannian

manifolds used in this work, known as SPD manifolds and Grassmannian

manifolds. Finally, we explain the Stein divergence method used through

this thesis as a similarity measurement of points on SPD manifolds.
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Figure 2.3: Relations between tangent spaces, tangent vectors, and geodesics. P1 and P2
are points on the manifold, while TP1 and TP2 are tangent spaces at these points [TVC08].

2.3.1 Tangent Space

For each point P ∈M , a tangent space TP(M ) is the set of all tangent vectors

at the point P which can be defined as a vector space of derivations at the

point [Lui11]. Let P(t) be a matrix in Rn×m parametrised by a curve t such

that P(0) = In,p and P(t)T ×P(t) = I. Using the product rule, differentiating

P(t)T ×P(t) with respect to t produces [Lui11] :

P(t)T d
dt

P(t)+
d
dt

P(t)T P(t) = 0 (2.2)

d
dt

P(0)+
d
dt

P(0)T = 0 f or t = 0 (2.3)

The above equations indicate that the tangent space is the set of skew

symmetric matrices. Geometrically, one can refer to tangent space as a vec-

tor space with the origin shifted to x. Tangent spaces are critical aspects in

differential manifolds as they provide a bridge to a local vector space rep-

resentation of a manifold. To switch between manifold and tangent space

at point P, two operators, namely the exponential map exp(v) and logarithm

map log(P) are defined. Fig. 2.3 illustrates that for each point on the man-

ifold P ∈M , the tangent vector can be obtained through logarithmic map

log(P) = v where log(P) : M → TP(M ). For each vector starting from point X
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in tangent space v ∈ Tp(M ) there exists an exponential map exp(v) = P where

exp(v) : TP(M )→M ‘pulls back’ the vector in the tangent space into a point

on the manifold [TVSC11].
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2.3.2 Riemannian Metrics

In this section we briefly go through the definition of the Riemannian Met-

ric and geodesic distance which is then followed by detailing the relation

between geodesic distance and the curvature.

Definition 2.3.4. The Riemannian metric on a smooth manifold M is a sym-
metric positive definite 2-tensor field g ∈ T 2 (M) [Lee97].

Thus a Riemannian metric determines an inner product on each tangent

space TpM.

Definition 2.3.5. The geodesic distance between two points X,Y ∈M , denoted
by dg (X,Y), is defined as the minimum length over all possible smooth curves
between X and Y.

Thus a geodesic curve is a curve that locally minimises the distance between

points.

Curvature

It worth knowing that the possibility of computing geodesics on a Rieman-

nian manifold often is owed to the curved shape of the manifold [LTSC13].

The characterisation of the manifold curvature can be achieved through sev-

eral ways, here we briefly cover two of them:

1. sectional curvature

2. scalar curvature

If TX(M ) is a tangent space to a point X from a given Riemannian Mani-

fold M , sectional curvature is then specified with respect to a subspace of the

TX(M ) and can be obtained by using the Riemannian curvature tensor of the

M . The scalar curvature on the other hand, is the trace of the Ricci curvature

tensor and is twice the sum of sectional curvatures over all the subspaces of

TX(M ) [LTSC13].

To further clarify the above concepts, we consider the special case of 2

dimensional (2D) surfaces in R3. We first note that in the 2D space the
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sectional and scalar curvature can be calculated through the Gaussian curva-

ture. In fact, in the 2D environment, the sectional curvature is equal to and

the scalar curvature is just twice the Gaussian curvature [LTSC13].

Let S : [0,1]2 → R3 be a parametrised surface with the mapping (u,v) 7→
S(u,v) as the parametrisation of the S. We introduce two fundamental forms

of a surface which together defines certain geometric invariants of the sur-

face. The first fundamental form of S at (u,v) is given by the matrix below:

g(u,v) =


〈

∂S
∂u ,

∂S
∂u

〉 〈
∂S
∂u ,

∂S
∂v

〉
〈

∂S
∂v ,

∂S
∂u

〉 〈
∂S
∂v ,

∂S
∂v

〉
 (2.4)

where the vectors ∂S
∂u ,

∂S
∂v form a basis of the tangent space to S at (u,v). In

Eqn. (2.4) g(u,v) can be interpreted as a Riemannian metric on S.

The second fundamental form is defined below as representing the quadratic

approximation of the surface at point S:

Π =


〈

∂S2

∂u2 , ñ
〉 〈

∂S2

∂u∂v , ñ
〉

〈
∂S2

∂u∂v , ñ
〉 〈

∂S2

∂v2 , ñ
〉
 (2.5)

where n(u,v) = ∂S
∂u×

∂S
∂v is a vector normal to the surface at point (u,v) and

ñ = n(u,v)/ |n(u,v)| is the unit normal to the surface at that point.

Having defined the above concepts we can now build the definition of the

shape operator to be used as a descriptive tool for curvature properties. The

shape operator, which is a self-adjoint operator on the tangent space, is given

by the matrix below:

ς = g−1
Π (2.6)

The Gaussian curvature can then be calculated through the shape operator

of the curved surface and is equivalent to the product of the eigenvalues of

the shape operator λ1λ2. Finally, the sectional curvature and scalar curvature

can be calculated accordingly [LTSC13].
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2.3.3 Types of Riemannian Manifolds

Among various Riemannian manifolds, structures induced from subspaces

and Symmetric Positive Definite (SPD) matrices have been shown to be quite

useful in computer vision. Subspaces form a non-Euclidean and curved Rie-

mannian manifold known as a Grassmann manifold and SPD manifolds are

able to accommodate the effects of various image variations. For example,

a widely used approximation for photometric invariance, under conditions

of no shadowing and Lambertian reflectance, is a linear subspace [AMU97].

Moreover, subspaces can capture the dynamic properties of videos [TVSC11].

In this study we are interested in Grassmann manifolds (chapter 3) and the

manifolds of Symmetric-Positive-Definite matrices (SPD) (chapter 3, 4 and

5).

Symmetric positive definite matrices of size D×D, e.g. non-singular covari-

ance matrices, form a connected Riemannian manifold (Sym+
D). The geodesic

distance between two points X and Y on Sym+
D can be computed as

dG (X,Y) = trace
{

log2
(

X−
1
2 YX−

1
2

)}
(2.7)

In (2.7), log(·) is a matrix logarithm operator and can be computed through

Singular Value Decomposition (SVD). More specifically, let X = UΣUT be the

SVD of the symmetric matrix X, then

log(X) = U log(Σ)UT (2.8)

where log(Σ) is a diagonal matrices where the diagonal elements are equiva-

lent to the logarithms of the diagonal elements of matrix Σ.

To formally define a Grassmann manifold and its geometry, we need to

define the quotient space of the manifold. A quotient space of a manifold

can be described as the result of “gluing together” certain points of the man-

ifold. Formally, given ∼ψ as an equivalence relation on M , the quotient space

ϒ = M /∼ψ is defined to be the set of equivalence classes of elements of M ,

i.e., ϒ = {[X] : X ∈M }= {[Y ∈M : Y∼ψ X] : X ∈M }.

A Grassmann manifold is then defined as a quotient space of the special

orthogonal group1 SO(n) and is defined as a set of p-dimensional linear sub-
1 Special orthogonal group SO(n) is the space of all n×n orthogonal matrices with the determinant
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spaces of Rn.

In practice, an element X of G n, p is represented by an orthonormal basis

as a n× p matrix, i.e.,XT X = Ip. The geodesic distance between two points on

the Grassmann manifold can be computed as:

dG (X,Y) = ‖Θ‖2 (2.9)

where Θ = [θ1,θ2, · · · ,θp] is the principal angle vector, i.e.,:

cos(θi) = max
xi∈X, y j∈Y

xT
i y j (2.10)

subject to xT
i xi = yT

i yi = 1, xT
i x j = yT

i y j = 0, i 6= j. The principal angles have the

property of θi ∈ [0,π/2] and can be computed through SVD of XT Y [EAS99].

+1. It is not a vector space but a differentiable manifold, i.e., it can be locally approximated by subsets
of a Euclidean space.
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2.4 Symmetric Positive Definite Manifolds

Covariance matrices have recently been employed to describe images and

videos [Pen06, GIK10, TPM08], as they are known to provide compact and

informative feature description [CSBP11, AVN11]. Non-singular covariance

matrices are naturally symmetric positive definite matrices (SPD) which form

connected Riemannian manifolds when endowed with a Riemannian metric

over tangent spaces [Lan99]. Symmetric positive definite matrices (SPD)

arise in various problems in machine learning and computer vision. They

can be used to describe images and videos [GIK10, Pen06, TPM08], as they

naturally emerge in the form of covariance matrices and therefore provide

compact and informative feature descriptors [CSBP11]. In addition to cap-

turing feature correlations compactly, covariance matrices are known to be

robust to noise [AVN11]. A key aspect of covariance matrices is their natural

geometric property [Lan99], ie. they form a connected Riemannian mani-

fold. As such, the underlying distance and similarity functions might not be

accurately defined in Euclidean spaces [TPM08].

While the theory of learning in Euclidean spaces has been extensively de-

veloped, extensions to non-Euclidean spaces like Riemannian manifolds have

received relatively little attention. This is mainly due to difficulties of han-

dling the Riemannian structure as compared to straightforward Euclidean

geometry. For example, the manifold of SPD matrices is not closed under

normal matrix subtraction. As such, efficiently handling this structure is non-

trivial, due largely to two main challenges [SA11]: (i) defining divergence,

distance, or kernel functions on covariances is not easy; (ii) the numerical

burden is substantial, even for basic computations such as distances and clus-

tering.

To simplify the handling of Riemannian manifolds, inference is tradition-

ally achieved through first embedding the manifolds in higher dimensional

Euclidean spaces. A popular choice for embedding manifolds is through tan-

gent spaces [Lui11, PTM06, TPM08, VRCC05]. To be more specific, to ad-

dress the above issue, two lines of research have been proposed:

(1) embedding manifolds into tangent spaces [Lui11, PTM06, TPM08,

VRCC05];

43



Chapter 2. Background theory

(2) embedding into Reproducing Kernel Hilbert Spaces (RKHS), induced

by kernel functions [AHS13, HL09, HSWL12, STC04, SC11].

The former approach in effect maps manifold points to Euclidean spaces,

thereby enabling the use of existing Euclidean-based learning algorithms.

This comes at the cost of disregarding some of the manifold structure. For

instance, only distances between points to the tangent pole are equal to true

geodesic distances. This restriction might result in inaccurate modelling, as

the structure of the manifolds is only partially taken into account [HSWL12].

The latter approach addresses this by implicitly mapping points on the mani-

fold into RKHS, which can be considered to be a high dimensional Euclidean

space. Training data can be used to define a space that preserves manifold ge-

ometry [HSWL12]. While this approach allows the multitude of kernel-based

machine learning algorithms to be employed, existing Riemannian kernels

are either only applicable to subtypes of Riemannian manifolds (e.g., Grass-

mann manifolds) [HL09], or are pseudo-kernels [HSWL12], meaning they do

not satisfy all the conditions of true kernel functions [STC04]. The downside

is that existing Euclidean-based learning algorithms need to be kernelised,

which may not be trivial. Furthermore, the resulting methods can still have

high computational load, making them impractical to use in more complex

scenarios.
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2.4.1 Stein Divergence

Consider {X1 . . .Xn} ∈ Symd
+ to be a set of non-singular d×d-sized covariance

matrices, which are symmetric positive definite (SPD) matrices. These matri-

ces belong to a smooth differentiable topological spaces, known as SPD man-

ifolds. Before delving any further into this subject we first introduce one of

the most widely used Riemannian metric for SPD matrices which is known as

the Affine Invariant Riemannian Metrics (AIRM) [Pen06]. The AIRM induces

Riemannian structure which is invariant to inversion and similarity transfor-

mations. Despite its properties, learning methods using this approach have

to deal with computational challenges, such as employing computationally

expensive non-linear operators.

