# Accepted Manuscript

Survival benefit and additional value of preoperative chemoradiotherapy in resectable gastric and gastro-oesophageal junction cancer: A direct and adjusted indirect comparison meta-analysis

K. Kumagai , M.D, I. Rouvelas , J.A. Tsai , D. Mariosa , P.A. Lind , M. Lindblad , W. Ye , L. Lundell , C. Schuhmacher , M. Mauer , B.H. Burmeister , J.M. Thomas , M. Stahl , M. Nilsson

PII: S0748-7983(14)01257-8

DOI: 10.1016/j.ejso.2014.11.039

Reference: YEJSO 3944

To appear in: European Journal of Surgical Oncology

Received Date: 29 September 2014

Accepted Date: 9 November 2014

Please cite this article as: Kumagai K, Rouvelas I, Tsai JA, Mariosa D, Lind PA, Lindblad M, Ye W, Lundell L, Schuhmacher C, Mauer M, Burmeister BH, Thomas JM, Stahl M, Nilsson M, Survival benefit and additional value of preoperative chemoradiotherapy in resectable gastric and gastro-oesophageal junction cancer: A direct and adjusted indirect comparison meta-analysis, *European Journal of Surgical Oncology* (2014), doi: 10.1016/j.ejso.2014.11.039.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



| 1  | Title: Survival benefit and additional value of preoperative chemoradiotherapy in                                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | resectable gastric and gastro-oesophageal junction cancer: A direct and adjusted indirect                                                                        |
| 3  | comparison meta-analysis                                                                                                                                         |
| 4  |                                                                                                                                                                  |
| 5  | Type of article: Review article (Meta-analysis)                                                                                                                  |
| 6  | Authors: K. Kumagai <sup>a</sup> , I. Rouvelas <sup>a</sup> , J.A. Tsai <sup>a</sup> , D. Mariosa <sup>b</sup> , P.A. Lind <sup>c,d</sup> , M.                   |
| 7  | Lindblad <sup>a</sup> , W. Ye <sup>b</sup> , L. Lundell <sup>a</sup> , C. Schuhmacher <sup>e</sup> , M. Mauer <sup>f</sup> , B.H. Burmeister <sup>g</sup> , J.M. |
| 8  | Thomas <sup>g</sup> , M. Stahl <sup>h</sup> and M. Nilsson <sup>a</sup>                                                                                          |
| 9  | Affiliation:                                                                                                                                                     |
| 10 | <sup>a</sup> Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden                                                                    |
| 11 | <sup>b</sup> Department of Medical Epidemiology and Biostatistics, Karolinska Institutet,                                                                        |
| 12 | Stockholm, Sweden                                                                                                                                                |
| 13 | <sup>c</sup> Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden                                                                      |
| 14 | <sup>d</sup> Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden                                                                          |
| 15 | <sup>e</sup> Department of Surgery, Klinikum rechts der Isar der Technischen Universitaet                                                                        |
| 16 | Muenchen, Muenchen, Germany                                                                                                                                      |
| 17 | <sup>f</sup> EORTC Headquaters, Statistic Department, Brussels, Belgium                                                                                          |
| 18 | <sup>g</sup> Division of Cancer Services, University of Queensland, Princess Alexandra Hospital,                                                                 |

- 1 Queensland, Australia
- 2 <sup>h</sup> Department of Medical Oncology and Hematology, Kliniken Essen-Mitte, Essen,
- 3 Germany

4 **Reprints:** 

- 5 Koshi Kumagai M.D.
- 6 Center for Digestive Diseases, K53, Karolinska University Hospital,
- 7 141 86 Stockholm, Sweden,
- 8 Phone: +46-8-58580000, Fax: +46-8-58582340, e-mail: koshi.kumagai@gmail.com
- 9 Running head: Chemoradiotherapy for gastric cancer
- 10 Keywords: Stomach; Gastro-oesophageal junction; Adenocarcinoma; Preoperative
- 11 chemotherapy; Preoperative chemoradiotherapy
- 12 Word count: 3906

13

14

- 15
- 16
- 17
- 18

#### 1 Abstract

Several phase I/II studies of chemoradiotherapy for gastric cancer have  $\mathbf{2}$ reported promising results, but the significance of preoperative radiotherapy in addition 3 to chemotherapy has not been proven. In this study, a systematic literature search was 4 performed to capture survival and postoperative morbidity and mortality data in  $\mathbf{5}$ 6 randomised clinical studies comparing preoperative (chemo)radiotherapy or chemotherapy versus surgery alone, or preoperative chemoradiotherapy versus 7chemotherapy for gastric and/or gastro-oesophageal junction (GOJ) cancer. Hazard 8 9 ratios (HRs) for overall mortality were extracted from the original studies, individual patient data provided from the principal investigators of eligible studies or the earlier 10 published meta-analysis. The incidences of postoperative morbidities and mortalities 11 were also analysed. In total 18 studies were eligible and data were available from 14 of 12these. The meta-analysis on overall survival yielded HRs of 0.75 (95% CI 0.65-0.86, 13P < 0.001) for preoperative (chemo)radiotherapy and 0.83 (95% CI 0.67-1.01, P = 0.065) 14for preoperative chemotherapy when compared to surgery alone. Direct comparison 15between preoperative chemoradiotherapy and chemotherapy resulted in a HR of 0.71 1617(95% CI 0.45–1.12, P=0.146). Combination of direct and adjusted indirect comparisons yielded a HR of 0.86 (95% CI 0.69-1.07, P=0.171). No statistically significant 18

| 1  | differences were seen in the risk for postoperative morbidity or mortality between   |
|----|--------------------------------------------------------------------------------------|
| 2  | preoperative treatments and surgery alone, or preoperative (chemo)radiotherapy and   |
| 3  | chemotherapy. Preoperative (chemo)radiotherapy for gastric and GOJ cancer showed     |
| 4  | significant survival benefit over surgery alone. In comparisons between preoperative |
| 5  | chemotherapy and (chemo)radiotherapy, there is a trend towards improved survival     |
| 6  | when adding radiotherapy, without increased postoperative morbidity or mortality.    |
| 7  |                                                                                      |
| 8  |                                                                                      |
| 9  |                                                                                      |
| 10 |                                                                                      |
| 11 |                                                                                      |
| 12 |                                                                                      |
| 13 |                                                                                      |
| 14 |                                                                                      |
| 15 |                                                                                      |
| 16 |                                                                                      |
| 17 |                                                                                      |

## 1 Introduction

| 2  | In Western countries, about two thirds of patients with gastric cancer have                         |
|----|-----------------------------------------------------------------------------------------------------|
| 3  | locally advanced disease at diagnosis and inevitably the R0 resection rate and prognosis            |
| 4  | after surgery alone are miserable in this clinical setting. <sup>1</sup>                            |
| 5  | In many new cases of gastric cancer, adequate locoregional and systemic                             |
| 6  | disease control is difficult to obtain with resection alone, therefore surgery is frequently        |
| 7  | combined with preoperative cytoreductive treatment in contemporary clinical practice.               |
| 8  | A previous meta-analysis comparing the long-term survival between preoperative                      |
| 9  | chemotherapy with or without radiotherapy and surgery alone in patients with                        |
| 10 | adenocarcinoma of the stomach, gastro-oesophageal junction (GOJ) or lower                           |
| 11 | oesophagus suggested a survival benefit of preoperative chemotherapy. <sup>2</sup> In this context, |
| 12 | it should be noted that a corresponding survival benefit of preoperative radiotherapy               |
| 13 | alone has been alleged in a previous meta-analysis. <sup>3</sup>                                    |
| 14 | Several phase I/II studies have presented promising results from the                                |
| 15 | combination of preoperative chemotherapy and radiotherapy in patients with potentially              |
| 16 | resectable gastric cancer. <sup>4-6</sup> Given the established validity of chemoradiotherapy for   |
| 17 | gastric cancer, the significance of preoperative radiotherapy as an adjunct to                      |

18 chemotherapy in patients with potentially resectable gastric cancer warrants better

scientific validation. To date, however, the sole direct randomised comparison between

| 2  | preoperative chemoradiotherapy versus chemotherapy alone focused on patients with                   |
|----|-----------------------------------------------------------------------------------------------------|
| 3  | GOJ cancer has been reported by Stahl et al. <sup>7</sup> This study showed a significantly higher  |
| 4  | pathologic complete response rate and a tendency toward an improved 3-year survival                 |
| 5  | rate by the addition of radiotherapy.                                                               |
| 6  | Evidence from comparative head to head (direct) trials is often limited or                          |
| 7  | unavailable, why indirect comparisons are mandated. <sup>8</sup> This is particularly the case with |
| 8  | chemoradio- and chemotherapy when used preoperatively. A simple but inappropriate                   |
| 9  | statistical method for indirect comparison is to compare the results of individual arms             |
| 10 | from different trials as if they were from the same randomised trial. This naive type of            |
| 11 | indirect comparison has been criticized for discarding the within trial comparison, and             |
| 12 | thereby increasing the liability to bias. In contrast, the adjusted indirect comparison can         |
| 13 | take advantage of the strength of randomised clinical trials in making unbiased                     |
| 14 | comparisons. In the present study, the indirect comparison of different interventions is            |
| 15 | adjusted by comparing the results of their direct comparisons with a common control                 |
| 16 | group. <sup>8</sup>                                                                                 |

The objectives of the current study were threefold: firstly, to perform a careful

| 1  | literature survey to assess the feasibility of performing a meta-analysis concerning     |
|----|------------------------------------------------------------------------------------------|
| 2  | outcome after preoperative treatment added to surgery compared to surgery alone in       |
| 3  | patients with gastric cancer including GOJ adenocarcinoma. Secondly, we wanted to        |
| 4  | analyze the compiled database with regard to the main outcomes of interest:              |
| 5  | postoperative morbidity, perioperative mortality and long-term survival for preoperative |
| 6  | chemotherapy and chemoradiotherapy, separately. Finally, we aimed to clarify the         |
| 7  | differences in endpoints mentioned above between preoperative chemotherapy and           |
| 8  | chemoradiotherapy by direct and adjusted indirect comparison analyses.                   |
| 9  |                                                                                          |
| 10 |                                                                                          |
| 11 |                                                                                          |
| 12 |                                                                                          |
| 13 |                                                                                          |
| 14 |                                                                                          |
| 15 |                                                                                          |
| 16 |                                                                                          |
| 17 |                                                                                          |
| 18 |                                                                                          |

## 1 **Patients and methods**

# 2 Eligibility criteria

| 3  | Eligible studies were randomised clinical trials in which patients fulfilled the         |
|----|------------------------------------------------------------------------------------------|
| 4  | following criteria: adenocarcinoma of the stomach and/or GOJ; no previous treatment;     |
| 5  | tumours clinically diagnosed as resectable. Trials comparing preoperative chemotherapy   |
| 6  | plus surgery with surgery alone, preoperative radiotherapy with or without               |
| 7  | chemotherapy [(chemo)radiotherapy] plus surgery with surgery alone, and preoperative     |
| 8  | chemoradiotherapy plus surgery with chemotherapy plus surgery were included. To be       |
| 9  | regarded as preoperative, chemotherapy had to be administered before surgery, but trials |
| 10 | on perioperative therapy were also included. Articles for which the full text was not    |
| 11 | available in English were excluded.                                                      |
| 12 |                                                                                          |
| 13 | Outcome measures                                                                         |
| 14 | The primary outcome was overall survival defined as time from the date of                |
| 15 | randomisation until death. Secondary outcomes were progression free survival, defined    |
| 16 | as time from randomisation until tumour progression or death, postoperative morbidity    |

17 and perioperative mortality.