In this work, we endow the SPD manifold with the AIRM to induce the

Riemannian structure [Pen06]. As such, a point on manifold M can be

mapped to a tangent space using:

logXi
Xj = Xi

1
2 log(Xi

− 1
2 XjXi

− 1
2 )Xi

1
2 (2.11)

where Xi,Xj ∈ Symd
+, Xi is the point where the tangent space is located

(i.e., tangent pole) and Xj is the point that we would like to map into the

tangent space TXiM ; log(·) is the matrix logarithm. The inverse function

that maps points on a particular tangent space into the manifold is:

expXi
y = Xi

1
2 exp(Xi

− 1
2 yXi

− 1
2 )Xi

1
2 (2.12)

where Xi ∈ Symd
+ is again the tangent pole; y∈TXiM is a point in the tangent

space TXiM ; exp(·) is the matrix exponential.

From the above functions, we now define the shortest distance between

two points on the manifold. The distance, here called geodesic distance, is

represented as the minimum length of the curvature path that connects two

points [Pen06]:

d2
g (Xi,Xj) = trace

{
log2(Xi

− 1
2 XjXi

− 1
2 )
}

(2.13)

The above mapping functions can be computationally expensive. We can

also use the recently introduced Stein divergence [Sra12] to determine simi-
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larities between points on the SPD manifold. Its symmetrised form is:

Jφ (X,Y), log
(

det
(

X+Y
2

))
− 1

2
log(det(XY)) (2.14)

The Stein divergence kernel can then be defined as:

K(X,Y) = exp{−σJφ (X,Y)} (2.15)

under the condition of σ ∈ {1
2 ,

2
2 , ...,

d−1
2 } to ensure that the kernel matrix

formed by Eqn. (2.15) is positive definite [HSHL12].
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Graph-Embedding Discriminant
Analysis on Riemannian Manifolds
for Visual Recognition

3.1 Overview

In this chapter1 we propose a solution for the problem of Discriminant Analy-

sis (DA) on Riemannian manifolds through RKHS space. The algorithm uses

a graph-based local Discriminant Analysis that utilises both within-class and

between class similarity graphs to characterise intra-class compactness and

inter-class separability respectively. We then validate the performance of the

proposed method on several classification tasks, including face and object

recognition, texture classification and person re-identification.

1 The method proposed in this chapter was published as a book chapter in ‘Graph Embedding for
Pattern Analysis’ [ASHL13]
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3.2 Introduction

Inference on manifold spaces can be achieved by embedding the manifolds

in higher dimensional Euclidean spaces, which can be considered as flatten-

ing the manifolds. In the literature, the most popular choice for embedding

manifolds is through considering tangent spaces [TPM08, TVSC11]. Two

bold examples are the pedestrian detection system by Tuzel et al. [TPM08]

and non-linear mean shift [CM02] by Subbarao et al. [SM09]. Nevertheless,

flattening the manifold through tangent spaces is not without drawbacks. For

example, only distances between points to the tangent pole are equal to true

geodesic distances. This is restrictive and may lead to inaccurate modelling.

Instead of using tangent spaces to do inference on manifolds, we pro-

pose to embed Riemannian manifolds into Reproducing Kernel Hilbert Spaces

(RKHS). This in turn opens the door for employing many kernel-based ma-

chine learning algorithms [STC04]. As such, we tackle the problem of Dis-

criminant Analysis (DA) on Riemannian manifolds through RKHS space and

propose a graph-based local DA that utilises both within-class and between-

class similarity graphs to characterise intra-class compactness and inter-class

separability, respectively. See Fig. 3.1 for a conceptual example. Our graph-

based DA is inspired by findings in the Euclidean space that explain why the

conventional formalism of DA is not optimal when data comprises outliers

and multi-modal classes and contains outliers. Our experiments for several

recognition problems show that considerable gains in discrimination accu-

racy can be obtained by exploiting the geometrical structure and local infor-

mation on Riemannian manifolds.
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(a) (b)

Figure 3.1: A conceptual illustration of the proposed approach. (a) Actions can be mod-
elled as points on the manifold M by linear subspaces. In this figure, two types of actions
(”kicking” and ”swinging”) are shown. Having a proper geodesic distance between the points
on the manifold, it is possible to convert the action recognition problem into a point to
point classification problem. (b) By having a kernel in hand, points on the manifold can be
mapped into an optimised RKHS where not only certain local properties have been retained
but also the discriminatory power between classes has been increased.

3.3 Kernel Analysis on Riemannian Manifolds

In this section, we first overview the essentials of kernel analysis on Rieman-

nian manifolds, followed by elucidating graph embedding DA in Section 3.3.2

and how to accomplish classification in Section 3.3.3.

3.3.1 Background

Given a set of input/output data {(X1, l1),(X2, l2), · · · ,(XN , lN)}, where Xi ∈M is

a Riemannian point and li ∈ {1,2, · · · ,C} is the corresponding class label, we

are interested in optimisation problems in the form of Tikhonov regularisa-

tion [TA77]:

max{J(〈W,Φ(X1)〉, · · · ,〈W,Φ(XN)〉, l1, · · · , lN)+λΩ(W) : W ∈H } (3.1)

Here, H is a prescribed Hilbert space of dimension h (h could be infinity)

equipped with an inner product 〈·, ·〉, Ω : H → R is a regulariser, J :
(
Rh
)N×Y N → R
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is a cost function. For certain choices of the regulariser, solving (3.1) reduces

to identifying N parameters and not the dimension of H . This is more for-

mally explained by the representer theorem [STC04] which states that the

solution Ŵ of (3.1) is a linear combination of the inputs when the regulariser

is the square of the Hilbert space norm. For vector Hilbert spaces, this result

is simple to prove and dates back to 1970s [KW70]. Argyriou et al. [AMP09]

showed that the representer theorem holds for matrix Hilbert spaces as well.

Implicitly embedding Riemannian manifolds into RKHS is achieved through

a Riemannian kernel. A function k : M ×M → R+ is a Riemannian kernel pro-

vided that it is positive definite and well defined for all X ∈M .

For the Grassmann manifold Xi ∈ GD,m, the latter criterion means that the

kernel should be invariant to various representations of the subspaces, i.e.,,
k(X,Y) = k(XQ1,YQ2), ∀ Q1,Q2 ∈ O(m), where O(m) indicates orthonormal matri-

ces of order m [HL08]. The repertoire of Grassmann kernels includes Binet-

Cauchy [WS03] and projection kernels [HL08]. Furthermore, the first canon-

ical correlation of two subspaces forms a pseudo kernel2 on Grassmann man-

ifolds [HSSL11]. The three kernels are respectively shown below:

kBC(X,Y) = det
(
XT YYT X

)
(3.2)

kproj(X,Y) = Tr
(
XT YYT X

)
(3.3)

kCC(X,Y) = max
x∈X, y∈Y

xT y (3.4)

For the Sym+
D, in [HSWL12] a pseudo kernel based on geodesic distances

was devised as followed:

kR (X,Y) = exp{−σ
−1dG (X,Y)} (3.5)

where dG (X,Y) is obtained using (2.7). Very recently, Sra et al. introduced

the Stein kernel using Bregman matrix divergence as follows [Sra12]:

k(X,Y) = e−σS(X,Y) = 2dσ

√
det(X)σ det(Y)σ

det(X+Y)σ
(3.6)

2 A pseudo kernel is a function where the positive definiteness is not guaranteed to be satisfied for
whole range of the function’s parameters. Nevertheless, it is possible to convert a pseudo kernel into a
true kernel, as discussed for example in [CGG+09].
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In (3.6), S(X,Y) is the symmetric Stein divergence and defined as:

S(X,Y), log
(

det
(

X+Y
2

))
− 1

2
log(det(XY)) , for X,Y� 0 (3.7)

3.3.2 Graph Embedding Discriminant Analysis on Riemannian Mani-
folds

A graph (V,G) in our context refers to a collection of vertices or nodes, V,

and a collection of edges that connect pairs of vertices. We note that G is

a symmetric matrix with elements describing the similarity between pairs of

vertices. Moreover, the diagonal matrix D and the Laplacian matrix L of a

graph are defined as L = D−G, with the diagonal elements of D obtained as

D(i, i) = ∑ j G(i, j).

Given N labelled points X = {(Xi, li)}N
i=1 from the underlying Riemannian

manifold M , where Xi ∈ RD×m and li ∈ {1,2, · · · ,C}, with C denoting the number

of classes, the local geometrical structure of M can be modelled by building

a within-class similarity graph Gw and a between-class similarity graph Gb.

The simplest forms of Gw and Gb are based on the nearest neighbour graphs

defined below:

Gw(i, j) =

1, if Xi ∈ Nw(X j) or X j ∈ Nw(Xi)

0, otherwise
(3.8)

Gb(i, j) =

1, if Xi ∈ Nb(X j) or X j ∈ Nb(Xi)

0, otherwise
(3.9)

In (3.8), Nw(Xi) is the set of νw neighbours
{

X1
i ,X2

i , ...,Xv
i
}
, sharing the same

label as li. Similarly in (3.9), Nb(Xi) contains νb neighbours having different

labels. We note that more complex similarity graphs, like heat kernel graphs,

can also be used to encode distances between points on Riemannian mani-

folds [Ros97].

Our aim is to simultaneously maximise a measure of discriminatory power

and preserve the geometry of points. This can be formalised by finding

W : Φ(Xi)→ Yi such that the connected points of Gw are placed as close as

51



Chapter 3. Graph-Embedding Discriminant Analysis on Riemannian Manifolds for
Visual Recognition

possible, while the connected points of Gb are moved as far as possible. As

such, a mapping must be sought by optimising the following two objective

functions:

f1 = min
1
2 ∑i, j ‖Yi−Y j‖2Gw(i, j) (3.10)

f2 = max
1
2 ∑i, j ‖Yi−Y j‖2Gb(i, j) (3.11)

Eqn. ((3.10)) punishes neighbours in the same class if they are mapped

far away, while Eqn.((3.11)) punishes points of different classes if they are

mapped close together.

According to the representer theorem [STC04], the solution W= [γ1|γ2| · · · |γr],

can be expressed as a linear combination of data points, i.e.,, γ i = ∑
N
j=1 wi, jφ (X j).

More specifically:

Yi = (〈γ1,φ (Xi)〉 ,〈γ2,φ (Xi)〉 , · · · ,〈γr,φ (Xi)〉)T (3.12)

Since 〈γ l ,φ (Xi)〉= ∑
N
j=1 wl, j Tr

(
φ (X j)

T
φ (Xi)

)
= ∑

N
j=1 wl, jk (X j,Xi), Yi = WT Ki, with Ki =

(k(Xi,X1),k(Xi,X2), · · · ,k(Xi,XN))
T and

W =


w1,1 w1,2 · · · w1,r

w2,1 w2,2 · · · w2,r
...

...
...

...

wN,1 wN,2 · · · wN,r


Plugging this back into (3.10) results in:

1
2 ∑i, j ‖Yi−Y j‖2Gw(i, j)

= 1
2 ∑i, j ‖WT Ki−WT K j‖2Gw(i, j)

= Tr
(
WTKDwKT W

)
−Tr

(
WTKGwKT W

) (3.13)

where K= [K1|K2| · · · |KN ]. Considering that Lb = Db−Wb, in a similar manner it
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can be shown that (3.11) can be simplified to:

1
2 ∑i, j ‖Yi−Y j‖2Gb(i, j)

= Tr
(
WTKDbKT W

)
−Tr

(
WTKGbKT W

)
= Tr

(
WTKLbKT W

) (3.14)

To solve (3.10) and (3.11) simultaneously, we need to add the following

normalising constraint to the problem:

Tr
(
WTKDwKT W

)
= 1 (3.15)

This constraint enables us to convert the minimisation problem (3.10)

into a maximisation one. Consequently, both equations can be combined

into one maximisation problem. Moreover, as we will see later, the imposed

constraint acts as a norm regulariser in the original Tikhonov problem (3.1),

thus satisfying the necessary condition of the representer theorem.

Plugging (3.15) into (3.10) results in:

min
{

Tr
(
WTKDwKT W

)
−Tr

(
WTKGwKT W

)}
= min

{
1−Tr

(
WTKGwKT W

)}
= max

{
Tr
(
WTKGwKT W

)} (3.16)

subject to the constraint shown in (3.15). As a result, the max versions of

(3.10) and (3.11) can be merged by the Lagrangian method as follows:

max
{

Tr
(
WTK(Lb +βGw)KT W

)}
subject to Tr

(
WTKDwKT W

)
= 1

(3.17)

where β is a Lagrangian multiplier. The solution to the optimisation in (3.17)

can be sought as the r largest eigenvectors of the following generalised eigen-

value problem [HSSL11]:

K{Lb +βGw}KT W = λKDwKT W (3.18)

We note that in (3.18), the imposed constraint (3.15) serves as a norm reg-

ulariser and satisfies the representer theorem condition. Algorithm 1 assem-
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bles all the above details into pseudo-code for Riemannian Graph Embedding

Discriminant Analysis (RGDA) training algorithm.

3.3.3 Classification

Upon acquiring the mapping W, the matching problem over Riemannian

manifolds is reduced to classification in vector spaces. More precisely, for any

query image set Xq, a vector representation using the kernel function and the

mapping W is acquired, i.e.,Vq =WT Kq, where Kq =
(〈

φ(X1),φ(Xq)
〉
, · · · ,

〈
φ(XN),φ(Xq)

〉)T .

Similarly, gallery points Xi are represented by r dimensional vectors Vi = WT Ki

and classification methods such as Nearest-Neighbour or Support Vector Ma-

chines [Bis06] can be employed to label Xq.
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3.4 Experiments

In this section we investigate the performance of the proposed RGDA method

on several classification tasks, including face and object recognition, texture

classification and person re-identification. We evaluate RGDA over SPD man-

ifolds.

3.4.1 Experiments on SPD Manifolds

Mathematically, a covariance descriptor can be defined as follows: Let {fi}N
i=1 ; fi ∈ Rn

be the feature vectors from the region of interest of an image or video, then

the Covariance Descriptor of this region C ∈ Sym+
D is defined as:

C =
1
N

N

∑
i=1

(fi−m)(fi−m)T (3.19)

where m is the mean feature vector, and N is the total number of training

data. In the following text, we study how covariance descriptors and the

induced geometry can be exploited for face recognition, texture classification

and people re-identification.

Face Recognition

For the face recognition task, we considered the subset ‘b’ of the FERET

dataset [PMRR00]. This subset includes 1400 images from 198 subjects.

Each image is closely cropped to merely include the face and then downsam-

pled to 64×64. Fig. 3.2 shows examples of the FERET dataset.

To evaluate the performance, we created three tests with various pose an-

gles. In all the tests, training data consisted of the images labelled as ‘bj’, ‘bk’

and ‘bf’ (ie. frontal image with illumination, expression and small pose varia-

tions). Images marked as ‘bd’, ‘be’ and ‘bg’ (ie. non-frontal images) were used

as three separate test sets. In our method, each face image is represented by

a 43× 43 covariance matrix as a point on the Riemannian manifold. To this

end, for every pixel I(x,y), we then computed Gu,v(x,y) as the response of a 2D

Gabor wavelet [Lee96], centered at x,y with orientation u and scale v. To be

specific, we considered the number of scales and orientations to be 5 and 8,
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respectively.

Gu,v(x,y) =
k2

v
4π2 ∑t,s e−

k2
v

8π2 ((x−s)2+(y−t)2)
(

eikv((x−t)cos(θu)+(y−s)sin(θu))− e−2π2
)

with kv =
1√

2v−1 and θu =
πu
8 . Then the feature vector is defined as follows:

Fx,y= [ I(x,y), x, y, |G0,0(x,y)|, · · ·, |G0,7(x,y)|, |G1,0(x,y)|, · · ·, |G4,7(x,y)| ]

Table 3.1 shows a comparison of RGDA against three Euclidean space

approaches, PCA [Bis06], KPCA [Bis06], and LDA [Bis06], applied on Gabor

features. The results show that the proposed approach outperforms PCA with

considerably better results. Furthermore, the results illustrate that the over-

all performance of RGDA is better by a notable margin. In addition, although

images labelled with ‘bg’ and‘bd’ represent the same pose variation (in differ-

ent directions), results indicate a better performance for all the algorithms on

‘bg’. Training data in ‘bf’ includes face images with a -15 degree pose angle

which is closer to the pose angle of the test data in ‘bg’ compared with the

ones in ‘bd’. This explains the superior performance of ‘bg’.

Texture Classification

To examine RGDA’s performance on classification using the Brodatz texture

dataset [RH99] (Examples are shown in Fig. 3.4, we have followed the test

protocol advised in [SBMP10]. Nine test scenarios with various numbers of

bd be bf bg

bj bk

Figure 3.2: Examples of closely-cropped faces from the FERET ‘b’ subset.

56



Chapter 3. Graph-Embedding Discriminant Analysis on Riemannian Manifolds for
Visual Recognition

Gabor + PCA Gabor + KPCA Gabor + LDA RGDA (proposed)

bd 24.50 42.00 61.50 78.00
be 52.00 73.50 92.00 98.50
bg 74.00 94.00 99.00 98.50
average 50.16 69.80 84.16 91.67

Table 3.1: Recognition accuracy (in %) for the face recognition task using PCA [TP91],
LDA [BHK97], and the proposed RGDA approach.

classes were generated. The test scenarios included 5-texture (‘5c’, ‘5m’, ‘5v’,

‘5v2’, ‘5v3’), 10-texture (‘10’, ‘10v’) and 16-texture (‘16c’, ‘16v’) mosaics. To

create a Riemannian manifold, the first step was to down-sample each image

to 256×256, followed by splitting them into 64 regions of size 32×32.

The feature vector for each pixel I (x,y) is defined as:

F(x,y)=
[

I (x,y) ,
∣∣∣∣ ∂ I
∂x

∣∣∣∣ , ∣∣∣∣ ∂ I
∂y

∣∣∣∣ , ∣∣∣∣ ∂ 2I
∂x2

∣∣∣∣ , ∣∣∣∣ ∂ 2I
∂y2

∣∣∣∣]

Each region is described by a 5×5 covariance descriptor computed based

on these features. For each test scenario, 25 covariance matrices per class

were randomly selected to construct training data and the rest was used for

testing. The random selection of training/testing data was repeated 20 times.

Finally, for any covariance descriptor we found the nearest neighbour from

the training set and respectively assigned the corresponding image class to it.

Fig. 3.4 compares the proposed RGDA method against and Tensor Sparse

Coding (TSC) [SBMP10]. The results indicate that the proposed RGDA achieves

better performance on all the tests except for the ‘5c’ test.

Figure 3.3: Samples of Brodatz texture dataset [RH99].
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Figure 3.4: Performance on the Brodatz texture dataset [RH99] for Tensor Sparse Cod-
ing (TSC) [SBMP10] and the proposed RGDA approach. The black bars indicate standard
deviation.

Person Re-identification

In this section we test the performance of the RGDA method for the person

reidentification task on the modified ETHZ dataset [SD09]. The original ver-

sion of this dataset was captured from a moving camera [ELG07], and it has

been used for human detection. The main challenging aspects of the ETHZ

dataset are variations in pedestrians appearances and occlusions. Some sam-

ple images from the ETHZ dataset are shown in Fig. 3.6.

Figure 3.5: Examples of pedestrians in the ETHZ dataset.

58



Chapter 3. Graph-Embedding Discriminant Analysis on Riemannian Manifolds for
Visual Recognition

This dataset contains three video sequences. Table 3.2 summarises the

information about this dataset.

SEQ 1 SEQ 2 SEQ 3

Num of People 83 35 28
Total Num of Images 4,857 1,936 1,762

Table 3.2: The ETHZ dataset

We downsampled all the images to 64×32. For each subject, the training

set consisted of 10 randomly selected images and the rest were used for the

test set. To generalise the practical assessment of the algorithm, random

selection of the training and testing data was repeated 20 times.

To create points on the Riemannian manifold, a feature vector was formed

for each pixel using the position of the pixel (x and y), the corresponding

colour information (Rx,y, Gx,y and Bx,y) and the gradient and Laplacian for

colour C, defined as C′x,y=
[
|∂C
/

∂x| , |∂C
/

∂y|
]

and C′′x,y=
[∣∣∂ 2C

/
∂x2
∣∣ , ∣∣∂ 2C

/
∂y2
∣∣], respec-

tively. Then the representative of each image is the covariance matrix using

the following feature:

Fx,y=
[

x, y, Rx,y, Gx,y, Bx,y, R′x,y, G′x,y, B′x,y, R′′x,y, G′′x,y, B′′x,y
]

We compared the proposed RGDA with Histogram Plus Epitome (HPE) [BCP+10]

and Symmetry-Driven Accumulation of Local Features (SDALF) [FBP+10].

The evaluation was done in terms of cumulative matching characteristic (CMC)

curves. The CMC curve plots the percentage of the test queries whose correct

match is within the top n closest matches. Based on the results shown in

Fig. 3.6, the proposed approach achieves the highest accuracy on sequence

1 and 2. For sequence 3, the RGDA achieves a very similar performance to

SDALF while HPE scores the lowest.
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Algorithm 1: Pseudocode for training Riemannian graph-embedding discriminant
analysis (RGDA).

Require:

• Training set X= {(Xi, li)}N
i=1 from the underlying Riemannian manifold

where li ∈ {1,2, · · · ,C}, and C denotes the number of classes. For the Grass-
mann manifold G D,m, Xi ∈ RD×m is a subspace. For the SPD manifold Sym+

D,
Xi ∈ RD×D is a SPD matrix.

• A kernel function ki j, for measuring the similarity between two points on
the Riemannian manifold

Ensure: The projection matrix W = [γ1|γ2| · · · |γr],
1: Compute the Gram matrix [K]i j for all Xi, X j

2: for i = 1→ N−1 do
3: for j = i+1→ N do
4: Compute the geodesic distances dg(i, j) between Xi and X j.
5: dg( j, i) = dg(i, j)
6: end for
7: end for
8: Gw← 0N×N

9: Gb← 0N×N

{% Use the obtained dg(i, j) to determine neighbourhoods in the following loop.}

10: for i = 1→ N do
11: if (X j is in the first kw nearest neighbours of Xi) and (l j == li) then
12: Gw(i, j)← 1
13: Gw( j, i)← 1
14: end if
15: if (X j is in the first kb nearest neighbours of Xi) and (l j 6= li) then
16: Gb(i, j)← 1
17: Gb( j, i)← 1
18: end if
19: end for
20: Dw← 0N×N

21: Db← 0N×N

22: Dw(i, i)← ∑ j Gw(i, j)
23: Db(i, i)← ∑ j Gb(i, j)
24: Lb← Db−Gb
25: {ϒi, λ̃i}r

i=1← generalised eigenvectors and
eigenvalues of K{Lb +βGw}KT W = λKDwKT W
{( λ̃1 ≥ λ̃2 ≥ ·· · λ̃r)} {In Matlab and Octave, the generalised eigenvalue
problem Av = λBv can be solved by the command eig(A,B)}
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Figure 3.6: Performance on Sequence 1, 2, and 3 of the ETHZ dataset (top, middle and
bottom panels, respectively), in terms of Cumulative Matching Characteristic curves. The
proposed RGDA method is compared with Histogram Plus Epitome (HPE) [BCP+10], and
Symmetry-Driven Accumulation of Local Features (SDALF) [FBP+10].
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Chapter 4

Relational Divergence Based
Classification on Riemannian
Manifolds

This chapter proposes a method for performing direct classification on mani-

fold. The method suggests presenting each SPD matrix through its similarity

vector to a number of other SPD matrices. The suggested method employs

the recently introduced Stein divergence to reduce the computational com-

plexity of the algorithm. Creating similarity vectors effectively converts the

classification problems on manifolds, which is a complex problem, into the

problem of finding appropriate machinery over the space of similarities.