18

#### 1 Information sources, search, and study selection

Eligible trials were identified from earlier published meta-analyses and  $\mathbf{2}$ systematic electronic search. MEDLINE, Central (Cochrane clinical trials database) and 3 EMBASE database were explored for studies published up to July, 2013 using the 4 following terms and search formula: (stomach OR esophagus) AND cancer AND  $\mathbf{5}$ preoperative. The searches were limited to articles on randomised clinical trials and 6 published in English. Furthermore, potentially relevant articles were identified by 7manually searching reference lists of all articles retrieved. Jadad's score was used to 8 assess the risk of bias of individual studies.<sup>9</sup> 9

10

### 11 Individual patient data

For eligible studies, individual patient data (IPD) were solicited from the principal investigators of each study. Survival data were requested for the intention-to-treat population recruited from each trial. The investigators were asked to provide the most complete and updated follow-up data, even if the follow-up was longer than that used in the respective publication. Data not available upon database closure, either because IPD had not been provided or because full manuscripts had not been published, were not included in the final meta-analysis. 1

#### 2 Data collection processes and clinical endpoint

Data were extracted by the first author (KK). Any discrepancies were dealt 3 with by discussion among the authors and a consensus was reached. The following 4 general information was extracted from each study: first author, year of publication, the  $\mathbf{5}$ number of patients who were randomised, and those who received surgery. Hazard 6 ratios (HRs) for overall mortality were extracted as the summary statistic directly from 7the original studies or provided IPD. If they were not available, HRs were estimated 8 9 indirectly by either using the number of randomised patients, the number of events occurred during observation period and P values for the log-rank test or, if no other 10 information was available, by reading off survival curves as suggested by Parmar et al.<sup>10</sup> 11 The 95% confidence interval (CI) for each HR was extracted directly from the original 12report or from IPD if available. Otherwise these variables were estimated indirectly by 13using the information available; e.g. data from earlier published meta-analyses. Risk 14ratios (RRs) for postoperative morbidity and mortality were also extracted directly from 15the original studies or provided IPD. In the analyses of morbidity rate, the incidences of 1617the following postoperative complications were extracted: any complication, cardiac complication, respiratory complication, anastomotic leakage, and pancreatitis/pancreatic 18

| 1  | fistula. Respiratory complications included pneumonia, acute respiratory distress                    |
|----|------------------------------------------------------------------------------------------------------|
| 2  | syndrome (ARDS), pulmonary embolism, and respiratory failure. Diagnosis of                           |
| 3  | postoperative pancreatic fistula was based on the International Study Group of                       |
| 4  | Pancreatic Fistula (ISGPF) definition. <sup>11</sup> However, cases where the pancreatic fistula was |
| 5  | diagnosed solely on clinical grounds by the primary investigators were also included.                |
| 6  | The following mortality related information was extracted: 30-day postoperative                      |
| 7  | mortality and total postoperative mortality and treatment-related mortality. Total                   |
| 8  | postoperative mortality was defined as any in-hospital death or any post-discharge death             |
| 9  | that could be related to a postoperative complication. Treatment-related mortality was               |
| 10 | defined as the sum of total postoperative mortality and death before surgery caused by               |
| 11 | adverse side effects of neoadjuvant treatment.                                                       |
|    |                                                                                                      |

12

# 13 Statistical analysis

The meta-analysis was performed according to the recommendations specified in the PRISMA guidelines using STATA ver. 11.2 (StataCorp, Texas, USA).<sup>12</sup> Statistical analysis was carried out using the HR for survival analyses and the RR for postoperative morbidity and mortality as the summary statistics. Random-effects models were used to estimate the summary statistics and confidence intervals because

| 1  | preoperative treatment regimens and surgical procedures used in the trials were         |
|----|-----------------------------------------------------------------------------------------|
| 2  | heterogenic and thus heterogeneity of the effect across different regimens could not be |
| 3  | excluded a priori. Locational subgroup analysis was performed and no other subgroups    |
| 4  | were examined. Higgins' I squared was the statistic used to test for heterogeneity, and |
| 5  | the inverse of variance method was selected to combine results and calculate the        |
| 6  | heterogeneity among subgroups. The pooled HRs and RRs were reported with 95 per         |
| 7  | cent confidence intervals (CIs). In the analysis comparing preoperative therapy plus    |
| 8  | surgery with surgery alone, the HRs represented the relative risk of overall mortality  |
| 9  | and RRs represented the relative risk of postoperative morbidities and mortalities when |
| 10 | preoperative chemoradiotherapy or chemotherapy was followed by surgery compared         |
| 11 | with surgery alone. A summary statistic (HR or RR) greater than 1 indicated a higher    |
| 12 | overall mortality or postoperative morbidity/mortality rate in patients who received    |
| 13 | preoperative treatments and the point estimate of the HR or RR was considered           |
| 14 | statistically significant at a 95% confidence level if the 95% CI did not include 1.    |
| 15 | In the direct comparison analysis between preoperative chemoradiotherapy plus           |
| 16 | surgery and preoperative chemotherapy plus surgery, HRs represented the relative risk   |
| 17 | of overall mortality and RRs represented the relative risk of postoperative morbidities |
| 18 | and mortalities for a patient who received preoperative chemoradiotherapy followed by   |

| 1  | surgery compared with a patient who received preoperative chemotherapy followed by                 |
|----|----------------------------------------------------------------------------------------------------|
| 2  | surgery. A summary statistic (HR or RR) greater than 1 indicated a higher overall                  |
| 3  | mortality or postoperative morbidity/mortality rate in patients who received                       |
| 4  | preoperative chemoradiotherapy and the point estimate of the HR or RR was considered               |
| 5  | significant at a 95% confidence level if the 95% CI did not include 1. An adjusted                 |
| 6  | indirect comparison method was applied for indirect comparison of preoperative                     |
| 7  | chemoradiotherapy plus surgery and preoperative chemotherapy plus surgery using a                  |
| 8  | common control group (surgery alone). The results from adjusted indirect comparisons               |
| 9  | were combined with the results from direct comparison of preoperative                              |
| 10 | chemoradiotherapy plus surgery versus preoperative chemotherapy plus surgery. A                    |
| 11 | weighted combination (,) of the results from adjusted indirect comparison (,) and the              |
| 12 | direct comparison (d) was computed as an inverse variance weighted average. The                    |
| 13 | weighted average and variance (Var) of the combination were calculated as:                         |
| 14 | Weight <sub>i</sub> =1 / Var(lnHR <sub>i</sub> ), Weight <sub>d</sub> =1 / Var(lnHR <sub>d</sub> ) |
| 15 | $lnHR_c = (Weight_i * lnHR_i + Weight_d * lnHR_d) / (Weight_i + Weight_d)$                         |
| 16 | $Var(lnHR_c)=1 / (Weight_i + Weight_d)$                                                            |
| 17 | To examine the consistency between the adjusted indirect comparison and the                        |
| 18 | direct comparison, the discrepancy between the adjusted indirect comparison and the                |

13

| 1  | direct comparison was evaluated by dividing the difference in the $lnHR$ ( $lnHR_i - lnHR_d$ )      |
|----|-----------------------------------------------------------------------------------------------------|
| 2  | by the standard error of the difference ( $\sqrt{[Var(lnHR_i) + Var(lnHR_d)]}$ ), and comparing     |
| 3  | the resulting number with a standard normal distribution to obtain a <i>P</i> -value. <sup>13</sup> |
| 4  | Funnel plots were used to assess publication bias, where asymmetry implied                          |
| 5  | that results were subject to reporting or publication bias. Begg's test was also used to            |
| 6  | assess the bias, where an absolute z value over 1.96 implied that results were                      |
| 7  | significantly subject to bias. <sup>14</sup>                                                        |
| 8  |                                                                                                     |
| 9  |                                                                                                     |
| 10 |                                                                                                     |
| 11 |                                                                                                     |
| 12 |                                                                                                     |
| 13 |                                                                                                     |
| 14 |                                                                                                     |
| 15 |                                                                                                     |
| 16 |                                                                                                     |
| 17 |                                                                                                     |
| 18 |                                                                                                     |

### 1 **Results**

### 2 Study selection

| 3  | In total 18 studies <sup>7,15-31</sup> were eligible (Fig 1). Eight were randomised                   |
|----|-------------------------------------------------------------------------------------------------------|
| 4  | comparisons of preoperative (chemo)radiotherapy versus surgery alone <sup>21-27,30</sup> , 8 were     |
| 5  | randomised comparisons of preoperative chemotherapy versus surgery alone                              |
| 6  | <sup>15,17-20,28,29,31</sup> , and 2 were randomised comparisons of preoperative chemoradiotherapy    |
| 7  | versus preoperative chemotherapy. <sup>7,16</sup> One study was a 3-arm study that compared           |
| 8  | preoperative chemotherapy using oral 5'-DFUR versus preoperative chemotherapy                         |
| 9  | using intravenous 5-FU plus cisplatin versus surgery alone. <sup>31</sup> This study was treated as a |
| 10 | 2-arm study that compared preoperative chemotherapy versus surgery alone and the                      |
| 11 | patients in two groups of preoperative chemotherapy were combined. In three studies,                  |
| 12 | patients in the preoperative chemotherapy group received postoperative chemotherapy if                |
| 13 | they were fit. <sup>17,19,29</sup> One study included intraoperative radiotherapy in addition to      |
| 14 | preoperative radiotherapy. <sup>23</sup>                                                              |