In section 4.1 we detail the main method and validate it by testing the

algorithm using experiments on face recognition, texture classification and

person re-identification. The result illustrates that in comparison to well-

known methods, the proposed approach achieves a significant improvement

in image classification, while also being several orders of magnitude faster.

Then we specify a feature set in section 4.2 for addressing the person re-

identification task, and then test the method with a new feature set on the

two well known datasets for person re-identification. The results confirm that

in comparison to well-known person re-identification methods, the proposed

approach obtains a reasonable improvement in image classification, while

also being computationally competitive.
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4.1 Relational Divergence Based Classification

4.1.1 Overview

In this section1 we propose a method for performing direct classification on

manifold. More specifically, we propose a new method for analysing Rie-

mannian manifolds, where embedding into Euclidean spaces is not explicitly

required. To this end, we propose to represent Riemannian points through

their similarities to a set of reference points on the manifold, with the aid

of the recently proposed Stein divergence, which is a symmetrised version of

Bregman matrix divergence. Classification problems on manifolds are then

effectively converted into the problem of finding appropriate machinery over

the space of similarities, which can be tackled by conventional Euclidean

learning methods such as linear discriminant analysis. Experiments on face

recognition, person re-identification and texture classification show that the

proposed method outperforms state-of-the-art approaches, such as Tensor

Sparse Coding, Histogram Plus Epitome and Riemannian Locality Preserving

Projection.

1The method proposed in this chapter was published in IEEE Winter conference on Applications of
Computer Vision (WACV) 2014 [AHS13]
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4.1.2 Introduction

To avoid embedding into Euclidean spaces or RKHS, we explore the concept

of learning the classifier by relying only on the computed distance matrix

(similarity matrix) of the related training data. Given a set of training points

on a manifold, the idea is to employ the similarity between points as features.

More specifically, for each query point to be classified, a similarity to each

class is obtained, forming a similarity vector. We obtain each similarity with

the aid of the recently proposed Stein divergence [Sra12]. The classification

task on manifolds is hence converted into a task in the space of similarity

vectors, which can be tackled using learning methods devised for Euclidean

spaces. Experiments on several vision tasks (person re-identification, face

recognition and texture recognition), show that this new approach outper-

forms several state-of-the-art methods.
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4.1.3 Relational Divergence Classification

We aim to solve classification tasks originally formulated on Riemannian

manifolds by avoiding the traditional approach of using tangent spaces, or

embedding into RKHS. More specifically, for each query point (an SPD ma-

trix) to be classified, a similarity to each training class is obtained, forming

a similarity vector. We obtain each similarity with the aid of the Stein diver-

gence described in the preceding section. The classification task on manifolds

is hence converted into a task in the space of similarity vectors, which can be

tackled using learning methods devised for Euclidean spaces, such as linear

discriminant analysis, support vector machines or k-nearest neighbours. In

this work we have chosen linear discriminant analysis as a starting point.

Let us define a training set C from the underlying Riemannian manifold

S d
++ as:

C= {(C1,y1), (C2,y2), . . . , (Cn,yn)} (4.1)

where yi ∈
{

1,2, . . . ,m
}

is a class label, with m representing the number of

classes. We define the similarity between matrix Ci and class l as:

si,l =
1
Nl

∑ j 6=i Jφ (Ci,C j)δ (y j− l), (4.2)

where δ (·) is the discrete Dirac function and

Nl =

 nl−1 if yi = l

nl otherwise
(4.3)

with nl indicating the number of training matrices in class l.

Using Eqn. (4.12) we calculate the similarity between Ci and all classes,

where i ∈
{

1,2, . . . ,n
}
. Having the similarity values at our disposal, we repre-

sent each Riemannian point Ci by a similarity pattern:

pi = [ si,1, si,2, . . . , si,m ]T . (4.4)

The classification task on Riemannian manifolds can now be reinterpreted

as a learning task in Rm. Given the similarity vectors of training data: (cf.

Eqn. 4.1),
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P= {(p1,y1),(p2,y2), · · · ,(pn,yn)} (4.5)

we are interested in finding a machinery to label a query matrix Cq, repre-

sented by a similarity vector pq =
[
sq,1, sq,2, . . . , sq,m

]T which contains the simi-

larity to all m training classes.

One approach is to use P to first find a mapping that minimises the intra-

class distances between similarity patterns while simultaneously maximising

the inter-class distances. This can be achieved by applying linear discriminant

analysis [Bis06], to obtain a mapping W∗, as follows:

W∗ = argmax
W

trace
{[

WSW WT ]−1 [WSBWT ]} (4.6)

where SB and SW are the between class and within class scatter matrices:

SB = ∑
n
i=l (µ i− µ̄)(µ i− µ̄)T (4.7)

SW = ∑
m
l=1 ∑
∀i where yi=l

(pi−µ l)(pi−µ l)
T (4.8)

In Eqns. (4.7) and (4.8), µ l and µ̄ are the mean of class l and overall

mean of data in P, ie., µ i =
1
Ni

∑yi=l pi, and µ̄ = 1
n ∑

m
i=1 Niµ i, where Nl is the

number of points in class i and n is the total number of points.

The query similarity vector pq can then be mapped into the new space

via:

xq = W∗T pq (4.9)

We can now use a straightforward nearest neighbour classifier [Bis06] to

assign a class label to xq. We refer to this approach as Relational Divergence

Classification (RDC).
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Algorithm 2: : Pseudocode for training Relational Divergence based Classification
(RDC).

Require:

• Training set C= {(C1,y1),(C2,y2), . . . ,(Cn,yn)} from the underlying Rieman-
nian manifold where yi ∈ {1,2, · · · ,m}, and m denoting the number of classes.
For the SPD manifold Sym+

D, Ci ∈ RD×D is a SPD matrix.

• Jensen-Bregman LogDet Divergence Jφ for measuring the similarity be-
tween two points on the Riemannian manifold

Ensure: The Similarity vector pi, for each Ci where i ∈ {1,2, ...,m}, and m is number
of classes

1: Compute the Gram matrix [S]i j for all Ci, C j

2: for i = 1→ n−1 do
3: for j = i+1→ n do
4: Compute the Jensen-Bregman LogDet Divergence between Ci and C j :

Jφ (Ci,C j) .
5: unless i = j : Jφ (Ci,C j) 6= Jφ (C j,Ci)
6: end for
7: end for
8: Compute Similarity Vectors [S]i j for all Ci, C j

9: for i = 1→ n−1 do
10: for j = i+1→ m do
11: Compute similarity between matrix between SPD matrix Ci and class l

si,l =
1
Nl

∑ j 6=i Jφ (Ci,C j)δ (y j− l)
, where Nl is the number of data in class l.

12: end for
13: end for

4.1.4 Experiments and Discussion

We compare the performance of the proposed approach with several state-

of-the-art methods on three classification tasks: texture classification, face

recognition and person re-identification. We compare and contrast the per-

formance of the RDC and show that in most cases RDC outperforms the state-

of-the-art methods.

As we use the same datasets with identical settings as those used in Sec-

tion 3.3, here we only briefly introduce each dataset before demonstrating
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Figure 4.1: Performance on the Brodatz texture dataset [RH99] for LogE-SR [GIK10,
YHL+10], Tensor Sparse Coding (TSC) [SBMP10], Riemannian Locality Preserving Projec-
tion (RLPP) [HSWL12] and the proposed RDC method.

our results. For more detail about the datasets and settings we refer the

reader to Section 3.3 of this thesis.

4.1.5 Texture Classification

We use the Brodatz texture dataset [RH99] and follow the test protocol pre-

sented in [SBMP10]. We use nine test scenarios with various number of

classes were generated.

Fig. 4.1 shows the performance of the proposed RDC method against

several state-of-the-art methods: log-Euclidean sparse representation (logE-

SR) [GIK10, YHL+10], Tensor Sparse Coding (TSC) [SBMP10] and Local-

ity Preserving Projection (RLPP) [HSWL12]. The results indicate that RDC

achieves better performance in 7 out of 9 tests.
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LogE-SR TSC RLPP RDC

bd 35 36 47 59
bg 47 45 58 71

Table 4.1: Recognition accuracy (in %) for the face recognition task using log-Euclidean
sparse representation (logE-SR) [GIK10, YHL+10], Tensor Sparse Coding (TSC) [SBMP10],
Riemannian Locality Preserving Projection (RLPP) [HSWL12] and the proposed RDC
method.

Figure 4.2: Performance comparison on Sequence 1 (top) and 2 (bottom) of the ETHZ
dataset [SD09], in terms of Cumulative Matching Characteristic curves. The proposed RDC
method is compared with Riemannian Locality Preserving Projection (RLPP) [HSWL12],
Histogram Plus Epitome (HPE) [BCP+10], Symmetry-Driven Accumulation of Local Features
(SDALF) [FBP+10] and Partial Least Squares (PLS) [SD09].
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4.1.6 Face Recognition

For face recognition task, we used the same settings as described in the pre-

vious chapter, where ‘b’ subset of the FERET dataset [PMRR00], containing

1400 images of 198 subjects.

Table 4.1 compares the performance of the proposed RDC approach against

three state-of-the-art methods: LogE-SR [GIK10], TSC [SBMP10] and RLPP

[HSWL12]. The results show that RDC obtains considerably better results.

4.1.7 Person Re-identification

In this section we test the performance of the proposed RDC method for the

person re-identification task on the modified version [SD09] of the ETHZ

dataset [ELG07]. As mentioned before, the dataset was captured from a

moving camera, with the images of pedestrians containing occlusions and

wide variations in appearance. Sequence 1 contains 83 pedestrians (4857

images), while Sequence 2 contains 35 pedestrians (1936 images).

We compared the proposed RDC with several state-of-the-art algorithms

for person re-identification: Histogram Plus Epitome (HPE) [BCP+10], Symmetry-

Driven Accumulation of Local Features (SDALF) [FBP+10], Partial Least Squares

(PLS) [SD09] and RLPP [HSWL12]. The performance of TSC [SBMP10] was

not evaluated due to the method’s high computational demands: as it would

take approximately 200 hours on the ETHZ dataset. The results are shown

in Fig. 4.2, in terms of Cumulative Matching Characteristic (CMC) curves. A

CMC curve represents the expectation of finding the correct match in the top

n matches. For n > 2, the proposed RDC method obtains better performance

than the other techniques.
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4.2 RDC for Person Re-identification

4.2.1 Overview

In this chapter2 we extend our work in Section 4.1 to specifically address

the person re-identification task. Person re-identification is particularly chal-

lenging due to significant appearance changes across separate camera views.

In order to reidentify people, a representative human signature should ef-

fectively handle differences in illumination, pose and camera parameters.