15

### 16 Individual patient data (IPD)

17 Requests for IPD were sent to the corresponding authors of primary
18 investigators of all 18 eligible studies by either air mail or email on October 3, 2013 and

| 1  | data analyses were started on February 6, 2014. Seven authors gave replies by the time                            |
|----|-------------------------------------------------------------------------------------------------------------------|
| 2  | analyses started. <sup>7,16-18,20,24,26</sup> IPD were provided by two authors <sup>16,20</sup> and complementary |
| 3  | data were provided by one author. <sup>7</sup> The numbers of patients contained in IPD data sets                 |
| 4  | were identical with the intention-to-treat population reported in the publications. Any                           |
| 5  | extreme and implausible outliers were not identified in the provided IPD.                                         |
| 6  |                                                                                                                   |
| 7  | Risk of bias within studies                                                                                       |
| 8  | All studies were randomised clinical trials. The randomisation method used                                        |
| 9  | was specified in 14 out of 18 trials. <sup>7,15-19,21-26,29,30</sup> Seven studies applied stratification for     |
| 10 | some factors. <sup>7,17-19,24,25,29</sup> The minimisation method was used in three <sup>15,17,29</sup> and the   |
| 11 | block randomisation was used in three. <sup>16,18,26</sup> Blinding patients and clinicians to                    |
| 12 | interventions was not evaluated because it was not possible given the design of the trials.                       |
| 13 | No dropouts were observed in 3 trials <sup>21,28,30</sup> and detailed information of dropouts was                |
| 14 | available in 14 trials. <sup>7,15-20,22-27,29</sup> Average Jadad's score, based on only three evaluation         |
| 15 | items (randomisation, description and adequacy of randomisation method, and                                       |
| 16 | dropouts), was 2.5.                                                                                               |
|    |                                                                                                                   |

# 18 Surgical procedures

| 1  | The details of the surgical procedures were mentioned in 11 trials.                                               |
|----|-------------------------------------------------------------------------------------------------------------------|
| 2  | 7,16,17,19-23,27,29,31 Gastrectomy was the most common surgical procedure in 6 trials.                            |
| 3  | <sup>17,20-23,31</sup> In the other 5 trials oesophagectomy was the most common procedure in their                |
| 4  | original report. <sup>7,16,19,27,29</sup> The extent of lymphadenectomy was described in 8 trials.                |
| 5  | <sup>7,16-18,20,22,23,29</sup> D2 and D1 lymphadenectomy was mostly performed in 4 <sup>7,17,20,29</sup> and in 3 |
| 6  | <sup>18,22,23</sup> trials, respectively. Oesophagectomy with the dissection of the lymph nodes in                |
| 7  | the lower mediastinum, at the origin of the left gastric artery and the splenic artery to                         |
| 8  | the hilum of the spleen was performed in one trial. <sup>16</sup> Survival data or postoperative                  |
| 9  | morbidity and mortality for each surgical procedure or lymphadenectomy were not                                   |
| 10 | separately reported in any of the trials.                                                                         |

11

#### 12 Overall survival

Overall survival was reported in all 18 trials, while 4 trials among them were excluded from the meta-analysis because they included oesophageal cancer patients without any possibility to extract tumour site specific results from the original reports and IPDs were not provided.<sup>15,24-26</sup> Therefore the meta-analysis was performed with 14 trials <sup>7,16-23,27-31</sup> (Fig.1, Table 1). This was also true of the following meta-analysis on progression free survival, morbidity, and mortality. In 5 trials data were obtained from

| 1  | earlier published meta-analyses by Ronellenfitsch, which was performed by combining                  |
|----|------------------------------------------------------------------------------------------------------|
| 2  | IPD and aggregate data. <sup>2,17,19,27,29,31</sup> The current meta-analysis yielded a pooled HR of |
| 3  | 0.75 (95% CI 0.65–0.86, P<0.001) for preoperative (chemo)radiotherapy compared to                    |
| 4  | surgery alone (Fig. 2a) and a HR of 0.83 (95% CI 0.67-1.01, P=0.065) for preoperative                |
| 5  | chemotherapy compared to surgery alone (Fig. 2b). Direct comparison of preoperative                  |
| 6  | chemoradiotherapy versus preoperative chemotherapy was performed including 2 trials,                 |
| 7  | which showed a pooled HR of 0.71 (95% CI 0.45-1.12, P=0.146) for preoperative                        |
| 8  | chemoradiotherapy compared to preoperative chemotherapy (Fig. 2c). Overall,                          |
| 9  | adjusted indirect comparison yielded a HR of 0.91 (95% CI 0.71-1.16, P=0.445) for                    |
| 10 | preoperative (chemo)radiotherapy compared to preoperative chemotherapy (Table 2).                    |
| 11 | Combination of direct comparisons and adjusted indirect comparisons of all patients                  |
| 12 | yielded a HR of 0.86 (95% CI 0.69-1.07, P=0.171) for preoperative                                    |
| 13 | (chemo)radiotherapy compared to preoperative chemotherapy (Table 2).                                 |
| 14 | Tumour site specific subgroup analysis was possible only in GOJ cancer, which                        |
| 15 | showed a HR of 0.74 (95% CI 0.50-1.09, P=0.131) for preoperative                                     |
| 16 | (chemo)radiotherapy compared to preoperative chemotherapy (Table 2).                                 |

**Progression free survival** 

| 1 | Progression free survival was available for GOJ cancer in 2 trials which           |
|---|------------------------------------------------------------------------------------|
| 2 | compared preoperative chemoradiotherapy to preoperative chemotherapy (7;16. Direct |
| 3 | comparison meta-analysis yielded a HR of 0.70 (95% CI 0.45-1.07. P=0.101) for      |
| 4 | preoperative chemoradiotherapy compared to preoperative chemotherapy (data not     |
| 5 | shown).                                                                            |

6

#### 7 Morbidity and mortality

There was considerable variation in morbidity between the single studies with 8 rates in the single arms ranging from 2.9% (Zhao<sup>31</sup>, preoperative chemotherapy group) 9 to 98.0% (Stahl<sup>7</sup>, preoperative chemoradiotherapy group). We were unable to 10 demonstrate that (chemo)radiotherapy or chemotherapy given preoperatively increased 11 the risk of any type of postoperative complication, cardiac complication, respiratory 12complication, anastomotic leak, pancreatitis/pancreatic fistula, 30-day mortality or total 13postoperative mortality as compared to surgery alone (Table 3). Adjusted indirect 14comparison showed no significant risk enhancement for any morbidity or mortality 15when preoperative (chemo)radiotherapy and chemotherapies were given (Table 3). 16Direct comparison between preoperative chemoradiotherapy and chemotherapy again 17revealed the same risk for morbidity as well as mortality (Table 3). Combination of 18

| 1        | direct comparisons and adjusted indirect comparisons gave basically the same outcome           |
|----------|------------------------------------------------------------------------------------------------|
| 2        | (Table 3). Only one preoperative death was reported; a patient in chemotherapy group           |
| 3        | died preoperatively presumably due to chemotherapy induced toxicity in the direct              |
| 4        | comparison between preoperative chemoradiotherapy and chemotherapy. <sup>7</sup> Therefore, it |
| <b>5</b> | seemed not to be significant to evaluate treatment-related mortality besides total             |
| 6        | postoperative mortality. Furthermore, tumour site specific subgroup analysis was not           |
| 7        | feasible regarding morbidity or mortality. Any discrepancies in the findings of the            |
| 8        | adjusted indirect comparisons and the direct comparisons were assessed and no such             |
| 9        | impact was revealed on any type of morbidity or mortality.                                     |

10

### 11 Risk of bias across studies

12 There was no noticeable asymmetry in the funnel plots and absolute z values in 13 Begg's test were less than 1.96 in all analyses (data not shown). Therefore, no 14 publication bias seemed to be present.

Differences in interventions might also introduce bias. Four out of 5 trials comparing preoperative (chemo)radiotherapy to surgery alone used only radiotherapy as a preoperative therapy in the treatment arm, while another trial used cisplatinumfluorouracil based chemotherapy which is the most common regimen in the trials

| 1  | comparing preoperative chemotherapy to surgery alone or preoperative                                                  |
|----|-----------------------------------------------------------------------------------------------------------------------|
| 2  | chemoradiotherapy to chemotherapy. The total amount of cisplatin and fluorouracil                                     |
| 3  | varied from 150 mg/m <sup>2</sup> to 600 mg/m <sup>2</sup> and 500 mg/body to 30000 mg/m <sup>2</sup> , respectively. |
| 4  | Cunningham et al. used epirubicin in combination with cisplatin and fluorouracil. <sup>17</sup>                       |
| 5  | Hartgrink et al. used methotrexate and doxorubicin instead of cisplatin in combination                                |
| 6  | with fluorouracil. <sup>18</sup> The median total dose of radiation was 40 (range 20-40) Gy, and the                  |
| 7  | median dose fraction was 2.7 (2-5 Gy. Skoropad et al. used 20 Gy of intraoperative                                    |
| 8  | radiotherapy in combination with 20 Gy of preoperative radiotherapy. <sup>23</sup> Preoperative                       |
| 9  | radiation therapy was given concurrently with chemotherapy in all 3 trials that used the                              |
| 10 | combination. <sup>7,16,27</sup>                                                                                       |
| 11 |                                                                                                                       |
| 12 | R                                                                                                                     |
| 13 |                                                                                                                       |
| 14 |                                                                                                                       |
| 15 |                                                                                                                       |
| 16 |                                                                                                                       |
| 17 |                                                                                                                       |
| 10 |                                                                                                                       |

#### 1 Discussion

In total 18 studies were eligible when we scrutinized the relevant literature and  $\mathbf{2}$ among these data were available from 14 of them. The subsequent meta-analysis on 3 overall survival yielded a HR of 0.75 for preoperative (chemo)radiotherapy compared to 4 surgery alone in resectable gastric and GOJ cancer, suggesting an important therapeutic  $\mathbf{5}$ effect. We also found that preoperative chemotherapy in resectable gastric and GOJ 6  $\overline{7}$ cancer showed a strong trend towards better long-term survival compared to surgery alone, although not statistically significant. It should be noted that four out of five 8 studies on (chemo)radiotherapy in the analysis were comparisons between preoperative 9 radiotherapy without any chemotherapy and surgery alone.<sup>21-23,30</sup> Our results basically 10 accord those from a previously completed meta-analysis by Fiorica et al. suggesting that 11 preoperative radiotherapy for resectable stomach cancer improves survival compared to 12surgery alone.<sup>3</sup> These results suggest a quite promising potential of preoperative 13radiotherapy for resectable stomach cancer, although preoperative radiotherapy without 14any chemotherapy is currently not a reasonable option, given the established evidence 15for the efficacy of preoperative multidrug chemotherapy.<sup>2</sup> Moreover, using an adjusted 16indirect method it was possible to compare preoperative (chemo)radiotherapy and 17preoperative chemotherapy more comprehensively regarding the same outcome 18

| 1  | variables. Combination of direct comparisons and adjusted indirect comparisons of           |
|----|---------------------------------------------------------------------------------------------|
| 2  | overall patients provided evidence to suggest that preoperative (chemo)radiotherapy         |
| 3  | does show a tendency towards improving long-term survival compared to preoperative          |
| 4  | chemotherapy for resectable stomach cancer. These combined results are reliable             |
| 5  | because no statistically significant differences were observed between the results from     |
| 6  | direct and adjusted indirect comparisons. While four out of five studies on preoperative    |
| 7  | (chemo)radiotherapy used radiotherapy only, three out of eight studies on preoperative      |
| 8  | chemotherapy included postoperative chemotherapy as well. <sup>17,29,32</sup> Despite these |
| 9  | disadvantages, preoperative (chemo)radiotherapy showed a trend towards better               |
| 10 | long-term survival compared to chemotherapy alone highlighting the need for dedicated       |
| 11 | clinical studies.                                                                           |
| 12 | Neither the direct nor the adjusted indirect comparisons demonstrated data to               |
| 13 | suggest that preoperative (chemo)radiotherapy increased the risk of postoperative           |
| 14 | morbidity or perioperative mortality neither when compared to preoperative                  |
| 15 | chemotherapy alone nor to surgery alone. These combined results are also reliable since     |
| 16 | no differences were observed between the results from direct and adjusted indirect          |
| 17 | comparisons. These results are consistent with our previously published meta-analysis       |
| 18 | comparing postoperative morbidity and perioperative mortality between neoadjuvant           |

chemoradiotherapy and chemotherapy for oesophageal cancer.33 Accordingly, there are

1

| 2  | no additional concerns that have to be incorporated into the delicate balance between              |
|----|----------------------------------------------------------------------------------------------------|
| 3  | the tumour target and micrometastases issue for the cytotoxic therapy and its capability           |
| 4  | for enhanced surgical risks.                                                                       |
| 5  | Recently, three different designs of adjuvant therapies for localized gastric                      |
| 6  | cancer have shown improvement in survival based on large-scale, randomised clinical                |
| 7  | trials originating in three different regions in the world. The SWOG 9008/INT 0116 trial           |
| 8  | investigating postoperative chemoradiation in the United States <sup>34</sup> , the MAGIC trial of |
| 9  | perioperative three-agent chemotherapy in Europe <sup>17</sup> , and postoperative chemotherapy    |
| 10 | regimens in Japan (the ACTS-GC trial) <sup>35</sup> and in three Asian countries (the CLASSIC      |
| 11 | trial) <sup>36</sup> have launched a multimodality therapeutic concept in gastric and GOJ cancers. |
| 12 | There are some drawbacks confined to postoperative adjuvant therapy for                            |
| 13 | stomach cancer connected with the high morbidity and mortality rate after gastrectomy              |
| 14 | with radical lymphadenectomy, often delaying and even precluding postoperative                     |
| 15 | treatment. The Dutch trial comparing D1 and D2 lymphadenectomy, without adjuvant                   |
| 16 | therapy, showed 10 % of postoperative mortality and 43 % of postoperative morbidity in             |
| 17 | the D2 group. <sup>37</sup> This high morbidity and mortality may have discouraged from the use    |
| 18 | of postoperative adjuvant therapy, especially in the West. This makes comparisons                  |

 $\mathbf{24}$ 

| 1  | between preoperative and postoperative treatment difficult, as postoperative therapy can     |
|----|----------------------------------------------------------------------------------------------|
| 2  | only be given to the selected group of patients fit enough to tolerate it after surgery and  |
| 3  | surgical complications.                                                                      |
| 4  | Not unexpectedly, a variety of surgical procedures and pre-and perioperative                 |
| 5  | treatment regimens were used in both chemotherapy and radiotherapy currently                 |
| 6  | reviewed, which introduces a risk of bias and, at the same time, represents a limitation     |
| 7  | of this meta-analytical approach.                                                            |
| 8  | There are also some methodological drawbacks in the present meta-analysis. It                |
| 9  | was mandated to use AIC because of the lack of studies comparing preoperative                |
| 10 | chemotherapy and chemoradiotherapy for non-cardia stomach (corpus and antrum)                |
| 11 | cancer, which was the reason for the invalidity of a tumour site specific subgroup           |
| 12 | analysis. The result of the AIC may be subject to greater bias (especially selection bias)   |
| 13 | than head-to-head randomised comparisons because the AIC is based on the transitivity        |
| 14 | assumption. If there are differences in selection criteria or distribution of effect         |
| 15 | modifiers between trials for chemoradiotherapy and for chemotherapy the transitivity         |
| 16 | assumption is violated and the result of the adjusted indirect effect may be biased. In our  |
| 17 | study, a possible modifier may be the tumour site since the overall $I^2=43$ % and $P=0.081$ |
| 18 | in the preoperative chemotherapy versus surgery alone comparison is suggestive of a          |

| 1  | moderate heterogeneity between the subgroups. If treatment-by-tumour site interaction             |
|----|---------------------------------------------------------------------------------------------------|
| 2  | exists, we must be very cautious before drawing conclusions on the findings from the              |
| 3  | AIC because the distribution of tumour site varied between trials for chemoradiotherapy           |
| 4  | and for chemotherapy. Furthermore, the increase in precision due to the combination of            |
| 5  | indirect and direct comparisons is valuable only when bias is absent. This condition              |
| 6  | once again relies on the similarity of the participants and interventions in the different        |
| 7  | trials. Two randomised clinical trials addressing this issue are ongoing in Australia             |
| 8  | (ClinicalTrials.gov Identifier: NCT01924819) and in China (NCT01815853). The                      |
| 9  | results from these pivotal studies are awaited.                                                   |
| 10 | The present meta-analysis is an aggregation of tabulated data and IPD, which                      |
| 11 | might jeopardize the robustness of the meta-analysis. Despite our effort to get IPD from          |
| 12 | all eligible RCTs, IPD were provided from only 2 primary investigators and                        |
| 13 | compensatory tabulated data was provided from one investigator. In 6 studies, estimates           |
| 14 | were calculated from the data reported in original studies. In 5 studies, data were               |
| 15 | extracted from the meta-analysis by Ronellenfitsch. <sup>2</sup> However the results from all the |
| 16 | reviewed trials seemed consistent with the results from the IPD.                                  |
| 17 | In conclusion, preoperative (chemo)radiotherapy for resectable gastric and GOJ                    |

18 cancer is associated to a significant survival benefit over surgery alone. Preoperative

| 1                                                                                                          | chemotherapy alone seemed to act in the same direction. In adjusted indirect and direct                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                                                                                          | comparisons between preoperative chemotherapy and chemoradiotherapy, the latter                                                                                                                                                                                                                                                                                                             |
| 3                                                                                                          | showed a trend towards better long-term survival, which could not be fully substantiated                                                                                                                                                                                                                                                                                                    |
| 4                                                                                                          | statistically. Neither of these neoadjuvant therapies increased the risk for postoperative                                                                                                                                                                                                                                                                                                  |
| 5                                                                                                          | morbidity or perioperative mortality. Although the results were not conclusive because                                                                                                                                                                                                                                                                                                      |
| 6                                                                                                          | of some methodological drawbacks, they raise an issue regarding a possible role for                                                                                                                                                                                                                                                                                                         |
| 7                                                                                                          | preoperative radiotherapy in the curatively intended treatment for stomach and GOJ                                                                                                                                                                                                                                                                                                          |
| 8                                                                                                          | cancer.                                                                                                                                                                                                                                                                                                                                                                                     |
| 9                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                             |
| 10                                                                                                         | Conflict of interest statement                                                                                                                                                                                                                                                                                                                                                              |
| 10<br>11                                                                                                   | Conflict of interest statement<br>The authors state they have no conflict of interest to disclose regarding current                                                                                                                                                                                                                                                                         |
| 10<br>11<br>12                                                                                             | Conflict of interest statement The authors state they have no conflict of interest to disclose regarding current manuscript.                                                                                                                                                                                                                                                                |
| 10<br>11<br>12<br>13                                                                                       | Conflict of interest statement<br>The authors state they have no conflict of interest to disclose regarding current<br>manuscript.                                                                                                                                                                                                                                                          |
| 10<br>11<br>12<br>13<br>14                                                                                 | Conflict of interest statement The authors state they have no conflict of interest to disclose regarding current manuscript. Acknowledgements                                                                                                                                                                                                                                               |
| <ol> <li>10</li> <li>11</li> <li>12</li> <li>13</li> <li>14</li> <li>15</li> </ol>                         | Conflict of interest statement The authors state they have no conflict of interest to disclose regarding current manuscript. Acknowledgements The authors thank the European Organization for Research and Treatment of                                                                                                                                                                     |
| <ol> <li>10</li> <li>11</li> <li>12</li> <li>13</li> <li>14</li> <li>15</li> <li>16</li> </ol>             | Conflict of interest statement The authors state they have no conflict of interest to disclose regarding current manuscript. Acknowledgements The authors thank the European Organization for Research and Treatment of Cancer for permission to use the data from EORTC trial 40954 and thank the German                                                                                   |
| <ol> <li>10</li> <li>11</li> <li>12</li> <li>13</li> <li>14</li> <li>15</li> <li>16</li> <li>17</li> </ol> | Conflict of interest statement The authors state they have no conflict of interest to disclose regarding current manuscript. Acknowledgements The authors thank the European Organization for Research and Treatment of Cancer for permission to use the data from EORTC trial 40954 and thank the German Oesophageal Cancer Study Group for permission to use the data from the POET study |

27

#### 1 References

| 2 | 1. | Greenlee | RT,  | Murray          | T,   | Bolden | S, | Wingo | PA. | Cancer | Statistics, | 2000. | CA |
|---|----|----------|------|-----------------|------|--------|----|-------|-----|--------|-------------|-------|----|
| 3 |    | Cancer J | Clin | 2000; <b>50</b> | )(1) | : 7.   |    |       |     |        |             | K     |    |

| 4 | 2. | Ronellenfitsch U, Schwarzbach M, Hofheinz R, Kienle P, Kieser M, Slanger TE, |
|---|----|------------------------------------------------------------------------------|
| 5 |    | Burmeister B, Kelsen D, Niedzwiecki D, Schuhmacher C, Urba S, van d, V,      |
| 6 |    | Walsh TN, Ychou M, Jensen K. Preoperative Chemo(Radio)Therapy Versus         |
| 7 |    | Primary Surgery for Gastroesophageal Adenocarcinoma: Systematic Review       |
| 8 |    | With Meta-Analysis Combining Individual Patient and Aggregate Data. Eur J    |
| 9 |    | <i>Cancer</i> 2013: <b>49</b> (15): 3149.                                    |

Fiorica F, Cartei F, Enea M, Licata A, Cabibbo G, Carau B, Liboni A, Ursino S,
 Camma C. The Impact of Radiotherapy on Survival in Resectable Gastric
 Carcinoma: a Meta-Analysis of Literature Data. *Cancer Treat Rev* 2007; 33(8):
 729.