While general appearance-based methods are modelled in Euclidean spaces,

it has been argued that some applications in image and video analysis are

better modelled via non-Euclidean manifold geometry. To this end, recent

approaches represent images as covariance matrices, and interpret such ma-

trices as points on Riemannian manifolds. As direct classification on such

manifolds can be difficult, in this chapter we propose to represent each man-

ifold point as a vector of similarities to class representers, via a recently

introduced form of Bregman matrix divergence known as the Stein diver-

gence. This is followed by using a discriminative mapping of similarity vec-

tors for final classification. The use of similarity vectors is in contrast to

the traditional approach of embedding manifolds into tangent spaces, which

can suffer from representing the manifold structure inaccurately. Compara-

tive evaluations on benchmark ETHZ and iLIDS datasets for the person re-

identification task show that the proposed approach achieves better perfor-

mance than recent techniques such as Histogram Plus Epitome, Partial Least

Squares, and Symmetry-Driven Accumulation of Local Features.

2The method proposed in this chapter was published in International Conference on Image Pro-
cessing (ICIP) 2013 [AYHS13]
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4.2.2 Introduction

Person re-identification is the process of matching persons across non over-

lapping camera views in diverse locations. Within the context of surveillance,

re-identification needs to function with a large set of candidates and be ro-

bust to pose changes, occlusions of body parts, low resolution and illumina-

tion variations. The issues can be compounded, making a person difficult to

recognise even by human observers (see Fig. 4.3 for examples). Compared

to classical biometric cues (eg. face, gait) which may not be reliable due to

non-frontality, low resolution and/or low frame-rate, person re-identification

approaches typically use the entire body.

While appearance based person re-identification methods are generally

modelled in Euclidean spaces [GT08, SD09, FBP+10], it has been argued

that some applications in image and video analysis are better modelled on

non-Euclidean manifold geometry [TVSC11]. To this end, recent approaches

represent images as covariance matrices [AVN11], and interpret such matri-

ces as points on Riemannian manifolds [HSWL12, TVSC11]. A popular way

of analysing manifolds is to embed them into tangent spaces, which are Eu-

clidean spaces. This process which can be interpreted as warping the feature

space [TVC08]. Embedding manifolds is not without problems, as pairwise

Figure 4.3: Examples of challenges in person re-identification, where each column con-
tains images of the same person from two separate camera views. Challenges include pose
changes, occlusions of body parts, low resolution and illumination variations.
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distances between arbitrary points on a tangent space may not represent the

structure of the manifold accurately [HSWL12, HSHL12].

In this chapter we present a multi-shot appearance based person re-identification

method on Riemannian manifolds, where embedding the manifolds into tan-

gent spaces is not required. We adapt a recently proposed technique for

analysing Riemannian manifolds, where points on the manifolds are repre-

sented through their similarity vectors [AHS13]. The similarity vectors con-

tain similarities to class representers. We obtain each similarity with the aid

of a recently introduced form of Bregman matrix divergence known as the

Stein divergence [HSHL12, Sra12]. The classification task on manifolds is

hence converted into a task in the space of similarity vectors, which can be

tackled using learning methods devised for Euclidean spaces, such as Lin-

ear Discriminant Analysis [Bis06]. Unlike previous person re-identification

methods, the proposed method does not require separate settings for new

datasets.
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4.2.3 Previous Work

Given an image of an individual to be re-identified, the task of person re-

identification can be categorised into two main classes. (i) Single-vs-Single

(SvS), where there is only one image of each person in the gallery and one

in the probe; this can be seen as a one-to-one comparison. (ii) Multiple-vs-

Single (MvS), or multi-shot, where there are multiple images of each person

available in gallery and one image in the probe. Below we summarise several

person re-identification methods: Partial Least Squares (PLS) [SD09], Con-

text based method [ZGX09], Histogram Plus Epitome (HPE) [BCP+10], and

Symmetry-Driven Accumulation of Local Features (SDALF) [FBP+10].

The PLS method [SD09] first decomposes a given image into overlapping

blocks, and extracts a rich set of features from each block. Three types of fea-

tures are considered: textures, edges, and colours. The dimensionality of the

feature space is then reduced by employing Partial Least Squares regression

(PLSR) [WKJ85], which models relations between sets of observed variables

by means of latent variables. To learn a PLSR discriminatory model for each

person, one-against-all scheme is used [GK86]. Nearest neighbour is then

employed for classification.

The Context-based method [ZGX09] enriches the description of a person

by contextual visual knowledge from surrounding people. The method rep-

resents a group by considering two descriptors: (a) ‘center rectangular ring

ratio-occurrence’ descriptor, which describes the information ratio of visual

words between and within various rectangular ring regions, and (b) ‘block

based ratio-occurrence’ descriptor, which describes local spatial information

between visual words that could be stable. For group image representation

only features extracted from foreground pixels are used to construct visual

words.

HPE [BCP+10] considers multiple instances of each person to create a

person signature. The structural element (STEL) generative model approach

[JPC+09] is employed for foreground detection. The combination of a global

(person level) HSV histogram and epitome regions of foreground pixels is

then calculated, where an image epitome [JFK03] is computed by collapsing
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the given image into a small collage of overlapped patches. The patches con-

tain the essence of textural, shape and appearance properties of the image.

Both the generic epitome (epitome mean) and local epitome (probability that

a patch is in an epitome) are computed.

SDALF [FBP+10] considers multiple instances of each person. Foreground

features are used to model three complementary aspects of human appear-

ance extracted from various body parts. First, for each pedestrian image,

axes of asymmetry and symmetry are found. Then, complementary aspects

of the person appearance are detected on each part, and their features are

extracted. To select salient parts of a given pedestrian image, the features are

then weighted by exploiting perceptual principles of symmetry and asymme-

try.

The above methods assume that classical Euclidean geometry is capable of

providing meaningful solutions (distances and statistics) for modelling and

analysing images and videos, which might not be always correct [TVC08].

Furthermore, they require separate parameter tuning for each dataset.
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4.2.4 Proposed approach

Our goal is to automatically re-identify a given person among a large set of

candidates in diverse locations over various non-overlapping camera views.

The proposed method is comprised of three main stages: (i) feature extrac-

tion and generation of covariance descriptors, (ii) measurement of similari-

ties on Riemannian manifolds via the Stein divergence, and (iii) creation of

similarity vectors and discriminative mapping for final classification. Each of

the stages is elucidated in more detail in the following subsections.

Feature Extraction and Covariance Descriptors

As per [BCP+10, FBP+10], to reduce the effect of varying background, fore-

ground pixels are extracted from each given image of a person via the STEL

generative model approach [JPC+09]. We note that it is also possible to use

more advanced approaches, such as [RSL13].

Based on preliminary experiments, for each each foreground pixel located

at (x,y), the following feature vector is calculated:

f = [ x, y, HSVxy, CIELABxy, Λxy, Θxy ]
T (4.10)

where HSVxy = [Hxy,Sxy,V̂xy] are the colour values of the HSV channels, employ-

ing histogram equalisation for channel V , CIELABxy = [Lxy,axy,bxy] are the values

of CIELAB colour space [AR05], while Λxy = [λ R
xy,λ

G
xy,λ

B
xy] and Θxy = [θ R

xy,θ
G
xy,θ

B
xy] in-

dicate gradient magnitudes and orientations for each channel in RGB colour

space. We note that we have selected this relatively straightforward set of

features as a starting point, and that it is certainly possible to use other fea-

tures. However, a thorough evaluation of possible features is beyond the

scope of this work.

Given a set F = {fi}N
i=1 of extracted features, with its mean represented by

µ, each image is represented as a covariance matrix:

C =
1

N−1 ∑
N
i=1(fi−µ)(fi−µ)T (4.11)

Representing an image with a covariance matrix has several advantages

[AVN11]: (i) it is a low-dimensional (compact) representation that is inde-

pendent of image size, (ii) the impact of noisy samples is reduced via the

averaging during covariance computation, and (iii) it is a straightforward
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method of fusing correlated features.
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4.2.5 Similarity Vectors and Discriminative Mapping

For each query point (an SPD matrix) to be classified, a similarity to each

training class is obtained, forming a similarity vector. We obtain each simi-

larity with the aid of the Stein divergence described in the preceding section.

The classification task on manifolds is hence converted into a task in the space

of similarity vectors, which can be tackled using learning methods devised for

Euclidean spaces.

Given a training set of points on a Riemannian manifold, X= {(X1,y1), . . . , (Xn,yn)},

where yi ∈
{

1,2, . . . ,m
}

is a class label, and m is the number of classes, we define

the similarity between matrix Xi and class l as:

si,l =
1
Nl

∑ j 6=i Jφ (Xi,X j)δ (y j− l) (4.12)

where δ (·) is the discrete Dirac function and

Nl =

 nl−1 if yi = l

nl otherwise
(4.13)

where nl is the number of training matrices in class l. Using Eqn. (4.12), the

similarity between Xi and all classes is obtained, where i ∈
{

1,2, . . . ,n
}
. Each

matrix Xi is hence represented by a similarity vector:

si = [ si,1, si,2, . . . , si,m ]T (4.14)

Classification on Riemannian manifolds can now be reinterpreted as a

learning task in Rm. Given the similarity vectors of training data, S= {(s1,y1), · · · ,(sn,yn)},

we seek a way to label a query matrix Xq, represented by a similarity vector

sq =
[
sq,1, sq,2, . . . , sq,m

]T . As a starting point, we have chosen linear discrimi-

nant analysis [Bis06], where we find a mapping W∗ that minimises the intra-

class distances while simultaneously maximising inter-class distances:
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W∗ = argmax
W

trace
{[

WSW WT ]−1 [WSBWT ]} (4.15)

where SB and SW are the between class and within class scatter matrices[Bis06].

The query similarity vector sq can then be mapped into the new space via:

xq = W∗T sq (4.16)

We can now use a straightforward nearest neighbour classifier [Bis06]

to assign a class label to xq. We shall refer to this approach as Relational

Divergence Classification (RDC).

79



Chapter 4. Relational Divergence Based Classification on Riemannian Manifolds

4.2.6 Experiments and Discussion

In this section we evaluate the proposed RDC approach by providing com-

parisons against several methods on two person re-identification datasets:

iLIDS [ZGX09] and ETHZ [ELG07, SD09]. The VIPeR dataset [GBT07b] was

not used as it only has one image from each person in the gallery, and is hence

not suitable for testing MvS approaches. Each dataset covers various aspects

and challenges of the person re-identification task. The results are shown in

terms of the Cumulative Matching Characteristic (CMC) curves, where each

CMC curve represents the expectation of finding the correct match in the top

n matches.

In order to show the improvement caused by using similarity vectors in

conjunction with linear discriminant analysis, we also evaluate the perfor-

mance of directly using the Stein divergence in conjunction with a nearest

neighbour classifier (ie. direct classification on manifolds, without creating

similarity vectors). We refer to this approach as the direct Stein method.

4.2.7 iLIDS Dataset

The iLIDS dataset is a publicly available video dataset capturing real sce-

narios at an airport arrival hall under a multi-camera CCTV network. From

these videos a dataset of 479 images of 119 pedestrians was extracted and

the images were normalised to 128× 64 pixels (height × width) [ZGX09].

The extracted images were chosen from non-overlapping cameras, and are

subject to illumination changes and occlusions [ZGX09].

We randomly selected N images for each person to build the gallery set,

while the remaining images form the probe set. The whole procedure is

repeated 10 times in order to estimate an average CMC curve. We com-

pared the performance of the proposed RDC approach against the direct

Stein method, as well as the algorithms described in Section 4.2.3 (SDALF

and Context based) for a commonly used setting of N = 3. The results, shown

in Fig. 4.4, indicate that the proposed method generally outperforms the

other techniques. The results also show that the use of similarity vectors in

conjunction with linear discriminant analysis is preferable to directly using

the Stein divergence.
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Figure 4.4: Performance on the iLIDS dataset [ZGX09] for N=3, using the proposed RDC
method, the direct Stein method, SDALF [FBP+10], context based method [ZGX09]. HPE
results for N=3 were not provided in [BCP+10].