Ajani JA, Mansfield PF, Janjan N, Morris J, Pisters PW, Lynch PM, Feig B,
 Myerson R, Nivers R, Cohen DS, Gunderson LL. Multi-Institutional Trial of
 Preoperative Chemoradiotherapy in Patients With Potentially Resectable Gastric
 Carcinoma. *J Clin Oncol* 2004; 22(14): 2774.

| 1  | 5. | Ajani JA, Mansfield PF, Crane CH, Wu TT, Lunagomez S, Lynch PM, Janjan N,    |
|----|----|------------------------------------------------------------------------------|
| 2  |    | Feig B, Faust J, Yao JC, Nivers R, Morris J, Pisters PW. Paclitaxel-Based    |
| 3  |    | Chemoradiotherapy in Localized Gastric Carcinoma: Degree of Pathologic       |
| 4  |    | Response and Not Clinical Parameters Dictated Patient Outcome. J Clin Oncol  |
| 5  |    | 2005; <b>23</b> (6): 1237.                                                   |
| 6  | 6. | Ajani JA, Winter K, Okawara GS, Donohue JH, Pisters PW, Crane CH,            |
| 7  |    | Greskovich JF, Anne PR, Bradley JD, Willett C, Rich TA. Phase II Trial of    |
| 8  |    | Preoperative Chemoradiation in Patients With Localized Gastric               |
| 9  |    | Adenocarcinoma (RTOG 9904): Quality of Combined Modality Therapy and         |
| 10 |    | Pathologic Response. <i>J Clin Oncol</i> 2006; <b>24</b> (24): 3953.         |
| 11 | 7. | Stahl M, Walz MK, Stuschke M, Lehmann N, Meyer HJ, Riera-Knorrenschild J,    |
| 12 |    | Langer P, Engenhart-Cabillic R, Bitzer M, Konigsrainer A, Budach W, Wilke H. |
| 13 |    | Phase III Comparison of Preoperative Chemotherapy Compared With              |
| 14 |    | Chemoradiotherapy in Patients With Locally Advanced Adenocarcinoma of the    |
| 15 |    | Esophagogastric Junction. J Clin Oncol 2009; 27(6): 851.                     |
| 16 | 8. | Song F, Loke YK, Walsh T, Glenny AM, Eastwood AJ, Altman DG.                 |
| 17 |    | Methodological Problems in the Use of Indirect Comparisons for Evaluating    |

| 1  |     | Healthcare Interventions: Survey of Published Systematic Reviews. BMJ 2009;     |
|----|-----|---------------------------------------------------------------------------------|
| 2  |     | <b>338</b> : b1147.                                                             |
| 3  | 9.  | Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ,           |
| 4  |     | McQuay HJ. Assessing the Quality of Reports of Randomized Clinical Trials: Is   |
| 5  |     | Blinding Necessary? Control Clin Trials 1996; 17(1): 1.                         |
| 6  | 10. | Parmar MK, Torri V, Stewart L. Extracting Summary Statistics to Perform         |
| 7  |     | Meta-Analyses of the Published Literature for Survival Endpoints. Stat Med      |
| 8  |     | 1998; <b>17</b> (24): 2815.                                                     |
| 9  | 11. | Bassi C, Dervenis C, Butturini G, Fingerhut A, Yeo C, Izbicki J, Neoptolemos J, |
| 10 |     | Sarr M, Traverso W, Buchler M. Postoperative Pancreatic Fistula: an             |
| 11 |     | International Study Group (ISGPF) Definition. Surgery 2005; 138(1): 8.          |
| 12 | 12. | Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for       |
| 13 |     | Systematic Reviews and Meta-Analyses: the PRISMA Statement. BMJ 2009;           |
| 14 |     | <b>339</b> : b2535.                                                             |
| 15 | 13. | Glenny AM, Altman DG, Song F, Sakarovitch C, Deeks JJ, D'Amico R,               |
| 16 |     | Bradburn M, Eastwood AJ. Indirect Comparisons of Competing Interventions.       |

| 1  |     | Health Technol Assess 2005; 9(26): 1.                                       |
|----|-----|-----------------------------------------------------------------------------|
| 2  | 14. | Begg CB, Mazumdar M. Operating Characteristics of a Rank Correlation Test   |
| 3  |     | for Publication Bias. <i>Biometrics</i> 1994; <b>50</b> (4): 1088.          |
| 4  | 15. | Allum WH, Stenning SP, Bancewicz J, Clark PI, Langley RE. Long-Term         |
| 5  |     | Results of a Randomized Trial of Surgery With or Without Preoperative       |
| 6  |     | Chemotherapy in Esophageal Cancer. J Clin Oncol 2009; 27(30): 5062.         |
| 7  | 16. | Burmeister BH, Thomas JM, Burmeister EA, Walpole ET, Harvey JA, Thomson     |
| 8  |     | DB, Barbour AP, Gotley DC, Smithers BM. Is Concurrent Radiation Therapy     |
| 9  |     | Required in Patients Receiving Preoperative Chemotherapy for Adenocarcinoma |
| 10 |     | of the Oesophagus? A Randomised Phase II Trial. Eur J Cancer 2011; 47(3):   |
| 11 |     | 354.                                                                        |
| 12 | 17. | Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ,          |
| 13 |     | Nicolson M, Scarffe JH, Lofts FJ, Falk SJ, Iveson TJ, Smith DB, Langley RE, |
| 14 |     | Verma M, Weeden S, Chua YJ, MAGIC TP. Perioperative Chemotherapy Versus     |
| 15 |     | Surgery Alone for Resectable Gastroesophageal Cancer. N Engl J Med 2006;    |
| 16 |     | <b>355</b> (1): 11.                                                         |

| 1  | 18. | Hartgrink HH, Van de Velde CJ, Putter H, Songun I, Tesselaar ME, Kranenbarg |
|----|-----|-----------------------------------------------------------------------------|
| 2  |     | EK, de Vries JE, Wils JA, van der Bijl J, van Krieken JH. Neo-Adjuvant      |
| 3  |     | Chemotherapy for Operable Gastric Cancer: Long Term Results of the Dutch    |
| 4  |     | Randomised FAMTX Trial. Eur J Surg Oncol 2004; <b>30</b> (6): 643.          |
| 5  | 19. | Kelsen DP, Winter KA, Gunderson LL, Mortimer J, Estes NC, Haller DG, Ajani  |
| 6  |     | JA, Kocha W, Minsky BD, Roth JA, Willett CG. Long-Term Results of RTOG      |
| 7  |     | Trial 8911 (USA Intergroup 113): a Random Assignment Trial Comparison of    |
| 8  |     | Chemotherapy Followed by Surgery Compared With Surgery Alone for            |
| 9  |     | Esophageal Cancer. J Clin Oncol 2007; 25(24): 3719.                         |
| 10 | 20. | Schuhmacher C, Gretschel S, Lordick F, Reichardt P, Hohenberger W,          |
| 11 |     | Eisenberger CF, Haag C, Mauer ME, Hasan B, Welch J, Ott K, Hoelscher A,     |
| 12 |     | Schneider PM, Bechstein W, Wilke H, Lutz MP, Nordlinger B, Van CE, Siewert  |
| 13 |     | JR, Schlag PM. Neoadjuvant Chemotherapy Compared With Surgery Alone for     |
| 14 |     | Locally Advanced Cancer of the Stomach and Cardia: European Organisation    |
| 15 |     | for Research and Treatment of Cancer Randomized Trial 40954. J Clin Oncol   |
| 16 |     | 2010; <b>28</b> (35): 5210.                                                 |
|    |     |                                                                             |

17 21. Shchepotin IB, Evans SR, Chorny V, Osinsky S, Buras RR, Maligonov P,

| 1  |     | Shabahang M, Nauta RJ. Intensive Preoperative Radiotherapy With Local          |
|----|-----|--------------------------------------------------------------------------------|
| 2  |     | Hyperthermia for the Treatment of Gastric Carcinoma. Surg Oncol 1994; 3(1):    |
| 3  |     | 37.                                                                            |
| 4  | 22. | Skoropad V, Berdov B, Zagrebin V. Concentrated Preoperative Radiotherapy for   |
| 5  |     | Resectable Gastric Cancer: 20-Years Follow-Up of a Randomized Trial. J Surg    |
| 6  |     | Oncol 2002; <b>80</b> (2): 72.                                                 |
| 7  | 23. | Skoropad VY, Berdov BA, Mardynski YS, Titova LN. A Prospective,                |
| 8  |     | Randomized Trial of Pre-Operative and Intraoperative Radiotherapy Versus       |
| 9  |     | Surgery Alone in Resectable Gastric Cancer. Eur J Surg Oncol 2000; 26(8): 773. |
| 10 | 24. | Tepper J, Krasna MJ, Niedzwiecki D, Hollis D, Reed CE, Goldberg R, Kiel K,     |
| 11 |     | Willett C, Sugarbaker D, Mayer R. Phase III Trial of Trimodality Therapy With  |
| 12 |     | Cisplatin, Fluorouracil, Radiotherapy, and Surgery Compared With Surgery       |
| 13 |     | Alone for Esophageal Cancer: CALGB 9781. J Clin Oncol 2008; 26(7): 1086.       |
| 14 | 25. | Urba SG, Orringer MB, Turrisi A, Iannettoni M, Forastiere A, Strawderman M.    |
| 15 |     | Randomized Trial of Preoperative Chemoradiation Versus Surgery Alone in        |
| 16 |     | Patients With Locoregional Esophageal Carcinoma. J Clin Oncol 2001; 19(2):     |
| 17 |     | 305.                                                                           |

| 1  | 26. | van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge            |
|----|-----|-------------------------------------------------------------------------------|
| 2  |     | Henegouwen MI, Wijnhoven BP, Richel DJ, Nieuwenhuijzen GA, Hospers GA,        |
| 3  |     | Bonenkamp JJ, Cuesta MA, Blaisse RJ, Busch OR, Ten Kate FJ, Creemers GJ,      |
| 4  |     | Punt CJ, Plukker JT, Verheul HM, Spillenaar Bilgen EJ, van DH, van der Sangen |
| 5  |     | MJ, Rozema T, Biermann K, Beukema JC, Piet AH, van Rij CM, Reinders JG,       |
| 6  |     | Tilanus HW, van der Gaast A. Preoperative Chemoradiotherapy for Esophageal    |
| 7  |     | or Junctional Cancer. N Engl J Med 2012; 366(22): 2074.                       |
|    |     |                                                                               |
| 8  | 27. | Walsh TN, Grennell M, Mansoor S, Kelly A. Neoadjuvant Treatment of            |
| 9  |     | Advanced Stage Esophageal Adenocarcinoma Increases Survival. Dis              |
| 10 |     | Esophagus 2002; <b>15</b> (2): 121.                                           |
|    |     |                                                                               |
| 11 | 28. | Wang XL, Wu GX, Zhang MD, Guo M, Zhang H, Sun XF. A Favorable Impact          |
| 12 |     | of Preoperative FPLC Chemotherapy on Patients With Gastric Cardia Cancer.     |
| 13 |     | <i>Oncol Rep</i> 2000; <b>7</b> (2): 241.                                     |
|    |     |                                                                               |
| 14 | 29. | Ychou M, Boige V, Pignon JP, Conroy T, Bouche O, Lebreton G, Ducourtieux      |
| 15 |     | M, Bedenne L, Fabre JM, Saint-Aubert B, Geneve J, Lasser P, Rougier P.        |
| 16 |     | Perioperative Chemotherapy Compared With Surgery Alone for Resectable         |
| 17 |     | Gastroesophageal Adenocarcinoma: an FNCLCC and FFCD Multicenter Phase         |

| 1  |     | III Trial. <i>J Clin Oncol</i> 2011; <b>29</b> (13): 1715.                       |
|----|-----|----------------------------------------------------------------------------------|
| 2  | 30. | Zhang ZX, Gu XZ, Yin WB, Huang GJ, Zhang DW, Zhang RG. Randomized                |
| 3  |     | Clinical Trial on the Combination of Preoperative Irradiation and Surgery in the |
| 4  |     | Treatment of Adenocarcinoma of Gastric Cardia (AGC)Report on 370 Patients.       |
| 5  |     | Int J Radiat Oncol Biol Phys 1998; <b>42</b> (5): 929.                           |
| 6  | 31. | Zhao WH, Wang SF, Ding W, Sheng JM, Ma ZM, Teng LS, Wang M, Wu FS,               |
| 7  |     | Luo B. Apoptosis Induced by Preoperative Oral 5'-DFUR Administration in          |
| 8  |     | Gastric Adenocarcinoma and Its Mechanism of Action. World J Gastroenterol        |
| 9  |     | 2006; <b>12</b> (9): 1356.                                                       |
| 10 | 32. | Kelsen DP, Ginsberg R, Pajak TF, Sheahan DG, Gunderson L, Mortimer J, Estes      |
| 11 |     | N, Haller DG, Ajani J, Kocha W, Minsky BD, Roth JA. Chemotherapy Followed        |
| 12 |     | by Surgery Compared With Surgery Alone for Localized Esophageal Cancer. N        |
| 13 |     | Engl J Med 1998; <b>339</b> (27): 1979.                                          |
| 14 | 33. | Kumagai K, Rouvelas I, Tsai JA, Mariosa D, Klevebro F, Lindblad M, Ye W,         |
| 15 |     | Lundell L, Nilsson M. Meta-Analysis of Postoperative Morbidity and               |
| 16 |     | Perioperative Mortality in Patients Receiving Neoadjuvant Chemotherapy or        |
| 17 |     | Chemoradiotherapy for Resectable Oesophageal and Gastro-Oesophageal              |

| 1  |     | Junctional Cancers. Br J Surg 2014; <b>101</b> (4): 321.                      |
|----|-----|-------------------------------------------------------------------------------|
| 2  | 34. | Macdonald JS, Smalley SR, Benedetti J, Hundahl SA, Estes NC, Stemmermann      |
| 3  |     | GN, Haller DG, Ajani JA, Gunderson LL, Jessup JM, Martenson JA.               |
| 4  |     | Chemoradiotherapy After Surgery Compared With Surgery Alone for               |
| 5  |     | Adenocarcinoma of the Stomach or Gastroesophageal Junction. N Engl J Med      |
| 6  |     | 2001; <b>345</b> (10): 725.                                                   |
| 7  | 35. | Sakuramoto S, Sasako M, Yamaguchi T, Kinoshita T, Fujii M, Nashimoto A,       |
| 8  |     | Furukawa H, Nakajima T, Ohashi Y, Imamura H, Higashino M, Yamamura Y,         |
| 9  |     | Kurita A, Arai K. Adjuvant Chemotherapy for Gastric Cancer With S-1, an Oral  |
| 10 |     | Fluoropyrimidine. N Engl J Med 2007; <b>357</b> (18): 1810.                   |
| 11 | 36. | Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KH, Lee KW, Kim YH,          |
| 12 |     | Noh SI, Cho JY, Mok YJ, Kim YH, Ji J, Yeh TS, Button P, Sirzen F, Noh SH.     |
| 13 |     | Adjuvant Capecitabine and Oxaliplatin for Gastric Cancer After D2 Gastrectomy |
| 14 |     | (CLASSIC): a Phase 3 Open-Label, Randomised Controlled Trial. Lancet 2012;    |
| 15 |     | <b>379</b> (9813): 315.                                                       |
| 16 | 37. | Bonenkamp JJ, Hermans J, Sasako M, Van de Velde CJ, Welvaart K, Songun I,     |
| 17 |     | Meyer S, Plukker JT, Van EP, Obertop H, Gouma DJ, van Lanschot JJ, Taat CW,   |



| Author                       | Year          | Preoperative radiotherapy and chemotherapy regimens                                                                                                                                                                                                                                                                                                                                                                                                            |                   | umour sit | te  | No. of pts<br>included | Information source                                             |  |
|------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|-----|------------------------|----------------------------------------------------------------|--|
|                              | published     | Troporau to radio morapy and enomounoupy regiments                                                                                                                                                                                                                                                                                                                                                                                                             | 0                 | GOJ       | S   | in the MA              |                                                                |  |
| Preoperative radio           | o(chemo)thera | apy plus surgery vs. surgery alone                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |           |     |                        |                                                                |  |
| Shchepotin                   | 1994          | 20 Gy of RT in 4 fractions ACCEPTED MANUSCR                                                                                                                                                                                                                                                                                                                                                                                                                    | IP <sub>0</sub> 1 | 0         | 198 | 198                    | 5- and 3-year survival, date of trial<br>started and published |  |
| Zhang                        | 1998          | 40 Gy of RT in 20 fractions                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                 | 370       | 0   | 370                    | Number of randomised pts and<br>overall mortality and p-value  |  |
| Skoropad                     | 2000          | 20 Gy of RT in 5 fractions plus 20 Gy as an IORT                                                                                                                                                                                                                                                                                                                                                                                                               | 0                 | 78        |     | 78                     | Number of eligible pts and overall<br>mortality and p-value    |  |
| Urba                         | 2001          | 45 Gy of RT in 30 fractions; Two cycles of CT: Cis 20 mg/m <sup>2</sup> days 1–5; FU 300 mg/m <sup>2</sup> days 1–21; vinblastine 1 mg/m <sup>2</sup> days 1–4                                                                                                                                                                                                                                                                                                 | 1                 | 00        | 0   | 0                      | Excluded                                                       |  |
| Skoropad                     | 2002          | 20 Gy of RT in 5 fractions                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                 | 102       | 2   | 102                    | 10- and 5-year survival, date of trial started and published   |  |
| Walsh                        | 2002          | 40 Gy of RT in 15 fractions; Two cycles of CT: Cis 75 mg/m <sup>2</sup> on day 7; FU 15 mg/kg on days 1-5                                                                                                                                                                                                                                                                                                                                                      | 74                | 39        | 0   | 39                     | InHR, seInHR from MA by<br>Ronellenfitsch                      |  |
| Tepper<br>(CALGB 9781)       | 2008          | 50.4 Gy of RT in 28 fractions; Two cycles of CT: Cis 60 mg/m <sup>2</sup> day 1; FU 1000 mg/m <sup>2</sup> days 3-5                                                                                                                                                                                                                                                                                                                                            |                   | 56        | 0   | 0                      | Excluded                                                       |  |
| van Hagen<br>(CROSS)         | 2012          | 41.4 Gy of RT in 23 fractions; 5 weeks concurrent CT: carboplatin area under curve=2 mg/ml/min and paclitaxel 50 mg/m <sup>2</sup> on day 1 weekly                                                                                                                                                                                                                                                                                                             | 3                 | 866       | 0   | 0                      | Excluded                                                       |  |
| Preoperative chem            | otherapy plu  | s surgery vs. surgery alone                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |           |     |                        |                                                                |  |
| Wang                         | 2000          | Orally FPLC over 12.5 days (5-FU 160 mg/day)                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                 | 60        | 0   | 60                     | Number of randomised pts, death during 5 years and p-value     |  |
| Hartgrink<br>(FAMTX)         | 2004          | Two to four cycles: methotrexate 1500 mg/m <sup>2</sup> on day 2; 5-FU 1500 mg/m <sup>2</sup> on day 2; leucovorin 240 or 480 mg cumulative dose on days 3 to 4; doxorubicin 30 mg/m <sup>2</sup> on day 15                                                                                                                                                                                                                                                    | 0                 | 0         | 56  | 56                     | Number of eligible patients and overall mortality and p-value  |  |
| Cunningham<br>(MAGIC)        | 2006          | Three cycles: epirubicin 50 mg/m <sup>2</sup> on day 1; Cis: 60 mg/m <sup>2</sup> on day 1; 5-FU 4200 mg/m <sup>2</sup> cumulative dose on days 1 to 21) preop.; surgery 3 to 6 weeks after last chemotherapy dose; 3 cycles (see above) postop. starting 6 to 12 weeks after                                                                                                                                                                                  | 73                | 58        | 372 | 430                    | InHR, seInHR from MA by Ronellenfitsch                         |  |
| Zhao                         | 2006          | surgery<br>Group 1: 800-1200 mg/day 5°-DFUR for 3-5 days, Group 2: 500 mg 5-FU +<br>200mg/day CF for 3-5 days                                                                                                                                                                                                                                                                                                                                                  | 0                 | 0         | 54  | 54                     | InHR, seInHR from MA by Ronellenfitsch                         |  |
| Kelsen<br>(RTOG 8911)        | 2007          | Three cycles preoperatively: Cis 100 mg/m <sup>2</sup> day 1; FU 1000 mg/m <sup>2</sup> days 1–5; two cycles postoperatively: Cis 75 mg/m <sup>2</sup> day 1; FU 1000 mg/m <sup>2</sup> days 1–5                                                                                                                                                                                                                                                               | 143               | 93        | 0   | 93                     | lnHR, selnHR from MA by Ronellenfitsch                         |  |
| Allum<br>(OE02)              | 2009          | Two cycles: Cis 80 mg/m <sup>2</sup> day 1; FU 1000 mg/m <sup>2</sup> days 1-4                                                                                                                                                                                                                                                                                                                                                                                 | 720               | 82        | 0   | 0                      | Excluded                                                       |  |
| Schuhmacher<br>(EORTC 40954) | 2010          | Two cycles: Cis 50 mg/m <sup>2</sup> day 1, 15 and 29; FU 2000 mg/m <sup>2</sup> and folinic acid 500mg/m <sup>2</sup> days 1, 8, 15, 22, 29 and 36                                                                                                                                                                                                                                                                                                            | 0                 | 144       | 1   | 144                    | IPD                                                            |  |
| Ychou<br>(ACCORD07)          | 2011          | Planned six perioperatively: (two or three cycles before surgery plus four or three cycles after surgery) of intravenous Cis (100 mg/m <sup>2</sup> ) on day 1 and every 28 days continuous intravenous infusion of FU (800 mg/m <sup>2</sup> per day) for 5 consecutive days (days 1-5)                                                                                                                                                                       | 25                | 144       | 55  | 199                    | InHR, selnHR from MA by Ronellenfitsch                         |  |
| Preoperative chem            | oradiotherap  | y vs. preoperative chemotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |     |                        |                                                                |  |
| Stahl<br>(POET)              | 2009          | 30 Gy of RT in 15 fractions, commencing 2 weeks after last day of induction CT,<br>(CT group) 15 weeks: Cis 50 mg/m <sup>2</sup> biweekly; FU 2000 mg/m <sup>2</sup> /day weekly;<br>folinic acid 500 mg/m <sup>2</sup> /weekly (CRT group) 12 weeks (induction): Cis 50 mg/m <sup>2</sup><br>biweekly; FU 2000 mg/m <sup>2</sup> /day weekly; folinic acid 500 mg/m <sup>2</sup> /day weekly.                                                                 | 0                 | 119       | 0   | 119                    | HR and CI for OS and PFS provided<br>by the original trialist  |  |
| Burmeister                   | 2011          | 3-5, concurrent with RT<br>35 Gy of RT in 15 fractions commencing day 22, (CT group) Cis 80 mg/m <sup>2</sup> day 1<br>and 21; FU 1000 mg/m <sup>2</sup> /day infusion over 96 h day 1 and 21 (CRT group) 1 cycle<br>induction: Cis 80 mg/m <sup>2</sup> day 1 and FU 1000 mg/m <sup>2</sup> /day infusion over 96 h day 1.<br>Followed by Cis 80 mg/m <sup>2</sup> day 1 and FU 800 mg/m <sup>2</sup> /day infusion over 96 h on<br>day 1: concurrent with RT | 60                | 15        | 0   | 14*                    | IPD                                                            |  |