4.2.8 ETHZ Dataset

The ETHZ dataset [ELG07, SD09] was captured from a moving camera, with

the images of pedestrians containing occlusions and wide variations in ap-

pearance. Sequence 1 contains 83 pedestrians (4857 images), Sequence 2

contains 35 pedestrians (1936 images), and Sequence 3 contains 28 pedes-

trians (1762 images).

We downsampled all the images to 64× 32 (height × width). For each

subject, the training set consisted of N randomly selected images, with the

rest used for the test set. The random selection of the training and testing

data was repeated 10 times.

Results were obtained for the commonly used setting of N = 10 and are

shown in Fig. 4.5. On sequences 1 and 2, the proposed RDC method con-

siderably outperforms PLS, SDALF, HPE and the direct Stein method. On

sequence 3, RDC obtains performance on par with SDALF.

Note that the random selection used by the RDC approach to create the

gallery is more challenging and more realistic than the data selection strat-

egy employed by SDALF and HPE on the same dataset [FBP+10, BCP+10].
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SDALF and HPE both apply clustering beforehand on the original frames,

and then select randomly one frame for each cluster to build their gallery set.

In this way they can ensure that their gallery set includes the keyframes to

use for the multi-shot signature calculation. In contrast, we haven’t applied

any clustering for the proposed RDC method in order to be closer to real life

scenarios.
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Figure 4.5: Performance on the ETHZ dataset [SD09] for N = 10, using Sequences 1 to
3 (top to bottom). Results are shown for the proposed RDC method, direct Stein method,
HPE [BCP+10], PLS [SD09] and SDALF [FBP+10].
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Chapter 5

Random Projections on Manifolds
of Symmetric Positive Definite
Matrices for Image Classification

5.1 Overview

This chapter1 proposes the use of random projection over SPD manifold for

the purpose of scenes analysis. We offer a novel solution that allows SPD ma-

trices to be used with unmodified Euclidean-based learning algorithms, with

the true manifold shape well-preserved. Specifically, we propose to project

SPD matrices using a set of random projection hyperplanes over RKHS into

a random projection space, which leads to representing each matrix as a

vector of projection coefficients. Experiments on face recognition, person re-

identification and texture classification show that the proposed approach out-

performs several recent methods, such as Tensor Sparse Coding, Histogram

Plus Epitome, Riemannian Locality Preserving Projection and Relational Di-

vergence Classification.

1The algorithm proposed in this work is accepted in IEEE Winter conference on Applications of
Computer Vision (WACV) 2014.
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5.2 Introduction

We propose a method that employs a mapping technique to create a space

which preserves the manifold geometry while can be considered of as Eu-

clidean.

Specifically, we first embed SPD manifold points into RKHS via the Stein

Divergence Kernel [Sra12]. We then generate random projection hyper-

planes in RKHS and project the embedded points via the method proposed

in [KG09]. Finally, as the underlying space can be thought as Euclidean,

any appropriate Euclidean-based learning machinery can be applied. In this

chapter, we study the efficacy of this embedding method for classification

tasks. We show that the space is only as effective as the completeness of

the training data generating the random projection hyperplanes, and address

this through the use of synthetic data to augment training data. Experiments

on several vision tasks (person re-identification, face recognition and texture

recognition), show that the proposed approach outperforms several state-of-

the-art methods.
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5.3 Random Projection on RKHS

We aim to address classification tasks, originally formulated on the manifold,

by embedding them into a random projection space, which can be considered

as Euclidean, while still honouring the manifold geometry structure. To this

end, we propose to use random projection on RKHS with the aid of the Stein

divergence kernel.

Random projection is an approximation approach for estimating distances

between pairs of points in a high-dimensional space [Ach03]. In essence, the

projection of a point u ∈ Rd can be obtained via a set of randomly generated

hyperplanes {r1 . . .rk} ∈ Rd:

f(u) = u>R (5.1)

where R ∈ Rd×k is the matrix wherein each column contains a single hyper-

plane ri; f(·) is the mapping function which maps any point in Rd into a

random projection space space Rk. According to the Johnson-Lindenstrauss

lemma [Ach03], it is possible to map a set of high-dimensional points into a

much lower dimensional space wherein the pairwise distance between two

points is well-preserved:

Definition 5.3.1. Johnson-Lindenstrauss Lemma. For any ε such that 1
2 > ε > 0,

and any set of points S ∈ Rd with |S|= n upon projection to a uniform random
k-dimension subspace where k = O(log n), the following property holds with
probability at least 1

2 for every pair u,v ∈ S, (1− ε)||u−v||2 ≤ || f(u)− f(v)||2 ≤
(1+ ε)||u−v||2, where f(u), f(v) are projection of u,v.

Despite the success of numerous approaches that use this lemma to ac-

complish various computer vision tasks, most of them restrict the distance

function to the `p norm, Mahalanobis metric or inner product [Cha02, DIIM04,

JKG08], which makes them incompatible for non-Euclidean spaces. Recently,

Kulis and Grauman [KG09] proposed a method that allows the distance func-

tion to be evaluated over RKHS. Thus, it is possible to apply the lemma for

any arbitrary kernel K(i, j) = K(Xi,X j) = φ(Xi)
>φ(X j) for an unknown em-

bedding φ(·) which maps the points to a Hilbert space H [KG09]. This

approach makes it possible for one to construct a random projection space
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on an SPD manifold, where the manifold structure is well-preserved.

The main idea of our proposed approach, denoted as Random Projection

On SPD manifold for ImagE Classification (ROSE), is to first map all points

on the manifold into RKHS, with an implicit mapping function φ(·), via the

Stein divergence kernel. This is followed by mapping all the points in the

RKHS φ(Xi) ∈H into a random projection space Rk. To achieve this we

follow the Kulis-Grauman approach [KG09] by randomly generating a set

of hyperplanes over the RKHS {r1 . . .rk} ∈H which is restricted to be ap-

proximately Gaussian. As the embedding function φ(·) is unknown, then the

generation process is done indirectly via a weighted sum of the subset of the

given training sets.

To this end, consider each data point φ(Xi) from the training set as a

vector from some underlying distribution D with unknown mean µ and un-

known covariance σ . Let S be a set of t training exemplars chosen i.i.d. from

D, then zt =
1
t ∑i∈S φ(Xi) is defined over S. According to the central limit the-

orem for sufficiently large t, the random vector z̃t =
√

t(zt −µ) is distributed

according to the multi-variate Gaussian N (µ,σ) [Ric07]. Then if a whiten-

ing transformation is applied, it results in ri = σ−
1
2 z̃t which follows N (0,I)

distribution in Hilbert space H . Therefore, the i-th coefficient of each vector

in the random projection space is defined as:

φ(Xi)
T

σ
− 1

2 z̃t (5.2)

The mean µ and covariance σ need to be approximated from training

data. A set of p objects is chosen to form the first p items of a reference set:

φ(X1), . . . ,φ(Xp). Then the mean is implicitly estimated as µ = 1
p ∑

p
i=1 φ(Xi),

and the covariance matrix σ is also formed over the p samples. Eqn. (5.2)

can be solved using a similar approach as for Kernel PCA, which requires pro-

jecting onto the eigenvectors of the covariance matrix [KG09]. Let the eigen-

decomposition of σ be UVUT , then σ−
1
2 =UV

1
2UT , and therefore Eqn. (5.2)

can be rewritten as below [KG09]:

φ(Xi)
TUV

1
2UT z̃t (5.3)

Then let K be defined as a kernel matrix over the p randomly selected
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training points, where K = ΛΘΛT . Based on the fact that the non zero eigen-

values of V are equal to the non zero eigenvalues of Θ, Kulis-Grauman [KG09]

showed that Eqn. (5.3) is equivalent to

p

∑
i=1

ω(i)(φ(Xi)
T

φ(X)) (5.4)

where

ω(i) =
1
t

p

∑
j=1

∑
l∈S

Ki j
− 1

2 K jl−
1
p

p

∑
j=1

p

∑
k=1

Ki j
− 1

2 K jk (5.5)

where, for S, a set of t points are randomly selected from the p sampled

points. The expression w(i) in Eqn. (5.5) can be further simplified by defining

e as a vector of all ones, and eS as a zero vector with ones in the entries

corresponding to the indices of S [KG09]:

w = K
1
2

(
1
t

es−
1
p

e
)

(5.6)

In terms of calculating the computational complexity of the training al-

gorithm, according to Eqn. (5.4) and Eqn. (5.6), the most expensive step is

in the single offline computation of K
1
2 , which takes O(p3). The computa-

tional complexity of classifying a query point depends then on three factors:

computing the kernel vector which requires O(pd3) operations, projecting

the resulting kernel vector into random hyperplane which demands O(pt)

operations (where t < p), and finally applying a classifier in the projection

space which can be done with one-versus-all support vector machine O(nb)

operations, where n is the number of classes and b is the number of bits used

in defining the hyperplane [KG09]. Hence the complexity of classification

for a single query data is equal to O(p3 + pt + nb) which is more efficient

than the second best method in experiments, ‘Relational Divergence Based

Classification on Riemannian Manifolds (RDC)’ [AHS13], which represents

Riemannian points as similarity vectors to a set of training points. As simi-

larity vectors are in Euclidean space, RDC then employs Linear Discriminant

Analysis as a classifier.
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Figure 5.1: The process of transferring points on SPD Manifold into Random Projection
Space.

5.3.1 Synthetic Data

As later shown in the experiments section (for instance the result shown in

Fig. 5.2), the discriminative power of the random projection space depends

heavily on the training set which generates the random projection hyper-

planes. To overcome this limitation, we propose to use generated synthetic

SPD matrices X1, ...,Xn ∈ Symd
+ centred around the mean of the data (denoted

by Xµ), where the mean of the training set can be determined intrinsically

via the Karcher mean algorithm [Pen06].

We relate the synthetic data to the training set, by enforcing the following

condition on the synthetic SPD matrices:

∀Xj ∈ S and ∀Xi ∈ D : (5.7)

dg(Xµ ,Xj)6 max(dg(Xµ ,Xi))

where S is a set of t training exemplars chosen i.i.d. from some underly-

ing distribution D, Xµ is the mean of the training set and Xi is a generated

synthetic point.

The constraint in Eqn.( 5.7) considers a ball around the mean of the train-

ing data, with the radius equal to the longest calculated distance between

mean and the given training points:

r = max(dg(Xµ ,Xi)) (5.8)
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Then we need to generate SPD matrices which are located within r radius

from the mean (Eqn. 5.8). It is not trivial to generate SPD matrices which

follow the Eqn.(5.7), as it establishes a relation between the generated SPD

matrices and the original training points. To address this, we apply the re-

lationship between the geodesic distance and the given Riemannian metric

in a tangent space. Let Xi,Xj ∈ Symd
+ be two points on the manifold and

xi,xj ∈ TXiM be the representing points on the tangent space TXiM . The

norm of vector xixj is equivalent to dg(Xi,Xj) [Pen06]. Therefore, it is possi-

ble to find a point Yi along the geodesic Xi and Xj whose geodesic distance

to Xi satisfies Eqn.(5.7).

Along with the above definitions, we introduce the following definition

and proposition:

Definition 5.3.2. Any point on an SPD manifold Xi ∈ Symd
+ is said to have

normalised geodesic distance with respect to Xj ∈ Symd
+ if and only if dg(Xi,Xj)=

1.

Proposition 5.3.3. For any two SPD matrices X,Xµ ∈ Symd
+, there exists X̄ on

the geodesic curve defined on X and Xµ , which has normalised geodesic distance
with respect to Xµ . The point X̄ can be determined via: Xµ

1
2

(
Xµ
− 1

2 XXµ
− 1

2

)c
Xµ

1
2 ,

where c = ζ

dg(X,Xµ )
, for ζ = 1.