\*One patient with unknown histology tumour was excluded; O,oesophagus; GOJ, gastro-oesophageal junction (including cardia); S, stomach (corpus and antrum); No., number; pts, patients; MA, meta-analysis; HR, hazard ratio; CI, confidence interval; OS, overall survival; PFS, progression free survival; IPD, individual patient data; RT, radiotherapy; IORT, intraoperative radiotherapy; CT, chemotherapy; NA, not available; Cis, cisplatin; FU, fluorouracil

Table 1 Treatment regimens, sample size and information source for survival analyses in randomised trials eligible for the 

meta-analysis

| Tumour site | ur site HR                                     |        | 95 9                  | -                    | D     |       |  |
|-------------|------------------------------------------------|--------|-----------------------|----------------------|-------|-------|--|
|             |                                                |        | Lower                 | Upper                | Ζ.    | Γ     |  |
|             | Pre-op chemoradio vs. chemo (AIC) <sup>1</sup> | E 0.91 | ANU <mark>0.71</mark> | RIPT <sub>1.16</sub> | -0.76 | 0.445 |  |
| Overall     | Pre-op chemoradio vs. chemo                    | 0.96   | 0.60                  | 1.07                 | 1 27  | 0 171 |  |
| Overall     | (combination of DC and AIC)                    | 0.80   | 0.09                  | 1.07                 | -1.57 | 0.171 |  |
|             | Difference between DC and AIC                  |        |                       |                      | -0.91 | 0.363 |  |
|             | Pre-op chemoradio vs. chemo (AIC)              | 0.82   | 0.38                  | 1.78                 | -0.51 | 0.613 |  |
| GOI         | Pre-op chemoradio vs. chemo                    | 0.74   | 0.50                  | 1.00                 | 1 51  | 0 131 |  |
| 001         | (combination of DC and AIC)                    | 0.74   | 0.50                  | 1.09                 | -1.51 | 0.131 |  |
|             | Difference between DC and AIC                  |        |                       |                      | -0.30 | 0.768 |  |
|             | Pre-op chemoradio vs. chemo (AIC)              | 0.77   | 0.53                  | 1.10                 | -1.46 | 0.145 |  |
| Store al    | Pre-op chemoradio vs. chemo                    | NT A   | NT A                  | NT A                 | NIA   | NLA   |  |
| Stomacn     | (combination of DC and AIC)                    | INA    | NA                    | NA                   | NA    | NA    |  |
|             | Difference between DC and AIC                  |        |                       |                      | NA    | NA    |  |

HR, hazard ratio; CI, confidence interval; GOJ, gastro-oesophageal junction; CRTx, chemoradiotherapy;

CTx, chemotherapy; DC, direct comparison; AIC, adjusted indirect comparison; NA, not available

 Table 2 Combination of direct and adjusted indirect comparisons of preoperative chemoradiotherapy with preoperative chemotherapy (overall survival)

|              |                           |               |           |       | 95 % CI |       |              |       |       |
|--------------|---------------------------|---------------|-----------|-------|---------|-------|--------------|-------|-------|
|              | A                         | CCEPTED M     | AEventsCI | Total | RR      | L     | Les          | Z.    | Р     |
|              |                           |               |           |       |         | Lower | Upper        |       |       |
|              | Pre-op chemoradio vs.     | chemoradio    | 44        | 91    | 0.97    | 0.64  | 1.48         | 0.15  | 0.881 |
|              | surgery alone             | surgery alone | 44        | 89    | 1       |       |              |       |       |
|              | Pre-op chemo vs. surgery  | chemo         | 20        | 102   | 1.87    | 0.96  | 3.65         | 1.83  | 0.067 |
|              | alone                     | surgery alone | 11        | 92    | 1       |       |              |       |       |
|              | Pre-op chemoradio vs.     | chemoradio    | 49        | 52    | 1.17    | 0.69  | 1.98         | 0.59  | 0.557 |
| Any          | chemo (DC)                | chemo         | 46        | 61    | 1       |       | $\mathbf{C}$ |       |       |
| complication | Pre-op chemoradio vs.     | chemoradio    | 44        | 91    | 0.52    | 0.24  | 1.14         | -1.63 | 0.104 |
|              | chemo (AIC)               | chemo         | 20        | 102   | 1       |       |              |       |       |
|              | Pre-op chemoradio vs.     | chemoradio    | 93        | 143   | 0.91    | 0.59  | 1.41         | -0.41 | 0.679 |
|              | chemo (combined)          | chemo         | 66        | 163   | 1       |       |              |       |       |
|              | Difference between DC and |               |           |       | C       |       |              | 1 (0  | 0.002 |
|              | AIC                       |               |           |       |         |       |              | 1.68  | 0.093 |
|              | Pre-op chemoradio vs.     | chemoradio    | 2         | 91    | 2.93    | 0.31  | 27.60        | 0.94  | 0.348 |
|              | surgery alone             | surgery alone | 0         | 89    | 1       |       |              |       |       |
|              | Pre-op chemo vs. surgery  | chemo         | 2         | 102   | 0.36    | 0.07  | 1.96         | 1.18  | 0.238 |
|              | alone                     | surgery alone | 5         | 92    | 1       |       |              |       |       |
|              | Pre-op chemoradio vs.     | chemoradio    | 8         | 52    | 1.06    | 0.23  | 5.03         | 0.08  | 0.937 |
| Cardiac      | chemo (DC)                | chemo         | 9         | 61    | 1       |       |              |       |       |
| complication | Pre-op chemoradio vs.     | chemoradio    | 2         | 91    | 8.10    | 0.49  | 134.82       | 1.46  | 0.145 |
|              | chemo (AIC)               | chemo         | 2         | 102   | 1       |       |              |       |       |
|              | Pre-op chemoradio vs.     | chemoradio    | 10        | 143   | 1.71    | 0.44  | 6.67         | 0.78  | 0.438 |
|              | chemo (combined)          | chemo         | 11        | 163   | 1       |       |              |       |       |
|              | Difference between DC and |               |           |       |         |       |              | 1.24  | 0.216 |
|              | AIC                       |               |           |       |         |       |              | -1.24 | 0.210 |
|              | Pre-op chemoradio vs.     | chemoradio    | 23        | 91    | 1.52    | 0.86  | 2.68         | 1.43  | 0.153 |
|              | surgery alone             | surgery alone | 15        | 89    | 1       |       |              |       |       |
|              | Pre-op chemo vs. surgery  | chemo         | 8         | 102   | 2.82    | 0.78  | 10.20        | 1.58  | 0.113 |
|              | alone                     | surgery alone | 3         | 92    | 1       |       |              |       |       |
|              | Pre-op chemoradio vs.     | chemoradio    | 9         | 52    | 1.56    | 0.60  | 4.06         | 0.92  | 0.359 |
| Respiratory  | chemo (DC)                | chemo         | 8         | 61    | 1       |       |              |       |       |
| complication | Pre-op chemoradio vs.     | chemoradio    | 23        | 91    | 0.54    | 0.13  | 2.19         | -0.87 | 0.386 |
|              | chemo (AIC)               | chemo         | 8         | 102   | 1       |       |              |       |       |
|              | Pre-op chemoradio vs.     | chemoradio    | 32        | 143   | 1.12    | 0.51  | 2.46         | 0.27  | 0.785 |
|              | chemo (combined)          | chemo         | 16        | 163   | 1       |       |              |       |       |
|              | Difference between DC and |               |           |       |         |       |              | 1 00  | 0.219 |
|              | AIC                       |               |           |       |         |       |              | 1.23  | 0.218 |
|              | Pre-op chemoradio vs.     | chemoradio    | 11        | 262   | 0.69    | 0.21  | 2.20         | 0.64  | 0.525 |
|              | surgery alone             | surgery alone | 16        | 288   | 1       |       |              |       |       |
|              | Pre-op chemo vs. surgery  | chemo         | 4         | 102   | 2.12    | 0.40  | 11.19        | 0.88  | 0.377 |