To prove the above proposition, we let X,Xµ ∈ Symd
+ to be two given points

on an SPD manifold. In order to normalise the geodesic distance of X with

respect to Xµ , we map point X into tangent space TXµ
M . As a tangent space

is considered as Euclidean space where the distance between X and tangent

pole Xµ is preserved, Euclidean vector normalisation can be applied. Finally

the normalised point is mapped back to the manifold. These steps can be

presented as:

X̄ = expXµ

(
ζ

dg(Xµ ,X)
logXµ

(X)

)
(5.9)

By plugging in (2.11) and (2.12) we obtain:

X̄ = Xµ

1
2 exp

(
ζ

dg(Xµ ,X)
log(Xµ

− 1
2 XXµ

− 1
2 )

)
Xµ

1
2
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If we let c = ζ

dg(Xµ ,X) , based on the fact that X and Xµ are SPD matrices, we

arrive at:2

X̄ = Xµ

1
2 exp

(
log
(
(Xµ

− 1
2 XXµ

− 1
2 )c
))

Xµ

1
2

which proves that:

X̄ = Xµ

1
2

(
Xµ
− 1

2 XXµ
− 1

2

)c
Xµ

1
2 (5.10)

Having ζ is equal to 1 results in a normalised geodesic distance with re-

spect to Xµ . However in our case to satisfy Eqn. (5.7), we use ζ = δ ×
max(dg(Xµ ,X j)), where δ ∈ [0,1] is a randomly generated number according

to uniform distribution.

2For the proof of logXc = c logX where X ∈ Symd
+, refer to the appendix
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Algorithm 3: : Pseudocode for training Random Projections on Manifolds of SPD
Matrices (ROSE)

Require:

• Training set C= {(C1,y1),(C2,y2), . . . ,(Cn,yn)} from the underlying Rieman-
nian manifold where yi ∈ {1,2, · · · ,m}, and m denotes the number of classes,
for the SPD manifold Sym+

D, where Ci ∈ RD×D is a SPD matrix.

• A kernel function ki, j such as manifold Stein Divergence Jφ for measuring
the similarity between two points on the Riemannian manifold

Ensure: The projection matrix W = K
1
2

(
1
t es− 1

p e
)

1: Compute K−1/2

• Compute Kernel Matrix K, where k(i, j) = k(Xi,X j)

• Decompose the centralised kernel matrix ΛΘΛT = SV D(K̄)
,

• Compute K1/2 = ΛΘ−1/2ΛT

2: Compute the projection matrix Wi for all i ∈ {1,2, ..., p}
3: for i = 1, . . . ,D do
4: s← set of t randomly selected indices from {1,2, · · · , p}
5: e← 0p×1
6: for j = 1, . . . , t do
7: el = 1,where l = s j

8: end for
9: wi =

√
(p−1)

t K
1
2 e

10: end for

5.4 Experiments and Discussion

We consider three computer vision classification tasks: (1) texture classifica-

tion [RH99]; (2) face recognition [PMRR00] and (3) person re-identification

[ELG07]. We first detail the experiment set up for each application and dis-

cuss our results for the comprehensive study of the random projection space

discriminability on the tasks. To this end, we first embed the SPD matrices

into RKHS via the Stein divergence kernel, followed by mapping the em-

bedded data points into a random projection space. The resulting vectors

are then fed to a linear Support Vector Machine classifier, which uses a one-
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versus-all configuration for multi-class classification [FCH+08, STC04].

The parameter settings are as follows. As suggested in [KG09], we have

used t = min(30, 1
4n), where n is the number of samples chosen to create each

hyperplane. For the number of the random hyperplanes we have used vali-

dation data to choose one of n, 2n or 3n. Based on empirical observations on

validation sets, the number of synthetic samples was chosen as either n or m,

where m is the number of samples per class. In a similar manner, the value

of σ in Eqn. (2.15) was chosen from {1,2, . . . ,20}.
As we use the same datasets with identical setting as those used in Section

3.3, here we only briefly introduce each dataset before demonstrating our

results. For more details about the datasets and settings refer to Section 3.3

of this thesis.

We compare our proposed method, here denoted as Random Projection

On SPD manifold for ImagE Classification (ROSE), with several other em-

bedding approaches (tangent spaces, RKHS and hashing) as well as several

state-of-the-art methods. We also evaluate the effect of augmenting the train-

ing data with synthetic data points, and refer to this approach as ROSE with

Synthetic data (ROSES).

5.4.1 Person Re-Identification

For the person re-identification task we used the modified version [SD09] of

the ETHZ dataset [ELG07]. The dataset was captured from a moving camera,

with the images of pedestrians containing occlusions and wide variations in

appearance. Each image was represented as a covariance matrix of feature

vectors obtained at each pixel location.

For the task of texture classification, we use the Brodatz dataset [RH99].

We follow the test protocol presented in [SBMP10]. Accordingly, nine test

scenarios with various number of classes were generated, To create SPD ma-

trices, we follow [AHS13] by downsampling each image and then splitting it

into 64 regions. Each region is described by a covariance matrix formed from

the feature vectors introduced in section 3.3.

For face recognition task, the ‘b’ subset of the FERET dataset [PMRR00]

is used. Each image is first closely cropped to include only the face and then

downsampled. The tests with various pose angles were created to evaluate
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the performance of the method. The training set consists of frontal images

with illumination, expression and small pose variations. Non-frontal images

are used to create the test sets. Each face image is represented by a co-

variance matrix, where for every pixel I(x,y) the feature vector is computed

(please refer to section 3.3).

5.4.2 Random Projection Space Discriminability

We first compare the performance of the proposed ROSE method with sev-

eral other embedding methods: (1) Kernel SVM (KSVM) using the Stein di-

vergence kernel, (2) Kernelised Locality-Sensitive Hashing (KLSH) [KG09],

and (3) Riemannian Spectral Hashing (RSH), a hashing method specifically

designed for smooth manifolds [CI10].

Table 5.1: Recognition accuracy (in %) for the person re-identification task on Seq. 1 and
Seq .2 of the ETHZ dataset; KSVM: Kernel SVM; KLSH: Kernelised Locality-Sensitive Hash-
ing; RSH: Riemannian Spectral Hashing. ROSE is the proposed method, and ROSES is ROSE
augmented with synthetic data.

KSVM KLSH RSH ROSE ROSES

Seq.1 72.0 81.0 58.5 90.7 92.5
Seq.2 79.0 84.0 62.7 91.5 94.0

Average 75.5 82.5 60.6 91.2 93.2

Table 5.2: Recognition accuracy (in %) for the texture recognition task on BRODATZ
dataset.

KSVM KLSH RSH ROSE ROSES

5c 99.3 88.7 96.6 99.3 99.8
5m 85.8 43.6 81.9 90.1 88.4
5v 86.2 82.6 76.9 91.6 88.6
5v2 89.4 52.0 80.9 90.5 92.7
5v3 87.4 73.0 79.1 88.6 91.3
10 81.3 47.0 72.5 86.7 87.0
10v 81.5 48.0 69.3 88.1 88.5
16c 79.6 33.7 65.7 84.1 85.7
16v 73.4 35.5 59.0 77.1 79.8

Average 84.88 56.0 75.8 88.5 89.1
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Tables 5.1, 5.2 and 5.3 report the results for each dataset. ROSE con-

siderably outperforms the other embedding methods on the texture and per-

son re-identification applications, while being on par with KLSH on the face

recognition task. This suggests that the random projection space constructed

by the random hyperplanes over RKHS offers sufficient discrimination for the

classification tasks. In fact, as we use linear SVM for the classifier, the results

presented here follow the theoretical results from [SSHH12] which suggest

that the margin for the SVM classifier is still well-preserved after the random

projection.

We apply the ROSES method (ROSE augmented with synthetic data) on

the three tasks in order to take a closer look at the contribution of the training

data generating the random projection hyperplanes for space discriminabil-

ity. As shown in the results, there is notable improvement over ROSE in

the ETHZ person re-identification as well as Brodatz texture classification

datasets. However, using synthetic points gives adverse effect on the FERET

face recognition dataset.

The results suggest that the training data contributes to space discrim-

inability. This is probably due to the fact that each random projection hy-

perplane is represented as a linear combination of randomly selected train-

ing points. As such, variations and completeness of the training data may

have significant contributions to the resulting space. The performance loss

suffered on the FERET face recognition dataset is probably caused by the

skewed data distribution of this particular dataset. Hence adding synthetic

points would demolish the original data distribution which in turn affects

space discriminability. From our empirical observation (while working with

RSH), we found that all data points are grouped together when an intrinsic

Table 5.3: Recognition accuracy (in %) for the face recognition task on the ‘b’ subset of the
FERET dataset.

KSVM KLSH RSH ROSE ROSES

bd 39.0 70.0 13.5 70.5 52.0
bg 58.5 80.5 31.5 80.5 61.5

Average 48.8 75.2 22.5 75.5 56.8

95



Chapter 5. Random Projections on Manifolds of Symmetric Positive Definite
Matrices for Image Classification

Figure 5.2: The above graphs show the sensitivity of the random projection space discrim-
inability to the number of selected data points for generating the random hyperplanes, as
well as the effect of adding synthetic data points for improving space discriminability. The
graphs compare the performance of ROSE and ROSES on 5c (top) and 5m (bottom) sets of
the BRODATZ texture recognition dataset respectively.

clustering method was applied to the dataset. The very poor performance of

RSH on this dataset supports our view.
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Table 5.4: Recognition accuracy (in %) for the face recognition task using log-Euclidean
sparse representation (logE-SR) [GIK10, YHL+10], Tensor Sparse Coding (TSC) [SBMP10],
Riemannian Locality Preserving Projection (RLPP) [HSWL12], Relational Divergence Classi-
fication (RDC) [AHS13], and the proposed ROSE method.

LogE-SR TSC RLPP RDC ROSE

bd 35.0 36.0 47.0 59.0 70.0
bg 47.0 45.0 58.0 71.0 80.5

Average 41.0 40.5 52.5 65.0 75.2

To further highlight the proposed ROSES method we set an experiment on

two sequences ‘5c’ and ‘5m’ of the BRODATZ dataset. In this experiment we

reduce the number of data required for creating the mapping function step

by step. In the first step we use all the provided training data to construct

the random projection space. Then, we progressively discard training data

points from a particular class to construct the space. We repeat this process

until there is only one class left. Both ‘5c’ and ‘5m’ have a total of 5 classes

where each class has 5 samples for training. We ran the experiment on every

single combination for each case (e.g., when two classes are excluded, there

are 10 combinations) and present the average accuracy.

As shown in Fig. 5.2, there is a significant performance difference be-

tween the ROSE and ROSES methods, which highlights the importance of

the training data generating the random projection hyperplanes. This perfor-

mance difference is more pronounced when more classes are excluded from

the training data. We note that this training set is different from the train-

ing set used to train the classifier. Although we exclude some classes in the

training set for constructing the random projection space, we still use all the

provided training data to train the classifier.

5.4.3 Comparison with Recent Methods

Table 5.4 shows that on the FERET face recognition dataset the proposed

ROSE method obtains considerably better results than several recent meth-

ods: log-Euclidean sparse representation (logE-SR) [GIK10, YHL+10], Ten-

sor Sparse Coding (TSC) [SBMP10], Locality Preserving Projection (RLPP)

[HSWL12], and Relational Divergence Classification (RDC) [AHS13].
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Table 5.5: Performance on the Brodatz texture dataset [RH99] for LogE-SR [GIK10,
YHL+10], Tensor Sparse Coding (TSC) [SBMP10], Riemannian Locality Preserving Projec-
tion (RLPP) [HSWL12], Relational Divergance Classification (RDC) [AHS13], and the pro-
posed ROSES method.

LogE-SR TSC RLP RDC ROSES

5c 89.0 99.7 99.2 98.2 99.8
5m 53.5 72.5 86.2 88.0 88.4
5v 73.5 86.3 86.4 87.0 88.6
5v2 70.8 86.1 90.0 89.0 92.7
5v3 63.6 83.1 89.7 87.0 91.3
10 60.6 81.3 84.7 84.0 87.0
10v 63.4 67.9 83.0 86.0 88.5
16c 67.1 75.1 82.0 88.0 85.7
16v 55.4 66.6 74.0 81.0 79.8

Average 66.3 79.8 86.1 87.6 89.1

Table 5.6: Recognition accuracy (in %) for the person re-identification task on Seq.1 and
Seq.2 of the ETHZ dataset. HPE: Histogram Plus Epitome [BCP+10]; SDALF: Symmetry-
Driven Accumulation of Local Features [FBP+10]; RLPP: Riemannian Locality Preserving
Projection [HSWL12]; RDC: Relational Divergence Classification [AHS13].

HPE SDALF RLPP RDC ROSES

Seq.1 79.5 84.1 88.2 88.7 92.5
Seq.2 85.0 84.0 89.8 89.8 94.0

Average 82.2 84.0 89.0 89.2 93.2

Table 5.5 contrasts the performance of the ROSES method (ROSE aug-

mented with synthetic data) on the BRODATZ texture recognition task against

the above methods. We note that in this case the use of synthetic data is

necessary in order to achieve improved performance. On average, ROSES

achieves higher performance than the other methods, with top performance

obtained in 7 out of 9 tests.

Finally, we compared the ROSES method with several state-of-the-art al-

gorithms for person re-identification on the ETHZ dataset: Histogram Plus

Epitome (HPE) [BCP+10], Symmetry-Driven Accumulation of Local Features

(SDALF) [FBP+10], RLPP [HSWL12] and RDC [AHS13]. The performance

of TSC [SBMP10] was not evaluated due to the method’s high computa-
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tional demands: it would take approximately 200 hours to process the ETHZ

dataset. We do not report the results for LogE-SR due to its low perfor-

mance on the other two datasets. The results shown in Table 5.6 indicate

that the proposed ROSES method obtains better performance. As in the pre-

vious experiment, the use of synthetic data is necessary to obtain improved

performance.
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Conclusion

This thesis contributes toward the improvement of visual analysis with the

aid of Symmetric Positive Definite(SPD) Manifolds. To be able to handle the

challenges of the real world environment, which are naturally not free from

noise, and in order to have a robust image descriptor, we have employed

covariance matrices to represent given scenes. The key advantage of repre-

senting images in forms of non-singular covariance matrices is that superior

performance can be achieved when the underlying structure of the group is

considered. It has been shown that when endowed with the Affine Invari-

ant Riemannian Metric (AIRM), the matrices form a connected, smooth and

differentiable Riemannian manifold.

However, as Non-singular covariance matrices are in form of SPD matri-

ces that form connected Riemannian manifolds, the Riemannian geometry is

required for solving learning tasks. Working directly on the manifold space

via AIRM poses many computational challenges.

Typical ways of addressing this issue include embedding the manifolds

to tangent spaces, and embedding into Reproducing Kernel Hilbert Spaces

(RKHS). Embedding the manifolds to tangent spaces considerably simplifies

further analysis, at the cost of disregarding some of the manifold structure.

Embedding via RKHS can better preserve the manifold structure, but adds the

burden of extending existing Euclidean-based learning algorithms into RKHS.

Riemannian manifolds address the limitations of using traditional methods,

while being mindful about the practicality of the method (for instance, en-

suring that the method is not computationally very complex).
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We make individual contributions to the following solutions on SPD man-

ifolds:

(i) Graph-Embedding Discriminant Analysis (ii) Relational Divergence

Based Classification (iii) Random Projection

For these solutions we propose novel approaches followed by a set of

designed experiments. In the following sections we summarise the contribu-

tions, possible extensions, and future research directions per algorithm.

6.1 Graph-Embedding Discriminant Analysis

In this work, we showed how discriminant analysis can be reformulated on

SPD manifolds. Inference on manifold spaces is generally achieved by em-

bedding the manifolds in higher dimensional Euclidean spaces, which can be

considered as flattening the manifolds. In this work we propose to embed

Riemannian manifolds into Reproducing Kernel Hilbert Spaces (RKHS). Em-

bedding a manifold into RKHS in turn opens the door for employing many

kernel-based machine learning algorithms [STC04]. As such, we tackle the

problem of Discriminant Analysis (DA) on Riemannian manifolds through

RKHS space and propose a graph-based local DA that utilises both within-

class and between-class similarity graphs to characterise intra-class compact-

ness and inter-class separability, respectively.

Thorough experiments on face and object recognition, action recogni-

tion, texture classification and person re-identification showed that notable

improvements in discrimination accuracy can be obtained through graph-

embedding analysis.

6.1.1 Future work

• Employing Stein Divergence instead of geodesic distance to make the

algorithm computationally more efficient.

• Investigate optimised parameter selection, as inappropriate parameter

selection might result in poor performance due to the structure of man-

ifold being encoded via the between and within similarity graphs.
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6.2 Relational Divergence Based Classification

The proposed method offers a new solution for analysing Riemannian man-

ifolds, where embedding into Euclidean spaces is not explicitly required. To

this end, we proposed to represent Riemannian points through their sim-

ilarities to a set of reference points on the manifold, with the aid of the

recently proposed Stein divergence, which is a symmetrised version of Breg-

man matrix divergence. Classification problems on manifolds are then effec-

tively converted into the problem of finding appropriate machinery over the

space of similarities, which can be tackled by conventional Euclidean learn-

ing methods such as linear discriminant analysis.

Experiments on face recognition, person reidentification and texture clas-

sification show that the proposed method outperforms state-of-the-art ap-

proaches, such as Tensor Sparse Coding, Histogram Plus Epitome, Rieman-

nian Locality Preserving Projection and log-Euclidean Sparse Representation.

6.2.1 Future work

• In the proposed approach we used all the training samples as reference

points (see Eqn. 4.12). While this approach is effective, more work is

required for selecting stronger set of reference points. This is because,

an optimized set of reference points can reduce the affect of outliers,

and result in reducing computational complexity.

• For classes with many examples, this approach may not be scalable. As

such, future avenues of research include defining alternative methods of

creating class representers, such as clustering directly on the manifold.

6.3 Random Projection

In this work, we have presented a novel solution which embeds the data

points into a random projection space by first generating random hyperplanes

in RKHS and then projecting the data in RKHS into the random projection

space. We presented a study of space discriminability for various computer

vision classification tasks and found that the random projection space has su-
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perior discriminative power in comparison to the typical approaches outlined

above. In addition, we found that the space discriminative power depends on

the completeness of the training data generating the random hyperplanes. To

address this issue, we proposed to augment the training data with synthetic

data.

Experiments on face recognition, person re-identification and texture clas-

sification show that the proposed method (combined with a linear SVM)

outperforms state-of-the-art approaches such as Tensor Sparse Coding, His-

togram Plus Epitome, Riemannian Locality Preserving Projection and Rela-

tional Divergence Classification. To our knowledge this is the first time ran-

dom projection space has been applied to solve classification tasks in mani-

fold space. We envision that the proposed method can be used to bring su-

perior discriminative power of manifold spaces to more general vision tasks,

such as object recognition and classification.

6.3.1 Future work

• The algorithm uses all the training data which makes it impractical for

very large datasets. Although for large datasets a random selection of

data can be used as a representor of the entire dataset, it would be

ideal to find an efficient data selection algorithm to replace the random

selection method.

• Inappropriate parameter selection might result in poor performance

which would be resolved by defining an effective optimisation formula.

6.4 Combining the proposed methods

To take advantage of all the proposed methods, one could benefit from using

a combination of the proposed methods. Below are a number of suggested

avenues for future work based on combining the methods detailed in this

thesis:
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6.4.1 Future work

• RDC uses distance matrix to calculate the similarity between a given

point and each class separately, then it employs LDA to classify given

points. On the other hand, ROSE uses random projection hyperplanes

in RKHS which, based on its randomness, does not necessarily generate

values that represent similarity of the given point to each class sepa-

rately. Being inspired by RDC method, one can employ RDC and con-

catenate its feature vector product with the feature vector computed by

ROSE to generate a more robust outcome that minimises the effect of

randomness.

• Similarly, inspired by RGDA, one can employ Graph-Embedding Dis-

criminant Analysis over a random projection space to improve the dis-

crimination power.
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In this section we provide more details to support the Proposition 5.3.3, thus

we show that for SPD matrices log(Xc) = c× log(X). For this proof we let c to

be a positive integer, however it is easy to extend the proof into real numbers.

log(Xc) = log(X×X× ...×X︸ ︷︷ ︸
c

)

Replacing X with its Singular Value Decomposition (SVD) as X = U×V×U>,

the equation becomes:

log(X×X× ...×X︸ ︷︷ ︸
c

) = log(U×V×U>×U×V×U>× ...×U×V×U>)

As X∈ Symd
+ the eigenvalue matrix U is orthonormal, and therefore U>×U =

I. Hence, the below equation is valid:

log(Xc) = log(UVcU>)

Similarly, as X ∈ Symd
+ therefore log(X) = U log(V) U> [TPM08].

log(Xc) = U log(Vc) U>
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where log(V) is the diagonal matrix of the eigenvalue logarithm [TPM08].

log(Xc) = U log(Vc) U>

= c U log(V) U>

= c× log(X)
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Codes

In this chapter we detail the code1 for creating synthetic data explained in

chapter. 5.

function center = karcher-mean(X)

center(:,:) = X(:,:,1);

for itter = 1 : 20

for dat = 1 : size(X,3)

tmp(:,:) = X(:,:,dat);

R-T(:,:,dat) = Riemannian-log(center,tmp);

R-V(:,dat) = reshape(R-T(:,:,dat),1,[]);

end

center-V = mean(R-V,2) * 0.5;

center-T = reshape(center-V,[size(R-T,1) size(R-T,2)]);

center = Riemannian-exp(center,center-T);

end

end

1To access the modules please refer to Prof. Brian Lovell’s home page
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This function brings a point in riemannian manifold into a tangent space

T ×M where the point X coincides with the 0 in the tangent space Written by

the coauther Arnold Wiliem 2011.

function y = Riemannian-log(X,Y)

X05 = X0.5;

Xm05 = X−0.5;

temp = Xm05*Y*Xm05;

[V,D] = eig(temp);

logTemp = V * diag(diag(log(D))) * V’;

y = X05* logTemp * X05;

end
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This function brings a point in a tangent space T ×M where the point X

coincides with the 0 into the manifold. This part is written by the co-author

Arnold Wiliem on 2011.

function Y = Riemannian-exp(X,y)

X05 = X0.5;

Xm05 = X−0.5;

temp = Xm05*y*Xm05;

[V,D] = eig(temp);

expTemp = V * diag(diag(exp(D))) * V’;

Y = X05* expTemp * X05;

end
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This function uses all the above functions to compute the synthetic data

on Riemannian manifold

Center = Karcher-Mean(Training-Data);

for i = 1 : number-of-Samples

tmp = cov(randn(100,Dimension));

tmp = tmp + diag(diag(tmp));

X(:,:) = Center;

if (∑(eig(tmp)� 0)� 0)

eig(tmp)

break;

end

dist- = Riemannian-GeodesicDist(X,tmp);

tngnt-pnt = Riemannian-log(X,tmp);

tngnt-pnt = (tngnt-pnt ./ dist-) * theta(cnt-cnt) * rand;

pnt(:,:,i) = Riemannian-exp(X,tngnt-pnt);

end
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