|                                                                                      | alone                     | surgery alone | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92    | 1    |      |        |       |       |
|--------------------------------------------------------------------------------------|---------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|--------|-------|-------|
|                                                                                      | Pre-op chemoradio vs.     | chemoradio    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52    | 0.71 | 0.32 | 1.58   | 0.84  | 0.399 |
| Anastomotic                                                                          | chemo (DC) A              | ChemoTED M    | ANU <mark>S</mark> CRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IPT61 | 1    |      |        |       |       |
| leak                                                                                 | Pre-op chemoradio vs.     | chemoradio    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 262   | 0.32 | 0.04 | 2.47   | -1.09 | 0.277 |
|                                                                                      | chemo (AIC)               | chemo         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102   | 1    |      |        |       |       |
| Anastomotic<br>leak<br>Pancreatitis<br>/Pancreatic<br>fistula<br>30-day<br>mortality | Pre-op chemoradio vs.     | chemoradio    | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 314   | 0.64 | 0.30 | 1.34   | -1.19 | 0.236 |
|                                                                                      | chemo (combined)          | chemo         | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 163   | 1    |      |        |       |       |
|                                                                                      | Difference between DC and |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |      |        | 0.70  | 0 492 |
|                                                                                      | AIC                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |      |        | 0.70  | 0.465 |
|                                                                                      | Pre-op chemoradio vs.     | chemoradio    | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91    | 0.56 | 0.05 | 5.88   | 0.48  | 0.629 |
|                                                                                      | surgery alone             | surgery alone | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 89    | 1    |      |        |       |       |
|                                                                                      | Pre-op chemo vs. surgery  | chemo         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102   | 7.41 | 0.39 | 140.77 | 1.13  | 0.183 |
|                                                                                      | alone                     | surgery alone | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92    |      |      |        |       |       |
| Demenantitie                                                                         | Pre-op chemoradio vs.     | chemoradio    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52    | NLA  |      | NT A   | NT A  | NT A  |
|                                                                                      | chemo (DC)                | chemo         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61    | NA   | NA   | NA     | NA    | NA    |
| /Pancreatic                                                                          | Pre-op chemoradio vs.     | chemoradio    | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91    | 0.08 | 0.00 | 3.28   | -1.34 | 0.179 |
| fistula                                                                              | chemo (AIC)               | chemo         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102   | 1    |      |        |       |       |
|                                                                                      | Pre-op chemoradio vs.     | chemoradio    | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 143   | NIA  | NLA  | NLA    | NT A  | NI A  |
|                                                                                      | chemo (combined)          | chemo         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 163   | NA   | NA   | NA     | NA    | NA    |
|                                                                                      | Difference between DC and |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |      |        | NT A  | NT A  |
|                                                                                      | AIC                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |      |        | ΝA    | NA    |
|                                                                                      | Pre-op chemoradio vs.     | chemoradio    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 171   | 0.23 | 0.03 | 1.97   | 1.34  | 0.181 |
|                                                                                      | surgery alone             | surgery alone | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 199   | 1    |      |        |       |       |
|                                                                                      | Pre-op chemo vs. surgery  | chemo         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102   | 7.41 | 0.39 | 140.77 | 1.33  | 0.183 |
|                                                                                      | alone                     | surgery alone | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92    | 1    |      |        |       |       |
|                                                                                      | Pre-op chemoradio vs.     | chemoradio    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52    | 1.59 | 0.28 | 9.12   | 0.52  | 0.602 |
| 30-day                                                                               | chemo (DC)                | chemo         | o       8       52 $0.71$ $0.32$ $1.58$ $0.84$ $0.395$ O       11       262 $0.32$ $0.04$ $2.47$ $-1.09$ $0.275$ o       19 $314$ $0.64$ $0.30$ $1.34$ $-1.19$ $0.236$ o       19 $314$ $0.64$ $0.30$ $1.34$ $-1.19$ $0.236$ o       18       91 $0.56$ $0.05$ $5.88$ $0.48$ $0.629$ one       18       91 $0.56$ $0.05$ $5.88$ $0.48$ $0.629$ o       0       52       NA       NA       NA       NA       NA         o       18       91 $0.39$ $140.77$ $1.13$ $0.18$ o       18       91 $0.08$ $0.00$ $3.28$ $-1.34$ $0.179$ o       1       171 $0.23$ $0.03$ $1.97$ $1.34$ $0.18$ o       1       171 $0.23$ $0.03$ $1.97$ $1.34$ $0.18$ o       1 |       |      |      |        |       |       |
| mortality                                                                            | Pre-op chemoradio vs.     | chemoradio    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 171   | 0.03 | 0.00 | 1.20   | -1.86 | 0.062 |
|                                                                                      | chemo (AIC)               | chemo         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102   | 1    |      |        |       |       |
|                                                                                      | Pre-op chemoradio vs.     | chemoradio    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 223   | 0.76 | 0.16 | 3.69   | -0.34 | 0.734 |
|                                                                                      | chemo (combined)          | chemo         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 163   | 1    |      |        |       |       |
|                                                                                      | Difference between DC and |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |      |        | 1.00  | 0.057 |
|                                                                                      | AIC                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |      |        | 1.90  | 0.037 |
|                                                                                      | Pre-op chemoradio vs.     | chemoradio    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 262   | 0.72 | 0.28 | 1.87   | 0.67  | 0.504 |
|                                                                                      | surgery alone             | surgery alone | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 288   | 1    |      |        |       |       |
|                                                                                      | Pre-op chemo vs. surgery  | chemo         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 129   | 2.64 | 0.52 | 13.30  | 1.17  | 0.241 |
|                                                                                      | alone                     | surgery alone | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121   | 1    |      |        |       |       |
|                                                                                      | Pre-op chemoradio vs.     | chemoradio    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52    | 2.65 | 0.54 | 13.05  | 1.20  | 0.230 |
|                                                                                      | chemo (DC)                | chemo         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61    | 1    |      |        |       |       |
| Total                                                                                | Pre-op chemoradio vs.     | chemoradio    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 262   | 0.27 | 0.02 | 2.94   | -1.08 | 0.280 |
| postoperative                                                                        | chemo (AIC)               | chemo         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 129   | 1    |      |        |       |       |
| mortality                                                                            | Pre-op chemoradio vs.     | chemoradio    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 314   | 1.32 | 0.35 | 4.96   | 0.40  | 0.687 |
|                                                                                      | chemo (combined)          | chemo         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190   | 1    |      |        |       |       |

AIC

RR, risk ratio; confidence interval; DC, direct comparison; AIC, adjusted indirect comparison; NA, not available

**Table 3** Combination of direct and adjusted indirect comparisons of preoperative chemoradiotherapy with preoperative chemotherapy (morbidity and mortality)



Fig. 1 Flow diagram showing inclusion and exclusion of studies

|                    | pre-op       |                |                  |         |
|--------------------|--------------|----------------|------------------|---------|
|                    | chemorad     | io             |                  |         |
| Location and       | plus         | surgery        | Haz. Ratio       | %       |
| study ID           | surgery      | alone          | (95% CI)         | Weigl   |
| GOJ                |              |                |                  |         |
| Walsh 1996         | 16           | 23 -           | 0.35 (0.15, 0.80 | ) 2.7   |
| Zhang 1998         | 171          | 199            | 0.74 (0.60, 0.93 | ) 38.9  |
| Subtotal           | 187          | 222            | 0.57 (0.28, 1.16 | ) 41.6  |
| (I-squared = 66.4  | %, p = 0.08  | (4)            |                  |         |
| GOJ and stomac     | h            |                |                  |         |
| Skoropad 2000      | 40           | 38             | 0.69 (0.34, 1.41 | ) 3.7   |
| Skoropad 2002      | 51           | 51             | 0.84 (0.63, 1.12 | ) 22.8  |
| Subtotal           | 91           | 89             | 0.82 (0.63, 1.07 | ) 26.6  |
| (I-squared = 0.0%  | 6, p = 0.615 | i)             |                  |         |
| Stomach            |              |                |                  |         |
| Shchepotin 1994    | 98           | 100            | 0.75 (0.59, 0.96 | ) 31.7  |
| Subtotal           | 98           | 100            | 0.75 (0.59, 0.96 | ) 31.7  |
| (I-squared = .%, ] | p = .)       |                |                  |         |
| Heterogeneity be   | tween grou   | ups: p = 0.705 |                  |         |
| Overall            | 376          | 411            | 0.75 (0.65, 0.86 | ) 100.0 |
| (I-squared = 0.0)  | 6, p=0.415   | i)             |                  |         |
|                    |              |                |                  |         |
|                    |              | .1             | 1 10             |         |

a Preoperative chemoradiotherapy plus surgery vs. surgery alone

y plus su CHILL HANN

|                      | pretop     |             |                     |  |
|----------------------|------------|-------------|---------------------|--|
|                      | chemo      |             |                     |  |
| Location and         | plus       | surgery     | Haz. Ratio          |  |
| study ID             | surgery    | alone       | (95% CI)            |  |
| GOJ                  |            |             |                     |  |
| Cunningham 2006      | 28         | 30          | 0.61 (0.39, 0.94)   |  |
| Kelsen 2007          | 47         | 46          | 1.06 (0.67, 1.69)   |  |
| Wang 2000            | 30         | 30          | 0.65 (0.35, 1.20)   |  |
| řchou 2011           | 70         | 74          | 0.57 (0.39, 0.83)   |  |
| Subtotal             | 175        | 180         | 0.69 (0.52, 0.93)   |  |
| I-squared = 36.4%,   | p = 0.194) |             |                     |  |
| GOJ and stomach      |            |             |                     |  |
| Schuhmacher 2010     | 72         | 72          | 0.84 (0.52, 1.36)   |  |
| Subtotal             | 72         | 72          | 0.84 (0.52, 1.36)   |  |
| (I-squared = .%, p = | .)         |             |                     |  |
| Stomach              |            |             |                     |  |
| Cunningham 2006      | 185        | 187         | • 0.94 (0.80, 1.09) |  |
| Hartgrink 2004       | 27         | 29          | 1.51 (0.84, 2.73)   |  |
| Ychou 2011           | 28         | 27          | 1.00 (0.45, 2.18)   |  |
| Zhao 2006            | 34         | 20 -        | 0.52 (0.17, 1.63)   |  |
| Subtotal             | 274        | 263         | 0.98 (0.78, 1.24)   |  |
| (I-squared = 13.9%,  | p = 0.323) |             |                     |  |
| Heterogeneity betw   | een groups | : p = 0.054 |                     |  |
| Overall              | 521        | 515         | 0.83 (0.67, 1.01)   |  |
| (I-squared = 43.0%,  | p = 0.081) |             |                     |  |
|                      |            |             |                     |  |
|                      |            | .1          | 1 10                |  |

**b** Preoperative chemotherapy plus surgery vs. surgery alone

A C



 $\mathbf{c}$  Preoperative chemoradiotherapy plus surgery vs. preoperative chemotherapy plus surgery

Fig. 2 Overall survival comparing **a** Preoperative chemoradiotherapy plus surgery to surgery alone, **b** Preoperative chemotherapy plus surgery to surgery alone and **c** Preoperative chemoradiotherapy plus surgery to preoperative chemotherapy plus surgery. GOJ, gastroesophageal junction; Haz. Ratio, hazard ratio; CI, confidence interval